

jMonkeyEngine 3.0
Beginner's Guide

Develop professional 3D games for desktop, web, and
mobile, all in the familiar Java programming language

Ruth Kusterer

BIRMINGHAM - MUMBAI

jMonkeyEngine 3.0 Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1180613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-646-4

www.packtpub.com

Cover Image by Girish Suryawanshi (girish.suryawanshi@gmail.com)

Credits

Author
Ruth Kusterer

Reviewers
Peter Backx

T. Joseph Duchesne

Jens Hohmuth

Dany Rioux

Glauco Márdano

Acquisition Editor
Antony Lowe

Lead Technical Editor
Mayur Hule

Technical Editors
Prasad Dalvi

Pushpak Poddar

Kirti Pujari

Project Coordinator
Michelle Quadros

Proofreaders
Aaron Nash

Jonathan Todd

Indexer
Tejal Soni

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

 About the Author

Ruth Kusterer became intrigued by Java and open source software while completing her
degree in computational linguistics. In 2005, she joined Sun Microsystems, Inc. as a technical
writer for netbeans.org where she wrote 100 NetBeans IDE Tips & Tricks. Since 2010, she
has been working for CA Technologies, Inc. where she's a senior technical writer for security
software. In her spare time, she hangs out on jMonkeyEngine.org and strives eternally to
write the ultimate Java game.

I would like to thank the jMonkeyEngine core team for answering a
BigInteger of newbie questions and helping out with non-trivial code
samples. I would also like to thank all the jMonkeys posting inspiring
videos of completed games, and a big shout-out to the NetBeans
community whose NetBeans platform is the base of the jMonkeyEngine SDK.

About the Reviewers

Peter Backx is a software developer and architect. He has used Java for more than
a decade to shape unique user experiences and build rock-solid scalable software. He
received a PhD in Computer Sciences from Ghent University, Belgium. Peter maintains
a technical blog at http://www.streamhead.com.

T. Joseph Duchesne holds a Computer Engineering degree from Dalhousie University
and works in software-as-a-service web applications, primarily in backend infrastructure
using a wide variety of technologies. In his free time, he enjoys video game development
and has competed in open source/independent game development competitions.

Joseph is currently Sr. Infrastructure and Software Engineer at SimplyCast
(www.simplycast.com), an online software-as-a-service marketing platform.

Jens Hohmuth graduated in Computer Science in 1998 from the University of Applied
Sciences of Zwickau, Germany. Jens has been working for more than 10 years as a
professional Software Developer. At his day job at a German company, he works for banks
and financial services providers applying e-banking solutions on a wide range of different
platforms. Jens has expertise in analysis, design, implementation, and support of software
projects from small to large scale. He is an gile software development follower and a natural
born problem solver.

Jens has outstanding training and presentation skills, and created a popular Intel Protected
Mode and MMX Tutorial series as his internship back in college. This tutorial is still one of the
top references for Intel Protected Mode today.

At night time, he is a wannabe game developer and the founder of the open source Java GUI
Framework "Nifty GUI". Besides "Nifty GUI" he has contributed to many other open source
projects. When he's not coding he enjoys creating 2D and 3D art as well as playing his guitar
and piano. In the summertime, you can find him outside on his mountain bike (probably with
his Macbook Air in the backpack).

I'd like to thank all the jMonkeyEngine core members for being extremely
friendly and a great joy to work with. And of course all the "Nifty GUI"
users (and critics) in the world for their continuing support.

Dany Rioux received his programmer/analyst diploma more than 15 years ago at the
Herzing College in Montreal, Canada.

Although he left the programming side of things for numerous years to work in user support,
he has come back to his first love and has been actively working on Disenthral, an RPG space
game, based on the jMonkeyEngine3, for the past two years.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt
 � Copy and paste, print and bookmark content
 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt Publishing at www.PacktPub.com, you can use this to
access PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Installing jMonkeyEngine 11

Installation requirements for game developers 12
Time for action – installing the jMonkeyEngine SDK 12
jMonkeyEngine SDK at your service 14
Can I work in other Java IDEs? 15
Time for action – running a demo 15
Time for action – creating a project 16
Assets and the art pipeline 19
Time for action – distributing a game 20
Can I sell my jMonkeyEngine game? 21
Summary 22

Chapter 2: Creating Your First 3D Scene 23
A basic template to initialize scenes 23
Time for action – initializing a scene step by step 24
Starting and stopping the application 27
Time for action – starting the application 27
Orient yourself in 3D space 28
Time for action – finding the spot 29
And how do I say that in Java? 31
Time for action – position it! 31
Time for action – scale it! 33
Time for action – rotate it! 34
Time for action – rotate it again, Sam 35
Where am I? 36
Time for action – navigating the scene 37
Populating the scene 38
Time for action – node versus geometry 40

Table of Contents

[ii]

Extending SimpleApplication 41
Make a big scene 43
Time for action – configuring display settings 43
Keeping an eye on your FPS 45
Time for action – checking vital stats 45
Navigating the scene with a mouse and a keyboard 46
Time for action – move it! 47
Summary 49

Chapter 3: Interacting with the User 51
The digital Dungeon Master 52
Time for action – from input to output in slow motion 52
Time for action – pushing the right buttons 54
Time for action – trigger meets mapping 55
Time for action – mapping meets listeners 56
Time for action – listeners meet actions 58
Click me if you can 60
Time for action – pick a brick (using crosshairs) 60
Time for action – pick a brick (crosshairs with ray casting) 62
Time for action – pick a brick (using the mouse pointer) 65
Time for action – pick a brick (pointer with ray casting) 66
How to steer spatials 69
Time for action – you are the CubeChaser 69
Time for action – chase all the cubes! 72
Time for action – get these cubes under control 73
Time for action – get into the right AppState of mind 76
Time for action – call me maybe? 79
Coordinating global game mechanics 80
The beauty of AppStates and controls 82
Summary 86

Chapter 4: Adding Character to Your Game 87
Making a Mesh 87
Time for action – meshing around with cubes 88
Time for action – meshing around with spheres 89
From mesh to geometry 91
Beg, steal, or borrow 92
The right wrench to pound in the screw 93
Time for action – installing the Blender-to-Ogre3D plugin 94
Time for action – sculpting the mesh 95
Time for action – coloring the mesh 96

Table of Contents

[iii]

Time for action – a model for to go, please 98
Time for action – loading a model (just testing) 99
Time for action – loading a model (for real) 101
Managing assets – best practices 102
Time for action – sorting your stuff out 102
Time for action – saving and loading .j3o files 104
Animating a model 107
Time for action – rig, skin, and animate 107
Time for action – loading an animated model 109
Time for action – playing an animated model 111
Time for action – responding to animation events 113
Loading a simple user interface 115
Time for action – displaying text 115
Time for action – loading AngelCode fonts 117
Time for action – loading icons into the GUI 118
Time for action – display interactive status icons 119
Time for action – 3D objects in the 2D GUI? 120
The art pipeline 121
Summary 123

Chapter 5: Creating Materials 125
What is a material? 125
Time for action – unshaded materials 126
Material definitions and shaders 128
Good-bye unshaded, hello lighting! 129
Time for action – no frills, just color 130
Time for action – oooh, shiny! 131
Time for action – illuminated opaque textures 133
Time for action – semitransparent texture 134
Time for action – transparent textures 136
Multimapping 138
Time for action – meet the hover tank 139
Time for action – let the hover tank be groovy 141
Time for action – give your hover tank a shine 143
Time for action – make your hover tank glow 145
Time for action – deep-freeze your materials 148
Different types of textures 150
Time for action – scaling and tiling textures 151
Time for action – lights on! 152
Summary 155

Table of Contents

[iv]

Chapter 6: Having Fun with Physics 157
Solid floors and walls 158
Time for action – fortify the town 158
Time for action – first-person navigation 162
Fun with rigid bodies 167
Time for action – falling bricks 168
Time for action – flying cannon balls 172
Time for action – predict the explosion 175
Dynamic, static, and kinematic 177
Time for action – an elevator platform 177
Time for action – react to collisions 182
Time for action – timing forces correctly 185
My whole world is falling apart 187
LEET skillz – learn from the pros 188
Summary 190

Chapter 7: Adding Spark to Your Game 191
Particle effects 192
Time for action – stir up some dust 192
Time for action – sparks 195
Time for action – fit to burst? 197
Starting and stopping effects 199
Time for action – fire! 200
Time for action – design effects in the SDK 202
Time for action – finding stuff in the scene graph 206
Custom effect textures 208
Scene-wide effects 210
Time for action – welcome to Dark Town 211
Time for action – welcome to Dark City 214
Time for action – this city needs more gloom 215
Time for action – stay focused 217
Time for action – this city needs more glow 219
Time for action — toons and artistic effects 221
Summary 223

Chapter 8: Creating Landscapes 225
Welcome to Earth 225
Time for action – climbing a hill 226
Time for action – let there be grass 229
Time for action – splat goes the texture 231
But wait, there's more 235
Time for action – up hill and down dale 235

Table of Contents

[v]

Time for action – go fast and vast 236
Time for action – plant a tree 238
Not even the sky is the limit 241
Time for action – nothing but blue sky 241
Time for action – sky factory 244
Time for action – fog of war 246
Catch the sun 248
Time for action – let the sun shine in 248
Still waters run deep 250
Time for action – simple water 250
Time for action – take a swim 252
Summary 256

Chapter 9: Making Yourself Heard 257
Please roar into the microphone now 258
Ambient sounds! They are everywhere! 258
Time for action – add ambient sound 259
Time for action – to pre-buffer or to stream? 260
Time for action – push a button to receive *BAM* 261
Basic sound APIs 263
Something's coming from behind! 264
Time for action – positional audio 265
A closer look at volume fall-off 267
Time for action – I spy with my little ear 269
Sound environments 272
Time for action – using default sound environments 273
Time for action – underwater 275
Summary 278

Chapter 10: Showing Your Game to the World 279
Customizing display settings 279
Time for action – the name of the game 280
Time for action – make a big splash (screen) 281
Time for action – window seat or full screen? 282
Time for action – fine-tuning video settings 284
Time for action – window, canvas, or headless? 285
Time for action – reload settings 286
SimpleApplication options 287
Time for action – time for a pause 288
Time for action – hide statistics and FPS 289
Save, load, and be merry 289
Time for action – save and load game data 290

Table of Contents

[vi]

Time for action – save and load display settings 291
Pre-release checklist 292
Release checklist 293
Time for action – build the final release 295
Summary 297

Appendix A: What's Next? 299
Hey, this game is fun! 299
Some dos and don'ts 301
Super powers – Go! 302
Keep it simple 303
Polishing off the last pages 304
Summary 305

Appendix B: Additional Resources for Fellow jMonkeys 307
Game-development resources 309

Game-development tips 309
Game-asset resources 309

Key input triggers 310
Mouse 310
Keyboard 311
Joystick 312

Setting up jMonkeyEngine in Eclipse 312
Downloading the software 313
Creating a new game project 313
Setting up dependencies 313
Setting up the assets folder 314
Writing a simple application 314

Best practices for jMonkey networking 315
What do the client and server do? 315
Getting your physics in sync 316
Choosing a server type 317
Hackers, cheaters, and griefers 318
Welcome to MonkeyZone 318

Pop Quiz Answers 321
Index 325

Preface
"You, my brave hero, are about to embark on an adventure full of challenges and
risks, but the reward at the end of your journey will be plentiful and will restore
peace on earth. Are you ready?"

You have probably played many games before reading this book, and gladly accepted
challenges such as this one! Now you will face a new adventure. You will create your
own video game. There too will be challenges, but jMonkeyEngine gives you the tools
to overcome them. This book introduces Java developers to 3D game development and
shows how jMonkeyEngine can make a game developer's life easier.

Note that this book does not cover 3D model or sound design, nor the creative process of
coming up with an original game concept—read the appendix for some related resources.
By the end of this book, you will be ready to develop a 3D game, and have fun doing it!

What this book covers
Chapter 1, Installing jMonkeyEngine, helps you install the software and run a
sample application.

Chapter 2, Creating Your First 3D Scene, teaches you how to add objects and transform them.

Chapter 3, Interacting with the User, reveals how to control game mechanics in the main loop.

Chapter 4, Adding Character to Your Game, shows how to load and convert models.

Chapter 5, Creating Materials, demonstrates how to manipulate the surface of objects.

Chapter 6, Having Fun with Physics, teaches you how to make objects act solid or heavy.

Chapter 7, Adding Spark to the Game, shows basic types of decorative effects.

Chapter 8, Creating Landscapes, introduces terrains and environmental effects.

Preface

[2]

Chapter 9, Making Yourself Heard, teaches how to integrate sounds and music.

Chapter 10, Showing Your Game to the World, shows how to save, load, build, and
distribute games.

Appendix A, What's Next?, reveals how to make your games fun and challenging.

Appendix B, Additional Resources for Fellow jMonkeys, introduces you to more advanced
user interfaces.

Free Download Chapter, Playing on the Network, explains network communication in
multiplayer games. This chapter is available as a free download chapter at http://www.
packtpub.com/sites/default/files/downloads/6464OS_Free_Download_
Chapter_Playing_on_the_Network.pdf

Get a head start
Game development involves a wide range of abilities. Mathematics, software programming,
graphic design, musical arts, and writing skills. Like a member of a World of Warcraft guild,
you need a firm grasp of the tools of your trade before you set out for your quest. Intermediate
or advanced Java skills are a must, as is a basic grasp of multimedia design and 3D modeling.

Thanks to 3D engines, however, you do not have to reinvent the mathematical wheel for
every 3D game that you write. 3D engines such as jMonkeyEngine handle the following
tasks for you:

 � Transformation: Rotating, scaling, and moving 3D objects

 � Projection: Automatic conversion of 3D scene data to 2D images on the screen

 � Rendering: State-of the-art shading and lighting of object surfaces

The sunlit ocean bay in this screenshot is just one of many examples of what can be achieved
when a collection of advanced 3D rendering techniques come together:

Preface

[3]

In addition to transformation, projection, and rendering, there is a lot of internal
functionality that is the same in every 3D game. By reusing proven implementations,
you spare yourself the need to handcode standard algorithms. jMonkeyEngine includes
many features that are otherwise only found in commercial game engines:

 � A 3D scene graph: A data structure that is optimized to store objects of a 3D scene

 � A main event loop: A modular component that controls game mechanics
and interactions

 � Support for loading and displaying multimedia assets

 � Support for handling user input and graphical user interfaces

 � An intuitive camera object that marks the point of view of the player

 � Physics simulation, special effects, multiplayer networking, and more

jMonkeyEngine gives you a head start, so you have more time for coding the parts
that make your game unique.

Who this book is for
To set expectations right, jMonkeyEngine is not one of these drag-and-drop tools that
mass-produces games with just a few clicks. To create a truly original game, you have
to be able to write Java code. Let's have a look at an example:

Preface

[4]

This screenshot shows a scene from Hostile Sector, a browser-based multiplayer strategy
game created with the jMonkeyEngine (http://www.mindemia.com/hostilesector/).
In this game, two armed teams fight each other in an abandoned town. To be able to create
such a basic game scene, you need to be familiar with the following mathematical concepts:

 � The Cartesian coordinate system: You use coordinates every time you position
a character or building into the scene.

 � Vectors: You use vectors to specify angles and directions every time you make
a computer-controlled enemy turn around. You use vectors when calculating
distances and speeds every time an enemy follows a player character.

This book will walk you through these mathematical concepts where necessary, and
introduce you to the appropriate built-in methods and classes that get these tasks done.

Getting things done
It is often that successful games such as Minecraft that inspire players to become game
developers themselves. An example of a game that was inspired by Minecraft is Mythruna
(http://mythruna.com/), an open-world game developed with the jMonkeyEngine.

Preface

[5]

For its creator, Mythruna was not the first game he ever wrote. Successful developers
achieved their level of skill by starting small. Begin your developer career by creating a
portfolio of solid mini-games to gain experience. Equipped with this knowledge, you can
work your way up to the "MMORPG of your dreams".

The key to success is to stick to one idea and dare to strip off everything unnecessary. Don't
aimlessly attempt to top every best-selling game of the last decade in your first release. And
don't water down your game by adding tons of distracting effects just because everyone else
is doing it.

Everyone else can start a game, but you want to finish it, too. A good feasibility test is to
sum up your concept in one line. An example catchline for a Minecraft-like idea could be,
"Build by day, survive by night". If you can't convey your idea in one straightforward line,
it's too complicated to implement. Start with a clearly cut-out idea, and soon you will have
something cool to show.

Do you already have a game idea? Let's have a quick look at the process of breaking down
a complex idea into the building blocks of game development.

The building blocks of game development
Let's say you are creating something similar to Hostile Sector, basically an arena with two
fighters. One is a player-controlled character, the other a hostile non-player character (NPC).

How does the computer-controlled NPC "see" where the player is? How does the enemy
approach the player without stupidly bumping into walls? At first, any game concept may
seem like an undertaking of real-life complexity. But when you think about it for a minute,
you notice that even a complex game scene is composed of only a handful of basic actions.

 � You attach 3D objects to the scene to make them appear, and detach them to
make them disappear. Examples include terrains, buildings, players, enemies,
cars, obstacles, traps, and so on.

 � You transform 3D objects. Transformation means that you make the game engine
translate (position), rotate (turn), or scale (resize) objects in the scene.

 � You modify physical properties of 3D objects. Examples include lighting and shading,
materials and colors, mass, speed, bounciness, or solidity.

 � You detect user input from the keyboard, the mouse, or a joystick, and respond to it.
For example, the player clicks to shoot.

Preface

[6]

 � You specify a rule how the game acts and causes state changes for the player.
This includes automatic game mechanics such as intelligent computer-controlled
enemies who attack when the player approaches their secret lair.

 � You specify a rule how the game reacts to state changes. You repeatedly get and
set object properties (such as current location, direction, or points) and use them
in specific conditions. This includes game mechanics such as "if health equals zero,
then game over" or "if distance between player and enemy is less than one meter,
then attack".

 � You play audio, video, animations, and special effects. These are only decorations,
but they add a lot to the immersion, if used right.

Now that you are aware of the basic atoms, a seemingly intricate scene turns into
a manageable pattern of smaller pieces. Just like building blocks, you can use these
elements in any order or number that fulfills your game's purpose. The only limits are
the capabilities of your PC.

Listening to the heartbeat of your game
How do you apply what you just learned in context? Let's look at the overall structure
of computer games. Obviously, you will have to write code to initialize the scene, and also
to shut down the game cleanly. Between the beginning and the end, every interactive 3D
application constantly loops through three stages: listen, update, and render.

 � Initialize: The game loads objects and brings them in their starting positions.
The loop starts:

 � Listen: The engine detects user input and responds according to your
input handlers

 � Update: Your game code polls and updates its state, and acts and reacts
according to your game mechanics

 � Render: The engine draws the scene to the screen

 � End: The player has won, lost, paused, or quit the game. The loop ends.

In each stage of the game loop, you can make use of all basic elements described here.
Let's look at an example of how to put the pieces together.

Preface

[7]

Putting the pieces together
Our example is of two fighters in an arena. In simple terms, you can break this scene down
as follows:

1. Initialization: You load the landscape, player, and enemy models, attach them to the
scene, and position them. The loop starts.

2. Listen: The game listens for keyboard input in case the player moves his character.
The game listens for mouse input in case the player clicks to attack the enemy.

3. Update: The game checks for obstacles between the two opponents, and rotates the
computer-controlled enemy to approach the player's location. If certain conditions
are met, the enemy attacks the player and plays a sound. The game polls location,
armor, and health of the opponents, and calculates the outcome of every attack.
The game updates location, armor, and health values according to the outcome.

4. Render: The game draws the updated state to the screen and the loop repeats.

5. End: A test checks if one of the fighters has reached zero health points. If yes,
then the loop ends and a winner is declared.

Looks more manageable now, doesn't it?

Sources of information
In the preceding example, you saw how a game scene comes together. As you read on, your
understanding of the application structure will improve. The book includes a lot of hands-on
sample code and fun challenges, because writing code and trying it out is the best (and most
interesting) way to learn.

As additional sources, you should bookmark the following two pages:

 � http://jMonkeyEngine.org/wiki/doku.php/=jme3: Visit the wiki
to get the latest sample code, beginner tutorials, intermediate articles, and
advanced documentation.

 � http://jMonkeyEngine.org/forums-index: Search the forums for answers
to the most common questions, or chat with like-minded developers about
different approaches.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions on how to complete a procedure or task, we use:

Preface

[8]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Browse to the jMonkeyProjects/BasicGame/
dist/ folder in your user home."

A block of code is set as follows:

import com.jme3.app.SimpleApplication;
import com.jme3.material.Material;
import com.jme3.math.ColorRGBA;
import com.jme3.math.Vector3f;
import com.jme3.renderer.RenderManager;
import com.jme3.scene.Geometry;
import com.jme3.scene.shape.Box;

Preface

[9]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

SceneGraphVisitorAdapter myEmitterVisitor =
 new SceneGraphVisitorAdapter() {
 @Override
 public void visit(Geometry geom) {
 super.visit(geom);
 searchForEmitter(geom); // trigger custom test
 }
 @Override
 public void visit(Node node) {
 super.visit(node);

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "If you still need to
install the JDK, click on the Download JDK button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Preface

[10]

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from http://www.packtpub.com/sites/default/
files/downloads/6464OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/support, selecting your book, clicking
on the errata submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded to our website,
or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please provide us
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Installing jMonkeyEngine

When a group of heroes set out on a quest, they grab their armor and
weapons—when you set out on a game development adventure, you grab the
jMonkeyEngine SDK.

The jMonkeyEngine Software Development Kit (SDK) contains everything that you need
to get started quickly: the jMonkeyEngine libraries, Javadoc, sample code, and lots of nifty
game development utilities. This bundle also includes all necessary native libraries, such
as LightWeight Java Game Library (LWJGL). This means there is no second installation step,
neither for the development team, nor for users of the games that we create.

Installing jMonkeyEngine

[12]

In this chapter you will learn:

•	 What the hardware and software requirements are

•	 How to install the jMonkeyEngine SDK

•	 How the tools in the jMonkeyEngine SDK make a developer's life easier

•	 How to create and distribute jMonkeyEngine games

Installation requirements for game developers
At the time of printing, the jMonkeyEngine SDK needs 40 MB of memory, plus enough
memory to load the particular game's assets. Your computer should have a minimum of
1 GHz CPU, and your graphic card must support OpenGL 2.0, or better. Suitable graphic
cards include ATI Radeon 9500, NVIDIA GeForce 5 FX, Intel GMA 4500, and all newer ones.

You can use the jMonkeyEngine SDK on all operating systems that support the Java
Development Kit 6 (JDK 6) or better. Currently this includes Windows XP/Windows
Vista/Windows 7 or better, Mac OS X 10.5 or better, and Linux kernel 2.6 or better.

Enter the following command in your terminal to check whether you have the required
Java Development Kit (JDK) installed:

javac -version

If this command returns javac 1.6.x or better, then your Java installation is
set to go. If you still need to install the JDK, click on the Download JDK button at
http://www.oracle.com/technetwork/java/javase/downloads/index.html
and follow the installation instructions there.

Time for action – installing the jMonkeyEngine SDK
The jMonkey team devised the jMonkeyEngine SDK to make the installation process as
smooth as possible:

1. Go to http://jmonkeyengine.org/downloads/.

2. Download the jME3 SDK for your operating system and unzip it, if necessary.

3. Double-click on the installer and complete the installation wizard.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

[13]

It's time for your first test run:

1. Find the jMonkeyEngine SDK icon in your Applications folder or Start menu
and double-click on it to run the SDK.

2. When the jMonkeyEngine SDK opens for the first time, a dialog box asks you to
specify a folder for storing your projects. Browse to your home directory, click
on the Create new folder button, and name the folder jMonkeyProjects.

3. With your new folder still selected, click on Set Project Folder to close the
dialog box.

When the SDK opens, you will see the following application screen:

The Projects window, on the top left-hand side, is where you will browse Java files and
manage Java packages, among other things. The SDK also contains an editor window for
Java files, not visible here, that we will look at in a minute. At the bottom right-hand side
of the screen, you see the Output - Application window; this is where build messages,
runtime exceptions, warnings, and println() appear.

In the center, you see the OpenGL Window. We will use it later to preview the 3D scenes
that we created using the Properties, SceneExplorer, and SceneComposer windows, not
visible here.

Installing jMonkeyEngine

[14]

The other two windows you can ignore for now. Later you may use the FilterExplorer
window to configure special effects, and the AssetPackBrowser window to bundle up
collections of 3D models.

Congrats, your tools are ready, and you have accomplished your first mission. Let's take a
closer look at the jMonkeyEngine SDK.

jMonkeyEngine SDK at your service
The jMonkeyEngine SDK is your graphical user interface for the jMonkeyEngine library.
The jMonkey team devised this integrated development environment (IDE) especially for 3D
game development with Java. The jMonkeyEngine SDK assists you from start to end, whether
you write code, integrate game assets, lay out scenes, or deploy the finished application.

Creating your Java game projects with jMonkeyEngine SDK has the added value that they are
already preconfigured:

•	 The jMonkeyEngine JAR files and native libraries are on the classpath

•	 Javadoc popups and code completion for jMonkeyEngine methods are set up
in the source editor

•	 The provided Ant build script is ready to build, run, and deploy your application

At the same time, there is nothing proprietary about the projects that the SDK creates:
you are looking at standard Java SE projects. The SDK's clean, build, and run actions are
automated using standard Ant build scripts. The Apache Ant build tool is already included
when you install the SDK.

Did you know?
jMonkeyEngine SDK is built on top of the NetBeans Platform. This means
that you can install all kinds of NetBeans IDE plugins. The NetBeans plugins
prepackaged in the jMonkeyEngine SDK include version control tools and
a Java debugger. Open the jMonkeyEngine SDK and choose Tools | Plugins
from the menu, then click on Available Plugins to browse and install other
cool add-ons for free, such as a Java profiler.

Chapter 1

[15]

Can I work in other Java IDEs?
Although this book will repeatedly tell you how awesome the jMonkeyEngine SDK is, you
are not forced to use it for coding. The jMonkeyEngine library is open source software:
If you download the latest binary bundle from http://www.jmonkeyengine.com/
nightly/, you can manually add the JAR files from the lib directory to your CLASSPATH,
just like any other Java library. You can link these libraries in your favorite Java IDE, or do your
Java development in a text editor on the command line if that's how you roll.

For now, let's continue using the SDK because it will get you started more swiftly. This book
strives to keep code samples IDE-independent. If a shortcut or workflow only applies to the
jMonkeyEngine SDK, it will be clearly pointed out as such.

Nonetheless you should give the jMonkeyEngine SDK a try. It contains many plugins that
you will not find in generic IDEs: an asset pack manager and file converters for 3D models,
a scene viewer and scene composer, a terrain editor, a procedural texture generator, a code
snippet palette, and much more. Try it! If you are not convinced by the end of this book, you
will find setup instructions for other IDEs in the appendix. Deal?

Time for action – running a demo
In order to test whether everything was installed correctly, let's run a few demos. A set of
demos comes bundled with the jMonkeyEngine SDK as one of the project templates.

1. Choose File | New Project from the menu to open the New Project wizard.

2. Select JME3 Tests from the jME3 category.

3. Accept the defaults and complete the wizard.

The SDK unpacks the bundled demos and makes copies of the demo sources. The new
JME3 Tests project appears in the Projects window.

To run a demo:

1. Right-click on JME3 Tests and click on Build and Run. Wait for the TestChooser
window to open.

2. For example, select the TestWalkingChar demo and click on OK.

Type walking into the filter box to find it more quickly.

Installing jMonkeyEngine

[16]

3. Accept the default display settings and click on OK.

4. When the demo opens, use the WASD keys and drag the mouse to navigate the
simple scene. Press the Space bar to shoot fireballs.

5. When you have seen enough of this demo, the press Esc key. Either select another
demo, or click on Cancel to exit.

Now that you know how to use the TestChooser, run some demos to see what is possible
with jMonkeyEngine.

What just happened?
It's good to know that, during the development process, you can always return to the
JME3 Tests demos for inspiration. Browse the demo's Source Package if you are looking for
code samples that showcase particular features. Feel free to modify your copy of the code
samples and experiment. In the unlikely case that you break the project, you can always
recreate the JME3 Tests template from the New Project menu.

Restoring the demos is as easy as creating a fresh game project, which is what we will do next.

Time for action – creating a project
The jMonkeyEngine SDK provides you with a preconfigured project template that gets you
started at lightning speed.

This is how you create a new project:

1. Choose File | New Project from the menu

2. Select BasicGame from the jME3 category.

3. You can rename the project here, but for now, accept the defaults and complete
the wizard.

A new Java project named BasicGame appears in the Projects window, next to the JME3
Tests project.

The BasicGame project contains a simple Main.java template. Let's try to run this
Java application:

1. Open the BasicGame project's Source Packages, and double-click on the mygame/
Main.java file to open it. You see that the JDK contains a full-featured editor for
Java files.

Chapter 1

[17]

2. Right-click on the BasicGame project and click on Build and Run.

3. Accept the default display settings and click on OK.

4. The application window opens and shows a blue 3D cube on a black background.
If this works, you know that your project is set up correctly.

5. Press the Esc key to quit the BasicGame project's window.

As you can see, it's easy to create and run fully preconfigured game projects in the
jMonkeyEngine SDK.

What just happened?
Let's open the BasicGame folder in the Projects window and look at the project structure
that the SDK has just created for you.

You can see that the Projects window gives you access to three important areas:
Project Assets, Source Packages, and Libraries, as well as the build script.

Installing jMonkeyEngine

[18]

The Projects window shows the logical structure of a jMonkeyEngine project. This view
only displays files that you need during development, and it filters out build folders and
configuration files. For comparison, have a look at the project's physical structure, which
lets you browse the actual files on your hard drive; choose Window | Files from the menu
to open the Files window. Click the triangles to open the subsections and compare the two
views, as shown in the previous screenshot.

Browse the Libraries section in the Projects window. You can see that it lists all the JAR files
that are preconfigured on this project's CLASSPATH. Compare this to the physical dist/lib
directory in the Files window.

If you know about Ant build scripts, you may want to open the Important Files node in the
Projects window and browse the preconfigured Ant targets. Compare this to the physical
build file, build.xml in the Files window.

You will see that a jMonkeyEngine-based application is a standard Java project made up of
the following files and folders:

Project folder Usage

JMonkeyProjects/BasicGame/assets You store multimedia assets here
jMonkeyProjects/BasicGame/build/ The SDK generates build classes here
jMonkeyProjects/BasicGame/build.xml You customize the Ant build script here
jMonkeyProjects/BasicGame/dist/ The SDK generates executables here
jMonkeyProjects/BasicGame/nbproject/ The SDK stores the default build script and

metadata here
jMonkeyProjects/BasicGame/src/ You store source code here
jMonkeyProjects/BasicGame/test/ You store JUnit test classes here (optional)

Certain files and folders are automatically created and maintained by the jMonkeyEngine
SDK such as build, dist, and nbproject. The SDK recreates these files and folders when
you build the application, so do not edit them.

The other folders, highlighted in yellow, contain your sources and assets. Using the test
folder is optional; for now, just ignore it. As in any Java project, you have full control over
the project's build.xml file, and your two main folders, assets and src.

Chapter 1

[19]

Switch back to the Projects window. You see that the Project Assets folder corresponds to
jMonkeyProjects/BasicGame/assets/, and the Source Packages folder corresponds
to jMonkeyProjects/BasicGame/src/. You are free to set up subfolders and packages
inside these two folders, as your project requires.

Your Java classes obviously go into Source Packages, but what does the Project Assets folder
contain? Open the Project Assets folder and look inside: you will see subfolders for Sounds,
Textures, and Models. This folder is where you store your multimedia content.

Assets and the art pipeline
Every 3D game requires some multimedia assets, whether it's 3D models, image files, sound
clips, video clips, or music. This book focuses on the development aspect—how to tie assets
and code together and deploy the game. Being able to write source code only takes you
halfway there: to develop games, you also need to go through the art pipeline.

By art pipeline we mean the creative process of creating 3D models, composing background
music, and so on. The art pipeline runs in stages parallel to your coding milestones:

1. Lay out concept art, either digital or on paper, to get an idea of what you need;
you do this in parallel to planning your Java object model.

2. Insert mock-up art in alpha builds: these sample files don't look and sound like the
real thing yet. They are merely placeholders in the right size and format that help
you debug your loading code.

3. Insert drafts in beta builds that are close to the final look and feel that you want;
this helps you beta test and iron out the kinks.

4. Include the final artwork in the release builds. Typically, assets are converted to
data formats that are optimized for the target platform.

Including sounds and images in your game means that you either need access to a
multimedia library, or you need to create your assets using external tools.

The jMonkeyEngine SDK does not include any multimedia editors. This is because a game
engine should not prescribe the artist's choice of design software. You are free to create
assets in any third-party tools that you fancy and have access to. Just make certain that
you can export the artwork in formats that jMonkeyEngine supports.

Installing jMonkeyEngine

[20]

The following external file types are supported by jMonkeyEngine:

Supported File Type Usage

.mesh.xml, .material,

.skeleton.xml, .scene
Ogre Mesh XML (3D models)
Ogre DotScene (3D scenes)

.obj, .mtl Wavefront objects (3D models)

.blend Blender files (3D models)

.jpg, .png, .tga, .gif,

.dds, .hdr, .pfm
Images and textures

.fnt Bitmap fonts

.wav, .ogg Wave and OGG Vorbis audio

If you have not chosen your multimedia tools yet, the following are some suggestions of
popular editors that support the formats mentioned earlier:

•	 http://Blender.org: This is a full-featured mesh editor for 3D models
and scenes

•	 http://Gimp.org: This is a graphic editor for images and textures

•	 http://Audacity.sourceforge.net: This is a sound editor for audio files

All of these are examples of software that is available for Windows, Mac OS, and Linux;
all three are open source, and you can download and use them for free.

There are many more free and paid design tools available if you do a search. Whichever
software you choose to create your assets, consult the respective manuals for details on how
to use them. 3D modeling in particular is not a trivial task, but it's definitely worth learning.

Now that you have the design and development tools installed, you have everything you
need to create your game.

But what do your users install to play your game?

Time for action – distributing a game
During the development phase, you typically build and run your game right from the
jMonkeyEngine SDK. Your users, however, neither have nor want the SDK. They expect
to run the game by, for instance, executing a desktop application that runs on their Java
Virtual Machine.

Chapter 1

[21]

Switch to the Files window, and look into the dist folder. Every time you Build this project,
the SDK generates an executable JAR file here. When you right-click on the project and
choose Clean, the dist folder is deleted—so remember never to move any unique
files there.

Let's go through the basic deployment process together:

1. Right-click on the BasicGame project in SDK, and open the project's
Properties window.

2. Go to the Application | Desktop pane and select the checkboxes for your target
operating systems, for example Windows, Mac, and Linux. Click on OK.

3. Right-click on the BasicGame project, and Clean and Build it.

Look into the Output window to follow the build process.

What just happened?
When the build is finished, switch to your operating system's file explorer:

1. Browse to the jMonkeyProjects/BasicGame/dist/ folder in your user home.

2. Unzip and run the BasicGame executable for your operating system.

3. The application window opens and displays the blue cube demo.
Press the Esc key to quit.

This exercise shows you that the SDK generates distributable builds of your BasicGame
project that runs fine on your desktop, outside the jMonkeyEngine SDK.

Impressive—you have just built a basic 3D application that runs on the three most
widely used operating systems. Notice how you didn't have to configure any CLASSPATH
or library paths.

Can I sell my jMonkeyEngine game?
Yes, the jMonkeyEngine SDK is a free open source software released under the BSD license.
To answer the most common questions right away:

 � You do not pay any fees to use the jMonkeyEngine libraries or SDK

 � You can use the jMonkeyEngine for hobby, educational, or commercial purposes

 � You can include the jMonkeyEngine libraries in a Java application that you sell or
give away for free

Installing jMonkeyEngine

[22]

 � You can offer your application that includes the jMonkeyEngine libraries as
download, serve it over the network, or distribute it on digital media

 � Using the jMonkeyEngine does not require you to open source your own code
(but you can)

All that is required from you is that you adhere to the BSD license, and keep the license
together with the jMonkeyEngine libraries included in your distribution. Simply copy the
license from the jMonkeyHomepage. Don't worry, it's nice and short and can be found at
http://jMonkeyEngine.org/wiki/doku.php/bsd_license.

Summary
In this chapter you learned how to install the jMonkeyEngine SDK and run sample
applications. You saw that it is easy to get started with game development using the
jMonkeyEngine SDK, and how easy it is to distribute a game using the jMonkeyEngine SDK.

Come on over to the next chapter, where we write some actual code!

2
Creating Your First 3D Scene

Now that you have installed the engine and understood the physical file
structure of a project, we will take a look inside to understand the flow
of a jMonkeyEngine game.

In this chapter, you will learn:

 � How to initialize a scene

 � How to refer to objects in the 3D scene

 � How to position, rotate, and resize objects

 � How to configure the way the scene is displayed

 � How to navigate the scene using the keyboard and mouse

It's time to look at some code.

A basic template to initialize scenes
From the previous chapter, you'll remember that we executed the BasicGame template
to test whether the installation was successful. This project template demonstrates the
structure of a typical jMonkeyEngine main class that initializes the scene and starts
the application.

Creating Your First 3D Scene

[24]

Time for action – initializing a scene step by step
If you no longer have the BasicGame template open, open it again in the jMonkeyEngine
SDK. Remember that you can always recreate this project template using the New Project
wizard in the File menu.

Let's look at the main class of the BasicGame project:

1. Open the BasicGame project in the Projects window.

2. Double-click on the mygame/Main.java file in the Source Packages folder.
Main.java opens in the source editor.

3. When you look at the Main.java template, you see a standard Java class that
extends the com.jme3.app.SimpleApplication class. SimpleApplication
is the base class that we use to write all our 3D games.

The basic code sample is short enough so that you can type it yourself—we just use the
BasicGame template because it is quicker:

import com.jme3.app.SimpleApplication;
import com.jme3.material.Material;
import com.jme3.math.ColorRGBA;
import com.jme3.math.Vector3f;
import com.jme3.renderer.RenderManager;
import com.jme3.scene.Geometry;
import com.jme3.scene.shape.Box;

/** Basic jMonkeyEngine game template. */
public class Main extends SimpleApplication {

 @Override
 /** initialize the scene here */
 public void simpleInitApp() {
 // create a cube-shaped mesh
 Box b = new Box(Vector3f.ZERO, 1, 1, 1);
 // create an object from the mesh
 Geometry geom = new Geometry("Box", b);

 // create a simple blue material
 Material mat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 mat.setColor("Color", ColorRGBA.Blue);
 // give the object the blue material
 geom.setMaterial(mat);
 // make the object appear in the scene
 rootNode.attachChild(geom);
 }

 @Override
 /** (optional) Interact with update loop here */

Chapter 2

[25]

 public void simpleUpdate(float tpf) {}

 @Override
 /** (optional) Advanced renderer/frameBuffer modifications */
 public void simpleRender(RenderManager rm) {}

 /** Start the jMonkeyEngine application */
 public static void main(String[] args) {
 Main app = new Main();
 app.start();
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can right-click on the file and click on Run, if you want to see the application again.
The Main class generates a simple scene containing a blue cube. Let's take a closer look
at the code template to learn how to structure a jMonkeyEngine application.

What just happened?
The scene displayed by our BasicGame template only contains a blue cube, but this is
enough to introduce you to the basic process that all scenes have in common, whether
it's a haunted dungeon or an alien jungle. The cube, like any other scene object, is initialized
in the simpleInitApp() method. Let's walk through the simpleInitApp() method line
by line to understand what is happening.

The com.jme3.scene.shape.Box class provides us with a quick and simple box shape
for testing. The Box() constructor expects a location, and three values defining the size
of the box—we create the shape in the center of the scene, which we express in Java as
Vector3f.ZERO. We choose to extend the box's size by 1 in every direction, which
results in a 2x2x2 cube. We refer to our Box()object with the variable b. The Java
code that creates the box looks as follows:

Box b = new Box(Vector3f.ZERO, 1, 1, 1);

Internally, a Box() object contains numbers specifying the corner points of the cube.
The corners describe the shape (mesh) of the object. But a cube is not just corners, it
also has faces. The faces are the surfaces that make the cube visible in the first place.
In 3D graphics, you must specify a shape and a surface for every object.

Creating Your First 3D Scene

[26]

jMonkeyEngine has a data type that combines the shape and surface information of an
object. This data type is called geometry (com.jme3.scene.Geometry), and we will be
using it a lot. Let's create a geometry geom for our cube shape b, and label the geometry
Box. In larger scenes, you can use these labels to access geometries.

In code, this step looks as follows:

Geometry geom = new Geometry("Box", b);

Our geometry now has a cube shape; next, we must add the surface information for the
cube's faces. In 3D graphics terms, the surface of a geometry has a material (com.jme3.
material.Material). In this example, we use a type of material called Unshaded.
j3md. This default material definition is built into the engine, and we access it using the
assetManager object. You create the material using the following line of code:

Material mat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");

Every material has parameters that specify how the surface looks. Materials can be very
intricate—you can make them look like wood, metal, rock, grass, skin, plastic, water, glass,
and so on. The unshaded material that we use here is simple in comparison; for now, we
only choose to set this material's Color parameter to Blue. To do that, we use the Blue
constant from the com.jme3.math.ColorRGBA class:

mat.setColor("Color", ColorRGBA.Blue);

Now we have a geometry object geom, which contains the cube's shape, and a material
object mat containing a plain blue material for the cube's surface. The next step is to
combine the two in order to create a blue cube:

geom.setMaterial(mat);

The blue cube is ready, but its geometry only exists in memory. To actually make it visible,
you have to attach the object to the scene. Remember that we made this class extend
SimpleApplication? We did that so we would inherit a special object—the rootNode.
SimpleApplication is preconfigured to draw all objects that are attached to the
rootNode; that's just what we need! We add our blue cube geom to the 3D scene
using the following command:

rootNode.attachChild(geom);

This short simpleInitApp() method demonstrates the typical initialization process.
For each object that you add to the scene, remember to perform the following steps:

1. Create a shape.

2. Create a geometry from the shape.

3. Create a material.

Chapter 2

[27]

4. Apply the material to the geometry.

5. Attach the geometry to the rootNode.

Starting and stopping the application
After you have initialized the scene, you need to start the application.

Time for action – starting the application
In the main() method of the class, you need to create a new instance of the application and
call its start() method. In this case, the main class is called Main, but you can also name it
MyGame or whatever you like:

public static void main(String[] args) {
 Main app = new Main();
 app.start();
}

When you run this code, the application window opens and the jMonkeyEngine starts
rendering the scene.

What just happened?
Every jMonkeyEngine application provides the following methods for starting and stopping
the game:

app.start(); This method starts a jME3 game, typically used from the main() class.
It opens a window, initializes and draws the scene, and starts the event
loop.

app.restart(); This method reloads the settings and makes them take effect. Use this
when you change application settings, such as the resolution, at runtime.

app.stop(); This method stops the running jME3 game and closes the window. It is
triggered by default when you press the Esc key.

When a user presses the Alt + Tab shortcut or clicks outside the
game window, the running application loses focus. You can set app.
setPauseOnLostFocus as true, to specify that your game should pause
whenever the window loses focus. For real-time or online games, set app.
setPauseOnLostFocus as false instead, to keep the game running.

Creating Your First 3D Scene

[28]

Let's sum up what we just learned. When you write a jMonkeyEngine game, you have to:

 � Extend com.jme3.app.SimpleApplication

 � Implement abstract methods, such as simpleInitApp(), simpleUpdate(float
tpf), and simpleRender(RenderManager rm) (described later in the chapter)

 � Call app.start() on your instance of SimpleApplication

The jMonkeyEngine runs the application even if you leave the three method bodies empty.
If you run a SimpleApplication class without initializing any scene, the screen shows
up empty.

Orient yourself in 3D space
When you initialize your game world, you want to fill the empty scene. Maybe you add a
ground with streets and some buildings, or a terrain with forests and caves. You strategically
place your players and enemies, and you sprinkle some treasure and traps on the map. Now
how exactly do you tell the jMonkeyEngine where to place an object? You need a way to
orient yourself in 3D space—through a coordinate system.

The following figure is based on an image created by Sakurambo, and can be found at http://
de.wikipedia.org/w/index.php?title=Datei:3D_coordinate_system.svg.

Chapter 2

[29]

The jMonkeyEngine uses a right-handed coordinate system, just as the Open Graphics Library
(OpenGL) does.

If the concept of coordinates is new to you, you may want to start with a quick
visual introduction on our web page, which can be found at:
http://jmonkeyengine.org/wiki/doku.php/
jme3:scenegraph_for_dummies

Let's have a look at the illustration and recapitulate the concepts behind the Cartesian
coordinate system:

 � The central point of the 3D scene is called the origin.

 � The origin is always at coordinate (0,0,0).

 � The three coordinate axes stand at 90 degree angles to one another, and meet in
the origin. In the previous screenshot:

 � The x axis goes from left to right

 � The y axis goes from down to up

 � The z axis starts away from you and goes towards you

This means that, if you see positive numbers, you follow the arrow along the axis. If you see
negative numbers, you move in the direction against the arrow.

It's important to understand these concepts, since all distances, directions, and locations in a
3D scene are expressed in relation to this coordinate system. It's an easy principle, as you will
see in the following example.

Time for action – finding the spot
Using coordinates, we pinpoint a location in 3D space by specifying the distance from the
origin along the three axes x, y, and z.

Remember the order: (x,y,z) coordinates always go in the same rut
(Right-Up-Towards you). You can use the word R.U.T. as a mnemonic.

So how do you go about locating a point? Let's try to find coordinate (2,3,-4):

1. Always start at the origin.

2. The first value of the (2,3,-4) coordinates tells you to go two steps right, following
the arrow of the x axis.

http://jmonkeyengine.org/wiki/doku.php/jme3:scenegraph_for_dummies
http://jmonkeyengine.org/wiki/doku.php/jme3:scenegraph_for_dummies

Creating Your First 3D Scene

[30]

3. The second value of the (2,3,-4) coordinates tells you to go three steps up, following
the arrow of the y axis.

4. The third value of the (2,3,-4) coordinates tells you to go four steps away from you,
against the arrow of the z axis.

What just happened?
If you followed the description with your finger on the picture, you moved two steps right,
three steps up, and four steps into the page—your finger is now at coordinate (2,3,-4).

Try another example: the point (1,3,2) is one step right, three steps up, and two steps
towards you. Here is one with negative numbers—the point (-3,-2,-1) is three steps left,
two steps down, and one step away from you.

Using this coordinate system, you can pinpoint every spot in the 3D space.

In case you are wondering, What's a step? A kilometer, an inch?, our unit of measurement is
the world unit, abbreviated as WU. In most games that are set in the human world, 1 WU is
1 meter. If your game is set in an ant hill, you can declare the WU to be 1 millimeter; if your
game is set in outer space, you can declare it to be 1 lightyear. The important thing is that
you tell your graphic designers which unit size they should work with, so that you do not
have to worry about scaling models later.

Chapter 2

[31]

Every time you create 3D models on a grid or use a method that expects float values,
which represent a size, scale, or distance, then you are working in world units.

Pop quiz – which way, vector?
Q1. List the three directions that the values in the coordinates stand for, in the correct order.
Use the mnemonic you have learned.

1. Z = left, Y = up, X = go back (mnemonic L.U.G.)

2. X = right, Y = up, Z = towards you (mnemonic R.U.T.)

3. X = red, Y = green, Z = blue (mnemonic R.G.B.)

4. Z = north, Y = east, X = away from you (mnemonic N.E.W.)

And how do I say that in Java?
Imagine an arrow pointing from the origin to an X-Y-Z coordinate. This arrow is called
a vector. You will be using vectors to represent locations. Since a vector always starts
at the origin, and the arrow points in the direction of the given (x,y,z) coordinates,
a vector can also be used to specify a direction. Quite useful!

In your Java code, you use the com.jme3.math.Vector3f class for this data type.
A Vector3f is an object with three float components, x, y, and z. For example:

Vector3f v = new Vector3f(2.0f , 3.0f , -4.0f);

Remember when we created the blue cube earlier and placed it in the middle of the
scene? We positioned it at the location Vector3f.ZERO. This built-in constant stands
for a Vector3f(0f,0f,0f). The (0,0,0) coordinates vector represents the origin of
the coordinate system, the middle of the scene.

Now that you know how to orient yourself in 3D space, we can apply this knowledge and
transform our blue cube; let's position, resize, and turn it. In terms of 3D graphics, we say
that we translate, scale, and rotate the object. In the next three sections, we look at each
of the three transformations in detail, and learn the appropriate Java syntax.

Time for action – position it!
To practice positioning objects, we create a second cube and place it next to the first one.
Open the BasicGame template and look at the simpleInitApp() method.

1. Create a com.jme3.math.Vector3f object. This is the target location for the
second cube:
Vector3f v = new Vector3f(2.0f , 1.0f , -3.0f);

Creating Your First 3D Scene

[32]

2. Copy the code snippet that creates the blue cube and adjust it to create a second,
yellow cube.

3. Name the new Box object b2, the geometry geom2, and the material mat2.
(Make sure to rename all instances!)

4. Change the Color parameter in the material mat2 to ColorRGBA.Yellow.

5. Move the second box to its new location v:
geom2.setLocalTranslation(v);

6. Attach geom2 to the rootNode to add it to the scene.

7. Clean and build the BasicGame template, and right-click the class to run this file.

You should see a yellow cube behind the blue cube, but positioned a bit higher (y=1),
a bit to the right (x=2), and further in the back (z=-3).

What just happened?
Positioning an object, such as our cubes in the 3D scene, is called translation. You create
geometries at the origin, then translate them to their intended position, and then attach
them to the rootNode.

Typically, you never create Box() objects and so on with an offset in the
constructor. The offset will just get you into trouble later when the geometry
does not move as expected. Always start at the origin, as in Box b = new
Box(Vector3f.ZERO, 1, 1, 1);.

In Java, you can choose between two methods when you position objects:

geom2.move(3.0f,-
2.0f,1.0f);

This specifies an offset relative to the current position.
It is like saying step forward! in real life.

geom.setLocalTranslation(

3.0f,-2.0f,1.0f);

This specifies an absolute target position. It is like a GPS
coordinate in real life.

If you start out with both boxes at the origin, both methods result in the same target
location. If you use the move() method several times, the offsets add up. If you use the
setLocalTranslation() method several times, you simply place the cube at a new
absolute location. Try these methods several times on each cube, with different values,
and try to predict what happens.

Chapter 2

[33]

Time for action – scale it!
Your freshly loaded fighter model appears as tall as the tavern next to it, while the dragon
turns out to be as small as a lizard—what happened? It's possible that geometries do not
come in the same scale; especially when you populate the scene with models from different
sources, you have to resize them to fit the scene.

Resizing geometries is called scaling. Let's scale our translated cubes by adding the following
to the simpleInitApp() method:

1. Shrink the blue cube down to half its size: geom.setLocalScale(0.5f);.

2. Grow the yellow cube to twice its size: geom2.scale(2.0f);.

3. Clean and build the BasicGame template, and right-click on it to run the file.

Compare the outcome. The yellow cube is twice as big (2.0f) and the blue cube is half as big
(0.5f) as before.

What happens if you supply three different floats (positive and larger than zero) as
arguments instead, and run the file again? For example:

geom.setLocalScale(0.5f,3f,0.75f);
geom2.scale(2.0f,.33f,2.0f);

Try various values and see what happens. Can you distort the blue cube to be thin and tall,
and the yellow cube to be wide and short?

What just happened?
Just like translation, there are two Java methods—one for absolute and one for relative scaling:

geom2.scale(2.0f); This specifies a scale relative to the current size. For
example, it is twice as big as whatever it was before.

geom.
setLocalScale(0.5f);

This specifies the absolute scale. For example, it is half
the size of the freshly loaded model.

There are also scale(x,y,z) and setLocalScale(x,y,z) methods that accept three
float arguments instead of just one.

The x value controls the width, from the left to the right. The y value controls the height,
from up to down. The z value controls the depth, towards you and away from you. Does
this (x,y,z) pattern look familiar?

Creating Your First 3D Scene

[34]

Time for action – rotate it!
Your cubes are at the right location and have the right size. Now you want to turn them
to face in a specific direction. In an actual game, for example, you may want to turn
characters to face an interesting part of the scene. Again, you can either use absolute
or relative rotation.

For every rotation, you have to specify three float values—x, y, and z, one for each axis,
around which you want to rotate. In contrast to translation and scale, rotations are not
expressed in world units, but in radians. Don't worry—to convert between the familiar 360
degrees to radians, simply multiply the degree value by the built-in FastMath.DEG_TO_RAD
constant, or FastMath.RAD_TO_DEG to convert it back. You can find this constant in the
com.jme3.math.FastMath package.

As an example, let's rotate the two cubes by 45 degrees around the x and y axes, respectively:

1. Convert 45 degrees to radians:
float r = FastMath.DEG_TO_RAD * 45f;

2. To rotate geom2 around the x axis, add the following call at the end of the
simpleInitApp() method:
geom2.rotate(r, 0.0f, 0.0f);

3. To rotate geom around the y axis, add the following call below:
geom.rotate(0.0f, r, 0.0f);

4. Clean and build the BasicGame template, and right-click on it to run the file.

What just happened?
The yellow cube should be pitched forward around the x axis, facing you with a horizontal
edge. The blue cube should have turned around its y axis, facing you with one of its vertical
edges. Using the x, y, and z axes for the three directions should look familiar to you by now.

Chapter 2

[35]

Use the method rotate() for relative rotation around the three axes.

Absolute rotation in 3D space, however, is a bit more sophisticated. Absolute rotations use a
special data type called quaternion.

Time for action – rotate it again, Sam
Think of a quaternion as a Java object capable of storing rotations, which you can then apply
to a geometry. Don't worry, the 3D engine does the tough calculation work for you!

As an exercise, let's create a Quaternion object that accepts a 45-degree rotation around
the x axis:

1. Create a Quaternion object:
Quaternion roll045 = new Quaternion();

2. Supply the angle and the axis as arguments. The angle is 45*FastMath.DEG_TO_
RAD. The constant for the x axis is Vector3f.UNIT_X. This gives us:
roll045.fromAngleAxis(45*FastMath.DEG_TO_RAD , Vector3f.UNIT_X
);

3. Replace the relative rotate() method from the previous exercises and apply this
absolute rotation instead:
geom2.setLocalRotation(roll045);

4. Clean and build the BasicGame template, then right-click on it and run the file.

5. The yellow cube should be rotated by 45° as before.

What just happened?
To store a rotation in a com.jme3.math.Quaternion object, you specify two values—the
angle in radians, and the axis of the rotation.

Creating Your First 3D Scene

[36]

The axis is defined by a type of vector called unit vector. A unit vector works just like any
other vector; the only difference is that we do not care about its length (which is always
1 WU, hence the name). We only need the unit vector for its direction. Here are the most
common examples of rotation axes:

Rotate around Use this vector! Example

x axis Vector3f.UNIT_X
= new Vector3f(1,0,0)

Nodding your head

y axis Vector3f.UNIT_Y
= new Vector3f(0,1,0)

Shaking your head

z axis Vector3f.UNIT_Z
= new Vector3f(0,0,1)

Cocking your head

Quaternions are worth knowing because they have many useful applications:

 � You can concatenate several rotations into one Quaternion by using the mult()
method, which is faster than doing transformations in several steps. Note that
the order of rotations is non-commutative, so the order in which you multiply
the quaternions makes a difference.
Quaternion pitchAndRoll = pitch180.mult(roll180);

 � Re-use Quaternion constants; give them meaningful names, such as roll90,
pitch45, or yaw180, that remind you of what they do.

You can interpolate rotations between two quaternions using spherical linear
interpolation (slerp). An interpolation lets you precisely fast-forward and rewind
a complex rotation between its start and end points. Create two quaternions q1
and q2, for example, for a 40 degrees and a 50 degrees rotation around the x
axis. Apply them with different interpolation values between 0.0f and 1.0f:

Quaternion q3 = new Quaternion();
q3.slerp(q1, q2, 0.5f);
geom2.setLocalRotation(q3);

Where am I?
If all these transformations are starting to make you dizzy, you probably feel an urge to know
where you are in the scene. Remember that you always look into the scene through the eye
of a camera object.

Chapter 2

[37]

By default, the camera is:

1. Located at the coordinate (0.0f , 0.0f , 10.0f).

2. Rotated to look in the direction (0.0f , 0.0f , -1.0f).

In other words, your default point of view is on the positive side of the z axis, from a spot
that is 10 WU away from the origin. You are looking back down along the z axis, towards
the origin.

Time for action – navigating the scene
Let's look at things from a different perspective:

1. Run the BasicGame template once more.

2. Press the W, A, S, and D keys to move forward, left, backwards, and right. Move the
mouse to turn around. This navigates your camera away from the default location.

3. Press the C key while the application is running to print the current camera location
and rotation to the console.

Creating Your First 3D Scene

[38]

In your Java code, you can access the current camera location, which is also the location
of the player in a first-person game, using getters on the cam object:

Vector3f loc = cam.getLocation();
Quaternion rot = cam.getRotation();

If you want the camera to start out at a different location in the scene, position it using
the following:

cam.setLocation(x,y,z);
cam.setRotation(q);

The default navigational keys in the included samples are optimized for QWERTY keyboards.
Every game has its unique navigation that you will have to define yourself, including a way
to let your users with a non-QWERTY keyboard customize the keys.

Note that cam.setRotation(q) is one of the rotation methods that accepts the
Quaternion data type, which we just learned about, as an argument.

Pop quiz ‑ spinning around
Q2. How far does geom.rotate(0.0f, 2.1f, 0.0f); rotate the geometry around
the y axis?

1. 2.1 times = 2.1 * 360° = 756° = 36°

2. 2.1 degrees

3. 2.1 radians = 120°

4. 2.1 world units

Populating the scene
Now you know where you are, and how to position and transform 3D objects. When you
start populating the scene, you face the issue of handling possibly hundreds of objects.
In order to keep track of all your stuff, the jMonkeyEngine provides you with a special
data structure—the scene graph. The scene graph manages all elements in a 3D scene.
We call the elements in the 3D scene spatials.

Spatials are attached to one another in a parent-child relationship. When we speak of
attaching a spatial, we mean that we add the spatial to the scene. When we speak of
detaching a spatial, we remove it from the scene.

One specific parent spatial in every game is the root node of the scene. Every spatial that
is attached to this one root node, directly or indirectly, is part of the scene graph.

Chapter 2

[39]

JMonkeyEngine speeds up large scenes by ignoring spatials that are out of view
or behind the camera. This feature is called culling. To make a spatial disappear
temporarily without detaching it from the scene, tell the engine to cull it by
setting geom.setCullHint(CullHint.Always);; similarly, you can use
CullHint.Never to keep a spatial, such as a sky box, always visible. To reset
the culling behavior back to its default, set it to CullHint.Inherit.

Let's have a look at the BasicGame template. We extend all our games from
SimpleApplication because we want to inherit a certain class field: spatial called
rootNode. This rootNode object gives us access to the scene graph. You remember
the rootNode from Main.java when we added the blue cube geom to the scene?

rootNode.attachChild(geom);

In the examples here, you have now encountered a geometry (the blue cube) and a node,
the rootNode object. Both are derived from com.jme3.scene.Spatial, and both are elements
of the scene graph. What is the difference between a geometry and a node?

Creating Your First 3D Scene

[40]

Time for action – node versus geometry
Geometries are the objects in your scene. They represent loaded models, characters,
terrains, and all kinds of other visible objects.

Nodes are a typical means of grouping other nodes and geometries. The typical use case for
nodes is transformation, where they are used as handles for groups of spatials. If you group
a driver geometry and a car geometry by attaching them to a common vehicle node, you can
move both of them by simply translating the vehicle node.

Another use case for nodes is rotation. Do you intend to rotate around the geometry's
center, or around another point? If you intend to rotate around a non-central point, create
an invisible pivot node and attach the geometry to it. Then, apply the rotation to the pivot
node and not to the geometry itself.

The following example shows two geometries rotated around a common, invisible center
node, pivot:

1. Add the following lines at the end of your simpleInitApp() method:
Node pivot = new Node("pivot node");
pivot.attachChild(geom);
pivot.attachChild(geom2);
pivot.rotate(00, 0, FastMath.DEG_TO_RAD * 45);
rootNode.attachChild(pivot);

2. Attaching geom and geom2 to a new parent node implicitly detaches them from
their previous parent node.

3. Clean and build the BasicGame template, and run the file.

Both geom and geom2 are now attached to the pivot node, and the pivot node is attached to
the rootNode. The rotation affects both the nodes that are grouped under the pivot node.

What just happened?
Spatials are Java objects that are used to load and save information about elements of
the scene graph. There are two distinct types of spatials in the jMonkeyEngine—nodes
and geometries.

Chapter 2

[41]

Geometry Node

Visibility A visible 3D object. An invisible handle for a group of objects.

Purpose You use a geometry to represent
the look of an object—its shape,
color, material, texture, and
transparency.

You attach spatials, geometries, and nodes
to group them. When you transform the
parent node, the transformation affects all
child spatials, geometries, and nodes.

Content Transformations, mesh (shape),
material.

Transformations; no mesh, no material.

Examples A box, a sphere, a player, a
building, a terrain, a vehicle,
missiles, NPCs, and so on.

The rootNode, an audio node, custom
groups (for example, a driver and car, doors
and buildings), and so on.

Remember that you never create a new Spatial() instance—spatials are abstract.
You only use the Spatial data type in methods that return either nodes and geometries
(for example, the load() method), or in methods that accept either nodes and geometries
as arguments (for example, the save() method). In these cases, you create a Node or
Geometry object, and the method implicitly casts it to the Spatial data type.

Pop quiz – the truth about spatials
Q1. Combine the following sentence fragments to form six true statements:

 a. A node ... b. A geometry ... c. A spatial ...

1. … is an element of the scene graph.

2. … groups nodes and geometries.

3. … contains a mesh (shape) and a material.

4. … can be loaded and saved.

5. … is a visible object in the scene.

6. … is used as an invisible handle.

Extending SimpleApplication
Although the class is called SimpleApplication, you base all your jMonkeyEngine games
on this class, including very large projects. Don't think that only simple applications can be
built with it; the name means that this class is already a simple application by itself. You
make it non-simple by extending it. For example, you will override methods and modify
the default properties, and add whatever your game requires.

Creating Your First 3D Scene

[42]

When you look back on this chapter, you notice that we have already got a lot of default
functionality just by extending com.jme3.app.SimpleApplication.

Even an application as simple as the BasicGame template already has access to the
following features:

Class field or method Description
rootNode The scene graph lets us manage the objects that we want to

render.
simpleInitApp()

simpleUpdate()

simpleRender()

These are the three, main overridable methods of
every game. You initialize scenes with code in the
simpleInitApp() method, and you define interactions in
the simpleUpdate() method. Advanced users can override
the simpleRender() method for advanced modifications
of the frameBuffer object and scene graph.

cam The default camera uses perspective projection, has a
45-degree field of view, and it shows everything between 1
and 1000 WU.

flyCam A first-person camera controller with preconfigured navigation
inputs.

assetManager The AssetManager object helps you load models, textures,
materials, sounds, and so on.

getAudioRenderer(),
getListener()

The 3D audio system.

keyInput,
mouseInput,
joyInput

JME3 handles keyboard, mouse, and input.

getInputManager() Here you configure custom key, mouse, and joystick input
handling.

renderManager.
getRenderer()

Gives advanced users access to the rendering interface.

viewPort This is the rectangular part of the screen that represents what
the camera sees. It has scene processors for visual effects, and
it also controls the background color.

Application settings Configures display properties of your scene, such as screen
resolution and anti-aliasing.

We will look at these features throughout this book. Let's start looking at the application
settings so that you can configure the way your scene is displayed.

Chapter 2

[43]

Make a big scene
The SimpleApplication object's default settings let you start with your first scene even
without configuring display details. But you can configure the window size and the display
quality if you want to.

Time for action – configuring display settings
In order to control the display settings yourself, you need to create an AppSettings object
in your application's main() method. Set the Boolean in the AppSettings constructor to
true, if you want to keep the default settings for every value that you do not specify. You can
set this parameter to false if you want to specify each property yourself. The engine will then
raise an exception if you miss a setting.

public static void main(String[] args) {
 settings.setTitle("My Cool Game");
 // specify your settings here
 Main app = new Main();
 app.setSettings(settings); // apply settings to app
 app.start(); // use settings and run
}

The following application settings are available:

 � Dialog image: If you choose to show the default display settings dialog, the window
includes a splash screen. By default, the dialog box shows the jMonkeyEngine logo
from the built-in com/jme3/app/Monkey.png. To reassure your users that this
dialog box is already part of your game, you should specify a branded image from
your assets/interface folder:
settings.setSettingsDialogImage("Interface/splashscreen.png")

 � Fullscreen mode: By default, the application runs in a window of its own.
Alternatively, you can switch to fullscreen mode and make the application window
fill the whole screen. If you activate this mode, users will not be able to move the
window or access any menus. By default, pressing the Esc key stops the application
and helps exit the fullscreen mode gracefully.
GraphicsDevice device = GraphicsEnvironment.
 getLocalGraphicsEnvironment().getDefaultScreenDevice();
DisplayMode[] modes = device.getDisplayModes();
settings.setResolution(modes[0].getWidth(),modes[0].getHeight());
settings.setFrequency(modes[0].getRefreshRate());
settings.setDepthBits(modes[0].getBitDepth());
settings.setFullscreen(device.isFullScreenSupported());

Creating Your First 3D Scene

[44]

 � Resolution: The default resolution of a jMonkeyEngine window is 640 × 480 pixels.
There are two equivalent ways to set the display resolution. You can set the width
and height separately:
settings.setHeight(480); settings.setWidth(640);

Or both resolution values in one step:

settings.setResolution(640,480);

 � Anti-aliasing: If you want your scene rendered more smoothly, you can
choose to activate anti-aliasing. Depending on the graphics card, the user can
set the anti-aliasing feature to use 2, 4, 8, 16, or 32 samples. With anti-aliasing
activated, the scenes will render with softer edges, but the game may run slower
on older hardware.
settings.setSamples(2);

To switch off anti-aliasing, leave multisampling at its default value 0. The scenes
will render with harder edges, but the game may run faster.

 � Input handling: You can choose whether the running application listens to user
input, such as a mouse and keyboard. Input handling is active (true) by default.
You can deactivate input handling for use cases, where you only play a 3D scene
without any user interaction. You would do that, for example, when playing a
non-interactive simulation.
settings.useInput(false);

 � Window title: The window title of a jMonkeyEngine application is set to jMonkey
Engine 3.0, by default. This is where you display your game's name. The window
title is not visible when the game runs in fullscreen mode.
settings.setTitle("My Cool Game").

 � Saving settings: A user-friendly application will ask you to specify display
settings only once, and will then load them every time without asking again.
In a jMonkeyEngine game, you load and save AppSettings objects using
standard java.io serialization.

settings.save("MyGame.prefs");
settings.load("MyGame.prefs");

Typically, you use save() and load() methods together with a try-catch statement.
You can copy an AppSettings object from oldSettings into newSettings using the
following command:

newSettings.copyFrom(oldSettings)

Chapter 2

[45]

What just happened?
Specify the settings and apply them to the application before calling the app.start()
method in the main() method. If you change the settings while the application is already
running, use the app.restart(); method instead, to load the new AppSettings object!

As you see, you can either specify the display settings yourself, or let users set their
own options:

 � Use the previous methods to specify the display settings yourself, in the main()
method. Typically, you would create your own user interface to let users modify the
settings on a custom options screen. In these cases, you should disable the default
settings window at startup:
app.setShowSettings(false);

 � If you expect users with widely different hardware, you can let them choose the
rendering options, such as the resolution, anti-aliasing, and color depth, to their
liking. In this case, you can configure your application to open a Display Settings
dialog box at start-up:
app.setShowSettings(true);

 � Add this setter after the creation of the app object, but before calling the app.
start() method.

Keeping an eye on your FPS
You may have noticed that a running SimpleApplication automatically displays a
head-up display (HUD) with some statistics. How do you read them?

Time for action – checking vital stats
The com.jme3.app.StatsView UI element provides various counts, which it gathers using
com.jme3.renderer.Statistics:

1. Run the BasicGame template once more.

2. Look at the statistics on the bottom left-hand side; they display the object counts
for the various elements.

3. Have a look at the bottom number in the HUD. It displays the frames per
second (FPS).

To interpret the numbers correctly, consider that the 14 lines of text themselves already
count as 14 objects with 914 vertices.

Creating Your First 3D Scene

[46]

What just happened?
The StatsView window displays internal info about Textures, FrameBuffers
(rendering surfaces), and Shaders (effects). The three values tell you how many are
in memory (M), how many were used in the last frame (F), and how many were switched
during the last frame (S).

During the development phase, keep an eye on these statistics because they can warn you
about performance issues:

 � If Textures (S) is significantly higher than Textures (F), you know you are using
textures inefficiently (for example, there are too many transparent ones).

 � If any (M) value is significantly higher than its (F) counterpart, then you have more
objects of this type in memory than you are actually using. Determine which ones
to deallocate.

 � If a small scene with a few models has tens of thousands of triangles, you need to
get rid of some high-polygon objects in the scene. The hard limit for the slowest
current graphics card is around 100,000 vertices per scene. 10,000 to 50,000
vertices is a typical value.

 � If your FPS stays below 30 frames or any counts are steadily increasing, you are
looking at, for example, suboptimal loops or a memory leak. This should never
happen in the final release.

In general, verify that the numbers are plausible for your scene.

For releases, or when you take screenshots, you will want to deactivate
these StatView HUDs. To switch off the statistics and FPS views, use
the following commands:

setDisplayFps(false);
setDisplayStatView(false);

Navigating the scene with a mouse and a keyboard
If the settings.useInput() property is true, the flyCam camera becomes active,
and you can navigate using the W, A, S, and D keys. The WASD navigation method is named
after the four keys used on a QWERTY keyboard to mimic the layout of the arrow keys. WASD
navigation is typically used in combination with a mouselook rotation.

Chapter 2

[47]

Time for action – move it!
Here's an overview of the default key bindings; try them!

Camera Motion User Input

Move forward W key

Move left (Strafe) A key

Move backward S key

Move right (Strafe) D key

Move up Q key

Move down Z key

Rotate left Left arrow key, or move mouse left

Rotate right Right arrow key, or move mouse right

Rotate up Up arrow key, or move mouse forward

Rotate down Down arrow key, or move mouse backward

Zoom in Scroll mouse wheel backward

Zoom out Scroll mouse wheel forward

Rotate drag Hold left mouse button and move

The SimpleApplication class offers a few additional key bindings that developers
commonly use during the development phase. Even if you deactivate WASD navigation,
the following three keys are still available:

Print the camera position and rotation to the console (for debugging) C key

Print memory usage to the console (for debugging) M key

Stop the application and close the window Esc key

What just happened?
As you can see, the default input settings go a long way in your first SimpleApplication
class. As your own game grows, you will want to be able to have more fine-grained control
over navigation and input handling. You may want to configure the Esc key to pause the
game, or take users back to the settings screen of your application. You will implement
custom game actions and want to set up keys that trigger them. For the final release, you will
also want to deactivate the two default bindings that print debug information to the console.

In the next chapter, you learn how to interact with the user by setting up your own
input handlers.

Creating Your First 3D Scene

[48]

Have a go hero – tower defense
Over the course of this book, we want to build up a little tower defense game. In a
tower defense game, the player defends his (immobile) base against incoming (mobile)
baddies—the creeps. During the game, players position armed towers around their base.
While the computer-controlled creeps storm in and try to break through the barrier, the
players face the challenge of keeping the automatic defense system charged with ammo.
The game is played from a third-person perspective; this means that players look down
on the terrain from above and click towers to assign ammo depending on their budget.

In our little demo, we want to set the player base at the end of a valley. This means that the
creeps can only approach from one side, and it only makes sense to place the towers along
the valley. As a simplification, the game automatically positions the towers for the player in
each level.

Create a new project from the BasicGame template. Extend the SimpleApplication
class and amend the main() method and the simpleInitApp() method to initialize
your scene. Use what you learned in this chapter!

1. Modify the settings object in the main() method and specify an image of your
choice as a splash screen. Set the name of the game to, for example, My Tower
Defense Demo.

2. Keep the default flyCam method active for now, so you can look at the scene
while you create it. Remember that you will navigate using the mouse and the
W, A, S, and D keys.

3. Create a flat, 33-WU wide, orange Box() as the floor.

4. Create a playerNode, a towerNode, and a creepNode, and attach them to
the rootNode. Remember that nodes are invisible handles.

Chapter 2

[49]

5. Write code that creates (visible) geometries; one lying yellow Box() representing
the player base, one tall green Box() representing one tower, and one black, small
cube that represents one creep. Optimally, these are three reusable helper methods
that accept a location (Vector3f) as an argument.

6. Attach the geometries to the playerNode, the towerNode, and the creepNode,
respectively. Since these nodes are attached to the rootNode, your geometries are
visible parts of the scene now.

7. Position the player base geometry at the origin. Placing a box at the origin is a good
practice for orientation in the otherwise empty scene.

8. Position one tower to the left and one to the right in front of the base, and some
smaller creep cubes further down along the z axis. You will notice that the location
is relative to the center of the box—if you don't want a box that is stuck halfway
underground, move it up by half its height.

9. Copy the code that deactivates the StatsView object and FPS to the beginning of
the simpleInitApp() method, but leave it commented out for now. Watch how
the statistics change when you add one box.

You can find an example implementation in the mygame package.

Summary
After having read this chapter, you will have learned how to create scenes and configure
application features. Now, you know how to orient yourself using the coordinate system.
We also saw how to manage spatials in the scene graph and learned how to transform
spatials. We studied the difference between nodes and geometries. Finally, we tried to
navigate a scene using a keyboard and mouse.

In the next chapter, we will learn how to add action and interaction to your scene.

3
Interacting with the User

The main loop is your game's Dungeon Master, referee, and director: it listens
for user input, updates the game state, and renders the output. In a game of
Blockout, the loop drops blocks and clears finished layers. In a car racer, the
loop calculates friction and acceleration. In a first-person shooter, the loop
respawns enemies. The loop is where you make sure everyone sticks to the
rules, and where you determine whether the player has won or lost.

In the previous chapter, we learnt how to initialize a 3D scene using the simpleInitApp()
method from the SimpleApplication class. You can translate, scale, and rotate objects
into their start positions, and navigate the scene using the mouse and W, A, S, and D keys.
But the scene is still static—we need some interaction!

In this chapter you will learn:

 � How to respond to user input

 � How to determine the target of a user action

 � How to trigger game actions

 � How to steer game characters

Let's make the application come alive.

Interacting with the User

[52]

The digital Dungeon Master
Have you ever played a role-playing game (RPG) such as Dungeons & Dragons? In a
pen-and-paper RPG, one of the players takes the role of the storyteller or Dungeon Master
(DM). The DM keeps track of the score and describes the scene in words. The DM controls
all non-player characters (NPCs), enemies as well as extras. The DM is also the referee who
interprets rules.

In a computer game, the listen-update-render loop takes the role of the Dungeon Master.
Instead of players moving pieces on the table, Java input listeners trigger game actions.
Instead of players rolling dice and looking up rules, the update loop manages game
mechanics. Instead of the DM deciding on random encounters, the update loop controls
NPC behavior. Instead of the DM describing the scene in words, the renderer draws the
scene in 3D.

Time for action – from input to output in slow motion
Each game world has certain properties: the level, the score, players and enemies, position
and speed of objects and characters, inventories and skills, maybe a countdown timer, and so
on. These properties together are the game state.

Each game world also offers some actions: the player can decide to walk, jump, drive, fight,
use equipment, take or drop items, change game options, and so on. There are also events
that happen without user input: traps are reset, power-ups respawn, automatic doors open
or close, and so on. We call these incidents game actions. Game actions are triggered either
by the player (in response to input), or by NPCs and objects, as part of the main loop.

Let's zoom in on one day in the life of the average event-driven video game:

1. The player's input triggers a game action. For example, the user clicks to attack an
enemy, the user presses the W, A, S, and D keys to walk, and so on.

Chapter 3

[53]

2. The game action updates the game state. For example: a successful attack decreases
the enemy's health, walking changes the player's location, pushing a ball increases
its momentum, and so on.

3. The update loop polls the game state. For example: what are the current locations
of characters relative to any traps? What is the location and momentum of the
rolling ball?

4. The update loop performs tests and decides which game action it should trigger. For
example: if the enemy's health is zero, it dies and the player gets points; if the player
is close, the trap goes off; as long as there are no obstacles, the ball keeps rolling,
and so on.

5. The game action updates the game state. For example: the dead character is
removed from the scene and the player's score increases, the trap inflicts damage
on the player, the location and momentum of the rolling ball have changed a bit,
and so on.

6. The game outputs the new game state. The output includes audio and video that
communicate the updated game state to the player. For example: the scene is
rendered in 3D and displayed on the user's screen, sounds and animations play,
the score display is updated, and so on.

7. The player watches the new game state.

The listen-update-render loop continues running even if there is no player input—this means
steps 1 and 2 are optional. The driving force is the main event loop, not the player.

What just happened?
The listen-update-render loop is the heartbeat of your game and brings action and
interaction to an otherwise static scene. You understand that game actions update
the game state.

Step What happens? What's that in Java?

Listen Listeners receive input from the player
and handle events.

Java event handling

Update Game actions update the game state. Java methods (game actions) change
Java objects (game state)

Render The renderer outputs graphics and
sound for the player.

Java video and audio libraries (LWJGL)

Interacting with the User

[54]

The whole event loop is made up of familiar pieces: for the Listen step, you use Java event
handling. You represent the game state as Java objects, and implement game actions as Java
methods. In the update loop, you work with standard conditionals, timers, and randomizers,
to advance the game by rules that you specify. The loop is the mastermind that pulls strings
in the background for you.

As an example, let's implement a simple game action that changes the game state.

Time for action – pushing the right buttons
Remember our friend, the blue cube from the template? Let's write some code that changes
the cube state: the cube has a color, a scale, a location, and a rotation. So just for fun, let's
make the cube rotate when we left-click on it, and change its color every time we press the
Space bar.

1. Make another copy of the BasicGame project's Main.java template and name
the class UserInput.java. Remember to also refactor the first line of the main()
method to the following:
UserInput app = new UserInput();.

2. Define class constants that represent the Space bar and left-click of the mouse.
Import the necessary classes from the com.jme3.input.* and com.jme3.
input.controls.* packages.
private final static Trigger TRIGGER_COLOR =
 new KeyTrigger(KeyInput.KEY_SPACE);
private final static Trigger TRIGGER_ROTATE =
 new MouseButtonTrigger(MouseInput.BUTTON_LEFT);

3. Define two String class constants. We use these Strings to identify the two actions
later: rotating the cube and toggling its color.

private final static String MAPPING_COLOR = "Toggle Color";
private final static String MAPPING_ROTATE = "Rotate";

In the jMonkeyEngine SDK, place the insertion point behind the period after
KeyInput. or MouseInput., and so on. Then press Ctrl + Space bar to
select constants from the code-completion pop-up. You also find a list of input
triggers for mouse, keyboard, touch, and joystick events in the appendix.

You now have two triggers, TRIGGER_COLOR and TRIGGER_ROTATE, and two mappings,
MAPPING_COLOR and MAPPING_ROTATE.

Chapter 3

[55]

What just happened?
Each physical input, such as the Space bar or left-click of the mouse , is represented
by a Trigger object. You create a KeyTrigger object for a key. You create
MouseButtonTrigger objects for mouse clicks, and MouseAxisTrigger objects for
mouse movement. Similarly, you create JoyAxisTrigger objects and JoyButtonTrigger
objects for joystick buttons and movements. Android devices also support TouchTrigger
objects that act similarly to MouseButtonTrigger objects.

The two action names that you prepared here, MAPPING_COLOR and MAPPING_ROTATE, are
mappings. The mappings are case-sensitive Strings, and must be unique, one for each action.
For mappings, always choose meaningful names that reflect the action, not the trigger. This
way they still make sense even if you change the assigned triggers later.

Using String constants instead of Strings has the advantage that the compiler warns you if
you misspell the mapping (as opposed to silently ignoring your input). Using String constants
also makes it possible to use IDE features, such as refactoring or finding usages.

Time for action – trigger meets mapping
The SimpleApplication class provides you with a handy inputManager object that you
can configure.

1. Go to the simpleInitApp() method. Leave the template code that creates the
blue cube as it is.

2. Register your mappings and triggers with the inputManager. At the beginning of
the method, add the following two lines:
public void simpleInitApp(){
 inputManager.addMapping(MAPPING_COLOR, TRIGGER_COLOR);
 inputManager.addMapping(MAPPING_ROTATE, TRIGGER_ROTATE);
 // …
}

3. But what if half of your users think the Space bar is unintuitive for toggling color,
and prefer the C key instead? You can easily allow several variants in one mapping;
define a trigger object for the C key on the class level, as you did for the Space
bar key:
private final static Trigger TRIGGER_COLOR2 =
 new KeyTrigger(KeyInput.KEY_C);

Interacting with the User

[56]

4. Register the alternative trigger to the mapping, with a comma as separator.
Change the existing MAPPING_COLOR line as follows:

inputManager.addMapping(MAPPING_COLOR, TRIGGER_COLOR,
 TRIGGER_COLOR2);

You now have defined your input mappings.

What just happened?
The inputManager object uses mappings to associate action names and triggers.
You use mappings because the implementation of the action may change, and the
assignment of keys or mouse clicks may change—but the mapping always remains
the same. You can map one unique action name, such as MAPPING_COLOR to several
triggers, such as TRIGGER_COLOR/Space bar and TRIGGER_COLOR2/C key. You can
use each trigger only once (in one mapping) at the same time.

Now you have triggers, action names, and input mappings, but they don't do anything yet.
Your mapping needs to be registered to the appropriate listener.

Time for action – mapping meets listeners
To activate the mappings, you have to register them to an InputListener object.
The jMonkeyEngine offers several InputListener objects in the com.jme3.input.
controls.* package. Let's create instances of the two most common InputListener
objects and compare what they do.

1. On class level, below the closing curly braces of the simpleInitApp() method,
add the following code snippet:
private ActionListener actionListener = new ActionListener() {
 public void onAction(String name, boolean isPressed, float tpf)
{
 System.out.println("You triggered: "+name);
 }
};
private AnalogListener analogListener = new AnalogListener() {
 public void onAnalog(String name, float intensity, float tpf) {
 System.out.println("You triggered: "+name);
 }
};

Chapter 3

[57]

When you paste code in the jMonkeyEngine SDK's editor, unknown
symbols are underlined in red. Whenever you see yellow warnings
next to lines, click on the lightbulb icon and execute the hint to
resolve the problem, in this case, Add import for... Alternatively,
you can also press the Ctrl + Shift + I shortcut keys to fix all import
statements in one go.

2. Register each mapping to one of the InputListener objects. Paste the
following two lines of code below the addMapping() code lines in the
simpleInitApp() method:

inputManager.addListener(actionListener,
 new String[]{MAPPING_COLOR});
inputManager.addListener(analogListener,
 new String[]{MAPPING_ROTATE});

If you run the code sample now, and then click, or press the C key or Space bar,
you should see some output in the console.

What just happened?
jMonkeyEngine comes with three preconfigured InputListener objects:
ActionListener, AnalogListener, and TouchListener. Each responds
differently to com.jme3.input.event.InputEvents.

 � ActionListener is optimized for discrete either/or InputEvents. Use it if you
want to detect whether a key is either pressed or released, or the mouse button
is either up or down, and so on.

 � AnalogListener is optimized for continuous InputEvents with an intensity.
This includes mouse or joystick movements, (for example, when looking around
with the camera), or long-lasting key presses (for example, when walking by pressing
the W, A, S, and D keys), or long mouse clicks (for example, when the player shoots
an automatic weapon).

 � TouchListener is optimized for InputEvents on touchscreen devices.
It supports events, such as tap, double-tap, long pressed tap, fling, and
two-finger gestures.

In the previous example, you registered MAPPING_COLOR to the actionListener object,
because toggling a color is a discrete either/or decision. You have registered the MAPPING_
ROTATE mapping to the analogListener object, because rotation is a continuous
action. Make this decision for every mapping that you register. It's common to use both
InputListener objects in one game, and to register all analog actions to one and all
discrete actions to the other listener.

Interacting with the User

[58]

Note that the second argument of the addListener() method is
a String array. This means that you can add several comma-separated
mappings to one InputListener object in one go. It is also
perfectly fine to call the inputManager.addListener() method
more than once in the same application, and to add a few mappings
per line. This keeps the code more readable. Adding more mappings to
an InputListener object does not overwrite existing mappings.

Time for action – listeners meet actions
Look at the inner methods of the InputListener objects:

 � onAction(String name, boolean isPressed, float tpf)
in actionListener

 � onAnalog(String name, float intensity, float tpf)
in analogListener

 � onTouch(String name, TouchEvent event, float tpf)
in touchListener (not depicted)

When you implement the actual actions, you write a series of conditionals in these inner
methods. When you want to detect several triggers (the most common scenario), add
several else if conditionals. You test for each mapping by name, and then execute
the desired action. In our example, we want the action to affect the blue cube (geom).

1. Make geom accessible as a class field. Remember to adjust the geom object's
constructor call in simpleInitApp() method accordingly.
private Geometry geom;
...
geom = new Geometry("Box", mesh);

Now the InputListener objects in your class have access to the cube geometry.

2. Let's handle MAPPING_COLOR first. In the inner onAction() method of
the actionListener object, test whether name equals to MAPPING_COLOR.
To execute the action when the trigger is released (that is, the key or mouse
button is up again), test whether the Boolean is !isPressed:
private ActionListener actionListener = new ActionListener() {
 public void onAction(String name, boolean isPressed, float
tpf) {
 if (name.equals(MAPPING_COLOR) && !isPressed) {
 // implement action here
 }
 }
};

Chapter 3

[59]

3. Implement the color toggle action for geom: get the cube's material, and set the
Color property using the return value of the static randomColor() method.
Replace the implement action here comment with the following line:
geom.getMaterial().setColor("Color", ColorRGBA.randomColor());

4. Let's handle MAPPING_ROTATE. In the inner onAnalog() method of the
analogListener, test whether name equals MAPPING_ROTATE.
private AnalogListener analogListener = new AnalogListener() {
 public void onAnalog(String name, float intensity, float tpf) {
 if (name.equals(MAPPING_ROTATE)) {
 // implement action here
 }
 }
};

5. Implement the rotation action for geom. To execute the action continuously as
long as the trigger is pressed, use the provided intensity value as a factor in
your continuous rotation action. Replace the implement action here comment
with the following line:

 geom.rotate(0, intensity, 0); // rotate around Y axis

When you run UserInput.java now, you see the blue cube. Press the Space bar and the
cube changes its color. Keep the left mouse button pressed and the cube rotates around its y
axis. You can even do both at the same time. When you press the C key, however, you notice
that the color changes, but the application also prints camera information to the console.
Strange! Didn't you just declare the C key as an alternative to the Space bar? You did, but
you did not consider the existing default mappings.

SimpleApplication internally maps the C key to a diagnostic output action. You will
notice a similar issue if you map anything to the M (prints memory diagnostics) or Esc keys
(stops the game), which are also internally registered by SimpleApplication. If necessary,
you can remove any of the three existing mappings as follows:

inputManager.deleteMapping(INPUT_MAPPING_EXIT); // Key_ESCAPE
inputManager.deleteMapping(INPUT_MAPPING_CAMERA_POS); // Key_C
inputManager.deleteMapping(INPUT_MAPPING_MEMORY); // Key_M

You can call the inputManager.clearMappings() method
and define all mappings from scratch. But clearing also removes the
preconfigured W, A, S, and D key navigation, which we would like to
keep as long as we're looking at examples. So don't clear the mappings
for now—until you develop your own game.

Interacting with the User

[60]

What just happened?
Congrats! You now know how to set up individual keys and mouse buttons, and so on to
trigger custom game actions that change the game state.

1. Start by deciding on a list of actions and default triggers in your game.

2. Define triggers and give them unique names that describe the action, not the key.

3. Register each name—trigger pair as a mapping to the inputManager object.

4. Create InputListener instances for discrete and analog events, and register
each mapping to one of them.

5. Finally, test for each mapping in its InputListener object's onAction(),
onAnalog(), or onTouch() method, and implement its action.

Click me if you can
Now you know how to trigger simple game actions such as rotating a cube. Since the cube
is the only object in the scene, the user does not have any choice which spatial to interact
with. But as soon as you have several objects in a scene, you need to find out what the user
was looking at when he or she pressed an action key.

There are several possible targets of game actions: the target of navigational actions is
typically the player character or vehicle—no explicit target selection is necessary. The target
of a take action is, in contrast, one of many items lying around. The target of an attack can be
a subset of enemy characters, while the target of a magic spell can be pretty much anything,
depending on the spell: the player, an ally, an enemy, an item, or even the floor.

These seemingly different game actions are very similar from an implementation point
of view: the player selects a target in the 3D scene, and then triggers an action on it.
We call the process of identifying the target picking.

If the hot spot for clicks is the center of the screen, some games mark it with crosshairs.
Alternatively, a game can offer a visible mouse cursor. In either case, you need to determine
what 3D object the player was aiming at.

Time for action – pick a brick (using crosshairs)
To learn about picking a target in the scene, let's add a second cube to the scene. Again we
want to click to rotate a cube, but this time, we want to pick the cube that will be the target
of the action.

1. Make a copy of the previous exercise, UserInput.java. Keep the mouse click
and the key press actions for inspiration.

Chapter 3

[61]

2. Rename the copy of the class to TargetPickCenter.java. Remember to also
refactor the first line of the main() method to the following:
TargetPickCenter app = new TargetPickCenter();.

3. Let's write a simple cube generator so that we can generate sample content more
easily: move the code block that creates the blue cube from the simpleInitApp()
method into a custom method called myCube(). Turn the Box mesh object into a
static class field so that you can reuse it. Your method should use three arguments:
String name, Vector3f loc, and ColorRGBA color. The method should return
a new colored and named cube Geometry at the specified location.
private static Box mesh = new Box(Vector3f.ZERO, 1, 1, 1);

public Geometry myBox(String name, Vector3f loc, ColorRGBA color)
{
 Geometry geom = new Geometry(name, mesh);
 Material mat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 mat.setColor("Color", color);
 geom.setMaterial(mat);
 geom.setLocalTranslation(loc);
 return geom;
}

4. Use your myBox() method to attach two cubes to the rootNode object, a red
one and a blue one. Space them apart a little bit so that they don't overlap sitting
at the origin: move the red one up 1.5f WU, and the blue one down 1.5f WU, along
the y axis.
rootNode.attachChild(myBox("Red Cube",
 new Vector3f(0, 1.5f, 0), ColorRGBA.Red));
rootNode.attachChild(myBox("Blue Cube",
 new Vector3f(0, -1.5f, 0), ColorRGBA.Blue));

5. Reuse the class constants MAPPING_ROTATE and TRIGGER_ROTATE that you
created previously, and register the left-click mapping in the simpleInitApp()
method as before.
private static final String MAPPING_ROTATE = "Rotate";
private static final Trigger TRIGGER_ROTATE = new
MouseButtonTrigger(MouseInput.BUTTON_LEFT);
…
public void simpleInitApp() {
 inputManager.addMapping(MAPPING_ROTATE, TRIGGER_ROTATE);
 inputManager.addListener(analogListener,
 new String[]{MAPPING_ROTATE});

Interacting with the User

[62]

6. To make aiming easier, let's mark the center of the screen with a little white cube.
Since a mark is 2D, we attach it to the 2D user interface (guiNode), and not to
the 3D scene (rootNode)! Call the attachCenterMark() method from the
simpleInitApp() method.

private void attachCenterMark() {
 Geometry c = myBox("center mark",
 Vector3f.ZERO, ColorRGBA.White);
 c.scale(4);
 c.setLocalTranslation(settings.getWidth()/2,
 settings.getHeight()/2, 0);
 guiNode.attachChild(c); // attach to 2D user interface
}

Run the TargetPickCenter method to see the intermediate result, the red cube above
the blue cube.

What just happened?
Whenever you need to mass produce geometries, consider writing a convenience
method, such as the myBox() method with parameters to decrease clutter in the
simpleInitApp() method.

Between the two cubes you see a tiny white cube—this is our center mark. When you look
around by moving the mouse, or navigate to the sides by pressing the A or D keys, you notice
that the center mark stays put. This mark is not attached to the rootNode object—and,
therefore, is not part of the projected 3D scene. It is attached to a special guiNode object,
and is therefore part of the 2D graphical user interface (GUI). Just as with the rootNode
object, you inherited the guiNode object from the SimpleApplication class.

We added the center mark because you may have noticed that the mouse pointer is
invisible in a running game. It would be hard to click and select a target without some visual
feedback. For a sample application, our white mark is enough—in a real game, you would
attach a crosshairs graphic of higher artistic value.

Time for action – pick a brick (crosshairs with ray casting)
You want the player to aim and click one of the cubes. You want to identify the selected
cube, and make it rotate.

1. Start by implementing the AnalogListener object on the Analog() method
to test for our left-click action, MAPPING_ROTATE. Remember, we chose the
AnalogListener object because rotation is a continuous motion.
private AnalogListener analogListener = new AnalogListener() {

Chapter 3

[63]

 public void onAnalog(String name, float intensity, float tpf)
{
 if (name.equals(MAPPING_ROTATE)) {
 // implement action here
 }
 }
};

2. To identify what was clicked, we use methods from the com.jme3.collision
package. Replace the implement action here comment with the following code;
first we create an empty results list.
CollisionResults results = new CollisionResults();

3. We aim at an invisible line (a so called com.jme3.math.ray) straight from the
camera location forward in the camera direction.
Ray ray = new Ray(cam.getLocation(), cam.getDirection());

4. We calculate intersections between this line-of-sight ray and all geometries attached
to the rootNode object, and collect them in the results list.
rootNode.collideWith(ray, results);

5. Let's print the intermediate result, so that we can see what is going on. For each hit,
we know the distance from the camera, the impact point, and the geometry.
for (int i = 0; i < results.size(); i++) {
 float dist = results.getCollision(i).getDistance();
 Vector3f pt = results.getCollision(i).getContactPoint();
 String target = results.getCollision(i).getGeometry().
getName();
 System.out.println("Selection: #" + i + ": " + target +
 " at " + pt + ", " + dist + " WU away.");
}

6. If the user has clicked anything, the results list is not empty. In this case we identify
the selected geometry; the closest item must be the target that the player picked!
If the results list is empty, we just print some feedback to the console.
if (results.size() > 0) {
 Geometry target = results.getClosestCollision().getGeometry();
 // implement action here
} else {
 System.out.println("Selection: Nothing");
}

Interacting with the User

[64]

7. Replace the implement action here comment with the actual code that rotates
the cubes around their y axes. You can use the getName() action in a conditional
statement to identify geometries, and respond differently to each, for example:

if (target.getName().equals("Red Cube")) {
 target.rotate(0, -intensity, 0); // rotate left
} else if (target.getName().equals("Blue Cube")) {
 target.rotate(0, intensity, 0); // rotate right
}

Build and run the sample. When you point with the center mark and click either the red or
the blue cube, it rotates. You notice that the red cube rotates to the left and the blue cube
to the right.

What just happened?
Impressive: your application can now not only feel key presses and clicks coming from the
user, but it can even see through the eyes of the user and know what he or she looked at
in the scene! In our example, you can now tell the cubes apart, and respond with different
actions accordingly: the red one rotates to the left because you used -intensity
(negative), and the blue one to the right because you used intensity (positive) as
rotation factors.

What does seeing through the eyes of the user mean? Mathematically, you aim an invisible
line from the camera location forward, in its view direction. A line that has a fixed beginning
and direction is called a ray. In the jMonkeyEngine, this corresponds to a com.jme3.math.
Ray object. The ray starts at the 3D coordinates of the camera, which coincides with the
center of the screen, the typical location of crosshairs. The ray travels in the view direction
through the scene and intersects (collides) with scene objects. The com.jme3.collision
package provides you with specialized methods that detect collisions between various
mathematical objects, including between rays and the scene graph. This neat little trick
for identifying click targets is called ray casting.

Chapter 3

[65]

The code sample prints a bit of information so you can see what this picking algorithm is
capable of. The CollisionResults object contains a list of all collisions between two
scene elements, and accessors that let you pick the closest (or farthest) intersected object. In
the jMonkeyEngine SDK, choose Window | Output | Output to open the console. When you
run the application and click on the cubes, the output should look similar to the following:

Selection #0: Red Cube at (0.0, 1.1, 1.0), 9.048468 WU away.
Selection #1: Red Cube at (0.0, 1.4, -0.9), 11.090528 WU away.
Selection #0: Blue Cube at (0.1, -0.8, 1.0), 9.044685 WU away.
Selection #1: Blue Cube at (0.1, -1.0, -1.0), 11.054616 WU away.

Note that each cube is detected twice: the first impact point is on the front side, where the
ray enters the geometry, and the second is the exit point on the backside of the geometry.
In general, the clicked item is the closest geometry in the results list. Therefore, we use
results.getClosestCollision().getGeometry() to identify the target.

In an actual game, you can use this crosshair-style picking method to implement an attack
on an enemy; instead of simply rotating the picked geometry, you could play a gun sound
and subtract health points from the identified target. If your conditional identifies the
clicked geometry as a door, you could play a creaking sound, and trigger a closing or
opening animation on the target, and so on. Your imagination is the limit!

Time for action – pick a brick (using the mouse pointer)
Aiming fixed crosshairs is one way to pick objects in the scene. Another option is to make the
mouse pointer visible, and allow free clicks.

1. Make a copy of the previous exercise, TargetPickCenter.java. You can keep the
code that handles the mouse click actions and the key press actions for inspiration.

2. Rename the copy of the class to TargetPickCursor.java. Remember to also
refactor the first line of the main() method to the following:
TargetPickCursor app = new TargetPickCursor();

3. Keep the myBox() method, the constants, the analogListener object, and the
two cubes. Remove the attachCenterMark() method, and the AnalogListener
object implementation.

4. By default, the mouse pointer is hidden. To make it visible, add the following to the
simpleInitApp() method:

flyCam.setDragToRotate(true);
inputManager.setCursorVisible(true);

Run TargetPickCursor to see the intermediate result.

Interacting with the User

[66]

What just happened?
Again, you see the red cube above the blue cube. When you move the mouse, you notice
that the pointer is a visible arrow now. But you also notice something else; earlier, the view
rotated when you moved the mouse to the sides. This feature is part of the default camera
behavior and is called mouse look, or free look. Mouse look does not get along with a visible
mouse pointer. You can use the mouse either for navigating, or for pointing and clicking. Both
at the same time is quite confusing for the player.

You deactivated mouse look when you set flyCam.setDragToRotate(true);. To rotate
the camera and look around now, keep the left mouse button pressed while moving.

Time for action – pick a brick (pointer with ray casting)
Now your player can click items, but how do you find out what he clicked? In principle,
we can use the same ray casting algorithm as for the previous example with the crosshairs.
Only instead of casting the ray from the camera forward, we now cast it forward from the 3D
coordinates of the click location.

1. Implement the AnalogListener object on the Analog() method to test for our
left-click action, MAPPING_ROTATE.
private AnalogListener analogListener = new AnalogListener() {
 public void onAnalog(String name, float intensity, float tpf)
{
 if (name.equals(MAPPING_ROTATE)) {
 // implement action here
 }
 }
};

2. Replace the implement action here comment by the following code. To identify what
was clicked, we use methods from the com.jme3.collision package. As before,
we create an empty results list.
CollisionResults results = new CollisionResults();

3. The next few steps are new. Since we are working with the mouse pointer, we get
the 2D coordinates of the cursor position from the inputManager object:
Vector2f click2d = inputManager.getCursorPosition();

4. We use the cam.getWorldCoordinates() method to convert these (x,y)
coordinates into (x,y,z) coordinates with a depth (z) of zero.
Vector3f click3d = cam.getWorldCoordinates(
 new Vector2f(click2d.getX(), click2d.getY()), 0f)

Chapter 3

[67]

5. We want to cast the ray forward from this point. The following code calculates the
direction vector of a temporary point that is 1 WU deep into the screen from the
clicked location:
Vector3f dir = cam.getWorldCoordinates(
 new Vector2f(click2d.getX(), click2d.getY()), 1f).
 subtractLocal(click3d);

6. Instead of aiming the ray forward from the camera location in the camera
direction, we now aim the ray starting from the click location into the calculated
forward direction.
Ray ray = new Ray(click3d, dir);

7. Now that we have the ray, the rest of the code is the same as for the crosshairs
example. We calculate intersections between this line-of-sight ray and all geometries
attached to the rootNode object, and collect them in the results list.
rootNode.collideWith(ray, results);

8. If the user has clicked anything, the results list is not empty. In this case we identify
the selected geometry—the closest item must be the target that the player picked!
If the results list is empty, we just print some feedback to the console.

if (results.size() > 0) {
 Geometry target = results.getClosestCollision().getGeometry();
 if (target.getName().equals("Red Cube")) {
 target.rotate(0, -intensity, 0); // rotate left
 } else if (target.getName().equals("Blue Cube")) {
 target.rotate(0, intensity, 0); // rotate right
 }
} else {
 System.out.println("Selection: Nothing");
}

Build and run the sample. When you point the mouse pointer at either the red or blue cube
and click, the cube rotates as in the previous example. Congrats! Not even fancy-free mouse
clicks can escape your notice now!

What just happened?
Previously, when aiming with crosshairs, we assumed that the crosshairs were located in the
center of the screen, where the camera is located—we simply aimed the ray forward from
the (known) 3D camera location, in the (known) 3D camera direction. A mouse click with a
pointer, however, can only identify (x,y) coordinates on a 2D screen.

Vector2f click2d = inputManager.getCursorPosition();

Interacting with the User

[68]

Similarly, we can no longer simply use the known camera direction as the direction of the
ray. But to be able to cast a ray, we need a 3D start location and a 3D direction. How did
we obtain them?

Ray casting

camera

X

two collisions

visible scene

Ray

Y

X
click

Z

0,0

The cam.getWorldCoordinates() method can convert a 2D screen coordinate, plus
a depth z from the camera forward, into 3D world coordinates. In our case, the depth z
is zero—we assume that a click is right on the lens of the camera.

To specify the forward direction of the ray, we first calculate the coordinates of a
temporary point tmp. This point has the same (x,y) coordinates as the mouse click, but is
1 WU deeper into the scene (1 WU is an arbitrarily chosen depth value). We use the cam.
getWorldCoordinates() method once more with the click's 2D screen coordinate,
but now we specify a depth of 1 WU:

Vector3f tmp = cam.getWorldCoordinates(
 new Vector2f(click2d.getX(), click2d.getY()), 1f);

We need to identify the direction from the 3D click location towards the temporary point
1 WU in front of it. Mathematically, you get this direction vector by subtracting the click's
vector from tmp point's vector as in the following code:

Vector3f dir = tmp.subtractLocal(click3d);

Subtracting one vector from another is a common operation if you need to identify the
direction from one point to another. You can do it in one step:

Vector3f dir = cam.getWorldCoordinates(
 new Vector2f(click2d.getX(), click2d.getY()), 1f).
 subtractLocal(click3d);

Chapter 3

[69]

In these small examples, we collide the ray with the whole scene attached to the
rootNode object. This ensures that all nodes are tested. On the other hand,
too many tests may slow performance in large scenes. If you know that only
mutually exclusive sets of nodes are candidates for a certain action, then restrict
the collision test to this subset of nodes. For example, attach all spatials that
respond to an open/close action to an Openable node. Attach all spatials that
respond to a take/drop action to a Takeable node, and so on.

Experiment with either picking method, crosshairs or mouse pointer, and see which one suits
your gameplay better.

Pop quiz – input handling
Q1. In which order do you define and register the pairings for your input handler?

1. trigger-mapping, mapping-listener, listener-action
2. mapping-listener, listener-action, action-trigger
3. action-trigger, trigger-mapping, mapping-listener
4. listener-action, action-trigger, trigger-mapping

How to steer spatials
Now your users can trigger game actions and select targets. But a video game also follows an
internal rhythm and generates its own events—new enemies spawn and plot a path towards
the player base, a timer ignites explosives, a dungeon door falls shut, and so on. How do you
implement computer-controlled events that need to be updated in every frame of the game?

Look at the Main.java template of the SimpleApplication class again—there is a
mysterious method that we have not yet used, the simpleUpdate() method. Let's find
out what it does!

Time for action – you are the CubeChaser
Let's do something more interactive than just look at rotating cubes. Can you write code that
lets you chase one of the cubes? By chase we mean, if the camera moves closer than 10 WU
to this cube, the cube should move away from the camera.

1. Make another copy of the BasicGame object's Main.java template.
2. Rename the copy to CubeChaser.java. Remember to also refactor the first line

of the main() method to the following:
CubeChaser app = new CubeChaser();

Interacting with the User

[70]

3. Delete the blue cube and copy the myBox() convenience method from one of the
previous target picking examples. Don't forget to copy the mesh class field.

4. Add a makeCubes(40); call to the simpleInitApp() method and fill the scene
with 40 randomly positioned and randomly colored cubes. Use the built-in method
FastMath.nextRandomInt(min,max) (from com.jme3.math) to generate
random coordinates in the interval between min and max.
private void makeCubes(int number) {
 for (int i = 0; i < number; i++) {
 // randomize 3D coordinates
 Vector3f loc = new Vector3f(
 FastMath.nextRandomInt(-20, 20),
 FastMath.nextRandomInt(-20, 20),
 FastMath.nextRandomInt(-20, 20));
 rootNode.attachChild(
 myBox("Cube" + i, loc, ColorRGBA.randomColor()));
 }
}

5. Create a white cube geometry, scaredCube, as a class field, and position it in
the origin.
private Geometry scaredCube;
...
public void simpleInitApp() {
 makeCubes(40);
 scaredCube = myBox("Scared Cube", Vector3f.ZERO, ColorRGBA.
White);
 rootNode.attachChild(scaredCube);
}

How would you write code that constantly monitors the distance between the
camera location and the location of the scaredCube object? You write these
kinds of tests in the simpleUpdate(float tpf) method.

6. Use the vector1.distance(vector2) method for the distance test. You
get current object coordinates by calling the cam.getLocation() and cube.
getLocalTranslation() methods.
public void simpleUpdate(float tpf) {
 System.out.println("Distance: "+
 cam.getLocation().distance(scaredCube.getLocalTranslation()));
}

Chapter 3

[71]

7. Modify this code so that it tests whether the distance is less than 10 WU. If yes,
then move the scared cube away from you, that is, in the direction that the
camera is facing.

public void simpleUpdate(float tpf) {
 ...
 if (cam.getLocation().distance(scaredCube.getLocalTranslation())
< 10) {
 scaredCube.move(cam.getDirection());
 }
}

Run the class and use the W, A, S, and D keys and the mouse to navigate through the cube-
filled scene. Keep an eye on the white cube!

If you feel you are moving too slow, you can speed up the default camera. Add
the following command somewhere in the simpleInitApp() method:

flyCam.setMoveSpeed(100f);

What just happened?
When you run this class you see that the simpleUpdate() method prints a lot of output
to the console. The current camera location and the cube location are polled in every frame,
and their distance is recalculated and printed. The simpleUpdate() method ensures that
your test always returns the latest results, even while you and the scared cube are moving
wildly through the scene.

If you back away and move around the cube—sneak up on it from behind, so to speak—you
can chase it back into the cluster of cubes. Just like the camera location, the camera direction
inside the simpleUpdate() method returns an updated value every frame. The vector
points in the new direction while you navigate the camera around the cube, so that you
can chase the cube back.

The simpleUpdate() method is one way to hook code directly into the main loop.
Everything in this method is executed repeatedly, as fast as possible, as long as the game
runs. (Hint: Be careful when creating new objects here!) Just like the simpleInitApp()
method, you never call the simpleUpdate() method yourself. You only implement the
method body, and jMonkeyEngine takes care of executing it.

Interacting with the User

[72]

Time for action – chase all the cubes!
The other cubes are mightily impressed by your new-found cube chasing skills.
Can you change the code sample so that you can pick which cube you want to chase,
simply by looking at it? Use the ray casting method that you learned in the earlier
target picking examples!

1. Since you will detect cubes with the help of ray casting, create a class field for
the ray object.
private Ray ray = new Ray();

2. Completely remove the code pertaining to scaredCube—a real cube chaser
doesn't need an extra class field to pick a cube.

3. Put the following code in the simpleUpdate() method loop to keep the ray
up-to-date. Use the ray.setOrigin(cam.getLocation()) method and the
ray.setDirection(cam.getDirection()) method to aim the ray in the
direction of the camera. Identify collisions and pick the closest geometry as
the target. Test the distance and change the target's location, just as before.

public void simpleUpdate(float tpf) {
 CollisionResults results = new CollisionResults();
 ray.setOrigin(cam.getLocation());
 ray.setDirection(cam.getDirection());
 rootNode.collideWith(ray, results);
 if (results.size() > 0) {
 Geometry target = results.getClosestCollision().
 getGeometry();
 if (cam.getLocation().
 distance(target.getLocalTranslation()) < 10) {
 target.move(cam.getDirection());
 }
 }
}

Run the sample, navigate through the scene, and look around. Suddenly, none of the
cubes can withstand your awe-inspiring gaze!

What just happened?
You cleverly combined two things that you have just learned. The ray casting algorithm is not
limited to input listeners—you can just as well use the simpleUpdate() method loop to
cast the ray, identify current collisions with the scene graph, and interact with the targets.

Chapter 3

[73]

As your game grows more complex, you will find yourself putting more and more
conditionals and actions in the simpleUpdate() method. But a long sequence of tests
in one method of one class is not exactly an object-oriented solution—this will soon be
a pain to maintain. Of course it's fine to experiment with new game mechanics in the
simpleUpdate() method during development, just like we did with the ray casting
algorithm. When a code block in the simpleUpdate() method does what it is supposed to
do, consider encapsulating it as abstract, reusable behavior. Your game interactions will be
much cleaner if you move behaviors into dedicated classes, so-called controls.

Time for action – get these cubes under control
One type of dedicated jMonkeyEngine class that encapsulates a spatial's behavior is the
Control class from the com.jme3.scene.control package. You can create a Control
object based on the code mentioned earlier, and add it to an individual cube. This prompts
the cube to automatically test its own distance to the camera, and move away when the
player looks at it! Seeing is believing:

1. Create a CubeChaserControl class. Make it extend the AbstractControl
class from the com.jme3.scene.control package.

2. Implement abstract methods of the CubeChaserControl class with the
following template:
 @Override
 protected void controlUpdate(float tpf) { }
 protected void controlRender(RenderManager rm, ViewPort vp) {
}
 public Control cloneForSpatial(Spatial spatial) {
 throw new UnsupportedOperationException(
 "Not supported yet.");
 }

3. Move the ray field from CubeChaser class to the CubeChaserControl class.
Create additional class fields, a com.jme3.renderer.Camera field called cam,
and a com.jme3.scene.Node field called rootNode.
private Ray ray = new Ray();
private final Camera cam;
private final Node rootNode;

4. Add a custom constructor that initializes cam and rootNode.
public CubeChaserControl(Camera cam, Node rootNode) {
 this.cam = cam;
 this.rootNode = rootNode;
 }

Interacting with the User

[74]

5. Move the ray casting block from the simpleUpdate() method of the CubeChaser
class to the controlUpdate() method of the CubeChaserControl class.
protected void controlUpdate(float tpf) {
 CollisionResults results = new CollisionResults();
 ray.setOrigin(cam.getLocation());
 ray.setDirection(cam.getDirection());
 rootNode.collideWith(ray, results);
 if (results.size() > 0) {
 Geometry target = results.getClosestCollision().
getGeometry();
 // interact with target
 }
 }

6. Test whether I (the controlled spatial, represented by the predefined spatial
variable) am a target (one of the cubes that the player is looking at). If yes, test
whether the player (represented by the camera) is close enough to chase me.
Replace the interact with target comment with the following conditional statement:
if (target.equals(spatial)) {
 if (cam.getLocation().distance(spatial.getLocalTranslation()) <
10) {
 spatial.move(cam.getDirection());
 }
}

7. Back in the CubeChaser class, you want to add this control's behavior to some of
the spatials. We create lots of spatials in the makeCubes() method; let's amend
it so that every fourth cube receives this control while the rest remain unfazed.
You can create instances of the control with the main camera and rootNode
object as arguments. Replace the rootNode.attachChild() code line in the
makeCubes() method with the following code:

Geometry geom = myBox("Cube" + i, loc, ColorRGBA.randomColor());
if (FastMath.nextRandomInt(1, 4) == 4) {
 geom.addControl(new CubeChaserControl(cam, rootNode));
}
rootNode.attachChild(geom);

Before you run this sample, make sure that you have indeed removed all code from
the simpleUpdate() method of the CubeChaser class; it is no longer needed. By
using controls, you can now chase specific group of cubes—defined by the subset that
carries the CubeChaserControl class. Other cubes are unaffected and ignore you.

Chapter 3

[75]

There are two equivalent ways to implement controls. In most cases, you will
just extend the AbstractControl class from the com.jme3.scene.
control package. Alternatively, you could also implement the control
interface directly; you only implement the interface yourself in cases where
your control class already extends another class, and therefore cannot extend
AbstractControl.

If you get tired of finding out which cubes are chasable, go back to the
CubeChaserControl class and add spatial.rotate(tpf, tpf, tpf); as the last line
of the controlUpdate() method. Now the affected cubes spin and reveal themselves!

Note that various built-in methods provide you with a float argument, tpf. This
float is always set to the current time per frame (tpf), equal to the number of
seconds it took to update and render the last video frame. You can use this
value in the method body to time actions, such as this rotation, depending on
the speed of the user's hardware—the tpf is high on slow computers, and low
on fast computers. This means, the cube rotates in few, wide steps on slow
computers, and in many, tiny steps on fast computers.

What just happened?
Every control has a controlUpdate() method that hooks code into the game's main loop,
just as if it were in the simpleUpdate() method. You always add a control instance to a
spatial; the control doesn't do anything by itself. Inside the control instance, you reach up to
that spatial by referring to the predefined spatial variable. For example, if you add control
instance c17 to geometry instance cube17, then the spatial variable inside c17 equals
cube17. Every transformation that c17 applies to spatial, is applied directly to cube17.

One control class (such as the CubeChaserControl class) can control the behavior of
several spatials that have something in common—such as being chasable in this example.
However, each spatial needs its own control instance.

One spatial can be affected by zero or more controls at the same time. You want to teach
an old spatial new tricks? If you ever decide to change a game mechanic, you only have to
modify one control; rebuild the application, and all controlled spatials immediately adhere
to it. With only a few lines of code, you can add behavior to, or remove behavior from, an
arbitrary number of spatials. Encapsulating behavior into controls is very powerful!

Interacting with the User

[76]

If you need various groups of nodes that share behavior, don't create subclasses of the
Spatial class with added custom methods! You will get into hot water soon, because
using inheritance, a spatial would be locked into the one role it inherited—for example,
a shopkeeper NPC could never fight back to defend its shop, because its parent is not a
fighter class. Controls on the other hand are modular and can add or remove roll-based
behavior easily—every NPC with an ArcheryControl method can use crossbows and
bows; every NPC with the MerchantControl method can buy and sell items, and so on.

The spatial object has a few interesting accessors, including a getControl() method
that gives you access to other controls added to the same spatial. There is no need to pass
objects as references if they are already accessible via a custom control's accessors. When
you look at the custom constructor of the CubeChaserControl class, you see that we
actually pass the camera and the rootNode object into it. It's untypical for a control to
need that much information about the scene graph or the camera. The ideal control class
is self-contained and gets all the information it needs directly from its spatial, using custom
accessors that you define. Let's make it better!

Time for action – get into the right AppState of mind
When you notice that a control class has ambitions to make decisions on the application
level, this is a sign that this control class has evolved to something else—an application
state (AppState). We want the application to do the same thing as before—let us chase
the random subset of cubes that carry the CubeChaserControl class.

1. Create an AppState class CubeChaserState that extends the
AbstractAppState class from the com.jme3.app.state package.
This class will contain our game logic.

2. Copy the following minimum template into the CubeChaserState class:
public class CubeChaserState extends AbstractAppState {
 @Override
 public void update(float tpf) {}
 @Override
 public void cleanup() {}
 @Override
 public void initialize(AppStateManager stateManager,
 Application app) {}
}

3. Move the makeCubes() and myBox() methods from the CubeChaserControl
class into the CubeChaserState class; we want to reuse them.

Chapter 3

[77]

4. Move the class fields from the CubeChaserControl class into the
CubeChaserState class. Add extra class fields for the assetManager object
and the application app, because we are now operating on the application level.
private SimpleApplication app;
private final Camera cam;
private final Node rootNode;
private AssetManager assetManager;
private Ray ray = new Ray();
private static Box mesh = new Box(Vector3f.ZERO, 1, 1, 1);

5. Copy the implementation of the custom constructor of the CubeChaserControl
class into the initialize() method of the CubeChaserState class. Similarly,
initialize typical SimpleApplication variables such as assetManager,
rootNode, and so on. You can also modify the scene graph here, as we do
by calling our makeCubes() method.
 @Override
 public void initialize(AppStateManager stateManager,
 Application app) {
 super.initialize(stateManager, app);
 this.app = (SimpleApplication) app;
 this.cam = this.app.getCamera();
 this.rootNode = this.app.getRootNode();
 this.assetManager = this.app.getAssetManager();

 makeCubes(40);
 }

6. Move the ray casting code from the controlUpdate() method of
the CubeChaserControl class into the update() method of the
CubeChaserState class. Replace the if (target.equals(spatial))
line that tests whether this is one certain spatial with a test that identifies all
spatials of the CubeChaserControl class in the scene. We are operating on
application level now, because we access the camera and the rootNode object.
public void update(float tpf) {
 CollisionResults results = new CollisionResults();
 ray.setOrigin(cam.getLocation());
 ray.setDirection(cam.getDirection());
 rootNode.collideWith(ray, results);
 if (results.size() > 0) {
 Geometry target = results.getClosestCollision().getGeometry();
 if (target.getControl(CubeChaserControl.class) != null) {
 if (cam.getLocation().
 distance(target.getLocalTranslation()) < 10) {

Interacting with the User

[78]

 target.move(cam.getDirection());
 }
 }
 }
}

7. Your CubeChaserControl class is now empty, save for the rotate() method
that you added to make the controlled cubes reveal themselves.
@Override
protected void controlUpdate(float tpf) {
 spatial.rotate(tpf, tpf, tpf);
}

8. Your CubeChaser class is now almost empty, and its only remaining import
statement is for the SimpleApplication class! In the simpleInitApp()
method, create a new CubeChaserState object. To activate this AppState,
you attach it to the stateManager object of the SimpleApplication class.

@Override
public void simpleInitApp() {
 flyCam.setMoveSpeed(100f);
 CubeChaserState state = new CubeChaserState();
 stateManager.attach(state);
}

When you run the CubeChaser class now, you get the same chasing behavior, but your code is
modular. Now you understand why it is best practice to move tests and action implementations
from the simpleUpdate() method into control and the AppState classes.

What just happened?
A control encapsulates a subset of accessors and update behaviors on the level of spatials,
while an AppState class encapsulates a subset of the scene graph and of scene-wide
behaviors. A control only has access to its spatial, while an AppState class has access
to the whole application via this.app.

Certain kinds of behavior, such as animations, playing audio, or visual effects, or the
rotate() call in this example, are independent of objects on the application level. This
behavior only needs access to its spatial. Therefore, the controlUpdate() method of the
CubeChaserControl class is the perfect place to encapsulate this spatial-level behavior. A
spatial may need access to global game state data other than SimpleApplication fields,
such as points or level—in this case, pass your central game state object in the control's
constructor (and not the whole SimpleApplication instance).

Chapter 3

[79]

The cube-chasing code snippet, however, needs access to SimpleApplication fields
(here camera and rootNode) to perform its collision detection. Therefore, the update()
method of the CubeChaserState class is the ideal class to encapsulate this type of
application-level behavior. You see the different use cases?

Every AppState class calls the initialize() method when it is activated and the
cleanup() method when it is deactivated. So if you want this AppState class to bring
certain spatials, lights, sounds, inputs, and so on with it, you override the initialize()
method. When you deactivate an AppState class, its update() method loop stops. If you
want the detached AppState to take away the things it brought, you must similarly override
the cleanup() method and detach those nodes, and so on.

You activate AppState classes by attaching them to the application state manager,
and deactivate them by detaching them from it. Each SimpleApplication class inherits
one application state manager—you access it via the this.app.getStateManager()
method or the stateManager object. You can attach several AppState classes to your
stateManager object, but the same state can only be attached once.

Time for action – call me maybe?
In the CubeChaser class, the added CubeChaserControl classes mark individual cubes,
and the AppState object identifies and transforms them when certain conditions are
met. Combining both AppState objects and controls can be quite powerful! You often use
AppState objects to work with certain subsets of spatials that all carry one specific control.

A control can add custom methods to its spatial, and the AppState object can call these
methods to make individual spatials do the AppState object's bidding. As an example,
let's make the scared cubes identify themselves by name, and count how often cubes
get scared in total.

1. Add the following custom method to the CubeChaserControl class:
public String hello(){
 return "Hello, my name is "+spatial.getName();
}

2. In the CubeChaserState class, create a simple counter variable and a public
accessor for it.
private int counter=0;
public int getCounter() { return counter; }

Interacting with the User

[80]

3. In the CubeChaserState class, call the hello() method on each target that you
want to interact with. Place the following call after the target.move(…) line in the
update() method:
System.out.println(
 target.getControl(CubeChaserControl.class).hello()
 + " and I am running away from " + cam.getLocation());
counter++;

4. In the simpleUpdate() method of the CubeChaser class, add the following
call to get some status information about the running AppState method:

 System.out.println("Chase counter: "
 + stateManager.getState(CubeChaserState.class).
 getCounter());

When you run the CubeChaser class now and chase a cube, you see console output
such as the Hello, my name is Cube12 and I am running away from (-17, -13, 1) message,
together with a count of how often the AppState object has moved any cubes away.

What just happened?
Just like a spatial has a spatial.getControl() method to let neighboring controls
communicate with it, an SimpleApplication class has a stateManager.getState()
method to access neighboring AppState objects in the same appManager class. For
example, you can call the AppStates.getCounter() method of the CubeChaserState
from every place where you have access to the central stateManager, as shown next:

int x = stateManager.getState(CubeChaserState.class).getCounter();

Coordinating global game mechanics
Now you know three modular ways of running code as part of the main update loop: you can
implement the simpleUpdate() method in the main class, you can add controls to spatials,
and you can attach AppState objects.

Chapter 3

[81]

rootNode
spatials

AppState1 AppState2

Update()
loop

simple Update()
loop

controlUpdate() loops

SubrootNode1

spatials

Update()
loop

controlUpdate() loops

G G G G
controlUpdate() loops

Update()
loop

SubrootNode2
spatials

G GG

SubrootNode3
spatials

G G G G
G G G

AppState3

G

Control1
Control1
Control1

SimpleApplication

You can activate or deactivate an individual chunk of behavior by adding or removing a
control, or by attaching and detaching an AppState object. You can move whole chunks
of the scene graph out of the main simpleInitApp() method, and make them part
of an AppState object. For example, a hypothetical OutdoorsAppState object's
initialize() method attaches bright lights and a forest sound loop; its cleanup()
method detaches what the AppState object brought, so you can switch to the
IndoorsAppState object, which itself brings dim fluorescent lights and a factory
sound loop. This modularization helps you keep your code reusable and maintainable.

Since your game behavior interacts, you have to be aware of the order in which its pieces
execute during the update phase of the listen-update-render loop:

1. jMonkeyEngine calls the update() methods of all AppState objects in the order
in which you attached them.

2. jMonkeyEngine calls the controlUpdate() methods of all controls in the order
in which you added them.

3. jMonkeyEngine calls the simpleUpdate() method of the main
SimpleApplication class.

Interacting with the User

[82]

You must call all code that modifies the scene graph from one of these three methods that
hook into the update loop. This ensures that your changes are in sync with the main thread.

Outside the main loop, you can always use multi-threading and run other calculations that
do not (directly or indirectly) modify the scene graph in threads of their own. Especially
when you solve more complex tasks, be careful that one long-running algorithm (such as
path finding) does not block the whole main thread. Start a new thread so that you don't
slow down the whole application, and break up long-running tasks into self-contained,
parallel-running Callables and use the returned results.

What happens if you modify the scene graph from an external thread?
Well, your code will work as expected most of the time—but in seemingly
random intervals, the engine will inexplicably complain that the scene graph
is out of date. If you cannot avoid making modifications to the scene graph
outside the main thread, you must enqueue these Callables in the main
application using the app.enqueue() method to these calls in the main
application! Find more about concurrency in jMonkeyEngine applications
on our wiki at http://jmonkeyengine.org/wiki/doku.php/
jme3:advanced:multithreading.

The beauty of AppStates and controls
The ideal jMonkeyEngine application has an empty simpleUpdate() method in its main
class—all entity behavior would be neatly modularized and encapsulated in controls and
AppState objects.

The ideal jMonkeyEngine application's simpleInitApp() method would have only two
lines of code: one that creates a custom StartScreenAppState instance, and a second
line that attaches it to the stateManager object of the SimpleApplication class. Let's
look at one simple example of how you can structure your application using several modular
AppState objects:

1. The StartScreenAppState tab would display a main menu with buttons, such as
play, options, and quit. It has a visible mouse pointer and its inputManager object
responds to clicks on buttons.

2. When the user clicks on the options button, the StartScreenAppState method
attaches an OptionsScreenAppState object and detaches itself.

3. The OptionsScreenAppState object displays user preferences and offers a user
interface to customize options, such as keyboard layout, graphic quality, or difficulty.

4. When the user clicks on the save button, the OptionsScreenAppState object
attaches the StartScreenAppState method again, and detaches itself.

5. When the user clicks on the play button, the StartScreenAppState method
attaches the GameRunningAppState object, and detaches itself.

Chapter 3

[83]

6. The GameRunningAppState object generates the new level content and runs the
game logic. The GameRunningAppState object can attach several subordinate
AppState objects—for example, a WorldManagerState object that attaches
nodes to the rootNode object, a PhysicsState object that handles falling and
colliding objects, and a ScreenshotAppState object that saves rendered scenes
as image files to the user's desktop. The inputManager object of the AppState
class hides the visible cursor and switches to in-game inputs, such as click-to-shoot
and WASD-keys navigation.

7. When the user presses the Esc key, you save the game state, the
GameRunningAppState object attaches the StartScreenAppState method,
and detaches itself and its subordinate AppState objects.

8. When the user clicks on the quit button on the StartScreenAppState method,
the game quits.

Many games also offer a key that pauses and resumes the game. The game loop freezes,
but the game state remains in memory. In this chapter, you learned three ways of adding
interaction to a game, namely the InputListener objects, the simpleUpdate() method,
Controls, and AppState objects.

To implement pausing for your game, you need to write code that saves the current state
and switches off all the in-game interactions again, one by one. This paused state is similar
to the non-game StartScreenAppState method or the OptionsScreensAppState
state. This is why many games simply switch to the OptionsScreensAppState state
while paused. You can also use a conditional to toggle an isRunning boolean variable
that temporarily disables all update loops.

A paused game typically also temporarily switches to a different set of the input
manager settings to stop responding to user input—but make sure to keep responding
to your resume key!

Interacting with the User

[84]

Pop quiz – how to control game mechanics
Q1. Combine the following sentence fragments to form six true statements:

The simpleUpdate() method... b) An AppState object... c) A Control...

1. … lets you add accessors and class fields to a spatial.

2. … lets you hook actions into the main update loop.

3. … can be empty.

4. … can initialize a subset of the scene graph.

5. … defines a subset of application-wide game logic.

6. … defines a subset of game logic for one type of spatial.

Have a go hero – shoot down the creeps!
Return to the Tower Defense game that you created in the previous chapter—let's add some
interaction to this static scene of creeps, towers, and the player base. You want the player to
click to select a tower, and press a key to charge the tower as long as the budget allows.
You want the creeps to spawn and walk continuously along the z axis and approach the base.
Each creep that reaches the base decreases the player's health until the player loses. You
want the towers to shoot at all creeps in range as long as they are charged with ammunition.
Killing creeps increases the player's budget, and when the last creep is destroyed, the player
wins. Use what you learned in this chapter!

1. Create a GamePlayAppState class that extends the AbstractAppState class.
Move the code that initializes the scene nodes from the simpleInitApp ()
method into the GamePlayAppState object's initialize() method. In the
cleanup() method, write the code that detaches these nodes along the same
lines. Add an instance of this state to the stateManager object of the Main class.

2. To have a game state to interact with, you first need to define user data. In the
GamePlayAppState class, define integer class fields for the player's level,
score, health, and budget, and a Boolean variable lastGameWon, including
accessors. In your code that creates towers, use the setUserData() method to
give each tower index and chargesNum fields. Where you create creeps, use the
setUserData() method to give each creep index and health fields.

3. Create a Charges class. The charges that the towers shoot are instances of a plain
old Java object that stores a damage value and the number of remaining bullets.
(You can extend this class and add accessors that support different types of attacks,
such as freeze or blast damage, or different forces.)

Chapter 3

[85]

4. Create a CreepControl class that extends the AbstractControl class and
lets creep spatials communicate with the game. The constructor takes the
GamePlayAppState object instance as an argument—because the creep needs
access to player budget and player health. Write accessors for the creep's user
data (index and health). In the code block where you create creeps, use the
addControl(new CreepControl(this)) method on each creep.

5. Implement the controlUpdate() method of the CreepControl class to define
the behavior of your creep spatials: creeps storm the base. As long as the creep's
health is larger than zero, it moves one step closer to the player base (at the origin).
It then tests whether its z coordinate is zero or lower. If yes, it has stormed the
player base: the creep subtracts one life from the player's health and it detaches
itself. If the creep's health is below zero, the towers have killed the creep: the
creep adds a bonus to the player budget, and detaches itself.

6. Create a TowerControl class that extends the AbstractControl class
and lets tower spatials communicate with the game. The constructor takes the
GamePlayAppState object instance as an argument because the towers need
access to the list of creeps and the beam_node object. Write accessors for the tower's
user data (index, height, and ChargesNum). In the code block where you create
towers, use the addControl(new TowerControl(this)) method on each tower.

7. Implement the controlUpdate() method of the TowerControl class to define
the behavior of your tower spatials: towers shoot at creeps. Each tower maintains
an array of charges. If the tower has one or more charges, it loops over the ArrayList
of creep objects that it gets from the GamePlayAppState object, and uses the
creep_geo.getControl(CreepControl.class) method to get access to the
CreepControl object. The tower determines whether the distance between itself
and each creep is lower than a certain value. If yes, it collects the CreepControl
object into a reachable ArrayList. If this list has one or more elements, creeps are
in range, and the tower shoots one bullet of the top charge at each reachable creep
until the charge is empty. For now, we use the com.jme3.scene.shape.Line
class to visualize the shots as plain lines that are drawn from the top of the tower
towards the location of the creep. Attach all lines to the beam Node object in the
scene graph. Each hit applies the charge's damage value to the creep, and decreases
the number of bullets in the charge. If a charge's bullet counter is zero, you remove
it from the tower's Charge array and stop shooting.

Interacting with the User

[86]

8. In the Main.java simpleInitApp() method, create an input mapping that lets
the player select a tower with a left-click, and one that charges the selected tower
by pressing a key. Implement an ActionListener object that responds to these
two mappings. When the player clicks to select, use ray casting with a visible mouse
pointer to identify the clicked tower, and store the tower's index in a class field
selected (otherwise selected should be -1). If the player presses the charge key,
and the budget is not zero, use, for example, the rootNode.getChild("tower-"
+ selected).getControl(TowerControl.class) method to get the
TowerControl instance. Add a new Charge object to the tower control,
and subtract the charge's price from the budget.

9. In the GamePlayAppState object's update() method, you maintain timed events
using two float class fields, timer_budget, and timer_beam. The timerBudget
variable adds the tpf (time per frame in seconds) to itself until it is larger than 10
(such seconds), then it resets itself to zero and increases the player budget. The
Timer_beam field does the same, but it only waits for one second before it
clears all accumulated beam geometries from the beam Node node.

10. In the GamePlayAppState object's update() method, you also check whether
the player has won or lost. Test whether health is lower than or equal to zero. If yes,
you set the lastGameWon variable to false and detach this GamePlayAppState
object (which ends the game). If the player is still healthy and no creeps are alive,
then the player has won. Set the lastGameWon object to true and detach this
GamePlayAppState object (which ends the game). Else, the player is healthy but
the creeps are still attacking. The TowerControl class and the CreepControl
class handle this case.

Summary
Congratulations! By completing this chapter, you have made a big leap ahead in your game
developer career.

You now know how to respond to user inputs, such as mouse clicks and motions, touch events,
joysticks clicks and motions, and key presses. You have learned two different ways to identify
the target spatial that the user has clicked. You know how to use the simpleUpdate()
method to poll and update the game state, how to use controls to implement game logic
in spatials, and how to use AppState objects to implement global game logic.

Since pushing cubes around gets old after a while, let's continue to the next chapter,
where you will learn how to load scenes and character models!

4
Adding Character to Your Game

There comes a time when you leave the basic shapes behind and make
something fancier. Whether the 3D game of your dreams is set on a terrain,
in a city, or in a space station; whether the characters roaming your maps are
unicorns, warriors, or race cars: unless you generate procedural graphics on the
fly, you need 3D models to populate your world.

In the previous chapters, you acquired the two essential skills that a 3D game developer
needs: you can initialize a scene, and you can make it interactive using the update loop and
input listeners. With what you know, you could already write your own Blockout! Granted,
falling cubes are not very exciting. Where are the ninjas, space ships, and cities?

In this chapter you will learn:

 � How to build anything from triangles
 � How to create 3D models and scenes
 � How to store and load 3D models
 � How to animate 3D models
 � How to load 2D icons and text

Let's add some character to our game!

Making a Mesh
A 3D engine needs geometric information about scene objects before it can render
anything. How would you describe a box? You need to tell the engine where the eight
corners are, and which corners connect to form the box's faces. For a cuboid shape this
is pretty straightforward. Let's look at a box through the eyes of the rendering engine.

Adding Character to Your Game

[88]

Time for action – meshing around with cubes
The following code sample is again based on the familiar BasicGame template that creates a
blue cube.

1. Make a copy of Main.java and name the class WireframeShapes.
java. Remember to also refactor the first line of the main() method to:
WireframeShapes app = new WireframeShapes();

2. In the simpleInitApp() method, after the creation of the material mat,
change the following material property: mat.getAdditionalRenderState().
setWireframe(true);

The WireframeShapes code sample now looks like the following code:
public class WireframeShapes extends SimpleApplication {

 @Override
 public void simpleInitApp() {
 Box mesh = new Box(Vector3f.ZERO, 1, 1, 1); // create box mesh
 Geometry geom = new Geometry("Box", mesh);

 Material mat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 mat.setColor("Color", ColorRGBA.Blue);
 mat.getAdditionalRenderState().setWireframe(true);
 geom.setMaterial(mat);
 rootNode.attachChild(geom);
}

 public static void main(String[] args) {
 WireframeShapes app = new WireframeShapes();
 app.start();
 }

}

3. Run the class. Move around using the W, A, S, and D keys and the mouse,
and inspect the polygons that outline the shape of the cube.

Chapter 4

[89]

What just happened?
You see that each of the six cube faces are broken down into two triangular parts. What looks
like a cube to you is actually a polygon mesh made up of 12 triangles.

Typically, you apply materials to geometries to cover up the polygon mesh. But now, for
learning purposes, you made the internals below the material visible. When you use mat.
getAdditionalRenderState().setWireframe(true); on a material, the engine
renders a wireframe view of the mesh shape for all geometries using this material.

Being able to see the wireframe can be useful when debugging transformation issues
of more complex objects in larger scenes. Let's look at some shapes more complex than
cubes next.

Time for action – meshing around with spheres
What about round surfaces, such as spheres are they triangle meshes too?

1. Go back to the WireframeShapes class you just created.

2. Comment out the line that creates the Box() mesh.

3. Replace the box mesh with code that creates a sphere mesh instead. Use the
Sphere class from the com.jme3.scene.shape package: Sphere mesh = new
Sphere(16, 16, 1.0f);

4. This line of code creates a sphere mesh with a radius of 1.0f. The other arguments
of the constructor specify the smoothness of the sphere.

5. Run the class. Move around using the W, A, S, and D keys and the mouse,
and inspect the polygon mesh that outlines the shape of the sphere.

Adding Character to Your Game

[90]

What just happened?
When you run the sample application, you realize that even a sphere is quite a triangular
business, from the point of view of a 3D engine!

The quality of a sphere is determined by its radial samples; that is, the number of triangles
along the equator and meridian of the sphere. This is why the sphere constructor takes two
integer arguments. In our example Sphere (16, 16, 1.0f), both values are 16.

For a small sphere, 16 triangles for each sampling dimension results in very good quality.
For bigger spheres, you can go up to 32 triangles for both dimensions. There is no hard limit
though, and the values do not have to be powers of two either. Just remember not to be
wasteful: the more triangles in the scene, the slower the framerate. Your players cannot
even see the difference between spheres with 32 or 64 radial samples—but they will notice
a sluggish framerate immediately.

You see now that a polygon mesh is a simple triangle grid that is sculpted to outline a
more complex shape. Whether they are round or angular, bugbears or buildings, terrains
or teapots—all 3D models and shapes are made up of polygon meshes. The teapot in the
following screenshot, for example, is a polygon mesh made up of hundreds of triangles:

Chapter 4

[91]

The advantage of meshes is that they are mathematically simple enough to render in real
time, while being detailed enough to be recognizable. This is a typical example of the kind
of smart compromises that 3D game developers have to make to strike the balance between
speed and visual quality.

The polygons' corners—the crossing points of the wireframe—are called vertices. Every
vertex is positioned at a 3D coordinate. Sculpting the vertices of a mesh is a lot of work,
which is why you typically create meshes using special 3D modeling software. This chapter
demonstrates how you create and export your artwork, and load it into a jMonkeyEngine
scene graph.

From mesh to geometry
From previous chapters you remember that a scene is made up of spatials. A spatial can
either be an invisible node, or a visible geometry. Have another look at the following two
lines from our WireframeShapes.java example:

Box mesh = new Box(Vector3f.ZERO, 1, 1, 1);
Geometry geom = new Geometry("Box", mesh);

You notice that the magic ingredient that makes a geometry visible is a polygon mesh: first
you create a mesh shape (here the box), then you wrap the geometry object around it. The
advantage is that you can reuse the same mesh in several geometries.

Adding Character to Your Game

[92]

The mesh data type is just a shape—pure, unaltered vertex data. The com.jme3.scene.
Geometry data type combines the inner mesh, the surface material, and transformations
into one object. When a mesh is used in a geometry, the geometry's transformations
(position, scale, rotation) and material (for example its color) are applied to the mesh.
This combination makes it a visible element of the 3D scene.

The jMonkeyEngine class that is used to hold mesh data is com.jme3.scene.Mesh.
The mesh inside a geometry gives us a lot of modeling flexibility, because it can be one
of the following three things:

 � A shape: The simplest type of meshes are the jMonkeyEngine's default shapes, such
as boxes, spheres, and cylinders from the com.jme3.scene.shape package. You
can attach several simple shapes to one node to build a more complex geometry.
Shapes are built-in and can be created without loading 3D models and without using
the assetManager object.

 � A 3D model: 3D models are meshes that are more complex than a shape. Sets of
models are called scenes, and are even more complex. You create models as well
as scenes in external 3D modeling tools. You use the assetManager object to load
models into the application.

 � A custom mesh: Advanced users can create meshes programmatically. This option is
used by 3D artists who generate procedural or fractal worlds on the fly. You can find
custom mesh documentation on the jMonkeyEngine.org wiki.

Curious about the inner workings of a mesh? In the jMonkeyEngine SDK's
source editor, you can control-click classes, inherited fields, and overridden
methods to jump to the source. For example, control-click a Box()
constructor and see firsthand how this custom mesh was implemented.
The jMonkeyEngine is open source, after all!

Now you know what meshes are, and where they are used. But where do you get
them from?

Beg, steal, or borrow
A video game typically needs 3D models, animations, materials, icons, background music,
sound effects, and maybe even voices and a cinematic clip for cut scenes. Unless you are
Leonardo da Vinci, you won't produce all of this artwork yourself. Luckily, there are many
game resource repositories where you can find game assets for download, and game
developer communities with freelancing 3D artists.

Chapter 4

[93]

You can either download free assets or buy pre-made multimedia collections. Each option
has its pros and cons. Free models may not be available in the right formats. Commercial art
packages may be expensive and in either case, you may not get precisely what you want. If
you require maximum control over certain assets, your development team needs designated
multimedia artists—and good multimedia software.

The right wrench to pound in the screw
The jMonkeyEngine SDK bundles many tools, but a mesh editor is not among them. This is
because there are countless flavors of 3D modeling tools: Blender, Maya, 3DS Max, Trimble
SketchUp, MilkShape3D, ArtOfIllusion, and many others. The choice depends on your
operating system, your work style, your level of expertise, and finally, your wallet.

The jMonkeyEngine does not restrict you to use one particular mesh editor. You can keep
using the tools you are familiar with. The only requirement is: your 3D modeling software must
be able to export files in a format that jMonkeyEngine can load. At the time of writing, the
jMonkeyEngine supports Wavefront, Ogre XML/Ogre DotScene, and Blender binary formats.

Model format File suffix Usage

Ogre3D Mesh .mesh.xml or
.meshxml,

.material

A 3D model plus material. You can
download the plugin for all major editors.
Use the Ogre Mesh format for skeleton
animations or static models.

Ogre3D DotScene .scene A set of Ogre Mesh models.

Wavefront .obj, .mtl A 3D model plus material. Nearly all editors
export to Wavefront out of the box. Use
this format for static models.

Blender .blend 3D models in Blender's binary format.

In the jMonkeyEngine SDK, open Tools | Plugins from the menu, and look
at the available plugins and installed tabs. Note, among others, Wavefront
OBJ Support, OgreXML Support, OgreXML Tools, Blender Support, and the
Model Importer Tool—these plugins need to be installed and active for
model import features to work.

Whichever 3D modeling tool you choose, familiarize yourself with the user interface: practice
how to create meshes, navigate the 3D scene, select meshes, transform them, give them
materials and so-called UV textures, animate them, and export the result.

Adding Character to Your Game

[94]

For the course of this book, we will use Blender. You can download the software from
http://blender.org for free.

If you haven't done so yet, install Blender 2.63 or higher now. Give it a shot for the sake
of demonstration—you can always switch to another modeling tool later.

Time for action – installing the Blender-to-Ogre3D plugin
Look into the export menu of your Blender installation. If it does not export to Ogre Mesh/
Ogre DotScene yet, it's time to install a free plugin from ogre3d.org. There you also find
plugins for other 3D modeling tools.

The jMonkeyEngine SDK assists you in installing the Ogre XML plugin into Blender 2.63+,
so you can follow the examples in this book:

1. In the top-right search box of the jMonkeyEngine SDK, type "Install Blender
Ogre XML".

2. A list of the actions and help resources appears. Select the "Install Blender Ogre
XML" action and press Enter. A dialog box opens.

3. Click on change to set the path. Browse to your Blender script directory and click
on OK. The default paths in various operating systems are as follows:
Windows 7 – C:\Users\%username%\AppData\Roaming\
 Blender Foundation\Blender\2.63\scripts\
Windows XP – C:\Documents and Settings\%username%\
 Application Data\Blender Foundation\Blender\2.63\
 scripts\
Mac OS X – /Applications/Blender 2.63/blender.app/
 Contents/MacOS/2.63/scripts
Linux – /home/$user/.blender/2.63/scripts/

4. Click on Install Exporter Script and the exporter plugin is installed.

5. Re-open Blender and look into the Export menu to confirm the installation
was successful.

What just happened?
Your Blender installation can now export to Ogre3D format, additionally to Wavefront,
which Blender supports by default. Blender is a professional, full-featured modeling tool that
is available for all three major operating systems. The jMonkeyEngine team also likes Blender
because it is open source software, and supported by an enthusiastic community, just like
jMonkeyEngine is.

Chapter 4

[95]

Model editors such as Blender can import and export a variety of common
model file formats. This means that you can use your editor to convert
between formats, to a certain degree. For example, you can import a model in
.3ds (3dsMax) format into Blender, and then save it either as a.blend file, or
export it as Ogre mesh.xml.

Time for action – sculpting the mesh
Let's create a 3D model. This book cannot replace a complete Blender 2.63+ tutorial, so you
will have to go through additional tutorials on blender.org. There are also great free video
tutorials on cgcookie.com/blender/ and the iTunes University!

Start Blender. The 3D view pane contains a simple mesh, a cube. Let's work with the untitled
cube for now. Remember to drag the middle mouse button to look at the mesh from
different angles; use the mouse wheel to zoom in and out on the mesh.

1. In your file explorer, create the BasicGame/assets/Textures/MyModel/
 and BasicGame/assets/Models/MyModel/ directories. Here you will
store your assets.

2. In Blender, choose File | Save As and save the untitled Blender file as mymodel.
blend into the BasicGame/assets/Textures/. (Note, not assets/Models/!)

3. Switch from Object Mode to Edit Mode. In the Mesh Tools panel, click on Subdivide
two or three times. The cube mesh is subdivided into more polygons.

4. Switch from Edit Mode to Sculpt Mode. The mouse pointer changes to a brush
circle.

5. Left-click and drag the mouse over the mesh and sculpt it! In the Brush panel, click
on Add or Substract to pull or push the mesh; change AutoSmooth, Radius, and
Strength to change the pressure and impact on the mesh.

6. Play with the tools a bit and sculpt whatever you fancy; for example, a head. When
you are done, choose File | Save to save your work.

What just happened?
Blender lets you edit polygon meshes like modeling clay, which is a very user-friendly
approach for organic shapes. Don't subdivide the mesh too much though: high-polygon
meshes may look prettier in the 3D model editor, but for a fast-paced video game, the
rendering speed of low-polygon models trumps static smoothness!

Adding Character to Your Game

[96]

Instead of a cube, you can use the Add | Mesh | … menu to start out with
other base meshes to sculpt, including a Monkey mesh that you can use as
a test model. This chimpanzee head model is called Suzanne—nice to meet
a fellow monkey out there!

Blender offers many sculpting brushes. Follow one of the Blender tutorials to familiarize
yourself with the effects you can achieve. Sculpting is just one of the many mesh editing
modes that Blender supports. Other common modeling methods you should look into are
vertex/edge/face editing and extrusion.

Time for action – coloring the mesh
When you are done sculpting the mesh, switch back from Sculpt Mode to Edit Mode. Now
you create the mesh's surface—its material and texture. For this we use a professional
technique called UV mapping.

1. Verify that the model is selected in Edit Mode (it has an orange outline). If it isn't,
right-click to select it.

2. In the Outliner panel, find the model entry (marked with an orange triangle).
Open the node and rename the mesh to mymodel. Delete the camera and the
light, if there are any.

3. In the Properties panel (the one with the long row of small icons) click on the
Material button (a reddish chequered circle). If your model doesn't have a material
yet, click on the plus sign to add one. Rename the material to mymodel—just like
the filename, so the two can be associated with each other more easily.

Chapter 4

[97]

Now let's add the actual texture to the model.

1. Verify the model is still selected and in Edit Mode. In the Mesh Tools panel on the
left-hand side, scroll down to UV Mapping. Click on the Unwrap | Smart UV Project,
accept the defaults, and click on OK.

2. To see the UV Mapping, switch the main pane from 3D View editor (a white 3D cube
icon) to UV/Image Editor (a reddish landscape-with-sunset icon). You should see
your 3D mesh broken down into flat 2D pieces.

3. Click on New to create a texture image. Name the untitled image mymodel again—just
like the file—accept the defaults, and click on OK. You see a black texture.

4. Switch back from the UV/Image Editor option to the 3D View editor. Switch from
Edit Mode to Texture Paint mode. You now see your model with the black texture.

5. Use the Brush tool from the left-hand side pane to select colors, and paint the
model. It's not important to get it perfect, just highlight areas in different colors so
you can recognize them—you will make the texture look perfect later in the chapter.

6. Switch from 3D View editor to UV/Image Editor. You now see that the colors that
you painted on the 3D mesh are represented on the corresponding pieces of the 2D
texture. If the UV mapping looks messy, consult a Blender tutorial for how to define
optimal UV seams.

7. Choose Image* | Save as Image. Save the texture as mymodel.png under
BasicGame/assets/Textures/MyModel/.

8. Switch from UV/Image Editor to 3D View editor. Switch from Texture Paint mode
back to Edit Mode. In the Properties pane, choose the Textures section (reddish
chequered square) next to the Material section (reddish chequered circle).

9. Click on New to add texture data to the model. Where it says Type: Clouds,
choose Type: Image or Movie. Click on Open, and browse to the mymodel.png
that you just saved, and click on Open Image. The image you selected should
appear in the preview.

10. Choose File | Save to save your work to the mymodel.blend file.

What just happened?
A color is the most basic material a model can have. For video games, you typically define the
color of a model using texture files. The type of texture that we use for game models is called
UV-mapped texture. The term UV Mapping stems from the fact that a 3D mesh has three
coordinates (X, Y, and Z), while a 2D image has two coordinates (U and V); the model editor
maps the image's UV coordinates onto your mesh's XYZ coordinates when creating the texture.

Adding Character to Your Game

[98]

The finished UV texture looks a lot like a sewing pattern! The model editor unwraps the
mesh, lets you paint right on it, and saves the texture as a compact image—pretty cool
feature. It's worth going through your model editor's tutorials to learn its best practices
for creating UV textures, such as marking optimal seams manually. After creating the UV
texture, you open mymodel.png in an image editor of your choice, and paint the final model
texture over the color-coded areas of the "sewing pattern". The jMonkeyEngine supports UV
textures and can piece them together again when you load the model.

You will learn how to make the most of materials and textures in the next chapter.

Time for action – a model for to go, please
Since every model editor has its own native format, you typically export the model to an
exchange format. In the case of jMonkeyEngine, these formats are Ogre Mesh or Wavefront.

Keep using the mymodel.blend file that you just saved to BasicGame/assets/
Textures/MyModel/. Let's start by practicing an Ogre Mesh conversion in Blender:

1. Press A and verify that the model is selected (orange outline).

2. Choose File | Export | Ogre 3d (Scene and Mesh) from the menu. The exporter
window opens.

3. In the path field, make sure that the path ends in …/BasicGame/assets/
Textures/MyModel/. Name the target file as mymodel.mesh.xml.

4. Under Export Ogre, keep the defaults, but uncheck Force Camera, Force Lamps,
and Export Scene; choose Swap Axis: xyz.

5. Click on Export Ogre.

Return to the model. As an exercise, we export it a second time, now in Wavefront format.

1. Press A and verify that the model is selected (orange outline).

2. Choose File | Export | Wavefront (.obj) from the menu. The exporter window
opens.

3. In the path field, make sure that the path ends in …/BasicGame /assets/
Textures/MyModel/. Name the target file as mymodel.obj.

4. Under Export OBJ, keep the defaults, and check Triangulate Faces and
Include Normals.

5. Click on Export Wavefront Obj.

You have now exported your model from the model editor in two different formats.

Chapter 4

[99]

What just happened?
Some Blender models have a camera and light source included. Since you already inherit
camera and light from the SimpleApplication, delete them from the model. The Swap Axis:
xyz setting ensures that your model is exported the right way up: 3D engines and model
editors can use different coordinate systems.

Look into the BasicGame/assets/Textures/myModel/ directory. Additional to the
original Blender file (.blend), the directory now contains your model in two formats:

BasicGame/assets/Textures/MyModel/
mymodel.blend
mymodel.mtl
mymodel.obj
mymodel.material
mymodel.mesh.xml
mymodel.png

The .mtl and .obj files are the Wavefront model. The mesh.xml and .material files are
the Ogre3D models. Note that the mymodel.png UV texture is used by both! In a real-life
scenario, you export each model to only one format: for example, export all static models
as Wavefront, and all animated models as Ogre3D files.

Time for action – loading a model (just testing)
The 3D model is ready for its journey into the 3D game world. Switch over to your BasicGame
project in the jMonkeyEngine SDK again.

1. Make a copy of Main.java and name the class LoadModel.java. Remember to
also refactor the first line of the main() method to:
LoadModel app = new LoadModel ();

2. Replace the simpleInitApp() method with the following code snippet:
public void simpleInitApp() {
 Spatial mymodel = assetManager.loadModel(
 "Textures/MyModel/mymodel.mesh.xml");
 rootNode.attachChild(mymodel);
 DirectionalLight sun = new DirectionalLight();
 sun.setDirection((new Vector3f(-0.5f, -0.5f, -0.5f)));
 sun.setColor(ColorRGBA.White);
 rootNode.addLight(sun);
}

Adding Character to Your Game

[100]

Since the load() method returns both nodes and geometries, you load models as generic
Spatials. Run the application and have a look at your loaded model.

The same loading method also works with the Wavefront .obj file. Replace the path,
and try it yourself:

Spatial mymodel = assetManager.loadModel(
 "Textures/MyModel/mymodel.obj");

When you load the two copies of the model, both formats should end up looking the same
in the jMonkeyEngine. Your test was successful!

What just happened?
You use the assetManager object inherited from SimpleApplication to load the
models. The assetManager object automatically looks for files in the assets directory of
your project. This means you reference the file BasicGame/assets/Textures/MyModel/
mymodel.obj as Textures/MyModel/mymodel.obj when loading it.

Note that we do not use the Unshaded.j3md default material that we used when we
loaded plain boxes. Unshaded.j3md is a very plain, colored material that works without
a light source—hence the name, "unshaded". Models typically have more than one color,
which is why you use more professional-looking UV textures that you tailor directly in the
3D model editor. You export the model together with its materials and UV textures, and
save the texture under the same name as its model into the same textures subdirectory,
just as you did with mymodel.png. This way the load() method can automatically
identify the right material and texture files, no manual assignment needed.

Did you notice that we added a directional light to the rootNode object? If you do not use
Unshaded.j3md, a light is required to make a model's material visible! Always ensure that
at least one of the model's parent nodes (typically, the rootNode object) has a light source
added to it. If you forget the light, your models will be black and featureless.

Troubleshooting models
You only see the model in the scene if both the mesh and its material load
correctly. If you encounter problems, try replacing the material with a
temporary material based on the built-in ShowNormals.j3md:
Material mat = new Material(assetManager,
 "Common/MatDefs/Misc/ShowNormals.j3md");
mymodel.setMaterial(mat);
This displays the model in contrasting colors, without textures or shading.
This workaround allows you to at least load the model and continue
working while the graphic designer fixes the material.

Chapter 4

[101]

Time for action – loading a model (for real)
Loading the meshes straight from the Ogre Mesh or Wavefront file is something that you
only do for testing purposes. When you load a model from a .mesh.xml or .obj file,
jMonkeyEngine converts it internally into an optimized binary format called .j3o.

If you have made up your mind to use a certain model in your game, you convert it to .j3o,
and only load the .j3o file:

1. In the jMonkeyEngine SDK's Project window, browse to the assets/Textures/
MyModel/ directory.

2. Right-click on mymodel.mesh.xml and choose Convert to j3o Binary from the
context menu. The SDK creates mymodel.j3o.

3. Move mymodel.j3o into the BasicGame/assets/Models/MyModel/ directory.

4. Open LoadModel.java again. Keep the light source in simpleInitApp().

5. Replace the load() path in simpleInitApp() with the following code:
Spatial mymodel = assetManager.loadModel(
 "Models/MyModel/mymodel.j3o");
rootNode.attachChild(mymodel);

6. Run the LoadModel sample. The j3o version of the model should load and look the
same as before.

What just happened?
You recall that we saved the original Blender, Ogre3D, and Wavefront models in the assets/
Textures directory. Did you wonder whether it would not make more sense to store them
under assets/Models? It wouldn't: from a jMonkeyEngine developer's point of view,
Ogre3D and Wavefront are just intermediate formats. For the final release, you convert all
models to the more powerful .j3o format. Only the .j3o files go into the assets/Models
directory, which remains nicely clutter-free.

j3o is the internal binary format for all jMonkeyEngine spatials and scenes. Other formats
only store meshes, materials, and animations; the .j3o format can additionally store
game-relevant information, such as user data (health and so on), shadow settings, and
instances of attached audio nodes, light nodes, particle emitters, and controls. j3o files
are optimized for gaming, which means they load faster than converting external formats
on the fly.

Adding Character to Your Game

[102]

When you build the game in the SDK using the provided build script (which is
what we recommend), only .j3o models and scenes from inside your assets
directory are bundled into your application! Original Blender, Ogre3D, and
Wavefront models are excluded, as is everything outside the assets directory.
If your loadModel() code does not point to the .j3o copy of the file, you
will get an AssetNotFoundException message at runtime when trying
to load any external model formats.

Managing assets – best practices
A modern 3D Java game is made up of more than just Java files; it runs on more than one
operating system; it may be deployed to several platforms. Developers want a flexible way
to load assets that works the same in every situation: this is why the jMonkeyEngine team
introduced the AssetManager class.

The AssetManager API is independent of the operating system (Windows, Mac OS, Linux),
the data format (straight files, JAR files, ZIP files, APK packages), or the platform (desktop,
web, mobile). Using the assetManager object, you no longer need to change the code
or structure of the project to make it work on another platform.

Time for action – sorting your stuff out
When you start coding, you may want to load sample models to test a scene or interaction.
Since your own artwork is most likely not ready yet, you typically use free models or
mock-ups. Now it's time to decide on a directory structure for your assets:

1. Create subdirectories under assets/Textures/. Keep original models,
their textures, and materials together!

2. Create parallel subdirectories for .j3o models under assets/Models/.

For example, in a racing game, you would prepare the following for your car models:

 � assets/Textures/Vehicles/Cars/ for ferrari.obj and porsche.obj—
including material and textures

 � assets/Models/Vehicles/Cars/ for ferrari.j3o and porsche.j3o

Or in a shooter, you would prepare the following directories for your monster NPCs:

 � assets/Textures/NPCs/Monsters/ for gremlin.mesh.xml/ and orc.mesh.
xml—including material and textures

 � assets/Models/NPCs/Monsters/ for gremlin.j3o and orc.j3o

Chapter 4

[103]

Create some mock-ups, convert them, and try to load them from different paths.
By default, the SimpleApplication method's assetManager looks for files in the assets/
directory. You only need to specify the rest of the path in the load() method. For example:

assetManager.loadModel("Models/NPCs/Monsters/gremlin.j3o")

assetManager.loadModel("Models/Vehicles/Cars/ferrari.j3o")

Did you notice that your CubeChaser code used the assetManager
method to load a material definition from Common/MatDefs/Misc/
Unshaded.j3md? Why does this work, although your project does
not have a directory named assets/Common/MatDefs/Misc/?
jMonkeyEngine finds this built-in file in the jMonkeyEngine JAR. This JAR is
on the classpath of every jMonkeyEngine game—and the classpath is also
registered as a default root directory for asset loading.

What just happened?
You create subdirectories in the assets directory because you want to keep the same
file structure from beginning to end of the project. This advice applies to models, as well
as sounds and textures, and so on. If you ever change the assets (sub)directory structure,
you must manually update all affected asset paths in your code.

The .j3o file under assets/Models/ uses the same absolute path
to locate textures in the Textures directory as the original Blender,
Ogre3D, or Wavefront file did. You can still modify and update a model's
textures during the development phase; but do not move, rename, or
delete the textures after creating the j3o file. If you change subdirectories
of assets/Models or assets/Textures, or rename textures or
models, remember that you also must re-export all affected original models
from the model editor, and regenerate all affected .j3o files!

To give you a picture of what this means, open the BasicGame project in a file explorer.
The following overview outlines the default assets subdirectories, and explains which file
types go into which directory:

BasicGame/
assets/...

Content Usage

Interface/ .fnt A bitmap font in the AngelCode font format. A typical use
case for text is displaying the score or the game rules in your
user interface, which is one of the things you will learn next.

Interface/ .jpg, .png,

.xml

Image formats used for icons and background images in the
user interface. Also optional XML files used for user interfaces
created with jMonkeyEngine's Nifty GUI integration.

Adding Character to Your Game

[104]

BasicGame/
assets/...

Content Usage

MatDefs/

Shaders/

.j3md

.vert,

.frag

Special file formats used by jMonkeyEngine's shaders: advanced
users can create custom material definitions and shaders.
Unless you know what that means, you can simply ignore the
assets/MatDefs and assets/Shaders directories.

Common material definitions (such as Unshaded.j3md) and
shaders for most use cases are built into the engine and ready
for use.

Materials/ .j3m jMonkeyEngine's format for materials.

Models/ .j3o jMonkeyEngine's binary format for 3D models.

Scenes/ .j3o jMonkeyEngine's binary format for 3D scenes.

Sounds/ .ogg
.wav

Audio formats used to store sounds, ranging from noises and
voices to background music.

Textures/ .jpg
.png
.tga

Image formats for storing textures that belong to models. Keep
textures and the original models together.

Textures/ .mesh.xml,
.material,
.scene

.obj+.mtl

.blend

Original 3D models in Ogre3D XML, Wavefront Object, or
Blender format, respectively. Keep textures and the original
models together.

The directory structure that you see here is a best practice that the jMonkeyEngine team
came up with. The subdirectory names (Models, Scenes, and so on) are examples only.
When you start a new project, you are free to delete, create, or rename directories inside
the assets directory as you see fit—and stick with it.

Also keep the name of the assets directory: this ensures that the build script packages
your assets automatically!

Time for action – saving and loading .j3o files
Right-clicking a model in the SDK is not the only way to create j3o files. Another common
situation is that you want to save the current scene when the player quits, and restore the
game when the player restarts the application.

Chapter 4

[105]

You can use com.jme3.export.binary.BinaryExporter to create j3o files,
and the com.jme3.asset.plugins.FileLocator to register custom directories
as AssetManager root directories. Switch over to your BasicGame project in the
jMonkeyEngine SDK again.

1. Make a copy of LoadModel.java and name the class SaveModel.java.
Remember to also refactor the first line of the main() method to:
SaveModel app = new SaveModel();

2. Keep the light source. Replace the model loading code in the simpleInitApp()
method with the following code snippet. It loads your j3o file from the assets/
Models directory and moves the model to a random position:
Spatial mymodel = assetManager.loadModel(
 "Models/MyModel/mymodel.j3o");
mymodel.move(
 FastMath.nextRandomFloat()*10-5,
 FastMath.nextRandomFloat()*10-5,
 FastMath.nextRandomFloat()*10-5);
rootNode.attachChild(mymodel);

3. Run the code. You should see your model.

4. Add a new method that overrides this SimpleApplication class stop() method.
When the game ends, you want to save the current scene to a file:
@Override
public void stop() {
 String userHome = System.getProperty("user.home");
 File file = new File(
 userHome + "/SavedGames/" + "savedgame.j3o");
 BinaryExporter exporter = BinaryExporter.getInstance();
 try {
 exporter.save(rootNode, file);
 } catch (IOException ex) {
 Logger.getLogger(SaveModel.class.getName()).log(
 Level.SEVERE, "Error: Failed to save game!", ex);
 }
 super.stop(); // continue quitting the game
}

Adding Character to Your Game

[106]

5. In the beginning of simpleInitApp(), add code that loads the previously
saved game again.
String userHome = System.getProperty("user.home");
assetManager.registerLocator(userHome, FileLocator.class);
try {
 Node loadedNode = (Node) assetManager.loadModel(
 "/SavedGames/savedgame.j3o");
 rootNode.attachChild(loadedNode);
} catch (com.jme3.asset.AssetNotFoundException e) {}

6. Run your sample. Press Esc key to quit, and run and quit it again. Every time
you run this sample and quit it, another model is added to the scene.

What just happened?
You can now save any spatial—even the whole rootNode object—as a j3o file, and then
restore it again.

1. The simpleInitApp() method first loads the previously saved scene from
savedgame.j3o. You register the user.home directory to the assetManager,
so you can load /SavedGames/savedgame.j3o just like any asset. If the file
does not exist, you catch an AssetNotFoundException message.
assetMaanager.registerLocator(userHome, FileLocator.class);

2. The simpleInitApp() method then loads and attaches a new copy of your
model to the scene.

3. When you press the Esc key, the SimpleApplication method executes its stop()
method. You override the stop() method to save the scene as savedgame.j3o
before quitting.

File file = new File(userHome + "/SavedGames/" + break line from
here "savedgame.j3o");
BinaryExporter exporter = BinaryExporter.getInstance();
exporter.save(rootNode, file);

When you look into your home directory, you see a new folder called SavedGames
containing the savedgame.j3o file.

If you do not use the jMonkeyEngine SDK for whatever reason, you can
write a custom Java class for your project using the described process.
Use it to load all models and convert them to j3o files before the release.

Chapter 4

[107]

Pop quiz
Q1. Your teammate asks you why you save the original models into assets/Textures and
move the .j3o models into assets/Models. What is the best reply?

1. Oops, sorry, I keep swapping the two!

2. Let's not create any j3o's and load all models in their original format.

3. The .j3o stores the full project-level texture paths, so don't move them.

4. Not so important, we can always rename the directories later.

Animating a model
Up until now, you have only dealt with static 3D objects. Maybe you have a daring piece of
update loop code that transforms models so they move around like chess pieces on a board.
But if the moving objects are characters, you would like to see their legs and arms move
while they walk. It's time to animate your 3D models.

In 3D games, a method called skeletal animation is used to animate characters. But in
principle, the skeleton approach can be extended to any 3D mesh – even an opening
crate's hinge can be considered a simple joint.

Your wizard fidgets, your ninja moonwalks, and your brawny warrior skips
along like a balloon animal? Unless you are animating toons, the realism of
an animated character's motion is generally a problem. Professional game
designers invest a lot of effort to make characters animate in a natural way,
including the use of motion capturing.

Time for action – rig, skin, and animate
The jMonkeyEngine only loads and plays recorded animations. You must use a model
editor to add animations to an existing model. This process is very different depending
on the model editor and we cannot cover it here—please consult your editor's
documentation for details.

Adding Character to Your Game

[108]

In general, you have to complete three steps: you rig, skin, and animate the model in your
model editor.

1. Rig your model using a bone armature. Parent all bones to one root bone. Locate
the root bone at the origin (typically, on the floor between the feet of the character).

2. Skin your model using vertex groups and weight painting.

3. Animate the model by specifying keyframes. If your model contains several
animations, turn the keyframes into action strips, and layer them in Blender's NLA
editor. For example, create an idle and a walk animation.

4. Give each animation a name, for example "Idle" and "Walk". Export the animated
model as Ogre3D mesh with skeleton.

5. In the end you should have the files mymodel.mesh.xml, mymodel.skeleton.
xml, mymodel.png, and mymodel.material.

For more details on how to rig, skin, and animate with Blender, search
the free tutorials on cgmasters.net for Blender Armatures and
Animation in Blender, search wiki.blender.org for Non-Linear
Animation Editor, and search youtube.com for video tutorials such
as Animations in Blender 2.6 and JME3.

Go through some tutorials, and animate mymodel.blend—or you can use an included
sample: you find a free animated model under BookSamples/ assets/Textures/Jaime/.

What just happened?
To animate a 3D model, you rig the internal skeleton (the bones or armature), you link
the bones to the external mesh (the skin), and specify animation data (the keyframes).

1. Rigging is the construction of a character's skeleton. You add bones to the model,
and connect them in a parent-child hierarchy to a root bone. Moving one bone pulls
other bones with it (for example, moving the arm also moves the hand). Create as
few bones as possible to decrease complexity. After exporting, the bones will be
invisible to the player.

2. Skinning means associating individual bones with corresponding skin sections. For
characters, the skin includes clothing. Animating the invisible bone pulls the visible skin
with it (for example, the thighbone moves the upper leg skin), distorting it if necessary.
One part of the skin can be affected by more than one bone (think of knees and
elbows). The connection between bones and skin is gradual: you assign weights how
much each skin polygon is affected by each bone's motion. For example, when the
thighbone moves, the leg is fully affected, the hip joints less so, and the head not at all.

Chapter 4

[109]

3. Keyframes finally define the overall animation. A keyframe is one pose on a
timeline. A series of keyframes makes up one animation. Each model can have
several animation sequences (for example: walking, idling, attacking, jumping).
Each animation sequence has a unique name.

In your game code, you load the model as before. If it's an animated model, you load an
animation into a channel, and you tell the engine when to play the channel.

Time for action – loading an animated model
Animated Ogre models come as a set of files: when you look at the included Jaime model,
the model is in Jaime.mesh.xml, and the animation details are in Jaime.skeleton.xml.

Copy the content of the Jaime directory to a new BasicGame's assets/Models/Jaime/
directory. Open the directory in the SDK and use the context menu to convert the mesh.xml
file to .j3o. Move the Jaime.j3o file to a new corresponding assets/Models/Jaime
directory.

Your goal is to add the model to the scene, and then animate it when the user presses the
Space bar. To trigger the animation, you want to use the familiar input handling that you
learned when you were interacting with the user previously.

1. Make a copy of LoadModel.java and name the class AnimateModel.java.
Remember to also refactor the first line of the main() method to:
AnimateModel app = new AnimateModel ();

2. Create a class field that represents the model. Let's call it player. Initialize the
player in the simpleInitApp() method by loading the Jaime.j3o model.
If necessary, rotate it so it faces the camera.
private Node player;
…
@Override
public void simpleInitApp() {
 …
 player = (Node) assetManager.loadModel(
 "Models/monkeyExport/Jaime.j3o");
 player.rotate(0, FastMath.DEG_TO_RAD * 180, 0);
 rootNode.attachChild(player);
 …
}

Adding Character to Your Game

[110]

3. If your model uses materials, add a light source to make the material visible.
You will learn more about lights and materials in the next chapter.
 DirectionalLight sun = new DirectionalLight();
 sun.setDirection(new Vector3f(-0.5f, -0.5f, -0.5f));
 sun.setColor(ColorRGBA.White);
 rootNode.addLight(sun);

4. Create one class-level AnimControl field for each animated model, and initialize
the object in the simpleInitApp() method. Internally, jMonkeyEngine
automatically generates a com.jme3.animation.AnimControl instance
for each animated model.
private AnimControl control;
...
@Override
 public void simpleInitApp() {
 …
 control = player.getControl(AnimControl.class);
 ...
}

5. If you created this model, you already know which animations you defined for it.
If you use Jaime.j3o, use the following code snippet to print the list of animations
that are exposed by this control:
for (String anim : control.getAnimationNames())
 { System.out.println(anim); }

6. Run the application and note down the animation names, then remove the line
again. Create string constants for the animations you want to use.
private static final String ANI_IDLE = "Idle";
private static final String ANI_WALK = "Walk";

7. Create at least one class-level animation channel for this control. In the
simpleInitApp() method, initialize the channel, and specify a default
animation. In our example, we want the model to be Idle by default.
private AnimChannel channel;
...
@Override
public void simpleInitApp() {
 …
 channel = control.createChannel();
 channel.setAnim(ANI_IDLE);
 ...
}

You have loaded an animated model, created at least one channel, and you have access to its
animation control methods.

Chapter 4

[111]

What just happened?
You remember that we use controls to call methods (accessors) on a spatial. You know that
the getControl(MyControl.class) method gives us access to a spatial's control of type
MyControl. One spatial can carry many controls.

When you load a spatial and jMonkeyEngine identifies it as an animated model, the engine
automatically generates animation control (com.jme3.animation.AnimControl)
and bone control (com.jme3.animation.SkeletonControl) instances for it.

The animation control is an instance of com.jme3.animation.AnimControl.
It exposes special animation accessors for this spatial. You use the model's AnimControl
to create animation channels, instances of com.jme3.animation.AnimChannel. Each
channel plays one animation sequence at a time. In our example, you create one channel
and set it to ANI_IDLE to play the idle animation.

You can create several AnimChannels in one AnimControl, then set different animations
in each AnimChannel, and play them in parallel. For example, for a charging wizard, you
can play a walking animation on a character's lowerBodyChannel, while playing a
spell casting animation on its upperBodyChannel.

The optional SkeletonControl instance gives you access to bones and their attachment
nodes—geometries attached to these nodes move along with the animation; for example,
a weapon moves with the hand bone. You can play animations without using the
SkeletonControl.

Time for action – playing an animated model
Everything is set up, but if you run the application now, the model is stuck in its idle
pose. Use what you learned in the previous chapter about the AnalogListener and
ActionListener, and configure the Space bar to make the character walk toward you
gradually, while playing the walk animation!

1. Write an ActionListener that waits for the MAPPING_WALK trigger, and then
tests whether the key is pressed or up. If the key is pressed, test if ANI_WALK is
still playing on the animation channel; if it isn't, play ANI_WALK again. If the key
is not pressed, play ANI_IDLE again.
private ActionListener actionListener = new ActionListener() {
 public void onAction(String name, boolean isPressed, float tpf)
{
 if (name.equals(MAPPING_WALK) && isPressed) {
 if (!channel.getAnimationName().equals(ANI_WALK)) {
 channel.setAnim(ANI_WALK);
 }

Adding Character to Your Game

[112]

 }
 if (name.equals(MAPPING_WALK) && !isPressed) {
 channel.setAnim(ANI_IDLE);
 }
 }
};

2. Write an AnalogListener that also waits for the MAPPING_WALK trigger, and
moves the player along the z axis towards the camera.
private AnalogListener analogListener = new AnalogListener() {
 public void onAnalog(String name, float intensity, float tpf) {
 if (name.equals(MAPPING_WALK)) {
 player.move(0, 0, tpf);
 }
 }
};

3. In SimpleInitApp(), add the new input mapping that triggers the walk
forward action when the Space bar is pressed. Register the mapping to the
AnalogListener and ActionListener.
private static final String MAPPING_WALK = "walk forward";
@Override
public void simpleInitApp() {
 …
 inputManager.addMapping(MAPPING_WALK,
 new KeyTrigger(KeyInput.KEY_SPACE));
 inputManager.addListener(analogListener, MAPPING_WALK);
 inputManager.addListener(actionListener, MAPPING_WALK);
}

4. Run the application. Jaime should stand around idly. Press the Space bar.
Jaime walks toward you.

What just happened?
Animations are often triggered by user interaction, such as navigational key input. When the
player triggers MAPPING_WALK, you call channel.setAnim(ANI_WALK), and you also use
the move() function to move the model. Note the use of the familiar tpf (time per frame)
factor to make the character move() with the same speed on slow and fast hardware.

Chapter 4

[113]

Additional to channel.setAnim(), you can set the following properties:

 � Use the channel.setSpeed() method to set the speed of this animation: a speed
of 1.0f is default, a value smaller than 1 plays it slower, a value larger than 1 plays
it faster.

 � Use the channel.setTime() method to fast-forward or rewind an animation to
a certain second on the timeline. The value is clamped to the interval between zero
and channel.getAnimMaxTime().

In contrast to user-triggered animations, your game may also contain animations such as
grazing animal NPCs or swaying trees. Such animations are controlled by the main loop.

Use channel.setLoopMode(LoopMode.Loop) to specify whether an animation should
repeat itself. The LoopMode can be:

 � LoopMode.Loop: The animation plays repeatedly. When reaching the end, the
animation starts from the beginning. This is the default behavior.

 � LoopMode.Cycle: The animation cycles back and forth repeatedly. When reaching
the end, the animation plays backward until it reaches the first frame, then it plays
forward again, and so on.

 � LoopMode.DontLoop: The animation plays once, and stops at the last frame. You
typically trigger the next animation at this point using the AnimEventListener
method's onAnimCycleDone() interface.

Time for action – responding to animation events
What if you want to play the sound loop of footsteps while walking, or reset the model to a
neutral pose after crouching, or before jumping? To detect the start and end of animation
events, your SimpleApplication must implement the com.jme3.animation.
AnimEventListener interface.

public class AnimateModel extends SimpleApplication
 implements AnimEventListener {…}

1. Register the AnimEventListener (this) to each AnimControl instance:
control.addListener(this);

2. Now you can implement the onAnimChange() method. It is called every time a
new animation starts.
public void onAnimChange(AnimControl control,
 AnimChannel channel, String animName) {
 if (animName.equals(ANI_WALK)) {

Adding Character to Your Game

[114]

 System.out.println(control.getSpatial().getName()
 + " started walking.");
 } else if (animName.equals(ANI_IDLE)) {
 System.out.println(control.getSpatial().getName()
 + " started being idle.");
 }
}

3. You can also implement the onAnimCycleDone() method of the interface.
It is called every time when an animation ends.
public void onAnimCycleDone(AnimControl control,
 AnimChannel channel, String animName)
{
 if (animName.equals(ANI_WALK)) {
 System.out.println(control.getSpatial().getName()
 + " completed one walk loop.");
 } else if (animName.equals(ANI_IDLE)) {
 System.out.println(control.getSpatial().getName()
 + " completed one idle loop.");
 }
}

4. Run the sample, press the Space bar, and watch the output.

What just happened?
Now you know how to hook in other game events so they happen in sync with the animation.
The AnimEventListener interface notifies you every time when an animation ends
(onAnimCycleDone()), or when a new animation starts (onAnimChange()). The method
arguments give you information about which control, which channel, and which animation was
involved in the event. You can now test for various combinations of states and react to them.

Spatial: Geometry dudeGeo

AnimControl dudeControl

rootbone

onAnimChange()

AnimEventListner

onAnimCycleDone()

AnimChannel dudeArms

setAnim()

setSpeed()

setTime()

setLoopMode()

AnimChannel dudeLegs

setAnim()

setTime()

setSpeed()

Chapter 4

[115]

Pop quiz
Q1. Which of the following statements about animations are true?

1. Each animated model has a) none; b) one; c) one or several AnimControl
instances.

2. AnimControls have a) none; b) one; c) one or several AnimChannels.

3. An AnimChannel controls a) rigging, skinning, keyframes; b) time, speed, looping;
c) saving, loading, converting.

4. Code in the AnimEventListener object's onAnimChange() method is always
executed a) after onAnimCycleDone(); b) after createChannel(); c) after
setAnim().

Loading a simple user interface
3D models are not the only assets that you load using the assetManager. Elements of the
graphical user interface (GUI) are also loaded from files. A typical use case for a GUI would
be to display the score, framerate, or status icons on the screen.

Time for action – displaying text
From SimpleApplication you inherit a special guiNode for displaying 2D elements such
as text, the guiNode. Let's re-use the blue cube sample as a base.

1. Make a copy of Main.java and name the class SimpleUserInterface.java.
Remember to also refactor the first line of the main() method to:
SimpleUserInterfaceapp = new SimpleUserInterface();

2. Before you create a custom GUI in simpleInitApp(), remove the default GUI
from the application:
public void simpleInitApp() {
 setDisplayStatView(false);
 setDisplayFps(false);
 ...
}

3. Create an integer class field tracking a value; say, a distance. You want to display
the value as text on the screen, so you also create a com.jme3.font.BitmapText
class field for it:
private int distance=0;
private BitmapText distanceText;

Adding Character to Your Game

[116]

4. In the simpleInitApp() method, you load a font, initialize the BitmapText object,
and attach it to the guiNode.
public void simpleInitApp() {
 ...
 guiFont = assetManager.loadFont("Interface/Fonts/Default.fnt");
 distanceText = new BitmapText(guiFont);
 distanceText.setSize(guiFont.getCharSet().getRenderedSize());
 distanceText.move(
 settings.getWidth()/2, // X
 distanceText.getLineHeight(), // Y
 0); // Z (depth layer)
 guiNode.attachChild(distanceText);
}

5. In this example, let's simply track the distance of the camera to the origin.
To keep the distance value up-to-date, and display it, add the following lines
to your simpleUpdate() method:
public void simpleUpdate(float tpf) {
 distance = Vector3f.ZERO.distance(cam.getLocation());
 distanceText.setText("Distance: "+distance);
}

When you build and run the sample, you see the distance display at the bottom center
of the screen. Move around the scene and watch the number update.

What just happened?
The guiNode that you inherit from SimpleApplication is a root node for flat
("orthogonal") elements. Orthogonal means these visual elements don't change
their perspective when the camera moves. guiNode elements are always superimposed
over the 3D scene, just like the framerate display in the bottom-left corner.

Use the default font size guiFont.getCharSet().getRenderedSize(),
because bitmap fonts don't scale too well. You could also set a default text using
distanceText.setText(""), or change the font color to yellow using distanceText.
setColor(ColorRGBA.Yellow). For this demo, just leave the defaults.

Next, you want to move the text to a nice position on the screen, relative to the current size of
the display. Keep in mind that the origin (the 0,0 coordinate) of the 2D screen is in the bottom
left-hand side. The location of the text is relative to the top-left corner of the text block.

Chapter 4

[117]

Here are a few tips for positioning text:

 � Use settings.getWidth() and settings.getHeight() to get the screen
size. If you want to position a 2D element in the middle of the screen, start out
with getWidth()/2, and subtract half the width of the element to center it.
This value is the x coordinate of the 2D element.

 � Use distanceText.getLineHeight(), getLineWidth(), and
getLineCount() to get the size of the text object. If you want to shift a text
block up, so one full line is visible at the bottom of the screen, use distanceText.
getLineHeight() as the y coordinate of the 2D element.

 � Use distanceText.move(x,y,z) to position the text object. The extra z coordinate
of a flat GUI element is used for depth layering. A GUI element with a higher z value is
drawn over GUI elements with lower z values. Leave the depth at 0 for now.

In this example, we just display a simple distance value. In an actual game, you would have
variables in the update loop that contain interesting metrics about the game state: the score,
the player's lives, amount of ammunition, secrets unlocked, and so on.

Time for action – loading AngelCode fonts
In your own game project, you will want to use a font that emphasizes your game's
atmosphere. The Font Creator plugin makes it easy to create bitmap fonts from system fonts.

1. Install a cool font into your system; for example, a free font from
http://www.theleagueofmoveabletype.com/.

2. Go to Tools | Plugins, and then go to the Available Plugins tab. Choose the
Font Creator plugin and click on Install. Restart the SDK.

3. Choose File | New File | GUI | Font from the main menu. The font creator
wizard opens.

4. Select the free font and click on Next.

5. Specify font style and size, and click on Finish. The font is saved into your project's
assets/Interface/Fonts directory.

6. Load yourCustomFont.fnt from your project directory with the same command
as you used before to load the default font:

BitmapFont customFont = assetManager.loadFont(
 "Interface/Fonts/yourCustomFont.fnt");
fancyText = new BitmapText(customFont);

Adding Character to Your Game

[118]

What just happened?
The jMonkeyEngine supports bitmap fonts in the popular format provided by angelcode.
com. The Font Creator plugin generates the bitmap font as a .png plus a .fnt file in your
assets/Interface/Fonts folder.

Two free AngelCode fonts are included: Interface/Fonts/Default.fnt and
Interface/Fonts/Console.fnt. Note that you can load these default fonts from
Interface/Fonts/, although they are not in your project's assets/Interface/
Fonts/ directory. This is another example of loading a common asset that is included
in the jMonkeyEngine JAR. The two default fonts are always available, which means
you can use them for testing, as fallback, or to display debug information.

Time for action – loading icons into the GUI
Additionally to 2D text, a GUI can contain pictures—as decorations, icons, or status
indicators. For example, a flight simulator is framed by an image of a cockpit with
windows, gauges, and dials. Another use case is an inventory browser. These are just
two examples—depending on your game type and genre, you encounter many different
uses for icons in the GUI.

1. Save images for the user interface in your project's Interface directory.

2. The following code sample loads a GUI element named frame.png and attaches
it to the rootNode:
Picture frame = new Picture("User interface frame");
frame.setImage(assetManager, "Interface/frame.png", false);
frame.move(settings.getWidth()/2-265, 0, -2);
frame.setWidth(530);
frame.setHeight(10);
guiNode.attachChild(frame);

Chapter 4

[119]

3. The next code sample loads an icon with transparency and attaches it to the
rootNode.
Picture logo = new Picture("logo");
logo.setImage(assetManager, "Interface/Monkey.png", true);
logo.move(settings.getWidth()/2-47, 2, -1);
logo.setWidth(95);
logo.setHeight(75);
guiNode.attachChild(logo);

4. Run the application to see the results. You should see a frame at the bottom center
of the page, and also a monkey face icon.

If you kept the code from the previous SimpleUserInterface example where you loaded
the distance text, the text is printed over the frame and logo. If you want to keep both GUI
elements, add an x and y offset to the text's move() method and move it away from the
frame; for example:

distanceText.move(settings.getWidth()/2+50, distanceText.
getLineHeight()+20,0);

What just happened?
The frame.png image has no transparency, which is why you set the boolean in the
setImage() method to false. The monkey.png icon uses an alpha channel, which is
why you set the boolean in the setImage() method to true.

You position the bottom-left corner of both images so they are centered at the bottom
of the screen. You move the monkey.png to depth layer -1, so it is drawn above the
frame.png in layer -2.

You can resize the image using setWidth() and setHeight() as shown here, but be
aware that you achieve more professional-looking results by resizing images in a graphic
editor, and loading them in full-size. Finally, you attach both images to the guiNode.

Time for action – display interactive status icons
You use the SimpleUpdate() method to calculate Vector3f.ZERO.distance(cam.
getLocation()). Depending on whether the distance is more or less than 10f, let's toggle
the monkey icon between two different states: smiling and sad:

public void simpleUpdate(float tpf) {
 distance = Vector3f.ZERO.distance(cam.getLocation());
 distanceText.setText("Distance: " + distance);

Adding Character to Your Game

[120]

 if (distance < 10f) {
 logo.setImage(assetManager,
 "Interface/chimpanzee-smile.gif", true);
 } else {
 logo.setImage(assetManager,
 "Interface/chimpanzee-sad.gif", true);
 }
}

What just happened?
You often use graphics not only as decorations but also to display game state. As shown, you
can use conditional setters in the simpleUpdate() method to keep your icons up-to-date.
You create a series of icons representing game states—in this example, the states are "happy
monkey" and "sad monkey". The monkey is happy when the camera is close to the origin,
and sad when it is farther away.

How would you implement a clickable icon, a button, so to speak?
Use what you learned previously about ray casting, and determine ray
collisions with the guiNode—this is the trivial solution. For advanced
GUIs, jMonkeyEngine integrates the Nifty GUI library that supports
various controls, such as buttons, text input fields, and sliders, as well as
effects and sounds. You can find more info on our wiki and on nifty-
gui.lessvoid.com.

Time for action – 3D objects in the 2D GUI?
Up to now, all assets you attached to the guiNode were two-dimensional, such as fonts and
icons. What happens if you attach a 3D object, such as the blue cube geom, the blue cube,
to the guiNode instead of the rootNode? Why not try and see yourself.

Modify a fresh BasicGame and add the following change:

geom.setLocalTranslation(
 settings.getWidth()/2,
 settings.getHeight()/2,
 0); // center the box
geom.scale(10f); // scale the box
guiNode.attachChild(geom);

When you run the sample code, it seems the jMonkeyEngine renders the box as before.
But when you move the mouse, the box does not turn along as objects attached to the
rootNode would.

Chapter 4

[121]

What just happened?
A 3D object on the GUI node is treated as a flat 2D image, which is pinned to a coordinate
on the 2D screen. If that's the effect you want, go ahead and do it: many games use
"orthogonal" 3D objects to display the active weapon on the bottom edge of the screen.

Some GUI caveats:

1. Assets attached to the guiNode are not measured in world units, but in pixels.
Our blue box is 2 wu wide and will therefore appear as a tiny 2x2 pixel cubelet
when you attach it to the guiNode! This is why the code sample scales the box
by a factor of ten.

2. As a general tip, rotate orthogonal 3D objects a bit. That gives them a more
interesting, dynamic angle in the GUI.

3. If the 3D model uses a material based on anything other than Unshaded.j3md
or ShowNormals.j3md, you must add a light source to a parent node to make
the material visible. In this case, the parent node is the guiNode!

You learn more about materials and lights in the next chapter.

The art pipeline
Additionally to code, a game needs 3D models, textures, icons, music, sounds, fonts,
and much more. Considerable time of the game development process is spent managing
these assets. The procedure of creating, converting, and loading multimedia files is called
the art pipeline.

Since artwork may go through several iterations, your team will be looking for ways
to make the art pipeline and hand-off process as painless as possible—for designers
as well as developers.

1. The team decides on a directory structure and creates asset subdirectories.

2. Developers start writing code in the SDK. They create the overall frame of the game,
including start and options screens, and the main game screen. Developers clean
and build the application, and make test runs straight from the SDK.

3. Graphic artists create textures and low-polygon models in the native format of their
editors. They save their work in a supported format (Blender, Ogre3D, or Wavefront;
PNG, or TGA) into assets/Textures subdirectories.

4. Graphic artists create fonts, icons, background images, and splash screens in the
native format of their editors. They save their work in a supported format (PNG,
TGA, FNT) into assets/Interfaces subdirectories.

Adding Character to Your Game

[122]

5. Audio artists record music, voices, and sounds in the native format of their editors.
They save their work in a supported intermediate format (ogg or wav) into assets/
Sounds subdirectories.

6. Developers convert all original models in assets/Textures to .j3o format.
They move the .j3o files to the corresponding assets/Models subdirectories.
They verify that all loadModel() paths point to j3o files.

7. Developers clean and rebuild the application. All team members test the executable
in the project's dist directory.

A popular best practice in development teams is file version control.
Versioning lets you track, merge, and revert project changes to code or
assets. Using a shared project repository for code and assets integrates
your artists fully into the development process, and lowers the risk
of losing team members' submissions "in the mail". You find built-in
version control tools in the SDK's Team menu.

Have a go hero – furnishing the tower defense game
Let's return to our little tower defense game. Currently, it's all boxes and spheres. That's fine
considering the stage of development we are at. Getting the game mechanics to work comes
first: the creeps storm in and the towers shoot. But they're still all cubes.

Boxes have their place
We don't want to disrespect cubes: if all you want to do is, say, test your
mouse-picking implementation, you don't need to load a 3D model. In the
development phase it's actually a good practice to start out with boxes or
spheres: they are built-in and never throw null pointer exceptions. If a method
works with a box, but not with a model, you know the model is the problem.
If a method does not even work with a box, then the method is the problem.

Make sure that your TowerDefense game is the active main project. You need towers,
a home base, and some creeps.

Let's furnish the place a bit.

1. In the SDK, open Window | AssetPackBrowser. From the AssetPackBrowser window,
install the three AssetPacks—they contain cool free models that you can use.

2. Browse through the list and note Armoury, Donjon, Bailey, Temple; Spider, Bear,
and others; various pieces of walls and palisades. Double-click to preview them.
(Remember to click the light bulb and zoom in or out if necessary.)

Chapter 4

[123]

3. Right-click the ones that you like and right-click them and choose Add to Project.

4. Use what you learned to load tower models instead of the oblong cubes.

5. Use what you learned to load a wild animal model instead of the creep cubes.

6. Use what you learned to load text that displays how many lives the player has left,
and show a (permanent) text hint which key to press to recharge the tower.

Of course you also use models that you created yourself, or from other free sources, such
as http://opengameart.org/. Apart from the flat floor and the boring sky, your game
should look much cozier already!

Summary
A good video game is more than just the code: in this chapter, we learned a lot about how
to create and integrate external artwork into our games. This includes static and animated
models, as well as icons, textures, and fonts.

Specifically, we covered meshes and looked at one way of sculpting them. You learned
how to export models from a model editor such as Blender, and how to import them into
a jMonkeyEngine application. You know the advantages of converting models to the j3o
format, of structuring your directories well. You learned how to save and load the rootNode
including all game data. You learned the basic concepts of model animation, and you know
how to load animated models and control them using triggers, the update loop, or listeners.
You understand how to display text, images, and even 3D objects in the user interface. You
also heard of several resources where you can get free models and fonts.

You see that the jMonkeyEngine SDK was not designed for hardcore Java hackers only.
The SDK helps you integrate developers and non-techie team members, such as audio
and graphic artists, more closely.

Now that you've heard a lot about models and their special "skins", let's have a closer look
at materials, and the effects you can achieve with them.

5
Creating Materials

You know how to create complex shapes from polygon meshes and animate
them. Up to now, the materials that you applied to your geometries were all
very plain looking. Where are the glows, the shininess, and all the other small
details that make a material look great? It's time to pull out all the stops and
make use of the awesome shader features of jMonkeyEngine.

You can now populate your game with characters, vehicles, and buildings, and you can load
text and icons for the graphical user interface. In this chapter you will learn:

 � Why light sources are important

 � How to texture objects

 � How to make objects transparent

 � How to make objects appear more detailed than they are

 � How to make surfaces appear rough or smooth

 � How to make an object glow

Cool screenshots and some nifty tricks are waiting for you, so let's go!

What is a material?
What we colloquially call color is actually visible light reflecting off an object. The human brain
is pretty smart in inferring an object's material, simply from the reflective properties of its
surface. You never think about it, but the reflected light is what makes the difference between
milk and chalk, skin and rubber, water and plastic, and so on! To understand the difference
between various illumination properties, let's start with the default case: unshaded materials.

Creating Materials

[126]

Time for action – unshaded materials
In the previous chapters, you used a plain, unshaded material to create a simple blue cube.
Look at the blue cube's code again. The cube's material is based on the Unshaded.j3md
material definition, and it has a Color property that is set to ColorRGBA.Blue.

Material mat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
mat.setColor("Color", ColorRGBA.Blue);

Let's see what else this material can do:

1. Make a copy of Main.java and name the class MaterialsUnshaded.
java. Remember to also refactor the first line of the main() method to
MaterialsUnshaded app = new MaterialsUnshaded();.

2. Copy the provided image assets/Interface/Monkey.png into your project's
assets/Interface/ directory.

3. Replace the blue cube code in simpleInitApp() with the following code:

Sphere sphereMesh = new Sphere(16, 16, 1);
Geometry sphereGeo = new Geometry("Unshaded textured sphere",
 sphereMesh);
sphereGeo.move(-2f, 0f, 0f);
sphereGeo.rotate(FastMath.DEG_TO_RAD * -90,
 FastMath.DEG_TO_RAD * 120, 0f);
Material sphereMat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
sphereMat.setTexture("ColorMap",
 assetManager.loadTexture("Interface/Monkey.png"));
sphereGeo.setMaterial(sphereMat);
rootNode.attachChild(sphereGeo);

Run the code sample. You should see a sphere with a monkey texture. The sphere is rotated
and moved aside a bit, simply so you can see the texture better.

What just happened?
For the blue cube, you used the setColor() setter to set the material's Color property to
the value ColorRGBA.Blue. In addition to colors, materials that are based on Unshaded.
j3md also support textures.

Chapter 5

[127]

The previous example uses the loadTexture() method of assetManager to load a
monkey logo from the assets/Interface directory into the material. The material layer
that contains the texture of an unshaded material is called ColorMap. You use the material's
setTexture() method to set its ColorMap layer:

sphereMat.setTexture("ColorMap",
 assetManager.loadTexture("Interface/Monkey.png"));

When you run the code and navigate around the sphere, you notice that the sphere has no
brighter or darker side. Even if you add a light source, an unshaded box always looks as if it
were evenly lit from all sides.

If you need to increase the contrast of a material that is based on Unshaded.j3md, you can
add a pre-computed texture layer containing static brightness values. This texture layer is
called LightMap. For a game of Blockout, for example, an unshaded LightMap'ped material
is sufficient. To see the difference, copy the included assets/Interface/Monkey_light.
png image into your assets/Interface directory, and add the following code below the
first setTexture() call. Monkey_light.png adds a static gradient to the sphere.

sphereMat.setTexture("LightMap",
 assetManager.loadTexture("Interface/Monkey_light.png"));

The advantage of materials based on Unshaded.j3md is that they are rendered fast.
You can use unshaded materials in situations where rendering speed is more important
than dynamically lit-and-shaded surfaces—for example, when visualizing molecules in a
scientific application. If your game is going for a "classic 80s' 8-bit" style, a fast, unshaded
LightMap'ped material also does the trick for you.

Common/MatDefs/Misc/Unshaded.j3md properties

Parameter Data type

Color

ColorMap

LightMap

ColorRGBA

Texture

Texture

Creating Materials

[128]

Material definitions and shaders
For comparison with the unshaded material you just saw, what does a material look like
that takes dynamic lighting into consideration?

Now, this material has a definite "smooth rock" vibe to it! You can almost touch the bumps
where individual pebbles jut out! Be aware that this sphere mesh is completely featureless!
The whole trick is that the material makes use of Phong illumination and Blinn bump mapping.
These shader techniques are named after their inventors, Bui Tuong Phong and Jim Blinn.

Internally, 3D engines use shaders when rendering your 3D graphics. Shaders are special
instructions that are executed on your system's graphic processing unit (GPU), taking
advantage of the GPU's hardware acceleration. OpenGL-based jMonkeyEngine supports
vertex and fragment shaders written in OpenGL Shading Language (GLSL):

 � Vertex shaders can modify existing shapes in your scene without requiring a
computationally more expensive mesh—jMonkeyEngine uses them to animate
water, cloth, or flags.

 � Fragment shaders (also known as pixel shaders) produce color effects
on existing materials without requiring computationally more expensive
textures —jMonkeyEngine uses them for glows, reflections, or lens flares.

http://en.wikipedia.org/wiki/Jim_Blinn

Chapter 5

[129]

These are just a few examples of what shaders do for you "backstage". Don't worry about
the details; shaders do their thing automatically as part of the rendering pipeline:

1. The main application sends mesh data to the vertex shader.

2. The vertex shader computes new vertex positions, if necessary.

3. The vertex shader passes the vertices' new screen coordinates to the
fragment shader.

4. The fragment shader computes each pixel's new color, if necessary.

5. The result is displayed on screen.

jMonkeyEngine exposes shader features to you through user-friendly material definitions,
such as Unshaded.j3md. As you have seen in previous examples, these material definitions
are a simple interface that let you set parameters on materials, such as setTexture().
Internally, jMonkeyEngine then uses these parameters to configure how the shader
should handle the material. Let's have a closer look at the material definition that
makes illumination and bump mapping possible: Lighting.j3md.

Good-bye unshaded, hello lighting!
Lighting.j3md is a Phong-illuminated material definition that makes the most of your
materials. It's probably the material definition that you will use most often.

All examples in this category show illuminated materials; this means you must add a light
source to the scene to be able to see them! Here is a code snippet that creates two useful
light sources from the com.jme3.light package, and attaches them to your rootNode.
More details about lights later.

DirectionalLight sun = new DirectionalLight();
sun.setDirection(new Vector3f(1, 0, -2));
sun.setColor(ColorRGBA.White);
rootNode.addLight(sun);

AmbientLight ambient = new AmbientLight();
ambient.setColor(ColorRGBA.White);
rootNode.addLight(ambient);

Let's look at the simplest case first: A material with plain material colors, without textures,
but with shading.

Creating Materials

[130]

Time for action – no frills, just color
First we create an illuminated sphere with a blue material, using a normal geometry with a
material based on the Lighting.j3md material definition:

1. Make a copy of Main.java and name the class MaterialColor.java. Remember
to also refactor the first line of the main() method to MaterialColor app =
new MaterialColor ();.

2. Replace the blue cube code in the simpleInitApp() method with the following:
Sphere sphereMesh = new Sphere(32,32, 1f);
Geometry sphereGeo = new Geometry("Colored lit sphere",
 sphereMesh);
Material sphereMat = new Material(assetManager,
 "Common/MatDefs/Light/Lighting.j3md");
sphereMat.setBoolean("UseMaterialColors", true);
sphereMat.setColor("Diffuse", ColorRGBA.Blue);
sphereMat.setColor("Ambient", ColorRGBA.Gray);
sphereGeo.setMaterial(sphereMat);
rootNode.attachChild(sphereGeo);

Remember to add light sources to make the illuminated material visible!

Run the sample. As opposed to our plain blue cube, this blue, illuminated sphere clearly
has a darker and a lighter side. You see that applying lit materials to geometries makes
them immediately look more three-dimensional to our eyes.

What just happened?
To colorize an illuminated geometry, you set three material color properties. First you
enable the Boolean parameter UseMaterialColors. Then you set the two material
color properties, the Diffuse and the Ambient color. Note that you use a setBoolean()
setter for the Boolean parameter, and a setColor() setter for the colors.

Common/MatDefs/Light/Lighting.j3md

Parameter Data type

UseMaterialColors

Diffuse

Ambient

Boolean

ColorRGBA

ColorRGBA

Chapter 5

[131]

The uniform base color of a geometry is called its diffuse color. The diffuse color
(together with UseMaterialColors) is the minimum property that an illuminated
material needs to be visible.

The ambient color property is optional. If you don't set it, the ambient color is a neutral
gray by default, which works well with all kinds of scenes. In scenes where one color
clearly prevails, you can set Ambient to the main color of the scene to support the overall
atmosphere—white for Antarctica, green for a jungle, red for a demon lair… You get the idea.

Time for action – oooh, shiny!
Shininess is an illumination property that gives onlookers a better idea whether the surface
is smooth or rough. The Lighting.j3md material definition not only supports plain
material colors but can also render specular highlights (what we colloquially call shininess)
on top of the material colors.

Let's make a smooth geometry:

1. Make a copy of Main.java and name the class MaterialColorShiny.
java. Remember to also refactor the first line of the main() method to
MaterialColorShiny app = new MaterialColorShiny();.

2. Replace the blue cube code in the simpleInitApp() method with the following:
Sphere sphereMesh = new Sphere(32,32, 1f);
Geometry sphere1Geo = new Geometry("rough sphere", sphereMesh);
Material sphere1Mat = new Material(assetManager,
 "Common/MatDefs/Light/Lighting.j3md");
sphere1Mat.setBoolean("UseMaterialColors",true);
sphere1Mat.setColor("Ambient", ColorRGBA.Gray);
sphere1Mat.setColor("Diffuse", ColorRGBA.Cyan);
sphere1Mat.setColor("Specular", ColorRGBA.White);
sphere1Mat.setFloat("Shininess", 8f); // [1,128]
sphere1Geo.setMaterial(sphere1Mat);
sphere1Geo.move(-2.5f, 0, 0);
rootNode.attachChild(sphere1Geo);

3. Remember to add light sources.

In the line where you set the shininess property, try different values between 1 and 128.
Rerun the code sample and note the different specular lights on the surface.

Creating Materials

[132]

The following screenshot shows difference in shininess from left to right: a rough surface
(no shininess), a plain surface (shininess 8f, specular color white), and a smooth surface
(shininess 128f, specular color white).

What just happened?
Shininess is a value between 1 and 128 that specifies how smooth or rough a surface is.
Here are some examples:

 � Glass, water, and silver have very smooth surfaces; they have tiny, clearly outlined
specular highlights. Their shininess is high (>16f).

 � Metal, plastic, stone, and polished materials are somewhere in the middle; they
have wide, blurry specular highlights. Their shininess is low (<16f).

 � Cloth, paper, wood, and snow have soft or uneven surfaces; they have no specular
highlights. These objects are not shiny.

Specular color is a material color property that you only specify for materials with a shininess
greater than zero. Specular color defines the color of the reflected highlights—it's generally
the same as the emissive color of the main light source; for example, white in a sunlit scene.

Soft, non-shiny objects don't use the specular color property; reset it to ColorRGBA.Black
to deactivate shininess.

Common/MatDefs/Light/Lighting.j3md

Parameter Data type

UseMaterialColors

Ambient

Diffuse

Specular

Shininess

Boolean

ColorRGBA

ColorRGBA

ColorRGBA

Float

Chapter 5

[133]

Note that you use a setFloat() setter to specify the shininess, and a setColor() setter
for the Specular ColorRGBA property.

Are you getting the hang of how to use setters to change material properties? Good, then
let's move on to the next level and add a texture to the equation: a geometry's texture can
be opaque, translucent, or transparent. With the right textures, you can produce a variety
of interesting effects. We'll look at some code samples.

Time for action – illuminated opaque textures
In the simplest case, a material loads one image file and slaps it onto the geometry's surface.
Let's see what that looks like.

1. Make a copy of Main.java and name the class
TexturesOpaqueTransparent.java. Remember to also refactor the first
line of the main() method to TexturesOpaqueTransparent app = new
TexturesOpaqueTransparent();.

2. Copy the provided assets/Interface/Monkey.png image to your project's
assets/Interface directory. This will be our texture.

3. Replace the blue cube code in the simpleInitApp() method with the following:
Sphere sphereMesh = new Sphere(16, 16, 1);
Geometry sphereGeo = new Geometry("lit textured sphere",
 sphereMesh);
Material sphereMat = new Material(assetManager,
 "Common/MatDefs/Light/Lighting.j3md");
sphereMat.setTexture("DiffuseMap",
 assetManager.loadTexture("Interface/Monkey.png"));
sphereGeo.setMaterial(sphereMat);
sphereGeo.move(-2f, 0f, 0f);
sphereGeo.rotate(FastMath.DEG_TO_RAD * -90,
 FastMath.DEG_TO_RAD * 120, 0f);
rootNode.attachChild(sphereGeo);

4. Again, remember to add the two light sources.

When you run the code, you see a sphere with an opaque monkey texture. It has a lit and
a shaded side.

If you want to move around the scene faster, you can speed up the camera
by adding flyCam.setMoveSpeed(50) in the simpleInitApp()
method. If you want to increase the contrast, change the background color
of the scene using viewPort.setBackgroundColor(ColorRGBA.
LightGray) in the simpleInitApp() method.

Creating Materials

[134]

What just happened?
The material property that handles the main texture layer for illuminated materials is called
DiffuseMap. The DiffuseMap property in Lighting.j3md works just like the ColorMap
property that you already know from Unshaded.j3md. DiffuseMap is the minimum
texture needed to create an illuminated textured material.

Common/MatDefs/Light/Lighting.j3md

Parameter Data type

UseMaterialColors

Diffuse

Ambient

DiffuseMap

Boolean

ColorRGBA

ColorRGBA

Texture

You can use material colors together with a texture in the same material—this will result in
an evenly tinged texture. For example, by using three different Diffuse colors, you can use
one generic grayscale wood texture for three types of wood.

Time for action – semitransparent texture
The previous material was opaque, but materials can also be semitransparent. Applying
a semitransparent material makes the geometry partially see-through and blends the
geometry's color with what is visible behind it. For this, you need an image file with an
alpha channel that has grayscale in it.

Chapter 5

[135]

Let's try to create a fancy window:

1. Copy the assets/Textures/mucha-window.png image to your project's
assets/Textures/ directory.

2. Back in TexturesOpaqueTransparent.java, add the following code in the
simpleInitApp() method:
Box windowMesh = new Box(new Vector3f(0f, 0f, 0f),
 1f, 1.4f, 0.01f);
Geometry windowGeo = new Geometry(
 "stained glass window", windowMesh);
Material windowMat = new Material(assetManager,
 "Common/MatDefs/Light/Lighting.j3md");
windowMat.setTexture("DiffuseMap",
 assetManager.loadTexture("Textures/mucha-window.png"));
windowMat.getAdditionalRenderState().
 setBlendMode(BlendMode.Alpha);
windowGeo.setMaterial(windowMat);
windowGeo.setQueueBucket(Bucket.Transparent);
windowGeo.setMaterial(windowMat);
windowGeo.move(1f,0f,0f);
rootNode.attachChild(windowGeo);

3. Keep the light sources and the other geometry.

When you run the sample and move around, you see a stained glass window next to
the opaque textured sphere. The frame of the glass window is opaque, while the stained
glass is transparent.

What just happened?
The mucha-window.png image has an alpha channel that influences its opacity.
You create images with alpha channels in an external graphic editor, such as Gimp.
Create your transparent texture with 32-bit RGBA color, and save the file in PNG format.

Transparent textures contain RGB channels (containing the color of the picture) and one
alpha channel (containing the opacity of the picture). Every white pixel in the alpha channel
makes the corresponding RGB pixels opaque (100 percent opacity). Every black pixel makes
the corresponding RGB pixel transparent (0 percent opacity). Darker or lighter grayscales in
the alpha channel make the corresponding RGB pixels more or less semitransparent.

Creating Materials

[136]

To activate transparency in a jMonkeyEngine material, you add a RenderState to it. A
RenderState specifies material rendering properties that are not controlled by shaders;
this includes blending, which is used for transparency.

windowMat.getAdditionalRenderState().
 setBlendMode(BlendMode.Alpha);

There are various BlendMode options, but BlendMode.Alpha is the one that you
typically use.

When rendering a 3D scene with transparent geometries, the rendering order is essential.
The background color or sky must be rendered behind everything. Opaque geometries must
be drawn first, and they must occlude each other depending on their depth. Transparent
geometries must be rendered on top of opaque geometries, and they must blend with
what is behind them. Finally, the GUI must be rendered on top of everything.

jMonkeyEngine uses a RenderQueue that categorizes all geometries into "buckets",
sorts each bucket by depth, and renders everything in the right order. The default queue is
Bucket.Opaque. You place all transparent geometries into Bucket.Transparent using
the following call:

windowGeo.setQueueBucket(Bucket.Transparent);

When a transparent geometry overlaps other geometries, this bucket ensures that you
can see them through the transparent parts of the transparent geometry.

What's the difference between Bucket.Transparent and Bucket.
Translucent? Objects in Bucket.Translucent (such as a fire particle
effect) are not affected by visual effects (such as drop shadows). Objects in
Bucket.Transparent (such as window geometries, foliage textures) are
affected by other rendering effects (such as shadows). You will learn more
about visual effects in later chapters.

Time for action – transparent textures
How transparent can we go? Let's try to make a part of the monkey sphere disappear:

1. Back in TexturesOpaqueTransparent.java, add the following lines before
sphereGeo.setMaterial():
sphereMat.getAdditionalRenderState().setAlphaTest(true);
sphereMat.getAdditionalRenderState().setAlphaFallOff(0.5f);
sphereGeo.setQueueBucket(Bucket.Transparent);

2. Run the code. The monkey sphere is partially gone!

Chapter 5

[137]

What just happened?
A semitransparent material (such as the stained-glass window) lets you see through,
but the geometry is still there—its color simply blends with what is behind it. For a
stained-glass window, a slab of ice, or a bottle, this is just what you want.

Fully transparent materials, however, make part of their geometry disappear. Fully
transparent textures are commonly used for foliage, flowers, or hair textures.

The background of Monkey.png has an alpha channel of zero; this is why the background
disappeared when you used it as DiffuseMap and activated the alpha test RenderState.
The float value controls how much of the geometry disappears. Start with .5f and work
your way up or down until you get the outcome you were aiming for.

You can also use your alpha texture as AlphaMap to "punch holes" into a geometry. Black
areas in the AlphaMap outline the areas that will disappear from the geometry; white areas
remain solid. Which shades of gray remain visible depends on the AlphaFallOff value that
you specified.

Common/MatDefs/Light/Lighting.j3md

Parameter Data type

DiffuseMap

AlphaMap

geo.setQueueBucket()

Texture

Texture

Bucket.Sky, Bucket.Opaque,

Bucket.Transparent,

Bucket.Gui, Bucket.Translucent

Material RenderState Data type

getAdditionalRenderState().setAlphaTest();

getAdditionalRenderState().
setAlphaFallOff();

Boolean

Float [0f, 1f]

getAdditionalRenderState().setBlendMode(); BlendMode.
Alpha

Creating Materials

[138]

Pop quiz – transparent versus opaque
Q1. You assign geometries to render buckets. In what order does jMonkeyEngine render the
buckets so that they get drawn on top of one another correctly?

1. Bucket.Sky—Bucket.Opaque—Bucket.Transparent—Bucket.Gui

2. Bucket.Gui—Bucket.Opaque—Bucket.Transparent—Bucket.Sky

3. Bucket.Sky—Bucket.Transparent—Bucket.Opaque—Bucket.Gui

4. Bucket.Gui—Bucket.Transparent—Bucket.Opaque—Bucket.Sky

Multimapping
Okay, the material colors, shininess, and textures are nice, but these materials still don't look
like the shiny pebbles that you saw in the beginning of the chapter. How do you make your
materials more life-like? Time to learn about multimapping!

The more layers of information the 3D artists provide additionally to the
basic texture, the higher the degree of detail and realism they can achieve
in a rendered geometry. Note, however, that the more layers you use, the
slower the model renders. So, use this feature wisely.

In our previous examples, we used only a DiffuseMap texture, and a few other properties.
Modern 3D graphics can use several layers of information for one material. Each layer
contains one image file. This layering method is referred to as multimapping.

Common/MatDefs/Light/Lighting.j3md

Parameter Data type

DiffuseMap

NormalMap

ParallaxMap

SpecularMap

Shininess

UseMaterialColors

Diffuse

Ambient

Specular

Texture

Texture

Texture

Texture

Float

Boolean

ColorRGBA

ColorRGBA

ColorRGBA

Chapter 5

[139]

You already know shininess, and that the DiffuseMap layer adds a texture to illuminated
materials. Additionally, Lighting.j3md supports SpecularMaps for light reflection
effects, and several kinds of bump maps (including ParallaxMap and NormalMap)
to add extra detail to a surface. We'll look at each effect.

Time for action – meet the hover tank
The provided assets directory contains the Models/HoverTank/Tank.j3o model.

1. Copy Tank.j3o and its four textures into a new assets/Models/HoverTank/
directory in your project.

2. Make a copy of Main.java and name the class HoverTank.java. Remember
to also refactor the first line of the main() method to HoverTank app = new
HoverTank();.

3. Replace the blue cube code in the simpleInitApp() method with the following:

Node tank = (Node) assetManager.loadModel(
 "Models/HoverTank/Tank.j3o");
Material mat = new Material(
 assetManager, "Common/MatDefs/Light/Lighting.j3md");
TextureKey tankDiffuse = new TextureKey(
 "Models/HoverTank/tank_diffuse.jpg", false);
mat.setTexture("DiffuseMap",
 assetManager.loadTexture(tankDiffuse));
tank.setMaterial(mat);
rootNode.attachChild(tank);

Run the code. You should see a textured sci-fi vehicle with a monkey logo.

What just happened?
Creating a texture for a cube is easy, but what about this nifty sci-fi vehicle? As explained
in the previous chapter, the textures for more complex objects are designed just like sewing
patterns: one UV texture contains the outline of the front, back, and side of the object, all
pieces next to one another.

Creating Materials

[140]

The following screenshot shows the hover tank model and its DiffuseMap texture
(model by Rémy Bouquet):

The UV textures for this model were exported from the model editor, as described in the
previous chapter. You load the UV texture into the DiffuseMap layer like any other texture,
using mat.setTexture (DiffuseMap, assetManager.loadTexture (tankDiffuse));

One thing that is new here is that you created a com.jme3.asset.TextureKey object
for the texture:

TextureKey tankDiffuse = new TextureKey(
 "Models/HoverTank/tank_diffuse.jpg", false);

Chapter 5

[141]

Having access to the texture objects lets you flip the texture by setting a Boolean parameter
in the TextureKey constructor to false. This is sometimes necessary because editors
export files with different orientations.

Time for action – let the hover tank be groovy
Currently, the surface of the hover tank looks a bit like a cheap toy: the grooves in
the material look painted on, and the material looks more like plastic than metal.
One thing you want to avoid is adding extra polygons to the mesh just to make the
grooves three-dimensional.

Let's try a more professional solution and add a so-called normal map:

1. Make sure you have the Models/HoverTank/tank_normals.png texture in
your assets directory.

2. This line generates the tangent data that describes your model's surface. Add it
before the setMaterial() line in your HoverTank.java's simpleInit()
method:
TangentBinormalGenerator.generate(tank);

3. Load the normal map into the material. Again, add these lines before the
setMaterial() line:
TextureKey tankNormal = new TextureKey(
 "Models/HoverTank/tank_normals.png", false);
mat.setTexture("NormalMap",
 assetManager.loadTexture(tankNormal));

4. Run the code sample.

Your hover tank is looking better and better. In addition to its texture, the grooves now
appear to be carved into the surface, while others seem to jut out into the third dimension.
And all that without having to change the mesh!

Creating Materials

[142]

The following screenshot shows the hover tank with added grooves and embossed
surface details; the NormalMap visualizes the degree of displacement as colors
(model by Rémy Bouquet):

What just happened?
Bump maps are used to add depth and surface details that would be too hard (or simply
too inefficient) to sculpt in a mesh editor. The category of bump map texture includes
height maps, normal maps, and parallax maps.

You use normal maps to simulate fine cracks in walls, a chipped rusty surface, natural skin
texture, or a soft canvas weave—without actually changing the mesh. A typical normal map
looks like a bluish false-color version of the DiffuseMap. Each color value encodes a surface
normal vector of the desired slope at this point, hence the name normal map. The shifted
surface normals are passed on to the shader, which renders the surface as if it were really as
bumpy as the fake slope data pretends. It's hard to draw normal maps by hand. Professional
3D artists calculate them off high-polygon versions of 3D models, and some mesh editors
may offer to compute fake normal maps from a diffuse or height map.

Chapter 5

[143]

If you added a normal map and see no effect, your model is missing tangent
data that describes its shape mathematically. You pre-calculate tangent data
by calling TangentBinormalGenerator.generate(model) on
your geometry.

In contrast, height maps are used to describe height differences, such as hills and valleys
of a terrain. The grayscales in the height-map image look similar to a topographic map,
and you can draw them by hand in a graphic editor. You will learn more about height
maps in Chapter 8, Creating Landscapes.

The parallax map technique (also called virtual displacement) is an enhancement of the
bump mapping technique. You use a model editor to generate parallax maps of height maps.
Parallax maps look best when used for medium-scale displacements, such as deep cracks or
gaps in walls or floors.

Time for action – give your hover tank a shine
Next, let's make the surface look more metallic and less plastic. Similar to the Specular
color for plainly colored shiny materials, multimapped materials have a SpecularMap
layer that defines varying degrees of shininess of the surface.

Using a graphic editor, you can create a specular map from an existing diffuse texture
as follows:

1. Copy the DiffuseMap tank_diffuse.jpg image as a template and save
it as tank_specular.jpg.

2. Desaturate the image (decrease contrast and brightness) so the whole map is
evenly medium gray.

3. Paint white and light gray over areas of the hover tank that you want to be
smooth and shiny.

4. Paint black and dark gray over dull, rough, worn-out areas of the hover tank.

The resulting SpecularMap typically looks similar to a grayscale version of the color map.
A working example is included as assets/Models/HoverTank/tank_specular.jpg.

Let's apply what you learned about texture mapping in HoverTank.java. Add the following
lines to the existing code sample:

TextureKey tankSpecular = new TextureKey(
 "Models/HoverTank/tank_specular.jpg", false);
mat.setTexture("SpecularMap",
 assetManager.loadTexture(tankSpecular));

Creating Materials

[144]

mat.setBoolean("UseMaterialColors", true);
mat.setColor("Ambient", ColorRGBA.Gray);
mat.setColor("Diffuse", ColorRGBA.White);
mat.setColor("Specular", ColorRGBA.White);
mat.setFloat("Shininess", 100f);

Run the sample. Now your hover tank is not only textured and bumpy but also smooth
and shiny on top, and rough around the edges at the bottom.

The following screenshot shows a shiny hover tank and its specular map that defines
smoother and rougher areas (model by Rémy Bouquet):

Chapter 5

[145]

What just happened?
Previously, you learned how to use the specular material color together with the shininess
property to make a colored surface shiny. Using only material colors, the surface is either
all smooth, or all rough. In reality, however, an object can have rough and smooth spots.
The specular map further improves this kind of realism for an object's surface because it
lets you add extra information about where exactly a lit material is smooth or rough.

Time for action – make your hover tank glow
Let's add one last cool effect. We want the jet engines and the energy grid on the bottom
of the tank to shine with an electric glow:

1. Make sure you have the Models/HoverTank/tank_glow_map.jpg texture in
Models/HoverTank/ in your assets directory.

2. Import the com.jme3.post package and add the following code snippet to your
simpleInitApp() method:
FilterPostProcessor fpp = new FilterPostProcessor(assetManager);
viewPort.addProcessor(fpp);
BloomFilter bloom =
 new BloomFilter(BloomFilter.GlowMode.SceneAndObjects);
fpp.addFilter(bloom);

3. The following lines load the glow map, and specify the glow color for the model.
Add them before the setMaterial() line:
TextureKey tankGlow = new TextureKey(
 "Models/HoverTank/tank_glow_map.jpg", false);
mat.setTexture("GlowMap",
 assetManager.loadTexture(tankGlow));
mat.setColor("GlowColor", ColorRGBA.White);

4. Run the sample.

You are now a proud owner of the ultimate textured, shiny, bumpy, glowing hover tank.
What else could one wish for?

Creating Materials

[146]

The following screenshot shows the hover tank's GlowMap that contains white and light gray
pixels for all areas that should glow (model by Rémy Bouquet):

What just happened?
You can add visual effects, such as glows, to the scene after it is rendered. jMonkeyEngine
handles post-processing glow effects using the FilterPostProcessor and BloomFilter
classes. You will learn more about post-processing in Chapter 7, Adding Spark to Your Game.
For now, all you need to know is that your SimpleApplication class provides you with a
viewPort object that manages additional effects. To specify which effect you want to activate,
you create a BloomFilter object and add it to the FilterPostProcessor object:

FilterPostProcessor fpp = new FilterPostProcessor(assetManager);
viewPort.addProcessor(fpp);
BloomFilter bloom = new BloomFilter(BloomFilter.GlowMode.Objects);
fpp.addFilter(bloom);

Chapter 5

[147]

The glow color (also called emissive color) is the color of light emitted by a fluorescent
object. Only glowing materials (lamps, lights, the moon, blinking controls, cat eyes, and
so on) have a glow color. Normal objects (trees, houses, persons) typically do not use this
property. You can create a GlowMap texture layer that specifies which areas of your object
should glow, as we did with the hover tank:

TextureKey tankGlow = new TextureKey(
 "Models/HoverTank/tank_glow_map.jpg", false);
mat.setTexture("GlowMap",
 assetManager.loadTexture(tankGlow));
mat.setColor("GlowColor", ColorRGBA.White);

The following screenshot shows (from left to right) a non-glowing sphere, a sphere with
a checkered GlowMap, and a sphere with a random noise GlowMap:

You can easily create a GlowMap from a copy of the object's DiffuseMap. Paint everything
black that should not glow. Then you set white, gray, or colored highlights that define the
glowing areas. The glow color is often white, but you can create special glow effects by
using colors.

Common/MatDefs/Light/Lighting.j3md

Parameter Data type

GlowMap

GlowColor

Texture

ColorRGBA

Creating Materials

[148]

Time for action – deep-freeze your materials
When you are working with multimapped materials, you base them, for example, on
the Lighting.j3md material definition. Material definitions come bundled with the
jMonkeyEngine library. The above examples taught you how to use a series of setters to
specify material properties in Java. This is typically how you start when you create a new,
one-off material.

Look at your hover tank code again. It takes 10 lines of Java code to configure this material,
plus four lines for TextureKeys! If you ever need the same material with the same settings
for other models, it would be handy to create and configure your custom materials once, and
then load them simply with one setMaterial(mat) line from a file.

Return to the SDK; now, let's learn how to store material settings in a material file:

1. Right-click on the assets/Material directory and choose New…Other. Then go to
Materials | Empty Material File. Click on Next.

2. Name the new file tank.j3m and save it to your project's assets/Materials/
folder.

3. The file opens in the Material Editor. Choose Lighting.j3md as a material definition.
Recreate your material settings by assigning textures (DiffuseMap, NormalMap,
SpecularMap, GlowMap) and colors (Specular, Diffuse, Ambient, Glow) as before.
Enable the UseMaterialColors checkbox and enter the Shininess value. Press the
Return key in the last input field to save the file.

4. Loading the material from tank.j3m now only takes one line that replaces over a
dozen lines of material creation, material setters, and TextureKeys:

Material mat = assetManager.loadMaterial
 ("Materials/tank.j3m");

Run the code sample and confirm that the outcome is the same.

What just happened?
Return to the SDK and look at tank.j3m in the Material Editor again. Click on Source.
You see that tank.j3m has the following content:

Material my hovertank material : Common/MatDefs/Light/Lighting.j3md {
 MaterialParameters {
 SpecularMap : Models/HoverTank/tank_specular.jpg
 NormalMap : Models/HoverTank/tank_normals.png
 DiffuseMap : Models/HoverTank/tank_diffuse.jpg

Chapter 5

[149]

 GlowMap : Models/HoverTank/tank_glow_map.jpg
 UseMaterialColors : true
 Ambient : 0.5 0.5 0.5 1.0
 Diffuse : 1.0 1.0 1.0 1.0
 Specular : 1.0 1.0 1.0 1.0
 GlowColor: 1.0 1.0 1.0 1.0
 Shininess : 100
 }
}

Note that the first word, Material, is a keyword and has to stay as it is. The words my
hovertank material are a description that you can choose freely. Go through the lines and
note how they map to the settings—the Java code and the file encode the same information.

The SDK's Material Editor makes it easy to create and preview a material file. On the other
hand, the syntax is human-readable and you are free to write a .j3m file by hand in any
text editor.

After you load the material from a file, you can still change individual properties by
overriding them with Java setters. For example, to temporarily deactivate shininess,
change the following lines:

Material mat = assetManager.loadMaterial("Materials/tank.j3m");
mat.setColor("Specular",ColorRGBA.Black);
tank.setMaterial(mat);

Loading a custom material in a .j3m file is not only faster but also gives you full control
over all supported features of multi-textured materials, independent of your model editor.

Pop quiz – multimapping
Q1. Combine the first part and the last part of the sentences to form true statements
about multimapping.

a) DiffuseMap…, b) NormalMap…, c) SpecularMap…, d) GlowMap…, e) AlphaMap…

1. … requires a BloomFilter post-processor and a color.

2. … uses a texture channel to make parts of the geometry transparent.

3. … is the minimum texture and can be used on its own.

4. … makes your model look bumpy without adding polygons to the mesh.

5. … lets you give your models a smooth shine.

Creating Materials

[150]

Different types of textures
jMonkeyEngine supports various kinds of textures:

 � UV Mapped textures are professionally created textures that look like sewing
patterns. Take your time to learn how to create them in your model editor;
you will most likely use them in your games.

 � MIPmaps (MIP stands for "multum in parvo," meaning "many in one") provide
several different levels of detail (LODs) for one texture in one file. Depending on
how close (or far) the camera is, the engine automatically renders a more (or
less) detailed texture for the object; this improves performance. jMonkeyEngine
generates MIPmaps internally for all textures when a texture is sent to the GPU.
This optimization happens "behind the scenes"—you don't have to do anything.

 � Seamless Tiled textures are very simple and are commonly used for simple objects
such as walls and floors. When texturing a wide area such as a wall, you don't load
one huge picture of a wall. It's more efficient to repeat one small picture of some
bricks and fill the area. You have to design the image to be seamlessly tileable:
the right edge must match the left edge, and the top edge must match the bottom
edge. Tiling easily creates the illusion of a huge texture (unfortunately, the cheap
trick becomes painfully obvious as soon as the surface is viewed from a distance).
In jMonkeyEngine you activate tiling in a particular texture layer as follows:
floorMat.getTextureParam("DiffuseMap").
 getTextureValue().setWrap(WrapMode.Repeat);

You can get different WrapMode options from the com.jme3.texture package
that let you repeat, mirror, or clamp your tiled texture to achieve different tilings.

 � Procedural textures are generated by repeating one small image with added
pseudo-random gradient variations called Perlin noise. Procedural textures look
significantly more natural than seamless tiled textures; they appear less distorted
on spheres, and on wide meshes their repetitiveness is much less noticeable.
Procedural textures are ideal for "natural" textures such as meadows, mountains,
rusty warehouses, zombie brains, and irregular piles of stones.

The jMonkeyEngine SDK supports the optional NeoTextureEditor plugin for creating
and loading procedural textures. You can find more details and code samples on the
jMonkeyEngine wiki.

 � Texture Splatting is a technique that makes it possible to use several multimapped
textures in one texture. A typical usage example is one terrain texture that includes
grass, rock, and road textures "painted" on it. You use the AlphaMap layers as a
mask to tell the engine which of the textures should be visible where on the terrain.
You will learn all about this technique in Chapter 8, Creating Landscapes.

Chapter 5

[151]

Time for action – scaling and tiling textures
Since it's used quite often, let's create a material with a seamless tiled texture, and use it as
the floor under the hover tank:

1. Go back to HoverTank.java.

2. Copy the provided assets/Textures/BrickWall/ directory to your assets/
Textures directory.

3. Add the following code to the simpleInitApp() method:

Box floorMesh = new Box(new Vector3f(-20,-2,-20),
 new Vector3f(20,-3,20));
floorMesh.scaleTextureCoordinates(new Vector2f(8,8));
Geometry floorGeo = new Geometry("floor", floorMesh);
Material floorMat = new Material(assetManager,
"Common/MatDefs/Light/Lighting.j3md");
floorMat.setTexture("DiffuseMap", assetManager.loadTexture(
 "Textures/BrickWall/BrickWall_diffuse.jpg"));
floorMat.setTexture("NormalMap", assetManager.loadTexture(
 "Textures/BrickWall/BrickWall_normal.jpg"));
floorMat.getTextureParam("NormalMap").getTextureValue().
 setWrap(WrapMode.Repeat);
floorMat.getTextureParam("DiffuseMap").getTextureValue().
 setWrap(WrapMode.Repeat);
floorGeo.setMaterial(floorMat);
rootNode.attachChild(floorGeo);

Run the code sample. You should see a repeatedly tiled floor under the hover tank.

What just happened?
The correct tiling of a seamless texture depends on the image you choose. If your pebbles
are as huge as rocks, and your blades of grass as long as branches, then your texture scale is
too small. If your impressive hangar has a cute checkered pattern, or your stacked logs are
textured like a pile of pencils, your texture scale is too big. Note that texture coordinates are
not an issue in your texture, but in your mesh!

floorMesh.scaleTextureCoordinates(new Vector2f(8,8));

If you just set the texture, and scale its texture coordinates, the outcome is usually quite
ugly: the texture is rendered once in one corner of the geometry, and the rest of the
geometry is filled with blurry, distorted pixels. If you see this happen, you forgot to set
the WrapMode for the tiled texture, for each texture layer individually.

floorMat.getTextureParam("NormalMap").getTextureValue().
 setWrap(WrapMode.Repeat);

Creating Materials

[152]

floorMat.getTextureParam("DiffuseMap").getTextureValue().
 setWrap(WrapMode.Repeat);

Keep HoverTank.java with its new floor open—it's a good code sample to test different
light sources in.

Time for action – lights on!
You can use any combination of light sources from the com.jme3.light package: ambient
lights, directional lights, point lights, and spot lights. Remove the lights from HoverTank.
java file's simpleInit() method, and add them back one by one to see the difference.

1. Add an ambient light. Try multiplying the color by different scalars, larger or smaller
than 1.0f, to increase or decrease its brightness. Note how it illuminates the whole
scene evenly. Try setting the color to something other than White.
AmbientLight ambient = new AmbientLight();
ambient.setColor(ColorRGBA.White.mult(5f));
rootNode.addLight(ambient);

2. Remove the ambient light and add a point light. Move it to different locations to
see the difference. Try different colors and multiply them by a scalar to see the
difference in brightness.
PointLight lamp = new PointLight();
lamp.setPosition(Vector3f.ZERO);
lamp.setColor(ColorRGBA.Yellow);
rootNode.addLight(lamp);

3. Remove the point light and add a directional light. Try different directions, colors,
and brightness.
DirectionalLight sun = new DirectionalLight();
sun.setDirection(new Vector3f(1,0,-2));
sun.setColor(ColorRGBA.White);
rootNode.addLight(sun);

4. Remove the directional light. Add a SpotLight as a private field and initialize it in
simpleInitApp(). Add two update loop calls that keep the SpotLight pointed
from the camera location toward the camera direction. Look around in the scene
and note the cone of light.

private SpotLight spot;
public void simpleInitApp() {
 ...
 spot = new SpotLight();
 spot.setSpotRange(100);

Chapter 5

[153]

 spot.setSpotOuterAngle(20 * FastMath.DEG_TO_RAD);
 spot.setSpotInnerAngle(15 * FastMath.DEG_TO_RAD);
 rootNode.addLight(spot);
}
public void simpleUpdate(float tpf) {
 spot.setDirection(cam.getDirection());
 spot.setPosition(cam.getLocation());
}

You see that the four light types illuminate the scene in very different ways.

Have a light?
In the jMonkeyEngine SDK, you can easily add a light using the Palette from
the Windows menu. Drag-and-drop the code snippet from the palette right
into your Java code. When you see a light bulb icon in the SDK's editor, click on
it to make the SDK add the correct import statements and you're done. If you
are editing a .j3o scene in the Scene Composer, click on the scene node
in the Scene Explorer window to add a light source.

What just happened?
As you have seen in this chapter, all lit materials require a light source to be visible. A light is
added to a parent node from where it illuminates all children. In the simplest case, you add
a light source directly to the rootNode. But you can also create nice effects by adding extra
lights to individual nodes only. Be aware that using too many light sources has an impact on
performance.

The following lights are at your disposal:

 � An ambient light is the simplest light source that makes materials visible. The only
property this light has is its color. This light evenly illuminates the whole scene and
does not cause any shading. Typically, we add an ambient light to the rootNode to
influence the scene's "temperature" (color) and overall brightness.

 � A point light is one of the most commonly used individual light sources in a scene.
In addition to color, it has a location from which it radiates in all directions, before
it fades out. We typically attach it to candles, lamps, camp fires, and so on.

 � A directional light lets you specify a color and a direction. Use it to simulate outdoor
sunlight. You can add code to the update loop that modifies the color (brightness
and temperature) and incidence angle to simulate different times of the day. Of
course, astronomically speaking, the Sun is a gigantic point light. But the few beams
that reach Earth are practically parallel, and reach us from one direction only,
so a directional light is the best fit for sunlight in a video game.

Creating Materials

[154]

 � A spot light is the most complex light source. From its location, it casts a light cone
in a given direction. You also specify the range and width of the light cone. You can
use it for car headlights, helmet-mounted or hand-held flashlights, or to highlight a
scene element, such as an altar, a treasure, or an entrance.

All lights have a color. When you give the light a cooler (say, ColorRGBA.Cyan) or warmer
(say, ColorRGBA.Orange) color, this influences the atmosphere of its surroundings. The
default light color is white (ColorRGBA.White). If a model looked good in the mesh editor,
but appears dreary or discolored when loaded into your game, shine a white light source on
it to see the model's true colors:

light.setColor(ColorRGBA.White);

You can also control the brightness of a light source by setting its color: dark
colors result in a gloomy light; 100 percent colors (such as ColorRGBA.
White, and other constants) result in a bright, well-lit scene. If you ever
need to simulate blindingly bright lights, multiply the color constant by a
scalar, using the method ColorRGBA.White.mult(5).

Against human intuition and experience, light and shadow are two separate effects in 3D
graphics. You will learn how to add shadows in Chapter 7, Adding Spark to Your Game.

Have a go hero
Return to the Tower Defense game that you started building. In the previous chapter, you
added .j3o objects from AssetPackBrowser to your project; you loaded these models
from your assets/Models directory into your Tower Defense game's scene. Let's have a
closer look at these models:

1. Open your Tower Defense game in the SDK's Projects window. Open the Project
Assets node.

2. Note that using the AssetPackBrowser window has added a new directory,
assets/3d_objects. It contains the UV textures for the .j3o models that
you added from the AssetPackBrowser window.

Do not rename or move this directory, or its contents; these paths are hardcoded
into the imported .j3o models!

3. Browse the textures. Note that each texture directory contains three PNG
files: D.png is the DiffuseMap, N.png is the NormalMap, and S.png is the
SpecularMap.

Chapter 5

[155]

4. Open those images in a graphic editor and "improve" them: for example, add
"your" coat of arms to the models (in the DiffuseMaps) and change the emblem's
smoothness (in the SpecularMaps). Paint the NormalMap under the emblem in a
neutral blue to flatten it (editing NormalMaps by hand is untypical; we just do it for
the exercise's sake).

5. Do a web search for free seamless textures, and give the floor geometry an
interesting repeating material.

Add some interesting light effects to your scene by performing the following steps:

1. Add an AmbientLight that emphasizes the gloomy atmosphere of your game.

2. Add a low DirectionalLight to increase contrast. Place it, for example,
behind the camera, shining toward the player base.

3. Add some PointLights inside buildings and towers so they shine through
the windows.

4. Add a searchlight on top of the player base (at the origin) that shines along the
Z-axis; write update loop code that makes the SpotLight swivel back and forth
automatically.

5. Add a BloomFilter and specify a spooky GlowColor for the creeps. Make a
copy of the creeps' DiffuseMap and name it G.png. Use getMaterial().
setTexture() on these geometries (cast Spatial to Geometry, if necessary) to
add G.png as GlowMap. Open G.png in a graphic editor, darken and desaturate it,
and paint on it with a bright color to make your creeps glow in the dark ominously.

Those are just examples; have fun and experiment!

Summary
In this chapter, you have learned how to create custom materials, and use them to make
geometries look more spiffy. You're on your way to become a 3D graphics expert! Now that
you know essential concepts such as shaders and multimapping, it will be easier for you to
use a search engine to find good textures, or to ask the right questions on forums.

Specifically, we covered how to work with opaque and transparent materials, how to make
parts of geometries invisible, how to use multimapped textures to make materials reflect
light in a more natural way, and how to "deep-freeze" materials that you use repeatedly.

With the 3D graphic skills that you have learned by now, your scenes will look pretty
awesome already! Your walls are made up of the bumpiest bricks, you can render differently
tinged wood types, and your rubber duckies have just the right amount of specularity. But do
they also act their part? Read on to make the brick wall solid, to push around your wooden
boxes, and to teach your rubber ducky how to bounce like a boss.

6
Having Fun with Physics

Thanks to built-in game physics, jMonkeyEngine can treat geometries as
solid matter and simulate the effects of gravity and other physical forces. In
the simplest case, you use game physics to make walls and floors solid—this
is called collision detection. Game physics also simulate friction, impulse,
bouncing, skidding, and many more fun and exciting physical interactions.

In bowling, marble run, or billiard games, little balls roll, spin, and bounce off solid obstacles;
in physics puzzles, the player interacts with pendulums, wheels, chains, or rope bridges. In car
racing games, vehicles with suspensions and tire friction speed over uneven terrain and jump
over ramps; in space racing games, you accelerate space vessels in a zero-gravity, zero-friction
environment. In ragdoll games, you push dummies down the stairs; in destruction games, you
crash cars and blow stuff up. These are all examples of physics simulation.

In this chapter we will:

 � Walk through a solid town

 � Shoot cannon balls at a brick wall

 � Ride an elevator

 � Learn some tricks from professional game developers

You already know how to position geometries using setLocalTranslation(). You may
have noticed that you can place geometries in mid-air, they can overlap, or move through
floors and walls. In this chapter, you will learn how to make scenes more physically realistic.

Having Fun with Physics

[158]

Internally, the jMonkeyEngine uses jBullet, a Java port of the open source
Bullet Physics Engine. This is why you find the physics classes in a package
named com.jme3.bullet.

Solid floors and walls
Many genres of video game use the first-person perspective. The camera shows the
scene from the player's point of view running through the level, avoiding physical obstacles,
chasing enemies, jumping from platform to platform, and so on. You already know how to
load static models into the scene—now, let's make a first-person player walk among solid
walls and floors.

Time for action – fortify the town
We start with a simple game that loads a model of a town:

1. Make a copy of Main.java and name the class PhysicsTown.java. Remember
to also refactor the first line of the main() method to the following:
PhysicsTown app = new PhysicsTown();

2. Download a sample town model in the Ogre DotScene format from http://
jmonkeyengine.googlecode.com/svn/trunk/engine/town.zip. Save it
directly into your project directory (not into assets/).

3. Register a com.jme3.asset.plugins.ZipLocator for town.zip to the
assetManager. Now you can use the assetManager to load the model's main.
scene into the sceneNode class field. Since the model is quite small, scale it a bit
bigger. As always, you attach the loaded model to the rootNode. Remember to add
light sources to the scene.
private Node sceneNode;
public void simpleInitApp() {
 assetManager.registerLocator("town.zip", ZipLocator.class);
 sceneNode = (Node)assetManager.loadModel("main.scene");
 sceneNode.scale(1.5f);
 rootNode.attachChild(sceneNode);

 AmbientLight ambient = new AmbientLight();
 rootNode.addLight(ambient);
 DirectionalLight sun = new DirectionalLight();
 sun.setDirection(new Vector3f(1.4f, -1.4f, -1.4f));
 rootNode.addLight(sun);
}

Chapter 6

[159]

4. Optionally, make the sky blue by adding the following line to the simpleInitApp()
method:

viewPort.setBackgroundColor(ColorRGBA.Cyan);

When you run the SimpleApplication now, you should see the model of a town. You can
move around using the WASD keys as usual—currently, you can still fly through obstacles.

To load a zipped asset right from the project directory, we registered a com.
jme3.asset.plugins.ZipLocator to the assetManager as follows:

assetManager.registerLocator("town.zip", ZipLocator.
class);

A registerLocator() path always starts inside your project directory.
Remember, however, that the default build script does not bundle any
files in external formats into the final executable. Your users will get an
AssetNotFoundException for any Ogre3D model that you did not
convert to j3o. If you want to offer users a way to load zipped levels in external
formats from the project directory, you must customize build.xml yourself
to copy these external assets to the dist/ directory after the JAR was built.

After loading the scene, you want to make the walls and floors solid. After that, you want
to be able to walk through the town from a first-person perspective.

1. Start by activating the physics simulation. This is always the same: create a com.
jme3.bullet.BulletAppState object in the beginning of simpleInitApp()
and attach it to the AppStateManager.
private BulletAppState bulletAppState;
public void simpleInitApp() {
 bulletAppState = new BulletAppState();
 stateManager.attach(bulletAppState);
 ...
}

2. After attaching the sceneNode, you add a so-called RigidBodyControl to it.
Because you want sceneNode to be static (not moving), you specify a mass of
0f as an argument of the RigidBodyControl constructor.

private RigidBodyControl scenePhy;
…
public void simpleInitApp() {
 …
 scenePhy = new RigidBodyControl(0f);
 sceneNode.addControl(scenePhy);
}

Having Fun with Physics

[160]

3. Add the scenePhy control to your model sceneNode. Register the sceneNode
to the physics AppState to activate it.
 sceneNode.addControl(scenePhy);
 bulletAppState.getPhysicsSpace().add(sceneNode);

The physical scene is ready; you're halfway there! Let's look at how we made this scene
a solid object.

What just happened?
jMonkeyEngine provides the built-in BulletAppState as part of its jBullet physics
integration. Do you remember how you learned to implement game behavior in
Chapter 2, Creating Your First 3D Scene? You used application states and custom
controls to specify how objects should respond.

private BulletAppState bulletAppState;
public void simpleInitApp() {
 bulletAppState = new BulletAppState();
 stateManager.attach(bulletAppState);
}

The physics simulation is a typical example where application states and controls interact
to define complex global behavior. The BulletAppState manages the physics space of your
game. You know that a geometry defines the visible properties of an object and is managed
by the rootNode. Think of the physics space as a root node that additionally manages
physical object properties.

RigidBodyControl thingPhy = new RigidBodyControl(0f);
bulletAppState.getPhysicsSpace().add(thingPhy);
thingGeo.addControl(thingPhy);
rootNode.attachChild(thingGeo);

The following code snippet shows how you detach physical objects, including their
geometries, from the scene:

bulletAppState.getPhysicsSpace().remove(thingPhy);
thingGeo.removeFromParent();

In the physics space, you also specify global parameters, such as default gravity and
simulation accuracy. You can override the global default by setting those properties directly
on individual physical objects after adding them. Specify the defaults before adding physical
objects to the physics space—changing the defaults later has no effect on physical objects
that are already in the physics space!

Chapter 6

[161]

Gravity is typically a vector pointing into the downward direction, along the negative y axis.
For zero-gravity environments, set this to new Vector3f(0,0,0). For an Earth-like gravity,
set this property to -9.81 meters per second squared.

bulletAppState.getPhysicsSpace().
 setGravity(new Vector3f(0, -9.81f, 0));

The standard simulation accuracy is 1.0f/60f= 60 fps = 0.016f. You can decrease the
simulation accuracy if your game type can afford to trade lower accuracy for higher
performance; or increase accuracy if you have enough processing power.

bulletAppState.getPhysicsSpace().setAccuracy(0.016f); // default
bulletAppState.getPhysicsSpace().setAccuracy(0.005f); // low accuracy

If you have situations such as a space ship passing close to a black hole in Zero-G, you can
also set different gravity vectors for individual objects. The physical properties of a spatial are
stored in its physics control. The com.jme3.bullet.control package offers you various
specialized com.jme3.bullet.control.PhysicsControls. Here are the most common
physics controls:

Physics control Usage Examples
RigidBodyControl Use this for solid objects in the

scene. Apply it to objects that are
freely affected by physical forces,
be it by static collision or tipping
over and falling down. This is the
most commonly used physics
control. It is used with dynamic as
well as static objects.

Floors, walls, fences, immobile
furniture, obstacles, and so on
(all static).

Rolling and pushable objects
such as crates, bricks, balls,
flying projectiles, and so on
(all dynamic).

BetterCharacter
Control

Use this for characters that
walk on a solid surface and
bump into solid obstacles. This
supports special jump() and
setWalkDirection()
methods, and jump and gravity
properties.

Walking player avatars, animals,
NPCs, and so on.

GhostControl Use this physics control to
detect and respond to overlap
with physical objects. Attach
this non-solid collision shape
to a RigidBodyControl or
BetterCharacter
Control spatial and use
its getOverlapping
Objects() method.

Motion sensors, aggro radius,
sonar, and so on.

Having Fun with Physics

[162]

Time for action – first-person navigation
One of the reasons why you extend SimpleApplication is that basic camera navigation
(WASD keys and MouseLook) is already preconfigured. But when you run the PhysicsTown
sample, you notice that the first-person camera keeps running straight through walls. Have
we not just added a RigidBodyControl to the model to make the town solid?

We have, but the camera is not a solid object yet. The default navigation of
SimpleApplication uses the non-physical setLocalTranslation() method to move
the camera. To make this sample work, we first need to define a so-called collision shape
for the invisible player, since the camera object has no mesh. We also update the keyboard
navigation to use physics-aware methods.

Return to PhysicsTown.java and perform the following steps:

1. In the simpleInitApp() method, create a playerNode. In this demo, our player
is an invisible first-person character, but you could also attach a model to this node.
private Node playerNode;
public void simpleInitApp() {
 …
 playerNode = new Node("the player");
 playerNode.setLocalTranslation(new Vector3f(0, 6, 0));
 rootNode.attachChild(playerNode);

2. Create a playerControl. The BetterCharacterControl constructor expects
three floats: the character's collision shape (radius, here 1.5f, and height, here 4f),
and weight (here 30f). You also specify the character's jump force and gravity.
private BetterCharacterControl playerControl;
public void simpleInitApp() {
 …
 playerControl = new BetterCharacterControl(1.5f, 4, 30f);
 playerControl.setJumpForce(new Vector3f(0, 300, 0));
 playerControl.setGravity(new Vector3f(0, -10, 0));

3. Add the playerControl to the playerNode, and register the playerControl
to the PhysicsSpace.

 playerNode.addControl(playerControl);
 bulletAppState.getPhysicsSpace().add(playerControl);

Chapter 6

[163]

Your physical player is ready, but if you run the code now, your player would still just
sit there. The next step is to hook the playerControl into the navigation, and tie
the first-person camera to playerControl.

1. In the simpleUpdate() method, disable the default flyCam, and make the
camera follow the playerNode. This way, users see the scene from the player's
point of view.
private CameraNode camNode;
public void simpleUpdate(float tpf) {
 ...
 camNode = new CameraNode("CamNode", cam);
 camNode.setControlDir(CameraControl.
 ControlDirection.SpatialToCamera);
 camNode.setLocalTranslation(new Vector3f(0, 4, -6));
 Quaternion quat = new Quaternion();
 quat.lookAt(Vector3f.UNIT_Z, Vector3f.UNIT_Y);
 camNode.setLocalRotation(quat);
 playerNode.attachChild(camNode);
 camNode.setEnabled(true);
 flyCam.setEnabled(false);
}

2. Since we deactivated the flyCam, we want the WASD keys to steer the
playerControl. Start by implementing the ActionListener interface,
as you learned in a previous chapter.
public class PhysicsTown extends SimpleApplication implements
ActionListener { ... }

3. In the simpleInitApp() method, we overwrite the default WASD key mappings,
because we want to customize them. Additionally, you map the Space bar to a
custom Jump action.
 inputManager.addMapping("Forward",
 new KeyTrigger(KeyInput.KEY_W));
 inputManager.addMapping("Back",
 new KeyTrigger(KeyInput.KEY_S));
 inputManager.addMapping("Rotate Left",
 new KeyTrigger(KeyInput.KEY_A));
 inputManager.addMapping("Rotate Right",
 new KeyTrigger(KeyInput.KEY_D));
 inputManager.addMapping("Jump",
 new KeyTrigger(KeyInput.KEY_SPACE));
 inputManager.addListener(this, "Rotate Left",
 "Rotate Right");
 inputManager.addListener(this, "Forward", "Back", "Jump");

Having Fun with Physics

[164]

4. We customize walking and jumping actions to use physics-aware methods.
Physics-aware navigation does not directly set the character's new location;
instead it moves the character into a walkDirection until it hits an obstacle.
Create a few new class fields to track the player's motion.
 private Vector3f walkDirection = new Vector3f(0,0,0);
 private Vector3f viewDirection = new Vector3f(0,0,1);
 private boolean rotateLeft = false, rotateRight = false,
 forward = false, backward = false;
 private float speed=8;

5. Implement the onAction() method of the ActionListener to track the keys
that the user presses. If a certain isPressed Boolean is true, we know that the
user wants to move in that direction. If the "jump" key is pressed, the jump()
method of the playerControl is called directly. Note that no walking happens
here yet!
public void onAction(String binding, boolean isPressed, float tpf)
{
 if (binding.equals("Rotate Left"))
 { rotateLeft = isPressed; }
 else if (binding.equals("Rotate Right"))
 { rotateRight = isPressed; }
 else if (binding.equals("Forward"))
 { forward = isPressed; }
 else if (binding.equals("Back"))
 { backward = isPressed; }
 else if (binding.equals("Jump"))
 { playerControl.jump(); }
}

6. The actual walking is handled in the update loop. Here you poll the player's rotation
and calculate the walkDirection and viewDirection vectors from it. Then, you
use the setWalkDirection() and setViewDirection() methods to move the
physics-aware player.

 public void simpleUpdate(float tpf) {
 // Get current forward and left vectors of the playerNode:
 Vector3f modelForwardDir =
 playerNode.getWorldRotation().mult(Vector3f.UNIT_Z);
 Vector3f modelLeftDir =
 playerNode.getWorldRotation().mult(Vector3f.UNIT_X);
 // Determine the change in direction
 walkDirection.set(0, 0, 0);
 if (forward) {

Chapter 6

[165]

 walkDirection.addLocal(modelForwardDir.mult(speed));
 } else if (backward) {
 walkDirection.addLocal(modelForwardDir.mult(speed).
 negate());
 }
 playerControl.setWalkDirection(walkDirection); // walk!
 // Determine the change in rotation
 if (rotateLeft) {
 Quaternion rotateL = new Quaternion().
 fromAngleAxis(FastMath.PI * tpf, Vector3f.UNIT_Y);
 rotateL.multLocal(viewDirection);
 } else if (rotateRight) {
 Quaternion rotateR = new Quaternion().
 fromAngleAxis(-FastMath.PI * tpf, Vector3f.UNIT_Y);
 rotateR.multLocal(viewDirection);
 }
 playerControl.setViewDirection(viewDirection); // turn!
 }

Run the sample, and press the W, A, S, D keys to walk around. You should now bounce off
walls and obstacles when you run into them. Approach the statue, press the Space bar,
and try to jump on it. Congrats to this piece of solid workmanship! Just be careful not to
fall off the edge of the world.

What just happened?
As opposed to the standard setLocalTranslation() method, the setWalkDirection()
method of the BetterCharacterControl takes the physical environment into account.
When the user navigates the player close to a RigidBodyControl obstacle (such as the
town model), the method tests for collisions with the obstacle's collision shape first, and stops
moving the player in this direction.

The actual walking is handled in the simpleUpdate() loop.

1. The walkDirection vector expresses in which direction the first-person player is
going: forward or backward, left or right, or a combination thereof. Before you can
calculate the directional vector walkDirection, you get the current world rotation
vectors of the playerNode (modelForwardDir and modelLeftDir).

2. Before each step, you reset the walkDirection vector to (0,0,0). Poll the input
Booleans to determine whether the user wants to go forward or backward, left or
right, or a combination thereof. If a Boolean is true, add the corresponding directional
vector to walkDirection. Then, use setWalkDirection(walkDirection) to
move the physics-aware player in this combined direction.

Having Fun with Physics

[166]

3. Turning left or right similarly multiplies the player's current viewDirection with a
small value that depends on the update loop's time per frame (tpf). Then, you use
setViewDirection(viewDirection) to rotate the player.

Using the demonstrated method, a physical player walks, for example, forward and to the
right when the user presses W and D together.

The BetterCharacterControl is a simple implementation of a walking
character. In your game, you may want to control first- and third-person players,
animated characters, collisions between players, and other special interactions.
Use the default BetterCharacterControl as a template to learn from, if
you need to write custom controls that implement more complex behavior.

BetterCharacterControl gives you access to the following methods:

Method Character motion
setWalkDirection(new
Vector3f(0f,0f,0.1f))

This moves a physical character. Characters
are locked upright to prevent falling over. Use
setWalkDirection(Vector3f.ZERO)
to stop a directional motion.

setViewDirection(new
Vector3f(1f,0f,0f))

This rotates a physical character. Characters are
locked upright to prevent falling over.

jump() This makes a physical character jump "up",
against the direction of gravity.

setDuckedFactor(.5f)

setDucked(true)

This toggles whether the character ducks or
not, and specifies how small a ducked character
becomes.

Similar to the RigidBodyControl, a BetterCharacterControl generates a collision
shape (from the com.jme3.bullet.collision.shapes package). Collision shapes were
invented as an optimization, because calculating collisions for every triangle of every mesh is
not feasible in a fast-paced video game. Since the collision shape is invisible to the user, you
can choose the simplest (and therefore fastest) collision shape that makes sense for an object.
A fast collision shape can be as primitive as a sphere, box, or cylinder, or compounds thereof.

For example, a good default collision shape for a walking character is a
CapsuleCollisionShape—an upright cylinder capped with a semi-sphere on
each end. The capsule's roundedness helps the character to walk around corners
and to move smoothly on uneven ground.

Chapter 6

[167]

If you have a very complex physical scene with many default collision shapes,
some manual optimization may be in order. Create primitive collision
shapes manually (BoxCollisionShape, SphereCollisionShape,
CapsuleCollisionShape, and so on from com.jme3.bullet.
collision.shapes) for objects that would otherwise receive a complex
default collision shape (HullCollisionShape, MeshCollisionShape,
CompoundCollisionShape, and so on). You force the usage of a custom
collision shape by passing the new shape as first argument into the physics
control's constructor.

If you don't specify a collision shape as an argument, the RigidBodyControl()
constructor generates a best-guess collision shape internally. For a complex scene,
the RigidBodyControl() constructor generates a static mesh-accurate collision
shape. The following screenshot shows the town scene with its otherwise invisible
CompoundCollisionShape highlighted:

Fun with rigid bodies
Let's try something more entertaining than a static scene now—what about a bit of
destruction physics?

Having Fun with Physics

[168]

Time for action – falling bricks
With what you have learned, you can create a scene with a floor, build a wall out of brick
geometries, and shoot some cannon balls at it.

1. Make a copy of Main.java and name the class PhysicsFallingBricks.java.
Remember to also refactor the first line of the main() method to:
PhysicsFallingBricks app = new PhysicsFallingBricks();

2. Make this a physical game by attaching a BulletAppState instance.
private BulletAppState bulletAppState;
@Override
public void simpleInitApp() {
 bulletAppState = new BulletAppState();
 stateManager.attach(bulletAppState);
}

3. Prepare some class fields for the objects in your scene. The scene uses boxes for the
bricks, spheres for the cannon balls, and another box for the floor. You also prepare
fields for three materials and three RigidBodyControls.
 /** Materials for bricks, cannon balls, floor. */
 Material brickMat, stoneMat, woodMat;
 /** Meshes for bricks, cannon balls, floor. */
 private static final Sphere ballMesh;
 private static final Box brickMesh;
 private static final Box floorMesh;
 private static Node wallNode;
 /** PhysicsControls for bricks, cannon balls, floor. */
 private RigidBodyControl brickPhy;
 private RigidBodyControl ballPhy;
 private RigidBodyControl floorPhy;

4. To keep the code more readable and extendable, let's declare a few constants for
the size of the bricks and the brick wall.
 private static final float BRICK_LENGTH = 0.4f;
 private static final float BRICK_WIDTH = 0.3f;
 private static final float BRICK_HEIGHT = 0.25f;
 private static final float WALL_WIDTH = 12;
 private static final float WALL_HEIGHT = 6;

Chapter 6

[169]

5. All bricks and all cannon balls use the same box and sphere shape, respectively,
so go ahead and initialize the meshes in a static block.

 static {
 floorMesh = new Box(Vector3f.ZERO, 10f, 0.5f, 5f);
 brickMesh = new Box(Vector3f.ZERO,
 BRICK_LENGTH, BRICK_HEIGHT, BRICK_WIDTH);
 ballMesh = new Sphere(32, 32, 0.25f, true, false);
 ballMesh.setTextureMode(TextureMode.Projected);
 floorMesh.scaleTextureCoordinates(new Vector2f(4f,4f));
 }

We use these objects to initialize the scene with a wall made of brick geometries standing
on a floor.

1. In the simpleInitApp() method, you initialize objects, and set up the scene.
Create three .j3m files as you learned in the previous chapter (or use the sample
materials provided with this book).
 @Override
 public void simpleInitApp() {
 …
 brickMat =
 assetManager.loadMaterial("Materials/brick.j3m");
 stoneMat =
 assetManager.loadMaterial("Materials/pebbles.j3m");
 woodMat =
 assetManager.loadMaterial("Materials/bark.j3m");

2. Create a floor, a simple box geometry with a wood material and a
RigidBodyControl. Since the floor is static, set its mass to zero. Move the floor
a bit down to ensure it's below the lowest brick.
 Geometry floorGeo = new Geometry("Floor", floorMesh);
 floorGeo.setMaterial(woodMat);
 floorGeo.move(0f, - BRICK_HEIGHT *2f, 0f);
 rootNode.attachChild(floorGeo);
 // PhysicsControl with zero mass,
 // and default BoxCollisionShape:
 floorPhy = new RigidBodyControl(0.0f);
 floorGeo.addControl(floorPhy);
 bulletAppState.getPhysicsSpace().add(floorPhy);

Having Fun with Physics

[170]

3. Create a wall node that groups together several rows of brick geometries.
The following loop calculates the offsets, and calls a makeBrick() method that
returns brick geometries. In the end, you attach the wall node to the rootNode.
 wallNode=new Node("wall");
 float offsetH = BRICK_LENGTH / 3;
 float offsetV = 0;
 for (int j = 0; j < WALL_HEIGHT; j++) {
 for (int i = 0; i < WALL_WIDTH; i++) {
 Vector3f brickPos = new Vector3f(
 offsetH + BRICK_LENGTH * 2.1f * i
 - (BRICK_LENGTH*WALL_WIDTH),
 offsetV + BRICK_HEIGHT,
 0f);
 wallNode.attachChild(makeBrick(brickPos));
 }
 offsetH = -offsetH;
 offsetV += 2 * BRICK_HEIGHT;
 }
 rootNode.attachChild(wallNode);

4. Implement the makeBrick() method to create the actual physical bricks, using the
brickMesh shape and brickMat material. Position the brick geometry at its start
position loc. Create a RigidBodyControl and specify a mass (here 5 kg), so the
bricks become dynamic physical objects.
 public Geometry makeBrick(Vector3f loc) {
 Geometry brickGeo = new Geometry("brick", brickMesh);
 brickGeo.setMaterial(brickMat);
 wallNode.attachChild(brickGeo);
 brickGeo.move(loc);
 // PhysicsControl with 5f mass, default BoxCollisionShape:
 brickPhy = new RigidBodyControl(5f);
 brickGeo.addControl(brickPhy);
 bulletAppState.getPhysicsSpace().add(brickPhy);
 }

5. As always, add an AmbientLight and a DirectionalLight in the
simpleInitApp() method.

Chapter 6

[171]

When you run the code now, you see a physical brick wall on a physical wooden floor. All that
is missing now is some cannon balls to "interact" with it.

What just happened?
You created a wall out of several rows of identical brick geometries. You run two loops over
the height and width of the wall, from bottom to top. The first loop lays a row of bricks. After
completing a row, the second loop moves the horizontal offset back to the start, and moves
the vertical offset one row up.

The core of the loop calculates the next brick position, and attaches individual bricks to
the wallNode. The makeBrick() method returns the physical brick geometries. Re-using
static meshes for objects of the same shape (here bricks) is a neat trick that saves memory,
especially in more complex scenes.

Having Fun with Physics

[172]

The RigidBodyControl constructor internally generates a default CollisionShape,
in this case a BoxCollisionShape for a Box mesh. You only need to specify the mass.

 brickPhy = new RigidBodyControl(5f);

Physical objects with a mass (such as falling bricks, rolling boulders, and pushable crates) are
"dynamic"; this means they are affected by gravity and forces. The mass of dynamic physical
objects is a float value in kilograms larger than zero. Contrast this to static physical objects
(such as floors, walls, and whole levels), which always get a mass of zero.

 floorPhy = new RigidBodyControl(0.0f);

Typically, it's fine to use the default collision shape that RigidBodyControl() generates.

Time for action – flying cannon balls
Let's keep the default navigational inputs in our PhysicsFallingBricks.java, and
simply add a shoot action. Every time the user clicks, you want to shoot a cannon ball
from the camera position forward.

1. Write a shootCannonBall() method that creates a new physical
geometry ballGeo from our ballMesh shape and stoneMat material.
The setLinearVelocity() line defines the initial speed and direction
of the object. In this case, we accelerate the cannon ball forward.
 public void shootCannonBall() {
 Geometry ballGeo = new Geometry("cannon ball", ballMesh);
 ballGeo.setMaterial(stoneMat);
 ballGeo.setLocalTranslation(cam.getLocation());
 rootNode.attachChild(ballGeo);
 ballPhy = new RigidBodyControl(5f);
 ballPhy.setCcdSweptSphereRadius(.1f);
 ballPhy.setCcdMotionThreshold(0.001f);
 ballPhy.setLinearVelocity(cam.getDirection().mult(50));
 ballGeo.addControl(ballPhy);
 bulletAppState.getPhysicsSpace().add(ballPhy);
 }

2. Create an actionListener and a SHOOT string constant. Test whether a SHOOT
action was triggered. The SHOOT action calls the shootCannonBall() method.
 private static final String SHOOT = "shoot";
 private ActionListener actionListener = new ActionListener() {
 public void onAction(String name, boolean keyPressed, float
tpf) {

Chapter 6

[173]

 if (name.equals(SHOOT) && !keyPressed) {
 shootCannonBall();
 }
 }
 };

3. In the simpleInitApp() method, register a SHOOT input mapping for the left
mouse button. Register the SHOOT action to the actionListener.

 inputManager.addMapping(SHOOT,
 new MouseButtonTrigger(MouseInput.BUTTON_LEFT));
 inputManager.addListener(actionListener, SHOOT);

Run the code! A left-click now creates a new cannon ball with the given initial velocity.
The cannon ball appears in the scene, it flies forward, hits the brick wall, and exerts a
physical force on the bricks. Bricks and cannon balls can bounce off one another, and
they also bounce off the floor.

Having Fun with Physics

[174]

What just happened?
Awesome, you implemented a physical shooting action that lets you tear down a brick
wall with a few mouse clicks!

Similar to the bricks, the RigidBodyControl constructor generated a default
SphereCollisionShape for the cannon ball. Since cannon balls are dynamic
physical objects, you specify their mass in the constructor.

 ballPhy = new RigidBodyControl(5f);

After each click, the shootCannonBall() method creates a new cannon ball object, moves
it in front of the camera, and attaches it to the rootNode. When you made the bricks appear
in the scene, they just sat there, doing their best brick wall impression—but for cannon balls,
you have more exciting plans. Since you create cannon balls with an initial linear velocity,
they immediately accelerate forward.

The direction and speed of a linear velocity is expressed as the direction and length of
a vector. Since you want to shoot the ball from the camera forward, you use the cam.
getDirection() vector. The returned camera direction vector is normalized; this means
it's only 1 world unit short. Since the length corresponds to speed, your cannon ball would
be very slow. To increase the speed, multiply the vector by a constant as follows:

 ballPhy.setLinearVelocity(cam.getDirection().mult(50f));

When you shoot a cannon ball, spin a billiard ball, or tilt and push a crate on the floor, you exert
physical forces on dynamic objects. The following methods move or rotate physics objects:

The RigidBodyControl method Motion
setAngularVelocity(v) This sets the current rotational speed of the object.

The x, y, and z components of the vector are the speed
of rotation around the respective axis. (Rotation)

setLinearVelocity(v) This sets the current linear speed of this object.
(Translation)

applyCentralForce(v) This pushes an object over time with an additional
moment v, expressed as Vector3f, applied to the
center. (Translation)

applyForce(v,p) This pushes an object over time with additional force
v, applied to a non-central point p. (Translation)

applyTorque(v) This twists an object over time additionally around its
axes. The x, y, and z components of the Vector3f
v specify the torque around the respective axis.
(Rotation)

Chapter 6

[175]

The RigidBodyControl method Motion
applyTorqueImpulse(v) This applies an instantaneous torque v to the object.

The x, y, and z components of the Vector3f v
specify the torque around the respective axis.
(Rotation)

applyImpulse(v,p) This applies an instantaneous impulse v, expressed as
Vector3f, to the object at a point p relative to the
object. (Translation)

clearForces() This cancels all forces and stops all current motion.

Be aware that a real-time physics simulation takes shortcuts wherever possible to speed
up the scene. Some simplifications result in a lack of precision for fast dynamic objects.
If your cannon balls fly through obstacles, you can adjust the precision of the simulation
by changing the following values:

 ballPhy.setCcdSweptSphereRadius(.1f);
 ballPhy.setCcdMotionThreshold(0.001f);

The motion threshold is the amount of motion that has to happen before the physics
simulation switches to the continuous motion detection for fast-moving objects. Bullet
does not use the full collision shape for continuous collision detection; instead it uses a
capsule-like shape ("swept sphere") to simulate the moving object. This approximation
allows real-time handling of many objects, but can cause strange behaviors, such as very
fast objects passing through one another or getting stuck.

Time for action – predict the explosion
Play around with each physics property in PhysicsFallingBricks to get a feeling for the
behavior that they control. Try to predict what happens in each of the following cases:

 � Give the floor a mass of more than 0.0f

 � Set the mass of bricks, or cannon balls, to a higher (50f) or lower value (0.5f)

 � Set the cannon balls' velocity to a higher (100f) or lower value (10f)

 � Move floorGeo a few world units higher or lower along the y axis

 � Set the friction of bricks to a higher value using brickPhy.setFriction(20f);
or a lower value using brickPhy.setFriction(0.2f);

 � Set a property (such as friction) of a physics control before adding the control
to its geometry

 � Just for laughs – set the friction of all bricks to zero

 � Just for laughs – set the friction of the floor to zero

Having Fun with Physics

[176]

Run the code with each change and try to explain what is happening. Hint – one
case causes an explosion-like impact that collapses the wall, a second one results
in a NullPointerException—and two are just hilarious.

What just happened?
Experimenting with the properties shows you that mass has an impact on the intensity of
forces. Heavier cannon balls blow bigger holes into the wall, heavier bricks make the wall
more sturdy. A floor with a mass is, however, a bad idea. Any object with mass is no longer
static and is affected by gravity, causing your whole scene to fall "down" (and get culled).

Velocity has a similar impact on intensity as mass. Faster cannon balls smash harder into
the wall, whereas slow balls bounce off the wall weakly. Faster cannon balls, however,
are also harder to simulate and may erroneously pass through obstacles.

You also see that if you move the floor lower before positioning the bricks, the bricks simply
fall down and land on the floor after they appear in the scene. If the floor is so high that it
intersects with the bottom row of bricks, however, you cause a physically impossible situation.
The bottom row of bricks will be pushed away vigorously, which makes the wall collapse.

Friction is a positive float value larger than zero. 1.0f is a good value to start with. Higher
friction prevents objects from sliding around, and makes them harder to push. High friction
is useful when simulating sticky, rough, uneven surfaces. Friction values between 1.0f and
0.0f make objects increasingly slippery, so they slide when pushed. Low friction is useful
when simulating ice or slides.

You can modify the following physical properties on a physics control object such as
RigidBodyControl:

The RigidBodyControl method Property
setFriction(1f) This specifies friction. Rough surfaces have a friction

value greater than 1.0f. Slippery surfaces have a
friction between 1.0f and 0.0f.

setMass(1f) This specifies mass. Dynamic objects have masses
greater than 0.0f. Static immobile obstacles (for
example, buildings and terrains) have a mass of 0.0f.

setRestitution(0.0f) This specifies bounciness. To create a rubber object,
specify a value greater than 0.0f. This is CPU-intensive
and should be used sparingly.

setPhysicsLocation() This positions a dynamic object. Do not use
setLocalTranslation() or move()!

setPhysicsRotation() This rotates a dynamic object. Do not use
setLocalRotate() or rotate()!

Chapter 6

[177]

The RigidBodyControl method Property
setGravity(new Vector3f
(0f,-10f,0f))

You can change the individual gravity vector of dynamic
objects even after adding them to the physics space.

setCcdMotionThreshold
(.1f)

This is the amount of motion in one physics tick that
triggers the continuous motion detection.

Add the control to its spatial before you set any properties on the control, otherwise the
control throws a NullPointerException at compile time or runtime.

Dynamic, static, and kinematic
You can now create static walls and floors, and dynamic objects such as bricks and cannon
balls that are affected by forces. Next to static and dynamic objects, the physics simulation
supports a third type of physical object, the kinematic object.

A kinematic object is not affected by forces or gravity (similar to a static object), but it
can move around and push dynamic objects (similar to other dynamic objects). Typical
use cases for kinematic objects in games are airplanes, airships, moving platforms,
elevators, drawbridges, and conveyor belts.

Time for action – an elevator platform
Let's build a scene that uses all three types of physical objects: dynamic, static, and
kinematic. The static part of the scene contains a floor (a horizontal box), a slope (a rotated
box), and a wall (a vertical box). Later, we add a kinematic moving platform (a cuboid box)
and a dynamic ball (a sphere), and then see how they interact.

1. Make a copy of Main.java and name the class PhysicsKinematic.java.
Remember to also refactor the first line of the main() method to the following:
PhysicsKinematic app = new PhysicsKinematic();

2. Make this a physical game by attaching a BulletAppState instance.
private BulletAppState bulletAppState;
@Override
public void simpleInitApp() {
 bulletAppState = new BulletAppState();
 stateManager.attach(bulletAppState);
 …
}

Having Fun with Physics

[178]

3. Re-use the materials from PhysicsFallingBricks, and initialize them in the
simpleInitApp() method. As usual, add light sources.
private Material brickMat, stoneMat, woodMat;
public void simpleInitApp() {
 …
 brickMat =
 assetManager.loadMaterial("Materials/brick.j3m");
 stoneMat =
 assetManager.loadMaterial("Materials/pebbles.j3m");
 woodMat = assetManager.loadMaterial("Materials/bark.j3m");
}

4. Initialize the static part of the scene in the simpleInitApp() method: a wall,
a slope, and the floor. In our example, they are all Box geometries resized and
rotated into position. Attach them all to a sceneNode.
private RigidBodyControl scenePhy;
public void simpleInitApp() {
 …
 Node sceneNode = new Node("Scene");

 /* Create and attach a floor geometry */
 Box floorMesh = new Box(Vector3f.ZERO, 10f, 0.5f, 10f);
 Geometry floorGeo = new Geometry("Floor", floorMesh);
 floorGeo.setMaterial(stoneMat);
 floorGeo.move(0, -.1f, 0);
 sceneNode.attachChild(floorGeo);

 /* Create and attach a slope geometry */
 Box slopeMesh = new Box(Vector3f.ZERO, 6f, 0.1f, 5f);
 Geometry slopeGeo = new Geometry("Slope", slopeMesh);
 slopeGeo.setMaterial(brickMat);
 slopeGeo.rotate(0, 0, FastMath.DEG_TO_RAD * 50);
 slopeGeo.move(4f, 4f, 0);
 sceneNode.attachChild(slopeGeo);

 /* Create and attach a wall geometry */
 Box wallMesh = new Box(Vector3f.ZERO, 5f, 0.4f, 5f);
 Geometry wallGeo = new Geometry("Wall", wallMesh);
 wallGeo.setMaterial(brickMat);
 wallGeo.rotate(0, 0, FastMath.DEG_TO_RAD * 90);
 wallGeo.move(-3.5f, 2, 0);
 sceneNode.attachChild(wallGeo);
 …
}

Chapter 6

[179]

5. Make the sceneNode (and everything attached to it) solid by adding
a RigidBodyControl() with mass zero. Attach the sceneNode to
the rootNode, and add the RigidBodyControl to the physics space.
private RigidBodyControl scenePhy;
public void simpleInitApp() {
 …
 scenePhy = new RigidBodyControl(0.0f);
 sceneNode.addControl(scenePhy);
 bulletAppState.getPhysicsSpace().add(floorPhy);
 rootNode.attachChild(sceneNode);
}

6. Create the kinematic elevator platform. Our simple elevator is a Box geometry
attached to the rootNode. Add a RigidBodyControl with a mass of 100 kg to
the kinematic platformGeo. Set its setKinematic() property to true. Add
platformPhy to the physics space as usual.
private static final String ELEVATOR = "Elevator";
public void simpleInitApp() {
 …
 Box platformMesh = new Box(Vector3f.ZERO, 2f, 0.5f, 5f);
 platformGeo = new Geometry(ELEVATOR, platformMesh);
 platformGeo.setMaterial(woodMat);
 platformGeo.move(-1, 2, 0);
 rootNode.attachChild(platformGeo);
 RigidBodyControl platformPhy =
 new RigidBodyControl(100.0f);
 platformGeo.addControl(platformPhy);
 platformPhy.setKinematic(true);
 bulletAppState.getPhysicsSpace().add(platformPhy);
}

7. Write a test in the simpleUpdate() loop that moves the platform up and down.
Note that kinematic objects use non-physical methods, such as move().

private static final float TOPFLOOR = 6f;
private boolean isPlatformOnTop = false;
@Override
public void simpleUpdate(float tpf) {
 if (!isPlatformOnTop &&
 platformGeo.getLocalTranslation().getY() < TOPFLOOR) {
 platformGeo.move(0f, tpf, 0f);
 }

Having Fun with Physics

[180]

 if (!isPlatformOnTop &&
 platformGeo.getLocalTranslation().getY() >= TOPFLOOR) {
 isPlatformOnTop = true;
 }
 if (isPlatformOnTop &&
 platformGeo.getLocalTranslation().getY() <= .5f) {
 isPlatformOnTop = false;
 }
 if (isPlatformOnTop &&
 platformGeo.getLocalTranslation().getY() > .5f) {
 platformGeo.move(0f, -tpf * 4, 0f);
 }
}

Run the code. You should see a simple scene with an elevator platform moving up and down.

What just happened?
Physical objects can respond differently to forces, such as gravity or collisions. You have now
encountered dynamic, static, and kinematic behavior.

Static objects (such as walls and floors) are immobile solid obstacles. Since static objects
never move, they can be positioned in mid-air. No forces affect them; therefore, their
mass is irrelevant, and always zero. Dynamic objects bounce off static objects.

floorGeo.setMass(0f);
floorGeo.setKinematic(false);

Chapter 6

[181]

Dynamic objects (such as balls and bricks) are fully affected by physical forces and must
therefore have a mass. When you position a dynamic object in mid-air, gravity makes it fall.
A colliding object exerts forces on a dynamic object, and pushes it away. Dynamic objects
bounce off dynamic, static, and kinematic objects.

ballGeo.setMass(10f);
ballGeo.setKinematic(false);
ballGeo.setPhysicsLocation(new Vector3f(0, 1, 0));

Kinematic objects (such as elevator platforms, airplanes, and airships) are solid, but they
are not affected by gravity, and do not react to any physical forces. When trying to move
kinematic objects through static and other kinematic objects, they can push dynamic objects.
The intensity of the kinematic object's effect on dynamic objects depends on the kinematic
object's speed and mass.

Remember that you move kinematic objects programmatically (for example, from the
update loop) using non-physical methods setLocalTranslation() or move().

platformGeo.setMass(100f);
platformGeo.setKinematic(true);
platformGeo.move(1f,0f,0f);

The following table shows you how you decide which type of solid object to choose:

Static Dynamic Kinematic
Is it moved by forces?
(gravity, torque, velocity,
and so on)

No Yes No

Does it only move
programmatically?

No No Yes

Does it have a mass? No Yes Yes
Which methods do you
use?

setLocal
Translation(),
move(), and so on

setPhysics
Location(),
applyForce(),
and so on

setLocal
Translation(),
move(), and so on

Examples Floor, wall, tree, and
furniture

Ball, brick, and crate Elevator, platform,
airplane, and airship

Since they are unaffected by gravity, you can position kinematic objects "in
mid-air" and attach special dynamic objects to them. These dynamic objects
are called hinges and joints. You use them for simulating physical pulley chains,
rope bridges, or pendulums. You can find more information on this special case
on the jmonkeyengine.org wiki.

Having Fun with Physics

[182]

Time for action – react to collisions
Let's add a dynamic object to the scene to see what happens when it falls onto the platform.
You already know how to create a nicely textured sphere and turn it into a physical ball.

Open PhysicsKinematic.java again and add the following method:

private RigidBodyControl ballPhy;
private static final String BALL = "Ball";
public void dropBall() {
 Sphere ballMesh = new Sphere(32, 32, .75f, true, false);
 ballMesh.setTextureMode(TextureMode.Projected);
 TangentBinormalGenerator.generate(ballMesh);
 Geometry ballGeo = new Geometry(BALL, ballMesh);
 ballGeo.setMaterial(stoneMat);
 rootNode.attachChild(ballGeo);
 /** Create physical ball and add to physics space. */
 ballPhy = new RigidBodyControl(5f);
 ballGeo.addControl(ballPhy);
 bulletAppState.getPhysicsSpace().add(ballPhy);
 ballPhy.setPhysicsLocation(new Vector3f(0, 10, 0));
}

Call dropBall(); from simpleInitApp(), and run the app. You should see the ball fall
and land on the moving platform. When the platform moves up, it pushes the ball up with
it. When the platform goes down, the slightly inert ball is affected by gravity and falls down
onto the platform again.

Let's add a listener that detects the collision. This way you can implement how your game
responds to a collision.

1. Make PhysicsKinematic.java implement the PhysicsCollisionListener
interface from the com.jme3.bullet.collision package.
public class PhysicsKinematic extends SimpleApplication
 implements PhysicsCollisionListener { … }

2. The PhysicsCollisionListener interface requires you to implement
the collision() method. We want to test whether the spatials named
BALL and ELEVATOR have collided. Depending on that, we set a Boolean
isBallOnPlatform.
private boolean isBallOnPlatform = false;
public void collision(PhysicsCollisionEvent event) {

Chapter 6

[183]

 if ((event.getNodeA().getName().equals(BALL)
 && event.getNodeB().getName().equals(ELEVATOR))
 || (event.getNodeA().getName().equals(ELEVATOR)
 && event.getNodeB().getName().equals(BALL)))
 {
 isBallOnPlatform = true;
 } else {
 isBallOnPlatform = false;
 }
}

3. In your simpleInitApp() method, register the PhysicsCollisionListener
(this class) to the physics space.
bulletAppState.getPhysicsSpace().addCollisionListener(this);

4. Replace your whole simpleUpdate() method with the following variant that tests
for the isBallOnPlatform Boolean before moving the platform:

public void simpleUpdate(float tpf) {
 if (isBallOnPlatform &&
 platformGeo.getLocalTranslation().getY() < TOPFLOOR) {
 platformGeo.move(0f, tpf, 0f);
 }
 if (isBallOnPlatform &&
 platformGeo.getLocalTranslation().getY() >= TOPFLOOR)
{
 isPlatformOnTop = true;
 }
 if (!isBallOnPlatform &&
 platformGeo.getLocalTranslation().getY() > .5f) {
 isPlatformOnTop = false;
 platformGeo.move(0f, -tpf * 4, 0f);
 }
}

Run the code. The ball landing on the platform triggers the rising platform. If the ball does
not roll off, the platform now stops on the top floor.

Having Fun with Physics

[184]

What just happened?
When the physics simulation detects collisions, it does more than only calculating and
exerting forces on the colliding parties. Additionally, it can report properties of the impact as
a PhysicsCollisionEvent (from the com.jme3.bullet.collision package), and let
you trigger actions in response. If you have classes that need to be informed about collision
events in the physics space, give them access to the bulletAppState, and make them
implement the com.jme3.bullet.collision.PhysicsCollisionListener interface.

public class MyClass implements PhysicsCollisionListener {
 public void collision(PhysicsCollisionEvent event) {
 // Test for event.getNodeA().getName() and
 // event.getNodeB().getName(), and implement interaction
 }
}

The collision() method gives you access to a PhysicsCollisionEvent object that
contains properties of the event. First, you are interested in the identity of the two nodes that
collided, event.getNodeA() and event.getNodeB(), so you can define the action to
trigger when this pair collides. You cannot know which of the two will be node A or node B;
always test for either variant. If you want to use properties from the event object, do not pass
the event object to other methods, because it is reset when the collision() method ends.

Did you notice that the objects BALL and ELEVATOR are string constants?
When you create geometries whose collisions will be relevant for the game,
it's a best practice to name them using string constants instead of plain
strings. An equals() test can fail due to a simple typo—but when you
mistype a string constant, the compiler warns you.

When do we use the com.jme3.bullet.collision.PhysicsCollisionListener
interface, and when not?

 � If you just want "balls rolling, bricks falling", you do not need to implement the
PhysicsCollisionListener. Without it, a collision simply means that physical
forces are applied automatically.

 � If you want to respond to a PhysicsCollisionEvent and trigger a custom
action, implement the PhysicsCollisionListener. Typical actions include
increasing a counter (for example, score points), decreasing a counter (for example,
health points), triggering an effect (for example, an explosion), playing a sound (for
example, a bang), and countless more, depending on your game.

Chapter 6

[185]

The PhysicsCollisionEvent gives you access to detailed information about the collision.
You already know the event object can identify which nodes have collided. Additionally, you
can get details about how they collided; for example, look at the following table:

The PhysicsCollisionEvent method Purpose
getNodeA()

getNodeB()

These are the two participants in the collision.
You cannot know in advance whether a node
will be recorded as A or B, you always have to
consider both cases.

getAppliedImpulse() A float value representing the collision's impulse.
getCombinedFriction() A float value representing the collision's friction.
getCombinedRestitution() A float value representing the collision's

bounciness.

After the collision() method ends, the PhysicsCollisionEvent object is cleared.
If you still need any of the values, you must assign them to local variables.

Time for action – timing forces correctly
We want the platform to go down after the ball rolls off, but currently, the ball doesn't have
enough momentum to roll off by itself. Let's give it a little push.

1. Open PhysicsKinematic.java again and make it implement the
PhysicsTickListener interface.
public class PhysicsKinematic extends SimpleApplication
 implements PhysicsCollisionListener, PhysicsTickListener
{…}

2. The interface requires you to implement two methods: prePhysicsTick() and
physicsTick(). Use the prePhysicsTick() method to apply a pushing force on
the ball when the platform reaches the top floor.
public void prePhysicsTick(PhysicsSpace space, float tpf) {
 if (isBallOnPlatform && isPlatformOnTop) {
 ballPhy.applyImpulse(new Vector3f(2, 0, 0),
 new Vector3f(0, 0, 0));
 }
 }
public void physicsTick(PhysicsSpace space, float tpf) {}

Having Fun with Physics

[186]

3. Remember to register the TickListener (this class) to the physics space.

public void simpleInitApp() {
 …
 bulletAppState.getPhysicsSpace().addTickListener(this);
 …
}

Run the code. Again, the ball falls onto the platform (isBallOnPlatform is true)
and triggers the elevator to rise. Now, when the elevator is on top (isPlatformOnTop
is true), the test is true, and an impulse pushes the ball off the platform. The platform
moves down, while the ball rolls down the slope and lands again on the platform.

What just happened?
If you apply forces in the update loop, they can be "out of cycle" with the physics simulation.
It will work sometimes, but in random intervals, the simulation will miss calls and forces are
not applied. Remember that the jBullet physics simulation is stepped at a framerate of 60
physics ticks per second. Applying forces (or checking for collisions) only makes sense during
a physics update, which does not happen in every frame of the update loop. To time forces
right, you need to implement the PhysicsTickListener interface.

Chapter 6

[187]

Use prePhysicsTick() to apply forces right in time before the next physics step.
Use physicsTick() to poll the state right in time after the physics step.

public class PhysicsKinematic implements PhysicsTickListener {
 public void prePhysicsTick(PhysicsSpace space, float f){
 // apply forces here
 }
 public void physicsTick(PhysicsSpace space, float f){
 // poll the new state, e.g. test for overlapping objects
 }
}

When do we use the com.jme3.bullet.PhysicsTickListener interface,
and when not?

 � When you apply forces, you must make that call from a prePhysicsTick()
method of PhysicsTickListener. The PhysicsTickListener makes
certain all forces are applied in sync with the next physics tick.

 � When your game merely polls the current state (for example, location of falling
bricks) of physical objects, but doesn't apply extra forces, you don't need a
PhysicsTickListener. You can poll the state from anywhere.

My whole world is falling apart
A physics simulation can be quite a loose cannon. Don't be surprised when physical objects
jitter or are unceremoniously hurled out of the scene. Congratulations, you have created a
physically impossible state! Most likely, you positioned two solid objects too close to each
other. How do you find the source of the problem?

 � Activate the physics debug mode to visualize the actual collision shapes. Some
dynamic objects receive HullCollisionShapes by default, which are not
mesh-accurate. Make certain that no collision shapes overlap. You can render the
(otherwise invisible) collision shapes as wireframes with the following command:
bulletAppState.getPhysicsSpace().enableDebug(assetManager); // on

bulletAppState.getPhysicsSpace().disableDebug() // off

 � Make sure you do not smash dynamic or static objects into one another by using
setLocalTranslation() or move() instead of using a physics-aware method.

 � Remember to check unintended overlaps with floor or wall geometries—the whole
scene has a collision shape to consider too.

Having Fun with Physics

[188]

LEET skillz – learn from the pros
Using physics everywhere in a game sounds like a cool idea, but this feature is easily
overused. Although physics controls are "put to sleep" while they don't move, the
complexity of a world built solely out of dynamic physics controls exceeds your
computer's capabilities quite fast.

But other game developers use physics all the time, so why can't you? Their physics
simulation is so awesome that whole buildings break apart in real time! Actually, no.
Don't let them fool you. Professional video games simply use a clever mix of physics,
non-physical kinematics, and visual effects to give you the illusion of a fully physical world.

Unless players are walking around in it, a scene element has no collision shape at all.
While an explosion effect obstructs your view, a static model is detached and replaced
by (fast rendering, non-physical) debris models. The debris models fly on kinematic
(pre-recorded, non-physical) paths before they hit the ground. After the dust settles,
a select few pieces—only the ones that the player can reach—receive a physics control.
Strategically placed static obstacles ensure that the player does not stumble upon the
remaining (non-physical) scenery sets in the background.

In general, don't waste cycles on scene elements that the player will never interact with.
Arches in a gothic cathedral may be impressive, but unless you invented a Spiderman versus
Bazooka game, no collisions will ever happen up there. Don't give non-interactive geometries
expensive physics controls or mesh-accurate collision shapes.

Next time you play an action game, try to spot where the game designers are tricking you
into believing that the whole scene is physical, and how they are pretending that all physical
objects have individual shapes and sizes. Now that you have started developing games
yourself, remember what you learned in this chapter—and look behind the curtain.

Pop quiz
Which of the following statements about physics properties are true?

1. A moving kinematic object can push dynamic objects, although it uses the
non-physical move() method.

2. A static physical floor needs a mass and a collision shape to become solid.

3. The main update loop ensures that physical forces are applied to dynamic
objects in sync with the simulation.

4. A dynamic physical crate does not need an explicit mass if it uses the default
collision shape of the RigidBodyControl constructor.

Chapter 6

[189]

Have a go hero – rubber balls versus stacked crates
Not all games need a physics simulation. In the Tower Defense project that we started, mobile
creeps walk on an even floor in straight lines toward the player base. If you can implement
behavior without needing a physics app state, non-physical collision methods (such as ray
casting) are preferable, because they leave you more cycles for other game mechanics.

Instead of adding to the Tower Defense game, let's have some fun with the town sample,
or another model of your choice.

1. Load a model of your choice, such as quake3level.zip or town.zip. Make it
solid, and add a physical first-person player. Use what you learned in PhysicsTown.
assetManager.registerLocator(
 "http://jmonkeyengine.googlecode.com/files/quake3level.zip",
 HttpZipLocator.class);

2. Add some crates to the scene, dynamic RigidBodys with a wooden material and
a mass. Re-use one BoxCollisionShape and Box mesh. Use what you learned in
PhysicsFallingBricks. The physical player can push the crates around in the
scene.

3. Allow the player to pick crates. Use the already familiar ray casting algorithm to
let the player pick a crate (and deselect any previous crate). Create a copy of the
wooden material with an active glow property, and swap materials to mark a crate
as selected.

4. Allow the player to stack crates. Assign an input key that applies a constant, central,
upward force to the selected crate while the key is pressed (AnalogListener).
Test the y coordinate of the crate to limit the lifting height for crates.

5. Allow the player to transport crates. Add an elevator platform to the scene that
allows the first-person player to get from the ground level to higher floors or
rooftops. Use what you learned about kinematic objects and collision listeners.

Each geometry needs its own instance of a physics control—but it's a best
practice to re-use collision shapes and meshes. If you have many geometries
of the same size, prepare one collision shape for all of them and pass the
shape as first argument into the RigidBodyControl constructor. In a
warehouse full of dynamic bricks, crates, and barrels, limiting the variety of
container sizes can gain you a few frames per second.

Having Fun with Physics

[190]

Let's add one more type of dynamic object.

1. Add an automatic rubber ball cannon to a central place. Re-use one
SphereCollisionShape and Sphere mesh.

2. In PhysicsFallingBricks, you shot cannon balls from the camera position;
now, shoot rubber balls from a fixed coordinate in the scene. Use the update
loop to track how close the player is to the cannon, and start shooting when
he approaches. Accelerate the ball in the direction toward the player.

3. Use the restitution property of the physics control to make the balls bouncy.

You can determine the distance between two coordinates using
float dist = end.distance(start);. You can determine
the directional vector from one coordinate to another using Vector3f
dir = end.substract(start);.

Just for fun! What happens if you create a BoxCollisionShape and use it in
the rubber ball's RigidBodyControl constructors? What happens if you create a
SphereCollisionShape and use it in the crates' RigidBodyControl constructors?

Summary
In this chapter, you have learned how to add realism to your game by making use of
simulated physics.

You know how to activate the physics simulation by attaching a BulletAppState to the
application. You have learned that you add a physics control instance to each physical
geometry, and register the control to the physics space. You know when to use different
types of PhysicsControls and CollisionShapes.

You know what static, kinematic, and dynamic physics behavior is, and how these types
of physical objects interact. You are aware that overusing physics has a huge performance
impact, and you have learned tricks about how to use CPU-intensive features smartly.

The jBullet physics simulation can also calculate the swinging motions of
hinges and joints (useful for chains or rope bridges), and there is also a
class that implements typical vehicle behavior (useful for race cars and
motorcycles). You can find more details about these specialized use cases
of physics on the jmonkeyengine.org wiki.

If you'd start developing now, you could already write a solid, good-looking little game!
It's all downhill from here. But don't lay down the book yet; you wouldn't want to miss
the shiny enhancements in the next chapter—special effects!

7
Adding Spark to Your Game

You already know how to take the idea in your head and turn it into an
interactive scene with nicely textured models and physical behavior. You
are ready to add the final touches and effects to your game. jMonkeyEngine
supports two types of effects: particle systems and post-processor filters.

Particle systems use series of 2D images (sprites) to create the impression of
moving swarms and fuzzy clouds, which cannot be visualized by 3D meshes.
Particle effects come to the rescue—whether you need fire and smoke,
explosions and spells, or butterflies and soap bubbles.

Post-processor filters work on a larger scale and provide you with screen-wide
effects such as focal blurs and blooms. Filter effects make use of the engine's
shader architecture and can produce anything from realistic shadows to artistic
cartoon styles.

In this chapter, you will learn some nifty tricks that will make your game more exciting
and immersive:

 � How to stir up dust and smoke, and let sparks fly

 � How to set stuff on fire, and blow everything up

 � How to cast shadows in the light and glow in the dark

 � How to focus on nearby objects, and blur far-away objects

 � How to draw cartoons with no graphic artists

Let's start with particle systems and then proceed to scene processors and filters.

Adding Spark to Your Game

[192]

Particle effects
Meshes can be sculpted, animated, and made translucent—but when a game scene requires
smoke, sparks, or flames, then meshes just don't make the cut. When you want to simulate a
fuzzy shape in real time, particles are the weapon of choice. A particle system has two secret
ingredients: sprites and an emitter. In the following screenshot, you see a particle system
that uses a 9-frame sprite animation (left) to simulate spinning flying pieces of debris (right):

The heart of a particle system is the ParticleEmitter object (from the com.jme3.effect
package). The emitter object determines the start location of the effect and stores the texture
and animation properties. To add the effect to the scene, you attach a particle emitter to a
node under the root node like any other scene object. We'll look at some code samples.

Time for action – stir up some dust
A speeding car looks faster with rally stripes, but it looks twice as fast when it also stirs up
some dust!

1. Make a copy of Main.java and name the class Particle1DustSmoke.
java. Remember to also refactor the first line of the main() method to
Particle1DustSmoke app = new Particle1DustSmoke();.

2. Copy the included file assets/Effects/smoke.png into your project's assets/
Effect directory. It includes a sprite animation of a dust cloud.

3. Create a class field for the ParticleEmitter object and initialize the emitter
in the simpleInitApp() method. Give the emitter a descriptive name and tell
it to keep 100 particles of type Triangle ready (from the com.jme3.effect.
ParticleMesh.Type package).
private ParticleEmitter dustEmitter;
public void simpleInitApp() {

Chapter 7

[193]

 dustEmitter = new ParticleEmitter(
 "dust emitter", Type.Triangle, 100);

4. Like every visible scene object, an emitter has a material. An effect material is always
based on the Common/MatDefs/Misc/Particle.j3md material definition.
Material dustMat = new Material(assetManager,
 "Common/MatDefs/Misc/Particle.j3md");
dustEmitter.setMaterial(dustMat);

5. Load smoke.png into the Texture property of the material:
dustMat.setTexture("Texture",
 assetManager.loadTexture("Effects/smoke.png"));

6. When you open smoke.png in an image viewer, you see that the picture contains
a 4-frame sprite animation. To help the emitter segment the image correctly, tell it
that the image has two columns (ImagesX) and two rows (ImagesY):
dustEmitter.setImagesX(2);
dustEmitter.setImagesY(2);

7. Make the dust cloud more swirly and random:
dustEmitter.setSelectRandomImage(true);
dustEmitter.setRandomAngle(true);
dustEmitter.getParticleInfluencer().setVelocityVariation(1f);

8. Attach the emitter to a node, such as the root node:
 rootNode.attachChild(dustEmitter);
}

9. Since our dust emitter is not attached to a mobile character, it's quite static.
Add the following formula to the simpleUpdate() method to make the emitter
fly in circles; this motion emphasizes the dust effect for our demo.

public void simpleUpdate(float tpf) {
 // make the emitter fly in circles
 angle += tpf;
 angle %= FastMath.TWO_PI;
 float x = FastMath.cos(angle) * 2;
 float y = FastMath.sin(angle) * 2;
 dustEmitter.setLocalTranslation(x, 0, y);
}

Adding Spark to Your Game

[194]

Run the code. You see a dust devil, swirling back and forth and around. The image on the left
shows the four frames used to create the wafting dust plume, shown in the image on the right:

What just happened?
The emitter object holds the properties of our dusty experiment. The integer value in the
constructor specifies the number of particles that this emitter manages. For a dense effect,
50 to 100 particles are a good value to start with.

In a particle system with Type.Triangle, each particle is represented as a transparent,
textured rectangle made up of two triangles. This is the most common type of particle
effect, and it's supported on all platforms.

The alternative to triangles are point particles with Type.Point. Point particles
can have textures if you specify setBoolean("PointSprite",true) for
them. Point sprites are more efficient for large clouds with, say, ten thousand
particles, but unfortunately not all platforms render point sprites the same way.
This is why they require a lot of extra testing.

Every particle emitter has a material based on the default Particle.j3md material
definition. In this demo, you replace the material's basic, straight-flying rectangles with
swirly, fuzzy shapes, to get a dust effect. The material property Texture is the particle
texture that you load from your assets/Effects/ directory.

Remember to use the setImagesX() (columns) and setImagesY() (rows) methods to
specify the number of animation frames in each texture. By default, the animation frames
play in order (from left to right, and top to bottom), which looks good for sequential sprite
animations, such as butterflies or swirling leaves. The smoke.png sprites, however, are not
in any particular order, so you use setSelectRandomImage(true).

If you ran the demo now, you'd already see a dense dust cloud. There are several options
that enable us to make the emitter more random:

 � By default, the emitter's velocity variation value is 0.0f, meaning all particles fly in the
same direction. Set it to 0.5f to emit particles within a 180° angle around the initial
direction. A velocity variation value of 1.0f emits particles in all directions (360°).

Chapter 7

[195]

 � By default, sprite particles are oriented the way you drew them in the texture.
When you set the random angle property to true, every sprite is randomly
rotated when it is emitted, which makes the dust effect look more varied.

Typically, you attach a mobile emitter to a car, a wizard, an asteroid, a campfire, and so on.
You can also attach it to the root node and move it to a fixed location. In this demo, we used
the update loop to animate the emitter to fly in a circle. We created a private field angle to
keep track of the previous position of the orbiting emitter. The tpf variable in the update
loop keeps track of the time per frame. We use it as pacing factor in the standard circle
formula that calculates the emitter's orbit.

Time for action – sparks
When swords clash so hard that sparks fly, then you know there are heroes at work. Let's
create some sparks and make them dash in random directions!

1. Make a copy of Main.java and name the class Particle2Sparks.
java. Remember to also refactor the first line of the main() method to
Particle2Sparks app = new Particle2Sparks();.

2. Copy the included file assets/Effects/spark.png into your project's assets/
Effect directory. It includes a sprite animation of sparks.

3. In the simpleInitApp() method, create a spark emitter and attach it to the scene:
public void simpleInitApp() {
 ParticleEmitter sparksEmitter = new ParticleEmitter(
 "Spark emitter", Type.Triangle, 60);
 rootNode.attachChild(sparksEmitter);

4. Create a material, load the spark texture, and set the material:
Material sparkMat = new Material(assetManager,
 "Common/MatDefs/Misc/Particle.j3md");
sparkMat.setTexture("Texture",
 assetManager.loadTexture("Effects/spark.png"));
sparksEmitter.setMaterial(sparkMat);

5. You see that the spark texture has only one frame. Specify 1 for both the X and Y
values of the sprite animation:

sparksEmitter.setImagesX(1);
sparksEmitter.setImagesY(1);

Adding Spark to Your Game

[196]

Modify the dust emitter code until you achieve the desired "sparky" effect:

1. Increase the initial velocity to accelerate the particles upward (along the Y axis) to
a speed of 10 world units per second. Since you want the sparks to fly in different
directions, you set the velocity variation property to its maximum value, 1.0f.
sparksEmitter.getParticleInfluencer().
 setInitialVelocity(new Vector3f(0, 10, 0));
sparksEmitter.getParticleInfluencer().
 setVelocityVariation(1.0f);

2. You tell the hot sparks to fade from yellow to red, using the com.jme3.math.
ColorRGBA constants:
 sparksEmitter.setStartColor(ColorRGBA.Yellow);
 sparksEmitter.setEndColor(ColorRGBA.Red);

3. To make the sparks rain downward, increase the emitter's gravity to, for
instance, 50:
 sparksEmitter.setGravity(0, 50, 0);

4. You want the spark particles to face in the direction that they are flying:
sparksEmitter.setFacingVelocity(true);

5. You adjust the sparks' size to start small, and stay small—here, 0.5f world units:
sparksEmitter.setStartSize(.5f);
sparksEmitter.setEndSize(.5f);

6. You shorten the particle's maximum and minimum lifetime:

 sparksEmitter.setLowLife(.9f);
 sparksEmitter.setHighLife(1.1f);
}

Run the example. This emitter produces individual, small, orange sparks that fly quickly,
facing in various directions, before they fall and fizzle away, as seen in the screenshot
on the right. The one-frame sprite is shown on the left.

Chapter 7

[197]

What just happened?
You already know about the velocity variation parameter, which makes your sparks fly in
vastly different directions. You can also control the initial velocity vector to speed up
your sparks. Our sparks are exposed to gravity and fall down quickly, facing in the direction
of their velocity.

By default, particles are scaled bigger when flying, which creates the illusion of them flying
toward the viewer. In this demo, we set the start size and end size properties fields to the
same value to achieve the illusion that the particles fly to the sides. The default lifetime of
a particle is a random value, between three and seven seconds; for a quick and busy spark
effect, you set the high life and low life fields to similar, short values.

You also see that you can set a two-color gradient on particles. White areas in the texture
change from the start color (here, yellow) to the end color (here, red). White-gray sparks
look metallic, yellow-red ones look like welding sparks, cyan-blue ones look electric—choose
whatever suits your game's settings.

Time for action – fit to burst?
If you have game scenes where bullets or other projectiles hit a target, you may have
thought of emphasizing the impact with a short fiery burst.

1. Make a copy of Main.java and name the class Particle5Burst.
java. Remember to also refactor the first line of the main() method to
Particle5Burst app = new Particle5Burst();.

2. Copy the included file assets/Effects/flash.png into your project's assets/
Effect directory. It includes a sprite animation of a fiery burst.

3. Since a burst is short and compact, we create an emitter with only five particles in
the simpleInitApp() method:
public void simpleInitApp() {
 ParticleEmitter burstEmitter = new ParticleEmitter(
 "Burst emitter", Type.Triangle, 5);
 rootNode.attachChild(burstEmitter);

4. The flash.png sprite animation contains a random series of 2 x 2 explosive flashes.
Set both animation dimensions to 2, and the image order to random:
Material burstMat = new Material(assetManager,
 "Common/MatDefs/Misc/Particle.j3md");
burstMat.setTexture("Texture",
 assetManager.loadTexture("Effects/flash.png"));
burstEmitter.setImagesX(2);
burstEmitter.setImagesY(2);
burstEmitter.setSelectRandomImage(true);
burstEmitter.setMaterial(burstMat);

Adding Spark to Your Game

[198]

5. Set the burst color's gradient to a fading orange:
burstEmitter.setStartColor(new ColorRGBA(
 1f, 0.8f, 0.36f, 1f));
burstEmitter.setEndColor(new ColorRGBA(
 1f, 0.8f, 0.36f, 0f));

6. The flash particle starts out tiny (.1f), and quickly blows up five times its original
size:
burstEmitter.setStartSize(.1f);
burstEmitter.setEndSize(5.0f);

7. This burst is so short and powerful that its particles only exist for .2f seconds,
practically weightless:
burstEmitter.setGravity(0, 0, 0);
burstEmitter.setLowLife(.2f);
burstEmitter.setHighLife(.2f);

8. The particles start out flying slightly upward and then in all directions:
burstEmitter.getParticleInfluencer().
 setInitialVelocity(new Vector3f(0, 5f, 0));
burstEmitter.getParticleInfluencer().
 setVelocityVariation(1f);

9. The shape property specifies that particles can start anywhere inside an invisible
sphere with a radius of .5f world units:

burstEmitter.setShape(
 new EmitterSphereShape(Vector3f.ZERO, .5f));
}

Run the sample and you should see layers of orange, fiery flashes. The flashes expand and
disappear quickly (the screenshot on the right). The effect is created using the following
4-frame sprite texture (the screenshot on the left):

Chapter 7

[199]

What just happened?
The gradient starts out with a custom color defined by its RGBA values: 1f, 0.8f, 0.36f,
and 1f. The four floats stand for the red, green, blue, and alpha components of the color
orange. Note that this gradient does not change colors, but opacity. The alpha value changes
from 1f (opaque orange) to 0f (transparent orange). The burst fades away.

To emphasize the sudden burst effect, each flash particle starts out very small (.1f), and
quickly increases to a multiple of its original size (5.0f). Increasing the particle size creates
the illusion that the explosion is closing in on the viewer.

With a particle life of only .2f seconds, this burst is so short and powerful that gravity has
no visible impact, so we specify a weightless zero vector. We set the initial velocity to a
slightly upward vector (5f world units along the Y axis), to give the effect a chance to get
away from the ground. We set the velocity variation value to fan out to its maximum
(1.0f) of 360°. The burst's lifetime is so short that the sprites have no time to fly far, but the
viewer will notice a random outward jerk.

The last line contains something new. By default, particles are emitted from one spot—the
location of the emitter—as if they were emitted from a muzzle. Setting the emitter shape
to a sphere (com.jme3.effect.shapes.EmitterSphereShape) increases the number
of start locations, here to within .5f world units from the emitter. This variation makes the
explosion look more unpredictable.

Starting and stopping effects
By default, emitters produce 20 new particles per second as soon as the update loop starts.
But effects such as bursts or sparks have a clear start and end. They are triggered by game
events—collisions, explosions, or clashing swords. After the event, they disappear.

You pause, start, and stop effects using the following methods:

Emitter method Purpose
emitter.setParticlesPerSec(0); Pause a freshly initialized emitter until

you need it.
emitter.setParticlesPerSec(20);

emitter.emitAllParticles();

Start playing a 20-particle effect. Typically
triggered by a game action or event.

emitter.killAllParticles(); Stop the effect and remove all flying
particles.

Adding Spark to Your Game

[200]

Time for action – fire!
Let's have a look at a classic fire effect. You can use it in combination with a Point Light,
for campfires, torches, or for a wizard's fireball spell.

1. Make a copy of Main.java and name the class Particle6Fire.java. Remember
to also refactor the first line of the main() method to Particle6Fire app =
new Particle6Fire();.

2. Copy the included file assets/Effects/flame.png into your project's assets/
Effect directory. It includes a sprite animation of flames.

3. Initialize the emitter, give it a material based on Particle.j3md, and attach it to
the scene:
public void simpleInitApp() {
 ParticleEmitter fireEmitter = new ParticleEmitter(
 "Emitter", ParticleMesh.Type.Triangle, 30);
 Material fireMat = new Material(assetManager,
 "Common/MatDefs/Misc/Particle.j3md");
 rootNode.attachChild(fireEmitter);

4. Our fire sprite animation is made up of 2 x 2 random flames:
fireMat.setTexture("Texture",
 assetManager.loadTexture("Effects/flame.png"));
fireEmitter.setMaterial(fireMat);
fireEmitter.setImagesX(2);
fireEmitter.setImagesY(2);
fireEmitter.setSelectRandomImage(true);
fireEmitter.setRandomAngle(true);

5. The color gradient changes from orange to red:
fireEmitter.setStartColor(new ColorRGBA(1f, 1f, .5f, 1f));
fireEmitter.setEndColor(new ColorRGBA(1f, 0f, 0f, 0f));

6. Flames move quickly and seem weightless. They keep blazing in their initial direction
(upward along the Y axis) and don't vary much to the sides (.2f):
fireEmitter.setGravity(0,0,0);
fireEmitter.getParticleInfluencer().
 setVelocityVariation(0.2f);
fireEmitter.getParticleInfluencer().
 setInitialVelocity(new Vector3f(0,3f,0));

Chapter 7

[201]

7. Set low and high life to very different values and decrease the size:
fireEmitter.setLowLife(0.5f);
fireEmitter.setHighLife(2f);
fireEmitter.setStartSize(1.5f);
fireEmitter.setEndSize(0.05f);

Run the sample and watch your cozy fire effect. With the right coloring and particle speed,
four flame sprites (the screenshot on the left) create a classical fire effect (the screenshot
on the right):

What just happened?
For the fire's color, you choose a gradient that fades from an opaque orange to a transparent
red. A fire starts as a big blaze before it dwindles to tiny flames, so you set the start size
(1.5f) to a larger value than the end size (0.05f). You set gravity to zero to achieve the
impression of weightless flames flying upward.

To simulate how most flames flicker away quickly, and only a few lick up above the main blaze,
you set the minimum (0.5f) and maximum (2.0f) lifetime to very different values. You set the
initial velocity to an upward vector, and the variation sideways to 72° (0.2f * 360°).

This demo is a basic template for all kinds of fires, from burnt offerings to campfires.
Decrease the particle size and maximum life, and you can attach the emitter to a torch or
candle. Increase the particle size and lifetime, and you can attach the emitter to a burning
building or use it as a forest fire.

Adding Spark to Your Game

[202]

Time for action – design effects in the SDK
SceneComposer in the jMonkeyEngine SDK is a nifty tool to try out different particle settings
and preview them in a user-friendly way.

The following screenshot shows the effect preview in the SceneComposer window, the
spatial in the SceneExplorer window, and the Emitter – Properties window:

To create your own effect, start with an empty scene in the SDK's project window:

1. Right-click on the assets/Scenes directory and go to New | Other….

2. Go to Scene | Empty jME3 Scene.

3. Go through the new file wizard and name the effect; for example, FireEffect.
j3o.

You find the scene node FireEffect.j3o in your assets/Scenes directory in the
Projects window.

Chapter 7

[203]

Let's add a particle emitter:

1. In the Projects window, right-click on FireEffect.j3o and select Edit in
SceneComposer. You should see an empty scene in the SceneComposer window.

2. Open the SceneExplorer window from the Window menu.

3. Right-click on the New Scene node in the SceneExplorer window, and go to Add
Spatial | Particle Emitter.

You now see the default particle emitter in the SceneComposer window.

Let's create the effect material:

1. Click to select the scene's emitter node in the SceneExplorer window.

2. Open Properties from the Window menu. Go to Properties | Geometry | Material,
and click on Create j3m file to create a new .j3m material.

3. Select the Particle.j3md material definition in the Material Editor.

4. Specify an image as Texture in the Material Editor; for example, Effects/flame.
png.

5. In the Material Editor under Additional RenderState, set Blend to Additive.

6. Click on Emitter again and return to the Properties window. Make sure to specify
the rows (2) and columns (2) for your chosen texture in the Image X and Image Y
fields!

Your effect now has a custom material.

Let's tweak the color, size, and other properties:

1. Continue to modify the emitter's properties until you're satisfied.

2. Preview the effect in the SceneComposer window.

3. Right-click on Emitter in the SceneExplorer window and choose Rename…. Give the
emitter a descriptive name; for example, Fire Effect.

When you're done, click to select the .j3o file in the Projects window. Go to File in the main
menu and click on Save to save your changes.

Adding Spark to Your Game

[204]

What just happened?
All emitter properties are optional and have default values that you can customize.

The following table lists all emitter properties:

Emitter property Description

setParticlesPerSec()
 Default: 20

The density, how many particles are emitted per second:

 � Set to zero to pause the effect

 � Set to a value greater than zero for a constantly
looping effect

setStartSize()
 Default: 0.2f

setEndSize()
 Default: 1.0f

The radius of the scaled particle:

 � Set to the same value for a static cloud effect

 � Set to different values to simulate shrinking
(retreating) or growing (approaching)

setStartColor()
 Default: gray

setEndColor()
 Default: transparent

The color of the opaque (non-black) parts of the texture:

 � Set to the same colors for single-colored effects
(for example, fog, debris)

 � Set to different colors for a gradient effect
(for example, fire, magic spell)

getParticleInfluencer()
 .setInitialVelocity()
 Default: Vector3f.
ZERO

The initial direction and speed of the particles.

The longer the vector, the faster they fly.

getParticleInfluencer()
.setVelocityVariation()
 Default: 0.2f = 72°

How much the particles fan out:

 � 0.0f : Particles fly only in the direction of the initial
velocity (for example, laser gun blasts)

 � 0.5f: Particles emit within 0.5f * 360° = 180° of the
initial direction (for example, sparks)

 � 1.0f: Particles emit in random 360° directions (for
example, explosions, butterflies)

setFacingVelocity()
 Default: false

The direction in which particles face while flying; cannot be
combined with setFaceNormal():

 � false: Particles keep flying, rotated the way they
started (for example, insects)

 � true: Flying particles pitch in the direction in which
they are falling (for example, missiles)

Chapter 7

[205]

Emitter property Description

setFaceNormal()
 Default: Vector3f.NAN

The direction in which particles face while flying; cannot be
combined with setFacingVelocity():

 � Vector3f.NAN: Flying particles face the camera
(most commonly used case)

 � Vector3f: Flying particles are rotated to face the
given vector (for example, use Vector3f.UNIT_Y
to make a horizontal shockwave face upward)

setLowLife()
 Default: 3f

setHighLife()
 Default: 7f

The fade-out period is set to a random value between high
life and low life. High life must be greater than low life.

 � Small values make the effect busier; higher values
make it steadier.

 � Similar values create a regular effect (for example, a
fountain). Different values create a distorted effect
(for example, fire with individual long flames).

setRotateSpeed()
 Default: 0f

How much particles spin while flying:

 � 0.f: Particles fly steadily (for example, smoke,
insects, controlled projectiles)

 � Greater than 0.0f: Particles spin while flying (for
example, debris, shuriken, missiles out of control)

setRandomAngle()
 Default: false

Controls whether particles are rotated before they
are emitted:

 � true: Each particle is rotated at a random angle
(for example, explosions, debris)

 � false: Particles fly like you drew them in the texture
(for example, insects)

setGravity()
 Default: Vector3f.
ZERO

The simulated gravity of the particles:

 � 0,10,0: Particles are heavy and fall down
(for example, debris, sparks)

 � 0,-10,0: Particles are lightweight and fly up
(for example, flames)

 � 0,0,0: Particles fly in the direction of their initial
velocities (for example, zero-gravity explosions)

setShape(new
 EmitterSphereShape(
 Vector3f.ZERO, 2f))

Default:
 EmitterPointShape()

By default, particles are emitted from a point.
You can increase the emitter shape to occupy
EmitterSphereShape or EmitterBoxShape. New
particles start anywhere inside the shape, which makes the
effect more unpredictable (for example, bursts, spells).

Adding Spark to Your Game

[206]

Time for action – finding stuff in the scene graph
When you create effects in the SDK, you can add several spatials to one .j3o file. For
a campfire, you would add one fire emitter, one smoke emitter, and some wooden logs
geometries. After loading the scene, you may want to change the effect properties inside
the loaded scene, but how do you access, say, the fire emitter, without a variable?

Use the following approach to find any spatial anywhere in your scene graph:

1. Make a copy of Main.java and name the class LoadEffectFromJ3o.
java. Remember to also refactor the first line of the main() method to
LoadEffectFromJ3o app = new LoadEffectFromJ3o();.

2. Load the .j3o file containing your effect in the simpleInitApp() method, using
assetManager, and attach it:
Node myScene =
 (Node)assetManager.loadModel("Scenes/FireEffect.j3o");
rootNode.attachChild(myScene);

3. Create a custom com.jme3.scene.SceneGraphVisitorAdapter to define
search criteria:
SceneGraphVisitorAdapter myEmitterVisitor =
 new SceneGraphVisitorAdapter() {
 @Override
 public void visit(Geometry geom) {
 super.visit(geom);
 searchForEmitter(geom); // trigger custom test
 }
 @Override
 public void visit(Node node) {
 super.visit(node);
 searchForEmitter(node); // trigger custom test
 }

 private void searchForEmitter(Spatial spatial) {
 // specify search criteria, e.g. class, name, properties
 if (spatial instanceof ParticleEmitter) {
 System.out.println("Emitter in "+ spatial.getName());
 // modify the found node:
 ((ParticleEmitter)spatial).setNumParticles(10);
 }
 }
}

Chapter 7

[207]

4. Start the search in the simpleInitApp() method. You scan rootNode for
emitters using myEmitterVisitor, either depth-first or breadth-first:

rootNode.depthFirstTraversal(myEmitterVisitor);
rootNode.breadthFirstTraversal(myEmitterVisitor);

Try the code sample on a scene with different search criteria. For example, additionally
test for spatial.getName().equals("Fire Effect") or spatial.getName().
equals("Smoke Effect") and change different properties in each emitter.

What just happened?
You created a custom SceneGraphVisitorAdapters object that contains specific
search criteria, such as a spatial instance of ParticleEmitter, and an action, such
as ((ParticleEmitter)spatial).setNumParticles(10). You must implement
the visit() method for nodes and geometries. The implementations can be different
or the same for both, or simply return, depending on whether you search for nodes
or geometries, or both. In the previous example, we created a helper method named
searchForEmitter() that we used for both.

You then applied the visitor to a node, such as rootNode. If the spatials in question are
children of one special subnode, you save time by starting your search there instead.

Whether to traverse the graph depth-first or breadth-first, depends on the
layout of your scene graph and what you are looking for. If you are searching for
geometries, a depth-first search may be more efficient. If you are searching for
nodes under the root node, then breadth-first is faster. The two methods return
results in different orders: If the action is inherited by child nodes (for example, a
transformation), then the order in which you apply changes makes a difference.

You write custom SceneGraphVisitorAdapters not just to find lost particle emitters.
In general, SceneGraphVisitorAdapter is an elegant way to loop over the scene graph
and search for spatials by class, name, properties, or controls.

For example, you could create myAnimationVisitor that scans spatials for animation
controls, and does something with them (here, we simply print them):

private void searchForAnimations(Spatial spatial) {
 AnimControl control = spatial.getControl(AnimControl.class);
 if (control != null) {
 for (String anim : control.getAnimationNames()) {
 System.out.println(spatial.getName()+" has animation: "+ anim);
 }
 }
}

Adding Spark to Your Game

[208]

Custom effect textures
In this chapter, you used the provided particle textures. You can also create custom particle
textures and load them into any material that is based on Particle.j3md:

 � At minimum, your particle texture has one frame (1 x 1). But effects can have any
number of rows and columns, depending on the length of your sprite animation.

 � When determining texture size, you must lay out all frames on a regular grid. All
frames must be rectangular, non-empty, and have the same size. For example, a 2 x
3 frame animation has two columns and three rows. With a frame size of 128 x 64
pixels each, texture size is 2 * 128 x 3 * 64 = 256 x 192.

 � Particle textures are grayscale images with black backgrounds. White is replaced by
the color gradient, and black is rendered transparent.

 � If you want to play the animation in order (for example, for bats, insects), draw the
frames from left to right, and top to bottom. In all other cases (for example, for
debris, sparks, smoke, snowflakes) draw the frames in any order.

Look at the included particle textures for examples. The following image shows what the
texture for a 3 x 2 frame snowflake effect would look like. Each snowflake is 30 x 30 pixels.
Therefore, the total texture size is 90 x 60 pixels.

Have a go hero – explosion!
A short-circuit causes sparks to rain down on a gunpowder container. The burst of the
explosion lights up the night, and the shockwave hurls debris in all directions. The rubble
sets on fire, and in the end, all that's left is smoke and embers... Do you accept the challenge
to implement an awesome explosion effect, like the one shown in the following screenshot?

Chapter 7

[209]

An explosion is not limited to a burst of fire. Experiment with what you learned in this chapter
and combine several particle effects. You already have sparks, bursts, fire, and smoke. Can you
create spinning pieces of debris? A round, horizontally expanding shockwave? A scattered cloud
of embers? Create your own textures, or copy the following included textures for inspiration:
Effects/embers.png, Effects/debris.png, and Effects/shockwave.png.

Here are some tips:

1. Make a copy of Main.java and name the class Particle7Explosion.
java. Remember to also refactor the first line of the main() method to
Particle7Explosion app = new Particle7Explosion();.

2. Use the jMonkeyEngine SDK to create a .j3o file containing the effects. Attach
the final effect to the root node and use a visitor to trigger individual emitters.
Alternatively, write convenience methods, which initialize individual emitters and
their properties, in Java code, and attach each emitter to the root node. Look at the
code from previous examples for inspiration.

3. Deactivate the looping behavior in each emitter using setParticlesPerSec(0).

4. Write an update loop timer (or an input listener, if you prefer) that triggers the
explosion by calling emitAllParticles() on each emitter.

5. Clean up the scene by calling killAllParticles() on each emitter.

You begin to see how powerful small-particle systems can become when used together!

Adding Spark to Your Game

[210]

Scene-wide effects
In addition to self-contained particle effects, video games sport impressive scene-wide
effects: sunny glows, gloomy shadows, reflections, night-vision goggles, motion blurs, or
cartoon shading. These post-processing effects are applied to the rendered scene, in real
time. You already saw a post-processing effect in action when you used GlowMap.

By default, post-processing is inactive. You can chain up several effects and apply one
processor to the output of the previous one. There are two types of post-processors:

 � SceneProcessor: This can render scene-wide effects before and after the
classic rendering of the scene. You add SceneProcessors to viewPort of
SimpleApplication in the order in which you want them to be rendered. The
most common examples of SceneProcessors are drop shadows and reflective water.

 � Filter: This is a 2D effect that is applied to the buffer after the scene is rendered. A
FilterPostProcessor is a special SceneProcessor that applies several filters
to the rendered scene, again, in the order in which you added them. When you
want to use filters in your application, add one FilterPostProcessor to the
viewPort of your SimpleApplication, and add all filters to it. Examples of filter
effects include blurs, fog, bloom, cartoon effects, and fades.

The jMonkeyEngine includes several popular post-processor filters in the com.jme3.post
package. You find commonly used SceneProcessors under com.jme3.shadow and com.
jme3.water. Check the jmonkeyengine.org wiki documentation for the latest
post-processor contributions.

Advanced users who are interested in designing their own post-processor
filters should check out the jMonkeyEngine sources. Have a look at the
com.jme3.post and com.jme3.post.filters packages and copy
ColorOverlayFilter.java, a simple example filter that tints every
pixel with a color. This Java file references Overlay.j3md in core-
data/Common/MatDefs/Post/. This material definition defines
material parameters, and references two custom shaders, Post.vert and
Overlay.frag. Being written in GLSL (OpenGL Shading Language), shader
functions have access to, for example, depth and color of all current pixels.
Advanced users place their custom .vert, .frag, and .j3md files into the
assets/MatDefs directory, and use them as described in this chapter.

The following examples demonstrate how you activate com.jme3.post.
SceneProcessors and com.jme3.post.FilterPostProcessors in
the viewPort of your SimpleApplication.

Chapter 7

[211]

Time for action – welcome to Dark Town
From the point of view of a 3D engine, shading and lighting are two separate things.
You may have noticed that, by default, our walls, bricks, and cannon balls don't cast
drop shadows onto the floor or on each other.

This is how you can activate drop shadows using a SceneProcessor:

1. Make a copy of Main.java and name the class ShadowDirectional.
java. Remember to also refactor the first line of the main() method to
ShadowDirectional app = new ShadowDirectional().

2. Create a directional light source and add it to the scene:
public void simpleInitApp() {
 DirectionalLight sun = new DirectionalLight();
 sun.setDirection(new Vector3f(.3f, -0.5f, -0.5f));
 rootNode.addLight(sun);

3. Create a DirectionalLightShadowRenderer object in the simpleInitApp()
method. You find it in the com.jme3.shadow package. Initialize
DirectionalLightShadowRenderer and use the setLight() method to link it
to the global light source:
DirectionalLightShadowRenderer dlsr =
 new DirectionalLightShadowRenderer(assetManager, 1024, 2);
dlsr.setLight(sun);

4. Add the shadow post-processor to viewPort of your SimpleApplication:
viewPort.addProcessor(dlsr);

5. Load a scene in the simpleInitApp() method, as in previous demos:
assetManager.registerLocator("town.zip", ZipLocator.class);
Spatial sceneGeo = assetManager.loadModel("main.scene");
rootNode.attachChild(sceneGeo);

6. If your scene consists of many objects, activate shadows only on objects that
require them:

rootNode.setShadowMode(ShadowMode.Off);
sceneGeo.setShadowMode(ShadowMode.CastAndReceive);
}

Adding Spark to Your Game

[212]

Run the code. You should see your scene illuminated and casting drop shadows. Add more
objects and switch their shadow modes to Cast, Receive, CastAndReceive, or Off, to
see the differences. The following screenshot shows drop shadows cast on the floor and
neighboring objects:

What just happened?
DirectionalLightShadowRenderer depends on a directional light source.
The constructor expects as arguments the assetManager, a shadow map size,
and the number of shadow maps to use:

 � Using large shadow maps can slow down performance, but result in more clearly
outlined shadows, even for small objects such as a teapot. Shadow map sizes must
be powers of two. Typical values are 512, 1024, or 2048.

 � Using more shadow maps improves shadow quality—the minimum is 1 and the
maximum is 4. 2 is a good value to start experimenting with.

 � You must use setLight() on the renderer object to specify a directional light
that is attached to the scene.

Chapter 7

[213]

DirectionalLightShadowRenderer uses the Parallel Split Shadow Mapping (PSSM)
technique. It creates several shadow maps and splits the view frustum into several parallel
parts. Shadows that are close to the camera get higher-resolution shadows, and areas farther
away get less detail. This improves the look of the shadows with almost zero performance
loss. If you set the number of maps to 1, the renderer uses one shadow map for the entire
scene. This means that every area gets an equal amount of precision on the shadow map,
even if the player is not close enough to see it. Using one shadow map wastes resources for
large scenes, but works well for small, simple scenes. Games where the camera looks down
on a small scene (for example, real-time strategy games with a "bird's eye view") especially
benefit from basic drop shadows.

For performance reasons, it's a best practice to only activate shadows on objects that require
them. First, you switch off shadow rendering for the entire root node. This prevents all
shadow-less objects (the sky, small items, and particle emitters) from wasting GPU resources.
Next, you specify the shadow-casting behavior for individual objects: the lowest ground and
floors only receive shadows, they don't cast any. Objects high up (for example, airplanes)
never receive shadows, but they cast shadows. Many other objects in the main scene cast
and receive shadows.

You can choose from the following shadow modes in the com.jme3.renderer.queue.
RenderQueue package:

Shadow Mode Description Example

Receive This node only receives shadows
and never casts any.

Performance impact: medium

Floors, ground, terrains—low
objects that no player will ever
see from below.

Cast This node only casts shadows
and never receives any.

Performance impact: medium

Lone trees, lone towers, eagles,
airships—high or thin objects
upon which nothing will ever
cast a shadow.

CastAndReceive This node casts and receives
shadows.

Performance impact: high

Common objects such as
buildings, walls, characters,
projectiles, and vehicles.

Off This node neither casts nor
receives shadows.

Performance impact: low

Particle emitters, sky, ghosts,
window panes, far-away
background objects, and so on.

Adding Spark to Your Game

[214]

Time for action – welcome to Dark City
For larger scenes, you should try a DirectionalLightShadowFilter object from the
com.jme3.shadow package.

You can use a copy of ShadowDirectional.java for the following exercise:

1. Add a directional light source to the scene:
public void simpleInitApp() {
 DirectionalLight sunLight = new DirectionalLight();
 sunLight.setDirection(new Vector3f(.3f, -0.5f, -0.5f));
 rootNode.addLight(sunLight);

2. If you re-use code from the ShadowDirectional.java class, deactivate the
previously created DirectionalLightShadowRenderer object, or at least
comment out its addProcessor() line:
// viewPort.addProcessor(dlsr);

3. Create a DirectionalLightShadowFilter object in the simpleInitApp()
method. Use the setLight() method to specify your scene's directional
light source:
DirectionalLightShadowFilter dlsf =
 new DirectionalLightShadowFilter(assetManager, 1024, 2);
dlsf.setLight(sun);
dlsf.setEnabled(true);

4. Create a FilterPostProcessor object (if your scene doesn't already have
one), and add the filter to it. As always, add the FilterPostProcessor to
the viewPort:
FilterPostProcessor fpp = new FilterPostProcessor(assetManager);
fpp.addFilter(dlsf);
viewPort.addProcessor(fpp);

5. Load a scene in the simpleInitApp() method, as in previous demos:
assetManager.registerLocator("town.zip", ZipLocator.class);
Spatial sceneGeo = assetManager.loadModel("main.scene");
rootNode.attachChild(sceneGeo);

6. Again, activate shadows only on objects that require them:

 rootNode.setShadowMode(ShadowMode.Off);
 sceneGeo.setShadowMode(ShadowMode.CastAndReceive);
}

Run the code. You should see your scene with high-quality drop shadows.

Chapter 7

[215]

What just happened?
The shadow quality of DirectionalLightShadowFilter is comparable to that offered
by DirectionalLightShadowRenderer. DirectionalLightShadowFilter is
generally faster for larger scenes with more than a dozen shadow-receiving objects. Note
that DirectionalLightShadowFilter ignores the ShadowMode property in geometries,
which means that all objects in the scene receive shadows.

Eventually, it comes down to the composition of your scene—which of the two shadow
implementations creates the effect you want, at the lowest performance cost.

Time for action – this city needs more gloom
We use ambient occlusion (SSAO) in scenes with no directional sunlight; for example, to
simulate a gloomy indoor scene, a narrow street, or a gray, overcast day.

You activate ambient occlusion as follows:

1. Make a copy of Main.java and name the class ShadowSSAO.java. Remember
to also refactor the first line of the main() method to ShadowSSAO app = new
ShadowSSAO().

2. Add FilterPostProcessor as a class field, and initialize it in the
simpleInitApp() method. Add FilterPostProcessor to viewPort
of your SimpleApplication:
private FilterPostProcessor fpp;
public void simpleInitApp() {
 FilterPostProcessor fpp = new FilterPostProces
 sor(assetManager);
 viewPort.addProcessor(fpp);

3. Create an SSAOFilter object (from com.jme3.post.ssao), and add it to
your FilterPostProcessor to activate SSAOFilter:
SSAOFilter ssaoFilter = new SSAOFilter
 (12.94f,43.93f,.33f,.60f);
fpp.addFilter(ssaoFilter);

4. Add at least one ambient light source to the scene:
AmbientLight ambientLight = new AmbientLight();
rootNode.addLight(ambientLight);

5. Again, load a scene in the simpleInitApp() method, as in previous demos:

 assetManager.registerLocator("town.zip", ZipLocator.class);
 Spatial sceneGeo = assetManager.loadModel("main.scene");
 rootNode.attachChild(sceneGeo);
}

Adding Spark to Your Game

[216]

Run the code. Your scene should be bathed in gloomy shadows. Despite the lack of actual
drop shadows, the edges where objects meet are clearly distinguishable. The following
screenshot shows the extra shadows where the tiny house touches the floor, and onto
the side of the large building:

What just happened?
Video games use a simplified Screen-Space Ambient Occlusion (SSAO) algorithm, which
is not actually physically correct. Nevertheless, SSAO is a good approximation of how light
radiates and how occlusion causes extra shading.

Play with the four parameters to get the right effect, depending on how far apart objects,
floors, and walls are in your scene:

Argument Default Description
sampleRadius 5.1f The radius of area around a point from where random

samples are picked.
intensity 1.2f The intensity of the occlusion.
scale 0.2f The distance between occludee and occluders that are still

considered to be casting shadows.
bias 0.1f The width of the occlusion cone considered by the occludee.

Feel free to combine SSAO with PSSM. As you have seen in Chapter 5, Creating Materials,
the human brain derives a lot of information from light. If this information is lacking, you
keep the player "in the dark," which adds a lot of realism to night and dungeon scenes.
Be aware, however, that not every game needs expensive real-time shadows. Activate
them only when you need them.

Chapter 7

[217]

Time for action – stay focused
In addition to shadows, you can add cool glows and blurs to selected parts of the scene,
or pull out all the stops and manipulate the whole scene, as the toon filter does.

The depth-of-field blur effect simulates how objects go in and out of focus when the
human eye focuses near and far. The following screenshots focus first on the statue in the
foreground, then on the houses in the background, and then on the façade of the building:

This filter needs update loop code to adjust properties depending on where the player is
looking. To determine the player's line of sight, we use the familiar ray-casting algorithm.

The following example shows how you activate this cool blur effect:

1. Make a copy of Main.java and name the class DepthOfFieldBlur.
java. Remember to also refactor the first line of the main() method to
DepthOfFieldBlur app = new DepthOfFieldBlur().

2. Add three class fields: one for the scene, one for FilterPostProcessor, and one
for the depth-of-field blur filter (from the com.jme3.post.filters package):
private Spatial sceneGeo;
private FilterPostProcessor fpp;
private DepthOfFieldFilter dofFilter;

Adding Spark to Your Game

[218]

3. Initialize these objects in the simpleInitApp() method. Add the
FilterPostProcessor object to the viewPort, and add the
DepthOfFieldFilter to the FilterPostProcessor:
public void simpleInitApp() {
 fpp = new FilterPostProcessor(assetManager);
 viewPort.addProcessor(fpp);
 dofFilter = new DepthOfFieldFilter();
 fpp.addFilter(dofFilter);

4. Load and attach a scene, and add a light source:

assetManager.registerLocator("town.zip", ZipLocator.class);
sceneGeo = assetManager.loadModel("main.scene");
rootNode.attachChild(sceneGeo);

DirectionalLight sunLight = new DirectionalLight();
sunLight.setDirection(new Vector3f(0.3f, -0.5f, -0.5f));
rootNode.addLight(sunLight);
}

We need to determine what the player is looking at in the scene, so we can update the focus
distance. We use the following ray-casting code in simpleUpdate():

1. Cast a ray from the camera location forward, in the view direction. This is the
direction in which the player is looking:
public void simpleUpdate(float tpf) {
 Ray ray = new Ray(cam.getLocation(), cam.getDirection());

2. Reset the collision results:
CollisionResults results = new CollisionResults();

3. Collect the new collision results between the ray and the sceneGeo scene:
int numCollisions = sceneGeo.collideWith(ray, results);

4. If the result is greater than 0, the player is focusing on the scene: get the distance
between collision point and camera, and adjust the focus distance:

if (numCollisions > 0) {
 CollisionResult hit = results.getClosestCollision();
 dofFilter.setFocusDistance(hit.getDistance() / 10.0f);
}

Run the code. The scene is clear in the center where the player is focusing. Everything else,
closer or farther away, seems slightly out of focus.

Chapter 7

[219]

What just happened?
The DepthOfFieldFilter constructor is initialized with default values for its three
arguments: focus distance, focus range, and blur scale. In use cases such as this demo,
you only set the focus distance and leave the rest of the parameters untouched.

Focus range is the radius around the focus distance where the objects begin to go out
of focus. If you set the blur scale to values greater than the default value, 1f (for example,
4f), the blurriness increases and the player seems to see the scene through the eyes of a
drugged or dizzy character, which can be a desired effect.

We use DepthOfFieldFilter in first-person games where players navigate through scenes
that have a lot of depth. It works great with wide landscapes with hiding places, or vast halls
with small details that the player may want to focus on.

Time for action – this city needs more glow
You already know a way to add glows: the GlowMap and GlowColor parameters in
materials. A bloom filter results in the same halo-like glow, but it is applied scene-wide.

Let's apply a glow to our scene:

1. Make a copy of Main.java and name the class BloomGlow.java. Remember
to also refactor the first line of the main() method to BloomGlow app = new
BloomGlow().

2. Add three class fields: one for the scene, one for the FilterPostProcessor,
and one for the bloom filter (from the com.jme3.post.filters package):
private Spatial sceneGeo;
private FilterPostProcessor fpp;
private BloomFilter bloom;

3. Initialize bloom and fpp in the simpleInitApp() method. Add the
FilterPostProcessor to the viewPort, and add the BloomFilter
to the FilterPostProcessor:
public void simpleInitApp() {
 fpp = new FilterPostProcessor(assetManager);
 viewPort.addProcessor(fpp);

 bloom = new BloomFilter();
 fpp.addFilter(bloom);

4. Load and attach a scene of your choice, and add a light source:

 assetManager.registerLocator("town.zip", ZipLocator.class);
 sceneGeo = assetManager.loadModel("main.scene");

Adding Spark to Your Game

[220]

 rootNode.attachChild(sceneGeo);

 DirectionalLight sunLight = new DirectionalLight();
 sunLight.setDirection(new Vector3f(0.3f, -0.5f, -0.5f));
 rootNode.addLight(sunLight);
}

Run the code and note how the light changed. The following example screenshot zooms in
on a glowing teapot in a Bloom-enhanced scene:

What just happened?
The BloomFilter constructor is initialized with good default values. You can adjust the
following Bloom parameters to make the scene look more the way you want:

Method Default Description
setBlurScale() 1.5f Control the blurriness of the bloom effect.

Using values too high causes artifacts.
setExposurePower() 5.0f Intensify the glow color.
setExposureCutOff() 0.0f Set the glow threshold. 0f means everything

glows; values closer to 1f allow only bright
areas to glow.

setBloomIntensity() 2.0f Increase the brightness.
setDownSamplingFactor() 2.0f Increase the blur range.

Activate the glow effect temporarily, for a sunrise, or to emphasize an important
scene: when the powerful sorcerer reveals himself, when the hero reaches "the
Promised Land"—or when the player is knocked out by a ninja.

Chapter 7

[221]

Time for action — toons and artistic effects
CartoonEdge, Posterization, and CrossHatch (from the com.jme3.post.filters
package) are three examples of artistic filters. In contrast to the other photo-realistic filters,
artistic filters make the 3D scene look flat and untextured, as if painted or printed.

The following screenshot shows how a toon shader makes the fiercest dinosaur look cute:

The toon effect is activated just like any other filter:

1. Make a copy of Main.java and name the class Cartoon.java. Remember to also
refactor the first line of the main() method to Cartoon app = new Cartoon().

2. Add three class fields: one for the scene, one for the FilterPostProcessor, and
one for the CartoonEdgeFilter (from the com.jme3.post.filters package):
private Spatial sceneGeo;
private FilterPostProcessor fpp;
private CartoonEdgeFilter toon;

3. Initialize fpp and toon in the simpleInitApp() method. Add the
FilterPostProcessor to the viewPort, and add the CartoonEdgeFilter
to the FilterPostProcessor:
public void simpleInitApp() {
 fpp = new FilterPostProcessor(assetManager);
 viewPort.addProcessor(fpp);

 toon = new CartoonEdgeFilter();
 fpp.addFilter(toon);

Adding Spark to Your Game

[222]

4. Load and attach a scene or model of your choice, and add a light source:
 assetManager.registerLocator("town.zip", ZipLocator.class);
 sceneGeo = assetManager.loadModel("main.scene");
 rootNode.attachChild(sceneGeo);

 DirectionalLight sunLight = new DirectionalLight();
 sunLight.setDirection(new Vector3f(0.3f, -0.5f, -0.5f));
 rootNode.addLight(sunLight);
}

5. Adjust the material of all Phong-illuminated geometries in the scene:
public void makeToonish(Spatial spatial) {
 if (spatial instanceof Node) {
 Node n = (Node) spatial;
 for (Spatial child : n.getChildren()) {
 makeToonish(child);
 }
 } else if (spatial instanceof Geometry) {
 Geometry g = (Geometry) spatial;
 Material m = g.getMaterial();
 if (m.getMaterialDef().getName().equals
 ("Phong Lighting")) {
 Texture t = assetManager.loadTexture(
 "Textures/ColorRamp/toon.png");
 m.setTexture("ColorRamp", t);
 m.setBoolean("VertexLighting", true);
 m.setBoolean("UseMaterialColors", true);
 m.setColor("Specular", ColorRGBA.Black);
 m.setColor("Diffuse", ColorRGBA.White);
 }
 }
}

6. Apply the makeToonish() method in your simpleInitApp() method.
For example, apply it to the root node after attaching the scene:

makeToonish(rootNode);

Run the code. You should see your scene rendered with fake "two-dimensional" comic
book materials and outlined with black edges.

What just happened?
Apart from activating the filter as usual, the trick with the toon shader is changing the color
ramp of the materials of all geometries in the scene:

Chapter 7

[223]

 � Enable color ramp lighting and set the ColorRamp argument to a simple color
ramp. The included assets/Textures/ColorRamp/toon.png contains a simple
three-step grayscale gradient. The color ramp creates the reduction in colors that is
typical for cartoons.

 � Disable specular colors because cartoon surfaces do not shine.
 � Set all diffuse colors to white, to make everything equally bright.
 � Enable vertex lighting in the material to make colors look like simple gradients.

This also disables bump mapping to make objects look flatter.

Although this filter makes the scene look very simple and flat, do not expect to use this
approach to make a game use as few GPU resources as a 2D game would! The engine
must still render the whole scene in 3D. The post-processor filters work very hard to
remove the depth and material information from the buffers again, which has almost
the same performance impact as using photo-realistic filters.

Have a go hero
Open your Tower Defense game once more, and decorate it with your favorite effects!
You could also use the following tips:

 � Accompany every shot with a glow, a burst, and a shockwave
 � Accompany the defeat of a creep with debris and smoke
 � Accompany the destruction of the player base with a huge explosion
 � Add drop shadows and ambient occlusion shadows to the scene

Summary
You can now spice up games with small particle effects, and enhance the whole scene
by applying post-processor filters. Specifically, you learned:

 � How to configure particle emitters to look like smoke, fire, or sparks
 � How to combine particle emitters to create complex effects, such as explosions
 � How to make a scene cast shadows in the light and glow in the dark
 � How to add focal depth to a wide scene
 � How to turn any 3D scene into a cartoon

Other very common scenarios for post-processor filters include environmental effects
such as waving fog, glittering water, and scattered sunlight. These effects are somewhat
specialized (not every 3D game needs them), so they get a chapter of their own. To stay
with the "nature" theme (and to give your sunlight something to shine upon) the following
chapter covers terrains and skies. Come on, let's take a hike!

8
Creating Landscapes

Many of your adventures have taken you through gloomy dungeons, endless
warehouses, and claustrophobic space ship corridors. You stumbled through
dark hallways wondering whether you would ever see the light of day again.
It's nice to be a fearless hero and all, but can the whole world-saving business
not happen outdoors just once in a while? It can!

Maybe what your game needs is a meandering landscape under an awesome
sky. Flood the scene with a good dose of sunlight (or moonlight) or shroud it in
mysterious fog. Decorate it with trees and bushes and throw in a body of water
for good measure. And off you go, this time across the rock-strewn desert,
through wild jungles, into the overgrown city ruins.

In this chapter, you learn how to create a landscape with:

 � Terrains and trees

 � Sky and sunlight

 � Fog and water

Ready to go for a hike?

Welcome to Earth
Another cool feature that makes it worthwhile to install the jMonkeyEngine SDK is the
Terrain Editor, nicknamed TerraMonkey. This tool allows you to create terrains easily
and save them in the .j3o format.

Creating Landscapes

[226]

Time for action – climbing a hill
Let's create a scene and add a terrain spatial to it. Open the jMonkeyEngine SDK and create
a .j3o file.

1. Open the Project Assets node in the SDK. Right-click on the Scenes node, and
choose New | Other....

2. In the New File wizard, select the Scene category to create an Empty jME3 Scene.

3. Name the scene myTerrain.j3o. The wizard saves the scene to the Scenes
directory, and opens the empty scene in the SceneComposer.

4. Open the SceneExplorer from the Windows menu.

5. In the SceneExplorer, right-click on the New Scene node, and choose Add Spatial...
| Terrain. The Terrain wizard opens.

You use the Terrain wizard to generate a terrain mesh.

1. Specify the terrain's Total Size (for example, 256) and Patch Size (for example, 64).
Both values must be powers of two. Click on Next.

2. Under Heightmap, choose Flat to start with a flat landscape.

3. Specify the size of the AlphaMap of the terrain material (for example, 256). The
value has to be a power of two. The larger the alphamap, the more detailed your
terrain's textures can be. You cannot change this value later.

4. Click Finish to generate the terrain.

5. Click on the Edit Terrain toolbar button (the icon looks like three mountains).

The terrain mesh appears in the Terrain Editor.

The Terrain Editor uses the SceneComposer to preview the scene. When
you load a scene in the SceneComposer and the screen stays black, click
on the light bulb button. This activates a light source so that the materials
can be rendered.
If the model is lacking textures, click on the cube button to visualize the
scene as a wireframe.
If you still see nothing, drag the mouse with the right or left button pressed
to move around in the scene to make certain that you are not too far above
or below the terrain to see it.

Chapter 8

[227]

Now you can use the terraforming buttons in the Terrain Editor to modify the terrain. Click to
activate one of the tools and drag the mouse over the terrain to sculpt it. Just like a paintbrush,
you can specify the radius and weight (intensity) of the terraforming tools, so you can sculpt
larger or smaller chunks of the terrain. You have the following tools at your disposal:

 � Raise or lower: Pull up hills or push down valleys

 � Smooth or rough: Soften edges or make surfaces more uneven

 � Level or slope: Create level plateaus or create slanted slopes

Have a go and terraform some hills! Don't worry about textures for now; we'll look at
them soon.

In the SceneComposer window, press the right mouse button to set the 3D
cursor, and press the left mouse button to select an object. Drag the left mouse
button to rotate, and drag the right mouse button to move the scene. Use the
Monkey Head menu to position the camera above, below, to the left or right,
in front of, or behind the model.

Creating Landscapes

[228]

When you are done terraforming, switch back to the Code Editor, and load the assets/
Scenes/myTerrain.j3o file like any model.

1. Make a copy of Main.java and name the class TerrainFromScene.java.
Remember to also refactor the first line of the main() method to the following:
TerrainFromScene app = new TerrainFromScene();

2. Load the scene, and attach it to the rootNode.
public void simpleInitApp() {
 Spatial terrainGeo =
 assetManager.loadModel("Scenes/myTerrain.j3o");
 rootNode.attachChild(terrainGeo);

3. Add a light source. By default, terrains created with the SDK use an illuminated
material similar to Lighting.j3md.

 DirectionalLight sun = new DirectionalLight();
 sun.setDirection(new Vector3f(-0.39f, -0.32f, -0.74f));
 rootNode.addLight(sun);
}

Run the code sample. Use the W, A, S, and D keys to fly over your terrain and look at it
from different angles.

What just happened?
Congrats, you created a terrain mesh, and you didn't even need Blender! Granted, manually
sculpting a terrain in a model editor gives you full artistic freedom, especially if your landscape
includes overhangs, ledges, or caves. But storing the position of every pixel in the model uses
up a lot of memory. Rendering large terrains in one piece is very inefficient, and likely to slow
down your game.

For a real-time game, you want a faster-loading, more compact solution. While you are
terraforming, the jMonkeyEngine SDK does a lot of work in the background for you.
TerraMonkey saves a top-down view of your terrain in a format called heightmap. Similar to
a topographical hiking map, a heightmap reduces a 3D terrain to a flat 2D array of sampled
height values. When loading the terrain data, the engine extrapolates missing height values
between the sampled coordinates, and recreates the 3D mesh.

Chapter 8

[229]

In the following screenshots, compare the rendered 3D terrain (middle) to the corresponding
2D topographic map (left) and 2D heightmap (right).

A standard heightmap uses height values between 0 to 255, where 0 represents the lowest
valleys and 255 the highest mountains. These values are relative. Whether the highest
elevation in your scene is a 1 world unit high mole hill, or a 1,000 world units high mountain
peak solely depends on how you scale the terrain.

Using a 256-step interval has the advantage that a heightmap can be nicely visualized as
an 8-bit grayscale image. The valleys (down to 0) are black, the mountains (up to 255) are
white, and the slopes in between are gray. Editing a 2D heightmap in a graphic editor is
easier than sculpting a 3D mesh in a model editor. You see that a heightmap is a user-friendly
and memory-efficient way to store elevation data.

Time for action – let there be grass
After you terraformed the landscape, you want to texture areas as grass, rock, sand, stone,
soil, pebbles, pavement—or whatever ground your game's world requires.

Right-click on your terrain file and choose Edit Terrain, and then perform the following steps:

1. Click on the Add Texture Layer button (a green plus sign) in the Terrain Editor.
This lets you add a texture that will be used as a diffuse map. For example, add
a grass or rock texture from the provided assets/Textures/Terrain directory.

2. Optionally, add the corresponding NormalMap of the DiffuseMap.

3. Click on the Paint Texture on Terrain button (looks like a spray can) in the
Terrain Editor.

Creating Landscapes

[230]

4. Click to select the texture that you want to paint.

5. Adjust the radius and weight of the paint brush to apply textures with broader
or finer strokes.

6. Drag the mouse to texture the terrain.

This process is called texture splatting. Repeat it for each texture on your terrain; for
example, rock or grass. Similarly, you can remove textures using the Erase Texture button.

What just happened?
Again, many things happened in the background as the SDK created several texture
layers for you. This user-friendly way of free-form painting is called texture splatting. The
jMonkeyEngine provides you with two material definitions that support texture splatting:
Terrain.j3md and TerrainLighting.j3md from Common/MatDefs/Terrain.

Do you remember that we specified an alphamap size in the Terrain wizard? An alphamap
is one of the secret ingredients of materials that support texture splatting. For each texture
that you paint onto the terrain, the Terrain Editor paints one color on the alphamap. An
alphamap supports up to four splat textures—represented by the red, green, blue, and
alpha channels (RGBA color).

Splat textures work similar to blue screen backgrounds (chroma key) on
TV. While you are painting the first texture on the terrain, the Terrain
Editor is drawing red pixels into the alphamap. When the engine renders
the terrain, it replaces these red pixels with your first texture. Green
pixels are replaced by the second texture, and blue pixels by the third.
This abstraction allows you to swap out whole textures later. You are
beginning to see how nifty texture splatting is!

Here you see an example of a grayscale heightmap (left) and a simple alphamap (middle)
with red, green, and blue channels. The engine generates the terrain from the heightmap,
and replaces the colored pixels with the textures that you assigned (right).

Chapter 8

[231]

Time for action – splat goes the texture
You see how easy it is to create and texture a terrain in the SDK—but you can of course
achieve the same with hand-drawn textures and hand-written Java code.

First, we create a heightmap for our terrain by performing the following steps:

1. Create a grayscale PNG image in a graphic editor of your choice. The size must
be a square power of two; for example, 512 px x 512 px.

2. Use a spray or brush tool to outline the terrain's elevation in grayscales, where
white represents high and black low.

3. Save the heightmap as assets/Textures/Terrain/heightmap.png.

Next, we draw the alphamap that specifies where the grass, rock, and road textures go.

1. Create an empty 32-bit RGBA color image. The size must be a square power of
two; for example, 512 px x 512 px.

2. Open assets/Textures/Terrain/heightmap.png, copy its content, and
paste it into your empty RGB image. We want to use the heightmap as a template
for the alphamap.

3. Choose a wide brush and paint over the heightmap as shown in the preceding
example. Paint dark valleys pure red and paint light mountains pure green.
Then choose a thin brush and paint a pure blue winding road through the
valleys and over mountain passes. Make sure to cover the gray heightmap
completely, so only colors are left.

4. Save the image as PNG under assets/Textures/Terrain/alphamap.png.

We now have a simple custom alphamap that defines where the three texture layers go.
Let's write code that creates a material using this alphamap and three textures.

1. Make a copy of Main.java and name the class TerrainSimple.java. Remember
to also refactor the first line of the main() method to the following:
TerrainSimple app = new TerrainSimple();

2. Create a material based on Terrain.j3md.
public void simpleInitApp() {
 terrainMat = new Material(assetManager,
 "Common/MatDefs/Terrain/Terrain.j3md");

3. Load your alphamap.png into the Alpha layer of the material.
 terrainMat.setTexture("Alpha", assetManager.loadTexture(
 "Textures/Terrain/alphamap.png"));

Creating Landscapes

[232]

4. Terrain.j3md supports three textures. Load grass, rock, and road textures into
layers Tex1 (red), Tex2 (green), and Tex3 (blue). Optionally, specify a texture scale.

 // Grass texture for the splatting material
 Texture grass = assetManager.loadTexture(
 "Textures/Terrain/grass.jpg");
 grass.setWrap(WrapMode.Repeat);
 terrainMat.setTexture("Tex1", grass);
 terrainMat.setFloat("Tex1Scale", 32);

 // Rock texture for the splatting material
 Texture rock = assetManager.loadTexture(
 "Textures/Terrain/rock.png");
 rock.setWrap(WrapMode.Repeat);
 terrainMat.setTexture("Tex2", rock);
 terrainMat.setFloat("Tex2Scale", 64);

 // Road texture for the splatting material
 Texture road = assetManager.loadTexture(
 "Textures/Terrain/road.png");
 road.setWrap(WrapMode.Repeat);
 terrainMat.setTexture("Tex3", road);
 terrainMat.setFloat("Tex3Scale", 16);

The texture splatting material is ready.

Let's proceed to load the heightmap and create a terrain mesh from it.

1. Load the heightmap image as a texture.
Texture heightMapImage = assetManager.loadTexture(
 "Textures/Terrain/heightmap.png");

2. Create an AbstractHeightMap object (from the com.jme3.terrain.
heightmap package) from the texture.
 AbstractHeightMap heightmap = null;
 try {
 heightmap = new ImageBasedHeightMap(
 heightMapImage.getImage(), 0.5f);
 heightmap.load();
 } catch (Exception e) { e.printStackTrace(); }

3. Create a TerrainQuad object (from the com.jme3.terrain.geomipmap
package). A TerrainQuad is a type of node optimized for terrain meshes.
 TerrainQuad terrain = new TerrainQuad(
 "terrain", 65, 513, heightmap.getHeightMap());

Chapter 8

[233]

4. Apply the previously created material to the terrain node. Finally, attach the terrain
to the rootNode.
terrain.setMaterial(terrainMat);
rootNode.attachChild(terrain);

5. Optionally, speed up the flyCam and move the camera into a position from where
you get a good look at the terrain.

flyCam.setMoveSpeed(100);
cam.setLocation(new Vector3f(0, 512, 512));
cam.lookAt(Vector3f.ZERO, Vector3f.UNIT_Y);

Run the code. You do not need a light source this time since Terrain.j3md is a simple,
unshaded material.

What just happened?
This simple example demonstrates the steps that the SDK performs in the background when
you create a terrain. You see that you can create and texture terrains manually if you need
more artistic control, or if you generate landscapes procedurally from code.

The ImageBasedHeightMap constructor expects an image file and a float value.

 � The image is the grayscale heightmap. Remember that the image size must be a
square power of two.

 � The float value (here 0.5f) is a dampening value that smoothes the terrain.

 � Use the heightmap.load() method to initialize the heightmap object.

 � Optionally, call heightmap.smooth(0.9f); after heightmap.load() to avoid
bumps and stairsteps on the generated terrain.

The TerrainQuad constructor expects a node name, terrain patch size in pixels, size of the
heightmap in pixels, and lastly the raw heightmap data as a float array.

 � The patch size is a value used to break down a large terrain mesh into smaller
chunks that can be culled efficiently if out of sight. Obviously, the patch size must
be smaller than the heightmap size: for example, 64 px x 64 px is a good terrain
patch size for a 512 px x 512 px terrain. This value must be a power of two, plus
one, so we specify 65 (64 + 1).

 � The next argument is the size of the heightmap in pixels. Again, this must be a
power of two, plus one. Our image file is 512 px x 512 px, so specify 513 here.

 � The last argument is the raw heightmap data: this data is stored in a 2D float array
that you simply get using heightmap.getHeightMap().

Creating Landscapes

[234]

Next, let's have a closer look at the Java side of texture splatting.

Using the Terrain.j3md definition demonstrated here is the simplest method to
texture a terrain. This material definition supports three diffuse map textures with
texture scales. Typically, you set setWrap(WrapMode.Repeat); on each tiled texture.
If the repetitiveness becomes too visible, decrease the texture scale; if small blades of grass
appear as big as twigs, increase the texture scale. The Terrain.j3md material's diffuse
maps are named Tex1 (red), Tex2 (green), and Tex3 (blue). The texture scale properties
are Tex1Scale, Tex2Scale, and Tex3Scale.

Internally, the Terrain Editor follows the same approach as shown in the Terrain.j3md
example, but it uses the more advanced TerrainLighting.j3md material definition.
TerrainLighting.j3md combines the texture-splatting features of Terrain.j3md with
the Phong lighting support of the already familiar Lighting.j3md, and can produce very
beautiful landscapes. TerrainLighting.j3md supports multiple diffuse and normal maps
(for example, DiffuseMap_1, DiffuseMap_1_scale, and NormalMap_1), in addition to
material colors (Ambient, Diffuse, Specular, and GlowColor), Shininess, GlowMap,
and SpecularMap. As always, remember to add a light source.

The following screenshot shows a rendered terrain with Phong illumination. The trail, rocks,
and grass were added using texture splatting.

Chapter 8

[235]

Typically, you use the SDK to create terrains with materials based on TerrainLighting.
j3md. Advanced users may sometimes want to write Java code that sets these material
properties procedurally, similar to how we just did for Terrain.j3md in chapter08.
TerrainSimple.java. A code sample (chapter08.TerrainLighting.java)
is included with this book. If you are curious, look up the material properties in the
jMonkeyEngine source or on the jmonkeyengine.org wiki. Or simply type
TerraMonkey into the SDK's search box to open the built-in documentation.

Did you know that if you draw your textures and alphamaps by hand as
described here, you can use materials based on Terrain.j3md and
TerrainLighting.j3md on any geometry? These two material
definitions let you apply free-form texture splatting on any model—not
only terrains.

But wait, there's more
Now you know the basics and can start adding terrains to your games. The following terrain
features are optional, but it's good to know they exist.

Time for action – up hill and down dale
We have seen how to generate a terrain from a heightmap using ImageBasedHeightMap
or the SDK. This type of terrain is the one that you have most control over, and you will
probably use it most often. jMonkeyEngine can also generate a random heightmap if you
need a quick and dirty solution.

Perform the following steps to generate a simple random heightmap for a hilly terrain:

1. Return to your copy of TerrainSimple.java.

2. Comment out the line that generates the ImageBasedHeightMap.

3. Add a line that generates a HillHeightMap.
AbstractHeightMap heightmap = null;
try {
 // heightmap = new ImageBasedHeightMap(
 // heightMapImage.getImage(), .5f);

 heightmap = new HillHeightMap(1025,500,50,100,(byte)3);
 heightmap.load();
} catch (Exception e) { e.printStackTrace(); }

4. Keep the rest of the code.

Creating Landscapes

[236]

Run the code. You see a random terrain with lots of round hills. Don't be surprised if the
texture-splatting material that you re-used from the heightmap-based terrain is static,
and obviously will not fit the random shape of the new hilly terrain very well.

What just happened?
The HillHeightMap constructor expects the following arguments:

 � The size of the heightmap to generate (here 1,025 px x 1,025 px)

 � The number of hills (here 600) on the heightmap

 � The minimum and maximum radius of the hills (here 50 to 100)

 � A random seed (here (byte)3) that initializes the randomizer—different seeds
result in different landscapes

In a previous tutorial, you already used the jMonkeyEngine SDK's Terrain
wizard to generate a flat terrain for terraforming. You can also use it to
generate the hill- and image-based heightmaps that we just demonstrated.
The SceneComposer is not a replacement for a 3D model editor, but
you can generate terrains, preview models, arrange scenes, and save them.
Even if you decide to use another IDE for coding, it's worth keeping the
jMonkeyEngine SDK as a handy tool to create scenes in the .j3o format.

Whichever terrain you generate, heightmaps have pros and cons to consider. Their shape
is restricted to a fixed grid of height samples. A heightmap-based ground cannot have any
holes or concave spaces, which makes caves impossible; similarly, if you need ledges, you
must attach them as extra models.

At the same time, its uniformity is also the heightmap's main strength. It allows the scene
graph to use optimizations (such as quadtrees) to adjust the level of detail (LOD) efficiently,
and to cull non-visible parts of the terrain. A heightmap-based terrain does not only render
faster than a mesh of equal size but also collision detection is quicker against a 2D array than
against a 3D mesh.

Time for action – go fast and vast
Vast terrains can render quite slowly, especially if you waste cycles calculating vertices that
the player doesn't even see.

Chapter 8

[237]

We can activate an optimization called LOD by performing the following steps:

1. Return to your copy of TerrainSimple.java.

2. Create a TerrainLodControl (from the com.jme3.terrain.geomipmap
package) and add it to the terrain spatial.

TerrainQuad terrain =
 new TerrainQuad("terrain", 65, 513, heightmap.getHeightMap());
TerrainLodControl lodControl =
 new TerrainLodControl(terrain, getCamera());
terrain.addControl(lodControl);
terrain.setMaterial(terrainMat);
rootNode.attachChild(terrain);

Run the code and move high up and closer again. Watch the change in the level of detail
based on how far away each terrain patch is from the camera.

What just happened?
The TerrainLodControl tracks the camera position to determine which patches of the
terrain are near or far from the user's point of view. The terrain patches that are close to the
camera are rendered in full detail. The patches that are far away from the camera are drawn
with reduced quality, since the user is not able to spot the details anyway. This optimization
is called LOD. Pass the constructor the camera of SimpleApplication, and the terrain
node as arguments.

Even with LOD activated, one problem of meshes is a loss of detail at steep, almost
vertical slopes. The mesh gets stretched, and especially on terrains, distorted textures
result in unnatural-looking cliffs. To alleviate this aesthetic issue, you can use the material
definition's optional tri-planar mapping support. Be aware that tri-planar mapping has
enough impact on performance that it should only be used if your gameplay hinges on
well-textured steep terrains.

To activate it, set the useTriPlanarMapping property on the material object to true.

terrainMat = new Material(assetManager,
 "Common/MatDefs/Terrain/Terrain.j3md");
terrainMat.setBoolean("useTriPlanarMapping", true);

Creating Landscapes

[238]

While we are speaking of steep slopes, one issue with 3D scenes in general, and terrains
in particular, is the hard edge where the model or terrain ends—followed by a sudden
abyss. For the player, stumbling upon a hard, unnatural cliff puts a major damper on
game immersion. When designing the terrain, plan ahead to cover up the edge with
natural obstacles, such as walls, mountainsides, or dense thicket. Design the barriers to be
inconspicuous and clearly non-interactive, so players do not wrongly assume surmounting
these obstacles was part of the game.

If you are fed up with having to sprinkle obstacles over the map to keep
players from falling over the edge, look at the TerrainGrid examples
that are included in the JMETests project. A TerrainGrid provides
you with a randomized endless terrain that automatically extends itself to
wherever the camera moves.

Time for action – plant a tree
Placing a tree on flat ground is easy: you know the y coordinate of the ground plane.

Let's try placing a tree on a hilly terrain.

1. Make a copy of TerrainSimple.java and name the class Trees.java.
Remember to also refactor the first line of the main() method to the following:
Trees app = new Trees();

2. Keep the code that creates HillHeightMap(1025, 1000, 50, 100,
(byte) 3).

3. Load a tree model from the assets folder included with this book.
public void simpleInitApp() {
 Spatial treeGeo = assetManager.loadModel(
 "Models/Tree/Tree.j3o");
 treeGeo.scale(5); // make tree bigger
 treeGeo.setQueueBucket(Bucket.Transparent);
 // transparent leaves
 rootNode.attachChild(treeGeo);

4. Place the tree at (-30,y,-30) on the terrain.

 Vector3f treeLoc = new Vector3f(-30,0,-30);
 treeLoc.setY(terrain.getLocalTranslation().getY());

 treeGeo.setLocalTranslation(treeLoc);
}

Chapter 8

[239]

Run the code. You should see the tree standing on the flat ground, surrounded by hills.
As long as (-30,y,-30) is on the flat part of your terrain, this code works.

But what if you want to place models on the hilly parts of the randomly generated terrain?
You wouldn't want the tree to end up underground, flying in midair, or stuck inside a hill.

With randomly generated heightmaps, you have no chance of guessing where the hills
and the planes are. This is why the TerrainQuad object provides you with an accessor
to determine the y coordinate for any given x and z coordinate on the terrain.

Let's plant a tree at (0,y,-30) on a random terrain.

1. Return to Trees.java.

2. Keep the code that loads the tree model and the terrain.

3. Place the tree at the position (-30,y,-30). Change the line that sets the tree's y
coordinate as follows:

Vector3f treeLoc = new Vector3f(0,0,-30);
treeLoc.setY(terrain.getHeight(
 new Vector2f(treeLoc.x, treeLoc.z)));

treeGeo.setLocalTranslation(treeLoc);

Run the code. The tree stands on the hill.

Creating Landscapes

[240]

What just happened?
The getHeight() method returns the height (y coordinate) of the TerrainQuad at the
given x and z coordinates.

Load some models, Sphere or Box shapes, and experiment. You will notice that spheres
and boxes seem to sink into the ground. You have to add half the box's or sphere's height to
the y coordinate to position them correctly.

The difference between the shapes and the tree model is the geometry's origins. The origin
of a box or sphere is its center. The origin of the tree model is at its roots. So when you place
the tree, you set the position of the tree roots. When you place the box, you set the position
of the center of the crate.

Who decides where a geometry's origin is? It simply depends on how the artist positioned
the model relative to the 3D editor's origin before exporting it! How do you tell where a
model's origin is? Open the model in a 3D scene editor (such as the jMonkeyEngine SDK's
SceneComposer) and find the local origin marker. For example, when you right-click and edit
the tree model in the SDK's SceneComposer, you see the tree's origin is marked at its root.

In contrast, a box geometry's location is relative to its center. You have to add half the box's
height (its extend) to prevent the box from being half sunk into the ground.

Chapter 8

[241]

Not even the sky is the limit
In our first few demos, the background of the scene was always plainly colored—black
or blue. Not very realistic, but acceptable if the indoor player only catches a glimpse of
something blue through the blinds anyway. Now that the game scene is no longer set
underground or indoors, you face the question of how to design a natural background.

The horizon is so far away—it might as well be a flat backdrop on a theatre stage. In fact,
the sky in video games is just that: a flat, pre-rendered image. You can find free sky images
online, but typically, you design custom skies that fit your game's atmosphere.

Don't create a large 3D model filled with skyscrapers and mountains as
background. A huge model may look pretty; rendering it will, however, slow
down your game at runtime. It's also a waste of your artist's time, especially
if the player will never see these models close up.
Scenery generators (such as Bryce or Terragen) are graphic tools that
specialize in creating great-looking panoramic images that are lightweight
enough to be used as backgrounds in video games.

Time for action – nothing but blue sky
The following image shows a simple example of six images that make up a game's
background panorama: you see the top (blue sky), the bottom (the ground), and
four sides (a snow-covered mountain at the horizon).

Creating Landscapes

[242]

The trick with skies is that you project these six textures onto the insides of a gigantic cube
that encompasses your whole scene. This popular approach of faking a background is called
environment mapping. When we use a six-image CubeMap to simulate a sky, we refer to the
box as SkyBox.

You can create your own SkyBox from a vacation photo or poster in a graphic editor:

1. Take six matching square snapshots of a panoramic view: one in each of the cardinal
directions, plus one up, and one down.

2. Use the tools of your graphic editor to make the seams of the photos match.

3. Save them as six individual PNG files. Name them South, East, Up, Down,
and so on.

To create a SkyBox, keep your six images ready, or use the ones provided with this book in
assets/Textures/Sky/Lagoon for now. The jMonkeyEngine SDK creates special SkyBox
objects that you can load into your game just like any other model.

Open the jMonkeyEngine SDK and create an empty scene by performing the following steps:

1. Open Project Assets, right-click on the Scenes node, and choose New | Other....

2. In the New File Wizard, select the Scene category to create an Empty jME3 Scene.

3. Name the scene mySky.j3o. The wizard saves it to the Scenes directory. The empty
scene opens in the SceneComposer.

Just like you used scene objects as containers for terrains, you can use this one as a container
for a SkyBox.

1. Open the SceneExplorer from the Windows menu.

2. Right-click on the New Scene node in the SceneExplorer, and choose Add Spatial...
| SkyBox.

3. Use the SkyBox wizard to load your sky images. Typically, you choose Multiple
Textures and then browse to six images. For this exercise, you can use the Lagoon
picture set included in the assets/Textures/Sky/Lagoon/ directory.

4. Click Finish to create the SkyBox spatial.

Chapter 8

[243]

The following screenshot shows the jMonkeyEngine SDK after creating a SkyBox. Drag the
mouse with the middle mouse button pressed to turn and look at the SkyBox from all sides.

The mySky.j3o object now contains a sky. Use the AssetManager to load the sky into
a scene like any other model:

1. Make a copy of Main.java and name the class Sky.java. Remember to also
refactor the first line of the main() method to the following:
Sky app = new Sky();

2. Load the sky spatial from the mySky.j3o file.

 public void simpleInitApp() {
 Spatial mySky = assetManager.loadModel("Scenes/mySky.j3o");
 rootNode.attachChild(mySky);
 }

Run the code and look at your SkyBox.

Creating Landscapes

[244]

What just happened?
The implementation of a SkyBox relies a bit on smoke and mirrors.

 � The SkyBox is added to a special Sky bucket in the rendering queue. The depth of
geometries in this bucket is set to infinity. This ensures that the sky always appears
behind everything else.

 � The SkyBox automatically follows the camera location. When the player moves, the
SkyBox moves too. Just like the horizon, you will never reach it.

 � The SkyBox does not follow camera rotation. When the player turns, the
orientation of SkyBox stays fixed, just like a real horizon would.

 � The CullMode of SkyBox is set to Never, which ensures it is always visible.

This combination of clever 3D graphic tricks creates the impression of a horizon—a vast
landscape that is infinitely distant. We can see that SkyBoxes are the most efficient way to
simulate a vast panoramic background.

This method only has a few disadvantages that we must work around: the cube maps used in
SkyBoxes do not support animations, so they don't support floating clouds, or trees waving
in the breeze. Also, if you attach overlapping 3D objects to the Sky bucket, don't expect
them to render correctly—infinitely distant objects skip depth testing.

Time for action – sky factory
The SkyBox wizard is handy if you need a sky in a .j3o file. But of course you can also
procedurally create your SkyBox in Java code, using the jMonkeyEngine's com.jme3.util.
SkyFactory package.

1. Return to Sky.java.

2. Comment out the assetManager line that loads the mySky.j3o model.
//Spatial mySky = assetManager.loadModel("Scenes/mySky.j3o");

3. Replace it by the following code that loads the six images:
Texture west = assetManager.loadTexture(
 "Textures/Sky/Lagoon/lagoon_west.jpg");
Texture east = assetManager.loadTexture(
 "Textures/Sky/Lagoon/lagoon_east.jpg");
Texture north = assetManager.loadTexture(
 "Textures/Sky/Lagoon/lagoon_north.jpg");
Texture south = assetManager.loadTexture(

Chapter 8

[245]

 "Textures/Sky/Lagoon/lagoon_south.jpg");
Texture up = assetManager.loadTexture(
 "Textures/Sky/Lagoon/lagoon_up.jpg");
Texture down = assetManager.loadTexture(
 "Textures/Sky/Lagoon/lagoon_down.jpg");

4. Use the createSky() method of SkyFactory to create the spatial:
Spatial sky = SkyFactory.createSky(assetManager,
 west, east, north, south, up, down);

5. Keep the line that attaches the sky spatial.

rootNode.attachChild(sky);

Run the code. The result should look the same as attaching mySky.j3o to the rootNode.

What just happened?
The visual tool in the jMonkeyEngine SDK is quite nifty, but there are situations where we
want to have full control over the scene elements that we generate. In this case, you can use
the com.jme3.util.SkyFactory class to create a sky spatial out of six images directly in
your code. The order of the sky image arguments in the createSky() constructor is always
assetManager, west, east, north, south, up, and down.

If you don't recall the order of arguments of a method or constructor, call
up your IDE's javadoc support. If you use the jMonkeyEngine SDK, javadoc
is already preconfigured. Place the cursor after the opening bracket; for
example, SkyFactory.createSky(|
Now press Ctrl + Space bar to open a handy javadoc pop up that shows the
arguments that this method expects. Use the arrow keys and press Return
to select one of the options, and the SDK generates example code. Fill in the
arguments, and press Tab to jump to the next argument. Press Ctrl + ; to add a
semicolon to the end of the line.

Instead of six individual cube map files, some applications export a single sky texture.
One compressed DDS (DirectDraw Surface) file can contain the whole cube map.
The jMonkeyEngine's com.jme3.util.SkyFactory class also supports loading
DDS SkyBoxes as follows:

Spatial sky = SkyFactory.createSky(assetManager,
 "Textures/Sky/Bright/BrightSky.dds", false);
rootNode.attachChild(sky);

The Boolean false specifies that this is a cube map and not a SphereMap.

Creating Landscapes

[246]

Time for action – fog of war
If you have ever walked through unfamiliar terrain when it was foggy, you know the eerie
feeling. Shadows scurry at the edge of your vision and monsters seem to lurk behind every
tree. Isn't that just the atmosphere that you need for your game?

Thanks to the post-processor, adding fog to a scene is very easy:

1. Make a copy of Main.java and name the class Fog.java. Remember to also
refactor the first line of the main() method to the following:
Fog app = new Fog();

2. Load a scene model or terrain of your choice. Re-use code from the previous
examples. Remember to add a light.

3. Create one FilterPostProcessor per game, and a FogFilter (from the com.
jme3.post package).
private FilterPostProcessor fpp;
private FogFilter fogFilter;

4. In the simpleInitApp() method, initialize the FilterPostProcessor, and add
it to the viewPort.

public void simpleInitApp() {
 fpp = new FilterPostProcessor(assetManager);
 viewPort.addProcessor(fpp);
 //Initialize the FogFilter and
 //add it to the FilterPostProcesor.
 fogFilter = new FogFilter();
 fogFilter.setFogDistance(155);
 fogFilter.setFogDensity(2.0f);
 fpp.addFilter(fogFilter);
 }

Run the code. The following screenshot shows the same town scene once with fog, and once
in the sunlight:

Chapter 8

[247]

What just happened?
You can specify values for FogFilter settings to change the fog's starting distance
(relative to the camera), and the density of the fog.

fogFilter.setFogDistance(155);
fogFilter.setFogDensity(2.0f);

Use these methods whenever you want fog to appear (for example, when the player
approaches a swamp, stormy seas, or a spooky graveyard) or disappear (for example,
when the player approaches a safe haven).

You can also change the fog color for various effects: white fog during the day, gray fog
at dusk or dawn, or black fog to simulate night. A warm fog color (a light orange or light
yellow) can add a lot to the atmosphere of a hot dusty desert, a burning apocalyptic world,
or a volcano cave. A cold fog color (light blue or light green) can emphasize the chilly, wet
atmosphere of a thunderstorm, a murky forest, or an underwater scene.

fog.setFogColor(new ColorRGBA(0.9f, 0.9f, 0.9f, 1.0f));

Fog is popularly used to cover up the horizon or sky. In a world constantly wrapped in fog,
you easily get around not having a SkyBox.

Creating Landscapes

[248]

Catch the sun
When sunlight passes through gaps in the tree canopy, shines in through a window, or
radiates from behind mountaintops, it often appears as a light cone or even individual
beams. We refer to this atmospheric effect colloquially as god beams—the technical
term for them is crepuscular rays.

In 3D graphics, light scattering is simulated with a technique called volumetric lighting. The
beams are rendered as transparent cones of light. The jMonkeyEngine offers support for
these cool light beams in the com.jme3.post.filters.LightScatteringFilter class.

Time for action – let the sun shine in
The light scattering filter is another example of an effect that uses the post-processor that we
are already familiar with from a previous chapter.

1. Make a copy of Main.java and name the class SunLight.java. Remember to
also refactor the first line of the main() method to the following:
SunLight app = new SunLight();

2. Specify the direction of the sunlight as a vector.
 private Vector3f lightDir = new Vector3f(-0.39f, -0.32f,
-0.74f);

3. Create one FilterPostProcessor per game, and a LightScatteringFilter.
 private FilterPostProcessor fpp;
 private LightScatteringFilter sunLightFilter;

4. Use the lightDir vector to create a DirectionalLight and add it to the
rootNode.
 public void simpleInitApp() {
 DirectionalLight sun = new DirectionalLight();
 sun.setDirection(lightDir);
 sun.setColor(ColorRGBA.White.clone().multLocal(2));
 rootNode.addLight(sun);

5. Initialize the FilterPostProcessor and add it to the viewPort.
 fpp = new FilterPostProcessor(assetManager);
 viewPort.addProcessor(fpp);

6. Initialize the LightScatteringFilter and add it to the FilterPostProcesor.
 sunLightFilter = new LightScatteringFilter
 (lightDir.mult(-3000));
 fpp.addFilter(sunLightFilter);

Chapter 8

[249]

7. Continue in the simpleInitApp() method to load a SkyBox, and a scene model or
terrain of your choice. Re-use the code from the previous examples.

8. Finally, look into the sun.

 cam.lookAtDirection(lightDir.negate(),
 Vector3f.UNIT_Y);
 }

Run the code sample. Use the WASD keys to walk around and get a hill or building between
you and the sun. Note how the light beams become brighter and surround the obstacle.

What just happened?
The LightScatteringFilter expects one argument—the position of the main light source.
A DirectionalLight, however, does not actually have a location in the 3D scene. It only has
a direction, because it simulates parallel light emitted from a great (near infinite) distance.

You can easily extrapolate a light position from a light direction by multiplying the direction
vector with a large scalar. We just pretend that the sun is at a point -3,000 world units
away. Note that if you use SkyBox that includes a graphical sun, you need to choose a
light direction vector that matches where the sun is depicted on your SkyBox graphic.

To make the sun brighter, we multiply the light color by a scalar. Here we multiply
ColorRGBA.White by 2.

The following screenshot shows the blinding rays of sunlight that appear when the player
looks into the sun behind a mountain.

Creating Landscapes

[250]

Still waters run deep
Water is one of the more difficult things to render well. You can't simulate an ocean by
creating an animated mesh, or a battalion of particle emitters. If your code does not calculate
all the light reflections and refractions perfectly, the water simulation is bound to look like
either melting plastic or leaking mercury.

The jMonkeyEngine comes prepackaged with two different ready-made water effects for
your scenes: SimpleWaterProcessor and WaterFilter.

Time for action – simple water
A correctly simulated water surface reflects the scene around it—or to be more precise,
it reflects everything attached to a specific scene node that you supply.

1. Make a copy of Main.java and name the class WaterSimple.java. Remember
to also refactor the first line of the main() method to the following:
WaterSimple app = new WaterSimple();

2. Create a class field for the node grouping the reflected scene.
private Node reflectedScene;

3. Create a class field for the light's direction.
 private Vector3f lightDir =
 new Vector3f(-0.39f, -0.32f, -0.74f);

4. Initialize a DirectionalLight.
 public void simpleInitApp() {
 DirectionalLight dl = new DirectionalLight();
 dl.setDirection(lightDir);
 rootNode.addLight(dl);

5. Initialize the reflectedScene node and attach it to the rootNode.
 reflectedScene = new Node("Scene");
 rootNode.attachChild(reflectedScene);

6. Add some scene elements, such as a sky and at least one geometry. Attach both to
the reflectedScene node.
 reflectedScene.attachChild(SkyFactory.createSky(assetManager,
 "Textures/Sky/Bright/BrightSky.dds", false));
 Material boxMat = new Material(assetManager,
 "Common/MatDefs/Light/Lighting.j3md");

Chapter 8

[251]

 boxMat.setTexture("DiffuseMap",
 assetManager.loadTexture("Interface/Monkey.png"));
 Box boxMesh = new Box(2, 2, 2);
 Geometry boxGeo = new Geometry("Box", boxMesh);
 boxGeo.setMaterial(boxMat);
 reflectedScene.attachChild(boxGeo);

7. Create a SceneProcessor for the water effect and add it to the viewPort. The
water reflects sunlight, and everything attached to the reflectedScene node.
 SimpleWaterProcessor waterProcessor =
 new SimpleWaterProcessor(assetManager);
 waterProcessor.setReflectionScene(reflectedScene);
 waterProcessor.setLightPosition(lightDir.mult(-3000));
 viewPort.addProcessor(waterProcessor);

8. Create a 100 x 100 world units big flat geometry as water surface. Apply the "magic"
water material that you get from the water post-processor.
 Spatial waterPlane =
 waterProcessor.createWaterGeometry(100,100);

 waterPlane.setMaterial(waterProcessor.getMaterial());
 waterPlane.setLocalTranslation(-50, 0, 50);

 rootNode.attachChild(waterPlane);

Run the code and watch the waves! Note how the geometry as well as the sky reflect.

Creating Landscapes

[252]

What just happened?
The com.jme3.water.SimpleWaterProcessor class provides a basic water effect. It
is clearly recognizable as water, and it simulates waves and reflections. It renders quickly
enough for a large scene—but you can also scale several water geometries down to fit into
fountains, drinking troughs, or puddles.

Some important things to remember:

 � Attach the sky and scene elements to the reflectedScene node, and not directly
to the rootNode. When you create the water post-processor, you have to supply
the reflectedScene node as an argument. Everything attached to this node is
reflected by the water.

 � Attach the water plane itself to the rootNode, and not to the reflectedScene
node. We don't want the water surface to be reflected in itself (try it, it looks weird).

Since the implementation of the SimpleWaterProcessor is literally quite simple, it comes
with a few downsides:

 � The waves don't really stand out in the third dimension.

 � The WaterPlane is single sided. Seen from below, the water surface becomes
invisible, which breaks the immersion for the player.

 � The WaterPlane has a visible edge that you need to cover up with a model or
within the shape of the terrain.

These caveats are not an issue if you use this effect only on small bodies of water, where you
can make certain that the player has no opportunity to dive into the water.

Time for action – take a swim
Beautifully designed 3D landscapes invite the player to explore and interact. You couldn't
hold it against a player if he or she tried to take a closer look at your water. Maybe a body of
water is an important element in your game. Maybe some parts of the game story are even
set underwater. For these cases, we need to pull out all the stops and show off what the
engine is capable of, by using the com.jme3.water.WaterFilter class.

1. Make a copy of WaterSimple.java and name the class WaterTerrainSky.java.
Remember to also refactor the first line of the main() method to the following:
WaterTerrainSky app = new WaterTerrainSky();

2. Keep the class field for the node that groups the reflected scene.
 private Node reflectedScene;

Chapter 8

[253]

3. Keep the class field for the light direction.
 private Vector3f lightDir = new Vector3f
 (-2.9f, -1.2f, -5.8f);

4. Keep the DirectionalLight in simpleInitApp().

5. Keep the reflectedScene node and attach it to the rootNode.
 reflectedScene = new Node("Scene");
 rootNode.attachChild(reflectedScene);

6. Keep the attached scene elements, such as a sky and a geometry or terrain.
Attach them to the reflectedScene node.

7. Remove the code from simpleInitApp() that initializes the SimpleWater and
WaterPlane. Replace it with the following code that creates a WaterFilter instead:

FilterPostProcessor fpp = new FilterPostProcessor(assetManager);
viewPort.addProcessor(fpp);
WaterFilter water = new WaterFilter(reflectedScene, lightDir);
fpp.addFilter(water);

Run the code. Don't you just want to jump in and take a swim? Go ahead! The WaterFilter
does not only simulate the surface but also includes an underwater filter!

Creating Landscapes

[254]

What just happened?
The WaterFilter simulates waves, foam, reflections, and refractions of the water surface.
Underwater light reflections cause a typical scattered pattern on the sea floor: this optical
effect is called caustics. When light passes through a curved transparent object—such as
water or glass—it is reflected and refracted many times.

The WaterFilter constructor depends on the reflectedScene and the light direction
of the main directional light. This filter has countless optional settings that you can configure.
The defaults, however, already produce very nice results.

Let's have a look at the most commonly used settings:

The WaterFilter method Purpose
setLightColor(ColorRGBA.
White);

setLightDirection(lightDir);

Set these two to the same values as
your main light source's color and
direction.

setSunScale(3); This specifies the size of the
reflection of the sun.

setWindDirection(new
Vector2f(0.0f, -1.0f));

Set this to Vector2f.ZERO for
calm water, and to larger vectors
for flowing water.

setWaveScale(0.005f);

setMaxAmplitude(1);

This specifies how big the waves
are. The smaller the wave scale, the
wider the waves are. The bigger the
amplitude, the higher the waves
are.

setWaterTransparency(.1f); This specifies how muddy (1f) or
clear (.01f) the water is.

setWaterColor(new
ColorRGBA(.1f,.3f,.5f,1f));

setDeepWaterColor(new
ColorRGBA(0f,0f,.1f,1f));

These specify the gradient of the
water's color from the upper layer
to the deepest layers.

setWaterHeight(0.0f); This specifies the height (y) of the
water plane in the scene. Change
this value procedurally in the
update loop to simulate tides.

Chapter 8

[255]

Caustics add a lot of realism to an underwater scene, but calculating them in real time is
prohibitively CPU intensive. Since 3D game engines must favor cheap and fast solutions over
physical correctness, jMonkeyEngine internally simulates underwater caustics using simple
transparent splat textures. The outcome looks just as good, and leaves you enough resources
to add other filters to your scene.

Let's speak about adding other filters. The WaterFilter goes extremely well in
combination with the other post-processor effects that we already know. Why not
add a LightScatteringFilter, DepthOfFieldFilter, and BloomFilter to
improve the scene?

Pop quiz
Q1. What do you need to make the most of texture splatting with a material based on
TerrainLighting.j3md or TerrainLighting.j3md?

1. Specular color, ambient color, diffuse color, alphamaps, and any mesh.

2. Diffuse maps, normal maps, scale, and a terrain mesh.

3. Specular color, ambient color, diffuse color, and a terrain mesh.

4. Diffuse maps, normal maps, alphamaps, scale, and any mesh.

Creating Landscapes

[256]

Have a go hero
Create a cool-looking environment for your Tower Defense game. Decide whether you want to
go for a science-fiction themed alien planet, a modern terrestrial war-zone, a medieval fantasy
battleground, or a futuristic post-apocalyptic world—whatever genre tickles your fancy.

 � Use the SDK to terraform some hills for your towers to stand on, and a valley for
your player's base to hide in. Scale and move the terrain so that the creeps now
approach through the valley entrance. Texture the terrain with materials that fit
your chosen genre.

 � Design a cool background panorama for your game genre and turn it into a SkyBox.
Are you going for a bright, dark, or colorful sky? Adjust the ambient light color to a
warm, neutral, or cold color accordingly.

 � What would your terrain look like if it was shrouded by fog, with only a few light
beams shining through the clouds? (Position the light source not quite opposite
to the camera.)

 � What would your terrain look like if it was set on a lonely island surrounded by
the turbulent sea?

Combine the effects and see how they change the atmosphere of your game
completely—although the game mechanics stay the same.

Summary
In this chapter, we learned how to create natural-looking landscapes.

We can generate terrains with plains, hills, and valleys. The sky in our scenes is not just a
blue background color any more, but a real horizon with a cloudy atmosphere. We can add
realistic-looking water with waves, foam, reflections, and caustics. We know how to enhance
the atmosphere of a scene by adding environmental effects such as sunbeams and fog.

As a side effect, we also learned what a heightmap, cube map, and texture splatting is. With
what we now know, our scenes look nothing less than professional. But do they also sound
professional? The next chapter demonstrates how we can enhance the immersion even
more by adding audio.

9
Making Yourself Heard

You have come very far on your adventurous journey: you have mastered the
creation of interactive scenes, you have the power to control physical forces,
and you know how to fine-tune materials and visual effects. Your game world
is looking pretty good already. But suddenly your spider sense tingles. Did the
birds stop singing? Is there danger ahead? An experienced explorer knows
what is missing: sound effects. As always, the mighty SimpleApplication is
your friend and gives you access to a preconfigured AudioRenderer object.
AudioRenderer supports the widely-used Open Audio Library (OpenAL)
interface that is exposed by the Lightweight Java Game Library (LWJGL).

In this chapter, you will learn how to complete your game, by adding the following:

 � Ambient sounds, GUI beeps, and music

 � Positional sound and directional sound

Time to switch on the surround system (or grab your headphones) and make some noise!

Making Yourself Heard

[258]

Please roar into the microphone now
To record and edit sound files, you need an audio editor. Similar to graphic and model
editors, countless options exist, both free and proprietary.

The jMonkeyEngine team recommends Audacity, which you get for
free (http://audacity.sourceforge.net). This user-friendly
software is open source, and provides you with a solid set of sound
recording, editing, and conversion tools.

You can choose any audio software that is able to export sounds in the supported file
formats: jMonkeyEngine supports Ogg Vorbis audio compression inside .ogg file containers,
and uncompressed PCM audio in .wav file containers.

Format Description Usage

Waveform
.wav

A raw format with a bigger file size
and better quality.

Save short exclamations and noises
(steps, clunks, beeps, voices, cries, and
so on in this uncompressed format).

Ogg Vorbis
.ogg

A compressed format with a smaller
file size and some loss of quality.
Decompression may take extra time
on low-performance devices.

Compress longer clips such as music or
ambient noise loops.

For noises and speech, we recommend saving disk space by exporting sounds
with a bitrate of 96 kbps. If you don't know which of the two formats to choose,
we recommend Ogg Vorbis.

If you don't have time to track down your friendly neighborhood T-Rex for
that perfect "roar!", have a look at the appendix for websites where you
can download free audio samples.

When you are done with recording and editing, you save your sounds in the subdirectories
of your project's assets/Sounds directory, as you do with textures and models.

Ambient sounds! They are everywhere!
In 3D games, objects are scene nodes, lights are light nodes, and similarly, sounds are audio
nodes. You find audio nodes in the com.jme3.audio.* package.

Chapter 9

[259]

Time for action – add ambient sound
Let's create an audio node in the simpleInitApp() method, and play it:

1. Make a copy of Main.java and name the class BackgroundSounds.
java. Remember to also refactor the first line of the main() method to
BackgroundSounds app = new BackgroundSounds();.

2. Copy the River.ogg sound file into the assets/Sounds/Environment/
directory.

3. Use the simpleInitApp() method to load the sound into an audio node:
public void simpleInitApp() {
AudioNode natureAudio = new AudioNode(
assetManager, "Sounds/Environment/River.ogg");

4. Specify properties of the sound; for example, set the volume to 5. 10 is loudest,
0 is silent.
natureAudio.setVolume(5);

5. Switch the sound to play continuously by setting the looping property to true.
Note that if you ran the application now, you would not hear anything yet.
natureAudio.setLooping(true);

6. Call the play() method on the AudioNode to start playing the sound:

natureAudio.play();
}

Run the application. You should hear the continuous sound of a river. Since this is a
looping sound, it plays continuously until you quit the application or call the stop()
method on the AudioNode.

What just happened?
Atmospheric music and background noises—such as chirping birds and cicadas in the
wilderness, dripping water in a dungeon, or the ubiquitous clunking of machines in a
factory—are ambient sounds. Ambient sounds are relatively quiet, they do not emanate
from any specific location, and their volume stays the same independent of the player's
distance. Ambient sound stands in contrast to 3D sound that seems to have an identifiable
location in the scene (we will look into positional audio later).

Making Yourself Heard

[260]

The main purpose of ubiquitous ambient loops is to support the player's immersion in the
scene: your underground maze may look forbidding, but together with the sound of dripping
water, it also feels chilly. And there's nothing like some cracks and whispers to turn an
abandoned office model into a regular Arkham Asylum…

User interface feedback noises—such as beeps and blips when the user selects an item or
switches weapons—can also fall into the category of position-less ambient sounds. GUI
sounds, however, are typically short, while ambient sounds can be quite long. Let's have a
look at how jMonkeyEngine handles longer and shorter sounds; you can choose to either
pre-buffer or stream sounds.

Time for action – to pre-buffer or to stream?
Try the following code to see the difference between the two ways of loading audio files.
Use the Boolean parameter in the AudioNode constructor to switch streaming on (true)
or off (false).

1. Make a copy of Main.java and name the class BufferedVsStreamed.
java. Remember to also refactor the first line of the main() method to
BufferedVsStreamedapp = new BufferedVsStreamed();.

2. Nature.ogg is a large file (650 kb), so you decide to stream it using the
following code:
public void simpleInitApp() {
 AudioNode natureAudio = new AudioNode(assetManager,
 "Sounds/Environment/Nature.ogg", true); // streaming=true
 natureAudio.setVolume(5);
 natureAudio.play(); // play as stream

3. Footsteps.ogg is a small file (25 kb), so you decide to pre-buffer it using
the following code:

 AudioNode stepsAudio = new AudioNode(assetManager,
 "Sounds/Effects/Footsteps.ogg", false); // streaming=false
 stepsAudio.setVolume(2);
 stepsAudio.setLooping(true);
 stepsAudio.play(); // play prebuffered
}

When you run this sample, you should hear continuous nature sounds in the background,
together with a looping sound of footsteps. If you call setLooping(false) on the
pre-buffered steps sound, you only hear one set of steps before the sound stops.

Chapter 9

[261]

What just happened?
jMonkeyEngine has two ways of handling audio: you can pre-buffer or stream sound files.
For the user, either mode sounds the same; the only difference lies in loading speed and
memory consumption.

Pre-buffering means that jMonkeyEngine loads the whole file into memory before it
starts playing:

AudioNode stepsAudio = new AudioNode(assetManager,
 "Sounds/Effects/Footsteps.ogg", false);
 // no streaming = prebuffered

The default constructor pre-buffers new Audio Nodes—this is the one you will use the most:

AudioNode stepsAudio = new AudioNode(assetManager,
 "Sounds/Effects/Footsteps.ogg"); // default = prebuffered

In contrast, when you stream audio, you do not have to worry how much memory a large
sound file uses, or how long it takes to load. A streamed sound can start playing without
being fully loaded:

AudioNode natureAudio = new AudioNode(assetManager,
 "Sounds/Environment/Nature.ogg", true); // streaming is active

The only caveat is that you cannot use setLooping(true) to loop a sound stream.

If you want to loop streaming audio, use getStatus() in the update
loop to test whether the stream is still Playing. As soon as the status
is Stopped, play() the stream again.

The ambient sounds that we just discussed typically start playing when you load the scene.
In contrast, let's look at a more situational use of sound next—the sound of a weapon.

Time for action – push a button to receive *BAM*
Let's look at a code sample where the user's mouse click triggers a gunshot. The click also
triggers related attack actions, such as identifying the target and determining the damage,
which we already covered in previous chapters.

This is how you play a gunshot sound after a click:

1. Make a copy of Main.java and name the class AudioTrigger.java. Remember
to also refactor the first line of the main() method to AudioTrigger app = new
AudioTrigger();.

Making Yourself Heard

[262]

2. Copy the provided file Sounds/Effects/Gun.wav into your project's Sounds/
Effects/ directory.

3. Create a private class field for the audio node:
private AudioNode gunAudio;

4. Initialize the audio node in the simpleInitApp() method. You want it to play
the Gun.wav sound. It's a short sound, so we use the default constructor that
pre-buffers the audio:
public void simpleInitApp() {
 gunAudio = new AudioNode(assetManager,
 "Sounds/Effects/Gun.wav");

5. Declare an input mapping for a gunshot: map the left mouse button to the action
named Shoot, and add it to the actionListener that you will create next:
inputManager.addMapping("Shoot",
 new MouseButtonTrigger(MouseInput.BUTTON_LEFT));
inputManager.addListener(actionListener, "Shoot");
}

6. Create the ActionListener and test for the Shoot action. The action plays
the gunshot sound once. (You can trigger additional target picking actions here,
as shown in Chapter 3, Interacting with the User.):
private ActionListener actionListener =
 new ActionListener() {
@Override
 public void onAction(String name, boolean keyPressed, float tpf)
{
 if (name.equals("Shoot") && !keyPressed) {
 gunAudio.play();
 // additional target picking and damage code goes here…
 }
 }
};

7. Run the code sample. If you kept the template code, you will see a blue cube in an
empty scene. Left-click to trigger the sound of a gunshot.

Chapter 9

[263]

What just happened?
Next to ambient sound, you use audio to give the user feedback about an action and its
outcome. When players click to fire a weapon, they either hear the bang of a successful shot,
or the disappointing clack of an empty cartridge. When the projectile reaches the enemy,
players can tell by the sound effect whether they hit or missed.

User interfaces also swoosh, buzz, and blip when players switch weapons, ready spells, or
activate their night-vision goggles. Here too, the user receives auditory feedback about a status
change. In all these cases, one particular sound is triggered by one particular action. You can
call the play(), pause(), and stop() methods anywhere in your code where you have
access to the particular audio node—for example, from an action listener or an update loop.

Basic sound APIs
The following table is an overview of the most common getters and setters that you use
with audio nodes:

Audio node method Usage

play()

playInstance()

Starts playing an audio node.

pause()

stop()

A paused node continues playing where it left off.

Stopping the node rewinds it.
getStatus() Returns the status: Status.Playing, Status.Paused,

or Status.Stopped.
setVolume(5.0f) Sets the volume gain. 1.0f is the default volume, 2.0f is

twice as loud, 10.0f is 10 times as loud, and so on. Set this to
0.0f to mute the sound.

setPitch(1.0f) Makes the sound play in a higher or lower pitch. The standard
pitch is 1.0f. A pitch of 2.0f is one octave higher, a pitch of
0.5f is one octave lower.

setTimeOffset(1.0f) Fast-forwards by a specified number of seconds into the sound.
Use this to skip the beginning of a sound before playing. By
default, there is no offset (that is, 0.0f seconds).

setLooping(true) Activates looping in pre-buffered sounds. When the sound
plays, it repeats from the beginning, until it is stopped.

Making Yourself Heard

[264]

Both play() and playInstance() start rendering the audio, but they are used in
different situations:

play() playInstance()

Use play() if you expect to be using
getters and setters on this sound node
while it's playing.

Use playInstance() if you want to fire off
a new instance of the sound. You cannot use
getters and setters while it is playing, because
the audio node is not a reference to the
temporary copy.

Calling play() on one audio node twice
will not play the same sound on top of itself.

Calling playInstance() on one audio node
twice plays two copies simultaneously, each
with current parameters.

A looping sound plays repeatedly when you
call play().

A looping sound plays only once when you call
playInstance().

Use play() on audio streams. You cannot use playInstance() on audio
streams.

For example, you could set an audio node's position, call playInstance(), change its
position, and call playInstance() again. Now you have the same audio node playing
simultaneously from two different positions. You see that playInstance() is an efficient
solution for playing possibly overlapping sounds, such as footsteps or gunshots.

You must convert sounds to mono format (one channel) if you intend to
use them for positional or directional sound. 3D effects do not work if the
base sound file is already stereo. For non-positional sounds such as ambient
music, background noises, or interface beeps that don't use reverberation,
stereo (two channels) is a great choice.

Something's coming from behind!
Ambient sounds are noises "in headspace": they have no location in the 3D scene and
seem to be coming from everywhere and nowhere. You can attach non-positional audio
nodes to another node in the 3D scene, but it is not a requirement. In contrast, you want
other sounds to emanate from one particular spot.

The humming of the motor should emanate from the passing race car itself; hearing the
steps of the guard approach from the right gives you the split second needed to dodge to
the left; and the monster sneaking up on you in the dark is a lot scarier when you hear it
breathe right behind your chair; hearing the ocean roar to your right and leaves rustling
to your left helps you navigate the terrain.

Chapter 9

[265]

3D sounds have a position in 3D space, therefore you must attach these positional audio
nodes to (a node attached to) the root node. You need two things to render 3D audio:

 � An attached audio node representing the position or direction of the sound

 � The AudioListener representing the position and rotation of the "player's ears"

SimpleApplication provides you with a preconfigured AudioListener object.
In a game with a third-person perspective, you make the AudioListener follow the
avatar's location and rotation. In a game with a first-person perspective, you make the
AudioListener follow the camera's location and rotation.

Time for action – positional audio
We create a looping positional audio node, and attach it to a parent node that is positioned
at the origin.

The following sample code introduces you to a simple case of positional audio.

1. Make a copy of Main.java and name the class PositionalSound.
java. Remember to also refactor the first line of the main() method to
PositionalSoundapp = new PositionalSound();.

2. Copy the provided file Sounds/Environment/River.ogg into your project's
Sounds/Environment/ directory.

3. In the simpleInitApp() method, attach some filler content (a node and a cube
geometry) to the scene graph so you have a point of reference:
public void simpleInitApp() {
 // Create a node for the object the sound belongs to
 Node riverbedNode = new Node("Riverbed");
 riverbedNode.setLocalTranslation(Vector3f.ZERO);
 rootNode.attachChild(riverbedNode);
 // Attach a geometry to the scene node (just a blue cube)
 Box riverbedMesh = new Box(Vector3f.ZERO, 1, 1, 1);
 Geometry riverbedGeo = new Geometry(
 "marks audio source", riverbedMesh);
 Material riverbedMat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 riverbedMat.setColor("Color", ColorRGBA.Blue);
 riverbedGeo.setMaterial(riverbedMat);
 riverbedNode.attachChild(riverbedGeo);

Making Yourself Heard

[266]

Still in the simpleInitApp() method, you initialize and configure a positional
audio node:

AudioNode riverAudio = new AudioNode(assetManager,
 "Sounds/Environment/River.ogg");
riverAudio.setPositional(true); // Use 3D audio
riverAudio.setRefDistance(10f); // Distance of 50% volume
riverAudio.setMaxDistance(1000f); // Stops going quieter
riverAudio.setVolume(1); // Default volume
riverAudio.setLooping(true); // play continuously

4. Attach the positional sound to its scene node, and start playing:
riverbedNode.attachChild(riverAudio);
riverAudio.play();
}

5. Use the update loop to make the default AudioListener (the first-person player's
ear) follow the camera:

public void simpleUpdate(float tpf) {
 listener.setLocation(cam.getLocation());
 listener.setRotation(cam.getRotation());
}

Put on your headphones and run the code. You should see a blue cube, and you should hear
the sound of water emanating from it. Use the keys W and S to move along the Z axis. The
sound becomes louder when you approach the cube, and grows more and more quiet the
farther you move from it. Use the mouse to turn, or use the keys A and D to move sideways,
along the X axis. Note that you can hear the sound coming from the left or right, respectively.

You can think of positional audio nodes as the auditory equivalent
of point lights. A point light is a light source at a location, emanating
light in all directions. A positional audio node is a sound source at a
location, emanating sound in all directions.

What just happened?
By default, the "player's ears" are located at the origin. To let mobile players hear sound from
their changing points of reference, you must move the AudioListener object with the
camera (or the third-person player avatar, respectively). You do this as part of the update loop:

listener.setLocation(cam.getLocation());
listener.setRotation(cam.getRotation());

Chapter 9

[267]

You see that a positional audio node has the following special properties:

Audio node property Purpose
setPositional(true) Set this Boolean parameter to true to turn this audio

node from an ambient sound in headspace to a
positional audio node.

setRefDistance(10f) The reference distance defines at what distance from the
source (in world units) the volume has decreased to 50
percent (assuming exponential fall-off).

setMaxDistance(1000f) The maximum attenuation distance specifies how far
from the source (in world units) the sound stops growing
more quiet.

getLocalTranslation() The position of the audio node in the 3D scene. This
property is inherited from the parent node.

A closer look at volume fall-off
The two properties RefDistance and MaxDistance influence the volume fall-off at
a distance. Play with the values in the PositionalSound.java code sample to get a
feeling of how it works.

The following list gives you an idea how different values influence the volume fall-off.
This list uses 10f as an example of a small value, and 1000f as an example of a large
value. The actual values, of course, depend on the size of your scene.

 � With RefDistance=10f and MaxDistance=1000f, sound is loudest up close,
and its volume fades out—this is the most commonly used case

 � With RefDistance=1000f and MaxDistance=10f, sound remains loud from
a distance, and its volume remains constant at almost 100 percent

 � With RefDistance=1000f and MaxDistance=1000f, sound remains loud from
a distance, and its volume never falls below 50 percent

 � With RefDistance=10f and MaxDistance=10f, sound is loudest up close,
and its volume never falls below 50 percent

If you set RefDistance and MaxDistance to the same value, the
volume remains constant and never falls below 50 percent of its original
value. Since sounds typically fade at a distance, the most natural and
commonly used case is to use a low value for RefDistance and a
very high value for MaxDistance.

Making Yourself Heard

[268]

When you configure your audio nodes, you may wonder what the best values are so that
your audio fades out naturally as the player walks farther away from a positional node. You
know that the volume becomes half as loud when the listeners double their distance from
the sound source (the dashed fall-off curve in the following graphic).

By specifying RefDistance (and optionally, MaxDistance) you control how fast the volume
fades (the vertical dotted lines in the above graphic). The start point is the original volume.

RefDistance is the reference distance (in world units) after which the sound has
lost half of its original volume. For ambient sounds that maintain the same volume
throughout the scene, set RefDistance to a high value—it makes the fall-off curve
flatter. For geographically limited sounds that fade out quickly, set RefDistance to
a small value—this makes the fall-off curve steeper.

MaxDistance is the distance (in world units) after which the audio does not fade any
quieter. No matter how far players move away, they can still hear the sound at a constant
volume. Of course, this does not happen in nature. Ambient sounds are audible everywhere,
so you set MaxDistance to a low value—this fixes the sound fall-off early, at a well
audible volume. For sounds that fade quickly and that can only be heard when up close,
set MaxDistance to a high value—this fixes the sound fall-off late, when the volume is
practically inaudible.

In jMonkeyEngine, 3D sound can be positional or directional. Let's have a look at what we
mean by directional.

Chapter 9

[269]

Time for action – I spy with my little ear
In real life, sound can be occluded (behind closed doors in another room) or obstructed
(in the same room, but behind the couch).

The audioRenderer of SimpleApplication, however, does not take the scene's walls
into account when rendering audio. This means that when you attach audio nodes to a
scene, the sound is audible through obstacles. For loud gunshots or ambient sounds in a
forest, this may be acceptable. But often, gameplay requires you to hide a sound: you do
not want all players to hear the zombies right away—not before they have entered the
abandoned warehouse and it's too late.

The sample code given next introduces you to a simple case of directional audio.

1. Make a copy of PositionalSound.java and name the class
DirectionalSound.java. Remember to also refactor the first line of the main()
method to DirectionalSound app = new DirectionalSound();.

2. Copy the provided file Sounds/Environment/Ocean Waves.ogg into your
project's Sounds/Environment/ directory.

3. In the simpleInitApp() method, keep the filler content (a node and a cube
geometry) in the scene graph so you have a point of reference:
public void simpleInitApp() {
 Node beachNode = new Node("sound source node");
 beachNode.setLocalTranslation(1, 1, 1);
 rootNode.attachChild(beachNode);

 Box beachMesh = new Box(1, 1, 1);
 Geometry beachGeo = new Geometry(
 "Sound source visuals", beachMesh);
 Material beachMat = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 beachMat.setColor("Color", ColorRGBA.Blue);
 beachGeo.setMaterial(beachMat);
 beachNode.attachChild(beachGeo);

4. As before, initialize and configure a positional audio node in simpleInitApp():
AudioNode beachAudio = new AudioNode(assetManager,
 "Sounds/Environment/Ocean Waves.ogg");
 beachAudio.setLooping(true);
 beachAudio.setPositional(true);

Making Yourself Heard

[270]

A directional audio node is a type of positional audio node with additional
properties that specify the sound cone:

beachAudio.setDirectional(true);
beachAudio.setInnerAngle(50);
beachAudio.setOuterAngle(120);
beachAudio.setDirection(new Vector3f(0, 0, 1));

5. Attach the sound to its parent node and start playing:
beachNode.attachChild(beachAudio);
beachAudio.play();
}

6. As with any 3D audio node, use the update loop to make the audio listener follow
the camera:

public void simpleUpdate(float tpf) {
 listener.setLocation(cam.getLocation());
 listener.setRotation(cam.getRotation());
}

Run the sample code. The "sound cone" starts at the cube and points toward the camera, so
you are standing in it when hearing the sound. As in the positional example, use the W, A, S,
and D keys to move around in the scene, and experience the change in volume. If you move
too far to the left or right, the sound stops completely—you have left the sound cone.

You can think of directional audio nodes as the auditory equivalent of spot
lights. A spot light is a light source at a location, emanating a cone of light
in one direction. A directional audio node is a sound source at a location,
emanating a cone of sound in one direction.

What just happened?
To work around the lack of real occlusion, video games use "sound cones" or "directional"
audio nodes—a concept that does not exist in real life. By default, a directional audio node
broadcasts at 360°, which makes its behavior identical to a positional node. You specify the
angle and direction of the sound cone. This way you simulate sound occlusion and control
who hears what from where.

Chapter 9

[271]

The sound emanates from the audio node's position. It is loudest within the inner cone.
It is still audible within the outer cone. The sound is not audible outside these two cones.

When you lay out a room whose sounds are occluded and cannot be heard outside, place
several directional audio nodes in the corners. Rotate them so they broadcast their sound
toward the center of the room.

Adjust the outer and inner cones to angles less than 90° so that no sound trickles through
the four walls. Adjust MaxDistance and RefDistance to make certain that the sound falls
off before it reaches the walls of the room.

Making Yourself Heard

[272]

Pop quiz – audio nodes
Q1. Which of the following statements is false?

1. A directional audio node must always be positional.

2. A directional audio node must not be positional.

3. A positional audio node cannot play sound files that are stereo.

4. A directional audio node cannot play sound files that are stereo.

Sound environments
The audio in jump-n-run, maze, or platform games is often just beeps, bangs, and boings.
Shooters, action, and stealth games, however, have higher standards as far as immersion
is concerned. They are typically set in realistic environments such as cities, space stations,
castles, or wilderness.

Just like humans recognize an object's material by the way it reflects light, we intuitively gain
information about our environment by how sound propagates. In real life, you can tell from
afar whether footsteps stem from the narrow echoing hallway, or from the muffled carpeted
room next to it. When one player patrols inside a warehouse, and the other sneaks around
outdoors, their footsteps should sound different.

Games also often play the same sounds repeatedly: you hear your avatar's footsteps while
exploring the haunted castle, the bangs of weapons discharging, or the avatar's gasp when
he jumps from a ledge—over and over. Make sure to introduce some variation to avoid
boring your players. Using the different audio environments discussed in this section is an
example of variation that you can introduce.

To increase variety, collect various recordings of a repetitive sound (such
as footsteps), and normalize the volume. Number the variations (1.ogg,
2.ogg, 3.ogg) and save them into one directory (for example, assets/
Sounds/footsteps/). Write a custom method that picks a numbered
file at random from the given directory and plays it.

Chapter 9

[273]

Time for action – using default sound environments
jMonkeyEngine provides you with predefined audio environments in the com.jme3.audio.
Environment package.

The following example plays one sound repeatedly in several different environments so you
can hear the difference:

1. Make a copy of Main.java and name the class AudioEnvironments.
java. Remember to also refactor the first line of the main() method to
AudioEnvironments app = new AudioEnvironments();.

2. Copy the provided file Sounds/Effects/Bang.wav into your project's Sounds/
Effects/ directory.

3. Keep the code that attaches a blue cube as point of reference.

4. Create two class fields: one audio node, and one audio environment. Initialize the
environment to the predefined value AcousticLab:
private AudioNode stepsAudio;
private Environment env = Environment.AcousticLab;

5. In the simpleInitApp() method, initialize SimpleApplication's default
audioRenderer to use your custom environment:
public void simpleInitApp() {
 audioRenderer.setEnvironment(env);

6. Initialize a looping audio node that plays a bang sound, and start playing:
stepsAudio = new AudioNode(assetManager,
 "Sounds/Effects/Bang.wav");
 stepsAudio.setVolume(1);
 stepsAudio.setLooping(true);
 stepsAudio.play();
}

7. Again, use the simpleUpdate() loop to keep the position of the listener
up-to-date while the player moves the camera through the scene. Additionally,
move the bang sound with the camera.
public void simpleUpdate(float tpf) {
 listener.setLocation(cam.getLocation());
 listener.setRotation(cam.getRotation());
 stepsAudio.setLocalTranslation(cam.getLocation());

Making Yourself Heard

[274]

8. Finally, use the simpleUpdate() loop to change the environment depending on
the position of the camera, as if the first-person player was stepping from one room
into another while moving:
float x = cam.getLocation().getX();
 float z = cam.getLocation().getZ();
 if (x > 0 && z > 0 && env != Environment.Dungeon) {
 System.out.println("Playing in environment Dungeon");
 env = Environment.Dungeon;
 } else if (x > 0 && z < 0 && env != Environment.Cavern) {
 System.out.println("Playing in environment Cavern");
 env = Environment.Cavern;
 } else if (x < 0 && z < 0 && env != Environment.Closet) {
 System.out.println("Playing in environment Closet");
 env = Environment.Closet;
 } else if (x < 0 && z > 0 && env != Environment.Garage) {
 System.out.println("Playing in environment Garage");
 env = Environment.Garage;
 }
 audioRenderer.setEnvironment(env);
}

9. Run the code sample. You should see the blue cube and hear a looping bang sound.
Use the W, A, S, and D keys to move the camera around the cube. The "bang!"
should sound noticeably different in the four quadrants.

What just happened?
The update loop tests whether the camera is left, right, in front of, or behind the blue cube.
In each quadrant, it switches to a different sound environment. You can choose from preset
environments such as Garage, Cavern, Closet, or Dungeon.

audioRenderer.setEnvironment(Environment.Dungeon);

By default, audio nodes have an audio property called reverberation:

stepsAudio.setReverbEnabled(true);

Reverb is a kind of echo that emphasizes different sound environments to enhance the
game's atmosphere: you can hear the hard nakedness of the narrow walls of the dungeon,
compared to the muffled openness of the vast snow plain outside. Environments are also
great as part of the challenge of chasing and being chased—hearing opponents approach,
and passing them unheard.

Chapter 9

[275]

To experience full 3D audio, connect your PC to a 5.1 or 7.1 surround sound
system. The sound system levels and delays the audio signal over several
channels to simulate sounds echoing from different directions and surfaces.
Not all PC hardware support these OpenAL effects, however. Check your
terminal for the warning message OpenAL EFX not available!
Audio effects won't work.

For advanced digital signal processing and hardware-accelerated sound effects,
jMonkeyEngine also supports custom Environmental Audio Extensions (EAX). EAX audio
presets are used in many AAA games, such as Doom 3 and Prey. This book cannot go deeper
into the details of custom audio environment configurations. If you are interested, read the
jMonkeyEngine.org documentation wiki for examples of audio environment presets.

Time for action – underwater
Do you remember the beautiful underwater effects that we recently discussed, with waves
and sunbeams? You can increase the immersion of an underwater scene by dampening all
sounds while the camera is under water.

1. Make a copy of WaterTerrainSky.java and name the class UnderWaterAudio.
java. Remember to also refactor the first line of the main() method to
UnderWaterAudioapp = new UnderWaterAudio();.

2. Keep all code of the water-terrain-sky simulation.

3. Add the following class fields for the audio node and the environmental effect:
private AudioNode wavesAudio;
private LowPassFilter underWaterAudioFilter =
 new LowPassFilter(0.5f, 0.1f);
private LowPassFilter aboveWaterAudioFilter =
 new LowPassFilter(1f, 1f);

4. Create a Boolean class field to track whether the player is above or under the water
surface, so you can toggle the audio filter on and off:
private boolean wasUnderwater = false;

5. Keep the code in the simpleInitApp() method, and add the following to initialize
the sound:
public void simpleInitApp() {
 …
 wavesAudio = new AudioNode(assetManager,
 "Sounds/Environment/Ocean Waves.ogg");

Making Yourself Heard

[276]

 wavesAudio.setLooping(true);
 wavesAudio.setPositional(false);
 wavesAudio.play();
 rootNode.attachChild(wavesAudio);
}

6. In the update loop, we regularly "test the waters" by comparing the camera
position to the water height. Then we toggle to the appropriate sound filter.

public void simpleUpdate(float tpf) {
 //update the AudioListener
 listener.setLocation(cam.getLocation());
 listener.setRotation(cam.getRotation());
 // whether underwater or not depends on camera position
 if (water.isUnderWater() && !wasUnderwater) {
 // activate underwater sound effect
 wavesAudio.stop();
 wasUnderwater = true;
 wavesAudio.setDryFilter(underWaterAudioFilter);
 wavesAudio.play();
 } else if (!water.isUnderWater() && wasUnderwater) {
 // deactivate underwater sound effect
 wavesAudio.stop();
 wasUnderwater = false;
 wavesAudio.play();
 wavesAudio.setDryFilter(aboveWaterAudioFilter);
 }
}

What just happened?
In order to muffle all underwater sound, we make use of a special audio filter called
LowPassFilter. This audio filter cuts off all high frequencies and lets only low
frequencies pass. This is basically what happens to sound under water.

Our custom LowPassFilter reduces the volume by 50 percent (0.5f) and muffles
90 percent of the high frequencies—because only the lowest 10 percent (0.1f)
of frequencies pass:

LowPassFilter underWaterAudioFilter = new LowPassFilter(0.5f, 0.1f);

Chapter 9

[277]

The second LowPassFilter, on the other hand, resets the sound environment back to
normal. It lets 100 percent (1.0f) of high frequencies pass, and it does not decrease the
volume (1.0f):

LowPassFilter aboveWaterAudioFilter = new LowPassFilter(1f, 1f);

The code in the update loop uses water.isUnderWater() to compare the camera position
to the current water height. Depending on the outcome, it stops the sound loop, and restarts
it with the appropriate LowPassFilter applied. We set the wasUnderwater Boolean
parameter to ensure that we don't unnecessarily switch to the same state repeatedly.

Have a go hero
Going back to our Tower Defense game, there are some obvious spots where you can add
audio:

 � The tapping footsteps of creeps coming closer.

Create a positional audio node in the CreepControl class (pass the
AssetManager as object an argument in a custom constructor) and play the sound
after the control has calculated the creep's next step.

 � The sound of towers shooting lasers or cannon balls (depending on your choice
of genre).

Create a positional audio node in TowerControl (pass the AssetManager object
as an argument in a custom constructor) and play the sound after the control has
calculated the tower's next attack.

 � The crunching noise of the player base crumbling under the attack of
approaching creeps.

Trigger this sound in CreepControl after testing whether the creep has reached
the player base in the update loop.

 � A sound in headspace expressing "you win!" or "you lose!". This can be an
emotional short jingle or melody, or a recorded voice. This sound is triggered in
GamePlayAppState.java after testing the player's health in the update loop.

 � A short theme music in headspace that plays at the beginning and end.

Making Yourself Heard

[278]

Summary
What you learned in this chapter increased the immersion of your game, because now you
address the two main human senses: seeing and hearing.

Specifically, you learned the difference between ambient sounds in headspace and 3D audio,
the difference between playing sounds and instances of sounds, the difference between
streaming and pre-buffering, and the differences between environments such as underwater
and dungeons.

You are now ready to develop a desktop game, congratulations! The final chapters give you
an overview of optional, but interesting, game development topics. We also share lots of
best practices on how to build and deploy the actual game application.

10
Showing Your Game to the World

You are coming close to the end of your journey. When you look back, you
realize a whole new world has emerged in your wake: you populated your little
creation with buildings and characters; you made the world interactive and it
came alive; your creatures make themselves heard through sound effects, and
seen through visual effects; and you command your world's innermost physical
forces. Pretty awesome, don't you think?

All the while, you ran and tested your game in your development
environment—typically, inside the jMonkeyEngine SDK. When your game has
reached its first major milestone, your last step is to package it up so it is easy
for your customers to run—outside the SDK.

In this chapter, you will learn how to get ready for the release day:

 � Save and load display settings

 � Save and load games

 � Deploy the game as a desktop, Web Start, applet, or a mobile application

If you use the jMonkeyEngine SDK, choosing a deployment type is only a matter of checking
a box in the project properties. If you use any other development environment, consult the
manual included with that software.

Customizing display settings
Every game that is based on SimpleApplication lets you specify application settings
and defaults.

Showing Your Game to the World

[280]

Time for action – the name of the game
Obviously, you must specify the display options for your game, before starting the
application. Here is a simple example: the default window title is jMonkey Engine 3.0;
let's change this display setting to the name of your game:

1. Make a copy of Main.java and name the class SettingsTest.java. Remember
to also refactor the first line of the main() method to SettingsTest app = new
SettingsTest();.

2. Go to the main() method of SettingsTest and add a new AppSettings object:
public static void main(String[] args) {
 AppSettings settings = new AppSettings(true); // create

3. Use setters to specify one or more options. In this example, we set the game's
window title:
settings.setTitle("My Cool Game"); // modify

4. Activate the new settings object before calling app.start():

 SettingsTest app = new SettingsTest();
 app.setSettings(settings); // activate
 app.start();
}

When you run the code, your jMonkeyEngine window title is set to My Cool Game.

What just happened?
You see that you use setters on a custom AppSettings instance to store your game's
display settings. You have two options:

 � To initialize all options with jMonkeyEngine-defined default values, use:
AppSettings settings = new AppSettings(true);

 � To initialize all options with user-defined settings from the previous launch, use:

AppSettings settings = new AppSettings(false);

Let's look at some more examples of commonly used display settings.

Chapter 10

[281]

Time for action – make a big splash (screen)
By default, every game based on SimpleApplication presents the user with a built-in
Select display settings dialog at the start of the game. This window lets the user specify
the minimum set of display settings. The users can choose a screen resolution, color depth,
vertical syncing, whether they want anti-aliasing, and whether they want to run the game in
a window or in full-screen mode.

1. Create an image file in PNG or JPG format with a recommended minimum width of
600 pixels. Name the file; for example, logo.png.

2. Save logo.png to the assets/Interface/ directory.

3. Load your custom splash screen into the settings:

public static void main(String[] args) {
 AppSettings settings = new AppSettings(true);
 settings.setTitle("My Cool Game");
 settings.setSettingsDialogImage("Interface/logo.png");
 SettingsTest app = new SettingsTest();
 app.setSettings(settings);
 app.start();
}

When you start the application now, the splash screen shows your custom logo.png image.

What just happened?
When you use the built-in Select display settings dialog, you should supply your own
splash screen image. If you do not provide a custom image, the dialog displays the
built-in jMonkeyEngine splash screen (/com/jme3/app/Monkey.png).

As an alternative to using the built-in settings dialog, you can also create a whole custom
window. In this case, you deactivate the built-in Select display settings dialog on
the app object before calling app.start() in the main() method:

public static void main(String[] args) {
 AppSettings settings = new AppSettings(true);

 /* Create a custom dialog and specify settings here... */

 SettingsTest app = new SettingsTest();
 app.setShowSettings(false); // skip built-in dialog
 app.setSettings(settings); // activate custom settings
 app.start();
}

Showing Your Game to the World

[282]

To create your custom splash screen, you can use either standard Swing windows, or
an integrated solution, such as the Nifty GUI framework. Note the following difference:

 � If you use a Swing window, you set it to visible before calling app.start()

 � If you use Nifty GUI, you load your custom screens after calling app.start()

Visit the jMonkeyEngine.org documentation wiki for more information on Nifty
GUI integration.

Time for action – window seat or full screen?
By default, your game runs in a window of its own, and the user can move this window by
dragging the title bar. In this case, you should customize the title bar and specify a resolution.

1. Copy application icons in various sizes to your project's Interface/icons
directory.

2. Add the following code in your game's main() class:

public static void main(String[] args) {
 AppSettings settings = new AppSettings(true);
 settings.setResolution(1024,768);
 settings.setTitle("My Cool Game");

 try {
 Class<Main> myclass = Main.class;
 settings.setIcons(new BufferedImage[]{
 ImageIO.read(myclass.getResourceAsStream(
 "/Interface/icons/SmartMonkey256.png")),
 ImageIO.read(myclass.getResourceAsStream(
 "/Interface/icons/SmartMonkey128.png")),
 ImageIO.read(myclass.getResourceAsStream(
 "/Interface/icons/SmartMonkey32.png")),
 ImageIO.read(myclass.getResourceAsStream(
 "/Interface/icons/SmartMonkey16.png")),});
 } catch (IOException ex) {
 Logger.getLogger(Main.class.getName()).
 log(Level.WARNING,
 "Failed to load application icon.", ex);
 }

 SettingsTest app = new SettingsTest();
 app.setSettings(settings);
 app.start();
}

Chapter 10

[283]

When you run this code, your application opens with a resolution of 1024 x 768, your custom
window title, and application icon (depending on the operating system).

Other game developers prefer the game window to fill the whole screen. For example, you
can switch to a 1025 x 768 full-screen mode using the following alternative setting:

public static void main(String[] args) {
 AppSettings settings = new AppSettings(true);
 settings.setResolution(1024,768);
 settings.setFullscreen(true);
 SettingsTest app = new SettingsTest();
 app.setShowSettings(false); // skip built-in dialog
 app.setSettings(settings);
 app.start();
}

This code sample opens the application window without a title bar, hence you do not specify
a window title.

What just happened?
It is possible that your game's GUI layout imposes a restriction on the screen resolution of
the game. For example, if you allow the user to resize the window, a more complex GUI may
become unwieldy, or a HUD may not have enough space to display its information. If that is
the case in your game, specify a fixed recommended screen resolution. If you do not specify
a resolution, and the user does not change the resolution in the built-in Select display
settings dialog, the game window opens with a default width and height of 640 x 480.

If you choose the full-screen option, be aware that the user is not able to see the title bar or
system menus while the game is running. This means it is not obvious to the user how to quit,
or return to the desktop. The default SimpleApplication is set up so that pressing the Esc
key stops the application without saving changes. Remember to provide a key mapping that
saves the game state and calls app.stop() so the user can exit the full-screen view gracefully.

This example shows how you customize the application icon that is displayed in the title
bar and in the application switcher (not available in Mac OS). Optimally, you supply icons in
the four most commonly used sizes: 256 x 256, 128 x 128, 32 x 32, and 16 x 16. Note that
setIcons() has no impact on the application icon on the desktop!

Showing Your Game to the World

[284]

Time for action – fine-tuning video settings
You can let your users choose video settings, or you can predefine settings that you
recommend.

Try the following example:

public static void main(String[] args) {
 AppSettings settings = new AppSettings(true);
 settings.setVSync(true);
 settings.setFrequency(60);
 settings.setFramerate(30);
 settings.setSamples(4);
 SettingsTest app = new SettingsTest();
 app.setShowSettings(false); // skip default dialog
 app.setSettings(settings);
 app.start();
}

When you run your sample application with these video settings, you should notice softer
edges, and less CPU/GPU usage.

What just happened?
To improve video quality, consider activating vertical synchronization (vsync). Vertical
synchronization prevents screen tearing—an annoying video glitch where part of a frame
lags behind and shows the previous frame. Use vsync to cap the frame rate to the monitor's
refresh rate, typically 60, 75, or 120 fps (frames per second), depending on the display
used. The default is 60 fps. Vsync is deactivated by default, which is acceptable for slower
machines, or during the development phase.

When no upper limit is imposed on the video frame rate, your game runs as fast as possible.
The downside of an unlimited frame rate is that it uses as much of the GPU and CPU as it
can, leaving hardly any resources for other open applications. Here are some guidelines:

 � A refresh rate of 60 fps results in fluent rendering for the human eye. If your game
does not perform any intensive calculations, and you want to free up the CPU for
other applications, you can even set the frame rate to half as much (30 fps).

 � There is no use in setting the frame rate to a higher value than the screen frequency;
you would just be wasting cycles. On the other hand, if the frame rate goes below 30
fps, the video will look choppy. You want to avoid either extremes

Chapter 10

[285]

jMonkeyEngine supports multisample anti-aliasing, a rendering technique that improves
video quality by smoothing rough edges. By default, multisample anti-aliasing is inactive
(that is, it uses zero samples). Without anti-aliasing, the game renders faster, but you may
see hard, stair-stepping edges. Typically, you set multisampling to use two or four samples.
(If you specify a sample value higher than what the user's graphic card supports, the game
will crash with an LWJGLException that you have to catch and handle.) Anti-aliasing results
in softer edges, but the extra calculations may slow down game performance. Again, you
need to find a compromise between good looks and speed.

If you are using a FilterPostProcessor, do not set the global
sample value (here 4) on the settings object only; also set it on the
post-processor object:

FilterPostProcessor fpp = new FilterPostProcesso
r(assetManager);

fpp.setNumSamples(4);

Time for action – window, canvas, or headless?
Every jMonkeyEngine game has a so-called context type. The context type specifies whether
the game opens an OpenGL window, renders on a canvas, or runs "headless"—without
drawing anything to the screen.

1. You switch the context type in your main() method when you app.start() the
application:
public static void main(String[] args) {
 AppSettings settings = new AppSettings(true);
 settings.setTitle("My Cool Game");
 SettingsTest app = new SettingsTest();
 app.setSettings(settings);
 app.start(JmeContext.Type.Headless); // switch context type
}

2. Run this code.

The game loop executes in a so-called headless context; this means no video is
rendered. We'll look at examples where you would switch context types.

Showing Your Game to the World

[286]

What just happened?
By default, a SimpleApplication displays a window, runs the main loop, and renders the
scene. But it is also possible to use jMonkeyEngine for purposes other than desktop games.

Maybe you are coding the headless server part of a networked game, where the server runs
the main loop, but does not do any rendering. Or you want to visualize 3D data in the canvas of
an applet. Or you may use jMonkeyEngine to send the rendered image to a custom buffer, and
pass the buffer onto another application. In all of these cases, you switch the context type.

The jMonkeyEngine supports the following context types (com.jme3.system.
JmeContext.Type):

 � JmeContext.Type.Display: The application runs the main loop, and renders
either full screen or in a window of its own. This is the default. Use this for mobile,
desktop, or Web Start games, and for the clients of networked games.

 � JmeContext.Type.Canvas: The application renders embedded in a Swing canvas.
Use this canvas for applets, or if you embed jMonkeyEngine graphics inside a custom
Swing GUI.

 � JmeContext.Type.Headless: The application runs and processes the main loop.
It does not open any window, does not listen to input, and does neither calculate nor
render any audio/video. Use this context type to run the server of a network game.

 � JmeContext.Type.OffscreenSurface: The application runs and calculates
the main loop. It calculates the visual data in a frame buffer, but it does not open
any window and does not listen to any user input. Advanced developers can use
renderer.readFrameBuffer() to save visual content as a screenshot or video,
or to send it over the network.

Time for action – reload settings
Let's assume you want to use settings.setResolution() to change the resolution while
playing a cut scene. If the game is already running, changing application settings has
no effect, unless you reload them.

1. Make a copy of Main.java and name the class ReloadSettings.
java. Remember to also refactor the first line of the main() method to
ReloadSettings app = new ReloadSettings();.

Chapter 10

[287]

2. Add the following temporary variable and code to the simpleUpdate() method:
float temp;
public void simpleUpdate(float tpf) {
 // a trivial 2-second timer
 temp+=tpf;
 if(temp>2) { restartDemo(); temp=0; }
}

3. Add the following custom demo method:

private void restartDemo() {
 settings.setResolution(
 FastMath.nextRandomInt(100, 800),
 FastMath.nextRandomInt(100, 800)); // a random resolution
 this.restart(); // reload settings
}

When you run this code, the application closes and reopens its window every two seconds,
with a random resolution.

What just happened?
Typically, you apply display settings in the main() method before starting the application.
This demo shows how you change AppSettings while the game is already running. The
simpleUpdate() loop uses the tpf variable (time per frame in seconds) as a trivial timer.
Every two seconds, it calls settings.setResolution() to set the height and width to
two random numbers. Then it calls this.restart() on the SimpleApplication to
activate the modified settings.

Here's another example: by default, a game based on SimpleApplication listens to user
input coming in through the mouse and keyboard. During an elaborate cut scene, however,
you want your jMonkeyEngine application to be non-interactive. In this case, you temporarily
deactivate the input listeners by calling settings.setUseInput(false) and call this.
restart(). After the cut scene, you reactivate the input listeners by calling settings.
setUseInput(true); and this.restart().

SimpleApplication options
In contrast to video and input settings that have to be specified before the game window
opens, there are also application settings that only become relevant after the application has
been initialized. You change the application behaviors, described in the following sections,
inside the simpleInitApp() method of your game.

Showing Your Game to the World

[288]

Time for action – time for a pause
By default, SimpleApplication pauses the update loop whenever the window loses focus,
that is, the player switches to another application. For multiplayer or real-time applications,
pausing one of the players is not even an option. For such games, you need to deactivate the
default pausing behavior in the simpleInitApp() method:

1. Make a copy of Main.java and name the class FocusTest.java. Remember
to also refactor the first line of the main() method to FocusTest app = new
FocusTest();.

2. In simpleInitApp(), change the application behavior as follows:
public void simpleInitApp() {
 setPauseOnLostFocus(false);
}

3. In the simpleUpdate() loop, add the following sample code:

public void simpleUpdate(float tpf) {
 rootNode.rotate(tpf,tpf,tpf);
}

When you run the application, the blue cube rotates. When you switch to the desktop,
the cube should continue rotating.

Remove the setPauseOnLostFocus() line (or set it to true) and run the sample again.
When you switch to the desktop now, the cube should stop rotating.

What just happened?
Single-player games allow users to pause the game and switch to other applications, without
having to quit what they are playing. When the user switches applications, the game loses
focus. In this situation, users expect the enemy AI (artificial intelligence) to stop attacking the
player. On the other hand, users would not be surprised if the AI made good use of the idle
time and continued calculating its next move. Users would not expect the AI to keep walking
while paused. On the other hand, they would not be surprised to see "idle" animation loops
(paused characters breathe, look around, or shuffle their feet).

In the trivial case, pausing a game merely disables the update loop. User-friendly games
maintain a paused Boolean parameter and offer a pause key. Implementing idle animations
is a good way to show the player that the game is indeed merely paused, and not frozen.

Most importantly, you must implement how pausing affects your custom loops. What
precisely happens to music, NPCs, or other timed game mechanics (such as "poison"
or "health regeneration") when the player switches to another application?

Chapter 10

[289]

To implement pausing, define a setEnabled() toggle method for each custom Control
and AppState class, and call it, if paused. Since every game is different, you need to
evaluate and define individually what enabled and disabled mean for that particular
Control or AppState class.

Time for action – hide statistics and FPS
Every SimpleApplication displays the current frames per second (FPS) and some mesh
statistics, in the bottom-left corner. Before releasing your game, you should hide these
displays as follows:

1. Make a copy of Main.java and name the class HideStatistics.
java. Remember to also refactor the first line of the main() method to
HideStatistics app = new HideStatistics();.

2. In simpleInitApp(), call the following method to hide the FPS value:
setDisplayFps(false);

3. In simpleInitApp(), call the following method to hide the debug statistics:
setDisplayStatView(false);

Run the application with either of the application settings, and note the difference.

What just happened?
By default, a jMonkeyEngine game displays debug information. You can track how many
textures and vertices are in use, and how many frames per second are rendered. This kind
of information is very valuable during development and debugging, to detect memory leaks
and inefficient implementations. For your release build, however, you deactivate these
debug displays so you don't break the user's immersion.

Some games offer a debug mode so users can gather information and submit better bug
reports. If you want to reactivate the statistics and FPS displays, use the following calls:

setDisplayFps(true);
setDisplayStatView(true);

Save, load, and be merry
Whether the boss is coming, or the notebook is running out of batteries—there are reasons
why users quit the game while it is running. In these cases, they typically did not intend to
abandon the game. When they run it the next time, they expect their character to appear
at the same spot where they left it, with all its equipment and points. Since every game is
different, you have to implement custom code to save (persist) and load (restore) a game.

Showing Your Game to the World

[290]

Time for action – save and load game data
To save a node, you call the save() method on an instance of the com.jme3.export.
binary.BinaryExporter class. To restore the node, call the load() method on an
instance of the com.jme3.export.binary.BinaryImporter class.

The following code snippet shows how you save a node as a binary file by overriding the
stop() method of SimpleApplication:

1. Make a copy of Main.java and name the class SaveAndLoad.java. Remember
to also refactor the first line of the main() method to SaveAndLoad app = new
SaveAndLoad();.

2. Override the stop() method to save the game:
@Override
public void stop() {
 String userHome = System.getProperty("user.home");
 BinaryExporter exporter = BinaryExporter.getInstance();
 File file = new File(userHome+"/mycoolgame/savedgame.j3o");
 try {
 exporter.save(rootNode, file);
 } catch (IOException ex) {
 Logger.getLogger(SaveAndLoad.class.getName()).
 log(Level.SEVERE,
 "Failed to save node!", ex);
 }
 super.stop();
}

3. Add the following code that loads the saved file back into the scene when you
initialize the next game in the simpleInitApp() method:

@Override
public void simpleInitApp() {
 /* Load any scene, e.g. attach a cube. */
 String userHome = System.getProperty("user.home");
 BinaryImporter importer = BinaryImporter.getInstance();
 importer.setAssetManager(assetManager);
 File file = new File(userHome+"/mycoolgame/savedgame.j3o");
 try {
 Node sceneNode = (Node)importer.load(file);
 sceneNode.setName("My restored node");
 rootNode.attachChild(sceneNode);
 } catch (IOException ex) {
 Logger.getLogger(SaveAndLoad.class.getName()).
 log(Level.SEVERE,"Could not load saved
 node.", ex);
 }

Chapter 10

[291]

Run the code sample, and press Esc to stop the application. Verify that a file named
mycoolgame/savedgame.j3o was created in your user directory. When you run the
code a second time, the application restores the saved game from this file, if it exists.

What just happened?
jMonkeyEngine's BinaryExporter saves files in a custom format with the suffix .j3o. If
you have stored user data in a node, this data is automatically serialized, and deserialized
too, which is quite handy. Saving user data works out of the box with all serializable Java
datatypes such as ints, floats, Strings, and arrays. If you stored custom Java objects as user
data, make sure these objects implement the com.jme3.export.Savable interface, and
override the write (exporter) and read (importer) methods.

Before saving, verify that you have identified a directory for which your application has
write permissions. Typically, you store saved games in a new directory under System.
getProperty("user.home").

In sandbox games, where everything changes all the time, you can save the whole root
Node, as shown in this simple demo. Consider, however, that this results in a huge file. If
you have static content that you can simply restore using AssetManager, detach it before
saving the root node and remaining changed nodes. When you restore the root node later,
remember to reattach the static content too.

Time for action – save and load display settings
You save the scene to a binary .j3o file, and similarly, you save display settings to an XML
file. The next time your users run the game, you want to present them with their previously
selected display settings.

1. Return to your AppSettings.java file.

2. In your main() method, load previously saved settings, if they exist; configure a
new settings objects if it doesn't exist:
public static void main(String[] args) {
 AppSettings settings = new AppSettings(true);
 try {
 settings.load("com.foo.MyCoolGame");
 } catch (BackingStoreException ex2) {
 Logger.getLogger(AppSettingsDemo.class.
 getName()).log(Level.WARNING,
 "failed to load settings, reverting to defaults", ex);
 settings.setTitle("My Cool Game"); // init defaults here…
 }

Showing Your Game to the World

[292]

3. Then continue to save your settings:

 AppSettingsDemo app = new AppSettingsDemo();
 try {
 settings.save("com.foo.MyCoolGame");
 } catch (BackingStoreException ex) {
 Logger.getLogger(AppSettingsDemo.
 class.getName()).log(Level.WARNING,
 "failed to save settings", ex);
 }
 app.setSettings(settings);
 app.start();
}

What just happened?
Saving and loading settings this way is especially useful if you create a custom options
screen that lets users configure and save video settings in a user-friendly way. Make sure
you provide the unique name of your jMonkeyEngine application as a String argument.
The unique name typically looks like your main class' package name; for example, com.foo.
MyCoolGame.

On Windows, the preferences are saved under the following registry key:

HKEY_CURRENT_USER\Software\JavaSoft\Prefs\com\foo\MyCoolGame

On Linux, the preferences are saved in an XML file, in the user's home directory:

$HOME/.java/.userPrefs/com/foo/MyCoolGame

On Mac OS X, the preferences are saved in an XML file, in the user's home directory:

$HOME/Library/Preferences/com.foo.MyCoolGame.plist

Pre-release checklist
Your application is now built and ready to be shipped to customers. Before you start the
shipping process, it's time to go through a checklist to catch common omissions and to
remind yourself of certain best practices:

 � Verify that media assets are up-to-date:

 � Convert all models to .j3o format

 � Update all code to load models only in .j3o format

 � Verify that no code is left that tries to load Blender.blend, Ogre.xml,
or Wavefront.obj files

Chapter 10

[293]

 � Save storage space and loading time:

 � For desktop games, compress textures to DXT; for web games, compress
textures to JPG

 � Update all code to load the compressed textures

 � Verify that no code is left that loads uncompressed textures

 � Adhere to best practices:

 � Activate compressed packaging to reduce the size of the application. You
find this option in the Project Properties window inside Build | Packaging.

 � Switch off fine logging output and make the application print only "severe"
messages to the console. Add the following to your simpleInitApp()
method: AppLogger.getLogger("").setLevel(Level.SEVERE);.

 � For applets and Web Start applications only: decide whether to certify
the authenticity of your application. Purchasing a certificate from a
certificate authority is only necessary if you want your company name
to appear under the Vendor part of the security confirmation dialog in
the browser. A Web Start game can run without a certificate, but you will
have to inform your users how to react positively to the quite discouraging
default security warning.

 � Prepare a Read Me file. Inform your customers of the requirements: they
need a 1 GHz CPU or better, and a graphic card that supports OpenGL 2.0
or higher. They need to have the Java Virtual Machine (JVM) installed. The
JVM is preinstalled on many operating systems; otherwise remind them to
download the JVM for free from http://www.java.com. Just to be clear:
your users do not need the jMonkeyEngine SDK to run the game.

 � Prepare marketing materials that convince your audience in 30 seconds
(a so-called "elevator pitch"). Keep promotional art ready, such as cool
screenshots and short thematic video clips. Look for social networking and
gaming sites that allow you to share links and videos and advertise your game.
Include the game's name, slogan, how to obtain it, and your contact info.

Release checklist
Now that you have specified settings and know how to save and load your game, it's time to
decide how to deploy it. The default build script generated by the jMonkeyEngine SDK for
your project assists you with common deployment options.

http://www.java.com

Showing Your Game to the World

[294]

The default deployment type for Java is Java archive (JAR). A JAR file contains an executable
desktop application that runs on Windows, Mac OS, and Linux. In order to be able to simply
double-click and run JAR files, the user must have his system configured to allow that, or the
user must know how to run JAR files from the command line. Since not all users know how
to launch JAR files, you typically need to provide a more user-friendly option.

Whether you release your game as a Web Start application, Android mobile game, desktop
application, or as a browser applet, you have to consider the pros and cons of each option:

Distribution Pros Cons

Desktop Launcher
(for Windows
(.exe), for Mac
(.app), for Linux
(.jar, .sh)

This is a typical desktop
application that a user double-
clicks, and it starts running.
The jMonkeyEngine SDK can
create launchers for these
three operating systems.

You need to offer several
separate, platform-dependent
downloads.

Web Start (.jnlp) To start the game, the
user browses to a URL and
downloads it into a cache. The
game then runs outside the
web browser. Easy process for
the user, no installer required.
The user always downloads
the most recent version. You
can also allow them to play
the game offline.

The first time the user
downloads the game, it
takes a while, as opposed to
running the app from a local
drive. Unsigned Web Start
applications have restrictions
(cannot save to or read from
disk).

Browser applet
(.html+.jar)

The user plays the game in
a web page in the browser.
Applets are a quick, user-
friendly solution for small
browser games.

You need a host with enough
bandwidth. Applets only
run in the browser, not
offline. Unsigned Web Start
applications have restrictions
(cannot save to or read
from disk). The browser
imposes restrictions on game
navigation (game cannot
capture the mouse).

Chapter 10

[295]

Distribution Pros Cons

Mobile (.apk) The user installs the game
from the Google Play Store.
Alternatively, the user
downloads and installs the
APK file using a USB cable and
an Android file explorer.

Most mobile devices do not
support post-processor effects,
so you need to offer a way to
disable or replace them. You
have to provide input settings
that work without keyboard.

No matter which method you choose, Java desktop and browser applications work on all
major operating systems (MS Windows, Mac OS, and Linux) that have the JVM installed.

Time for action – build the final release
By default, the jMonkeyEngine SDK builds a JAR file, but possibly, you have decided on
another deployment method. Now, it is only a matter of selecting a checkbox in the
jMonkeyEngine project properties to build your executables.

Right-click on the project in the SDK to open the Properties window. Go to the Application
section and choose among the following deployment choices: Web Start, Applet, Mobile,
and Desktop.

For Web Start applications:

1. Check the Enable Web Start checkbox.

2. Choose Codebase: Local Execution.

3. (Optional) Specify a desktop icon for this application.

4. (Optional) Check the Allow Offline checkbox.

5. Check the Application descriptor checkbox.

6. Click on OK.

7. Right-click on the project and choose Clean and Build. The executable appears in the
dist directory.

8. Upload all files from the dist directory to your web server.

9. Tell your users to browse to the file dist/launch.html to start the game.

For applets:

1. Check the Create Applet checkbox.

2. Click on OK.

Showing Your Game to the World

[296]

3. Right-click on the project and choose Clean and Build. The executable appears
in the dist directory.

4. Upload all files from the dist directory to your web server.

5. Tell your users to browse to the file dist/Applet/run-applet.html to start
the game.

For mobile applications:

1. If you use this option for the first time, specify your Android SDK folder.

2. Check the Enable Android Deployment checkbox.

3. Select an Android target.

4. Enter the main class.

5. Click on OK.

6. A folder named mobile appears in your project directory. This folder contains
the complete Android project, with settings to run the application using
AndroidHarness.

7. Restart the jMonkeyEngine SDK. A new Mobile Files node appears in the Project
window. It lets you edit the MainActivitity.java, the AndroidManifest.xml,
and build.properties files.

8. Right-click on the project and choose Clean and Build. The executable appears in the
dist directory.

9. Tell your users to install the dist/MyCoolGame.apk file on their Android device to
start the game. Typically, this means you submit it to the Google Play Store.

For desktop applications:

1. Check the platforms that you want to build launchers for: Windows, Mac OS,
and Linux.

2. Click on OK.

3. Right-click on the project and choose Clean and Build. The executables appear
in the dist directory.

4. Upload the zipped files, or distribute them on a medium.

5. Tell Windows users to double-click on the MyGame.exe file to start the game.
Tell Mac users to double-click on the MyGame.app file to start the game. Tell
Linux users to execute the MyGame.sh file to run the MyGame.jar file.

Note that the jMonkeyEngine SDK allows you to select several deployment options at
the same time. The distributable files are all placed in the dist directory. Verify that
you distribute the right files to the right audience.

Chapter 10

[297]

You can customize the .sh and .html launcher files after they have
been generated. However, remember to keep backup copies of any
customized launcher files: the SDK deletes and regenerates the dist
directory every time you build.

What just happened?
We have now built the final release. We discussed procedures for building executables using
different deployment choices, such as Web Start, Applet, Mobile, and Desktop.

Summary
We have reached the end of the development cycle! Now you know:

 � How to specify, load, and save display and application settings

 � How to load and save games

 � How to deploy the application to various platforms

Time to ship! In Appendix A, What's Next?, you will get a quick overview of all the
other interesting possibilities offered by jMonkeyEngine that we haven't discussed yet.

A
What's Next?

Now that you know how to write and publish a jMonkeyEngine-based
application, it's your turn to design and implement a game! You probably
already have an idea in your head; if not, join the jmonkeyengine.org forum and
get inspiration from your fellow game developers. Alas, there is no bullet-proof
algorithm to generate and calibrate the perfect game idea, so this book cannot
help you with that part of the task. This short final chapter can, however, teach
you how to avoid well-known design traps.

Read on for some closing advice on how to make gameplay fun:

 � How to delight players with challenging choices

 � How to keep things balanced and still exciting

 � How to enable players to make the most of their newly found super-powers

 � How to smooth the learning curve

 � How to create a polished game concept

Okay, let's look deeper into this mysterious "fun" thing, shall we?

Hey, this game is fun!
Think of your favorite games. Why did you enjoy playing them? Probably because they
piqued your curiosity and gave you a feeling of success. Why did you stop playing others?
Because they were boring or frustrating.

What’s Next?

[300]

Unsurprisingly, criteria such as "special effects not colorful enough" or "cartoon characters
not crazy enough" rank quite low among the reasons why not to play a game. These factors
are the least of your worries when designing a fun game. But how do you find out whether
your game idea is "fun"? Let's see what the experts say. Here is a quote by Raph Koster from
"A Theory of Fun for Game Design":

"A fun game is the one that offers an interesting challenge to the player and makes
him want to play the game until the challenge is conquered. But, the trick is to
make the challenge not too hard (it will cause frustration) or too easy (it will cause
boredom), so that the player can keep on playing."

A challenge becomes interesting if players feel they have a choice and control over the
outcome. If the challenge is "not too hard, nor too easy", it is balanced. What we mean
by interesting and balanced will become quite clear when you will look at a few examples.

Put your game idea to the test and answer the following questions:

 � Does your game have an item such as a "+50 Bazooka of Deadly Deadliness",
a weapon with no disadvantages and which is so powerful that there is no reason
to own any other? If yes, then you have deprived players of the fun of choosing the
optimal equipment.

Get rid of no-brainer choices that are automatically successful. If you must
have a killer item, balance the game by providing several similarly powerful
items, each with a built-in disadvantage (one-time use only or 50 percent
chance it may backfire).

 � Does your game exclusively generate enemies that are of equal strength as the
player? Then you have deprived your players of the fun of taking smart risks.
Make sure your game does not encourage arbitrary behavior—in this case,
"I attack whomever I meet with no consequences."

Offer players the choice among more and less challenging tasks. For example,
they can choose to compete against a single stronger or equal opponent, or
a group of equal or weaker opponents. This way, your players get a better
feeling for their own progress.

 � Does your game have lots of weak items that cannot be sold or used, and whose
only purpose is to add volume to a pile of loot? If yes, you have deprived your
players of the fun of identifying valuable items.

Appendix A

[301]

Either get rid of boring, useless filler items, or add situations where
choosing a seemingly weak item turns out to be an advantage. For
example, give a bonus if players use non-magic daggers against an
enemy that is immune to magic.

You see that challenges are only meaningful if players face choices that noticeably influence the
outcome of the challenge. How does your game idea fare regarding these important criteria?

Some dos and don'ts
During the game, you want to give players the feeling that they made the right choices,
outsmarted the system, and pulled the strings in their own favor. There are no hard rules,
but let's look at some examples how you maintain enjoyable gameplay:

 � Fairness is not the same as balance: Although well-balanced game mechanics
include a weakness behind every strength, they avoid perfect symmetry. In a
perfectly fair game (such as rock-paper-scissors) choices are arbitrary. You should
offer a counterattack for every attack, but you distribute these resources unevenly.
In other words, let the players know that "the counter-card is somewhere in the
deck", but not whether it is in their opponent's hand this round. "I can prepare a
counterspell for each type of magic, but which spell type will the opponent cast?"
"I can wear armor against every weapon type, but will the opponent pick the sniper
rifle or the shotgun?" The opponent faces the same conundrum, and that keeps the
battle balanced and interesting.

 � Predictable events are boring, random events are frustrating: Let players take a
stab at figuring out the probabilities behind the game mechanics. The opportunity to
weigh the success of various strategies lets players tweak probabilities in their favor
and prove their smarts.

 � Valuable resources must be limited: By definition, more valuable resources (health,
ammo, equipment, and skills) must be more costly to obtain. Each choice comes
at a different price—everything costs money, time, or carrying capacity. Limited
resources force the player to make interesting economic and logistic decisions.
Cheap, fast, or strong? Pick two!

 � Life is not black and white: Create emotional complexity by making players face
inner conflicts. Going beyond the basic contrast of "either good or evil" forces
players to make interesting moral decisions. "Should I risk harming my team, if I can
nuke the enemy?" "Should I risk helping the enemy if it also saves my team?"

What’s Next?

[302]

You will find the perfect balance for your game by running lots of play
tests and gathering player feedback. Over time, players will teach
themselves "every trick in the book" and their strategies grow more and
more successful. They worked hard for it, and the learning process is fun
because winning brings a sense of well-earned achievement.

Superpowers – Go!
Consider a case when your game idea poses an interesting, balanced challenge, but your test
players quit before the fun begins. Time to give your user interface a makeover. Bad usability
is a major reason why players abandon otherwise promising games.

Consider that the player's expectations toward a user interface are quite high. Video
games promise nothing less than super-human powers. Player avatars are strong, fast,
and dexterous; they fly, climb, dive, and ride everything from helicopter to pterodactyl.
All of that, plus infinite lives. What's not to like?

Well, your players also pay a price. A video game only provides a subset of visual
and auditory information; the player's choice of actions is severely limited by the
game mechanics; and some sensory information (smell, touch, pain, balance, and
proprioception) is missing completely.

Why not invite some jmonkeyengine.org forum members to test your
milestone builds? Tweak parameters until you're certain that your user
interface does no longer throw a monkey wrench in the player's works.

An unclear interface frustrates players because they misjudge situations. Unresponsive input
methods make players stumble over their own feet. Without a sense of pain, they cannot
feel the intensity of the shockwave or the heat of the lava and run blindly into danger. Give
your players a fair chance. If, for example, the troll leader is stronger than its minions, reflect
that in the intensity of the NPC's special effects.

Conversely, don't sprinkle meaningless effects all over the game world. Distracting players
away from meaningful elements can easily backfire and cause frustration. If you play natural
sounds in the background, for example, make the birds fall silent right before a monster
appears. Players will quickly learn to associate "birdsong" with peace and "silence" with
danger—as a nice side-effect, all those random pauses in the bird loops really keep them on
their toes.

Appendix A

[303]

Use audio and visual hints wisely to convey information. If you use effects and
symbols consistently, players learn to trust them, and they get an extra feeling
of success when they assess a situation correctly.

A good user interface uses sound and visuals to show players whether a decision has taken
them closer to their goal, or further away from it. You want to enable players to detect an
unsuccessful strategy fast and try a different approach: for example, "Walking on rocks: good.
Walking on lava: bad." If players can't tell why they just lost hitpoints (or lives), it's nothing but
frustrating. If they understand the danger, they feel empowered to avoid it next time.

Keep it simple
Games such as "Go" and "Tetris" prove that a game idea can be successful with relatively
few rules. On the other end of the spectrum, some games get bogged down in an avalanche
of rules that hinder adoption and eventually kill gameplay. Do you want to read a 50-page
booklet and watch an hour-long training video before you can survive even a day in this
brave new world? Nah, you want to jump right in and explore!

If your game mechanics need a lot of explanation, try to smooth a steep learning curve by
providing players with an interactive in-game tutorial. Optimally, the in-game tutorial is a
simplified version of playing the game itself. Design levels so that they expose players slowly
to new examples of the game mechanics, one rule after the other. Point out each pattern and
give them opportunity to recognize it in context. When they understand the basics, expose
them to combinations of patterns. In doing so, you teach the rules implicitly and players can
get started right away—which lessens the need for long, explicit handbooks.

For example, the first four dungeons introduce the player to the four different elements of
your fantasy world. While traveling through Snowingham, Volcania, Snakepit, and Teslaville, the
player is introduced to ice, fire, poison, and lightning. In each dungeon, the player learns how
to identify, attack, and defend with one of the elements. Thus prepared, the player ventures on
to medium levels. Here he encounters enemies who are immune to more than one element, or
who can use combinations of elemental attacks. Since the player is already trained to identify
individual elements, he now merely needs to combine what he has learned.

In-game tutorials can take on a variety of forms. Sometimes they come in the guise of an
easier, preliminary level that can be skipped or fast-forwarded by experienced players.
Many games offer in-game help as tooltips, or arrows that point lost beginners in the right
direction. Other games repeat hints over several levels, as it is nicely done in the increasingly
more difficult puzzle combinations of the Portal series.

What’s Next?

[304]

Polishing off the last pages
Popular games such as Portal (physics puzzle), Super Mario Bros (jump and run), Legend
of Zelda (adventure with minigames), or Halo (action) look quite different on the outside,
but they have one thing in common. They were successful because they had "polish".

In a polished game, everything is of one piece. The rules and game interactions provide a
consistent experience. The game provides all details needed for the solution, and leaves
no plot holes that distract from the solution (also known as the "Chekov's Gun" principle).
Players are never pulled out of the immersion. Whether a move is illegal or legal, there is
an obvious in-game reason, no wordy explanations required.

Be careful not to water down your fun game idea by making one game "do everything, but
better". Gameplay does not progressively become better every time you add another cool
gimmick. Ask your test players what helped them most, and what misled them most. Polish
your game by identifying the fun areas and putting them in front and center. Drop distractions.

Different types of challenges appeal to different players. Optimally, you focus on one type
of challenge. Here are some common examples:

 � Some games require hand-eye coordination and fast reflexes

 � Other games can only be solved with patience and logic

 � In some games you must find the perfect strategy and tactics

 � Other games can only be won with lateral thinking or pattern recognition

Similar to Charlie Sheen, different players consider different achievements "winning".
Here are a few common groups of players who you may encounter:

 � Some players enjoy employing their reflexes in faction wars and coordinated teams.
They expect to compete (and win) in duels against human players, with whichever
weapon they collect during a match. Slow-paced brainteasers and predictable
"artificially dumb" NPCs bore them to tears.

 � Other players enjoy taking on a role and training an avatar's skills. They expect to
excel themselves every time they progress through another increasingly difficult
quest. Game elements that cannot be measured, compared, and "min-maxed" do
not appeal to them. Neither do they care about hand-eye coordination—after all,
that's what the avatar trained Dexterity for!

 � Yet other players enjoy solo adventures, exploration, and brainteasers. They want
to beat the game designers by solving a handcrafted puzzle. The last thing these
players want is fellow human players spoiling the solution; nor do skills by proxy
of an avatar have any value to them. Who needs an avatar if they can use their
own problem-solving skills?

Appendix A

[305]

These are just exaggerated examples; the point is that games present vastly different
challenges that do not mix well. Don't succumb to the temptation of squeezing too many
types of challenges into one game. If you attempt to fulfill contradictory requirements,
you risk losing the interest of all target groups. Or, as the famous saying by Antoine de
Saint-Exupéry goes:

Perfection is achieved, not when there is nothing more to add, but when there is
nothing left to take away.

Summary
That's it! You now know how to use the jMonkeyEngine to develop a Java 3D game, you are
aware of the most common pitfalls of game design, and you know the best practices for how
to avoid them.

The Appendix B, Additional Resources for Fellow jMonkeys contain more information about
the jMonkeyEngine SDK, how to set up the jMonkeyEngine without the SDK, and many links
to game resources, where you can find free assets, tools, and tutorials.

Need help? Join the jmonkeyengine.org forum; you are always welcome to ask questions. And
(interesting fact!) now that you've read this book, you are also qualified to answer questions!

B
Additional Resources for

Fellow jMonkeys

You already know that the jMonkeyEngine SDK is a software development kit
that contains handy tools for game developers. The SDK has many more unique
game development tools that are worth knowing.

In the previous chapters, you already heard about the main features of the SDK:

 � Project creation wizard, including fully preconfigured classpath and deployment
settings

 � 3D model importer and converter

 � SceneComposer and SceneExplorer

 � Material Editor

 � Bitmap Font Creator plugin

 � The SkyBox wizard

 � Terrain Editor

 � Particle Effect Editor

Press Ctrl + I, or type a keyword into the search box in the top right
of the SDK to search the built-in help and documentation (Ctrl + I).
Even when offline, you always have access to documentation, code
samples, and best practices (shortcut is F1)!

Additional Resources for Fellow jMonkeys

[308]

You can access the following features from the Windows and Tools menus in the SDK.
This book cannot cover all advanced features in detail, so let's just look at a quick outline
of what you can expect:

 � Post-Processor Filter Editor: This window lets you configure and preview several
post-processor filters together in a scene, and package the code into one easily
loadable asset file.

 � Nifty GUI 1.3 Editor: An editor and previewer that makes the development of Nifty
GUIs easier. It includes templates and a Swing-to-Nifty converter.

 � Internationalization Wizard: This user-friendly tool for translators creates and
integrates standard Bundle.properties files into your project. In these files,
you specify the strings in your code that you want to localize.

 � AssetPack Browser: This browser lets you create AssetPacks and share your 3D
models with your team or other community members. The SDK comes preloaded
with the WorldForge AssetPack that includes many free-to-use 3D models.

 � The NeoTexture plugin: This user-friendly plugin lets you design procedural
textures visually.

You heard of a cool SDK feature, but you cannot find it in your SDK's Window
or Tools menu. Then you may be missing a plugin. Installing plugins is very
easy. Open Tools | Plugins from the SDK menu, and go to the Available
Plugins tab. Check the boxes to choose plugins, click on Install, and restart
the SDK, if prompted.

Just like any Integrated Development Environment (IDE), the jMonkeyEngine SDK
offers an advanced code editor, several file and project creation wizards, and integrated
teamwork tools.

The following are useful features that you as a (hopefully) future SDK user should be
aware of:

 � The code editor makes your code more readable, thanks to automatic highlighting
and formatting for Java, XML, .j3o, .j3m, and .j3md files. For many file types,
the editor also offers code completion (Ctrl + Space bar), boilerplate code
generation, and refactoring.

 � File wizards and templates assist you in creating Java classes, Java packages, and
jMonkey files such as materials (.j3m), scenes (.j3o), FilterPostProcessors
(.j3f), and Nifty GUI's screens, procedural textures, and shaders. Use the Template
tool to create custom file templates and share them with your team members.

 � File version control (Subversion, Mercurial, and Git) is very well integrated into the
SDK. Version control lets your team work in a shared repository that also keeps a
history of all changes.

Appendix B

[309]

Press Ctrl + Space bar to consult Javadoc pop ups for jMonkeyEngine APIs
and Java SE APIs.
Click on the editor hints (light bulb symbols) to fix import statements or
execute quick fixes.
Open the code palette and drag-and-drop common code snippets into
your classes.

The jMonkeyEngine team has put a lot of effort into the creation of the SDK and its tools, and
we hope they will make your developer lives easier. Visit http://jmonkeyengine.org/
wiki/doku.php/sdk to learn more!

Game-development resources
Do you have questions about Java or game design in general? Explore the following websites
with basic game design resources:

Game-development tips
The jMonkey team recommends the following books and articles:

 � Free e-book The Lucu Guide for Creating Video Games by Taksan Tong
(http://lucu.googlecode.com) (under Downloads)

 � The article Why You Shouldn't Be Making an MMO (http://www.gamedev.net/
blog/355/entry-2250155-why-you-shouldnt-be-making-an-mmo/)

 � The book A Theory of Fun for Game Design by Raph Koster (http://www.
theoryoffun.com/)

 � The book Texturing and Modeling by Ebert et al

 � The article Entity Systems (http://entity-systems.wikidot.com/)

Game‑asset resources
When you search for free media, such as 3D models, include the search term "Commons".
You can also be more specific and include "Creative Commons", "Wikimedia Commons",
"Flickr Commons", and so on. These keywords help you find free content that allows re-use
under the condition that you include the license file and the name of the copyright holder.
Remember to check and adhere to the license conditions before using free assets.

Additional Resources for Fellow jMonkeys

[310]

Multimedia artwork:

 � http://opengameart.org

 � http://www.cgtextures.com/

 � http://www.sound-effect.com/

 � http://beta.freesound.org/

 � http://www.planetside.co.uk/

 � http://www.angelcode.com/products/bmfont/

3D mesh editors and plugins:

 � http://www.ogre3d.org/download/tools

 � http://www.blender.org/

 � http://www.k-3d.org/wiki/Features

 � http://sketchup.google.com

 � http://Wings3d.com

Tutorials:

 � http://jmonkeyengine.org/wiki/doku.php/jme3

 � http://www.theoryoffun.com/

 � http://www.photoshoplady.com/

 � http://web.media.mit.edu/~jorkin/goap.html

 � http://www.pixelprospector.com/the-big-list-of-payment-
processors/

Key input triggers
The following key input triggers are available:

Mouse
The following mouse triggers are available:

Trigger Code

Mouse button: Left click MouseButtonTrigger(MouseInput.BUTTON_LEFT)

Mouse button: Right click MouseButtonTrigger(MouseInput.BUTTON_RIGHT)

Mouse button: Middle click MouseButtonTrigger(MouseInput.BUTTON_MIDDLE)

Mouse movement: Right MouseAxisTrigger(MouseInput.AXIS_X, true)

Appendix B

[311]

Trigger Code

Mouse movement: Left MouseAxisTrigger(MouseInput.AXIS_X, false)

Mouse movement: Up MouseAxisTrigger(MouseInput.AXIS_Y, true)

Mouse movement: Down MouseAxisTrigger(MouseInput.AXIS_Y, false)

Mouse wheel: Up
MouseAxisTrigger(MouseInput.AXIS_WHEEL,

false)

Mouse wheel: Down MouseAxisTrigger(MouseInput.AXIS_WHEEL,true)

Keyboard
The following key triggers are available:

Trigger Code

NumPad: 1, 2, 3, … KeyTrigger(KeyInput.KEY_NUMPAD1) …

Keyboard: 1, 2 , 3, … KeyTrigger(KeyInput.KEY_1) …

Keyboard: A, B, C, … KeyTrigger(KeyInput.KEY_A) …

Keyboard: Space bar KeyTrigger(KeyInput.KEY_SPACE)

Keyboard: Shift
KeyTrigger(KeyInput.KEY_RSHIFT),

KeyTrigger(KeyInput.KEY_LSHIFT)

Keyboard: F1, F2, … KeyTrigger(KeyInput.KEY_F1) …

Keyboard: Return/Enter
KeyTrigger(KeyInput.KEY_RETURN),

KeyTrigger(KeyInput.KEY_NUMPADENTER)

Keyboard: PageUp and PageDown
KeyTrigger(KeyInput.KEY_PGUP),

KeyTrigger(KeyInput.KEY_PGDN)

Keyboard: Delete and Backspace
KeyTrigger(KeyInput.KEY_BACK),

KeyTrigger(KeyInput.KEY_DELETE)

Keyboard: Esc KeyTrigger(KeyInput.KEY_ESCAPE)

Keyboard: Arrows

KeyTrigger(KeyInput.KEY_DOWN),

KeyTrigger(KeyInput.KEY_UP)

KeyTrigger(KeyInput.KEY_LEFT),

KeyTrigger(KeyInput.KEY_RIGHT)

Additional Resources for Fellow jMonkeys

[312]

Joystick
The following joystick triggers are available:

Trigger Code

Joystick buttons
JoyButtonTrigger(0, JoyInput.AXIS_
POV_X),

JoyButtonTrigger(0, JoyInput.AXIS_POV_Y)

Joystick movement: Right
JoyAxisTrigger(0, JoyInput.AXIS_POV_X,
true)

Joystick movement: Left
JoyAxisTrigger(0, JoyInput.AXIS_POV_X,
false)

Joystick movement: Forward
JoyAxisTrigger(0, JoyInput.AXIS_POV_Z,
true)

Joystick movement: Backward
JoyAxisTrigger(0, JoyInput.AXIS_POV_Z,
false)

You can find the most current trigger list at http://jmonkeyengine.org/wiki/doku.
php/jme3:advanced:input_handling.

Setting up jMonkeyEngine in Eclipse
For development with the jMonkeyEngine 3, use the jMonkeyEngine SDK that you can
download for free from http://jmonkeyengine.org.

If you want to use your favorite IDE for coding, you can create a code-less jMonkeyEngine
project. This makes it possible to use the asset management tools in the SDK, even if you do
not use the SDK's code editor. At the same time, you can manage the source code and build
a script in Eclipse (or any other IDE).

Since the SDK is built on top of the NetBeans platform, users of NetBeans IDE should feel
right at home. In the following tutorial, we show how to download and set up the latest
nightly build of the jMonkeyEngine 3 library for use with the Eclipse IDE.

You can find the most current Eclipse setup tips at http://jmonkeyengine.org/wiki/
doku.php/jme3:setting_up_jme3_in_eclipse.

Appendix B

[313]

Downloading the software
The currently available JAR binaries are the nightly builds.

1. The nightly build contains the jMonkeyEngine binaries as JAR files. Download
the most recent zipped build from http://nightly.jmonkeyengine.com.

2. Unzip the file and save the directory as jME3_2013-xx-xx in your home
directory ($HOME).

3. Verify that you have at least the following files and directories:

 � lib/ and opt/: The jMonkeyEngine binaries, and libraries used by the
jMonkeyEngine (don't remove)

 � jMonkeyEngine.jar: Run this file to see various feature demos (optional)

 � javadoc/: jME3 API documentation (optional but useful)

 � source/: The jMonkeyEngine library's source code (optional but useful)

Creating a new game project
Perform the following steps:

1. Open the Eclipse IDE.

2. Choose File | New | Java Project.

3. Enter the Project Name; for example, HelloJME3.

4. Click on Finish.

The new Java project appears in the Eclipse Explorer.

Setting up dependencies
Your project depends on the jMonkeyEngine libraries, so it needs to know where they are.

1. Right-click on the project in the Eclipse Explorer and choose Build Path | Add
External Archives.

2. In the JAR selection dialog, browse to the $HOME/jME3_2013-xx-xx directory.

3. Select all JARs in the lib directory and click on Open.

All necessary JAR libraries are now on the classpath and should appear in the Referenced
Libraries list.

Additional Resources for Fellow jMonkeys

[314]

Setting up the assets folder
The jMonkeyEngine SDK creates an assets folder for your projects. In Eclipse, perform the
following steps manually:

1. On the top level of your Eclipse project, create a new directory and name it
assets. Save all your game assets into this folder.

2. In the jMonkeyEngine SDK, choose File | Import Project | External Project Assets
from the menu to open the Import External Project Assets wizard.

3. When the wizard asks for a project folder, browse to your Eclipse project's
top-level folder.

4. When the wizard asks for an assets folder, browse to your Eclipse project's
assets folder. Click on Next and then on Finish.

A so-called codeless jMonkeyEngine project gets saved into your Eclipse project.
The project also appears in the jMonkeyEngine's Projects window. You use this
project to create materials, convert 3D models, and so on.

Writing a simple application
In the Eclipse IDE, you write your code as you are used to.

1. From the menu, open File | New | New Package. Name the package for
example hello.

2. From the menu, open File | New | Class.

1. Select package hello.

2. Name the class; for example, MyGame.

3. Specify the Superclass as com.jme3.app.SimpleApplication.

4. Activate the checkbox to create the main() method if this is the main
class of your game.

5. Activate the checkbox for Inheriting Abstract Methods.

3. Click on Finish.

The new main class based on SimpleApplication opens in the editor. Write your game code,
or copy and paste one of the tutorials.

Consult the Eclipse documentation for advice on compiling and deploying your game.

Appendix B

[315]

Best practices for jMonkey networking
Networking is a broad subject that would take more than this chapter to cover in
full detail. Since you can learn Java networking from the official Java tutorials, let's
focus on jMonkeyEngine-specific networking advice here in this appendix.

What do the client and server do?
This is a common question asked by developers who design their first network game:
How do I best separate the code between client and server?

In general, the server generates game events, such as a swarm of enemy NPCs spawning,
random encounters, or quest masters handing out missions. To keep track of the game
world, the server centrally maintains all data about objects and characters—these are your
game entities. If the game uses JME physics, the server also maintains a master scene graph,
but it does not render it. Rendering is the client's job.

The client receives and stores updates from the server. Each client renders its own scene
graph from the point of view of its player. Design your game so that the code treats all
characters as abstract remote players—this includes the local player too. Some characters
are remote-controlled by the server, others by other clients––and one of them happens to
be controlled by the local user's input. The only difference between them is that the client's
camera follows the player-controlled character.

The server does not care what visual and auditory feedback are like. The server merely
broadcasts that a certain event has occurred. It's the client's job to change icons, to play
sounds, animations, or particle effects—whatever feedback is needed to convey the event
to the player.

Similarly, each client deals with local user options, such as input trigger settings. The client
resolves the trigger mapping and sends only the mapping name of the action back to the
server. The server does not care at all about the actual input triggers (which depend on the
local player's keyboard layout or personal preference).

Each client renders the scene according to their user's settings. This means that different
users can play the same game over the same server with different video/audio settings.
Remember, the server doesn't care; it only broadcasts the game state—only the client
renders the game state from the point of view of its user. For example, you can let users
with old hardware switch to the SimpleWaterProcessor, instead of using the
full-featured WaterFilter effect.

Additional Resources for Fellow jMonkeys

[316]

Contrast these local settings with global settings such as the selected map, team contest
type, or dungeon difficulty. In multiplayer games, game-wide settings are not user options,
but server session settings. For example, the player hosting the game server specifies session
settings, globally for all clients, before the game starts.

Certain application states are relevant only to the client. For example, when a player toggles
to the SettingsScreenState, this client is simply idle from the point of view of the server.
Application states that manage loading the world and implementing gameplay, on the other
hand, are relevant only to the server.

Similarly, some custom controls are relevant only to the client. Think of a HudControl
or AnimationControl. The server must know whether an avatar walks, jumps, or
stands––but it does not care what the avatar or HUD looks like while doing that. Other
controls may be relevant only to the server. Examples include pathfinding controls for
computer-controlled enemies.

Getting your physics in sync
Imagine a network game where each client runs its own physics simulation. One player
jumps and the client broadcasts this action to the server, which passes it on. A few fractions
of a second later, other clients begin to calculate the jumper's trajectory. In their copy of the
world state, however, this player walked a fraction of a meter farther before jumping. Their
trajectories begin at different spots with a different speed. You can easily guess that in such
a setting, the clients' states will divert quickly.

There are three ways how you can keep your physics simulation synchronized in a
network game:

 � Centralized physics: The clients send all user input to the server. The server calculates
a scene graph with dynamic, static, and kinematic nodes and simulates physics
centrally. The server continuously broadcasts new locations to the clients. Each client
maintains its own non-physical (kinematic) scene graph to display the state.

 � Decentralized physics: Server and clients each take on part of the physics
simulation.

 � In the client's scene graph, the local player is represented as a dynamic
node, and all other players and NPCs are kinematic nodes. The kinematic
nodes are controlled by broadcast messages from the server. The client
sends the location of its dynamic player to the server, which broadcasts
it to all other clients.

 � In the server's scene graph, conversely, NPCs are represented as
dynamic nodes, and all players are kinematic nodes. A kinematic
player's transformation is updated on the server every time its
client sends a new location message.

Appendix B

[317]

 � Hybrid physics: Physics run in full mode on both the client and server, and they
synchronize every so often. This way you get fast simulations on the client,
independent of network lag. The downside of this approach is that you must force
regular synchronization to ensure that the server remains authoritative over the
player's location. If you don't find a smooth synchronization strategy, this can result
in annoying jerks and jumps for player characters.

Decentralized physics has its advantages, but it makes hacking the
game very easy, because the server has to trust the clients. If players
are authoritative over their location, they can essentially teleport to
any location in the world. However, it depends on your game type
whether that is an unfair advantage—or an irrelevant fun trick.

Choosing a server type
Every networked game has one host that runs the server. The host can either be a dedicated
public machine, or you can allow players to host games locally. Here are your options:

 � Dedicated server: A company provides a machine or cluster that can handle a large
amount of connections. All players play on the same host together. The game world
on the central host is typically persisted in an entity database.

 � LAN server (also called listen server): The player with the fastest hardware and
connection volunteers to run a game server in addition to running his game client.
In this setup, many smaller groups of players play their own instances of the game
in their LAN (local area network). These temporary instances of the game world
often last only one round; characters may or may not be persisted.

If you choose to maintain one central server, you can configure each client to connect to the
server address directly. Typically, you would implement this as a "Connect" button on the
start screen. If your game has several dedicated servers, your user interface should present
the player with a list of servers to choose from.

When you write a multiplayer game that lets users run LAN servers, you should design a user
interface to negotiate local games. In the typical LAN game, all players first start their clients.
One player presses a "Create network game" or "Host multiplayer game" (or similar) button,
which starts the server. The others then click on a "Join network game" or "Join multiplayer
game" button and connect to this server. It's a nice feature to make the host broadcast its
address to the LAN so clients can connect to the server immediately. Alternatively, provide
a login screen where players can type in the host's address manually.

Additional Resources for Fellow jMonkeys

[318]

Other network games offer a meet-up server. A player's game server connects to the meet-up
server and publishes its address and port there. Players start their clients and connect to the
meet-up server to get a list of available game servers. Clients pick a host from the meet-up
board and the game starts when enough players are present. In this setting, the meet-up
server does not simulate any gameplay, it just maintains the list of active game servers.

Hackers, cheaters, and griefers
Designing a networked game is a lot of work. There will always be hackers who enjoy the
challenge of reverse-engineering your client-server communication. The catch is, if you can
remote-control the game world by sending messages, then—theoretically—everyone can.

If the message is formed correctly, the server cannot tell whether it was sent by a legal or
illegal source. Griefers fabricate messages that waste game resources and disrupt their fellow
players. Cheaters fabricate messages that make their own characters rich, strong, invincible,
and (of course) handsome.

The most reliable way to prevent cheating and griefing is to centralize all authority. Ideally,
the client sends only plain user actions to the server. The server simulates all gameplay and
tracks the score. Then, the server broadcasts to all clients what they should see. Even if
cheaters send a flood of messages pretending to perform tasks at super-human speed,
you can write heuristic tests that detect and ignore messages that are implausible.

Welcome to MonkeyZone
It is often easier to learn complex concepts such as networking from actual code. This is why
the jMonkeyEngine team has created MonkeyZone, a proof-of-concept demo of a network
game. MonkeyZone loads a simple wireframe scene where players and NPCs interact. Players
can shoot, drive a vehicle, and prompt an NPC to follow or walk away. Several players can
connect to the same interactive world. Each player gets paired up with an NPC character.

Appendix B

[319]

When a human player presses a button, or an NPC performs a game action, this action is sent
to the server. The server calculates the game logic, determines the new state, and broadcasts
the results to all clients. The AI code that determines when an NPC acts and where it goes
is executed on the client, and the results are sent up to the server. Both clients and server
run parts of the physics simulation. The server sends regular authoritative synchronization
messages to prevent drifting.

Let's see how much effort is needed. An experienced Java developer wrote this demo in a
week using the jMonkeyEngine SDK and the BasicGame project template. The open source
code follows best practices and showcases synchronization between jBullet Physics and the
SpiderMonkey API. The project design makes it possible to edit maps, vehicles, and so on,
in the jMonkeyEngine SDK. This allows model designers to contribute artwork more easily
without having to change any code.

The MonkeyZone source code is available from our GoogleCode Subversion repository.
You can check out a copy using any Subversion client. The following example uses the
Subversion integration in the jMonkeyEngine SDK.

1. Choose Team | Subversion | Checkout from the menu.

2. Enter the SVN URL https://monkeyzone.googlecode.com/svn/trunk/.

3. Wait for the project to download and open it in the SDK when prompted.

4. Right-click the project node to build the project.

5. Run the server first (com.jme3.monkeyzone.ServerMain), and then one or
more clients (com.jme3.monkeyzone.ClientMain).

Feel free to look at the code and re-use it for your own multiplayer games!

Pop Quiz Answers

Chapter 2, Creating Your First 3D Scene

Pop quiz – which way, vector?

Q1. 2

Chapter 3, Interacting with the User

Pop quiz – input handling

Q1. 1

Pop quiz – how to control game mechanics

Q1. a2, a3, b4, b5, c1, c6

Pop Quiz Answers

[322]

Chapter 4, Adding Character to Your Game

Pop quiz – managing assets: best practices

Q1. 3

Pop quiz – animating a model

Q1. 1b, 2c, 3b, 4c

Chapter 5, Creating Materials

Pop quiz – transparent versus opaque

Q1. 1

Pop quiz – multimapping

Q1. 1d, 2e, 3a, 4b, 5c

Chapter 6, Having Fun with Physics

Pop quiz

Q1. 1

Pop Quiz Answers

[323]

Chapter 8, Creating Landscapes

Pop quiz

Q1. 4

Chapter 9, Making Yourself Heard

Pop quiz – audio nodes

Q1. 2

Index
Symbols
3D modeling software 91
3D models 92
3D objects

in 2D GUI 120, 121
3DS Max 93
3D space 28
.j3o files

about 226
loading 104-106
saving 104-106

.j3o format 225

.ogg file containers 258

.wav file containers 258

A
A key (move left (Strafe)) 47
alphamap

about 230
drawing 231
used, for creating material 231

Alt key 27
ambient light 153
ambient occlusion

activating 215, 216
ambient sound

adding 259
AngleCode fonts

loading 117, 118

animated model
loading 109-111
playing 111, 112

animation channels 111
animation control 111
animation events

responding to 113
AnimEventListener method 113
anti-aliasing 44
app.enqueue() method 82
application

starting 27
stopping 27

Application settings 42
applyCentralForce(v) method 174
applyForce(v,p) method 174
applyImpulse(v,p) method 175
applyTorqueImpulse(v) method 175
applyTorque(v) method 174
app.restart(); method 27, 45
app.start() method 45
app.start(); method 27
AppStates 82
AppStates.getCounter() method 80
app.stop(); method 27
armature 108
ArtOfIllusion 93
art pipeline 19, 121, 122
AssetManager function 92
assetManager object 26, 42
AssetPackBrowser window 14, 308

[326]

assets
managing 102

assets directory 139
assets management

best practices 102
assets management, best practices

directory structure, deciding 102-104
.j3o files, loading 104-106
.j3o files, saving 104-106

attachCenterMark() method 62
attachment nodes 111
Audacity

about 258
URL 258

audio files
loading 260, 261

audio node
creating 259

audio node methods
getLocalTranslation() 267
getStatus() 263
pause() 263
play() 263
playInstance() 263
setLooping(true) 263
setMaxDistance(1000f) 267
setPitch(1.0f) 263
setPositional(true) 267
setRefDistance(10f) 267
setTimeOffset(1.0f) 263
setVolume(5.0f) 263
stop() 263

AudioRenderer object 257

B
BasicGame project 16
BasicGame template

blue cube, creating 88, 89
best practices, jMonkey networking 315-319
BetterCharacterControl

about 161, 166
methods 166

Blender
about 93
Ogre Mesh conversion 98, 99
URL, for download 94

Blender-to-Ogre3D plugin
installing 94

Blinn bump mapping 128
blue cube

creating 88, 89
blue material

illuminated sphere, creating with 130, 131
bone control 111
bones 108
Box() constructor 25
Box() object 25, 32
BulletAppState 160
Bullet Physics Engine 158
bump maps 142
burst effect

applying 197-199

C
cam 42
cannon ball

shooting 172-175
CapsuleCollisionShape 166
caustics 254
centralized physics 316
channel.getAnimMaxTime() method 113
channel.setAnim() method 113
channel.setLoopMode(LoopMode.Loop) method

113
channel.setSpeed() method 113
channel.setTime() method 113
cleanup() method 81
clearForces() method 175
collides 64
collision detection 157
collision() method 184
collisions

game, reacting to 182-185
com.jme3.app.StatsView UI element 45
com.jme3.audio.* package 258
com.jme3.bullet package 158
com.jme3.effect package 192
com.jme3.light package 129
com.jme3.post package 210
com.jme3.scene.Mesh package 92
com.jme3.scene.shape package 92
com.jme3.shadow package 214

[327]

com.jme3.util.SkyFactory package 244
com.jme3.water.SimpleWaterProcessor class

252
context type

about 285
JmeContext.Type.Canvas 286
JmeContext.Type.Display 286
JmeContext.Type.Headless 286
JmeContext.Type.OffscreenSurface 286

controlUpdate() method 75, 77
cool blur effect

activating 217-219
crate

placing, on flat floor 238
crepuscular rays 248
cubes

meshing around 88, 89
culling 39
custom effect textures 208
custom mesh 92

D
DDS (DirectDraw Surface) 245
decentralized physics 316
dedicated server 317
default sound environments

using 273-275
demos, jMonkeyEngine SDK

running 15
depth-of-field blur effect 217
design effects

in SDK 202-205
dialog image 43
diffuse color 131
DiffuseMap property 134
DiffuseMap texture 140
directional audio 269-271
directional light 153
display settings

configuring 43, 44
display settings, game

context type 285, 286
customizing 279
loading 291, 292
name, customizing 280
reloading 286, 287

saving 291, 292
splash screen, creating 281
title bar, customizing 282, 283
video settings, selecting 284

dist folder 21
D key (move right (Strafe)) 47
Doom 3 275
down arrow key (rotate down) 47
drop shadows

activating, SceneProcessor used 211-213
Dungeon Master (DM)

about 52
InputListener objects, inner objects 58, 59
input to output state 52, 53
mappings, activating 56, 57
right buttons, pushing 54, 55
SimpleApplication class 55

dust
stirring up 192-195

dynamic object 177, 181

E
Eclipse

jMonkeyEngine, setting up 312
editors

list 20
effects

starting 199
stopping 199

emitters 199
empty scene

creating 242
Environmental Audio Extensions (EAX) 275
environment mapping 242
Erase Texture button 230
explosion effect

implementing 208, 209
external file types 20

F
FastMath.DEG_TO_RAD constant 34
Files window 18
Filter 210
FilterExplorer window 14

[328]

fire effect
applying 200, 201

first-person perspective 158
first-person player

walking, among solid walls and floor 158-166
flyCam 42
fog

adding, to scene 246, 247
Font Creator plugin 117
forces

timing, correctly 185-187
fragment shaders 128
frameBuffer object 42
frames per second (FPS) 45
free look 66
fullscreen mode 43

G
game

display settings, customizing 279
don’ts 301
dos 301
reacting, to collisions 182-185
simplicity, maintaining 303

game actions 52
game action targets

about 60
brick picking, crosshairs used 60-62
brick picking, crosshairs with ray casting used

62-64
brick picking, mouse pointer used 65
brick picking, mouse pointer with ray casting

used 66-68
game asset resources

3D mesh editors and plugins 310
about 309
multi-media artwork 310
tutorials 310

game assets 92
game data

loading 290, 291
saving 290, 291

game development resources
about 309
asset resources 309
development tips 309

game development tips 309
game resource repositories 92
game state 52
geom2.scale(2.0f); 33
geometry

about 39
and node 40
versus node 40

geom.setLocalScale(0.5f); 33
getAppliedImpulse() method 185
getAudioRenderer() Method 42
getCombinedFriction() method 185
getCombinedRestitution() method 185
getHeight() method 240
getInputManager() Method 42
getListener() Method 42
getNodeA() method 185
getNodeB() method 185
GhostControl 161
global game mechanics

coordinating 80-82
glow

applying, to scene 219, 220
GlowMap 210
GLSL (OpenGL Shading Language) 210
graphic processing unit (GPU) 128
grass

adding, to hill 229, 230
GUI

icons, loading into 118, 119
gunshot sound

playing 261-263

H
hand-drawn textures 231
head-up display (HUD) 45
heightmap

creating, for terrain 231
generating, for hilly terrain 235, 236
loading 232-235
terrain mesh, creating from 232-235

height maps 143
hello() method 80
hill

climbing 226-229
grass, adding 229, 230

[329]

HillHeightMap constructor 236
hilly terrain

heightmap, generating for 235, 236
hinges 181
hold left mouse button and move (rotate drag)

47
hover tank model

about 139, 140
glow, providing 145-147
normal map, adding 141, 142
shine, providing 143-145

hybrid physics 317

I
icons

loading, into GUI 118, 119
illuminated opaque textures 133, 134
illuminated sphere

creating, with blue material 130, 131
ImageBasedHeightMap constructor 233
initialize() method 78, 81
input handling 44
installation

requisites 12
steps 12-14

installation, Blender-to-Ogre3D plugin 94
Integrated Development Environment (IDE) 308
interactive status icons

displaying 119
Internationalization Wizard 308

J
Java archive (JAR) 294
jBullet 158
JME3 Tests demo 16
JME3 Tests project 15
JmeContext.Type.Canvas 286
JmeContext.Type.Display 286
JmeContext.Type.Headless 286
JmeContext.Type.OffscreenSurface 286
jMonkeyEngine

about 157
setting up, in Eclipse 312

jMonkeyEngine SDK
about 11
binary bundle, URL for downloading 15

demos, running 15
external file types 20
final release, building 295, 296
game, uses 21
installation requisites 12
installing, steps for 12, 14
Java game projects, creating with 14
URL, for downloading JDK 12

jMonkeyEngine setup
assets folder, setting up 314
dependencies, setting up 313
game project, creating 313
simple application, writing 314
software, downloading 313

jMonkeyEngine Software Development Kit. See
jMonkeyEngine SDK

jMonkey networking
best practices 315-319

jMonkey SDK
features 308

joints 181
joyInput 42
jump() method 161, 166

K
keyframes 109
keyInput 42
key input triggers

about 310
joystick 312
keyboard 311
mouse 310

kinematic object 177, 181

L
LAN (local area network) 317
LAN server 317
left arrow key (rotate left) 47
level of detail (LOD)

about 236, 237
optimizing 237

Lighting.j3md 129
lights

about 152, 153
ambient light 153
directional light 153

[330]

point light 153
spot light 154

light scattering 248, 249
light scattering filter 248
LightWeight Java Game Library. See LWJGL
listen server. See LAN server
load() method 41, 100
loadTexture() method 127
LoopMode.Cycle 113
LoopMode.DontLoop 113
LoopMode.Loop 113
LWJGL 11

M
main() method 27, 45, 48
makeBrick() method 171
makeCubes() method 74
mappings 55
material

about 125
creating, alphamap used 231
creating, seamless tiled texture used 151, 152

material file
material settings, storing in 148, 149

material settings
storing, in material file 148, 149

Maya 93
mesh

coloring 96, 97
creating 87
sculpting 95

methods, BetterCharacterControl
jump() 166
setDuckedFactor(.5f) 166
setDucked(true) 166
setViewDirection(new Vec-tor3f(1f,0f,0f)) 166
setWalkDirection(new Vec-tor3f(0f,0f,0.1f)) 166

methods, PhysicsCollisionEvent
getAppliedImpulse() 185
getCombinedFriction() 185
getCombinedRestitution() 185
getNodeA() 185
getNodeB() 185

methods, RigidBodyControl
applyCentralForce(v) 174
applyForce(v,p) 174

applyImpulse(v,p) 175
applyTorqueImpulse(v) 175
applyTorque(v) 174
clearForces() 175
setAngularVelocity(v) 174
setCcdMotionThreshold(.1f) 177
setFriction(1f) 176
setGravity(new Vec-tor3f(0f,-10f,0f)) 177
setLinearVelocity(v) 174
setMass(1f) 176
setPhysicsLocation() 176
setPhysicsRotation() 176
setRestitution(0.0f) 176

MilkShape3D 93
MIPmaps 150
model

animating 107
loading, for real 101
loading, for testing 99, 100
rigging 108
skinning 108
troubleshooting 100

MonkeyZone 318
mouseInput 42
mouse look 66
move mouse backward (rotate down) 47
move mouse forward (rotate up) 47
move mouse left (rotate left) 47
move mouse right (rotate right) 47
multimapping 138, 139
mult() method 36
mymodel.blend file 98
mySky.j3o object 243

N
name

customizing, for game 280
NeoTexture plugin 308
new Spatial() method 41
Nifty GUI 1.3 Editor 308
node

and geometry 40
versus geometry 40

non-player characters (NPCs) 52
normal maps 142

[331]

O
objects

interacting 177-181
Ogg Vorbis 258
Ogre3D DotScene 93
Ogre3D Mesh 93
Ogre DotScene 93
Ogre Mesh conversion

in Blender 98, 99
Ogre XML 93
onAnimChange() method 113
onAnimCycleDone() interface 113
Open Audio Library (OpenAL) 257
OpenGL Shading Language (GLSL) 128
Open Graphics Library (OpenGL) 29
OptionsScreensAppState method 83
options, SimpleApplication

FPS 289
pause 288
statistics, hiding 289

origin 29

P
parallax map 143
Parallel Split Shadow Mapping (PSSM) 213
particle effects

about 192
burst effects, applying 197-199
design effects, in SDK 202-205
dust, stirring up 192-195
fire effects, applying 200, 201
sparks, creating 195-197
sparks, dashing in random directions 195-197
spatial, finding in scene graph 206, 207

ParticleEmitter object 192
particle systems 191
PCM audio 258
Perlin noise 150
Phong illumination 128
PhysicsCollisionEvent

methods 185
physics controls

BetterCharacterControl 161
GhostControl 161
RigidBodyControl 161

physics property
behavior, controlling 175, 176

physics simulation
about 187
examples 157

picking 60
pixel shaders. See fragment shaders
play button 82
players

delighting, with challenging choices 299, 300
landscapes, exploring 252-255
super-powers, enabling in game 302

playInstance() method 264
play() method 264
point light 153
polished game concept

creating 304, 305
positional audio node

creating 265, 266
Post-Processor Filter Editor 308
post-processor filters 191
pre-release checklist, SimpleApplication 292,

293
Prey 275
procedural textures 150
Projects window 13, 18

Q
Q key (move up) 47
Quaternion object 35

R
ray casting 64
registerLocator() method 159
release checklist, SimpleApplication 293-295
renderManager.getRenderer() 42
resolution 44
rigging 108
right arrow key (rotate right) 47
right-handed coordinate system 29
rigid bodies 167
RigidBodyControl

about 161
methods 174-177

role-playing game (RPG) 52

[332]

rootNode object 39, 42
rotate() method 35

S
save button 82
saving settings 44
scene

creating 43
fog, adding 246, 247
glow, applying to 219, 220
hill, climbing 226-229
initializing 26
initializing, steps for 24, 25
navigating 37, 38
populating 38
terrain spatial, adding to 226-229

SceneComposer window 227
scene graph 38
SceneProcessor

about 210
used, for activating drop shadows 211, 213

scenery generators 241
scene-wide effects

about 210
ambient occlusion, activating 215, 216
cool blur effect, activating 217-219
drop shadows, activating 211, 213
glow, applying 219, 220
scene, with high-quality drop shadows 214, 215
toons and artistic effects 221, 222

Screen-Space Ambient Occlusion (SSAO) 216
scroll mouse wheel backward (zoom in) 47
scroll mouse wheel forward (zoom out) 47
seamless tiled texture

used, for creating material 151, 152
Seamless Tiled textures 150
semitransparent texture 134, 136
setAngularVelocity(v) method 174
setBloomIntensity() method 220
setBlurScale() method 220
setCcdMotionThreshold(.1f) method 177
setColor() method 126
setDownSamplingFactor() method 220
setDuckedFactor(.5f) method 166
setDucked(true) method 166
setExposureCutOff() method 220

setExposurePower() method 220
setFriction(1f) method 176
setGravity(new Vec-tor3f(0f,-10f,0f)) method

177
setLinearVelocity(v) method 174
setLocalTranslation() method 32, 157, 162
setMass(1f) method 176
setPhysicsLocation() method 176
setPhysicsRotation() method 176
setRestitution(0.0f) method 176
setTexture() method 127
settings.useInput() method 46
setViewDirection(new Vec-tor3f(1f,0f,0f))

method 166
setWalkDirection() method 161
setWalkDirection(new Vec-tor3f(0f,0f,0.1f))

method 166
shaders

about 128
examples 129
fragment shaders 128
vertex shaders 128

shadow modes
Cast 213
CastAndReceive 213
Off 213
Receive 213

shape 92
shininess

about 131, 132
examples 132

shootCannonBall() method 172, 174
SimpleApplication

about 279
options 287
pre-release checklist 292, 293
release checklist 293-295

SimpleApplication class 47
simpleInitApp() method 25, 26, 31, 33, 42, 48,

49, 51, 82, 88, 159
simpleRender() method 42
simpleUpdate() method 42, 83
skeletal animation 107
S key (move backward) 47
skinning 108
SkyBox

about 242

[333]

creating 242
creating, in Java code 244, 245
implementing 242-244

sound
obstructing 269-271

sound environments 272
sparks

dashing, in random directions 195-197
sparks effect

creating 195-197
spatial

finding, in scene graph 206, 207
spatial.getControl() method 80
spatials

about 39, 69, 91
application state (AppState) 76-79
cubes, chasing 69-72
cubes, controlling 73-76
jMonkeyEngine class 73
shared cubes, identifying 79, 80

specular color 132
spheres

meshing around 89-91
spherical linear interpolation (slerp) 36
splash scrren

creating, for game 281
splat textures 230
spot

finding 29
spot light 154
start() method 27
static object 177, 180
StatsView window 46

T
terraforming buttons 227
terrain

heightmap, creating for 231
Terrain Editor 225
terrain mesh

generating, Terrain wizard used 226
heightmap, creating from 232-235

TerrainQuad constructor 233
terrain spatial

adding, to scene 226-229

Terrain wizard
used, for generating terrain mesh 226

TerraMonkey. See Terrain Editor
TestWalkingChar demo 15
textures

MIPmaps 150
procedural textures 150
scaling 151, 152
Seamless Tiled textures 150
tiling 151, 152
UV Mapped textures 150

texture splatting 150, 229, 230
time per frame (tpf) 75
toons and artistic effects 221, 222
tower defence game

furnishing 122
town

fortifying 158-161
translation 32
transparent textures 136
tree

planting 238-240
Trimble SketchUp 93

U
underwater effects 275, 276
unit vector 36
unshaded materials

about 126
functionality 126, 127

up arrow key (rotate up) 47
user interface

AngleCode fonts, loading 117, 118
loading 115
text, displaying 115, 116

UV-mapped texture 97
UV Mapped textures 150
UV mapping 96
UV Mapping 97
UV textures 93

V
vast terrains 236, 237
vertex 91

[334]

vertex shaders 128
vertices 91
viewPort 42
volume fall-off 267, 268
volumetric lighting 248

W
wall

building, of brick geometries 168-172
water

about 250
reflecting, around scene 250-252

water effect 250
Wavefront 93
window title 44
W key (move forward) 47

Z
Z key (move down) 47

Thank you for buying

jMonkeyEngine 3.0 Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Monkey Game Development: Beginner's Guide
ISBN: 978-1-84969-203-8 Paperback: 402 pages

Create monetized 2D games deployable to almost
any platform

1. Create eight fun 2d games.

2. Understand how to structure your code, your data
structures and how to set up the control flow of a
modern 2D game

3. Learn how to deploy your games to iOS, Android,
XNA (Xbox, Windows Phone 7) and desktop
platforms (Windows, OSX)

Corona SDK Mobile Game Development: Beginner's
Guide
ISBN: 978-1-84969-188-8 Paperback: 408 pages

An administrator's guide to configuring, securing,
customizing, and extending Moodle

1. Build once and deploy your games to both iOS and
Android

2. Create commercially successful games by applying
several monetization techniques and tools

3. Create three fun games and integrate them with
social networks such as Twitter and Facebook

Please check www.PacktPub.com for information on our titles

Microsoft XNA 4.0 Game Development Cookbook
ISBN: 9978-1-84969-198-7 Paperback: 356 pages

Over 35 intermediate-advanced recipes for taking
your XNA development arsenal further

1. Accelerate your XNA learning with a myriad of tips
and tricks to solve your everyday problems

2. Get to grips with adding special effects, virtual
atmospheres and computer controlled characters

3. A fast-paced cookbook packed with screenshots to
illustrate each advanced step by step task

4. Apply the techniques learned for wiring games for
PC, Xbox 360 and Windows Phone 7

Torque 3D Game Development Cookbook
ISBN: 978-1-84969-354-7 Paperback: 350 pages

Clear step-by-step instruction and practical examples
to advance your understanding of Torque 3D and all
of its sub-systems

1. Clear step-by-step instruction and practical
examples to advance your understanding of Torque
3D and all of its sub-systems

2. See how to make MySQL take the processing
burden from your programs

3. Explore essential topics such as graphics, sound,
networking and user input

4. Helpful tips and techniques to increase the potential
of your Torque 3D games

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing jMonkeyEngine
	Installation requirements for game developers
	Time for action – installing the jMonkeyEngine SDK
	jMonkeyEngine SDK at your service
	Can I work in other Java IDEs?
	Time for action – running a demo
	Time for action – creating a project
	Assets and the art pipeline
	Time for action – distributing a game
	Can I sell my jMonkeyEngine game?
	Summary

	Chapter 2: Creating Your First 3D Scene
	A basic template to initialize scenes
	Time for action – initializing a scene step by step
	Starting and stopping the application
	Time for action – starting the application
	Orient yourself in 3D space
	Time for action – finding the spot
	And how do I say that in Java?
	Time for action – position it!
	Time for action – scale it!
	Time for action – rotate it!
	Time for action – rotate it again, Sam
	Where am I?
	Time for action – navigating the scene
	Populating the scene
	Time for action – node versus geometry
	Extending SimpleApplication
	Make a big scene
	Time for action – configuring display settings
	Keeping an eye on your FPS
	Time for action – checking vital stats
	Navigating the scene with a mouse and a keyboard
	Time for action – move it!
	Summary

	Chapter 3: Interacting with the User
	The digital Dungeon Master
	Time for action – from input to output in slow motion
	Time for action – pushing the right buttons
	Time for action – trigger meets mapping
	Time for action – mapping meets listeners
	Time for action – listeners meet actions
	Click me if you can
	Time for action – pick a brick (using crosshairs)
	Time for action – pick a brick (crosshairs with ray casting)
	Time for action – pick a brick (using the mouse pointer)
	Time for action – pick a brick (pointer with ray casting)
	How to steer spatials
	Time for action – you are the CubeChaser
	Time for action – chase all the cubes!
	Time for action – get these cubes under control
	Time for action – get into the right AppState of mind
	Time for action – call me maybe?
	Coordinating global game mechanics
	The beauty of AppStates and controls
	Summary

	Chapter 4: Adding Character to Your Game
	Making a Mesh
	Time for action – meshing around with cubes
	Time for action – meshing around with spheres

	From mesh to geometry
	Beg, steal, or borrow
	The right wrench to pound in the screw
	Time for action – installing the Blender-to-Ogre3D plugin
	Time for action – sculpting the mesh
	Time for action – coloring the mesh
	Time for action – a model for to go, please
	Time for action – loading a model (just testing)
	Time for action – loading a model (for real)
	Managing assets – best practices
	Time for action – sorting your stuff out
	Time for action – saving and loading .j3o's
	Animating a model
	Time for action – rig, skin, and animate
	Time for action – loading an animated model
	Time for action – playing an animated model
	Time for action – responding to animation events
	Loading a simple user interface
	Time for action – displaying text
	Time for action – loading AngelCode fonts
	Time for action – loading icons into the GUI
	Time for action – display interactive status icons
	Time for action – 3D objects in the 2D GUI?
	The Art Pipeline
	Summary

	Chapter 5: Creating Materials
	What is a material?
	Time for action – unshaded materials
	Material definitions and shaders
	Good-bye unshaded, hello lighting!
	Time for action – no frills, just color
	Time for action – oooh, shiny!
	Time for action – illuminated opaque textures
	Time for action – semitransparent texture
	Time for action – transparent textures
	Multimapping
	Time for action – meet the hover tank
	Time for action – let the hover tank be groovy
	Time for action – give your hover tank a shine
	Time for action – make your hover tank glow
	Time for action – deep-freeze your materials
	Different types of textures
	Time for action – scaling and tiling textures
	Time for action – lights on!
	Summary

	Chapter 6: Having Fun with Physics
	Solid floors and walls
	Time for action – fortify the town
	Time for action – first-person navigation
	Fun with rigid bodies
	Time for action – falling bricks
	Time for action – flying cannon balls
	Time for action – predict the explosion
	Dynamic, static, and kinematic
	Time for action – an elevator platform
	Time for action – react to collisions
	Time for action – timing forces correctly
	My whole world is falling apart
	Leet skillz – learn from the pros
	Summary

	Chapter 7: Adding Spark to Your Game
	Particle effects
	Time for action – stir up some dust
	Time for action – sparks
	Time for action – fit to burst?
	Starting and stopping effects

	Time for action – fire!
	Time for action – design effects in the SDK
	Time for action – finding stuff in the scene graph
	Custom effect textures
	Scene-wide effects

	Time for action – welcome to Dark Town
	Time for action – welcome to Dark City
	Time for action – this city needs more gloom
	Time for action – stay focused
	Time for action – this city needs more glow
	Time for action — toons and artistic effects
	Summary

	Chapter 8: Creating Landscapes
	Welcome to Earth
	Time for action – climbing a hill
	Time for action – let there be grass
	Time for action – splat goes the texture
	But wait, there's more
	Time for action – up hill and down dale
	Time for action – go fast and vast
	Time for action – plant a tree
	Not even the sky is the limit
	Time for action – nothing but blue sky
	Time for action — sky factory
	Time for action – fog of war
	Catch the sun
	Time for action – let the sun shine in
	Still waters run deep
	Time for action – simple water
	Time for action – take a swim
	Summary

	Chapter 9: Making Yourself Heard
	Please roar into the microphone now
	Ambient sounds! They are everywhere!
	Time for action – add ambient sound
	Time for action – to pre-buffer or to stream?
	Time for action – push button to receive *BAM*
	Basic sound API
	Something's coming from behind!
	Time for action – positional audio
	A closer look at volume fall-off

	Time for action – I spy with my little ear...
	Sound environments
	Time for action – using default sound environments
	Time for action – underwater
	Summary

	Chapter 10: Showing Your Game to the World
	Customizing display settings
	Time for action – the name of the game
	Time for action – make a big splash (screen)
	Time for action – window seat or full screen?
	Time for action – fine-tuning video settings
	Time for action – window, canvas, or headless?
	Time for action – reload settings
	SimpleApplication options
	Time for action – time for a pause
	Time for action – hide statistics and FPS
	Save, load, and be merry
	Time for action – save and load game data
	Time for action – save and load display settings
	Pre-release checklist
	Release checklist
	Time for action – build the final release
	Summary

	Appendix A: What's Next?
	Hey, this game is fun!
	Some dos and don'ts
	Super-powers: Go!
	Keep it simple
	Polishing off the last pages
	Summary

	Appendix B: Additional Resources for Fellow jMonkeys
	Game development resources
	Game development tips
	Game asset resources

	Key input triggers
	Mouse
	Keyboard
	Joystick

	Setting up jMonkeyEngine in Eclipse
	Downloading the software
	Creating a new game project
	Setting up dependencies
	Setting up the assets folder
	Writing a simple application

	Best practices for jMonkey networking
	What do the client and server do?
	Getting your physics in sync
	Choosing a server type
	Hackers, cheaters, and griefers
	Welcome to the MonkeyZone

	Pop Quiz Answers
	Index

